CN108762072B - 基于核范数子空间法和增广向量法的预测控制方法 - Google Patents
基于核范数子空间法和增广向量法的预测控制方法 Download PDFInfo
- Publication number
- CN108762072B CN108762072B CN201810493692.6A CN201810493692A CN108762072B CN 108762072 B CN108762072 B CN 108762072B CN 201810493692 A CN201810493692 A CN 201810493692A CN 108762072 B CN108762072 B CN 108762072B
- Authority
- CN
- China
- Prior art keywords
- matrix
- output value
- output
- mechanical arm
- norm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/048—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators using a predictor
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
Abstract
本发明公开了一种基于核范数子空间法和增广向量法的预测控制方法,所述方法在MPC的基础上利用ADMM算法,用于构建CD播放器机械臂系统模型,方法利用收集ADMM算法对系统模型的历史输入输出数据求解出核范数优化问题,得到一组优化之后的输出值;并设定一测量输入值,运用子空间算法技术通过测量输入值与输出值构建得到系统的状态空间模型;根据测量输入值和输出值建立汉克尔矩阵,并基于增广向量法构建系统离散状态空间模型;将离散状态空间模型通过多步迭代的方式计算得到多步预测输出值;构建系统的代价函数,并设定系统的参考轨迹;计算系统的最优控制量,得到系统中控制器的输出值;本发明的系统模型,避免了对实测数据的大量需求,减少了计算时间。
Description
技术领域
本发明属于预测控制领域,尤其涉及一种基于核范数子空间法和增广向量法的预测控制方法。
背景技术
状态空间理论在航天、航空领域取得了辉煌的成果,但在这种设计方法应用到一些复杂领域,如工业上就会发现完美的理论和控制系统实践之间还是有着相当大的鸿沟。现有技术中通常将模型预测控制(Model Predictive Control,MPC)应用到工业上,MPC是基于模型的控制算法,只注重模型的功能,只要具有预测功能的信息集合,无论其具有什么样的形式,均可以作为预测模型。MPC的滚动优化一般是通过设定的性能指标的最优来确定未来的控制作用。这一性能指标涉及系统未来的性能,一般可以取对象在未来的采样点上跟踪某一期望轨迹的方差最小。引入了不相等的预测长度和控制长度,系统设计灵活方便,具有预测模型、滚动优化和在线反馈校正等特征,具有良好的控制性能和鲁棒性;但是在测量数据比较少的情况下,通过MPC无法得到一个合适的系统模型,从而导致整体的计算时间边长,使得系统无法跟踪上设定的参数值运行。
发明内容
本发明的主要目的在于提供一种基于核范数子空间法和增广向量法的预测控制方法,用于解决现有技术中的不足,具体技术方案如下:
一种基于核范数子空间法和增广向量法的预测控制方法,所述方法在MPC的基础上利用ADMM算法,用于构建CD播放器机械臂系统模型,所述方法包括如下步骤:
S1:收集所述CD播放器机械臂系统模型的历史输入输出数据,利用所述ADMM算法求解出核范数优化问题,得到一组优化之后的输出值;
S2:设定一测量输入值,运用子空间算法技术通过所述测量输入值与所述输出值构建得到所述CD播放器机械臂系统的状态空间模型;
S3:根据所述测量输入值和所述输出值建立汉克尔矩阵,并基于增广向量法构建所述CD播放器机械臂系统离散状态空间模型;
S4:将所述离散状态空间模型通过多步迭代的方式计算得到多步预测输出值;
S5:构建所述CD播放器机械臂系统的代价函数,并设定所述CD播放器机械臂系统的参考轨迹;
S6:计算所述CD播放器机械臂系统的最优控制量,得到所述CD播放器机械臂系统中控制器的输出值。
进一步的,所述输出值用yopt(k)表示,所述测量输入值用u(k)表示,所述状态空间模型通过式表示,其中A,B,C,D四个矩阵分别为系统矩阵,输入矩阵,输出矩阵,前馈矩阵;x(k),u(k),y(k)分别为状态向量,输入向量,输出向量;所述代价函数用J表示,所述参考轨迹用Lsr(k)表示,通过设定所述参考轨迹,可以使得所述多步预测输出值能够沿着所述参考轨迹平稳的到达预设的设定值。
进一步的,所述yopt(k)通过所述ADMM算法迭代得到;最小化的所述核范数优化问题通过式表示,其中,是矩阵U0,r,N零空间上的投影矩阵,y(k)是模型的输出值,yc(k)是实际测量输出值,λ为权重值,T={0,1,...,N+r-2}。
进一步的,所述ADMM算法具体包括步骤:首先,初始化x,X,Z,v;随后依次对x=argminxLv(x,X,Z)、X=argminXLv(x,X,Z)和Z=Z+v(A(x)+A0‐X)进行更新;最后判断是否满足||rp||F≤εp并且||rd||2≤εd,其中,||·||F,||·||2,rp,rd,εp,εd分别为F范数,2范数,初始残差,对偶残差,初始限度,对偶限度;若满足,则所述ADMM算法终止迭代,否则重新对x=argminxLv(x,X,Z)、X=argminXLv(x,X,Z)和Z=Z+v(A(x)+A0‐X)进行更新,直至满足条件||rp||F≤εp并且||rd||2≤εd。
