WO2018043869A1 - 3차원 프린터의 성형 공정 감시 장치 및 이를 구비한 3차원 프린터 - Google Patents

3차원 프린터의 성형 공정 감시 장치 및 이를 구비한 3차원 프린터 Download PDF

Info

Publication number
WO2018043869A1
WO2018043869A1 PCT/KR2017/005130 KR2017005130W WO2018043869A1 WO 2018043869 A1 WO2018043869 A1 WO 2018043869A1 KR 2017005130 W KR2017005130 W KR 2017005130W WO 2018043869 A1 WO2018043869 A1 WO 2018043869A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
blade
molding
raw material
coordinate information
Prior art date
Application number
PCT/KR2017/005130
Other languages
English (en)
French (fr)
Inventor
조재형
이민
김명수
지승용
최승묵
이지빈
Original Assignee
윈포시스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160111802A external-priority patent/KR101715124B1/ko
Priority claimed from KR1020160156105A external-priority patent/KR101793573B1/ko
Priority claimed from KR1020170005615A external-priority patent/KR101872935B1/ko
Priority claimed from KR1020170035528A external-priority patent/KR101874095B1/ko
Application filed by 윈포시스 주식회사 filed Critical 윈포시스 주식회사
Priority to CN201780006314.4A priority Critical patent/CN108602124B/zh
Publication of WO2018043869A1 publication Critical patent/WO2018043869A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Definitions

  • the present invention relates to a three-dimensional printer for manufacturing a three-dimensional molded article, in particular in the real-time detection of defects in the coating of the melt pool and metal powder during the process in PBF (Powder Bed Fusion) processing to form the metal powder by layer by layer It relates to a molding process monitoring apparatus for solving this problem and a three-dimensional printer having the same.
  • PBF Powder Bed Fusion
  • a three-dimensional printer has been used as an apparatus for processing a three-dimensional molded article.
  • Three-dimensional printers are increasingly replacing traditional processing methods because of the advantage that non-experts can easily produce three-dimensional molded parts.
  • Korean Patent Publication No. 10-2009-0049608 and Republic of Korea Patent Publication No. 10-1646773 are disclosed as a technology for a three-dimensional printer.
  • the important thing in these three-dimensional printers is to improve the quality of the product while being able to work quickly.
  • the three-dimensional printer in which the metal powder is sintered or melted to form each layer, has no method of inspecting the interior when a problem occurs in the molding process.
  • the molding process can take a relatively long time, so when the occurrence of the problem is recognized after the molded part is completed, a large time and cost loss occurs.
  • the present invention monitors the molding process in a three-dimensional printer in real time to analyze the molding process so that it is possible to quickly recognize whether the problem occurs in the molding and the action for the problem can be quickly formed for the three-dimensional printer and We present a three-dimensional printer equipped with such a molding process monitoring device and basic defect solving means.
  • the present invention in addition to the image information obtained from the light generated by the processing beam is irradiated to the raw material powder in the molding process of the three-dimensional molded product by adding the coordinate information of the location where the light is generated and stored as an image to analyze the problem parts
  • a molding process monitoring apparatus for a three-dimensional printer that enables to be specified and a measure for a problem can be promptly made, and a three-dimensional printer having such a molding process monitoring apparatus and basic defect solving means are provided.
  • the present invention provides an apparatus for processing a three-dimensional molded article using the raw material powder as an embodiment, and monitors the process, information on the light generated at the point where the raw material powder is molded
  • the present invention provides a molding process monitoring apparatus for a three-dimensional printer including an image storage unit for receiving and receiving the optical information and the coordinate information from the information transmission unit.
  • the optical information acquisition unit includes a high speed camera and acquires the optical information by taking a picture of the point where the raw material powder is molded by using the high speed camera, and the image storage unit corresponds to the picture taken by the high speed camera.
  • Coordinate information about a molding point may be received from the coordinate information transmitting unit and stored in the photographed picture of the molding point. This method can identify the precise molding position when analyzing the acquired image by simultaneously displaying the current machining position on the image obtained by processing more than 2000mm per second.
  • the image storage unit an image processing module for converting a photograph taken the molding point into a picture displayed in the color according to the intensity of light, the equivalent color information representing the coordinate information to the coordinate information transmitted from the coordinate information transmission unit
  • a coordinate image processing module for converting the image into a coordinate processing module for displaying the color information converted in the coordinate processing module in the photo converted by the image processing module.
  • the apparatus may further include an abnormal judging unit which determines that there is an abnormality when the flame generated at the molding point is displayed at a predetermined size or more or less than or equal to a predetermined brightness by reading the photograph and stores the coordinate information of the corresponding molding point. Can be.
  • the display unit may include a display unit for displaying an abnormal point on the screen, and the display unit may include an image display module for displaying an image of a progress of molding the 3D molded article or a finished 3D molded article as an image. It may include a coordinate display module for receiving the coordinate information of the molding point in which the abnormality occurs, and displaying the coordinate information on the point corresponding to the coordinate of the image displayed by the image display module.
  • the present invention is provided with an apparatus for processing a three-dimensional molded article using the raw material powder as an embodiment, the apparatus for monitoring the process, information on the light generated at the point where the raw material powder is molded
  • the optical information acquisition unit for obtaining the information
  • the coordinate information transmission unit for transmitting the coordinate information of the molding point for processing the molded article of the three-dimensional and the coordinate information for the molding point where the optical information obtained by the optical information acquisition unit is generated
  • the present invention provides a molding process monitoring apparatus for a three-dimensional printer including an abnormality detecting unit which receives the coordinate information transmitting unit and analyzes the optical information in real time.
  • the abnormality detection unit the image processing module for converting the photographed photographing the molding point to the image data displayed in the color according to the intensity of the light
  • the image processing module receives the data from the database storing the color corresponding to the temperature
  • Image data analysis module for analyzing the temperature distribution of the molding point compared to the color data converted from the and holds information about the suitable temperature range of the molding point
  • the temperature distribution analyzed in the image data analysis module corresponds to the suitable temperature range It may include an abnormality determination module to determine whether.
  • the present invention is an embodiment for processing a three-dimensional molded article, the chamber processing the shape processing, the raw material supply unit for introducing a powder raw material into the chamber, the raw material supply unit Raw material moving part for pushing and moving the raw material, a molding part in which the raw material moved by the raw material moving part is placed, and the molding of the raw material is carried out;
  • a three-dimensional printer including the molding process monitoring apparatus described above for monitoring the molding process by the present invention is presented.
  • the raw material moving unit provided with a blade of a soft material and when a certain condition can be wound around the blade so that the new side of the blade can be used for work.
  • the raw material moving unit the body is moved along the horizontal direction of the chamber and the groove is formed at the end, the blade is coupled to the groove of the body, the feed roller is coupled to one end of the blade and the blade and the The other end of the blade may be combined and may include a recovery roller for winding the blade.
  • the raw material moving unit As another form of the raw material moving unit, the raw material moving unit, the body portion moving along the horizontal direction, rotatably coupled to the body portion and a plurality of blades are spaced apart to extend to the outside and the position of each blade is changed by rotation It may include a blade unit and a monitoring unit for monitoring the state of the blade or the state of the powder applied to the blade mounted on the blade unit.
  • the blade portion the rotating body rotatably coupled to the body portion, the first blade coupled to protrude on the outer periphery of the rotating body and the first blade is spaced apart at a predetermined angle and the outer periphery of the rotating body It may be coupled to protrude and include a second blade made of a harder material than the first blade.
  • an exemplary embodiment of the present invention it is possible to determine whether an abnormality is generated from the image information among the images obtained in the molding process, and it is easy to specify in which part the abnormality occurs by accurate coordinate information, so that a quick measure for the abnormality is possible.
  • the accurate image of the finished part and the exact location of the problem part can be displayed, so that it can be used as data that can guarantee quality without acquiring CT or X-ray data.
  • the melting pool generated during molding is monitored in real time and the optical information obtained from the melting pool is used to determine whether the molding is abnormal, it is possible to quickly detect the abnormality and to quickly deal with the abnormality.
  • FIG. 1 is a schematic perspective view of a molding process monitoring apparatus according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a molding process monitoring apparatus according to a first embodiment of the present invention.
  • FIG. 3 is a view showing an example output from the display unit of the molding process monitoring device of Figure 2 (a) is a view showing an image and coordinates of one molding point, Figure 3 (b) is a continuous forming point Figure showing the image of the.
  • FIG. 4 is a diagram illustrating an example output from the display unit of the molding process monitoring device of FIG. 2 and showing an image of a molded article.
  • FIG. 4 is a diagram illustrating an example output from the display unit of the molding process monitoring device of FIG. 2 and showing an image of a molded article.
  • FIG. 5 is a block diagram showing a molding process monitoring apparatus according to a second embodiment of the present invention.
  • FIG. 6 is a block diagram showing an abnormality detection unit employed in the embodiment shown in FIG.
  • FIG. 7 is a view showing an example displayed on the display unit employed in the embodiment shown in FIG. 5, wherein FIG. 7A is a view showing a layer currently in progress, and FIG. 7B is a view showing a layer already advanced. The figure shown three-dimensionally.
  • FIG. 8 is a perspective view showing a three-dimensional printer employing the molding process monitoring apparatus according to the embodiment shown in FIG.
  • FIG. 9 is a perspective view of a raw material moving unit employed in the three-dimensional printer of FIG.
  • FIG. 10 is a perspective view of another type of raw material moving part employed in the three-dimensional printer of FIG. 8.
  • FIG. 10 is a perspective view of another type of raw material moving part employed in the three-dimensional printer of FIG. 8.
  • FIG. 11 is an exploded perspective view of the raw material moving unit of FIG.
  • FIG. 12 is a cross-sectional view of the blade portion of the raw material moving part of FIG.
  • FIG. 1 is a schematic perspective view of a molding process monitoring apparatus according to an embodiment of the present invention.
  • the molding process monitoring apparatus is an apparatus for inspecting a machining state by a three-dimensional printing method.
  • the powder bed fusion (PBF) method which uses metal powders such as stainless steel, titanium, and aluminum, as a raw material, is not limited thereto.
  • the molding process monitoring apparatus acquires information on light generated at the point where the raw material powder is molded by using the optical information acquisition unit 1, and monitors the molding process by using the information.
  • the optical information acquired by the optical information acquisition unit 1 is generated by the light beam processing unit 50.
  • the light beam processing unit 50 includes a light beam irradiator 51 and a scanner 55, and irradiates the light beam B at a predetermined position using processing data such as CAD / CAM.
  • the light beam processing unit 50 is a device for irradiating a light beam B such as a laser for molding raw material powder.
  • a light beam B such as a laser for molding raw material powder.
  • the light beam B irradiated from the light beam irradiator 51 is irradiated through the scanner 55 via the first beam splitter 52 and the second beam splitter 53.
  • the light beam B irradiated through the scanner 55 is formed by melting or sintering the raw material powder placed on the forming unit 40.
  • Information about the light of the formed spot is input to the optical information acquisition unit 1 through the second beam splitter 53 and the third beam splitter 54 through the scanner 55.
  • the second beam splitter 53 may select a 1070 nm laser wavelength transmission or a visible light wavelength total reflection method
  • the third beam splitter 54 may select a visible light wavelength 50% transmission and a 50% reflection method.
  • the raw material powder exposed to the light beam is melted, oxidized and carbonized by an ablation reaction, cooled, and cured one by one to produce a final product.
  • the molding process is monitored by detecting a signal corresponding to the state change of the raw material powder.
  • the change in the state of the raw material includes not only direct defects related to the processing of the raw material powder in the molding part 40, but also indirect defects related to the application of the raw material powder transferred to the molding part 40.
  • the former it is not easy to obtain a test signal during the process, but it may be implemented by detecting a flame in which the light beam reacts with the metal powder.
  • the central processing unit 3 exchanges information with each component of the optical information acquisition unit 1, the abnormality detection unit 2, the coordinate transmission unit 5, and the like and manages the molding process.
  • the molding process monitoring apparatus 60 is provided in an apparatus for processing a three-dimensional molded article using raw material powder, and monitors the process.
  • the optical information acquisition unit 1 and coordinates are provided. Including the information transmission unit 5 and the image storage unit 6 can record the molding position.
  • the optical information acquisition unit 1 acquires information on light generated at the point where the raw material powder is molded. As described above, the light beam processing unit 50 melts and shapes the raw material powder placed on the molding unit 40. In this way, heat and light are generated by high energy at the point where the molding is performed. The optical information acquisition unit 1 serves to photograph or detect this light.
  • the optical information acquisition unit 1 includes the high speed camera 111 and can acquire the optical information by taking a picture of the point where the raw material powder is molded by using the high speed camera.
  • High speed cameras can employ those capable of shooting approximately 10,000 frames per second.
  • the photograph may be in the form of a molten flame generated when the raw material powder is molded.
  • the optical information acquisition unit 1 may include a photo sensor 113 to acquire the presence or absence of light and the intensity of light as optical information.
  • the optical information acquisition unit 1 may include a conversion module for converting the obtained optical information into a digital signal.
  • the coordinate information transmission unit 5 transmits coordinate information of the molding point for processing the three-dimensional molded article to the image storage unit 6. At this time, the coordinate information of the molding point is also transmitted to the light beam processing unit 50 at the same time.
  • the coordinate information may use information included in the processing data for processing the three-dimensional workpiece.
  • the coordinate information may be at least one of position data of a light beam or scan data of a scanner as data for operating the light beam processing unit 50 to shape an accurate position.
  • Extracting coordinate information can be used for various purposes that require coordinates.
  • the laser processing coordinates that generate the optical information in the molding process monitoring device it can be usefully used for displaying defects of the three-dimensional molded article inspection.
  • the image storage unit 6 acquires the optical information from the optical information acquisition unit 1, receives coordinate information on the molding point where the acquired optical information is generated from the coordinate information transmission unit 5, and transmits the optical information to the optical information and the optical information. Create and save the corresponding coordinate information as an image.
  • the optical information of the molding point generated at the time of transmission of the coordinate data and the coordinate data transmitted to the image storage unit 6 is There will be a corresponding relationship with each other.
  • the coordinate information transmitted to the image storage unit 6 may be corresponded to the same view point in the image information of the optical information acquisition unit 1 generated after the transmission point of the coordinate data is used as a start signal. Accordingly, the molded image at the specific coordinates can be specified.
  • a well-known signal processing technique may be employed for synchronization and error checking.
  • the image storage unit 6 receives coordinate information about a molding point corresponding to a photograph taken by the high speed camera from the coordinate information transmission unit 5, and then the molding point. Can be included in the captured picture and saved.
  • the coordinate transmission unit 5 moves the same laser position as that transmitted from the central processing unit 3 to the scanner 55. May receive a command.
  • the image storage unit 6 receives a picture photographing the moment when the molding is made from the high-speed camera, and receives the information indicating the coordinates from the moment of molding from the coordinate information transmission unit 5 to synthesize the stored information.
  • the image storage unit 6 may process and store it for each photograph taken, and this process may be performed in units of about 10 ms to about 30 ms.
  • the coordinates in the molding picture it can be used for the purpose of monitoring the molding process. That is, when abnormality is found from the molding picture, the coordinates can be checked to determine which part (coordinate) has occurred in the molding. In addition, it is possible to check whether there is an abnormality by continuously displaying the image of the molding spot taken on the molding photograph along the molding path and finding a change in light size or intensity.
  • the image storage unit 6 may be configured to include an image processing module, a coordinate processing module, and an image synthesis module.
  • the image processing module converts the photo taken of the molding point into a photo displayed in color according to the light intensity.
  • the color of a fireworks photographed is usually yellow, which can be expressed as a color temperature.
  • the temperature may be additionally measured using a temperature sensor.
  • the coordinate processing module converts the coordinate information transmitted from the coordinate information transmission unit 5 into equivalent color information. That is, the coordinate information can be treated as a binary number and displayed in a color that can represent this binary number.
  • Coordinates can be represented by X and Y coordinates.
  • X and Y coordinates are represented by two 8-bit binary numbers, respectively, [00000000] [00000000] as black, [11111111] [11111111] as white, and dark between them.
  • the coordinate value is 8 bits per pixel and can be displayed at the promised position such as the top of the picture which is less important.
  • the coordinate values displayed in color may be converted to confirm actual coordinates in the image image processing process.
  • the image synthesis module displays the color information converted by the coordinate processing module on the photo converted by the image processing module.
  • the converted photo and the color information converted from the coordinate information are all integrated into one image as image information.
  • color information representing coordinate information is displayed as four points on the upper left of the picture.
  • the left first and second two points X represent x-coordinates and the third and fourth second points Y represent y-coordinates.
  • color information indicating coordinate information can be displayed in the left or right corner.
  • the rightmost point P indicates whether there is an abnormality in the light beam irradiator 51 of the light beam processing unit 50.
  • it may be provided with a sensor for detecting the on / off of the light beam irradiator. If the light emitter is on, it can be displayed in black when it is off.
  • the image storage module 6 includes an image processing module, a coordinate processing module, and an image synthesizing module.
  • the image storage unit 6 may be formed by synthesizing the molded photograph and the coordinate information to reduce the size of the data and perform the molding inspection based on the exact position. Can be.
  • the error of the measurement position can be reduced.
  • the laser machining position command is transmitted in a cycle of 100 kHz, and when the machining speed is 2000 mm / sec, the laser moves 20 ⁇ m for a period of 10 ms of one command.
  • the molding process monitoring device separates the image capture of the molding point and measures the current machining position through a separate measuring path, a time difference occurs between separate systems.
  • the molding process monitoring device 60 reads a photograph and stores the coordinate information of the molding point and determines that there is an error when the flame generated at the molding point is displayed at a predetermined size or less or a predetermined brightness or less or more. It may further include an abnormal decision unit (7). In addition, when an abnormality occurs, a warning sound or a warning light can be notified to the operator or the control center.
  • the display unit 4 may further include a display unit 4 displaying the abnormal point on the screen.
  • the display unit 4 includes an image display module and a coordinate display module, and displays an image of the progress of forming the three-dimensional molded product in the image display module or the finished three-dimensional molded product as an image, and the abnormal determination unit 7 in the coordinate display module.
  • 3 and 4 show examples of screens displayed on the display unit 4. This can provide an output that can be checked by the operator or control center.
  • the optical information acquisition unit 1 includes a photo sensor instead of a high speed camera