进一步的,所述离散状态空间模型通过式
进一步的,在步骤S4中,由表达式Y=Fx(ki)+ΨΔU和表达式
本发明的基于核范数子空间法和增广向量法的预测控制方法,在MPC的基础上引入ADMM算法,通过ADMM算法求解出处核范数优化问题,从而计算得到CD播放器机械臂系统历史数据的输入输出值中一组最优的输出值yopt(k),然后通过子空间技术建立系统的状态空间模型,并进一步基于增广向量法构建离散状态空间模型,计算其多步预测输出值,再通过构建代价函数J和设定参考轨迹,从而计算出系统控制的最优控制量,得到控制器的输出;与现有技术相比,本发明的有益效果为:由于ADMM算法中每次迭代都需要更新参数x,X,Z,使得其惩罚值为非固定的,可以提高算法的收敛性;通过子空间技术和核范数技术结合能够去优化从而得到优化的输出值yopt(k),使得系统得到一个更为准确的模型,同时可有效减少计算时间,以及起到降低计算难度的效果。
附图说明
图1为本发明所述基于核范数子空间法和增广向量法的预测控制方法的流程框图示意;
图2为本发明所述所述ADMM算法的流程框图示意。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
本发明目的在于提供一种基于核范数子空间法和增广向量法的预测控制算法,能够在CD播放器机械臂系统未知的情况下,能够仅根据此系统的输入输出数据得到较好的状态空间模型,并设计基于增广形式的状态空间去设计控制器,使得系统输出能够平稳跟踪设定的期望值。
具体的,参阅图1,在本发明实施例中,提供了一种基于核范数子空间法和增广向量法的预测控制方法,所述方法包括步骤:
S1:收集所述CD播放器机械臂系统模型的历史输入输出数据,利用所述ADMM算法求解出核范数优化问题,得到一组优化之后的输出值;
本发明的方法利用ADMM算法求解核范数优化问题从而得到优化的输出yopt(k),yopt(k)通过式表示,式中,A(x)是Rn→Rp*q映射,x,a是向量,A0,P是矩阵;进一步,将式中矩阵A(x)+A0看成X变换一下可以得到式
结合图2,图示为ADMM算法的流程框图,在ADMM算法每次迭代中,包含了Lv关于x的最小化,Lv关于X的最小化以及对Z的更新。
在ADMM算法过程中,为了去更新x需要去求解Lv(x,X,Z)关于x的梯度使其等于零得到等式(P+vM)x=Aadj(vX+vA0-Z)+Pa和x=(P+vM)-1Aadj(vX+vA0-Z)+Pa,式中,Aadj(·)是映射A(·)的伴随映射,M是通过等式Mx=Aadj(A(x)),定义的半正定矩阵;X的更新可以直接通过求解奇异值分解得到,即此外,σi,κi,υi可以从对这个矩阵进行奇异值分解求得到式和Z=Z+v(A(x)+A0-X);最后停止迭代条件中的参数为其中是上一次迭代中X,εrel,εabs,μ,τ为常数,一般分别取10‐3,10‐6,10,2。
S2:设定一测量输入值,运用子空间算法技术通过所述测量输入值与所述输出值构建得到所述CD播放器机械臂系统的状态空间模型;
在本发明实施例中,首先利用已有的测量输入值u(k)和通过核范数优化之后的输出值yopt(k)这两组数据来构建输入,输出,辅助变量汉克尔矩阵,其中每一条副对角线上元素都相等的矩阵叫做汉克尔矩阵,通过如下式表示:
输出汉克尔矩阵和其定义方式相同,辅助变量汉克尔矩阵则是联立了过去的输入输出汉克尔矩阵,由式表示,Φ是通过联合过去的输入汉克尔矩阵和过去的输出汉克尔矩阵,Upast,Ypast则是从构建的输入汉克矩阵,输出汉克尔矩阵选择合适的行数作为过去的输入汉克尔矩阵和过去的输出的汉克尔矩阵。
为了提升子空间技术的精确度需要在Y0,r,NΠ0,r,NΦT两边乘以权重矩阵W1,W2,则令通过对矩阵G进行奇异值分解可以得到扩展可观测矩阵Γ的表达式G=PΣQT,Γ=W1 -1P,权重矩阵取为求取Γ之后,则可以根据Γ得到系统矩阵A,输出矩阵C:矩阵C可以通过Γ的前l行确定(l表示系统的输出个数),这样通过矩阵A,C可以求得初始状态为x0的矩阵B,D,由式来表示。
S3:根据所述测量输入值和所述输出值建立汉克尔矩阵,并基于增广向量法构建所述CD播放器机械臂系统离散状态空间模型;
通过步骤S2可以得到通过式表示的状态空间模型,一般u(k)会对y(k)有一个参数D的作用,考虑滚动时域原理,在实际系统中不考虑u(k)对y(k)产生作用所以默认D=0;随后利用差分方程转换为增广状态空间模型,得到式
x(k+1)-x(k)=A(x(k)-x(k-1))+B(u(k)-u(k-1))
Δx(k+1)=x(k+1)-x(k),Δx(k)=x(k)-x(k-1),Δu(k)=u(k)-u(k-1)
S4:将所述离散状态空间模型通过多步迭代的方式计算得到多步预测输出值;
xz(ki+1|ki)=Azxz(ki)+BzΔu(ki)
xz(ki+2|ki)=Azxz(ki+1|ki)+BzΔu(ki+1)
xz(ki+2|ki)=Az 2xz(ki)+AzBzΔu(ki)+BzΔu(ki+1)
y(ki+1|ki)=CZAZxz(ki)+CzBzΔu(ki)
y(ki+2|ki)=CZAZ 2xz(ki)+CzAzBzΔu(ki)+CzBzΔu(ki+1)