  • the intensity of the photo sensor may be converted into an image to be used as optical information, and the above-described case of the high speed camera may be applied.
  • the molding process monitoring device configured as described above can grasp the adequacy of the energy applied to the molding point, and can monitor whether the molding process is correctly performed and the data obtained from the CT or X-ray of the finished molded product It can be used as data that can guarantee quality without acquiring data.
  • 5 to 7 relate to a molding process monitoring apparatus according to a second embodiment of the present invention.
  • the molding process monitoring apparatus is provided in an apparatus for processing a three-dimensional molded article using raw material powder, and monitors the process.
  • the optical information acquisition unit 1 and the abnormality detection unit 2 And the central processing unit 3 can be inspected for the melting pool.
  • the optical information acquisition unit 1 acquires optical information generated at the point where the raw material powder is molded when the raw material powder is molded by the light beam B. FIG. In addition, it is possible to obtain light information on whether the light beam B is irradiated without error.
  • the optical information acquisition unit can adopt the configuration and description of the optical information acquisition unit of the first embodiment within a range not compromising.
  • the light beam processing unit 50 uses a laser, for example, and melts or sinters the raw material powder to be molded. In this way, heat and light are generated by high energy at the point where the molding is performed.
  • the optical information acquisition unit 1 serves to photograph or detect this light.
  • the optical information acquisition unit 1 acquires the information of the light beam B irradiated from the first optical information acquisition unit 11 and the light beam irradiator 51 for acquiring information on the light generated at the point where the raw material powder is molded.
  • the second optical information acquisition unit 12 is included.
  • the first optical information acquisition unit 11 may include the high speed camera 111 and acquire the optical information by taking a picture of a point where the raw material powder is molded by using the high speed camera 111.
  • the high speed camera 111 may employ one capable of shooting approximately 5000 frames or more per second.
  • the ND filter 112 may be disposed in front of the high speed camera 111, and the ND filter 112 may adjust the amount of light by allowing the position to be adjusted.
  • the photograph may be a form in which the raw material powder is molded and a melting pool (P) and a flame are generated.
  • the picture taken is converted into image data displayed in color according to the light intensity.
  • image analysis can be used to obtain accurate and varied information about the forming point.
  • the first optical information acquisition unit 11 is provided with a photo sensor 113 to detect the presence of light at the molding point to transmit to the abnormality detection unit 2, the abnormality detection unit 2 in the central processing unit (3) By comparing with the ON / OFF signal of the light beam processing unit 50 transmitted from the can be confirmed whether the molding process is performed by receiving a normal signal.
  • a photo transistor may be used as the photo sensor 113, and an output signal of the photo transistor may be amplified and filtered and transmitted to the abnormality detector 2.
  • the first optical information acquisition unit 11 may include an illumination sensor (not shown) instead of the high speed camera 111 to acquire the presence or absence of light at the molding point and the light intensity as optical information.
  • the optical information acquisition unit 1 may include a conversion module for converting the obtained optical information into a digital signal.
  • the illumination sensor a photodiode whose current value changes according to light intensity may be used. Since the photodiode can convert the detected light intensity into an electrical signal and transmit the photodiode, optical information can be obtained by a simpler method than that of the high speed camera 111.
  • the first optical information acquisition unit 11 may include both the high speed camera 111 and the illuminance sensor to acquire optical information of the molding point. In this case, since it is possible to acquire optical information in two different ways, it is possible to determine whether abnormality is more accurate.
  • the high-speed camera 111 and the illuminance sensor of the first optical information acquisition unit 11 are mounted outside the chamber of the three-dimensional printer to connect the scanner 55 and the beam splitters (second and third beam splitters 53 and 54). Although optical information may be acquired through this, the optical information may be directly mounted inside the chamber.
  • the second light information acquisition unit 12 acquires the information of the light beam B irradiated from the light beam irradiator 51.
  • the second optical information acquisition unit 12 receives the light beam B irradiated from the light beam irradiator 51 through a beam splitter (first beam splitter 52), and transmits a signal thereof to the abnormality detector 2. It is possible to check whether the light beam B is normally irradiated.
  • the second optical information acquisition unit 12 may employ a photo transistor, and the output signal of the photo transistor may be amplified and filtered and transmitted to the abnormality detection unit 2.
  • the abnormality detector 2 detects an abnormality of the molding process by analyzing the optical information acquired by the optical information acquisition unit 1, and additionally detects the abnormality of the light beam processing unit 50 itself.
  • a file system may be further provided to store records related to abnormal detection.
  • the coordinate information transmitting unit 5 is provided, and the abnormality detecting unit 2 transmits the coordinate information of the molding point at which the optical information acquired by the optical information obtaining unit 1 is generated.
  • the coordinate information may be referred to in real time when the analysis of the optical information is received from the unit 5.
  • the abnormality detection unit 2 reads a picture taken by the high speed camera 111 of the optical information acquisition unit 1 so that the melting pool P or the flame generated at the molding point is smaller than or equal to a predetermined size or less than or equal to a predetermined brightness. In this case, it can be determined that there is an abnormality.
  • the abnormality detection unit 2 includes an image processing module 21, an image data analysis module 22, and an abnormality determination module 23. In addition, it may further include a light intensity analysis module 24, the work content storage module 25, the output file generation module 26.
  • the image processing module 21 converts the photograph taken of the molding point into image data displayed in color according to the intensity of light.
  • the image processing module 21 may be configured as a filter of software or hardware used for image processing.
  • the converted image data may be color data in units of pixels.
  • the color data may include 256 colors or more in the case of color.
  • the image data analysis module 22 receives the data from the first database 27 storing the color data corresponding to the temperature, and compares the temperature with the color data converted by the image processing module 21. Analyze
  • the first database 27 is a database in which reference information for comparing the temperature of the photographed image is stored. Color data corresponding to each temperature is stored in the first database 27. That is, the color data may include a temperature and a color corresponding to the temperature.
  • the first database 27 may be provided in the image data analysis module 22 or may be provided in the central processing unit 3.
  • the image data analysis module 22 receives and uses information from the central processing unit 3.
  • the image processing module 21 may process the captured image in gray scale to recognize the intensity of the processing flame in the form of dividing the absolute brightness of the pixel in 256 steps of 0 to 255.
  • the color data of the first database 27 may also include colors processed in gray scale.
  • the image data analysis module 22 may analyze how much temperature range the molding point has, or what is the temperature distribution.
  • the abnormality determination module 23 holds information on a suitable temperature range of the molding point and determines whether the temperature analyzed by the image data analysis module 22 corresponds to a suitable temperature range.
  • the abnormal determination module 23 stores a suitable temperature range of the melting pool P, and based on the analysis information of the image data analysis module 22, the temperature of the melting pool P photographed in the corresponding image is appropriate. Determine if it is within range. If the determination result is not within the suitable range, the abnormality determination module 23 may output an abnormal signal.
  • the temperature distribution of the molding point in the image data analysis module 22 is analyzed as 800 ⁇ 900 °C and the suitable temperature range stored in the abnormal determination module 23 is 1200 ⁇ 1350 °C, the temperature distribution of the molding point is suitable Since it is out of range, abnormality can be determined.
  • the image data analysis module 22 analyzes the size of the melting pool, and the abnormality determination module 23 may hold information about the size of the suitable melting pool to determine the abnormality.
  • the suitable suitable size of the melting pool is 150 ⁇ m and the measured size of the melting pool is 100 ⁇ m, this is also determined to be ideal and applicable to the determination of processing quality during molding.
  • the abnormality detector 2 may further include a light intensity analysis module 24.
  • the light intensity analysis module 24 is for analyzing the light intensity output from the light intensity sensor when the light intensity sensor is employed in the first light information acquisition unit 11.
  • the light intensity analysis module 24 analyzes the temperature of the melting pool P by receiving data from the second database 28 in which current value data corresponding to the temperature is stored and comparing the current value input from the illumination sensor.
  • the second database 28 is a database in which reference information for comparing the input current value corresponds to a temperature.
  • the second database 28 stores current value data corresponding to each temperature. That is, the current value data may include a temperature and a current value corresponding to the temperature.
  • the second database 28 may be provided in the light intensity analysis module 24 or may be provided in the central processing unit 3.
  • the light intensity analysis module can analyze how much temperature range the molding point has and the analyzed temperature range is transmitted to the abnormality determination module 23.
  • the abnormality determination module 23 may determine whether the temperature is within a suitable range based on the analysis information.
  • the abnormality determination module 23 may comprehensively determine whether the temperature of the melting pool P is within an appropriate range by combining the analysis value of the image data analysis module 22 and the analysis value of the light intensity analysis module 24. have.
  • the light intensity analysis module 24 itself has a range information (at least one of the upper limit value or the lower limit value) for a suitable current value and determines whether or not the current value input from the illuminance sensor is within a suitable range (melting pool ( It can be determined whether the temperature of P) is suitable.
  • the light intensity analysis module 24 may output an abnormal signal when the current value is out of a suitable range and thus may have a function of the abnormal determination module 23.
  • the abnormality detecting unit 2 may further include a task content storing module 25.
  • the work content storage module 25 may match and store an image photographed for each molding layer, analyzed temperature, abnormality, work log file, and the like.
  • the central processing unit 3 is responsible for the system operation of the three-dimensional printer, and exchanges information with the optical information acquisition unit 1 and the abnormality detection unit 2 and manages the molding process.
  • the coordinate information of the molding position may be transmitted to the light beam processing unit 50, or the ON / OFF signal of the light beam B may be transmitted to the abnormality detection unit 2 and the light beam processing unit 50.
  • the coordinate information of the molding position is also transmitted to the optical information acquisition unit 1 and the abnormality detection unit 2 so as to be synchronized with the coordinate information transmitted to the light beam processing unit 50 so that abnormality can be detected in real time with respect to the molding process. do.
  • the data related to the detection of abnormality can be received from the abnormality detection unit 2, and the data can be collected and used as data for managing the process progress.
  • the molding process monitoring apparatus may further include a display unit 4 for displaying a point on which an abnormality occurs.
  • the display unit 4 is provided with an image display module, and displays the progress of forming the three-dimensional molded article in the image display module as an image, when the temperature range of the melting pool (P) is out, or the light beam (B) is made Abnormality is indicated immediately if abnormality occurs during the process such as not forming or normal shaping is not performed according to the ON / OFF signal of the light beam B (for example, shaping is performed even when the light beam is OFF). (E) can be. As a result, the operator or the control center can check and take corrective action.
  • the display unit 4 may three-dimensionally display not only the layer L currently in progress as shown in FIG. 7A, but also the layer L in FIG. 7B.
  • FIG. 8 is a perspective view showing a three-dimensional printer employing a molding process monitoring apparatus according to an embodiment of the present invention.
  • the illustrated three-dimensional printer 100 is a device for processing a three-dimensional molded article, and includes a chamber portion 10 in which shape processing is performed, a raw material supply portion 20 for injecting powder raw materials into the chamber portion 10, and , A raw material moving part 30 for pushing and moving the raw material introduced from the raw material supply part 20, a molding part 40 on which the raw material moved by the raw material moving part 30 is placed and forming the raw material, and the molding part 40. It comprises a light beam processing unit 50 for irradiating the light beam (B) to the raw material placed in the melt and sintering and molding.
  • the molding process monitoring apparatus described above may be mounted above the chamber 10 to monitor the molding process by the light beam processing unit 50.
  • the blade for applying the powder is often made of a flexible material of silicone or rubber. It wears easily through friction with the metal powder, causing errors in the molding process. Therefore, in order to correct errors in the molding process, it is necessary to consider not only the molding process monitoring device but also the raw material moving unit including the blade.
  • the present invention proposes a raw material moving unit in the form of a blade and a rotatable blade that can be continuously supplied.
  • the raw material moving part 30 in the form of a blade that can be continuously supplied includes a body 31, a blade 32, a supply roller 33, and a recovery roller 34.
  • the body 31 moves along the horizontal direction of the chamber 10, and a groove is formed at an end thereof, and the blade 32 is coupled to the groove.
  • the blade 32 serves to thin the powder.
  • the blade 32 is mounted and used in the groove of the body 31 to facilitate replacement.
  • the blade 32 may be a silicone- or rubber-based material as a soft synthetic resin material.
  • a guide groove is formed in the groove of the end of the body 31 so that the blade 32 is inserted and supported. Meanwhile, both side surfaces of the blade 32 are formed with guide protrusions 321 inserted into the guide grooves.
  • the guide groove and the guide protrusion 321 may be formed in the body 31 and the blade 32, respectively.
  • one end of the blade 32 is coupled to the supply roller 33 and the blade 32 is installed to be wound.
  • the other end of the blade 32 is coupled to the recovery roller 34 and the blade 32 is wound and recovered.
  • the recovery roller 34 may be coupled to the drive for the recovery of the blade, the recovery can be set to a predetermined time to recover a certain amount after this time has elapsed.
  • blades are applied to form powders, mounted in roll units, and frictional surfaces that are expected to be worn are automatically recovered by the recovery rollers, thereby preventing deterioration of molded products due to blade damage. can do.
  • there is no risk of blade replacement during machining which eliminates the work waiting for the operator and achieves stable three-dimensional printing quality. Continuous work is also possible for workpieces with long working hours.
  • the raw material moving part 30 in the form of a rotatable blade includes a body part 31, a blade part 32, and a monitoring part (not shown).
  • the body portion 31 is a member in which a U-shaped groove 311 is formed to move along the horizontal direction of the chamber 10.
  • Blade portions 32 are axially coupled to protruding portions at both ends formed by the U-shaped grooves 311.
  • the blade part 32 is rotatably coupled to the body part 31, and the plurality of blades 323 and 324 are spaced apart to extend outward, and the position of each blade is changed by rotation. If the blade portion of such a configuration is used, it is convenient to replace the blades, and various blades having different properties can be easily changed and used according to working conditions.
  • the blade portion 32 includes a rotating body 321 rotatably coupled to the body portion 31, and a first blade 323 and a second blade 324 coupled to the rotating body 321 so as to be spaced apart from each other. It is configured by.
  • the mounting groove 312 is formed on one side of the body portion 31 and the through hole 315 is formed on one surface of the mounting groove in a direction perpendicular to the moving direction of the body portion.
  • the shaft pin 322b of the shaft member 322 is inserted into the through hole to engage with the shaft hole 321a formed at one end of the rotating body 321 of the blade portion 32.
  • the shaft member 322 is coupled to the mounting block 322a so that the shaft pin 322b is rotatable.
  • the end of the shaft pin 322b and the shaft hole 321a of the rotating body 321 may be formed in a polygonal shape and coupled to each other.
  • a mounting guide 313 is formed in the mounting groove 312, and a guide groove is formed in the mounting block of the shaft member so that the shaft member may be mounted to the body part.
  • the through hole 317 is also formed in the other protruding portion of the body portion 31 in a direction perpendicular to the moving direction of the body portion, and the shaft of the motor 325 is inserted into the hole.
  • the shaft of the motor passes through the through hole 317 and the end is coupled to the shaft hole formed at the other end of the rotating body 321. Since the driving of the motor is to be completely transmitted to the rotating body 321, the shaft of the motor may be coupled to the shaft hole of the rotating body 321 in the interference fit type.
  • the end of the shaft of the motor 325 and the coupling groove of the rotating body 321 may be coupled to each other made of a polygonal shape. Meanwhile, the motor 325 and the rotating body 321 may be coupled through the joint member.
  • the first blade 323 is coupled to protrude on the outer circumference of the rotating body 321.
  • the second blade 324 is coupled to protrude on the outer circumference of the rotating body 321 in a state spaced apart from the first blade.
  • three first blades and one second blade may be spaced apart from each other by 90 degrees.
  • Mounting grooves 321b are formed on the outer circumference of the rotating body 321 at a predetermined angle, and the first blade and the second blade are coupled to protrude from the mounting groove. Accordingly, each blade can serve to straighten the powder, it is easy to replace.
  • the mounting groove 321b of the rotating body 321 may be formed in a T shape and the ends of the blade may be formed in a corresponding T shape to be coupled to each other.
  • the rotating body has a hollow inside, and a shaft hole 321a is formed in the center, and a mounting groove 321b is formed in the outer circumference, and the frame forming the shaft hole and the frame forming the mounting groove are connected to the rib 321c. It may be made in a supporting form.
  • the first blade 323 may use a blade made of a soft material such as silicon or rubber, and the second blade 324 may use a blade made of a hard material such as ceramic or metal.
  • the first blade may be mounted to protrude longer than the second blade. It is desirable to change the length of both blades as the blades made of rigid material must be exactly set in height, but the flexible blades can be bent in contact with the bottom of the chamber. .
  • the force that the blade receives when applying the powder can be responded to by the load of the motor and the position of the blade can be maintained.
  • the force applied to the blade increases.
  • a stopper 326 may be added to the raw material moving part 30 to distribute the force.
  • an additional mounting guide 314 is formed at the upper portion where the shaft member 322 is mounted, and a guide groove is formed at the mounting block 326a of the stopper 326 to be coupled to each other. By doing so, the stopper can be mounted to the body portion 31.
  • a groove is formed at the end 326b of the cylinder rod to facilitate engagement with the rib 321c.
  • One more through hole 316 is formed in the upper part of the through hole 315 into which the shaft pin 322b is inserted in the mounting groove formed on one side of the body part 31, and the cylinder rod of the stopper 326 is formed in the through hole.
  • the end of the cylinder rod 326b can hold and hold the rib 321c formed on the rotating body 321 of the blade portion 32 to maintain the position of the blade.
  • a monitoring unit may be provided to monitor the state of the blade or the powder applied to the raw material moving unit.
  • the monitoring unit may be configured to include a camera. The state of the blade or the state of the applied powder can be photographed by a camera to monitor whether a problem occurs and to determine whether the blade is replaced.
  • the forming process monitoring apparatus may not be limitedly applied to the configuration and method of the embodiments described above, but the embodiments may be configured by selectively combining all or some of the embodiments so that various modifications may be made. It may be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