y(ki+3|ki)=CZAZ 3xz(ki)+CzAz 2BzΔu(ki)+CzAzBzΔu(ki+1)+CzBzΔu(ki+2)
Y=Fxz(ki)+ΨΔU
其中,矩阵F,Ψ为:
S5:构建所述CD播放器机械臂系统的代价函数,并设定所述CD播放器机械臂系统的参考轨迹;
本发明中,构建的代价函数J通过式表示,其中,随后将步骤S4中的输出矩阵Y代入代价函数J中可进一步得到式设定的参考轨迹可通过式Lsr(k)表示,其中,Ls可以取[111...1]T,Ls为Np维,Np是控制时域,r(k)是设定值。
S6:计算所述CD播放器机械臂系统的最优控制量,得到所述CD播放器机械臂系统中控制器的输出值。
综上描述,通过本发明方法中的步骤S1~S6可以完成CD播放器机械臂系统的预测控制器的设计,从而通过设计完毕的预测控制器来对CD播放器机械臂系统进行预测操作。
本发明的基于核范数子空间法和增广向量法的预测控制方法,在MPC的基础上引入ADMM算法,通过ADMM算法求解出处核范数优化问题,从而计算得到CD播放器机械臂系统历史数据的输入输出值中一组最优的输出值yopt(k),然后通过子空间技术建立系统的状态空间模型,并进一步基于增广向量法构建离散状态空间模型,计算其多步预测输出值,再通过构建代价函数J和设定参考轨迹,从而计算出系统控制的最优控制量,得到控制器的输出;与现有技术相比,本发明的有益效果为:由于ADMM算法中每次迭代都需要更新参数x,X,Z,使得其惩罚值为非固定的,可以提高算法的收敛性;通过子空间技术和核范数技术结合能够去优化从而得到优化的输出值yopt(k),使得系统得到一个更为准确的模型,同时可有效减少计算时间,以及起到降低计算难度的效果。
以上仅为本发明的较佳实施例,但并不限制本发明的专利范围,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来而言,其依然可以对前述各具体实施方式所记载的技术方案进行修改,或者对其中部分技术特征进行等效替换。凡是利用本发明说明书及附图内容所做的等效结构,直接或间接运用在其他相关的技术领域,均同理在本发明专利保护范围之内。
Claims (6)
1.基于核范数子空间法和增广向量法的预测控制方法,其特征在于,所述方法在MPC的基础上利用ADMM算法,用于构建CD播放器机械臂系统模型,所述方法包括如下步骤:
S1:收集所述CD播放器机械臂系统模型的历史输入输出数据,利用所述ADMM算法求解出核范数优化问题,得到一组优化之后的输出值;
S2:设定一测量输入值,运用子空间算法技术通过所述测量输入值与所述输出值构建得到所述CD播放器机械臂系统的状态空间模型;
S3:根据所述测量输入值和所述输出值建立汉克尔矩阵,并基于增广向量法构建所述CD播放器机械臂系统离散状态空间模型;
S4:将所述离散状态空间模型通过多步迭代的方式计算得到多步预测输出值;
S5:构建所述CD播放器机械臂系统的代价函数,并设定所述CD播放器机械臂系统的参考轨迹;
S6:计算所述CD播放器机械臂系统的最优控制量,得到所述CD播放器机械臂系统中控制器的输出值;
x(k),u(k),y(k)分别为状态向量,输入向量,输出向量;所述代价函数用J表示,所述参考轨迹用Lsr(k)表示,通过设定所述参考轨迹,可以使得所述多步预测输出值能够沿着所述参考轨迹平稳的到达预设的设定值;
3.根据权利要求1所述的基于核范数子空间法和增广向量法的预测控制方法,其特征在于,所述ADMM算法具体包括步骤:首先,初始化x,X,Z,v;随后依次对x=argminxLv(x,X,Z)、X=argminXLv(x,X,Z)和Z=Z+v(A(x)+A0-X)进行更新;最后判断是否满足||rp||F≤εp并且||rd||2≤εd,其中,||·||F,||·||2,rp,rd,εp,εd分别为F范数,2范数,初始残差,对偶残差,初始限度,对偶限度;若满足,则所述ADMM算法终止迭代,否则重新对x=argminxLv(x,X,Z)、X=argminXLv(x,X,Z)和Z=Z+v(A(x)+A0-X)进行更新,直至满足条件||rp||F≤εp并且||rd||2≤εd。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810493692.6A CN108762072B (zh) | 2018-05-21 | 2018-05-21 | 基于核范数子空间法和增广向量法的预测控制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810493692.6A CN108762072B (zh) | 2018-05-21 | 2018-05-21 | 基于核范数子空间法和增广向量法的预测控制方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108762072A CN108762072A (zh) | 2018-11-06 |
CN108762072B true CN108762072B (zh) | 2021-07-27 |
Family
ID=64007635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810493692.6A Active CN108762072B (zh) | 2018-05-21 | 2018-05-21 | 基于核范数子空间法和增广向量法的预测控制方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108762072B (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111158351B (zh) * | 2020-01-19 | 2021-06-01 | 哈尔滨工业大学 | 数据驱动的故障诊断与最优控制系统一体化设计方法 |