본 발명은 성형 공정 감시 장치와 관련된다. 본 발명은 실시예로, 원재료 분말을 이용하여 3차원의 성형품을 가공하는 장치에 구비되어 공정을 감시하는 장치로서, 원재료 분말이 성형되는 지점에서 발생하는 빛에 대한 정보를 취득하는 광정보취득부, 상기 3차원의 성형품을 가공하기 위한 성형 지점의 좌표정보를 전송하는 좌표정보전송부 및 상기 광정보취득부에서 취득한 광정보를 생성시킨 성형 지점에 대한 좌표정보를 상기 좌표정보전송부로부터 전송받아 상기 광정보와 상기 좌표정보를 이미지로 만들어 저장하는 이미지저장부를 포함하여 측정위치에 대한 정밀도를 높인 3차원 프린터의 성형 공정 감시 장치를 제시한다.

Description

3차원 프린터의 성형 공정 감시 장치 및 이를 구비한 3차원 프린터
본 발명은 3차원의 성형품을 제조하는 3차원 프린터에 관련된 것으로서, 특히 금속 분말을 한 층씩 적층하여 성형하는 PBF(Powder Bed Fusion) 가공에서 공정 중에 멜팅풀과 금속 분말 도포의 불량을 실시간으로 검출하고 이를 해결하기 위한 성형 공정 감시 장치 및 이를 구비한 3차원 프린터와 관련된다.
종래에는 3차원 성형품을 제조하기 위해 주조나 단조 등의 전통적인 가공방법을 사용해 왔다. 또한 이와 같은 제조 방법을 이용할 때 제품의 품질을 유지하기 위해서는 전문적인 지식을 가진 작업자가 이를 수행해야 했다.
최근에는 3차원 성형품을 가공하기 위한 장치로 3차원 프린터가 사용되기 시작하고 있다. 3차원 프린터는 비전문가도 손쉽게 3차원의 성형품을 제작할 수 있다는 이점 때문에 점차 전통적인 가공방법을 대체하고 있다.
3차원 프린터에 대한 기술로 대한민국 특허공개공보 10-2009-0049608호, 대한민국 등록특허공보 10-1646773호가 개시되어 있다. 이러한 3차원 프린터에서 중요한 점은 신속한 작업이 가능하면서 제품의 품질을 높이는 것이다.
특히 금속 분말을 소결하거나 용융하여 각 층을 형성하는 방식의 3차원 프린터는 성형 과정에서 문제가 발생하였을 경우 내부를 검사할 수 있는 방법이 없다. 성형 과정은 비교적 많은 시간이 소요될 수 있으므로 성형품이 완성된 후 문제의 발생을 인지한 경우 시간적 비용적인 손실이 크게 발생한다.
성형 과정에서 문제가 발생한 경우 이를 바로 인지할 수 있으면 이에 대한 대처도 신속하게 할 수 있고, 작업의 신속성과 제품의 품질을 높이는데 기여할 수 있다. 따라서 성형 과정에서 문제의 발생을 신속하게 인식하고 기본적인 해결을 할 수 있는 장치가 요구된다.
본 발명은 3차원 프린터에서 성형 공정을 실시간으로 모니터링하여 이를 분석함으로써 성형에서 문제 발생 여부를 신속하게 인지할 수 있게 하고 문제에 대한 조치가 신속하게 이루어질 수 있게 하는 3차원 프린터의 성형 공정 감시 장치 및 이러한 성형 공정 감시 장치와 기본적인 불량 해결 수단을 구비하는 3차원 프린터를 제시한다.
또한 본 발명은 3차원 성형품의 성형 공정에서 원재료 분말에 가공 빔이 조사되어 발생하는 빛으로부터 취득한 영상정보에 그 빛이 발생한 위치의 좌표정보를 더하여 이미지로 만들어 저장하며 이를 분석함으로써 문제가 되는 부분을 특정할 수 있게 하고 문제에 대한 조치가 신속하게 이루어질 수 있게 하는 3차원 프린터의 성형 공정 감시 장치 및 이러한 성형 공정 감시 장치와 기본적인 불량 해결 수단을 구비하는 3차원 프린터를 제시한다.
그 외 본 발명의 세부적인 목적은 이하에 기재되는 구체적인 내용을 통하여 이 기술분야의 전문가나 연구자에게 자명하게 파악되고 이해될 것이다.
위 과제를 해결하기 위하여 본 발명은 실시예로, 원재료 분말을 이용하여 3차원의 성형품을 가공하는 장치에 구비되어 공정을 감시하는 장치로서, 원재료 분말이 성형되는 지점에서 발생하는 빛에 대한 정보를 취득하는 광정보취득부, 상기 3차원의 성형품을 가공하기 위한 성형 지점의 좌표정보를 전송하는 좌표정보전송부 및 상기 광정보취득부에서 취득한 광정보가 생성된 성형 지점에 대한 좌표정보를 상기 좌표정보전송부로부터 전송받아 상기 광정보와 상기 좌표정보를 이미지로 만들어 저장하는 이미지저장부를 포함하는 3차원 프린터의 성형 공정 감시 장치를 제시한다.
여기에서, 상기 광정보취득부는 고속 카메라를 구비하고 상기 고속 카메라를 이용하여 원재료 분말이 성형되는 지점의 사진을 촬영함으로써 광정보를 취득하고, 상기 이미지저장부는 상기 고속 카메라에서 촬영한 사진에 해당하는 성형 지점에 대한 좌표정보를 상기 좌표정보전송부로부터 전송받아 상기 성형 지점을 촬영한 사진에 포함시켜 저장할 수 있다. 이 방식은 초당 2000mm 이상을 가공하는 방식에서 획득된 영상에 현재의 가공 위치를 동시에 표시함으로써 획득된 영상을 분석할 때 정확한 성형 위치를 파악할 수 있다.
또한 상기 이미지저장부는, 상기 성형 지점을 촬영한 사진을 빛의 강도에 따른 색상으로 표시된 사진으로 변환시키는 이미지처리모듈, 상기 좌표정보전송부에서 전송된 좌표정보를 상기 좌표정보를 나타내는 등가의 색상정보로 변환시키는 좌표처리모듈 및 상기 이미지처리모듈에서 변환된 사진에 상기 좌표처리모듈에서 변환된 색상정보를 표시하는 이미지합성모듈을 포함할 수 있다.
또한 상기 사진을 판독하여 성형 지점에서 발생하는 불꽃이 일정 크기 이하 또는 이상이거나 일정 밝기 이하 또는 이상의 색으로 표시되는 경우 이상이 있는 것으로 판정하고 해당 성형 지점의 좌표정보를 저장하는 이상판정부를 더 포함할 수 있다.
또한, 이상이 있는 지점을 화면에 표시하는 표시부를 포함하고, 상기 표시부는, 상기 3차원 성형품을 성형하는 진행 상황 또는 성형을 마친 3차원 성형품을 영상으로 표시하는 영상표시모듈 및 상기 이상판정부로부터 이상이 발생한 성형 지점의 좌표정보를 전송받아 상기 영상표시모듈에서 표시한 영상의 해당 좌표에 해당하는 지점에 표시하는 좌표표시모듈을 포함할 수 있다.
또한 위 과제를 해결하기 위하여 본 발명은 실시예로, 원재료 분말을 이용하여 3차원의 성형품을 가공하는 장치에 구비되어 공정을 감시하는 장치로서, 원재료 분말이 성형되는 지점에서 발생하는 빛에 대한 정보를 취득하는 광정보취득부, 상기 3차원의 성형품을 가공하기 위한 성형 지점의 좌표정보를 전송하는 좌표정보전송부 및 상기 광정보취득부에서 취득한 광정보가 생성된 성형 지점에 대한 좌표정보를 상기 좌표정보전송부로부터 전송받아 상기 광정보에 대한 분석을 수행할 때 상기 좌표정보를 실시간으로 참조하는 이상검출부를 포함하는 3차원 프린터의 성형 공정 감시 장치를 제시한다.
여기에서, 상기 이상검출부는, 상기 성형 지점을 촬영한 사진을 빛의 강도에 따른 색상으로 표시된 이미지 데이터로 변환시키는 이미지처리모듈, 온도에 대응되는 색상이 저장된 데이터베이스로부터 데이터를 전송받아 상기 이미지처리모듈에서 변환된 색상 데이터와 비교하여 성형 지점의 온도 분포를 분석하는 영상데이터분석모듈 및 성형 지점의 적합한 온도 범위에 대한 정보를 보유하고, 상기 영상데이터분석모듈에서 분석된 온도 분포가 적합한 온도 범위에 해당하는지 판단하는 이상판정모듈을 포함할 수 있다.
한편 위 과제를 해결하기 위하여 본 발명은 실시예로, 3차원의 성형품을 가공하는 장치로서, 형상 가공이 이루어지는 챔버부, 상기 챔버부에 분말 형상의 원재료를 투입하는 원재료공급부, 상기 원재료공급부에서 투입된 원재료를 밀어 이동시키는 원재료이동부, 상기 원재료이동부에 의해 이동된 원재료가 놓여지고 원재료의 성형이 이루어지는 성형부, 상기 성형부에 놓여진 원재료에 광빔을 조사하여 용융시켜 성형하는 광빔가공부 및 상기 광빔가공부에 의한 성형 공정을 감시하는 상술한 성형 공정 감시 장치를 포함하는 3차원 프린터를 제시한다.
또한 상기 원재료이동부는, 연성 재질의 블레이드를 구비하고 일정한 조건이 되면 상기 블레이드를 감아 상기 블레이드의 새로운 면이 작업에 사용될 수 있도록 할 수 있다.
여기에서 상기 원재료이동부는, 상기 챔버의 수평방향을 따라 이동되고 끝단에 홈이 형성되는 몸체, 상기 몸체의 상기 홈에 결합되는 블레이드, 상기 블레이드의 일단이 결합되고 상기 블레이드가 감기는 공급롤러 및 상기 블레이드의 다른 일단이 결합되고 상기 블레이드를 감아 회수하는 회수롤러를 포함할 수 있다.
한편 원재료 이동부의 다른 형태로서, 상기 원재료이동부는, 수평방향을 따라 이동하는 몸체부, 상기 몸체부에 회전 가능하게 결합되고 복수의 블레이드가 이격되어 외측으로 연장되며 회전에 의해 각 블레이드의 위치가 변경되는 블레이드부 및 상기 블레이드부에 장착된 블레이드의 상태 또는 도포된 분말의 상태를 감시하는 감시부를 포함할 수 있다.
여기에서, 상기 블레이드부는, 상기 몸체부에 회전 가능하게 결합되는 회전체, 상기 회전체의 외주에 돌출되도록 결합되는 제1블레이드 및 상기 제1블레이드와 일정 각도를 두고 이격되고 상기 회전체의 외주에 돌출되도록 결합되며 상기 제1블레이드보다 단단한 재질로 이루어지는 제2블레이드를 포함할 수 있다.
본 발명의 실시예에 따르면, 성형 공정에서 얻어진 이미지 중 영상정보로부터 이상 여부를 판단할 수 있는 한편 정확한 좌표정보에 의해 어느 부분에서 이상이 발생하였는지 특정하기 용이하므로 이상에 대한 신속한 조치가 가능하다.
또한 성형 공정에서 얻어진 이미지가 어느 위치에서 얻어진 것인지 정확하게 알 수 있고 이러한 위치에 근거하여 정확한 위치에 이미지들을 배열할 수 있으며 정확한 가공 평면의 이미지 및 정확한 성형품의 3차원 이미지를 취득할 수 있다.
또한 완성된 성형품에 대한 정확한 이미지와 이 이미지에 문제가 발생한 부분의 정확한 위치를 표시할 수 있으므로 CT나 X-ray 데이터를 취득하지 않고 품질을 보증할 수 있는 데이터로 활용할 수 있다.
또한 성형시 발생하는 멜팅풀을 실시간으로 모니터링하고, 멜팅풀로부터 얻어지는 광정보를 이용하여 성형의 이상 여부를 판단하므로 이상 여부의 신속한 검출이 가능하고 이상에 대한 신속한 조치가 가능하다.
또한 성형 작업을 수행하는 광빔의 정상 작동 여부를 실시간으로 모니터링 할 수 있으므로 광빔에 이상이 발생한 경우 신속한 조치가 가능하다.
또한 멜팅풀에 이상이 발생한 경우 블레이드의 마모에 의한 분말 도포의 불균일의 가능성이 높으므로 블레이드의 회전이나 블레이드의 연속 공급을 통하여 새로운 블레이드로 교체함으로써 신속한 조치가 가능하다.
그 외 본 발명의 효과들은 이하에 기재되는 구체적인 내용을 통하여, 또는 본 발명을 실시하는 과정 중에 이 기술분야의 전문가나 연구자에게 자명하게 파악되고 이해될 것이다.
도 1은 본 발명의 실시예에 따른 성형 공정 감시 장치의 개략적인 사시도.
도 2는 본 발명의 제1 실시예에 따른 성형 공정 감시 장치를 나타내는 블럭도.
도 3은 도 2의 성형 공정 감시 장치의 표시부에서 출력되는 예를 나타내는 도면으로서 도 3(a)는 하나의 성형 지점의 영상 및 좌표를 표시한 도면이고, 도 3(b)는 연속되는 성형 지점의 영상을 표시한 도면.
도 4는 도 2의 성형 공정 감시 장치의 표시부에서 출력되는 예를 나타내는 도면으로서 성형품의 영상을 표시한 도면.
도 5는 본 발명의 제2 실시예에 따른 성형 공정 감시 장치를 나타내는 블럭도.
도 6은 도 5에 도시된 실시예에 채용된 이상검출부를 나타내는 블럭도.
도 7은 도 5에 도시된 실시예에 채용된 표시부에 표시되는 예를 나타내는 도면으로서 도 7(a)는 현재 진행하고 있는 레이어를 표시한 도면이고, 도 7(b)는 이미 진행된 레이어에 대해서도 입체적으로 표시하여 나타낸 도면.
도 8은 도 1에 도시된 실시예에 따른 성형 공정 감시 장치를 채용한 3차원 프린터를 나타내는 사시도.
도 9은 도 8의 3차원 프린터에 채용된 원재료이동부의 사시도.
도 10은 도 8의 3차원 프린터에 채용된 다른 형태의 원재료이동부의 사시도.
도 11은 도 10의 원재료이동부의 분해사시도.
도 12는 도 10의 원재료이동부의 블레이드부의 단면도.
상술한 본 발명의 특징 및 효과는 첨부된 도면과 관련한 다음의 상세한 설명을 통하여 보다 분명해 질 것이며, 그에 따라 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 출원에서 사용한 용어는 단지 특정한 실시 예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다.
이하, 본 발명의 실시예에 따른 성형 공정 감시 장치에 대하여 도면을 참조하여 상세하게 설명한다.
도 1은 본 발명의 실시예에 따른 성형 공정 감시 장치의 개략적인 사시도이다.
본 발명의 실시예에 따른 성형 공정 감시 장치는, 3차원 프린팅 방식에 의한 가공 상태를 검사하기 위한 장치이다. 3차원 프린팅 가공법 중에서 스테인레스강, 티타늄, 알루미늄 등의 금속분말을 원료로 하는 PBF(Powder Bed Fusion) 방식을 대상으로 하지만 반드시 이에 국한되는 것은 아니다.
본 발명의 실시예에 따른 성형 공정 감시 장치는 광정보취득부(1)를 이용하여 원재료 분말이 성형되는 지점에서 발생하는 빛에 대한 정보를 취득하고, 이를 이용하여 성형 공정을 감시한다.
광정보취득부(1)에서 취득되는 광정보는 광빔가공부(50)에 의해 발생한다. 광빔가공부(50)는 광빔조사기(51)과 스캐너(55)를 포함하여 구성되고, CAD/CAM과 같은 가공 데이터를 이용하여 설정된 위치에 광빔(B)을 조사한다.
광빔가공부(50)는 원재료 분말의 성형을 위한 레이저 등의 광빔(B)을 조사하는 장치이다. 도면을 참조하면 광빔조사기(51)로부터 조사된 광빔(B)은 제1 빔스플리터(52)와 제2 빔스플리터(53)를 거쳐 스캐너(55)를 통해 조사된다.
스캐너(55)를 통해 조사된 광빔(B)은 성형부(40) 놓인 원재료 분말을 용융 또는 소결하여 성형한다. 성형된 지점의 빛에 대한 정보는 스캐너(55)를 통해 제2 빔스플리터(53)와 제3 빔스플리터(54)를 거쳐 광정보취득부(1)로 입력된다.
이때, 제2 빔스플리터(53)는 1070nm 레이저 파장 투과, 가시광 파장 전반사 방식을 선택할 수 있고, 제3 빔스플리터(54)는 가시광 파장 50% 투과, 50% 반사 방식을 선택할 수 있다.
광빔에 노출된 원재료 분말은 어블레이션 반응으로 용융, 산화, 탄화되고 냉각을 거쳐 한 층씩 경화되어 최종 제품으로 생성된다. 이러한 원재료 분말의 상태 변화에 대응한 신호를 검출하여 성형 공정을 감시한다.
원료의 상태 변화는 성형부(40)에서 원재료 분말의 가공과 관련된 직접적 불량 외에 성형부(40)로 이송되는 원재료 분말의 도포와 관련된 간접적 불량도 포함한다. 특히 전자의 경우 공정중에 검사용 신호를 획득하기 용이하지 않으나, 광빔이 금속분말과 반응하는 불꽂을 감지하는 방식으로 구현될 수 있다.
한편 위와 같은 3차원 프린터의 시스템 운영을 담당을 위해 중앙처리부(3)를 구비한다. 중앙처리부(3)는 광정보취득부(1), 이상검출부(2), 좌표전송부(5) 등의 각 구성들과 정보를 주고 받으며 성형 공정을 관리한다.
도 2 내지 도 4는 본 발명의 제1 실시예에 따른 성형 공정 감시 장치와 관련된다.
본 발명의 제1 실시예에 따른 성형 공정 감시 장치(60)는, 원재료 분말을 이용하여 3차원의 성형품을 가공하는 장치에 구비되어 공정을 감시하는 장치로서, 광정보취득부(1), 좌표정보전송부(5) 및 이미지저장부(6)를 포함하여 성형 위치를 기록할 수 있다.
광정보취득부(1)는 원재료 분말이 성형되는 지점에서 발생하는 빛에 대한 정보를 취득한다. 상술한 바와 같이 광빔가공부(50)는 성형부(40)에 놓인 원재료 분말을 용융하여 성형하게 된다. 이와 같이 성형이 이루어지는 지점에는 높은 에너지에 의해 열과 빛이 발생한다. 광정보취득부(1)는 이 빛을 촬영하거나 감지하는 역할을 한다.
여기에서 광정보취득부(1)는 고속 카메라(111)를 구비하고 고속 카메라를 이용하여 원재료 분말이 성형되는 지점의 사진을 촬영함으로써 광정보를 취득할 수 있다. 고속 카메라는 대략 초당 1만 프레임을 촬영할 수 있는 것을 채택할 수 있다. 촬영된 사진은 원재료 분말이 성형되면서 발생하는 용융 불꽃 형태일 수 있다.
한편 광정보취득부(1)는 포토 센서(113)를 구비하여 빛의 발생 유무와 빛의 강도를 광정보로 취득할 수도 있다. 또한 광정보취득부(1)는 취득한 광정보를 디지털신호로 변환시키는 변환모듈을 구비할 수 있다.
좌표정보전송부(5)는 3차원의 성형품을 가공하기 위한 성형 지점의 좌표정보를 이미지저장부(6)로 전송한다. 이때 성형 지점의 좌표정보는 광빔가공부(50)에도 동시에 전송된다.
좌표정보는 3차원 가공품을 가공하기 위한 가공 데이터에 포함된 정보를 사용할 수 있다. 참고로 좌표정보는 정확한 위치를 성형하도록 광빔가공부(50)를 작동시키기 위한 데이터로서 광빔의 위치 데이터 또는 스캐너의 스캔 데이터 중 적어도 어느 하나일 수 있다.
좌표정보를 추출하면 좌표가 필요한 여러 가지 용도로 사용할 수 있다. 특히 성형 공정 감시 장치에서 광정보를 발생시킨 레이저 가공 좌표를 참조하면 3차원 성형품 검사의 결함 표시 등에 유용하게 사용될 수 있다.
이미지저장부(6)는 광정보취득부(1)에서 광정보를 취득하고, 취득한 광정보가 발생한 성형 지점에 대한 좌표정보를 좌표정보전송부(5)로부터 전송받아 광정보와 그 광정보에 대응되는 좌표정보를 이미지로 만들어 저장한다.
상술한 바와 같이 좌표정보가 이미지저장부(6)와 광빔가공부(50)에 동시에 전송되면 이미지저장부(6)에 전송된 좌표데이터와 좌표데이터의 전송시점에 생성된 성형 지점의 광정보는 서로 대응 관계를 가지게 된다. 구체적으로 좌표데이터의 전송시점을 시작신호로 하여 이후 생성되는 광정보취득부(1)의 영상정보에 이미지저장부(6)에 전송된 좌표정보를 같은 시점에 대응시킬 수 있다. 이에 따라 특정 좌표에서의 성형 영상을 특정할 수 있다. 한편 좌표정보와 영상정보의 대응에 있어서 동기화나 오류 검사 등은 널리 알려진 신호 처리 기술을 채용할 수 있다.
광정보취득부(1)가 고속 카메라를 구비하는 경우 이미지저장부(6)는 고속 카메라에서 촬영한 사진에 해당하는 성형 지점에 대한 좌표정보를 좌표정보전송부(5)로부터 전송받아 상기 성형 지점을 촬영한 사진에 포함시켜 저장할 수 있다.
고속카메라(111)와 포토 센서(113)에서 관측되는 광정보에 대한 측정위치를 정확하게 모니터링하기 위하여 좌표전송부(5)는 중앙처리부(3)에서 스캐너(55)로 전달되는 것과 동일한 레이저 위치 이동 명령을 수신받을 수 있다.
예를 들어 이미지저장부(6)는 고속 카메라로부터 성형이 이루어지는 순간을 촬영한 사진을 전송받고 이 성형 순간에 좌표를 나타내는 정보를 좌표정보전송부(5)로부터 전달받아 이를 합성하여 저장한다. 이미지저장부(6)는 촬영되는 사진마다 이를 처리하여 저장할 수 있으며 이 과정은 대략 10㎲ 내지 30㎲ 단위로 이루어질 수 있다.
이와 같이 성형 사진에 좌표를 표시함으로써 이를 성형 공정을 감시하는 용도로 사용할 수 있다. 즉 성형 사진으로부터 이상을 발견한 경우 좌표를 확인하여 성형 어떤 부분(좌표)에서 문제가 발생하였는지 확인이 가능하다. 또한 이러한 성형 사진에 찍힌 성형 지점의 이미지를 성형 경로를 따라 연속적으로 표시하고 빛의 크기나 세기의 변화를 찾아냄으로써 이상 여부를 확인할 수 있다.
한편 이미지저장부(6)는, 이미지처리모듈, 좌표처리모듈 및 이미지합성모듈을 포함하여 구성될 수 있다.
이미지처리모듈은 성형 지점을 촬영한 사진을 빛의 강도에 따라 색상으로 표시된 사진으로 변환시킨다. 예를 들어 사진으로 촬영된 불꽃의 색은 대체적으로 노란색인데 이를 색온도로 나타낼 수 있다. 이때 부가적으로 온도센서 등을 이용하여 온도를 측정할 수도 있다.
좌표처리모듈은 좌표정보전송부(5)에서 전송된 좌표정보를 등가의 색상정보로 변환시킨다. 즉 좌표정보를 이진수로 처리하고 이 이진수를 나타낼 수 있는 색상으로 표시할 수 있다.
좌표는 X좌표와 Y좌표로 나타낼 수 있는데 X좌표와 Y좌표를 각각 8비트 2개의 이진수로 표시하되 [00000000][00000000]을 검정색으로 하고 [11111111][11111111]을 흰색으로 하며 그 사이는 짙거나 옅은 회색으로 표시함으로써 좌표값을 각 픽셀당 8 bit의 색상으로 하여 사진의 중요성이 떨어지는 최상단 등의 약속된 위치에 표시할 수 있다. 이와 같이 색상으로 표시된 좌표값은 변환 과정을 거쳐 이미지 영상 처리 과정에서 실제 좌표를 확인할 수 있다.
이미지합성모듈은 이미지처리모듈에서 변환된 사진에 좌표처리모듈에서 변환된 색상정보를 표시한다. 변환된 사진과 좌표정보가 변환된 색상정보는 모두 영상정보로서 하나의 이미지로 통합된다.
도 3(a)를 참조하면 사진의 좌측 상단에 좌표정보를 나타내는 색상정보가 4개의 점으로 표시되어 있다. 4개의 점 중 좌측 1, 2번째의 2개의 점(X)은 x좌표를 나타내고 3, 4번째의 2개의 점(Y)은 y좌표를 나타낸다. 이와 같이 좌측 또는 우측 구석에 좌표정보를 나타내는 색상정보를 표시할 수 있다. 한편 가장 우측의 점(P)은 광빔가공부(50)의 광빔조사기(51)에 이상이 있는지 표시하는 것이다. 이를 위해 광빔조사기의 온/오프를 감지하는 센서를 구비할 수 있다. 광빔조사기가 켜진 경우 흰색으로 꺼진 경우 검정색으로 표시할 수 있다.
이와 같이 이미지저장부(6)에 이미지처리모듈, 좌표처리모듈 및 이미지합성모듈을 구비하고 성형 사진과 좌표정보를 이미지화하여 합성함으로써 데이터의 크기를 줄일 수 있고 정확한 위치를 기반으로 성형 검사를 수행할 수 있다.
이러한 방식에 의하면 측정위치의 오차를 줄일 수 있다. 예를 들어 레이저 가공 위치 명령은 100kHz의 주기로 전달이 되고 가공 속도가 2000mm/sec인 경우 레이저는 한 명령의 주기 10㎲ 동안 20㎛를 이동하게 된다. 이러한 짧은 시간동안 성형 공정 감시 장치가 성형 지점의 영상 캡쳐를 별도로 하고 별도의 측정 경로를 통해서 현재의 가공위치를 측정한다면 별도의 시스템간에 시간 차이가 발생하게 된다. 이를 방지하기 위해서 대량의 영상 캡쳐가 되는 시점에 그 영상 내에 가공되는 위치에 대한 데이터를 실시간으로 넣어 준다면 이후에 영상의 전송시에 시간 동기에 대한 부담이 적으며 영상에서 성형 지점의 멜팅풀의 검사와 가공위치의 파악을 동시에 할 수 있어 측정위치에 대한 오차를 줄일 수 있다.
한편 성형 공정 감시 장치(60)는 사진을 판독하여 성형 지점에서 발생하는 불꽃이 일정 크기 이하 또는 이상이거나 일정 밝기 이하 또는 이상의 색으로 표시되는 경우 해당 성형 지점의 좌표정보를 저장하고 이상이 있는 것으로 판정하는 이상판정부(7)를 더 포함할 수 있다. 또한 이상이 발생하면 경고음이나 경고등으로 작업자나 관제센터에 이를 알릴 수 있다.
또한 이상이 있는 지점을 화면에 표시하는 표시부(4)를 더 포함할 수 있다. 표시부(4)는 영상표시모듈과 좌표표시모듈을 구비하고, 영상표시모듈에서 3차원 성형품을 성형하는 진행 상황 또는 성형을 마친 3차원 성형품을 영상으로 표시하는 한편 좌표표시모듈에서 이상판정부(7)로부터 이상이 발생한 성형 지점의 좌표정보를 전송받아 영상표시모듈에서 표시한 영상의 해당 좌표에 해당하는 지점에 표시할 수 있다. 도 3과 도 4는 표시부(4)에서 표시되는 화면의 예이다. 이에 따라 작업자 또는 관제센터에서 확인할 수 있는 출력을 제공할 수 있다.
광정보취득부(1)가 고속 카메라 대신 포토 센서를 구비하는 경우에는 포토 센서의 강도를 영상으로 변환하여 광정보로 사용하고 그 외의 사항은 상술한 고속 카메라의 경우가 적용될 수 있다.
이와 같이 구성된 성형 공정 감시 장치는 성형 지점에 가해지는 에너지의 적정성을 파악할 수 있고, 성형 공정이 정확하게 수행되고 있는지 여부를 감시할 수 있으며 이로부터 취득된 데이터는 완성된 성형품에 대하여 CT나 X-ray 데이터를 취득하지 않고 품질을 보증할 수 있는 데이터로 활용할 수 있다.
도 5 내지 도 7은 본 발명의 제2 실시예에 따른 성형 공정 감시 장치와 관련된다.
본 발명의 제2 실시예에 따른 성형 공정 감시 장치는, 원재료 분말을 이용하여 3차원의 성형품을 가공하는 장치에 구비되어 공정을 감시하는 장치로서, 광정보취득부(1), 이상검출부(2) 및 중앙처리부(3)를 포함하여 멜팅풀을 검사할 수 있다.
광정보취득부(1)는 광빔(B)에 의해 원재료 분말이 성형될 때 원재료 분말이 성형되는 지점에서 발생하는 광정보를 취득한다. 추가적으로 광빔(B)이 이상 없이 조사되고 있는지에 대한 광정보를 취득할 수 있다. 여기에서 광정보취득부는 저촉되지 않는 범위 내에서 제1 실시예의 광정보취득부의 구성 및 설명을 채용할 수 있다.
3차원 프린터에서 광빔가공부(50)는 예를 들면 레이저를 이용한 것으로서, 원재료 분말을 용융 또는 소결하여 성형하게 된다. 이와 같이 성형이 이루어지는 지점에는 높은 에너지에 의해 열과 빛이 발생한다. 광정보취득부(1)는 이 빛을 촬영하거나 감지하는 역할을 한다.
광정보취득부(1)는 원재료 분말이 성형되는 지점에서 발생하는 빛에 대한 정보를 취득하는 제1광정보취득부(11)와 광빔조사기(51)에서 조사되는 광빔(B)의 정보를 취득하는 제2광정보취득부(12)를 포함한다.
여기에서 제1광정보취득부(11)는 고속 카메라(111)를 구비하고 고속 카메라(111)를 이용하여 원재료 분말이 성형되는 지점의 사진을 촬영함으로써 광정보를 취득할 수 있다. 고속 카메라(111)는 대략 초당 5000프레임 이상을 촬영할 수 있는 것을 채택할 수 있다. 한편 고속 카메라(111)의 전방에는 ND 필터(112)를 배치하고 ND 필터(112)는 위치의 조절이 가능하도록 하여 광량을 조절할 수도 있다.
찍힌 사진은 원재료 분말이 성형되면서 멜팅풀(melting pool, P)과 불꽃이 발생하는 형태일 수 있다. 촬영된 사진은 빛의 강도에 따른 색상으로 표시된 이미지 데이터로 변환된다. 고속 카메라를 이용한 경우 이미지 분석을 통해 성형 지점에 대한 정확하고 다양한 정보를 취득할 수 있다.
한편 제1광정보취득부(11)는 포토 센서(113)를 구비하여 성형 지점에서의 빛의 발생 유무를 감지하여 이상검출부(2)로 송신하고, 이상검출부(2)에서 중앙처리부(3)로부터 송신되는 광빔가공부(50)의 ON/OFF 신호와 비교함으로써 성형 공정이 정상적인 신호를 받아 수행되는지를 확인할 수 있다.
여기에서 포토 센서(113)로는 포토 트랜지스터를 사용할 수 있고 포토 트랜지스터의 출력 신호는 증폭 및 필터링되어 이상검출부(2)로 송신될 수 있다.
한편 제1광정보취득부(11)는 고속 카메라(111) 대신 조도 센서(미도시)를 구비하여 성형 지점에에서 빛의 발생 유무와 빛의 강도를 광정보로 취득할 수도 있다. 또한 광정보취득부(1)는 취득한 광정보를 디지털신호로 변환시키는 변환모듈을 구비할 수 있다. 여기에서 조도 센서로는 빛의 강도에 따라 전류값이 변화하는 포토다이오드를 사용할 수 있다. 포토다이오드는 감지된 빛의 강도를 전기적인 신호로 변환하여 송신할 수 있으므로 고속 카메라(111)보다 간단한 방법으로 광정보를 취득할 수 있다.
또한 제1광정보취득부(11)는 고속 카메라(111)와 조도 센서를 모두 구비하여 성형 지점의 광정보를 취득할 수 있다. 이 경우에는 2가지의 다른 방법으로 광정보를 취득하는 것이 가능하므로 이상 여부를 더욱 정확하게 판단할 수 있다.
제1광정보취득부(11)의 고속 카메라(111)와 조도 센서는 3차원 프린터의 챔버 외측에 장착되어 스캐너(55)와 빔스플리터(제2, 제3 빔스플리터(53, 54))를 통해 광정보를 취득할 수도 있지만, 챔버 내측에 장착되어 직접 광정보를 취득할 수도 있다.
한편 제2광정보취득부(12)는 광빔조사기(51)에서 조사되는 광빔(B)의 정보를 취득한다. 제2광정보취득부(12)는 광빔조사기(51)에서 조사되는 광빔(B)을 빔스플리터(제1 빔스플리터(52))를 통해 입력받고 이에 대한 신호를 이상검출부(2)로 전달하여 광빔(B)이 정상적으로 조사되는지 검사할 수 있도록 한다. 여기에서 제2광정보취득부(12)로는 포토 트랜지스터를 채용할 수 있고 포토 트랜지스터의 출력 신호는 증폭 및 필터링되어 이상검출부(2)로 송신될 수 있다.
이상검출부(2)는 광정보취득부(1)에서 취득한 광정보를 분석하여 성형 공정의 이상 여부를 검출하며, 추가적으로 광빔가공부(50) 자체의 이상 여부를 검출할 수 있다. 또한 파일시스템을 더 구비하여 이상 검출과 관련한 기록을 저장할 수도 있다.
한편 상술한 제1 실시예와 같이 좌표정보전송부(5)를 구비하고, 이상검출부(2)는 광정보취득부(1)에서 취득한 광정보가 생성된 성형 지점에 대한 좌표정보를 좌표정보전송부(5)로부터 전송받아 광정보에 대한 분석을 수행할 때 좌표정보를 실시간으로 참조할 수 있다.
이상검출부(2)는 광정보취득부(1)의 고속 카메라(111)에서 촬영한 사진을 판독하여 성형 지점에서 발생하는 멜팅풀(P) 또는 불꽃이 일정 크기 이하 또는 이상이거나 일정 밝기 이하 또는 이상인 경우 이상이 있는 것으로 판정할 수 있다.
도면을 참조하면 이상검출부(2)는, 이미지처리모듈(21), 영상데이터분석모듈(22) 및 이상판정모듈(23)을 포함한다. 또한 광강도분석모듈(24), 작업내용저장모듈(25), 출력파일생성모듈(26)을 더 포함할 수 있다.
이미지처리모듈(21)은 성형 지점을 촬영한 사진을 빛의 강도에 따른 색상으로 표시된 이미지 데이터로 변환시킨다. 이미지처리모듈(21)은 영상처리에 사용되는 소프트웨어 또는 하드웨어의 필터로 구성될 수 있다. 또한 변환된 이미지 데이터는 픽셀 단위의 색상 데이터일 수 있다. 색상 데이터는 칼라의 경우 256 칼라 이상으로 이루어질 수 있다.
영상데이터분석모듈(22)은 온도에 대응되는 색상 데이터가 저장된 제1데이터베이스(27)로부터 데이터를 전송받아 이미지처리모듈(21)에서 변환된 색상 데이터와 비교하여 성형 지점이 어떠한 온도 분포를 가지는지 분석한다.
여기에서 제1데이터베이스(27)는 촬영된 영상이 어느 정도의 온도인지 비교하기 위한 기준 정보가 저장된 데이터베이스이다. 제1데이터베이스(27)에는 각 온도에 대응되는 색상 데이터가 저장되어 있다. 즉 이 색상 데이터는 온도와 그 온도와 대응되는 색상을 포함할 수 있다.
이러한 제1데이터베이스(27)는 영상데이터분석모듈(22)에 구비될 수도 있고 중앙처리부(3)에 구비될 수도 있다. 중앙처리부(3)에 데이터베이스가 구비된 경우에는 영상데이터분석모듈(22)은 중앙처리부(3)로부터 정보를 전송받아 사용한다.
한편 이미지처리모듈(21)은 촬영된 이미지를 그레이 스케일(gray scale)로 처리하여 픽셀의 절대 밝기 정도를 0에서 255의 256단계로 구분시키는 형태로 가공 불꽃의 강약을 인식하도록 할 수 있다. 이 경우 제1데이터베이스(27)의 색상 데이터 역시 그레이 스케일로 처리된 색상을 포함할 수 있다.
이와 같이 촬영된 이미지를 그레이 스케일로 처리하는 경우 처리해야 할 데이터의 양이 줄어들어 신속한 분석이 가능하다.
이와 같이 하여 영상데이터분석모듈(22)은 성형 지점이 어느 정도의 온도 범위를 가지는지 또는 온도 분포는 어떠한지 등을 분석할 수 있다.
이상판정모듈(23)은 성형 지점의 적합한 온도 범위에 대한 정보를 보유하고 영상데이터분석모듈(22)에서 분석된 온도가 적합한 온도 범위에 해당하는지 판단한다.
즉 이상판정모듈(23)에는 멜팅풀(P)의 적합한 온도 범위가 저장되어 있고, 영상데이터분석모듈(22)의 분석정보를 근거로 하여 해당 영상에 촬영된 멜팅풀(P)의 온도가 적합한 범위 내인지를 판단한다. 판단 결과 적합한 범위 내가 아닌 경우 이상판정모듈(23)은 이상 신호를 출력할 수 있다.
예를 들어 영상데이터분석모듈(22)에서 성형 지점의 온도 분포가 800~900℃로 분석되고 이상판정모듈(23)에 저장된 적합한 온도 범위는 1200~1350℃라고 가정하면 성형 지점의 온도 분포가 적합한 범위를 벗어나므로 이상으로 판정할 수 있다.
한편 영상데이터분석모듈(22)에서 멜팅풀의 크기를 분석하고 이상판정모듈(23)은 적합한 멜팅풀의 크기에 대한 정보를 보유하여 이상을 판정할 수도 있다. 즉 적합한 적합한 멜팅풀의 크기가 150㎛인데 측정된 멜팅풀의 크기가 100㎛면 이 또한 이상으로 판정하여 성형 중의 가공 품질 판정에 적용할 수 있다.
한편 이상검출부(2)는 광강도분석모듈(24)을 더 포함할 수 있다. 광강도분석모듈(24)은 제1광정보취득부(11)에 조도 센서를 채용할 경우 이 조도 센서로부터 출력되는 광강도를 분석하기 위한 것이다.
조도 센서는 광강도에 따라 저항이 달라지게 되므로 조도 센서에서 출력되는 전류값도 달라지게 된다. 광강도분석모듈(24)은 온도에 대응되는 전류값 데이터가 저장된 제2데이터베이스(28)로부터 데이터를 전송받아 조도 센서로부터 입력되는 전류값과 비교하여 멜팅풀(P)의 온도를 분석한다.
여기에서 제2데이터베이스(28)는 입력된 전류값이 어느 정도의 온도에 해당하는지 비교하기 위한 기준 정보가 저장된 데이터베이스이다. 제2데이터베이스(28)에는 각 온도에 대응되는 전류값 데이터가 저장되어 있다. 즉 이 전류값 데이터는 온도와 그 온도와 대응되는 전류값을 포함할 수 있다.
이러한 제2데이터베이스(28)는 광강도분석모듈(24)에 구비될 수도 있고 중앙처리부(3)에 구비될 수도 있다.
이와 같이 하여 광강도분석모듈은 성형 지점이 어느 정도의 온도 범위를 가지는지를 분석할 수 있고 분석된 온도 범위는 이상판정모듈(23)로 전송된다. 이상판정모듈(23)은 이 분석정보를 근거로 하여 온도가 적합한 범위 내인지를 판단할 수 있다.
이 때 이상판정모듈(23)은 영상데이터분석모듈(22)의 분석값과 광강도분석모듈(24)의 분석값을 종합하여 멜팅풀(P)의 온도가 적합한 범위 내인지 종합적으로 판단할 수 있다.
한편 광강도분석모듈(24)은 자체적으로 적합한 전류값에 대한 범위 정보(상한치 또는 하한치 중 적어도 어느 하나)를 가지고 조도 센서로부터 입력되는 전류값이 적합한 범위 내인지 아닌지를 판단하는 형태로 멜팅풀(P)의 온도가 적합한지 여부를 판단할 수 있다. 이 경우 광강도분석모듈(24)은 전류값이 적합 범위를 벗어나게 되면 이상 신호를 출력할 수 있어 이상판정모듈(23)의 기능을 함께 가질 수 있다.
한편 이상검출부(2)는 작업내용저장모듈(25)을 더 포함할 수 있다. 작업내용저장모듈(25)은 성형 레이어별로 촬영된 영상, 분석된 온도, 이상 여부, 작업 로그 파일 등을 매칭하여 저장할 수 있다.
중앙처리부(3)는 3차원 프린터의 시스템 운영을 담당하는 것으로서, 광정보취득부(1) 및 이상검출부(2)와 정보를 주고 받으며 성형 공정을 관리하한다.
구체적으로는 광빔가공부(50)로 성형 위치의 좌표정보를 전송하거나, 이상검출부(2)와 광빔가공부(50)로 광빔(B)의 ON/OFF 신호를 전송할 수 있다.
또한 광빔가공부(50)에 전송하는 좌표정보와 동기화되도록 광정보취득부(1)와 이상검출부(2)에도 성형 위치의 좌표정보를 전송하여 성형 공정에 대하여 실시간으로 이상 여부를 검출할 수 있도록 한다.
한편 이상검출부(2)로부터 이상 검출과 관련된 데이터를 수신하여 이 데이터를 취합하고 공정 진행을 관리하는 자료로 사용할 수 있다.
본 발명의 실시예에 따른 성형 공정 감시 장치는 이상이 있는 지점을 화면에 표시하는 표시부(4)를 더 포함할 수 있다.
표시부(4)는 영상표시모듈을 구비하고, 영상표시모듈에서 3차원 성형품을 성형하는 진행 상황을 영상으로 표시하며, 멜팅풀(P)의 온도 범위가 벗어난 경우나, 광빔(B) 조사가 이루어지지 않은 경우 또는 광빔(B)의 ON/OFF 신호에 따라 정상적으로 성형이 이루어지지 않은 경우(예를 들면 광빔이 OFF인 경우에도 성형이 이루어진 경우) 등과 같이 진행 상황 중 이상이 발생한 경우 즉시 이상을 표시(E)할 수 있다. 이에 따라 작업자 또는 관제센터에서 이상을 확인하고 조치할 수 있다.
표시부(4)는 도 7(a)와 같이 현재 진행하고 있는 레이어(L) 뿐만 아니라 도 7(b)와 같이 진행된 레이어(L)에 대해서도 입체적으로 표시하여 나타낼 수 있다.
도 8은 본 발명의 실시예에 따른 성형 공정 감시 장치를 채용한 3차원 프린터를 나타내는 사시도이다.
도시한 3차원 프린터(100)는, 3차원의 성형품을 가공하는 장치로서, 형상 가공이 이루어지는 챔버부(10)와, 챔버부(10)에 분말 형상의 원재료를 투입하는 원재료공급부(20)와, 원재료공급부(20)에서 투입된 원재료를 밀어 이동시키는 원재료이동부(30)와, 원재료이동부(30)에 의해 이동된 원재료가 놓여지고 원재료의 성형이 이루어지는 성형부(40)와, 성형부(40)에 놓여진 원재료에 광빔(B)을 조사하여 용융 또는 소결시켜 성형하는 광빔가공부(50)를 포함하여 이루어진다.
위 3차원 프린터는 공지된 구성이므로 상세한 설명은 생략한다. 앞서 설명한 성형 공정 감시 장치는 챔버부(10)의 상측에 장착하여 광빔가공부(50)에 의한 성형 공정을 감시하도록 할 수 있다.
분말을 사용하는 3차원 프린터에서 분말을 도포하는 블레이드는 실리콘이나 고무 계열의 연성 재질을 사용하는 경우가 많다. 이는 금속 분말과의 마찰을 통해 쉽게 마모가 되어 성형 공정의 오류를 유발시킨다. 따라서 성형 공정의 오류를 바로잡기 위해서는 성형 공정 감시 장치 뿐만 아니라 블레이드를 구비하는 원재료이동부에 대한 고려가 필요하다.
연성 재질은 마모되어 자주 교체해야 한다. 하지만 장시간의 가공 중에는 교체가 매우 어려운 단점이 있다. 가공 중에 블레이드에 마모가 발생하면 가공 품질이 급격히 낮아져 제품의 상품성이 사라진다. 이에 대한 대안으로 본 발명에서는 연속 공급이 가능한 블레이드 형태와 회전형 블레이드 형태의 원재료이동부를 제안한다.
연속 공급이 가능한 블레이드 형태의 원재료이동부(30)는, 몸체(31), 블레이드(32), 공급롤러(33) 및 회수롤러(34)를 포함한다.
도 9를 참조하면, 몸체(31)는 챔버(10)의 수평방향을 따라 이동하고 끝단에 홈이 형성되며 이 홈에 블레이드(32)가 결합된다.
블레이드(32)는 분말을 얇게 펴주는 역할을 한다. 블레이드(32)는 교체를 용이하게 하기 위하여 몸체(31)의 홈에 장착하여 사용한다. 블레이드(32)는 연성을 가진 합성수지 재료로서 실리콘이나 고무 계열의 소재일 수 있다.
몸체(31)의 끝단의 홈에는 블레이드(32)가 삽입되어 지지되도록 가이드홈이 형성된다. 한편 블레이드(32)의 양측면에는 이 가이드홈에 삽입되는 가이드돌기(321)가 형성된다. 가이드홈과 가이드돌기(321)는 각각 몸체(31)와 블레이드(32)에 형성될 수도 있다.
한편 공급롤러(33)에는 블레이드(32)의 일단이 결합되고 블레이드(32)가 감겨 설치되고, 회수롤러(34)에는 블레이드(32)의 다른 일단이 결합되고 상기 블레이드(32)를 감아 회수한다. 회수롤러(34)에는 블레이드의 회수를 위한 구동기가 결합될 수 있고, 회수는 일정한 시간을 정하여 이 시간이 경과한 후 일정량을 회수하도록 할 수 있다.
이와 같이 분말을 사용하는 3차원 프린터에서 분말을 도포하는 블레이드를 롤 단위로 형성하여 장착하고 마모가 예상되는 마찰면이 자동으로 회수롤러에 의해 회수되도록 함으로써 블레이드의 손상으로 인한 성형품의 품질 저하를 방지할 수 있다. 또한 가공 중 블레이드 교체의 위험이 없어 작업자가 항시 대기하는 형태의 작업을 제거할 수 있고 안정적인 3차원 프린팅 품질을 얻을 수 있다. 또한 작업시간이 긴 가공물에 대해서도 연속 작업이 가능하다.
회전형 블레이드 형태의 원재료이동부(30)는 몸체부(31), 블레이드부(32) 및 감시부(미도시)를 포함한다.
도 10 내지 도 12를 참조하면, 몸체부(31)은 U자 형태의 홈(311)이 형성된 부재로 챔버(10)의 수평방향을 따라 이동한다. U자 형태의 홈(311)에 의해 형성된 양 끝단의 돌출된 부분에는 블레이드부(32)가 축결합된다.
블레이드부(32)는 몸체부(31)에 회전 가능하게 결합되고 복수의 블레이드(323, 324)가 이격되어 외측으로 연장되며 회전에 의해 각 블레이드의 위치가 변경된다. 이와 같은 구성의 블레이드부를 이용하면 블레이드의 교체가 편리하고, 성질이 다른 여러 가지 블레이드를 작업 상태에 따라 손쉽게 변경하여 사용할수 있다.
블레이드부(32)는 몸체부(31)에 회전 가능하게 결합되는 회전체(321)와, 회전체(321)에 서로 이격되어 결합되는 제1블레이드(323) 및 제2블레이드(324)를 포함하여 구성된다. 몸체부(31)의 일측 돌출부에는 장착홈(312)이 형성되고 장착홈의 일면에는 몸체부의 이동 방향과 수직한 방향으로 관통홀(315)이 형성된다. 이 관통홀에 축부재(322)의 축핀(322b)이 삽입되어 블레이드부(32)의 회전체(321)의 일단에 형성된 축홀(321a)과 결합한다. 축부재(322)는 장착블록(322a)에 축핀(322b)이 회전 가능하도록 결합되어 이루어진다.
축핀(322b)의 끝단과 회전체(321)의 축홀(321a)은 다각형 형상으로 이루어져 서로 결합될 수 있다. 장착홈(312)에는 장착가이드(313)가 형성되고 축부재의 장착블록에는 가이드홈이 형성되어 서로 결합됨으로써 축부재가 몸체부에 장착될 수 있다.
몸체부(31)의 다른측 돌출부에도 몸체부의 이동 방향과 수직한 방향으로 관통홀(317)이 형성되고 이 홀에 모터(325)의 축이 삽입된다. 모터의 축은 관통홀(317)을 통과하여 끝단이 회전체(321)의 다른 일단에 형성된 축홀에 결합된다. 모터의 구동이 회전체(321)에 온전히 전달되어야 하므로 모터의 축은 회전체(321)의 축홀에 억지끼움 형식으로 결합될 수 있다. 추가적으로 모터(325)의 축의 끝단과 회전체(321)의 결합홈은 다각형 형상으로 이루어져 서로 결합될 수 있다. 한편 모터(325)와 회전체(321)는 조인트 부재를 개재하여 결합될 수 있다.
이와 같은 구성에 의해 모터가 구동되면 축의 회전운동이 회전체에 전달되고 회전체는 축핀이 지지단이 되어 회전한다. 한편 모터 외에도 회전 구동이 가능한 다른 형태의 구동요소를 채용할 수도 있다.
제1블레이드(323)는 회전체(321)의 외주에 돌출되도록 결합된다. 또한 제2블레이드(324)는 제1블레이드와 이격된 상태에서 회전체(321)의 외주에 돌출되도 결합된다. 또한 제1블레이드 3개와 상기 제2블레이드 1개가 각각 90도 각도로 이격되어 배치될 수 있다.
회전체(321)의 외주에는 일정 각도를 두고 이격되어 장착홈(321b)이 형성되고 제1블레이드와 제2블레이드는 장착홈에 돌출되도록 결합된다. 이에 따라 각 블레이드가 분말을 펴주는 역할을 할 수 있고, 교체도 용이하다.
회전체(321)의 장착홈(321b)은 T자 형상으로 이루어지고 블레이드의 끝단도 이에 대응하는 T자 형상으로 이루어져 서로 결합될 수 있다. 여기에서 회전체는 내부가 비어 있는 형태로 중앙에 축홀(321a)이 형성되고 외주에는 장착홈(321b)이 형성되며 축홀을 형성하는 프레임과 장착홈을 형성하는 프레임을 리브(321c)가 연결하여 지지하는 형태로 이루어질 수 있다.
제1블레이드(323)는 실리콘, 고무와 같은 연성 재질의 블레이드를사용할 수 있고, 제2블레이드(324)는 세라믹, 금속과 같은 단단한 재질의 블레이드를 사용할 수 있다.
한편 제1블레이드는 제2블레이드보다 더 길게 돌출되도록 장착할 수 있다. 단단한 재질의 블레이드는 높이를 정확하게 맞추어야 하지만 연성 재질의 블레이드는 챔버 바닥과 접촉하여도 휘어짐이 가능하고 원재료 분말과 밀착되게 함으로써 원재료 분말을 눌러줄 수 있으므로 이와 같이 양 블레이드의 길이를 달리하는 것이 바람직하다.
한편 블레이드가 분말을 도포할 때에 받는 힘은 모터가 가지는 부하에 의해 대응이 가능하고 블레이드의 위치 유지가 가능하다. 다만, 연성 블레이드가 챔버의 바닥에 접촉하면서 진행하는 경우에는 블레이드에 가해지는 힘이 커진다. 이러한 경우 힘의 분산을 위해 원재료이동부(30)에는 스토퍼(326)가 추가될 수 있다.
몸체부의 일측 돌출부에 형성된 장착홈(312)에서 축부재(322)가 장착되는 상부에는 장착가이드(314)가 하나 더 형성되고 스토퍼(326)의 장착블록(326a)에는 가이드홈이 형성되어 서로 결합함으로써 스토퍼가 몸체부(31)에 장착될 수 있다. 실린더 로드의 끝단(326b)에는 홈이 형성되어 리브(321c)와 결합하기 용이하게 이루어진다.
몸체부(31)의 일측 돌출부에 형성된 장착홈에서 축핀(322b)이 삽입되는 관통홀(315)의 상부에 관통홀(316)이 하나 더 형성되고 이 관통홀에 스토퍼(326)의 실린더 로드가 통과하도록 실린더(326c)가 작동하면 실린더 로드의 끝단(326b)이 블레이드부(32)의 회전체(321)에 형성된 리브(321c)를 잡아 지지함으로써 블레이드의 위치 유지가 가능하다.
한편 감시부(미도시)를 구비하여 원재료이동부에 장착된 블레이드의 상태 또는 도포된 분말의 상태를 감시할 수 있다. 감시부는 카메라를 포함하여 구성될 수 있다. 카메라에 의해 블레이드의 상태 또는 도포된 분말의 상태를 촬영하여 문제 발생 여부를 감시하고 블레이드의 교체 여부를 판단할 수 있다.
상기와 같이 성형 공정 감시 장치는 상기 설명된 실시예들의 구성과 방법이 한정되게 적용될 수 있는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.
앞서 설명한 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야의 숙련된 당업자 또는 해당 기술분야에 통상의 지식을 갖는 자라면 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (12)

  1. 원재료 분말을 이용하여 3차원의 성형품을 가공하는 장치에 구비되어 공정을 감시하는 장치로서,
    원재료 분말이 성형되는 지점에서 발생하는 빛에 대한 정보를 취득하는 광정보취득부,
    상기 3차원의 성형품을 가공하기 위한 성형 지점의 좌표정보를 전송하는 좌표정보전송부 및
    상기 광정보취득부에서 취득한 광정보가 생성된 성형 지점에 대한 좌표정보를 상기 좌표정보전송부로부터 전송받아 상기 광정보와 상기 좌표정보를 이미지로 만들어 저장하는 이미지저장부
    를 포함하는 3차원 프린터의 성형 공정 감시 장치.
  2. 제1항에 있어서,
    상기 광정보취득부는 고속 카메라를 구비하고 상기 고속 카메라를 이용하여 원재료 분말이 성형되는 지점의 사진을 촬영함으로써 광정보를 취득하고,
    상기 이미지저장부는 상기 고속 카메라에서 촬영한 사진에 해당하는 성형 지점에 대한 좌표정보를 상기 좌표정보전송부로부터 전송받아 상기 성형 지점을 촬영한 사진에 포함시켜 저장하는
    3차원 프린터의 성형 공정 감시 장치.
  3. 제2항에 있어서,
    상기 이미지저장부는,
    상기 성형 지점을 촬영한 사진을 빛의 강도에 따른 색상으로 표시된 사진으로 변환시키는 이미지처리모듈,
    상기 좌표정보전송부에서 전송된 좌표정보를 상기 좌표정보를 나타내는 등가의 색상정보로 변환시키는 좌표처리모듈 및
    상기 이미지처리모듈에서 변환된 사진에 상기 좌표처리모듈에서 변환된 색상정보를 표시하는 이미지합성모듈
    을 포함하는 3차원 프린터의 성형 공정 감시 장치.
  4. 제2항 또는 제3항에 있어서,
    상기 사진을 판독하여 성형 지점에서 발생하는 불꽃이 일정 크기 이하 또는 이상이거나 일정 밝기 이하 또는 이상의 색으로 표시되는 경우 이상이 있는 것으로 판정하고 해당 성형 지점의 좌표정보를 저장하는 이상판정부를 더 포함하는 3차원 프린터의 성형 공정 감시 장치.
  5. 제4항에 있어서,
    이상이 있는 지점을 화면에 표시하는 표시부를 포함하고,
    상기 표시부는,
    상기 3차원 성형품을 성형하는 진행 상황 또는 성형을 마친 3차원 성형품을 영상으로 표시하는 영상표시모듈 및
    상기 이상판정부로부터 이상이 발생한 성형 지점의 좌표정보를 전송받아 상기 영상표시모듈에서 표시한 영상의 해당 좌표에 해당하는 지점에 표시하는 좌표표시모듈
    을 포함하는 3차원 프린터의 성형 공정 감시 장치.
  6. 원재료 분말을 이용하여 3차원의 성형품을 가공하는 장치에 구비되어 공정을 감시하는 장치로서,
    원재료 분말이 성형되는 지점에서 발생하는 빛에 대한 정보를 취득하는 광정보취득부,
    상기 3차원의 성형품을 가공하기 위한 성형 지점의 좌표정보를 전송하는 좌표정보전송부 및
    상기 광정보취득부에서 취득한 광정보가 생성된 성형 지점에 대한 좌표정보를 상기 좌표정보전송부로부터 전송받아 상기 광정보에 대한 분석을 수행할 때 상기 좌표정보를 실시간으로 참조하는 이상검출부
    를 포함하는 3차원 프린터의 성형 공정 감시 장치.
  7. 제6항에 있어서,
    상기 이상검출부는,
    상기 성형 지점을 촬영한 사진을 빛의 강도에 따른 색상으로 표시된 이미지 데이터로 변환시키는 이미지처리모듈,
    온도에 대응되는 색상이 저장된 데이터베이스로부터 데이터를 전송받아 상기 이미지처리모듈에서 변환된 색상 데이터와 비교하여 성형 지점의 온도 분포를 분석하는 영상데이터분석모듈 및
    성형 지점의 적합한 온도 범위에 대한 정보를 보유하고, 상기 영상데이터분석모듈에서 분석된 온도 분포가 적합한 온도 범위에 해당하는지 판단하는 이상판정모듈
    을 포함하는 것을 특징으로 하는 3차원 프린터의 성형 공정 감시 장치.
  8. 3차원의 성형품을 가공하는 장치로서,
    형상 가공이 이루어지는 챔버부,
    상기 챔버부에 분말 형상의 원재료를 투입하는 원재료공급부,
    상기 원재료공급부에서 투입된 원재료를 밀어 이동시키는 원재료이동부,
    상기 원재료이동부에 의해 이동된 원재료가 놓여지고 원재료의 성형이 이루어지는 성형부,
    상기 성형부에 놓여진 원재료에 광빔을 조사하여 용융시켜 성형하는 광빔가공부 및
    상기 광빔가공부에 의한 성형 공정을 감시하는 제1항 내지 제7항 중 어느 한 항에 따른 성형 공정 감시 장치
    를 포함하는 3차원 프린터.
  9. 제8항에 있어서,
    상기 원재료이동부는, 연성 재질의 블레이드를 구비하고 일정한 조건이 되면상기 블레이드를 감아 상기 블레이드의 새로운 면이 작업에 사용될 수 있도록 하는 3차원 프린터.
  10. 제9항에 있어서,
    상기 원재료이동부는, 상기 챔버의 수평방향을 따라 이동되고 끝단에 홈이 형성되는 몸체, 상기 몸체의 상기 홈에 결합되는 블레이드, 상기 블레이드의 일단이 결합되고 상기 블레이드가 감기는 공급롤러 및 상기 블레이드의 다른 일단이 결합되고 상기 블레이드를 감아 회수하는 회수롤러를 포함하는 3차원 프린터.
  11. 제8항에 있어서,
    상기 원재료이동부는,
    수평방향을 따라 이동하는 몸체부,
    상기 몸체부에 회전 가능하게 결합되고 복수의 블레이드가 이격되어 외측으로 연장되며 회전에 의해 각 블레이드의 위치가 변경되는 블레이드부 및
    상기 블레이드부에 장착된 블레이드의 상태 또는 도포된 분말의 상태를 감시하는 감시부
    를 포함하는 3차원 프린터.
  12. 제11항에 있어서,
    상기 블레이드부는,
    상기 몸체부에 회전 가능하게 결합되는 회전체,
    상기 회전체의 외주에 돌출되도록 결합되는 제1블레이드 및
    상기 제1블레이드와 일정 각도를 두고 이격되고 상기 회전체의 외주에 돌출되도록 결합되며 상기 제1블레이드보다 단단한 재질로 이루어지는 제2블레이드
    를 포함하는 3차원 프린터.
PCT/KR2017/005130 2016-08-31 2017-05-17 3차원 프린터의 성형 공정 감시 장치 및 이를 구비한 3차원 프린터 WO2018043869A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780006314.4A CN108602124B (zh) 2016-08-31 2017-05-17 三维打印机的成型工艺监控装置以及具备其的三维打印机

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2016-0111802 2016-08-31
KR1020160111802A KR101715124B1 (ko) 2016-08-31 2016-08-31 3차원 프린터의 분말도포장치 및 이를 구비한 3차원 프린터
KR1020160156105A KR101793573B1 (ko) 2016-11-22 2016-11-22 3차원 프린터의 성형 위치 기록 장치 및 이를 구비한 3차원 프린터
KR10-2016-0156105 2016-11-22
KR10-2017-0005615 2017-01-12
KR1020170005615A KR101872935B1 (ko) 2017-01-12 2017-01-12 3d 프린팅 가공 검사용 장치
KR1020170035528A KR101874095B1 (ko) 2017-03-21 2017-03-21 3차원 프린터의 멜팅풀 검사 장치 및 이를 구비한 3차원 프린터
KR10-2017-0035528 2017-03-21

Publications (1)

Publication Number Publication Date
WO2018043869A1 true WO2018043869A1 (ko) 2018-03-08

Family

ID=61301335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005130 WO2018043869A1 (ko) 2016-08-31 2017-05-17 3차원 프린터의 성형 공정 감시 장치 및 이를 구비한 3차원 프린터

Country Status (2)

Country Link
CN (1) CN108602124B (ko)
WO (1) WO2018043869A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108817117A (zh) * 2018-05-16 2018-11-16 武汉理工大学 多区域异质材料复合结构温热挤压模及其制备方法
JP6632767B1 (ja) * 2018-10-18 2020-01-22 三菱電機株式会社 表示システム、付加製造装置および進捗表示方法
WO2020116696A1 (ko) * 2018-12-06 2020-06-11 주식회사 덴티스 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치
EP3685939A1 (en) * 2019-01-25 2020-07-29 Hamilton Sundstrand Corporation Enhanced recoater edges

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019206367A1 (de) * 2019-05-03 2020-11-05 Audi Ag 3D-Druckvorrichtung zur Photopolymerisation eines photosensitiven Kunstharzes durch ein Belichtungsmuster

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0539649U (ja) * 1991-11-08 1993-05-28 株式会社日阪製作所 粉末供給装置
JP2004249312A (ja) * 2003-02-19 2004-09-09 Sumitomo Heavy Ind Ltd レーザ溶接状態監視装置及びレーザ溶接状態監視方法
KR20160059212A (ko) * 2014-11-18 2016-05-26 대우조선해양 주식회사 영상 기반의 배관온도 측정장치 및 그 제어방법
JP2016097657A (ja) * 2014-11-26 2016-05-30 キヤノン株式会社 画像情報処理装置、画像情報処理方法およびプログラム、並びに撮像装置
KR101646773B1 (ko) * 2015-02-12 2016-08-08 윈포시스(주) 3차원 프린터

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202639328U (zh) * 2011-12-21 2013-01-02 西安铂力特激光成形技术有限公司 激光立体成形金属零件质量追溯装置
FR3010785B1 (fr) * 2013-09-18 2015-08-21 Snecma Procede de controle de la densite d'energie d'un faisceau laser par analyse d'image et dispositif correspondant
CN104890240B (zh) * 2015-05-23 2017-01-25 哈尔滨工业大学 纳米粉末激光选择性熔化增材制造系统与方法
CN104907562B (zh) * 2015-06-05 2018-01-26 湖南华曙高科技有限责任公司 用于制造三维物体的设备
CN105499567B (zh) * 2015-12-15 2018-01-09 天津清研智束科技有限公司 粉床式电子束增材制造中热应力的控制装置及方法
CN105598451B (zh) * 2016-03-01 2018-01-26 西安铂力特增材技术股份有限公司 一种增材制造落粉装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0539649U (ja) * 1991-11-08 1993-05-28 株式会社日阪製作所 粉末供給装置
JP2004249312A (ja) * 2003-02-19 2004-09-09 Sumitomo Heavy Ind Ltd レーザ溶接状態監視装置及びレーザ溶接状態監視方法
KR20160059212A (ko) * 2014-11-18 2016-05-26 대우조선해양 주식회사 영상 기반의 배관온도 측정장치 및 그 제어방법
JP2016097657A (ja) * 2014-11-26 2016-05-30 キヤノン株式会社 画像情報処理装置、画像情報処理方法およびプログラム、並びに撮像装置
KR101646773B1 (ko) * 2015-02-12 2016-08-08 윈포시스(주) 3차원 프린터

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108817117A (zh) * 2018-05-16 2018-11-16 武汉理工大学 多区域异质材料复合结构温热挤压模及其制备方法
JP6632767B1 (ja) * 2018-10-18 2020-01-22 三菱電機株式会社 表示システム、付加製造装置および進捗表示方法
WO2020116696A1 (ko) * 2018-12-06 2020-06-11 주식회사 덴티스 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치
KR20200071872A (ko) * 2018-12-06 2020-06-22 주식회사 덴티스 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치
KR102196036B1 (ko) 2018-12-06 2020-12-29 주식회사 덴티스 3차원 적층체의 상태에 따라 자외선 출력 가변이 가능한 자외선 광 경화장치
EP3685939A1 (en) * 2019-01-25 2020-07-29 Hamilton Sundstrand Corporation Enhanced recoater edges
US11351725B2 (en) 2019-01-25 2022-06-07 Hamilton Sundstrand Corporation Enhanced recoater edges
US11745416B2 (en) 2019-01-25 2023-09-05 Hamilton Sundstrand Corporation Enhanced recoater edges

Also Published As

Publication number Publication date
CN108602124B (zh) 2021-06-22
CN108602124A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
WO2018043869A1 (ko) 3차원 프린터의 성형 공정 감시 장치 및 이를 구비한 3차원 프린터
CN110596134B (zh) 一种基于图像采集的片状玻璃边缘瑕疵检测方法
KR101263391B1 (ko) 위치검출 기능을 구비한 카메라모듈 연속 검사 및 초점 조정 장치
WO2016200185A1 (ko) 3차원 스캐닝 시스템 및 이를 위한 라인레이저 정렬용 표적기구
WO2017003241A1 (ko) 물품 검사장치
WO2014163375A1 (ko) 기판의 이물질 검사방법
JP2016168732A (ja) 金型清掃を行う射出成形システム
WO2018147478A1 (ko) 머신 비전을 활용한 와이어 하네스 케이블의 터미널 크림핑 검사 장치 및 검사 방법 그리고 그 작동 방법
JP2012214008A (ja) 検査装置
WO2018066576A1 (ja) 外観検査方法
WO2020175752A1 (ko) 가전제품 외관 검사 장치
WO2010008134A2 (en) Image processing method
KR101874095B1 (ko) 3차원 프린터의 멜팅풀 검사 장치 및 이를 구비한 3차원 프린터
US20230078772A1 (en) Manufacturing system for additive manufacturing of a workpiece
KR20150083376A (ko) 지그 모델 및 캠을 이용한 휴대폰 및 태블릿pc 케이스의 버 검출 장치
WO2019078375A1 (ko) 용접 시스템 및 그의 동작 방법
WO2024043403A1 (ko) 반도체 웨이퍼 결함 검사 장치 및 결함 검사 방법
WO2017183923A1 (ko) 물품의 외관 검사장치 및 이를 이용한 물품의 외관 검사방법
WO2023219448A1 (ko) 광을 이용한 롤러 갭 측정시스템 및 이를 이용한 롤러 갭 측정방법
WO2017213356A1 (ko) 필름 처리장치 및 처리방법
WO2017146330A1 (ko) 진직도 측정 장치 및 방법
WO2019004619A1 (ko) 슬러지 제거장치
KR102083221B1 (ko) 3차원 프린터의 성형 품질 검사 장치 및 이를 포함하는 3차원 프린터
JP2013061202A (ja) クラック検査システム、クラック検査方法及び成形品の製造方法
KR100920310B1 (ko) 급냉응고 스트립 제조설비의 갭 측정/유지장치 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17846794

Country of ref document: EP

Kind code of ref document: A1