CN112318511A (zh) * | 2020-11-02 | 2021-02-05 | 北京邮电大学 | 基于数据驱动的机械臂轨迹跟踪控制方法 |
CN113406385B (zh) * | 2021-06-17 | 2022-01-21 | 哈尔滨工业大学 | 一种基于时域空间的周期信号基频确定方法 |
CN115207976B (zh) * | 2022-08-19 | 2024-08-02 | 广西大学 | 一种风电集群日内实时调度方法 |
CN116068903B (zh) * | 2023-04-06 | 2023-06-20 | 中国人民解放军国防科技大学 | 一种闭环系统鲁棒性能的实时优化方法、装置及设备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106646303A (zh) * | 2016-11-17 | 2017-05-10 | 厦门理工学院 | 一种欠采样磁共振波谱的快速重建方法 |
CN107092188A (zh) * | 2017-05-27 | 2017-08-25 | 南京邮电大学 | 一种连续搅拌釜式反应器系统的广义预测控制算法 |
CN107121977A (zh) * | 2017-06-02 | 2017-09-01 | 南京邮电大学 | 基于双层结构的机械臂执行器故障容错控制系统及其方法 |
CN107423543A (zh) * | 2017-04-14 | 2017-12-01 | 厦门大学 | 一种超复数磁共振波谱的快速重建方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109149638B (zh) * | 2018-09-17 | 2020-04-28 | 山东大学 | 基于mpc和admm算法的vsc-hvdc并网风电场分布式协调电压控制方法及系统 |
-
2018
- 2018-05-21 CN CN201810493692.6A patent/CN108762072B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106646303A (zh) * | 2016-11-17 | 2017-05-10 | 厦门理工学院 | 一种欠采样磁共振波谱的快速重建方法 |
CN107423543A (zh) * | 2017-04-14 | 2017-12-01 | 厦门大学 | 一种超复数磁共振波谱的快速重建方法 |
CN107092188A (zh) * | 2017-05-27 | 2017-08-25 | 南京邮电大学 | 一种连续搅拌釜式反应器系统的广义预测控制算法 |
CN107121977A (zh) * | 2017-06-02 | 2017-09-01 | 南京邮电大学 | 基于双层结构的机械臂执行器故障容错控制系统及其方法 |
Non-Patent Citations (3)
Title |
---|
子空间辨识方法在CD 播放器机械臂中的应用;罗小锁;《自动化应用》;20171231;第14-15页 * |
非线性系统时间最优模型预测控制;胡素强;《中国优秀硕士学位论文全文数据库 信息科技辑》;20180315;第2章 * |
高速列车动态模型辨识方法研究;梁爽;《中国优秀硕士学位论文全文数据库 信息科技辑》;20151115;第2-4章 * |
Also Published As
Publication number | Publication date |
---|---|
CN108762072A (zh) | 2018-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108762072B (zh) | 基于核范数子空间法和增广向量法的预测控制方法 | |
Marchetti et al. | A dual modifier-adaptation approach for real-time optimization | |
Shi et al. | Robust design of integrated feedback and iterative learning control of a batch process based on a 2D Roesser system | |
Kolås et al. | Constrained nonlinear state estimation based on the UKF approach | |
Huang et al. | Finite-time anti-saturation control for Euler–Lagrange systems with actuator failures | |
Xiao et al. | Online optimal control of unknown discrete-time nonlinear systems by using time-based adaptive dynamic programming | |
CN108132599B (zh) | 一种基于迭代反馈整定的ude控制系统设计方法 | |
CN110609476B (zh) | 一种基于高斯过程模型的多变量非线性动态系统模型预测控制方法 | |
CN115407207A (zh) | 锂离子电池荷电状态的在线预测方法与系统 | |
Pyrkin et al. | An adaptive observer for uncertain linear time-varying systems with unknown additive perturbations | |
Meng et al. | Adaptive fault tolerant control for a class of switched nonlinear systems with unknown control directions | |
Yun et al. | A variational Bayesian based robust cubature Kalman filter under dynamic model mismatch and outliers interference | |
Ge et al. | Robust adaptive control of a class of nonlinear strict-feedback discrete-time systems with exact output tracking | |
Razmjooei et al. | Adaptive fast-finite-time extended state observer design for uncertain electro-hydraulic systems | |
Kosmatopoulos | Control of unknown nonlinear systems with efficient transient performance using concurrent exploitation and exploration | |
Butt et al. | Adaptive backstepping control for an engine cooling system with guaranteed parameter convergence under mismatched parameter uncertainties | |
Nguyen et al. | On-policy and off-policy Q-learning strategies for spacecraft systems: An approach for time-varying discrete-time without controllability assumption of augmented system | |
Shi et al. | Learning-based adaptive control with an accelerated iterative adaptive law | |
Vuillod et al. | Handling noise and overfitting in surrogate models based on non-uniform rational basis spline entities | |
Zheng et al. | Adaptive neural identification and non-singular control of pure-feedback nonlinear systems | |
Han et al. | Fault-tolerant optimised tracking control for unknown discrete-time linear systems using a combined reinforcement learning and residual compensation methodology | |
Jafari et al. | Parameter-dependent Lyapunov function based fault estimation and fault-tolerant control for LPV systems | |
Li et al. | Control design for arbitrary complex nonlinear discrete-time systems based on direct NNMRAC strategy | |
Tsai et al. | A modified NARMAX model-based self-tuner with fault tolerance for unknown nonlinear stochastic hybrid systems with an input–output direct feed-through term | |
Bai et al. | Observer-based fuzzy event-triggered control for state constrained MIMO fractional-order systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |