WO2018043820A1 - Route guiding system, using weather information, of unmanned aerial vehicle, method thereof, and recording medium recorded with computer program - Google Patents

Route guiding system, using weather information, of unmanned aerial vehicle, method thereof, and recording medium recorded with computer program Download PDF

Info

Publication number
WO2018043820A1
WO2018043820A1 PCT/KR2016/013299 KR2016013299W WO2018043820A1 WO 2018043820 A1 WO2018043820 A1 WO 2018043820A1 KR 2016013299 W KR2016013299 W KR 2016013299W WO 2018043820 A1 WO2018043820 A1 WO 2018043820A1
Authority
WO
WIPO (PCT)
Prior art keywords
unmanned aerial
aerial vehicle
route
destination
path
Prior art date
Application number
PCT/KR2016/013299
Other languages
French (fr)
Korean (ko)
Inventor
장석웅
Original Assignee
에스케이테크엑스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이테크엑스 주식회사 filed Critical 에스케이테크엑스 주식회사
Publication of WO2018043820A1 publication Critical patent/WO2018043820A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/006Navigation or guidance aids for a single aircraft in accordance with predefined flight zones, e.g. to avoid prohibited zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]

Definitions

  • the present invention relates to a path guide system for an unmanned aerial vehicle using meteorological information, a method, and a recording medium on which a computer program is recorded. Particularly, a plurality of dense meteorological observations are performed in real time based on a base station existing between an origin and a destination of an unmanned aerial vehicle.
  • the weather information of the station is used to determine whether to operate the unmanned aerial vehicle, and when the operation of the unmanned aerial vehicle is determined, it provides an optimum shortest time path or optimal fuel consumption path for a plurality of operational routes.
  • Revisit flight routes or reroute routes Relates to an unmanned air vehicle is of a color using the weather information for route guidance system, the method and computer program recording medium.
  • Small unmanned aerial vehicles are used in various fields such as traffic control, video shooting, reconnaissance missions and fire surveillance. Advances in processors, sensors, and communication technologies have improved performance and functionality, while miniaturizing and lowering costs, and have expanded their reach in many areas and will accelerate further.
  • These small unmanned aerial vehicles determine the possibility of operation by using wide-area weather information for the flight area when calculating the shortest flight path considering the obstacle between the starting point and the destination for the flight. There is a risk of loss or fall if the battery or fuel consumption is increased during operation, the control of unmanned aerial vehicles becomes difficult or severe.
  • An object of the present invention is to determine whether to operate the unmanned aerial vehicle using the weather information of a plurality of dense weather station that is observed in real time based on the base station existing between the origin and destination of the unmanned aerial vehicle, the operation for the unmanned aerial vehicle is determined.
  • the operation for the unmanned aerial vehicle is determined.
  • Another object of the present invention is a real time observation value on the scheduled flight route during the flight exceeds a predetermined reference value for a predetermined time, a new strong wind, precipitation or lightning is observed on the scheduled flight route, continuous operation through a sensor mounted on an unmanned aerial vehicle, etc. If it is determined that this is difficult, the present invention provides a recording medium on which a route guidance system, a method and a computer program of an unmanned aerial vehicle using weather information for re-searching a navigation route or searching for a return route.
  • a method for guiding an unmanned aerial vehicle using weather information includes generating, by a GPS receiver, location information of an unmanned aerial vehicle moving along a navigation route searched from a starting point to a destination; Measuring, by a sensor unit, an observation value of an area where the unmanned aerial vehicle is located; Confirming, by a control unit, whether an emergency event occurs based on the generated position information of the unmanned aerial vehicle and the measured observation value; By the controller, when the emergency event occurs, a plurality of additional weather information for each station additionally provided from a server, location information of the generated unmanned aerial vehicle, the measured observation value, and the destination information, when the emergency event occurs Rediscovering the navigation route; And moving, by the controller, the unmanned aerial vehicle along the re-discovered flight path through at least one of attitude control and position control of the unmanned aerial vehicle.
  • the navigation route searched from the departure point to the destination includes a plurality of weather information measured by a plurality of observation stations located within a radius set based on the shortest route from the departure point to the destination provided by the communication unit.
  • Receiving a process Determining, by the controller, whether the flight is from the departure point to the destination based on the received plurality of weather information; And searching, by the controller, a flight route from a departure point to a destination based on the at least one safe route capable of navigation when there is one or more safe routes that can be operated from the departure point to the destination. Can be generated.
  • the determining of the operation may include determining, by the controller, an avoiding route from a plurality of routes from a departure point to a destination based on a plurality of weather information on a plurality of routes from the departure point to the destination. Removing process; Determining, by the controller, the one or more remaining paths as a safe path when a remaining path exists after removing an avoiding path among the plurality of paths; Determining, by the controller, a state in which an unmanned flight is possible when there is at least one safe route that can be operated from the origin to the destination; And determining, by the controller, that the unmanned aerial vehicle cannot be operated when at least one safe route capable of operating from the starting point to the destination does not exist.
  • the avoidance path corresponds to a path in which wind speeds included in weather information for each station exceeds a preset wind speed threshold value among a plurality of paths from a starting point to a destination, and corresponds to weather information in which current rainfall is observed.
  • the forecast information is included in the forecast information based on a route, a route corresponding to weather information on which a current lightning strike is observed, and a corresponding route at the time when the unmanned aerial vehicle reaches the plurality of routes according to a driving speed of the unmanned aerial vehicle.
  • the searching of the flight route from the departure point to the destination may include: calculating, by the controller, a total valid time for each route for the at least one safe route that can be operated; And selecting, by the controller, a route from the starting point corresponding to the shortest time to the destination among the calculated total valid time for each route as the final operating route.
  • the searching of the flight route from the departure point to the destination may include: calculating, by the controller, fuel consumption for each route for one or more safe routes that can be operated; And selecting, by the controller, a route from the starting point to the destination that consumes the least fuel among the calculated fuel consumption for each route as the final operating route.
  • the observation value may include humidity, temperature, wind direction, wind speed, rainfall, whether there is a lightning strike, and the remaining amount or state of a fuel storage unit or a battery provided in the unmanned aerial vehicle. It may include at least one.
  • the emergency event may include: when the wind speed included in the observation value exceeds a preset wind speed threshold value, when a rainfall occurs, when a lightning occurs, and when the measured fuel storage unit or the battery
  • the remaining amount or state may include at least one of a case where it is impossible to operate from the current position of the unmanned aerial vehicle to the destination.
  • Re-searching the flight route as an example related to the present invention when the emergency event occurs, as a result of the check, by the controller, a plurality of additional weather information for each station, location information of the unmanned aerial vehicle generated Reconfirming at least one safe route capable of navigation from the current position of the unmanned aerial vehicle to a destination based on the measured observation value and the destination information; And re-navigating, by the controller, a navigation route from the current location of the unmanned aerial vehicle to the destination based on one or more safe routes capable of navigation from the current location of the unmanned aerial vehicle to the destination.
  • the arrival of the destination is based on the current position of the unmanned aerial vehicle based on the measured observation value.
  • a computer program for performing the method according to the above-described embodiments may be stored in a recording medium on which a computer program according to an embodiment of the present invention is recorded.
  • a route guidance system for an unmanned aerial vehicle using weather information includes: a GPS receiver for generating position information of an unmanned aerial vehicle moving along a navigation route searched from a departure point to a destination; A sensor unit measuring an observation value of an area where the unmanned aerial vehicle is located; And confirming whether an emergency event occurs based on the location information of the generated unmanned aerial vehicle and the measured observation value, and when the emergency event occurs, a plurality of additional weather information for each station further provided by a server when the emergency event occurs.
  • Re-navigating the navigation route based on the generated position information of the unmanned aerial vehicle, the measured observation value and the destination information, and through the at least one of the attitude control and the position control of the unmanned aerial vehicle, the re-discovered navigation route It may include a control unit for moving the unmanned aerial vehicle along.
  • the control unit when the emergency event occurs, by the control unit, a plurality of additional weather information for each station, the location information of the unmanned aerial vehicle, the measured observation value And reconfirm one or more safe routes capable of navigating from the current position of the unmanned aerial vehicle to a destination based on destination information, and based on one or more safe routes navigable from the current position of the unmanned aerial vehicle to the destination. You can rediscover the route from your current location to your destination.
  • the station of any one or more safe routes operable from the current position of the unmanned aerial vehicle is identified with one of a station with a minimum real fuel consumption, a station with the shortest distance, and a station with a minimum transit route, and the identified station It is possible to move the unmanned vehicle along the updated return path by updating the return path to return to and through one or more of attitude control and position control of the unmanned aerial vehicle.
  • the present invention determines whether the unmanned aerial vehicle is operated by using weather information of a plurality of dense weather stations that are observed in real time based on a base station existing between the origin and destination of the unmanned aerial vehicle, and operates when the operation of the unmanned aerial vehicle is determined.
  • the real-time observation value on the scheduled flight route during the flight exceeds a predetermined reference value for a predetermined time, a new strong wind, precipitation or lightning is observed on the scheduled flight route, continuous operation through a sensor mounted on an unmanned aerial vehicle, etc. If it is determined that it is difficult, it is possible to minimize the loss of the unmanned aerial vehicle in the weather deterioration, accidental situation, emergency situation by re-exploring the navigation route or search for a return route.
  • FIG. 1 is a block diagram showing the configuration of a route guidance system for an unmanned aerial vehicle using weather information according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing the configuration of an unmanned aerial vehicle according to an embodiment of the present invention.
  • 3 and 4 are diagrams showing an example for the path search of the unmanned aerial vehicle according to an embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating a route guidance method for an unmanned aerial vehicle using weather information according to an exemplary embodiment of the present invention.
  • FIG. 6 is a view showing an example for the path search of the unmanned aerial vehicle according to an embodiment of the present invention.
  • first and second used in the present invention may be used to describe components, but the components should not be limited by the terms. The terms are used only to distinguish one component from another.
  • first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • FIG. 1 is a block diagram showing the configuration of a route guidance system 10 of an unmanned aerial vehicle using weather information according to an embodiment of the present invention.
  • the path guidance system 10 of an unmanned aerial vehicle using weather information includes an observation station 100, a server 200, and an unmanned aerial vehicle 300. Not all components of the path guide system 10 of the unmanned aerial vehicle shown in FIG. 1 are essential components, and the path guide system 10 of the unmanned aerial vehicle is implemented by more components than those shown in FIG. The path guide system 10 of the unmanned aerial vehicle may be implemented with fewer components.
  • the unmanned aerial vehicle 300 determines whether to fly (or whether to fly) based on a plurality of weather information measured by a plurality of stations 100 located within a predetermined radius based on the shortest path from the starting point to the destination instead of the wide area weather information. do. In addition, when the operation is determined, the unmanned aerial vehicle 300 calculates the total effective time for each route and / or fuel consumption for each route, for the plurality of safety routes determined from the plurality of operation routes from the origin to the destination, and is calculated. The final route of travel is selected based on the total valid time per route and / or fuel consumption per route. Thereafter, the unmanned aerial vehicle 300 operates along the selected final navigation route.
  • the vehicle 300 While the unmanned aerial vehicle 300 moves along the final flight path, when an emergency event set in advance occurs based on a current position of the unmanned aerial vehicle 300, an observation value measured by the corresponding unmanned aerial vehicle 300, and the like, The vehicle 300 re-discovers a new navigation route based on the plurality of additional weather information newly provided from the server 300, the current position of the unmanned aerial vehicle 300, the observation value, and operates along the re-searched navigation route. do.
  • Observation station 100 may be a base station in which communication facilities are installed.
  • the station 100 includes various weather sensors (not shown) for measuring (or collecting) weather information.
  • the weather information includes information such as wind direction, wind speed, rainfall, lightning strike, and measurement time information.
  • the station 100 measures (or collects) weather information of the region where the station 100 is located.
  • the station 100 also transmits the measured (or collected) weather information to the server 200 and / or the unmanned aerial vehicle 300.
  • the weather information may further include location information (eg, including latitude, longitude, etc.) of the region where the corresponding observatory 100 is located.
  • the server 200 communicates with one or more observation stations 100, one or more unmanned aerial vehicles 300, and the like.
  • the server 200 receives a plurality of weather information transmitted from one or more stations 100, respectively. At this time, the server 200 receives the weather information transmitted from the corresponding station 100 at predetermined time intervals, or receives the weather information transmitted from the specific station 100 in response to a request for transmitting the weather information of the server 200. can do.
  • the server 200 receives unique identification information, origin information, destination information, etc. of the unmanned aerial vehicle 300 transmitted from the unmanned aerial vehicle 300.
  • the server 200 based on the received source information and destination information, a plurality of (or one or more) weather information corresponding to the corresponding source information and the destination information among the plurality of weather information for each station previously stored in the server 200.
  • a plurality of (or one or more) weather information corresponding to the corresponding source information and the destination information among the plurality of weather information for each station previously stored in the server 200.
  • the server 200 is located within a preset radius based on the shortest path from the corresponding departure point to the destination among the plurality of weather information for each station stored in the corresponding server 200 based on the received departure point information and the destination information.
  • the plurality of weather information collected from the observation station 100 is transmitted to the unmanned aerial vehicle 300.
  • the server 200 is an observation value measured during the operation of the unmanned aerial vehicle 300 transmitted from the unmanned aerial vehicle 300, position information of the unmanned aerial vehicle 300, the final navigation route (for example, origin, destination, intermediate (Including waypoints / intermediate routes).
  • the server 200 determines whether the navigation path of the unmanned aerial vehicle 300 is re-searched based on weather information updated in real time, a corresponding observation value, location information of the unmanned aerial vehicle 300, and a final navigation path.
  • the server 200 may determine whether the time when the real-time observation value exceeds the preset threshold value during the operation of the unmanned aerial vehicle 300 lasts for a predetermined time, whether the precipitation observation / expected path is included in the final flight path, and the like. Check.
  • the server 200 may update the real-time weather information, the corresponding observation value, the location information of the unmanned aerial vehicle 300, the final flight path, etc. Rediscover the final flight route as a basis.
  • the server 200 may update the real time weather information, the corresponding observation value, and the unmanned aerial vehicle ( The final navigation route is re-searched based on the location information of 300) and the final navigation route.
  • the server 200 may update weather information, corresponding observations, and the unmanned aerial vehicle 300 in real time. ) Rediscovers the final flight route based on location information and final flight route.
  • the server 200 transmits the re-discovered final flight route, weather information updated in real time, to the unmanned aerial vehicle 300.
  • the server 200 may operate the unmanned aerial vehicle 300 for each of the unmanned aerial vehicles 300 when the plurality of unmanned aerial vehicles 300 are in operation. ) Based on the current status (e.g. battery level, submerged state of unmanned aerial vehicle 300 by water measurement, difficult posture control, weather conditions of the local area) and unmanned landing area It is also possible to control such that the landing path path is updated in consideration of the accommodation margin situation information of the aircraft 300, the distance to the landing of each unmanned aerial vehicle 300, and the like.
  • the current status e.g. battery level, submerged state of unmanned aerial vehicle 300 by water measurement, difficult posture control, weather conditions of the local area
  • unmanned landing area It is also possible to control such that the landing path path is updated in consideration of the accommodation margin situation information of the aircraft 300, the distance to the landing of each unmanned aerial vehicle 300, and the like.
  • the unmanned aerial vehicle (or drone) 300 includes a communication unit 310, a GPS receiver 320, a sensor unit 330, a storage unit 340, a display unit 350, and a control unit 360. It consists of. Not all components of the unmanned aerial vehicle 300 shown in FIG. 2 are essential components, and the unmanned aerial vehicle 300 may be implemented by more components than those shown in FIG. 2, and fewer components thereof. The unmanned aerial vehicle 300 may also be implemented.
  • the communication unit 310 communicates with any component inside or any at least one terminal outside through a wired / wireless communication network.
  • any external terminal may include the observatory 100, the server 200, and the like.
  • the wireless Internet technologies include a wireless LAN (WLAN), a digital living network alliance (DLNA), a wireless broadband (Wibro), a WiMAX (World Interoperability for Microwave Access: Wimax), and an HSDPA (High Speed Downlink Packet Access). ), HSUPA (High Speed Uplink Packet Access), IEEE 802.16, Long Term Evolution (LTE), Long Term Evolution-Advanced (LTE-A), Wireless Mobile Broadband Service (WMBS), etc.
  • WLAN wireless LAN
  • DLNA digital living network alliance
  • Wibro wireless broadband
  • WiMAX Worldwide Interoperability for Microwave Access: Wimax
  • HSDPA High Speed Downlink Packet Access
  • HSUPA High Speed Uplink Packet Access
  • the communication unit 310 transmits and receives data according to at least one wireless Internet technology in a range including the Internet technologies not listed above.
  • short-range communication technologies may include Bluetooth, RFID, infrared communication (IrDA), UWB, Zigbee, adjacent field communication (NFC), ultrasonic communication (USC), visible light communication (VLC), Wi-Fi, Wi-Fi Direct, etc. have.
  • the wired communication technology may include power line communication (PLC), USB communication, Ethernet, serial communication, serial communication, optical / coaxial cable, and the like.
  • the communicator 310 may mutually transmit information with an arbitrary terminal through a universal serial bus (USB).
  • USB universal serial bus
  • the communication unit 310 may include technical standards or communication schemes (eg, Global System for Mobile communication (GSM), Code Division Multi Access (CDMA), Code Division Multi Access 2000 (CDMA2000), and EV-) for mobile communication.
  • GSM Global System for Mobile communication
  • CDMA Code Division Multi Access
  • CDMA2000 Code Division Multi Access 2000
  • EV- Enhanced Voice-Data Optimized or Enhanced Voice-Data Only (DO), Wideband CDMA (WCDMA), High Speed Downlink Packet Access (HSDPA), High Speed Uplink Packet Access (HSUPA), Long Term Evolution (LTE), LTE-A ( Long Term Evolution-Advanced, etc.) to transmit and receive radio signals to the base station, the observatory 100, the server 200 and the like on a mobile communication network.
  • GSM Global System for Mobile communication
  • CDMA Code Division Multi Access
  • CDMA2000 Code Division Multi Access 2000
  • EV- Enhanced Voice-Data Optimized or Enhanced Voice-Data Only (DO)
  • WCDMA Wideband CDMA
  • the communication unit 310 controls a plurality of weather conditions measured by the plurality of observation stations 100 located within a preset radius based on the shortest path from the starting point to the destination provided from the server 200 under the control of the control unit 360.
  • Receive information includes information such as location information (eg, latitude, longitude, etc.), wind direction, wind speed, rainfall, lightning strike, and measurement time information of the region where the corresponding observatory 100 is located.
  • the communicator 310 may receive weather information transmitted for each individual observing station 100.
  • the communication unit 310 is controlled by the control unit 360, the real-time current position information (for example, latitude information at the current position, longitude information, etc.) of the unmanned aerial vehicle 300 generated through the GPS receiver 320 And the like, various observation values measured by the sensor unit 330, final flight information generated (or searched) by the controller 360, unique identification information of the unmanned aerial vehicle 300, and the like are transmitted to the server 200. do.
  • the real-time current position information for example, latitude information at the current position, longitude information, etc.
  • the GPS receiver 320 receives a GPS signal transmitted from a satellite and generates (or generates / confirms) position data of the unmanned aerial vehicle 300 in real time based on the longitude coordinates and latitude coordinates included in the received GPS signal. .
  • the generated position data is defined as the current position (or current position data) of the unmanned aerial vehicle 300.
  • the location information may be received through Wi-Fi or Wibro as well as the GPS receiver.
  • the signal received through the GPS receiver 320 is 802.11, Bluetooth, UWB, which is a standard of a wireless network for a wireless LAN including a wireless LAN and some infrared communication proposed by the Institute of Electrical and Electronics Engineers (IEEE).
  • 802.15 the standard for wireless personal area networks (PANs) including ZigBee, ZigBee, and wireless metro area networks (MAN), including broadband wireless access (FWA), and broadband wireless access :
  • Wireless communication methods such as 802.16, which is a standard for BWA, and 802.20, which is a standard for the mobile Internet, for wireless MAN (Mobile Broadband Wireless Access (MBWA)) including Wibro, WiMAX, etc. It can also be configured to provide the location information of the terminal to the unmanned aerial vehicle 300.
  • PANs personal area networks
  • MAN wireless metro area networks
  • FWA broadband wireless access
  • Wireless communication methods such as 802.16, which is a standard for BWA, and 802.20, which is a standard for the mobile Internet, for wireless MAN
  • the sensor unit 330 includes various weather sensors (not shown) for measuring humidity, temperature, rainfall, and lightning.
  • the sensor unit 330 measures (or collects) observation values, including humidity, temperature, wind direction, wind speed, rainfall occurrence, lightning strike, and the like, in the area (or region) where the unmanned aerial vehicle 300 is located. .
  • the sensor unit 330 measures the remaining amount (or state) of the fuel storage unit (or battery) (not shown) included in the unmanned aerial vehicle 300.
  • the storage unit 340 stores data and programs necessary for operating the path guidance system 10 of the unmanned aerial vehicle.
  • the storage unit 340 stores a plurality of applications (application programs or applications) driven in the path guidance system 10 of the unmanned aerial vehicle, data for the operation of the path guidance system 10 of the unmanned aerial vehicle, and instructions. Can be. At least some of these applications may be downloaded from an external service providing apparatus through wireless communication.
  • the application is stored in the storage unit 340, is installed in the path guide system 10 of the unmanned aerial vehicle, the control unit 360 performs the operation (or function) of the path guide system 10 of the unmanned aerial vehicle. Can be driven to.
  • the storage unit 340 may include a flash memory type, a hard disk type, a multimedia card micro type, and a card type memory (eg, SD or XD memory). Etc.), magnetic memory, magnetic disk, optical disk, random access memory (RAM), static random access memory (SRAM), read-only memory (ROM), electrically erasable programmable read-only memory (EPM), PROM It may include at least one storage medium of (Programmable Read-Only Memory).
  • the route guidance system 10 of the unmanned aerial vehicle may operate a web storage that performs a storage function of the storage unit 340 on the Internet, or may operate in connection with the web storage.
  • the storage unit 340 stores a plurality of weather information for each station received through the communication unit 310 under the control of the control unit 360.
  • the storage unit 340 stores the position information of the unmanned aerial vehicle 300 generated through the GPS receiver 320 under the control of the controller 360.
  • the storage unit 340 may control the humidity, temperature, wind direction, wind speed, rainfall of an area (or region) in which the unmanned aerial vehicle 300 is measured by the sensor unit 330 under the control of the controller 360, Stores an observation value including whether a lightning strike occurs, a residual amount (or state) of a fuel storage unit (or battery) (not shown) included in the unmanned aerial vehicle 300, and the like.
  • the display unit 350 may display various contents such as various menu screens using a user interface and / or a graphic user interface stored in the storage unit 340 under the control of the controller 360.
  • the content displayed on the display unit 350 includes various text or image data (including various information data) and a menu screen including data such as icons, list menus, combo boxes, and the like.
  • the display unit 350 may be a touch screen.
  • the display unit 350 may include a liquid crystal display (LCD), a thin film transistor liquid crystal display (TFT LCD), an organic light-emitting diode (OLED), and a flexible display (LCD).
  • the display device may include at least one of a flexible display, a 3D display, an e-ink display, and a light emitting diode (LED).
  • the display unit 350 may be configured as a stereoscopic display unit for displaying a stereoscopic image.
  • the stereoscopic display unit may be a three-dimensional display method such as a stereoscopic method (glasses method), an auto stereoscopic method (glasses-free method), a projection method (holographic method).
  • the display unit 350 may include an LED for indicating an operating state of the unmanned aerial vehicle 300.
  • the display unit 350 displays an operating state, an abnormal state state, and the like of the unmanned aerial vehicle 300 under the control of the controller 360 through the LED.
  • the display unit 350 controls the humidity, temperature, wind direction, wind speed, rainfall, or the like of the area (or region) where the unmanned aerial vehicle 300 is measured by the control unit 360 under the control of the controller 360. Displays an observation value including whether a lightning strike occurs, a residual amount (or state) of a fuel storage unit (or a battery) (not shown) included in the unmanned aerial vehicle 300, and the like.
  • the controller 360 executes an overall control function of the unmanned aerial vehicle 300.
  • the controller 360 executes an overall control function of the unmanned aerial vehicle 300 by using a program and data stored in the storage 340.
  • the controller 360 may include a RAM, a ROM, a CPU, a GPU, a bus, and the RAM, a ROM, a CPU, a GPU, and the like may be connected to each other through a bus.
  • the CPU may access the storage unit 340 to perform booting using the O / S stored in the storage unit 340, and various operations using various programs, contents, data, etc. stored in the storage unit 340. Can be performed.
  • the 360 does not simply determine whether the wind speed of the station A closest to the origin exceeds the preset wind speed threshold, but on the path 1 line. Operation is determined in consideration of weather information including wind speed, wind direction, and the like of various stations present in the possible path, including station B in the vicinity, station C on the route 2, and destination station D in the detour route.
  • controller 360 may consider whether or not the wind speed exceeds the preset wind speed threshold value, or if there is a path close to the wind speed threshold value, by selecting a path that avoids it.
  • controller 360 determines whether to operate from the corresponding starting point to the destination based on the plurality of weather information received through the communication unit 310.
  • the controller 360 removes the avoiding path from the plurality of paths from the starting point to the destination based on the plurality of weather information on the plurality of paths from the starting point to the destination.
  • the avoidance path includes a path in which wind speeds included in weather information for each station exceeds a preset wind speed threshold value among a plurality of paths from a source to a destination, a path corresponding to weather information (or a station) at which current rainfall is observed.
  • the controller 360 determines the at least one remaining path as a safe path.
  • controller 360 determines that the unmanned aerial vehicle 300 can be operated when there is at least one safe path that can be operated from the starting point to the destination.
  • controller 360 determines that the unmanned aerial vehicle 300 cannot be operated when at least one safe path capable of operating from the starting point to the destination does not exist.
  • the controller 360 when determining whether a safe route exists, includes a route exceeding a previous wind speed threshold value among a plurality of routes from the starting point to the destination, a path corresponding to weather information for which current rainfall is observed, and a current lightning strike. Combines the speed of the unmanned aerial vehicle 300 with the distance of each section path and the forecast information provided for each station, as well as the path corresponding to the observed weather information (or station), to determine whether a safe path exists. You may.
  • control unit 360 is a path in which the wind speed included in the weather information for each station above the wind speed threshold value exceeds a threshold value, a path corresponding to weather information for which current rainfall is observed, and a current lightning strike, among a plurality of paths from a departure point to a destination.
  • the weather information (or station) corresponding to the weather information (or station) based on the forecast information on the corresponding path (or point) at the time when the unmanned aerial vehicle 300 reaches a plurality of paths according to the driving speed of the unmanned aerial vehicle 300.
  • Rainfall prediction information included in the forecast information is based on a path in which the wind speed included in the forecast information exceeds a corresponding wind speed threshold, and the forecast information on the path when the unmanned aerial vehicle 300 reaches the plurality of paths. It is also possible to determine whether a safe path exists by removing an avoiding path including a path exceeding a preset rainfall threshold.
  • the unmanned aerial vehicle 300 it is necessary to determine whether the unmanned aerial vehicle 300 can be operated based on the overall local representative weather (or weather information) announced by the Korea Meteorological Agency.
  • n is a natural number (for example, A 1 , A 2 , ..., A N , B 1 , B 2 , ..., B N , ...
  • the route corresponding to the weather information (or the station) where the lightning strike is observed may be removed, and it may be determined whether or not a safe route exists, thereby determining whether the vehicle can be operated.
  • the controller 360 when making such a determination, when calculating the operating speed and the distance of the path of the unmanned aerial vehicle 300, and combining and using the forecast information (or point forecast information) produced for each station, the controller 360 is unmanned. It may be determined in more detail whether the vehicle 300 is safe driving.
  • the controller 360 when it is determined that the flight is possible, the controller 360 combines weather information for each station including the wind direction and wind speed of each station and the actual physical distance, and uses logic for determining an optimal path.
  • the controller 360 controls the fuel efficiency and the actual flight speed when the station on the shortest path 1 shown in FIG. 3 blows a wind of 4 m / sec in the wind and a wind of 3 m / sec in the forward path on the path 2.
  • the control unit 360 refers to a sub-route (Sub_route), which connects the station 100 existing on each path in a straight line.
  • the subroute length Length_Sub_route
  • the wind direction / wind vector for each station expressed in m / sec
  • another vector is defined as the flight speed (or flight speed) of the unmanned aerial vehicle 300 and the direction between the stations.
  • the effective speed is And the total valid time for each route is It can be expressed as
  • the effective shortest time path, the optimal fuel consumption path, and the like may be calculated by combining the actual traveling path along the path of the unmanned aerial vehicle 300 and the wind direction and / or wind speed on the path.
  • the station includes an observation station 100 exceeding the wind speed threshold value, which is a safe operation standard, and avoids a route such as when there is a rainfall observation, it may be excluded from the path selection target. have.
  • the controller 360 searcheses for a flight route from origin to destination based on one or more safe routes that can be operated.
  • the avoidance path is a path in which the wind speed included in the weather information for each station exceeds a preset wind speed threshold value among the plurality of paths from the starting point to the destination, the path corresponding to the weather information where the current rainfall is observed, and the current lightning strike.
  • the forecast based on the forecast information on the corresponding route (or point) at the time when the unmanned aerial vehicle 300 reaches a plurality of routes according to the route corresponding to the weather information (or the station) and the speed of the unmanned aerial vehicle 300.
  • Rainfall prediction information included in the forecasting information is preliminarily based on the forecasted information on the route at which the wind speed included in the information exceeds the corresponding wind speed threshold and the path when the unmanned aerial vehicle 300 reaches the plurality of routes. Paths exceeding the set rainfall threshold, and the like.
  • control unit 360 for a plurality of safety routes (or one or more safe routes that can be operated) determined from a plurality of navigation routes from the origin to the destination, the total valid time for each route and / or each route Calculate fuel consumption.
  • controller 360 converts the route from the starting point to the destination (or a combination of the plurality of shortest times from the starting point to the destination) corresponding to the shortest time out of the calculated total valid time for each route as the final operating route. Select (or select)
  • controller 360 may determine a route from a corresponding starting point to a destination (or a combination of a plurality of minimum fuel consumptions from the starting point to the destination) that consumes the least fuel among the calculated fuel consumption for each route. Select (or select)
  • controller 360 controls the operation of the unmanned aerial vehicle 300 through the attitude control and / or the position control of the unmanned aerial vehicle 300 to control the operation of the unmanned aerial vehicle 300 at the corresponding starting point along the previously selected (or selected) final flight path.
  • the unmanned aerial vehicle 300 is moved to a destination.
  • controller 360 may dynamically update the optimal path through information updates such as real-time wind direction and wind speed on the path during the operation (or flight).
  • the controller 360 may operate the unmanned aerial vehicle 300 using the weather information by determining a flight status, predicting and selecting an optimal route, and applying a new route by updating real-time weather information during the flight.
  • controller 360 may operate to avoid the terrain, such as high buildings, forests, among the plurality of paths.
  • the aforementioned avoidance paths may further include buildings (or buildings), mountains, forests, and danger areas (for example, amusement facilities and parks that are used by people) that are higher than a predetermined altitude according to user settings.
  • the unmanned aerial vehicle 300 may operate to avoid such an avoidance path.
  • control unit 360 when the operation time of the unmanned aerial vehicle 300 takes more than a predetermined time (or when the current and the weather may be different) when searching for a flight route, the critical vector for safe operation and the vector of each preceding station. For comparison with the values, compare the current observations with the forecast information for each station, and calculate the total effective time for each route and / or fuel consumption per route based on the larger of the two, increasing the safety level and the optimum route. Can be calculated.
  • the controller 360 combines (or interpolates) the forecast model value (or forecast information) provided by the Meteorological Agency or the surrounding station 100 with the forecast information of the neighboring station.
  • One value can be used to calibrate.
  • Safety level can be further considered by selecting values such as wind direction, wind speed, rainfall occurrence probability, and lightning occurrence probability among the local forecast information.
  • the base station-based observation station 100 is located at a high position, mostly depending on the installation environment of the base station and the use of weather measurement, which may be adjacent to the flight path of the unmanned aerial vehicle 300.
  • the controller 360 receives weather information on the route from the observatory 100. It can also be sent directly.
  • control unit 360 is an emergency set in advance based on the location information of the real-time unmanned aerial vehicle 300 (or generated) generated by the GPS receiver 320, the real-time observation value measured by the sensor unit 330, and the like. Check (or determine) whether an event occurs.
  • the emergency event is the unmanned air vehicle 300 when the measured wind speed exceeds the wind speed threshold value, when rainfall occurs, when a lightning strike occurs, the remaining amount (or state) of the measured fuel storage (or battery) is unmanned vehicle 300 This includes cases where the flight from the current location to the destination is impossible.
  • the control unit 360 checks the current position of the unmanned aerial vehicle 300 through the preceding GPS receiver 320 and through the sensor unit 330. Return to the process of measuring a variety of observations of the area where the unmanned aerial vehicle 300 is located.
  • the control unit 360 is confirmed through the GPS receiver 320, a plurality of additional weather information for each station additionally provided from the server 200 Based on the current position of the unmanned aerial vehicle 300, various observation values measured by the sensor unit 330, the destination (or destination information, latitude and longitude information corresponding to the destination), etc. Search.
  • the controller 360 is a plurality of additional weather information for each station, the current position of the unmanned aerial vehicle 300 confirmed through the GPS receiver 320, Based on the various observation values measured by the sensor unit 330, the destination (or destination information, latitude and longitude information corresponding to the destination), etc., one or more safe routes that can be operated from the current location to the destination are reconfirmed, and the reconfirmed current Rediscover the navigation route from the current location to the destination based on one or more safe routes capable of navigation from the location to the destination.
  • control unit 350 controls the operation of the unmanned aerial vehicle 300 through the attitude control and / or position control of the unmanned aerial vehicle 300, and thus the current position of the unmanned aerial vehicle 300 along the re-discovered flight path. To move (or operate / fly) the unmanned aerial vehicle 300 to the destination.
  • the current position of the unmanned aerial vehicle 300 based on a real-time observation value measured through the sensor unit 330 or the like. If it is determined that the arrival or departure of the destination is difficult based on the reference point, the controller 360 minimizes the actual fuel (or battery) consumption based on the wind direction and / or wind speed included in the observation value measured by the sensor unit 330. Identify a nearby station 100 (or a station with a minimum fuel route / minimum station / minimum pass / stop station) of one or more safe routes that can be operated from the current location.
  • the controller 360 may include a station 100 having a minimum real fuel (or battery) identified value or a station / minimum pass path having a minimum station / minimum distance of real fuel consumption among one or more safe routes operable from the current location. Update (or rescan) the route to automatically return to the station corresponding to the station / station with the least route.
  • Update or rescan the route to automatically return to the station corresponding to the station / station with the least route.
  • the controller 360 may update the return route to return to the starting point based on one or more safe routes that can be operated from the current location.
  • the controller 360 controls the operation of the unmanned aerial vehicle 300 through the attitude control and / or the position control of the unmanned aerial vehicle 300, and at the current position of the unmanned aerial vehicle 300 along the updated return path.
  • the unmanned aerial vehicle 300 is moved (or operated / flighted) to a station having a minimum transit route.
  • the controller 360 encounters a gust of wind during the operation of the unmanned aerial vehicle 300 or a situation in which it is difficult to solve the situation due to a posture control program that the unmanned aerial vehicle 300 itself has due to a higher wind speed than expected or the sensor unit If a situation in which normal operation of the unmanned aerial vehicle 300 is difficult based on observations observed by a self-mounted gyro sensor or a motion sensor, a moisture sensor, or a GPS receiver 320 included in 330 is recognized, the server ( The route rescan may be performed through communication with the 200 (or control center) (not shown).
  • the controller 360 performs the path rescan by itself and autonomously moves the unmanned aerial vehicle 300, and then provides information on the result of the path rescan to the server 200 later. It may also notify (or notify / send).
  • control unit 360 searches the nearby landing site (or the station 100) including the starting point, re-searches the return route, and is unmanned. The loss of the aircraft 300 can be prevented.
  • the controller 360 compares the battery level (or fuel level) of the unmanned aerial vehicle 300 with the estimated battery level (or fuel level) for driving to the destination during the route re-search, and consumes the battery due to deterioration of battery performance. If (or fuel consumption) is greater than expected, it may search for a nearby landing site that can be recharged and search for a new route via (or to) the searched landing site.
  • the controller 360 controls the operation of the unmanned aerial vehicle 300 through the attitude control and / or the position control of the unmanned aerial vehicle 300, thereby finding a new searched for charging.
  • the unmanned aerial vehicle 300 is moved (or operated / flighted) from the current position of the unmanned aerial vehicle 300 along the path to the destination for charging.
  • the controller 360 may newly search for the optimum resumption timing after the charging and the route to arrive at the first destination. Can be.
  • the controller 360 controls the operation of the unmanned aerial vehicle 300 through the attitude control and / or position control of the unmanned aerial vehicle 300, the temporary changed destination for charging Moves (or operates / flies) the unmanned aerial vehicle 300 to the first destination at the.
  • the unmanned aerial vehicle 300 may further include an interface unit (not shown) that serves as an interface with all external devices connected to the unmanned aerial vehicle 300.
  • the interface unit may include a wired / wireless headset port, an external charger port, a wired / wireless data port, a memory card port, a port for connecting a device equipped with an identification module, an audio I / O ( Input / Output) port, video I / O (Input / Output) port, earphone port, and the like.
  • the identification module is a chip that stores various information for authenticating the use authority of the unmanned aerial vehicle 300, and includes a user identity module (UIM), a subscriber identity module (SIM), and universal user authentication.
  • the device equipped with the identification module may be manufactured in the form of a smart card. Therefore, the identification module may be connected to the unmanned aerial vehicle 300 through the port.
  • Such an interface unit receives data from an external device or receives power to transmit the data to each component inside the unmanned aerial vehicle 300 or transmit data within the unmanned aerial vehicle 300 to an external device.
  • the interface unit is a passage for supplying power from the cradle to the unmanned aerial vehicle 300, or various command signals inputted from the cradle by the user are corresponding unmanned aerial vehicle. It may be a passage that is delivered to (300). Various command signals or corresponding power input from the cradle may be operated as signals for recognizing that the unmanned aerial vehicle 300 is correctly mounted on the cradle.
  • the unmanned aerial vehicle 300 may include an input unit for receiving a command or control signal generated by an operation such as receiving a signal according to a button operation or an arbitrary function selection by a user, or touching / scrolling a displayed screen ( It may also include a).
  • the input unit is a means for receiving at least one of a user's command, selection, data, and information, and may include a plurality of input keys and function keys for receiving numeric or text information and setting various functions.
  • the input unit includes a key pad, a dome switch, a touch pad (static pressure / capacitance), a touch screen, a jog wheel, a jog switch, a jog shuttle, and a mouse.
  • a touch pad static pressure / capacitance
  • a touch screen a touch screen
  • jog wheel a jog wheel
  • a jog switch a jog shuttle
  • mouse a mouse.
  • Various devices such as a stylus pen, a touch pen, and the like may be used.
  • the display unit 350 is formed in the form of a touch screen, some or all of the input functions may be performed through the display unit 350.
  • each component (or module) of the unmanned aerial vehicle 300 may be software stored on a memory (or a storage unit 340) of the unmanned aerial vehicle 300.
  • the memory may be an internal memory of the unmanned aerial vehicle 300 and may be an external memory or another type of storage device.
  • the memory may also be a nonvolatile memory.
  • Software stored on the memory may include a set of instructions that, when executed, cause the unmanned aerial vehicle 300 to perform a particular operation.
  • the processor mounted on the observation station 100, the server 200, and the unmanned aerial vehicle 300 according to the present invention may process a program command for executing the method according to the present invention.
  • this processor may be a single-threaded processor, and in other implementations, the processor may be a multi-threaded processor.
  • the processor is capable of processing instructions stored in memory or storage devices.
  • the operation of the unmanned aerial vehicle is determined by using weather information of a plurality of dense weather stations that are observed in real time based on the base station existing between the starting point and the destination of the unmanned aerial vehicle, and operated when the operation of the unmanned aerial vehicle is determined. It is possible to provide an optimal path corresponding to an effective shortest time path or an optimal fuel consumption path for a plurality of paths possible.
  • the real-time observation value on the scheduled flight route during the flight exceeds a predetermined reference value for a predetermined time, new winds, precipitation or lightning are observed on the scheduled flight route, or continuous operation is performed through a sensor mounted on an unmanned aerial vehicle. If deemed difficult, the route may be re-searched or the route may be searched.
  • FIG. 5 is a flowchart illustrating a route guidance method for an unmanned aerial vehicle using weather information according to an exemplary embodiment of the present invention.
  • the communication unit 310 receives a plurality of weather information measured by the plurality of observing stations 100 located within a preset radius with respect to the shortest path from the starting point to the destination provided from the server 200.
  • the weather information includes information such as location information (eg, latitude, longitude, etc.), wind direction, wind speed, rainfall, lightning strike, and measurement time information of the region where the corresponding observatory 100 is located.
  • the communication unit 310 may receive weather information transmitted for each individual observing station 100.
  • the communication unit 310 may include a plurality of paths (eg, route A, route B,. Receive a plurality of weather information, respectively, measured at stations A 1 , ..., A N , B 1 , ..., B M located on the. Where M and N are natural numbers.
  • the station 100 on each path may include all stations capable of collecting weather information between the starting point and the destination (S510).
  • the controller 360 determines whether to operate from the corresponding departure point to the destination based on the received plurality of weather information.
  • the controller 360 removes the avoiding path from the plurality of paths from the starting point to the destination based on the plurality of weather information on the plurality of paths from the starting point to the destination.
  • the avoidance path includes a path in which wind speeds included in weather information for each station exceeds a preset wind speed threshold value among a plurality of paths from a source to a destination, a path corresponding to weather information (or a station) at which current rainfall is observed.
  • the controller 360 determines the at least one remaining path as a safe path.
  • controller 360 determines that the unmanned aerial vehicle 300 can be operated when there is at least one safe path that can be operated from the starting point to the destination.
  • controller 360 determines that the unmanned aerial vehicle 300 cannot be operated when at least one safe path capable of operating from the starting point to the destination does not exist.
  • the controller 360 corresponds to a station corresponding to stations A 1 and A 3 providing weather information exceeding a wind speed threshold value among the plurality of paths shown in FIG. 6, and to a station A 4 where current rainfall is observed.
  • a path corresponding to the stations A 1 and A 3 and a path corresponding to the station A 4 are respectively removed from the plurality of paths, and one or more remaining paths are determined as safe paths.
  • the controller 360 determines that the unmanned aerial vehicle 300 can be operated when the flight is possible from the starting point to the destination through a safe path including one or more paths.
  • the controller 360 when determining whether a safe route exists, includes a route exceeding a previous wind speed threshold value among a plurality of routes from the starting point to the destination, a path corresponding to weather information for which current rainfall is observed, and a current lightning strike. In addition to the path corresponding to the observed weather information, the driving speed of the unmanned aerial vehicle 300, the distance of each section path and the forecast information provided for each station, it may be determined whether a safe route exists.
  • control unit 360 is a path in which the wind speed included in the weather information for each station above the wind speed threshold value exceeds a threshold value, a path corresponding to weather information for which current rainfall is observed, and a current lightning strike, among a plurality of paths from a departure point to a destination. Included in the forecast information based on the forecast information on the corresponding route (or point) at the time when the unmanned aerial vehicle 300 reaches the plurality of paths according to the route corresponding to the weather information, and the speed of the unmanned aerial vehicle 300.
  • Rainfall threshold is a preset rainfall forecasting information included in the forecasting information based on the path that the wind speed exceeds the wind speed threshold, and the forecast information on the path when the unmanned vehicle 300 reaches the plurality of paths; Falls included in the forecast information based on the route exceeding the value, the forecast information for the route at the time when the unmanned aerial vehicle 300 reaches the plurality of routes.
  • the generation information is removed, the avoidance route comprising a path such as exceeding a pre-set threshold, an electrical storm, may determine whether the trusted path exists.
  • the controller 360 may include a path corresponding to stations A 1 and A 3 , respectively, which provide weather information exceeding a wind speed threshold value among the plurality of paths shown in FIG. 6, and a station A 4 where current rainfall is observed.
  • the corresponding path the unmanned air vehicle 300 is moving, including on forecast information at the time it reaches the station a 7 the station a 7 rainfall prediction information (e.g. the current station a 7, but without rain unattended Removes a path in which the vehicle 300 moves and approaches the corresponding station A 7 with a 70% rainfall probability) exceeding a preset rainfall threshold (eg, 60%), and removes a plurality of paths.
  • a preset rainfall threshold eg, 60%
  • the controller 360 Searches for a flight route from origin to destination based on one or more safe routes that can be operated.
  • the avoidance path is a path in which wind speeds included in weather information for each station exceeds a predetermined wind speed threshold value among a plurality of paths from a source to a destination, a path corresponding to weather information where current rainfall is observed, and an unmanned aerial vehicle 300.
  • control unit 360 for a plurality of safety routes (or one or more safe routes that can be operated) determined from a plurality of navigation routes from the origin to the destination, the total valid time for each route and / or each route Calculate fuel consumption.
  • controller 360 converts the route from the starting point to the destination (or a combination of the plurality of shortest times from the starting point to the destination) corresponding to the shortest time out of the calculated total valid time for each route as the final operating route. Select (or select)
  • controller 360 may determine a route from a corresponding starting point to a destination (or a combination of a plurality of minimum fuel consumptions from the starting point to the destination) that consumes the least fuel among the calculated fuel consumption for each route. Select (or select)
  • the controller 360 may determine a total valid time for each path for the remaining safety path after the paths corresponding to the stations A 1 and A 3 and the paths corresponding to the station A 4 are removed from the plurality of paths shown in FIG. 6. To calculate.
  • controller 360 selects a route from the calculated total valid time for each route to the starting point corresponding to the shortest time-B 1 -B 2 -...-B M -to the destination as the first final flight route.
  • the controller 360 may include fuel consumption for each path of the safety paths remaining after the paths corresponding to the stations A 1 and A 3 and the paths corresponding to the station A 4 are removed from the plurality of paths shown in FIG. 6. To calculate.
  • control unit 360 has a route-specific fuel consumption from the minimum to the fuel consumption calculated from - B 1 - B 2 - A 3 - A 5 ... - A N - a route to a destination to a second final flight path Select (S530).
  • the controller 360 controls the operation of the unmanned aerial vehicle 300 through the attitude control and / or the position control of the unmanned aerial vehicle 300 to control the operation of the unmanned aerial vehicle 300 at the corresponding starting point along the previously selected (or selected) final flight path.
  • the unmanned aerial vehicle 300 is moved (or operated / flighted) to a destination.
  • the controller 360 may operate the unmanned aerial vehicle 300 to move along the selected first final flight path (for example, a departure point-B 1 -B 2 -...-B M -a path to a destination). It controls (S540).
  • the selected first final flight path for example, a departure point-B 1 -B 2 -...-B M -a path to a destination. It controls (S540).
  • the GPS receiver 320 checks the current position of the unmanned aerial vehicle 300 in real time while the unmanned aerial vehicle 300 is sailing (or flying) to a destination.
  • the GPS receiver 320 receives the GPS signal transmitted from the satellite, and generates (or generates / confirms) the location data of the unmanned aerial vehicle 300 in real time based on the longitude coordinate and the latitude coordinate included in the received GPS signal. )
  • GPS receiver 320 is in the position information (for example stations B 1 point in the station B 1 point of the first unmanned air vehicle 300 is being operated as the final flight path for the path B shown in Figure 6 Corresponding latitude and longitude information) is generated (S550).
  • the sensor unit 330 may be a humidity storage area (or region) where the unmanned aerial vehicle 300 is located, humidity, temperature, wind direction, wind speed, rainfall occurrence, lightning strike, fuel storage unit provided in the unmanned aerial vehicle 300 (or Each measured value (or collected) including the remaining amount (or state) of the battery (not shown) is measured.
  • the sensor unit 330 may generate humidity, temperature, wind direction, wind speed, and rainfall at the station B 1 of the unmanned aerial vehicle 300 which is operating on the first final operation path corresponding to the path B shown in FIG. 6.
  • operation S560 a lightning strike occurs and a battery remaining amount of the unmanned aerial vehicle 300 is measured.
  • the control unit 360 is an emergency set in advance based on the location information of the real-time unmanned aerial vehicle 300 (or generated) generated by the GPS receiver 320 and the real-time observation value measured by the sensor unit 330. Check (or determine) whether an event has occurred.
  • the emergency event is the unmanned air vehicle 300 when the measured wind speed exceeds the wind speed threshold value, when rainfall occurs, when a lightning strike occurs, the remaining amount (or state) of the measured fuel storage (or battery) is unmanned vehicle 300 This includes cases where the flight from the current location to the destination is impossible.
  • the controller 360 checks whether the wind speed measured at the station B 1 point of the unmanned aerial vehicle 300 operating in the first final operating path corresponding to the route B shown in FIG. 6 exceeds the wind speed threshold. do.
  • the controller 360 confirms whether or not rainfall measurement is performed at the station B 1 point of the unmanned aerial vehicle 300 which is operating on the first final flight path corresponding to the path B shown in FIG. 6.
  • the controller 360 checks whether a lightning strike occurs at the station B 1 point of the unmanned aerial vehicle 300 which is operating on the first final flight path corresponding to the path B shown in FIG. 6.
  • the controller 360 may determine that the battery remaining amount of the unmanned aerial vehicle 300 measured at the station B 7 point of the unmanned aerial vehicle 300 operating in the first final operating path corresponding to the route B shown in FIG. Check whether the flight is possible from the current location to the destination (S570).
  • the control unit 360 checks the current position of the unmanned aerial vehicle 300 through the preceding GPS receiver 320 and through the sensor unit 330. Return to the process of measuring a variety of observations of the area where the unmanned aerial vehicle 300 is located.
  • the wind speed measured at the station B 1 point of the unmanned aerial vehicle 300 operating in the first final operating path corresponding to the path B shown in FIG. 6 is smaller than the wind speed threshold, and rainfall and lightning occur at that point. (Or not measured), and when the battery level of the unmanned aerial vehicle 300 measured at the corresponding point is in a state capable of operating from the current position to the destination, the controller 360 controls the unmanned aerial vehicle 300 through the preceding GPS receiver 320. The process returns to the step of checking the current position of (for example, step S550) (S580).
  • the control unit 360 is confirmed through the GPS receiver 320, a plurality of additional weather information for each station additionally provided from the server 200 Based on the current position of the unmanned aerial vehicle 300, various observation values measured by the sensor unit 330, the destination (or destination information, latitude and longitude information corresponding to the destination), etc. Search.
  • the controller 360 is a plurality of additional weather information for each station, the current position of the unmanned aerial vehicle 300 confirmed through the GPS receiver 320, Based on the various observation values measured by the sensor unit 330, the destination (or destination information, latitude and longitude information corresponding to the destination), etc., one or more safe routes that can be operated from the current location to the destination are reconfirmed, and the reconfirmed current Rediscover the navigation route from the current location to the destination based on one or more safe routes capable of navigation from the location to the destination.
  • control unit 350 controls the operation of the unmanned aerial vehicle 300 through the attitude control and / or position control of the unmanned aerial vehicle 300, and thus the current position of the unmanned aerial vehicle 300 along the re-discovered flight path. To move (or operate / fly) the unmanned aerial vehicle 300 to the destination.
  • the control unit 360 is a plurality of additional weather information for each station further provided from the server 200, the current position of the unmanned aerial vehicle 300 confirmed through the GPS receiver 320, the sensor unit 330 Reconfirm one or more safe routes from the current location to the destination based on various observations, destinations (or destination information, latitude and longitude information corresponding to the destination), and the like.
  • controller 360 calculates the total valid time for each route and / or the fuel consumption for each route for one or more safe routes that can be operated from the reconfirmed current position to the destination.
  • the controller 360 may include a path from the current location B 1 corresponding to the shortest time to the destination (or a combination of a plurality of shortest times from the current location to the destination) of the calculated total effective time for each route.
  • control unit 360 is the path from the current position B 1 that consumes the minimum fuel among the calculated fuel consumption for each route to the destination B 1 -A 2 -B 54-...- B M -to the destination
  • the route may be selected (or selected) as the re-search final flight route (or fourth final flight route).
  • controller 360 may rescan the third final flight route (for example, B 1 -A 2 -A 5 -...- B M-1 -B M -which is the current position of the unmanned aerial vehicle 300).
  • the operation of the unmanned aerial vehicle 300 is controlled to move along the path (S590).
  • the current position of the unmanned aerial vehicle 300 based on a real-time observation value measured through the sensor unit 330 or the like. If it is determined that the arrival or departure of the destination is difficult based on the reference point, the controller 360 minimizes the actual fuel (or battery) consumption based on the wind direction and / or wind speed included in the observation value measured by the sensor unit 330. Identify a nearby station 100 (or a station with a minimum fuel route / minimum station / minimum pass / stop station) of one or more safe routes that can be operated from the current location.
  • the controller 360 may include a station 100 having a minimum real fuel (or battery) identified value or a station / minimum pass path having a minimum station / minimum distance of real fuel consumption among one or more safe routes operable from the current location. Update (or rescan) the route to automatically return to the station corresponding to the station / station with the least route.
  • Update or rescan the route to automatically return to the station corresponding to the station / station with the least route.
  • the controller 360 may update the return route to return to the starting point based on one or more safe routes that can be operated from the current location.
  • the controller 360 controls the operation of the unmanned aerial vehicle 300 through the attitude control and / or the position control of the unmanned aerial vehicle 300, and at the current position of the unmanned aerial vehicle 300 along the updated return path.
  • the unmanned aerial vehicle 300 is moved (or operated / flighted) to a station having a minimum transit route.
  • the control unit 360 determines the route of the real fuel consumption is the minimum value among the one or more trusted path available station a 9 from the present position, and the consumption the identified actual fuel is minimum Update the route to return.
  • controller 360 controls the operation of the unmanned aerial vehicle 300 to move along the updated return path (for example, a path from the current position of the unmanned aerial vehicle B 7 to A 9 ).
  • the controller 360 is a plurality of additional weather information for each station further provided from the server 200, the current position of the unmanned aerial vehicle 300 confirmed through the GPS receiver 320, the sensor unit 330 Reconfirm one or more safe routes that can be navigated from the current location to the destination based on various observations, destinations (or destination information, latitude and longitude information corresponding to the destination), and the like.
  • controller 360 calculates the total valid time for each route and / or the fuel consumption for each route for one or more safe routes that can be operated from the reconfirmed current position to the destination.
  • the controller 360 updates the return path to return to the starting point from the current location B 1 .
  • controller 360 controls the operation of the unmanned aerial vehicle 300 to move along the updated return path (for example, the path from the current position of the unmanned aerial vehicle B 1 to the starting point) (S600). .
  • the path guidance system for an unmanned aerial vehicle using weather information can be prepared by a computer program, and codes and code segments constituting the computer program can be easily inferred by a computer programmer in the art.
  • the computer program is stored in a computer readable media, and is read and executed by a computer or an observation station, a server, an unmanned aerial vehicle, etc. according to an embodiment of the present invention to use an unmanned aerial vehicle using weather information.
  • the route guidance system can be implemented.
  • the information storage medium includes a magnetic recording medium, an optical recording medium and a carrier wave medium.
  • a computer program for implementing a route guidance system for an unmanned aerial vehicle using weather information according to an embodiment of the present invention may be stored and installed in an internal memory of an observation station, a server, an unmanned aerial vehicle, and the like.
  • an external memory such as a smart card that stores and installs a computer program for implementing a route guidance system for an unmanned aerial vehicle using meteorological information according to an embodiment of the present invention may be a route guidance system for an unmanned aerial vehicle using weather information through an interface. It may be mounted.
  • the embodiment of the present invention determines whether the unmanned aerial vehicle is operated by using weather information of a plurality of dense weather stations which are observed in real time based on a base station existing between the starting point and the destination of the unmanned aerial vehicle.
  • the optimal path corresponding to the effective shortest time path or optimal fuel consumption path for the plurality of operable paths can be provided to precisely determine whether the unmanned vehicle is operated, and is economical and stable You can choose a route for your trip.
  • the real-time observation value on the scheduled flight route during the flight exceeds a predetermined reference value for a predetermined time, a new strong wind, precipitation or lightning is observed on the scheduled flight route, If it is determined that continuous operation is difficult through onboard sensors, it is possible to minimize the loss of unmanned aerial vehicles in weather deterioration, accidental situation, emergency situation by re-navigating the navigation route or searching for a return route.
  • the present invention determines whether the unmanned aerial vehicle is operated by using weather information of a plurality of dense weather stations that are observed in real time based on a base station existing between the origin and destination of the unmanned aerial vehicle, and operates when the operation of the unmanned aerial vehicle is determined. It provides an optimal route corresponding to an effective shortest time route or an optimal fuel consumption route for a plurality of possible routes, and real-time observations on a scheduled route during a flight exceed a predetermined reference value or a new high wind on the scheduled route. In the event that precipitation or lightning strikes are observed, or if it is determined that continuous operation is difficult through sensors mounted on an unmanned aerial vehicle, it is possible to precisely determine whether the unmanned aerial vehicle is operated by re-navigating the navigation route or searching for a return route. You can choose a route for economical and stable operation It may be widely used in the field of unmanned aerial vehicle (UAV), aircraft, quadrotor, and the like.
  • UAV unmanned aerial vehicle

Abstract

The present invention provides a route guiding system, using weather information, of an unmanned aerial vehicle, a method thereof, and a recording medium recorded with a computer program. That is, the present invention: determines whether or not to fly an unmanned aerial vehicle by using weather information obtained by the real-time observations of a plurality of densely located meteorological observatories based on a base station present between a place of departure of the unmanned aerial vehicle and a destination thereof; provides an optimal route corresponding to a valid shortest time route or optimal fuel consumption route, among a plurality of routes available for flight, if it is determined to fly the unmanned aerial vehicle; and re-searches a flight route or searches a return route if, during the flight, a value observed in real time on a scheduled flight route exceeds a predetermined reference value for a predetermined time, a strong wind, rainfall or lightning is newly observed on the scheduled flight route, or it is determined via a sensor, mounted to the unmanned aerial vehicle, or the like that it is difficult to continue the flight. Accordingly, the present invention can determine with precision whether or not to fly an unmanned aerial vehicle and can select a route for economical and safe flight.

Description

기상 정보를 이용한 무인 비행체의 경로 안내 시스템, 그 방법 및 컴퓨터 프로그램이 기록된 기록매체Recording medium recording route guidance system, method and computer program of unmanned aerial vehicle using weather information
본 발명은 기상 정보를 이용한 무인 비행체의 경로 안내 시스템, 그 방법 및 컴퓨터 프로그램이 기록된 기록매체에 관한 것으로, 특히 무인 비행체의 출발지와 목적지 사이에 존재하는 기지국 기반 실시간으로 관측되는 조밀한 복수의 기상 관측소의 기상 정보를 이용하여 무인 비행체의 운항 여부를 결정하고, 무인 비행체에 대한 운항이 결정되는 경우 운행 가능한 복수의 경로에 대한 유효 최단 시간 경로 또는 최적 연료 소모 경로에 해당하는 최적의 경로를 제공하며, 운항 중 운항 예정 경로 상에서의 실시간 관측값이 미리 설정된 기준값을 일정 시간 초과하거나 운항 예정 경로 상에서 새롭게 강풍이나 강수나 낙뢰가 관측되거나, 무인 비행체에 탑재된 센서 등을 통해 지속 운항이 어렵다고 판단되는 경우, 운항 경로를 재탐색하거나 회항 경로를 탐색하는 기상 정보를 이용한 무인 비행체의 경로 안내 시스템, 그 방법 및 컴퓨터 프로그램이 기록된 기록매체에 관한 것이다.The present invention relates to a path guide system for an unmanned aerial vehicle using meteorological information, a method, and a recording medium on which a computer program is recorded. Particularly, a plurality of dense meteorological observations are performed in real time based on a base station existing between an origin and a destination of an unmanned aerial vehicle. The weather information of the station is used to determine whether to operate the unmanned aerial vehicle, and when the operation of the unmanned aerial vehicle is determined, it provides an optimum shortest time path or optimal fuel consumption path for a plurality of operational routes. When a real-time observation on a scheduled flight exceeds a predetermined reference value, a new strong wind, precipitation or lightning is observed on a scheduled flight, or it is difficult to continuously operate it through a sensor mounted on an unmanned aerial vehicle. , Revisit flight routes or reroute routes Relates to an unmanned air vehicle is of a color using the weather information for route guidance system, the method and computer program recording medium.
소형 무인비행체는 교통단속이나 비디오 촬영, 정찰임무, 화재감시 등의 다양한 분야에서 활용되고 있다. 프로세서, 센서 그리고 통신 기술의 발달로 성능과 기능이 개선이 되는 동시에 소형화와 가격 절감까지 되면서 다양한 분야에 점점 그 입지를 넓혀왔고 앞으로는 더욱 가속화될 것이다.Small unmanned aerial vehicles are used in various fields such as traffic control, video shooting, reconnaissance missions and fire surveillance. Advances in processors, sensors, and communication technologies have improved performance and functionality, while miniaturizing and lowering costs, and have expanded their reach in many areas and will accelerate further.
이러한 소형 무인비행체는 비행을 위해서 출발지와 목적지 사이의 장애물을 고려한 최단 비행 경로 산출 시, 비행 지역에 대한 광역 기상 정보를 활용하여 운행 가능성을 판단하고 있어, 강풍, 강우, 돌풍 등의 국지적인 기상 정보를 파악하기 어려워 운행 중 배터리나 연료 소모가 증가하거나 무인 비행체의 제어가 어려워지거나 심한 경우 망실이나 추락의 위험이 존재한다.These small unmanned aerial vehicles determine the possibility of operation by using wide-area weather information for the flight area when calculating the shortest flight path considering the obstacle between the starting point and the destination for the flight. There is a risk of loss or fall if the battery or fuel consumption is increased during operation, the control of unmanned aerial vehicles becomes difficult or severe.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
한국공개특허 제10-2015-0033792호 [명칭: 기상정보를 활용한 동적 경로 제공 방법, 이를 위한 시스템 및 장치]Korean Patent Publication No. 10-2015-0033792 [Name: Dynamic route providing method using weather information, system and apparatus for the same]
본 발명의 목적은 무인 비행체의 출발지와 목적지 사이에 존재하는 기지국 기반 실시간으로 관측되는 조밀한 복수의 기상 관측소의 기상 정보를 이용하여 무인 비행체의 운항 여부를 결정하고, 무인 비행체에 대한 운항이 결정되는 경우 운행 가능한 복수의 경로에 대한 유효 최단 시간 경로 또는 최적 연료 소모 경로에 해당하는 최적의 경로를 제공하는 기상 정보를 이용한 무인 비행체의 경로 안내 시스템, 그 방법 및 컴퓨터 프로그램이 기록된 기록매체를 제공하는 데 있다.An object of the present invention is to determine whether to operate the unmanned aerial vehicle using the weather information of a plurality of dense weather station that is observed in real time based on the base station existing between the origin and destination of the unmanned aerial vehicle, the operation for the unmanned aerial vehicle is determined In the case of providing a recording medium recording the route guidance system, method and computer program of the unmanned aerial vehicle using the weather information that provides the optimal route corresponding to the effective shortest time path or optimal fuel consumption route for the plurality of routes that can be operated. There is.
본 발명의 다른 목적은 운항 중 운항 예정 경로 상에서의 실시간 관측값이 미리 설정된 기준값을 일정 시간 초과하거나 운항 예정 경로 상에서 새롭게 강풍이나 강수나 낙뢰가 관측되거나, 무인 비행체에 탑재된 센서 등을 통해 지속 운항이 어렵다고 판단되는 경우, 운항 경로를 재탐색하거나 회항 경로를 탐색하는 기상 정보를 이용한 무인 비행체의 경로 안내 시스템, 그 방법 및 컴퓨터 프로그램이 기록된 기록매체를 제공하는 데 있다.Another object of the present invention is a real time observation value on the scheduled flight route during the flight exceeds a predetermined reference value for a predetermined time, a new strong wind, precipitation or lightning is observed on the scheduled flight route, continuous operation through a sensor mounted on an unmanned aerial vehicle, etc. If it is determined that this is difficult, the present invention provides a recording medium on which a route guidance system, a method and a computer program of an unmanned aerial vehicle using weather information for re-searching a navigation route or searching for a return route.
본 발명의 실시예에 따른 기상 정보를 이용한 무인 비행체의 경로 안내 방법은 GPS 수신기에 의해, 출발지부터 목적지까지 탐색된 운항 경로를 따라 이동 중인 무인 비행체의 위치 정보를 발생시키는 단계; 센서부에 의해, 상기 무인 비행체가 위치한 지역의 관측값을 측정하는 단계; 제어부에 의해, 상기 발생된 무인 비행체의 위치 정보 및 상기 측정된 관측값을 근거로 긴급 이벤트 발생 여부를 확인하는 단계; 상기 제어부에 의해, 상기 확인 결과, 상기 긴급 이벤트가 발생할 때, 서버로부터 추가로 제공되는 관측소별 복수의 추가 기상 정보, 상기 발생된 무인 비행체의 위치 정보, 상기 측정된 관측값 및 목적지 정보를 근거로 운항 경로를 재탐색하는 단계; 및 상기 제어부에 의해, 상기 무인 비행체의 자세 제어 및 위치 제어 중 하나 이상의 제어를 통해, 상기 재탐색된 운항 경로를 따라 상기 무인 비행체를 이동시키는 단계를 포함할 수 있다.According to an embodiment of the present invention, a method for guiding an unmanned aerial vehicle using weather information includes generating, by a GPS receiver, location information of an unmanned aerial vehicle moving along a navigation route searched from a starting point to a destination; Measuring, by a sensor unit, an observation value of an area where the unmanned aerial vehicle is located; Confirming, by a control unit, whether an emergency event occurs based on the generated position information of the unmanned aerial vehicle and the measured observation value; By the controller, when the emergency event occurs, a plurality of additional weather information for each station additionally provided from a server, location information of the generated unmanned aerial vehicle, the measured observation value, and the destination information, when the emergency event occurs Rediscovering the navigation route; And moving, by the controller, the unmanned aerial vehicle along the re-discovered flight path through at least one of attitude control and position control of the unmanned aerial vehicle.
본 발명과 관련된 일 예로서 상기 출발지부터 목적지까지 탐색된 운항 경로는, 통신부에 의해, 서버로부터 제공되는 출발지부터 목적지까지의 최단 경로를 기준으로 설정된 반경 내에 위치한 복수의 관측소에서 측정된 복수의 기상 정보를 수신하는 과정; 상기 제어부에 의해, 상기 수신된 복수의 기상 정보를 근거로 상기 출발지부터 목적지까지의 운항 여부를 결정하는 과정; 및 상기 제어부에 의해, 상기 출발지로부터 목적지까지 운항가능한 하나 이상의 안전한 경로가 존재하여 운항이 결정된 상태일 때, 상기 운항가능한 하나 이상의 안전한 경로를 근거로 출발지부터 목적지까지의 운항 경로를 탐색하는 과정을 통해 생성될 수 있다.As an example related to the present invention, the navigation route searched from the departure point to the destination includes a plurality of weather information measured by a plurality of observation stations located within a radius set based on the shortest route from the departure point to the destination provided by the communication unit. Receiving a process; Determining, by the controller, whether the flight is from the departure point to the destination based on the received plurality of weather information; And searching, by the controller, a flight route from a departure point to a destination based on the at least one safe route capable of navigation when there is one or more safe routes that can be operated from the departure point to the destination. Can be generated.
본 발명과 관련된 일 예로서 상기 운항 여부를 결정하는 과정은, 상기 제어부에 의해, 상기 출발지에서 목적지까지의 복수의 경로 상의 복수의 기상 정보를 근거로 출발지에서 목적지까지의 복수의 경로 중에서 회피 경로를 제거하는 과정; 상기 제어부에 의해, 상기 복수의 경로 중에서 회피 경로를 제거한 후 남아 있는 경로가 존재할 때, 상기 남아 있는 하나 이상의 경로를 안전한 경로로 판정하는 과정; 상기 제어부에 의해, 상기 출발지로부터 목적지까지 운항가능한 하나 이상의 안전한 경로가 존재할 때, 무인 비행에의 운항이 가능한 상태로 결정하는 과정; 및 상기 제어부에 의해, 상기 출발지로부터 목적지까지 운항가능한 하나 이상의 안전한 경로가 존재하지 않을 때, 상기 무인 비행체의 운항이 불가능한 상태로 결정하는 과정을 포함할 수 있다.As an example related to the present invention, the determining of the operation may include determining, by the controller, an avoiding route from a plurality of routes from a departure point to a destination based on a plurality of weather information on a plurality of routes from the departure point to the destination. Removing process; Determining, by the controller, the one or more remaining paths as a safe path when a remaining path exists after removing an avoiding path among the plurality of paths; Determining, by the controller, a state in which an unmanned flight is possible when there is at least one safe route that can be operated from the origin to the destination; And determining, by the controller, that the unmanned aerial vehicle cannot be operated when at least one safe route capable of operating from the starting point to the destination does not exist.
본 발명과 관련된 일 예로서 상기 회피 경로는, 출발지에서 목적지까지의 복수의 경로 중에서 관측소별 기상 정보에 포함된 풍속이 미리 설정된 풍속 임계값을 초과하는 경로, 현재 강우가 관측되는 기상 정보에 대응하는 경로, 현재 낙뢰가 관측되는 기상 정보에 대응하는 경로, 상기 무인 비행체의 운행 속도에 따라 상기 복수의 경로에 상기 무인 비행체가 도달하는 시점의 해당 경로에 대한 예보 정보를 근거로 상기 예보 정보에 포함된 풍속이 상기 풍속 임계값을 초과하는 경로, 상기 예보 정보에 포함된 강우 예상 정보가 미리 설정된 강우 임계값을 초과하는 경로 및 상기 예보 정보에 포함된 낙뢰 발생 정보가 미리 설정된 낙뢰 발생 임계값을 초과하는 경로 중 적어도 하나를 포함할 수 있다.As an example related to the present invention, the avoidance path corresponds to a path in which wind speeds included in weather information for each station exceeds a preset wind speed threshold value among a plurality of paths from a starting point to a destination, and corresponds to weather information in which current rainfall is observed. The forecast information is included in the forecast information based on a route, a route corresponding to weather information on which a current lightning strike is observed, and a corresponding route at the time when the unmanned aerial vehicle reaches the plurality of routes according to a driving speed of the unmanned aerial vehicle. A path in which the wind speed exceeds the wind speed threshold value, a path in which the rainfall prediction information included in the forecast information exceeds a preset rainfall threshold value, and a lightning occurrence information included in the forecast information exceeds a preset lightning occurrence threshold value. It may include at least one of the paths.
본 발명과 관련된 일 예로서 상기 출발지부터 목적지까지의 운항 경로를 탐색하는 과정은, 상기 제어부에 의해, 상기 운항가능한 하나 이상의 안전한 경로에 대해, 경로별 총 유효 시간을 산출하는 과정; 및 상기 제어부에 의해, 상기 산출된 경로별 총 유효 시간 중에서 최단 시간에 해당하는 출발지부터 목적지까지의 경로를 최종 운항 경로로 선택하는 과정을 포함할 수 있다.As an example related to the present invention, the searching of the flight route from the departure point to the destination may include: calculating, by the controller, a total valid time for each route for the at least one safe route that can be operated; And selecting, by the controller, a route from the starting point corresponding to the shortest time to the destination among the calculated total valid time for each route as the final operating route.
본 발명과 관련된 일 예로서 상기 출발지부터 목적지까지의 운항 경로를 탐색하는 과정은, 상기 제어부에 의해, 상기 운항가능한 하나 이상의 안전한 경로에 대해, 경로별 연료 소모량을 산출하는 과정; 및 상기 제어부에 의해, 상기 산출된 경로별 연료 소모량 중에서 최소 연료를 소모하는 출발지부터 목적지까지의 경로를 최종 운항 경로로 선택하는 과정을 포함할 수 있다.As an example related to the present invention, the searching of the flight route from the departure point to the destination may include: calculating, by the controller, fuel consumption for each route for one or more safe routes that can be operated; And selecting, by the controller, a route from the starting point to the destination that consumes the least fuel among the calculated fuel consumption for each route as the final operating route.
본 발명과 관련된 일 예로서 상기 관측값은, 상기 무인 비행체가 위치한 지역의 습도, 기온, 풍향, 풍속, 강우 발생 여부, 낙뢰 발생 여부 및 상기 무인 비행체에 구비된 연료 저장부나 배터리의 잔량 또는 상태 중 적어도 하나를 포함할 수 있다.As an example related to the present invention, the observation value may include humidity, temperature, wind direction, wind speed, rainfall, whether there is a lightning strike, and the remaining amount or state of a fuel storage unit or a battery provided in the unmanned aerial vehicle. It may include at least one.
본 발명과 관련된 일 예로서 상기 긴급 이벤트는, 상기 관측값에 포함된 풍속이 미리 설정된 풍속 임계값을 초과하는 경우, 강우가 발생하는 경우, 낙뢰가 발생하는 경우 및 상기 측정된 연료 저장부나 배터리의 잔량 또는 상태가 상기 무인 비행체의 현재 위치에서 목적지까지 운항이 불가능한 경우 중 적어도 하나를 포함할 수 있다.As an example related to the present invention, the emergency event may include: when the wind speed included in the observation value exceeds a preset wind speed threshold value, when a rainfall occurs, when a lightning occurs, and when the measured fuel storage unit or the battery The remaining amount or state may include at least one of a case where it is impossible to operate from the current position of the unmanned aerial vehicle to the destination.
본 발명과 관련된 일 예로서 상기 운항 경로를 재탐색하는 단계는, 상기 확인 결과, 상기 긴급 이벤트가 발생할 때, 상기 제어부에 의해, 상기 관측소별 복수의 추가 기상 정보, 상기 발생된 무인 비행체의 위치 정보, 상기 측정된 관측값 및 목적지 정보를 근거로 상기 무인 비행체의 현재 위치로부터 목적지까지 운항가능한 하나 이상의 안전한 경로를 재확인하는 과정; 및 상기 제어부에 의해, 상기 재확인된 상기 무인 비행체의 현재 위치로부터 목적지까지 운항가능한 하나 이상의 안전한 경로를 근거로 상기 무인 비행체의 현재 위치로부터 목적지까지의 운항 경로를 재탐색하는 과정을 포함할 수 있다.Re-searching the flight route as an example related to the present invention, when the emergency event occurs, as a result of the check, by the controller, a plurality of additional weather information for each station, location information of the unmanned aerial vehicle generated Reconfirming at least one safe route capable of navigation from the current position of the unmanned aerial vehicle to a destination based on the measured observation value and the destination information; And re-navigating, by the controller, a navigation route from the current location of the unmanned aerial vehicle to the destination based on one or more safe routes capable of navigation from the current location of the unmanned aerial vehicle to the destination.
본 발명과 관련된 일 예로서 상기 제어부에 의해, 상기 긴급 이벤트가 발생하는 경우 또는 상기 운항 경로를 재탐색하는 경우에 있어서 상기 측정된 관측값을 근거로 상기 무인 비행체의 현재 위치를 기준으로 목적지 도착이 어렵다고 판단될 때, 상기 무인 비행체의 현재 위치로부터 운항가능한 하나 이상의 안전한 경로 중에서 실질 연료 소모가 최소치인 관측소, 최단 거리인 관측소 및 최소 경유 경로를 갖는 관측소 중 어느 하나의 관측소를 확인하는 단계; 상기 제어부에 의해, 상기 확인된 관측소로 회항하도록 회항 경로를 업데이트하는 단계; 및 상기 제어부에 의해, 상기 무인 비행체의 자세 제어 및 위치 제어 중 하나 이상의 제어를 통해, 상기 업데이트된 회항 경로를 따라 상기 무인 비행체를 이동시키는 단계를 더 포함할 수 있다.As an example related to the present invention, when the emergency event occurs or when the navigation route is re-searched, the arrival of the destination is based on the current position of the unmanned aerial vehicle based on the measured observation value. When determined to be difficult, identifying one of the one or more safe routes operable from the current position of the unmanned aerial vehicle, the station with the lowest real fuel consumption, the station with the shortest distance, and the station with the least transit path; Updating, by the controller, a return path to return to the identified station; And moving, by the controller, the unmanned aerial vehicle along the updated return path through at least one of attitude control and position control of the unmanned aerial vehicle.
본 발명의 실시예에 따른 컴퓨터 프로그램이 기록된 기록매체에는 상술한 실시예에 따른 방법을 수행하는 컴퓨터 프로그램이 저장될 수 있다.A computer program for performing the method according to the above-described embodiments may be stored in a recording medium on which a computer program according to an embodiment of the present invention is recorded.
본 발명의 실시예에 따른 기상 정보를 이용한 무인 비행체의 경로 안내 시스템은 출발지부터 목적지까지 탐색된 운항 경로를 따라 이동 중인 무인 비행체의 위치 정보를 발생시키는 GPS 수신기; 상기 무인 비행체가 위치한 지역의 관측값을 측정하는 센서부; 및 상기 발생된 무인 비행체의 위치 정보 및 상기 측정된 관측값을 근거로 긴급 이벤트 발생 여부를 확인하고, 상기 확인 결과, 상기 긴급 이벤트가 발생할 때, 서버로부터 추가로 제공되는 관측소별 복수의 추가 기상 정보, 상기 발생된 무인 비행체의 위치 정보, 상기 측정된 관측값 및 목적지 정보를 근거로 운항 경로를 재탐색하고, 상기 무인 비행체의 자세 제어 및 위치 제어 중 하나 이상의 제어를 통해, 상기 재탐색된 운항 경로를 따라 상기 무인 비행체를 이동시키는 제어부를 포함할 수 있다.According to an embodiment of the present invention, a route guidance system for an unmanned aerial vehicle using weather information includes: a GPS receiver for generating position information of an unmanned aerial vehicle moving along a navigation route searched from a departure point to a destination; A sensor unit measuring an observation value of an area where the unmanned aerial vehicle is located; And confirming whether an emergency event occurs based on the location information of the generated unmanned aerial vehicle and the measured observation value, and when the emergency event occurs, a plurality of additional weather information for each station further provided by a server when the emergency event occurs. Re-navigating the navigation route based on the generated position information of the unmanned aerial vehicle, the measured observation value and the destination information, and through the at least one of the attitude control and the position control of the unmanned aerial vehicle, the re-discovered navigation route It may include a control unit for moving the unmanned aerial vehicle along.
본 발명과 관련된 일 예로서 상기 제어부는, 상기 확인 결과, 상기 긴급 이벤트가 발생할 때, 상기 제어부에 의해, 상기 관측소별 복수의 추가 기상 정보, 상기 발생된 무인 비행체의 위치 정보, 상기 측정된 관측값 및 목적지 정보를 근거로 상기 무인 비행체의 현재 위치로부터 목적지까지 운항가능한 하나 이상의 안전한 경로를 재확인하고, 상기 재확인된 상기 무인 비행체의 현재 위치로부터 목적지까지 운항가능한 하나 이상의 안전한 경로를 근거로 상기 무인 비행체의 현재 위치로부터 목적지까지의 운항 경로를 재탐색할 수 있다.As an example related to the present invention, the control unit, when the emergency event occurs, by the control unit, a plurality of additional weather information for each station, the location information of the unmanned aerial vehicle, the measured observation value And reconfirm one or more safe routes capable of navigating from the current position of the unmanned aerial vehicle to a destination based on destination information, and based on one or more safe routes navigable from the current position of the unmanned aerial vehicle to the destination. You can rediscover the route from your current location to your destination.
본 발명과 관련된 일 예로서 상기 제어부는, 상기 긴급 이벤트가 발생하는 경우 또는 상기 운항 경로를 재탐색하는 경우에 있어서 상기 측정된 관측값을 근거로 상기 무인 비행체의 현재 위치를 기준으로 목적지 도착이 어렵다고 판단될 때, 상기 무인 비행체의 현재 위치로부터 운항가능한 하나 이상의 안전한 경로 중에서 실질 연료 소모가 최소치인 관측소, 최단 거리인 관측소 및 최소 경유 경로를 갖는 관측소 중 어느 하나의 관측소를 확인하고, 상기 확인된 관측소로 회항하도록 회항 경로를 업데이트하고, 상기 무인 비행체의 자세 제어 및 위치 제어 중 하나 이상의 제어를 통해, 상기 업데이트된 회항 경로를 따라 상기 무인 비행체를 이동시킬 수 있다.As an example related to the present invention, when the emergency event occurs or when the navigation route is re-searched, it is difficult to arrive at a destination based on the current position of the unmanned aerial vehicle based on the measured observation value. When determined, the station of any one or more safe routes operable from the current position of the unmanned aerial vehicle is identified with one of a station with a minimum real fuel consumption, a station with the shortest distance, and a station with a minimum transit route, and the identified station It is possible to move the unmanned vehicle along the updated return path by updating the return path to return to and through one or more of attitude control and position control of the unmanned aerial vehicle.
본 발명은 무인 비행체의 출발지와 목적지 사이에 존재하는 기지국 기반 실시간으로 관측되는 조밀한 복수의 기상 관측소의 기상 정보를 이용하여 무인 비행체의 운항 여부를 결정하고, 무인 비행체에 대한 운항이 결정되는 경우 운행 가능한 복수의 경로에 대한 유효 최단 시간 경로 또는 최적 연료 소모 경로에 해당하는 최적의 경로를 제공함으로써, 무인 비행체의 운행 여부를 정밀하게 판별할 수 있으며, 경제적이고 안정적인 운행을 위한 경로를 선택할 수 있는 효과가 있다.The present invention determines whether the unmanned aerial vehicle is operated by using weather information of a plurality of dense weather stations that are observed in real time based on a base station existing between the origin and destination of the unmanned aerial vehicle, and operates when the operation of the unmanned aerial vehicle is determined. By providing an optimal route corresponding to an effective shortest time path or an optimal fuel consumption path for a plurality of possible routes, it is possible to precisely determine whether an unmanned vehicle is operated and to select a route for economical and stable operation. There is.
또한, 본 발명은 운항 중 운항 예정 경로 상에서의 실시간 관측값이 미리 설정된 기준값을 일정 시간 초과하거나 운항 예정 경로 상에서 새롭게 강풍이나 강수나 낙뢰가 관측되거나, 무인 비행체에 탑재된 센서 등을 통해 지속 운항이 어렵다고 판단되는 경우, 운항 경로를 재탐색하거나 회항 경로를 탐색함으로써, 기상 악화, 돌발적 상황, 긴급한 상황 등에서 무인 비행체의 손망실을 최소화할 수 있는 효과가 있다.In addition, the present invention, the real-time observation value on the scheduled flight route during the flight exceeds a predetermined reference value for a predetermined time, a new strong wind, precipitation or lightning is observed on the scheduled flight route, continuous operation through a sensor mounted on an unmanned aerial vehicle, etc. If it is determined that it is difficult, it is possible to minimize the loss of the unmanned aerial vehicle in the weather deterioration, accidental situation, emergency situation by re-exploring the navigation route or search for a return route.
도 1은 본 발명의 실시예에 따른 기상 정보를 이용한 무인 비행체의 경로 안내 시스템의 구성을 나타낸 블록도이다.1 is a block diagram showing the configuration of a route guidance system for an unmanned aerial vehicle using weather information according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 무인 비행체의 구성을 나타낸 블록도이다.2 is a block diagram showing the configuration of an unmanned aerial vehicle according to an embodiment of the present invention.
도 3 및 도 4는 본 발명의 실시예에 따른 무인 비행체의 경로 탐색을 위한 예시를 나타낸 도이다.3 and 4 are diagrams showing an example for the path search of the unmanned aerial vehicle according to an embodiment of the present invention.
도 5는 본 발명의 실시예에 따른 기상 정보를 이용한 무인 비행체의 경로 안내 방법을 나타낸 흐름도이다.5 is a flowchart illustrating a route guidance method for an unmanned aerial vehicle using weather information according to an exemplary embodiment of the present invention.
도 6은 본 발명의 실시예에 따른 무인 비행체의 경로 탐색을 위한 예시를 나타낸 도이다.6 is a view showing an example for the path search of the unmanned aerial vehicle according to an embodiment of the present invention.
본 발명에서 사용되는 기술적 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아님을 유의해야 한다. 또한, 본 발명에서 사용되는 기술적 용어는 본 발명에서 특별히 다른 의미로 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 의미로 해석되어야 하며, 과도하게 포괄적인 의미로 해석되거나, 과도하게 축소된 의미로 해석되지 않아야 한다. 또한, 본 발명에서 사용되는 기술적인 용어가 본 발명의 사상을 정확하게 표현하지 못하는 잘못된 기술적 용어일 때에는 당업자가 올바르게 이해할 수 있는 기술적 용어로 대체되어 이해되어야 할 것이다. 또한, 본 발명에서 사용되는 일반적인 용어는 사전에 정의되어 있는 바에 따라, 또는 전후 문맥상에 따라 해석되어야 하며, 과도하게 축소된 의미로 해석되지 않아야 한다.It should be noted that the technical terms used in the present invention are merely used to describe specific embodiments, and are not intended to limit the present invention. In addition, the technical terms used in the present invention should be interpreted as meanings generally understood by those skilled in the art unless the present invention has a special meaning defined in the present invention, and is excessively comprehensive. It should not be interpreted in the sense of or in the sense of being excessively reduced. In addition, when a technical term used in the present invention is an incorrect technical term that does not accurately express the spirit of the present invention, it should be replaced with a technical term that can be understood by those skilled in the art. In addition, the general terms used in the present invention should be interpreted as defined in the dictionary or according to the context before and after, and should not be interpreted in an excessively reduced sense.
또한, 본 발명에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함한다. 본 발명에서 "구성된다" 또는 "포함한다" 등의 용어는 발명에 기재된 여러 구성 요소들 또는 여러 단계를 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다.Also, the singular forms used in the present invention include plural forms unless the context clearly indicates otherwise. Terms such as “consisting of” or “comprising” in the present invention should not be construed as necessarily including all of the various components or steps described in the present invention, and some of the components or some steps may not be included. It should be construed that it may further include, or further include, additional components or steps.
또한, 본 발명에서 사용되는 제 1, 제 2 등과 같이 서수를 포함하는 용어는 구성 요소들을 설명하는데 사용될 수 있지만, 구성 요소들은 용어들에 의해 한정되어서는 안 된다. 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제 1 구성 요소는 제 2 구성 요소로 명명될 수 있고, 유사하게 제 2 구성 요소도 제 1 구성 요소로 명명될 수 있다.In addition, terms including ordinal numbers such as first and second used in the present invention may be used to describe components, but the components should not be limited by the terms. The terms are used only to distinguish one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings, and the same or similar components will be given the same reference numerals regardless of the reference numerals, and redundant description thereof will be omitted.
또한, 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 발명의 사상을 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 발명의 사상이 제한되는 것으로 해석되어서는 아니 됨을 유의해야 한다.In addition, in describing the present invention, when it is determined that the detailed description of the related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted. In addition, it should be noted that the accompanying drawings are only for easily understanding the spirit of the present invention and should not be construed as limiting the spirit of the present invention by the accompanying drawings.
도 1은 본 발명의 실시예에 따른 기상 정보를 이용한 무인 비행체의 경로 안내 시스템(10)의 구성을 나타낸 블록도이다.1 is a block diagram showing the configuration of a route guidance system 10 of an unmanned aerial vehicle using weather information according to an embodiment of the present invention.
도 1에 도시된 바와 같이, 기상 정보를 이용한 무인 비행체의 경로 안내 시스템(10)은 관측소(100), 서버(200) 및 무인 비행체(300)로 구성된다. 도 1에 도시된 무인 비행체의 경로 안내 시스템(10)의 구성 요소 모두가 필수 구성 요소인 것은 아니며, 도 1에 도시된 구성 요소보다 많은 구성 요소에 의해 무인 비행체의 경로 안내 시스템(10)이 구현될 수도 있고, 그보다 적은 구성 요소에 의해서도 무인 비행체의 경로 안내 시스템(10)이 구현될 수도 있다.As shown in FIG. 1, the path guidance system 10 of an unmanned aerial vehicle using weather information includes an observation station 100, a server 200, and an unmanned aerial vehicle 300. Not all components of the path guide system 10 of the unmanned aerial vehicle shown in FIG. 1 are essential components, and the path guide system 10 of the unmanned aerial vehicle is implemented by more components than those shown in FIG. The path guide system 10 of the unmanned aerial vehicle may be implemented with fewer components.
무인 비행체(300)는 광역 기상 정보 대신 출발지에서 목적지까지의 최단 경로를 기준으로 미리 설정된 반경 내에 위치한 복수의 관측소(100)에서 측정된 복수의 기상 정보를 근거로 운항 여부(또는 비행 여부)를 결정한다. 또한, 운항이 결정된 경우, 무인 비행체(300)는 출발지에서 목적지까지의 복수의 운항 경로 중에서 판정된 복수의 안전 경로에 대해서, 경로별 총 유효 시간 및/또는 경로별 연료 소모량을 산출하고, 산출된 경로별 총 유효 시간 및/또는 경로별 연료 소모량을 근거로 최종 운항 경로를 선택한다. 이후, 무인 비행체(300)는 선택된 최종 운항 경로를 따라 운항한다. 최종 운항 경로를 따라 무인 비행체(300)가 이동하는 동안에, 무인 비행체(300)의 현재 위치, 해당 무인 비행체(300)를 통해 측정되는 관측값 등을 근거로 미리 설정된 긴급 이벤트가 발생하는 경우, 무인 비행체(300)는 서버(300)로부터 새롭게 제공되는 복수의 추가 기상 정보, 무인 비행체(300)의 현재 위치, 관측값 등을 근거로 새로운 운항 경로를 재탐색하고, 재탐색된 운항 경로를 따라 운항한다.The unmanned aerial vehicle 300 determines whether to fly (or whether to fly) based on a plurality of weather information measured by a plurality of stations 100 located within a predetermined radius based on the shortest path from the starting point to the destination instead of the wide area weather information. do. In addition, when the operation is determined, the unmanned aerial vehicle 300 calculates the total effective time for each route and / or fuel consumption for each route, for the plurality of safety routes determined from the plurality of operation routes from the origin to the destination, and is calculated. The final route of travel is selected based on the total valid time per route and / or fuel consumption per route. Thereafter, the unmanned aerial vehicle 300 operates along the selected final navigation route. While the unmanned aerial vehicle 300 moves along the final flight path, when an emergency event set in advance occurs based on a current position of the unmanned aerial vehicle 300, an observation value measured by the corresponding unmanned aerial vehicle 300, and the like, The vehicle 300 re-discovers a new navigation route based on the plurality of additional weather information newly provided from the server 300, the current position of the unmanned aerial vehicle 300, the observation value, and operates along the re-searched navigation route. do.
관측소(100)는 통신 설비가 설치된 기지국일 수 있다. Observation station 100 may be a base station in which communication facilities are installed.
또한, 관측소(100)는 기상 정보를 측정(또는 수집)하기 위한 다양한 기상 센서(미도시)를 포함한다. 여기서, 기상 정보는 풍향, 풍속, 강우 여부, 낙뢰 발생 여부, 측정 시각 정보 등의 정보를 포함한다.In addition, the station 100 includes various weather sensors (not shown) for measuring (or collecting) weather information. Here, the weather information includes information such as wind direction, wind speed, rainfall, lightning strike, and measurement time information.
또한, 관측소(100)는 해당 관측소(100)가 위치한 지역의 기상 정보를 측정(또는 수집)한다.In addition, the station 100 measures (or collects) weather information of the region where the station 100 is located.
또한, 관측소(100)는 측정된(또는 수집된) 기상 정보를 서버(200) 및/또는 무인 비행체(300)에 전송한다. 이때, 기상 정보는 해당 관측소(100)가 위치한 지역의 위치 정보(예를 들어 위도, 경도 등 포함) 등을 더 포함할 수도 있다.The station 100 also transmits the measured (or collected) weather information to the server 200 and / or the unmanned aerial vehicle 300. In this case, the weather information may further include location information (eg, including latitude, longitude, etc.) of the region where the corresponding observatory 100 is located.
서버(200)는 하나 이상의 관측소(100), 하나 이상의 무인 비행체(300) 등과 통신한다.The server 200 communicates with one or more observation stations 100, one or more unmanned aerial vehicles 300, and the like.
또한, 서버(200)는 하나 이상의 관측소(100)로부터 각각 전송되는 복수의 기상 정보를 수신한다. 이때, 서버(200)는 미리 설정된 시간 간격으로 해당 관측소(100)로부터 전송되는 기상 정보를 수신하거나, 서버(200)의 기상 정보 전송 요청에 응답하여 특정 관측소(100)로부터 전송되는 기상 정보를 수신할 수 있다.In addition, the server 200 receives a plurality of weather information transmitted from one or more stations 100, respectively. At this time, the server 200 receives the weather information transmitted from the corresponding station 100 at predetermined time intervals, or receives the weather information transmitted from the specific station 100 in response to a request for transmitting the weather information of the server 200. can do.
또한, 서버(200)는 무인 비행체(300)로부터 전송되는 무인 비행체(300)의 고유 식별 정보, 출발지 정보, 목적지 정보 등을 수신한다.In addition, the server 200 receives unique identification information, origin information, destination information, etc. of the unmanned aerial vehicle 300 transmitted from the unmanned aerial vehicle 300.
또한, 서버(200)는 수신된 출발지 정보 및 목적지 정보를 근거로 해당 서버(200)에 미리 저장된 복수의 관측소별 기상 정보 중에서 해당 출발지 정보 및 목적지 정보에 대응하는 복수의(또는 하나 이상의) 기상 정보를 해당 무인 비행체(300)에 전송한다.In addition, the server 200 based on the received source information and destination information, a plurality of (or one or more) weather information corresponding to the corresponding source information and the destination information among the plurality of weather information for each station previously stored in the server 200. To transmit to the unmanned aerial vehicle (300).
즉, 서버(200)는 수신된 출발지 정보 및 목적지 정보를 근거로 해당 서버(200)에 미리 저장된 복수의 관측소별 기상 정보 중에서 해당 출발지에서 목적지까지의 최단 경로를 기준으로 미리 설정된 반경 내에 위치한 복수의 관측소(100)에서 수집된 복수의 기상 정보를 해당 무인 비행체(300)에 전송한다.That is, the server 200 is located within a preset radius based on the shortest path from the corresponding departure point to the destination among the plurality of weather information for each station stored in the corresponding server 200 based on the received departure point information and the destination information. The plurality of weather information collected from the observation station 100 is transmitted to the unmanned aerial vehicle 300.
또한, 서버(200)는 무인 비행체(300)로부터 전송되는 해당 무인 비행체(300)가 운항 중에 측정한 관측값, 무인 비행체(300)의 위치 정보, 최종 운항 경로(예를 들어 출발지, 목적지, 중간 경유지/중간 경로 등 포함) 등을 수신한다.In addition, the server 200 is an observation value measured during the operation of the unmanned aerial vehicle 300 transmitted from the unmanned aerial vehicle 300, position information of the unmanned aerial vehicle 300, the final navigation route (for example, origin, destination, intermediate (Including waypoints / intermediate routes).
또한, 서버(200)는 실시간으로 업데이트되는 기상 정보, 해당 관측값, 무인 비행체(300)의 위치 정보, 최종 운항 경로 등을 근거로 해당 무인 비행체(300)의 운항 경로 재탐색 여부를 판단한다.In addition, the server 200 determines whether the navigation path of the unmanned aerial vehicle 300 is re-searched based on weather information updated in real time, a corresponding observation value, location information of the unmanned aerial vehicle 300, and a final navigation path.
즉, 서버(200)는 무인 비행체(300)의 운항 중 실시간 관측값이 미리 설정된 임계값을 초과하는 시간이 일정 시간 이상 지속되는지 여부, 강수 관측/예상되는 경로가 최종 운항 경로에 포함되는지 여부 등을 확인한다.That is, the server 200 may determine whether the time when the real-time observation value exceeds the preset threshold value during the operation of the unmanned aerial vehicle 300 lasts for a predetermined time, whether the precipitation observation / expected path is included in the final flight path, and the like. Check.
또한, 판단 결과, 해당 무인 비행체(300)의 운항 경로 재탐색이 결정된 경우, 서버(200)는 실시간으로 업데이트되는 기상 정보, 해당 관측값, 무인 비행체(300)의 위치 정보, 최종 운항 경로 등을 근거로 최종 운항 경로를 재탐색한다.In addition, as a result of the determination, when the re-navigation of the flight path of the unmanned aerial vehicle 300 is determined, the server 200 may update the real-time weather information, the corresponding observation value, the location information of the unmanned aerial vehicle 300, the final flight path, etc. Rediscover the final flight route as a basis.
예를 들어, 무인 비행체(300)의 운항 중 실시간 관측값이 미리 설정된 임계값을 초과하는 시간이 일정 시간 이상 지속될 때, 서버(200)는 실시간으로 업데이트되는 기상 정보, 해당 관측값, 무인 비행체(300)의 위치 정보, 최종 운항 경로 등을 근거로 최종 운항 경로를 재탐색한다.For example, when the real time observation value during operation of the unmanned aerial vehicle 300 exceeds a preset threshold value for a predetermined time or more, the server 200 may update the real time weather information, the corresponding observation value, and the unmanned aerial vehicle ( The final navigation route is re-searched based on the location information of 300) and the final navigation route.
다른 예를 들어, 실시간 업데이트되는 기상 정보를 근거로 강수 발생이 예상되는 경로가 최종 운항 경로에 포함된 상태일 때, 서버(200)는 실시간으로 업데이트되는 기상 정보, 해당 관측값, 무인 비행체(300)의 위치 정보, 최종 운항 경로 등을 근거로 최종 운항 경로를 재탐색한다.In another example, when a path expected to generate precipitation based on real-time updated weather information is included in the final flight path, the server 200 may update weather information, corresponding observations, and the unmanned aerial vehicle 300 in real time. ) Rediscovers the final flight route based on location information and final flight route.
또한, 서버(200)는 재탐색된 최종 운항 경로, 실시간으로 업데이트되는 기상 정보 등을 해당 무인 비행체(300)에 전송한다.In addition, the server 200 transmits the re-discovered final flight route, weather information updated in real time, to the unmanned aerial vehicle 300.
또한, 서버(200)는 이상 기후나 돌발적인 기후, 충전 필요와 같은 긴급 대피 상황의 경우, 복수의 무인 비행체(300)들이 운행 중이라면, 이러한 무인 비행체(300)들에 대해서 각 무인 비행체(300)의 현재 상태(예를 들어 배터리 잔량, 수분 측정에 의한 무인 비행체(300)의 침수 상태, 자세 제어가 어려운 상태, 해당 국소 지역의 기상 상태 등 포함)를 기반으로 하는 우선 순위와 인접 착륙장의 무인 비행체(300)의 수용 여유 상황 정보, 각 무인 비행체(300)의 착륙장과의 거리 등을 고려하여 착륙장 경로 갱신이 이루어지도록 관제할 수도 있다.In addition, in case of emergency evacuation situation such as abnormal weather, unexpected weather, or charging needs, the server 200 may operate the unmanned aerial vehicle 300 for each of the unmanned aerial vehicles 300 when the plurality of unmanned aerial vehicles 300 are in operation. ) Based on the current status (e.g. battery level, submerged state of unmanned aerial vehicle 300 by water measurement, difficult posture control, weather conditions of the local area) and unmanned landing area It is also possible to control such that the landing path path is updated in consideration of the accommodation margin situation information of the aircraft 300, the distance to the landing of each unmanned aerial vehicle 300, and the like.
도 2에 도시된 바와 같이, 무인 비행체(또는 드론)(300)는 통신부(310), GPS 수신기(320), 센서부(330), 저장부(340), 표시부(350) 및 제어부(360)로 구성된다. 도 2에 도시된 무인 비행체(300)의 구성 요소 모두가 필수 구성 요소인 것은 아니며, 도 2에 도시된 구성 요소보다 많은 구성 요소에 의해 무인 비행체(300)가 구현될 수도 있고, 그보다 적은 구성 요소에 의해서도 무인 비행체(300)가 구현될 수도 있다.As shown in FIG. 2, the unmanned aerial vehicle (or drone) 300 includes a communication unit 310, a GPS receiver 320, a sensor unit 330, a storage unit 340, a display unit 350, and a control unit 360. It consists of. Not all components of the unmanned aerial vehicle 300 shown in FIG. 2 are essential components, and the unmanned aerial vehicle 300 may be implemented by more components than those shown in FIG. 2, and fewer components thereof. The unmanned aerial vehicle 300 may also be implemented.
통신부(310)는 유/무선 통신망을 통해 내부의 임의의 구성 요소 또는 외부의 임의의 적어도 하나의 단말기와 통신 연결한다. 이때, 외부의 임의의 단말기는 관측소(100), 서버(200) 등을 포함할 수 있다. 여기서, 무선 인터넷 기술로는 무선랜(Wireless LAN: WLAN), DLNA(Digital Living Network Alliance), 와이브로(Wireless Broadband: Wibro), 와이맥스(World Interoperability for Microwave Access: Wimax), HSDPA(High Speed Downlink Packet Access), HSUPA(High Speed Uplink Packet Access), IEEE 802.16, 롱 텀 에볼루션(Long Term Evolution: LTE), LTE-A(Long Term Evolution-Advanced), 광대역 무선 이동 통신 서비스(Wireless Mobile Broadband Service: WMBS) 등이 있으며, 통신부(310)는 상기에서 나열되지 않은 인터넷 기술까지 포함한 범위에서 적어도 하나의 무선 인터넷 기술에 따라 데이터를 송수신하게 된다. 또한, 근거리 통신 기술로는 블루투스, RFID, 적외선 통신(IrDA), UWB, 지그비, 인접 자장 통신(NFC), 초음파 통신(USC), 가시광 통신(VLC), 와이 파이, 와이 파이 다이렉트 등이 포함될 수 있다. 또한, 유선 통신 기술로는 전력선 통신(Power Line Communication: PLC), USB 통신, 이더넷(Ethernet), 시리얼 통신(serial communication), 광/동축 케이블 등이 포함될 수 있다.The communication unit 310 communicates with any component inside or any at least one terminal outside through a wired / wireless communication network. In this case, any external terminal may include the observatory 100, the server 200, and the like. Here, the wireless Internet technologies include a wireless LAN (WLAN), a digital living network alliance (DLNA), a wireless broadband (Wibro), a WiMAX (World Interoperability for Microwave Access: Wimax), and an HSDPA (High Speed Downlink Packet Access). ), HSUPA (High Speed Uplink Packet Access), IEEE 802.16, Long Term Evolution (LTE), Long Term Evolution-Advanced (LTE-A), Wireless Mobile Broadband Service (WMBS), etc. The communication unit 310 transmits and receives data according to at least one wireless Internet technology in a range including the Internet technologies not listed above. In addition, short-range communication technologies may include Bluetooth, RFID, infrared communication (IrDA), UWB, Zigbee, adjacent field communication (NFC), ultrasonic communication (USC), visible light communication (VLC), Wi-Fi, Wi-Fi Direct, etc. have. In addition, the wired communication technology may include power line communication (PLC), USB communication, Ethernet, serial communication, serial communication, optical / coaxial cable, and the like.
또한, 통신부(310)는 유니버설 시리얼 버스(Universal Serial Bus: USB)를 통해 임의의 단말과 정보를 상호 전송할 수 있다.In addition, the communicator 310 may mutually transmit information with an arbitrary terminal through a universal serial bus (USB).
또한, 통신부(310)는 이동통신을 위한 기술표준들 또는 통신방식(예를 들어, GSM(Global System for Mobile communication), CDMA(Code Division Multi Access), CDMA2000(Code Division Multi Access 2000), EV-DO(Enhanced Voice-Data Optimized or Enhanced Voice-Data Only), WCDMA(Wideband CDMA), HSDPA(High Speed Downlink Packet Access), HSUPA(High Speed Uplink Packet Access), LTE(Long Term Evolution), LTE-A(Long Term Evolution-Advanced) 등)에 따라 구축된 이동 통신망 상에서 기지국, 관측소(100), 서버(200) 등과 무선 신호를 송수신한다.In addition, the communication unit 310 may include technical standards or communication schemes (eg, Global System for Mobile communication (GSM), Code Division Multi Access (CDMA), Code Division Multi Access 2000 (CDMA2000), and EV-) for mobile communication. Enhanced Voice-Data Optimized or Enhanced Voice-Data Only (DO), Wideband CDMA (WCDMA), High Speed Downlink Packet Access (HSDPA), High Speed Uplink Packet Access (HSUPA), Long Term Evolution (LTE), LTE-A ( Long Term Evolution-Advanced, etc.) to transmit and receive radio signals to the base station, the observatory 100, the server 200 and the like on a mobile communication network.
또한, 통신부(310)는 제어부(360)의 제어에 의해, 서버(200)로부터 제공되는 출발지에서부터 목적지까지의 최단 경로를 기준으로 미리 설정된 반경 내에 위치한 복수의 관측소(100)에서 측정된 복수의 기상 정보를 수신한다. 여기서, 기상 정보는 해당 관측소(100)가 위치한 지역의 위치 정보(예를 들어 위도, 경도 등 포함), 풍향, 풍속, 강우 여부, 낙뢰 발생 여부, 측정 시각 정보 등의 정보를 포함한다.In addition, the communication unit 310 controls a plurality of weather conditions measured by the plurality of observation stations 100 located within a preset radius based on the shortest path from the starting point to the destination provided from the server 200 under the control of the control unit 360. Receive information. Here, the weather information includes information such as location information (eg, latitude, longitude, etc.), wind direction, wind speed, rainfall, lightning strike, and measurement time information of the region where the corresponding observatory 100 is located.
또한, 통신부(310)는 개별 관측소(100)별로 전송되는 기상 정보를 각각 수신할 수도 있다.In addition, the communicator 310 may receive weather information transmitted for each individual observing station 100.
또한, 통신부(310)는 제어부(360)의 제어에 의해, GPS 수신기(320)를 통해 발생된 해당 무인 비행체(300)의 실시간 현재 위치 정보(예를 들어 현재 위치에서의 위도 정보, 경도 정보 등 포함), 센서부(330)를 통해 측정된 다양한 관측값, 제어부(360)에 의해 생성된(또는 탐색된) 최종 운항 정보, 무인 비행체(300)의 고유 식별 정보 등을 서버(200)에 전송한다.In addition, the communication unit 310 is controlled by the control unit 360, the real-time current position information (for example, latitude information at the current position, longitude information, etc.) of the unmanned aerial vehicle 300 generated through the GPS receiver 320 And the like, various observation values measured by the sensor unit 330, final flight information generated (or searched) by the controller 360, unique identification information of the unmanned aerial vehicle 300, and the like are transmitted to the server 200. do.
GPS 수신기(320)는 위성으로부터 전송된 GPS 신호를 수신하고, 수신된 GPS 신호에 포함된 경도 좌표 및 위도 좌표를 근거로 무인 비행체(300)의 위치 데이터를 실시간으로 발생(또는 생성/확인)시킨다. 여기서, 발생된 위치 데이터는 무인 비행체(300)의 현재 위치(또는 현재 위치 데이터)로 정의한다. 여기서, GPS 수신기뿐만 아니라 와이 파이(Wi-Fi) 또는 와이브로(Wibro) 통신을 통해 위치 정보를 수신할 수도 있다.The GPS receiver 320 receives a GPS signal transmitted from a satellite and generates (or generates / confirms) position data of the unmanned aerial vehicle 300 in real time based on the longitude coordinates and latitude coordinates included in the received GPS signal. . Here, the generated position data is defined as the current position (or current position data) of the unmanned aerial vehicle 300. Here, the location information may be received through Wi-Fi or Wibro as well as the GPS receiver.
또한, GPS 수신기(320)를 통해 수신되는 신호는 IEEE(Institute of Electrical and Electronics Engineers)에서 제안한 무선 LAN 및 일부 적외선 통신 등을 포함하는 무선 LAN에 대한 무선 네트워크의 표준 규격인 802.11과, 블루투스, UWB, 지그비 등을 포함하는 무선 PAN(Personal Area Network)에 대한 표준 규격인 802.15과, 도시 광대역 네트워크(Fixed Wireless Access: FWA) 등을 포함하는 무선 MAN(Metropolitan Area Network), 광대역 무선 접속(Broadband Wireless Access: BWA)에 대한 표준 규격인 802.16과, 와이브로(Wibro), 와이맥스(WiMAX) 등을 포함하는 무선 MAN(Mobile Broadband Wireless Access: MBWA)에 대한 모바일 인터넷에 대한 표준 규격인 802.20 등의 무선 통신 방식을 이용하여 단말기의 위치 정보를 무인 비행체(300)에 제공하도록 구성할 수도 있다.In addition, the signal received through the GPS receiver 320 is 802.11, Bluetooth, UWB, which is a standard of a wireless network for a wireless LAN including a wireless LAN and some infrared communication proposed by the Institute of Electrical and Electronics Engineers (IEEE). 802.15, the standard for wireless personal area networks (PANs) including ZigBee, ZigBee, and wireless metro area networks (MAN), including broadband wireless access (FWA), and broadband wireless access : Wireless communication methods such as 802.16, which is a standard for BWA, and 802.20, which is a standard for the mobile Internet, for wireless MAN (Mobile Broadband Wireless Access (MBWA)) including Wibro, WiMAX, etc. It can also be configured to provide the location information of the terminal to the unmanned aerial vehicle 300.
센서부(330)는 습도, 기온, 강우 발생 여부, 낙뢰 발생 여부 등을 측정하기 위한 각종 기상 센서(미도시)를 포함한다.The sensor unit 330 includes various weather sensors (not shown) for measuring humidity, temperature, rainfall, and lightning.
또한, 센서부(330)는 무인 비행체(300)가 위치한 지역(또는 영역)의 습도, 기온, 풍향, 풍속, 강우 발생 여부, 낙뢰 발생 여부 등을 포함하는 관측값을 각각 측정(또는 수집)한다.In addition, the sensor unit 330 measures (or collects) observation values, including humidity, temperature, wind direction, wind speed, rainfall occurrence, lightning strike, and the like, in the area (or region) where the unmanned aerial vehicle 300 is located. .
또한, 센서부(330)는 무인 비행체(300)에 구비된 연료 저장부(또는 배터리)(미도시)의 잔량(또는 상태)을 측정한다.In addition, the sensor unit 330 measures the remaining amount (or state) of the fuel storage unit (or battery) (not shown) included in the unmanned aerial vehicle 300.
저장부(340)는 무인 비행체의 경로 안내 시스템(10)이 동작하는데 필요한 데이터와 프로그램 등을 저장한다.The storage unit 340 stores data and programs necessary for operating the path guidance system 10 of the unmanned aerial vehicle.
즉, 저장부(340)는 무인 비행체의 경로 안내 시스템(10)에서 구동되는 다수의 응용 프로그램(application program 또는 애플리케이션), 무인 비행체의 경로 안내 시스템(10)의 동작을 위한 데이터들, 명령어들을 저장할 수 있다. 이러한 응용 프로그램 중 적어도 일부는 무선 통신을 통해 외부 서비스 제공 장치로부터 다운로드 될 수 있다. 한편, 응용 프로그램은 저장부(340)에 저장되고, 무인 비행체의 경로 안내 시스템(10)에 설치되어, 제어부(360)에 의하여 무인 비행체의 경로 안내 시스템(10)의 동작(또는 기능)을 수행하도록 구동될 수 있다.That is, the storage unit 340 stores a plurality of applications (application programs or applications) driven in the path guidance system 10 of the unmanned aerial vehicle, data for the operation of the path guidance system 10 of the unmanned aerial vehicle, and instructions. Can be. At least some of these applications may be downloaded from an external service providing apparatus through wireless communication. On the other hand, the application is stored in the storage unit 340, is installed in the path guide system 10 of the unmanned aerial vehicle, the control unit 360 performs the operation (or function) of the path guide system 10 of the unmanned aerial vehicle. Can be driven to.
또한, 저장부(340)는 플래시 메모리 타입(Flash Memory Type), 하드 디스크 타입(Hard Disk Type), 멀티미디어 카드 마이크로 타입(Multimedia Card Micro Type), 카드 타입의 메모리(예를 들면, SD 또는 XD 메모리 등), 자기 메모리, 자기 디스크, 광디스크, 램(Random Access Memory: RAM), SRAM(Static Random Access Memory), 롬(Read-Only Memory: ROM), EEPROM(Electrically Erasable Programmable Read-Only Memory), PROM(Programmable Read-Only Memory) 중 적어도 하나의 저장매체를 포함할 수 있다. 또한, 무인 비행체의 경로 안내 시스템(10)은 인터넷(internet)상에서 저장부(340)의 저장 기능을 수행하는 웹 스토리지(web storage)를 운영하거나, 또는 웹 스토리지와 관련되어 동작할 수도 있다.In addition, the storage unit 340 may include a flash memory type, a hard disk type, a multimedia card micro type, and a card type memory (eg, SD or XD memory). Etc.), magnetic memory, magnetic disk, optical disk, random access memory (RAM), static random access memory (SRAM), read-only memory (ROM), electrically erasable programmable read-only memory (EPM), PROM It may include at least one storage medium of (Programmable Read-Only Memory). In addition, the route guidance system 10 of the unmanned aerial vehicle may operate a web storage that performs a storage function of the storage unit 340 on the Internet, or may operate in connection with the web storage.
또한, 저장부(340)는 제어부(360)의 제어에 의해 통신부(310)를 통해 수신된 관측소별 복수의 기상 정보를 저장한다.In addition, the storage unit 340 stores a plurality of weather information for each station received through the communication unit 310 under the control of the control unit 360.
또한, 저장부(340)는 제어부(360)의 제어에 의해 GPS 수신기(320)를 통해 발생되는 무인 비행체(300)의 위치 정보를 저장한다.In addition, the storage unit 340 stores the position information of the unmanned aerial vehicle 300 generated through the GPS receiver 320 under the control of the controller 360.
또한, 저장부(340)는 제어부(360)의 제어에 의해 센서부(330)를 통해 측정되는 무인 비행체(300)가 위치한 지역(또는 영역)의 습도, 기온, 풍향, 풍속, 강우 발생 여부, 낙뢰 발생 여부, 무인 비행체(300)에 구비된 연료 저장부(또는 배터리)(미도시)의 잔량(또는 상태) 등을 포함하는 관측값을 저장한다.In addition, the storage unit 340 may control the humidity, temperature, wind direction, wind speed, rainfall of an area (or region) in which the unmanned aerial vehicle 300 is measured by the sensor unit 330 under the control of the controller 360, Stores an observation value including whether a lightning strike occurs, a residual amount (or state) of a fuel storage unit (or battery) (not shown) included in the unmanned aerial vehicle 300, and the like.
표시부(350)는 제어부(360)의 제어에 의해 저장부(340)에 저장된 사용자 인터페이스 및/또는 그래픽 사용자 인터페이스를 이용하여 다양한 메뉴 화면 등과 같은 다양한 콘텐츠를 표시할 수 있다. 여기서, 표시부(350)에 표시되는 콘텐츠는 다양한 텍스트 또는 이미지 데이터(각종 정보 데이터 포함)와 아이콘, 리스트 메뉴, 콤보 박스 등의 데이터를 포함하는 메뉴 화면 등을 포함한다. 또한, 표시부(350)는 터치 스크린 일 수 있다.The display unit 350 may display various contents such as various menu screens using a user interface and / or a graphic user interface stored in the storage unit 340 under the control of the controller 360. Here, the content displayed on the display unit 350 includes various text or image data (including various information data) and a menu screen including data such as icons, list menus, combo boxes, and the like. In addition, the display unit 350 may be a touch screen.
또한, 표시부(350)는 액정 디스플레이(Liquid Crystal Display: LCD), 박막 트랜지스터 액정 디스플레이(Thin Film Transistor-Liquid Crystal Display: TFT LCD), 유기 발광 다이오드(Organic Light-Emitting Diode: OLED), 플렉시블 디스플레이(Flexible Display), 3차원 디스플레이(3D Display), 전자잉크 디스플레이(e-ink display), LED(Light Emitting Diode) 중에서 적어도 하나를 포함할 수 있다.In addition, the display unit 350 may include a liquid crystal display (LCD), a thin film transistor liquid crystal display (TFT LCD), an organic light-emitting diode (OLED), and a flexible display (LCD). The display device may include at least one of a flexible display, a 3D display, an e-ink display, and a light emitting diode (LED).
또한, 표시부(350)는 입체영상을 표시하는 입체 디스플레이부로서 구성될 수 있다.In addition, the display unit 350 may be configured as a stereoscopic display unit for displaying a stereoscopic image.
입체 디스플레이부에는 스테레오스코픽 방식(안경 방식), 오토 스테레오스코픽 방식(무안경 방식), 프로젝션 방식(홀로그래픽 방식) 등의 3차원 디스플레이 방식이 적용될 수 있다.The stereoscopic display unit may be a three-dimensional display method such as a stereoscopic method (glasses method), an auto stereoscopic method (glasses-free method), a projection method (holographic method).
또한, 표시부(350)는 무인 비행체(300)의 동작 상태를 나타내기 위한 LED를 포함할 수 있다.In addition, the display unit 350 may include an LED for indicating an operating state of the unmanned aerial vehicle 300.
또한, 표시부(350)는 제어부(360)의 제어에 의해, 무인 비행체(300)의 동작 상태, 이상 여부 상태 등을 LED를 통해 표시한다.In addition, the display unit 350 displays an operating state, an abnormal state state, and the like of the unmanned aerial vehicle 300 under the control of the controller 360 through the LED.
또한, 표시부(350)는 제어부(360)의 제어에 의해, 센서부(330)를 통해 측정되는 무인 비행체(300)가 위치한 지역(또는 영역)의 습도, 기온, 풍향, 풍속, 강우 발생 여부, 낙뢰 발생 여부, 무인 비행체(300)에 구비된 연료 저장부(또는 배터리)(미도시)의 잔량(또는 상태) 등을 포함하는 관측값을 표시한다.In addition, the display unit 350 controls the humidity, temperature, wind direction, wind speed, rainfall, or the like of the area (or region) where the unmanned aerial vehicle 300 is measured by the control unit 360 under the control of the controller 360. Displays an observation value including whether a lightning strike occurs, a residual amount (or state) of a fuel storage unit (or a battery) (not shown) included in the unmanned aerial vehicle 300, and the like.
제어부(360)는 무인 비행체(300)의 전반적인 제어 기능을 실행한다.The controller 360 executes an overall control function of the unmanned aerial vehicle 300.
또한, 제어부(360)는 저장부(340)에 저장된 프로그램 및 데이터를 이용하여 무인 비행체(300)의 전반적인 제어 기능을 실행한다. 제어부(360)는 RAM, ROM, CPU, GPU, 버스를 포함할 수 있으며, RAM, ROM, CPU, GPU 등은 버스를 통해 서로 연결될 수 있다. CPU는 저장부(340)에 액세스하여, 저장부(340)에 저장된 O/S를 이용하여 부팅을 수행할 수 있으며, 저장부(340)에 저장된 각종 프로그램, 콘텐츠, 데이터 등을 이용하여 다양한 동작을 수행할 수 있다.In addition, the controller 360 executes an overall control function of the unmanned aerial vehicle 300 by using a program and data stored in the storage 340. The controller 360 may include a RAM, a ROM, a CPU, a GPU, a bus, and the RAM, a ROM, a CPU, a GPU, and the like may be connected to each other through a bus. The CPU may access the storage unit 340 to perform booting using the O / S stored in the storage unit 340, and various operations using various programs, contents, data, etc. stored in the storage unit 340. Can be performed.
또한, 출발지로부터 목적지로 해당 무인 비행체(300)가 비행을 하고자하는 경우, 해당 무인 비행체(300)가 출발하여 안전하게 목적지까지 비행이 가능할지 여부를 판단함에 있어서, 도 3에 도시한 바와 같이, 제어부(360)는 GIS 시스템 상에서 최단 거리에 해당하는 경로를 경로 1이라 할 경우, 단순하게 출발지와 가장 가까운 관측소 A의 풍속이 미리 설정된 풍속 임계값을 초과하는지 여부를 판단하는 것이 아니라, 경로 1 선상에 있는 관측소 B, 우회 경로인 경로 2 상에 있는 관측소 C 및 목적지 관측소 D 등을 포함하여, 가능 경로 안에 존재하는 다양한 관측소의 풍속, 풍향 등을 포함하는 기상 정보를 고려하여, 운항 여부를 결정한다.In addition, when the unmanned aerial vehicle 300 intends to fly from the starting point to the destination, in determining whether the unmanned aerial vehicle 300 departs and can safely fly to the destination, as shown in FIG. When the path corresponding to the shortest distance on the GIS system is path 1, the 360 does not simply determine whether the wind speed of the station A closest to the origin exceeds the preset wind speed threshold, but on the path 1 line. Operation is determined in consideration of weather information including wind speed, wind direction, and the like of various stations present in the possible path, including station B in the vicinity, station C on the route 2, and destination station D in the detour route.
또한, 제어부(360)는 경로 상에 풍속이 미리 설정된 풍속 임계값을 초과하거나 또는 해당 풍속 임계값에 가까운 경로가 존재하는 경우, 이를 회피하는 경로를 선택하여 운항 여부를 고려할 수 있다.In addition, the controller 360 may consider whether or not the wind speed exceeds the preset wind speed threshold value, or if there is a path close to the wind speed threshold value, by selecting a path that avoids it.
또한, 제어부(360)는 통신부(310)를 통해 수신된 복수의 기상 정보를 근거로 해당 출발지부터 목적지까지의 운항 여부를 결정한다.In addition, the controller 360 determines whether to operate from the corresponding starting point to the destination based on the plurality of weather information received through the communication unit 310.
즉, 제어부(360)는 출발지에서 목적지까지의 복수의 경로 상의 복수의 기상 정보를 근거로 출발지에서 목적지까지의 복수의 경로 중에서 회피 경로를 제거한다. 여기서, 회피 경로는 출발지에서 목적지까지의 복수의 경로 중에서 관측소별 기상 정보에 포함된 풍속이 미리 설정된 풍속 임계값을 초과하는 경로, 현재 강우가 관측되는 기상 정보(또는 관측소)에 대응하는 경로 등을 포함한다.That is, the controller 360 removes the avoiding path from the plurality of paths from the starting point to the destination based on the plurality of weather information on the plurality of paths from the starting point to the destination. Here, the avoidance path includes a path in which wind speeds included in weather information for each station exceeds a preset wind speed threshold value among a plurality of paths from a source to a destination, a path corresponding to weather information (or a station) at which current rainfall is observed. Include.
또한, 제어부(360)는 복수의 경로 중에서 회피 경로를 제거한 후 남아 있는 경로가 존재하는 경우, 해당 남은 하나 이상의 경로를 안전한 경로로 판정한다.In addition, when there is a path remaining after removing the avoidance path among the plurality of paths, the controller 360 determines the at least one remaining path as a safe path.
또한, 제어부(360)는 출발지로부터 목적지까지 운항가능한 하나 이상의 안전한 경로가 존재하는 경우, 무인 비행체(300)의 운항이 가능한 상태로 결정한다.In addition, the controller 360 determines that the unmanned aerial vehicle 300 can be operated when there is at least one safe path that can be operated from the starting point to the destination.
또한, 제어부(360)는 출발지로부터 목적지까지 운항가능한 하나 이상의 안전한 경로가 존재하지 않는 경우, 무인 비행체(300)의 운항이 불가한 상태로 결정한다.In addition, the controller 360 determines that the unmanned aerial vehicle 300 cannot be operated when at least one safe path capable of operating from the starting point to the destination does not exist.
또한, 안전한 경로가 존재하는지 여부를 판정할 때, 제어부(360)는 출발지에서 목적지까지의 복수의 경로 중에서 앞선 풍속 임계값을 초과하는 경로, 현재 강우가 관측되는 기상 정보에 대응하는 경로, 현재 낙뢰가 관측되는 기상 정보(또는 관측소)에 대응하는 경로뿐만 아니라, 무인 비행체(300)의 운행 속도와 각 구간 경로의 거리와 각 관측소별로 제공되는 예보 정보를 결합하여, 안전한 경로가 존재하는지 여부를 판정할 수도 있다.In addition, when determining whether a safe route exists, the controller 360 includes a route exceeding a previous wind speed threshold value among a plurality of routes from the starting point to the destination, a path corresponding to weather information for which current rainfall is observed, and a current lightning strike. Combines the speed of the unmanned aerial vehicle 300 with the distance of each section path and the forecast information provided for each station, as well as the path corresponding to the observed weather information (or station), to determine whether a safe path exists. You may.
즉, 제어부(360)는 출발지에서 목적지까지의 복수의 경로 중에서 앞선 관측소별 기상 정보에 포함된 풍속이 풍속 임계값을 초과하는 경로, 현재 강우가 관측되는 기상 정보에 대응하는 경로, 현재 낙뢰가 관측되는 기상 정보(또는 관측소)에 대응하는 경로, 무인 비행체(300)의 운행 속도에 따라 복수의 경로에 무인 비행체(300)가 도달하는 시점의 해당 경로(또는 지점)에 대한 예보 정보를 근거로 해당 예보 정보에 포함된 풍속이 해당 풍속 임계값을 초과하는 경로, 해당 복수의 경로에 무인 비행체(300)가 도달하는 시점의 해당 경로에 대한 예보 정보를 근거로 해당 예보 정보에 포함된 강우 예상 정보가 미리 설정된 강우 임계값을 초과하는 경로 등을 포함하는 회피 경로를 제거하여, 안전한 경로가 존재하는지 여부를 판정할 수도 있다.That is, the control unit 360 is a path in which the wind speed included in the weather information for each station above the wind speed threshold value exceeds a threshold value, a path corresponding to weather information for which current rainfall is observed, and a current lightning strike, among a plurality of paths from a departure point to a destination. Corresponding to the weather information (or station) corresponding to the weather information (or station) based on the forecast information on the corresponding path (or point) at the time when the unmanned aerial vehicle 300 reaches a plurality of paths according to the driving speed of the unmanned aerial vehicle 300. Rainfall prediction information included in the forecast information is based on a path in which the wind speed included in the forecast information exceeds a corresponding wind speed threshold, and the forecast information on the path when the unmanned aerial vehicle 300 reaches the plurality of paths. It is also possible to determine whether a safe path exists by removing an avoiding path including a path exceeding a preset rainfall threshold.
이처럼 일반적인 경우에는 기상청 등에서 발표하는 전체 지역 대표 날씨(또는 기상 정보)에 의존하여 무인 비행체(300)의 운행 가능 여부를 결정해야 한다.In this general case, it is necessary to determine whether the unmanned aerial vehicle 300 can be operated based on the overall local representative weather (or weather information) announced by the Korea Meteorological Agency.
본 발명의 실시예에서와 같이, 출발지에서 목적지까지 위치하는 복수의 조밀한 관측소(100)를 활용하는 경우, 제어부(360)는 출발지와 도착지 인근 정보뿐만 아니라, 복수의 경로 1, 2, ... , n (여기서 n은 자연수) 상의 관측 정보(또는 기상 정보)(예를 들어 A1, A2, ... , AN, B1, B2, ... , BN, ... , Z1, Z2, ... , ZN (여기서 N은 자연수)의 정보)를 모두 종합하여, 경로 상에 풍속 임계값을 초과하는 경로, 현재 강우가 관측되는 관측소에 대응하는 경로, 현재 낙뢰가 관측되는 기상 정보(또는 관측소)에 대응하는 경로 등을 제거하고, 안전한 경로가 존재하는지 여부를 판정하여, 운행 가능 여부를 결정할 수 있다.As in the embodiment of the present invention, when utilizing a plurality of dense observatory 100 located from the starting point to the destination, the control unit 360, as well as the starting and destination nearby information, as well as the plurality of routes 1, 2, ... observation information (or weather information) on n, where n is a natural number (for example, A 1 , A 2 , ..., A N , B 1 , B 2 , ..., B N , ... , Z 1 , Z 2 , ..., Z N (where N is a natural number), the path that exceeds the wind speed threshold on the path, the path that corresponds to the station where the current rainfall is observed, The route corresponding to the weather information (or the station) where the lightning strike is observed may be removed, and it may be determined whether or not a safe route exists, thereby determining whether the vehicle can be operated.
이와 같이, 결정할 경우 안전상의 위험을 최소화하면서, 동시에 기상청 등에서 제공하는 대표값(또는 기상 정보)을 통해 운행 가능 여부를 판정할 때와 같이, 실제로는 비행 가능한 경로가 있는데도 운행 불가 판정을 내리는 경우를 방지할 수 있다.In this way, if the decision is made to minimize the safety risks and at the same time determine whether the vehicle can be operated using the representative value (or weather information) provided by the Meteorological Agency, it is possible to make a decision that the operation is impossible even though there is a route that can be flown. It can prevent.
또한, 이와 같은 결정을 할 때에, 무인 비행체(300)의 운행 속도와 경로의 거리를 계산하여, 각 관측소별로 생산되는 예보 정보(또는 포인트 예보 정보)를 결합하여 사용할 경우, 제어부(360)는 무인 비행체(300)의 안전 운행 여부를 더 세밀하게 결정할 수 있다.In addition, when making such a determination, when calculating the operating speed and the distance of the path of the unmanned aerial vehicle 300, and combining and using the forecast information (or point forecast information) produced for each station, the controller 360 is unmanned. It may be determined in more detail whether the vehicle 300 is safe driving.
또한, 비행이 가능하다고 판단된 경우, 제어부(360)는 각 관측소의 풍향, 풍속 등을 포함하는 관측소별 기상 정보와, 실제 물리적 거리를 결합하여, 최적의 경로를 판단하기 위한 로직을 이용한다.In addition, when it is determined that the flight is possible, the controller 360 combines weather information for each station including the wind direction and wind speed of each station and the actual physical distance, and uses logic for determining an optimal path.
예를 들어, 제어부(360)는 도 3에 도시한 최단 경로 1 상의 관측소에는 풍속 4m/sec의 맞바람이 불고, 경로 2 상에는 순방향 3m/sec의 바람이 부는 경우, 연료 효율 및 실제 비행 가능 속도를 고려한 최적 경로(또는 최적 라우팅)를 판정한다.For example, the controller 360 controls the fuel efficiency and the actual flight speed when the station on the shortest path 1 shown in FIG. 3 blows a wind of 4 m / sec in the wind and a wind of 3 m / sec in the forward path on the path 2. Determine the optimal path (or optimal routing) considered.
또한, 비행이 가능하다고 판단된 경우, 도 4에 도시한 바와 같이, 제어부(360)는 각 경로 상에 존재하는 관측소(100)를 직선으로 연결한 하위 경로를 서브 루트(Sub_route)라 하고, 각 관측소 간 하위 경로의 길이를 서브 루트 길이(Length_Sub_route)라 하고(여기서, k = 1 ~ n(경로상 관측소 개수 - 1)), 무인 비행체(300)가 경로를 따라 직선 이동한다 가정할 경우, 실제 이동 거리의 합은
Figure PCTKR2016013299-appb-I000001
으로 나타낸다. 또한, m/sec로 표현되는 관측소별 풍향/풍속 벡터를
Figure PCTKR2016013299-appb-I000002
라 하고, 각 서브 루트에서 무인 비행체(300)의 운항 속도(또는 비행 속도)와 관측소 간 방향을 또 다른 벡터를
Figure PCTKR2016013299-appb-I000003
라 하면, 유효 속도는
Figure PCTKR2016013299-appb-I000004
와 같으며, 경로별 총 유효 시간은
Figure PCTKR2016013299-appb-I000005
과 같이 나타낼 수 있다.
In addition, when it is determined that the flight is possible, as shown in FIG. 4, the control unit 360 refers to a sub-route (Sub_route), which connects the station 100 existing on each path in a straight line. If the length of the subpath between stations is called the subroute length (Length_Sub_route) (where k = 1 to n (the number of stations on the path-1)) and the unmanned aerial vehicle 300 is linearly moved along the path, the actual Sum of travel distance is
Figure PCTKR2016013299-appb-I000001
Represented by Also, the wind direction / wind vector for each station expressed in m / sec
Figure PCTKR2016013299-appb-I000002
In each sub-route, another vector is defined as the flight speed (or flight speed) of the unmanned aerial vehicle 300 and the direction between the stations.
Figure PCTKR2016013299-appb-I000003
The effective speed is
Figure PCTKR2016013299-appb-I000004
And the total valid time for each route is
Figure PCTKR2016013299-appb-I000005
It can be expressed as
이와 유사한 방식을, 실제 무인 비행체(300)의 경로상 진행 방향과 경로상 풍향 및/또는 풍속을 조합하여, 유효 최단 시간 경로, 최적 연료 소모 경로 등을 산출할 수 있다.In a similar manner, the effective shortest time path, the optimal fuel consumption path, and the like may be calculated by combining the actual traveling path along the path of the unmanned aerial vehicle 300 and the wind direction and / or wind speed on the path.
특히, 최적 연료 소모 경로의 경우, 무인 비행체(300) 운해에 대한 실질적인 효과를 기대할 수 있으므로, 중요한 경로 라우팅 방식의 하나로 활용될 수 있다.In particular, in the case of an optimal fuel consumption path, since a substantial effect on the sea of the unmanned aerial vehicle 300 can be expected, it may be utilized as one of important path routing methods.
또한, 유효 시간이 가장 짧다 하더라도, 경로 상에 안전 운항 기준임 풍속 임계값을 초과하는 관측소(100)가 포함된 경우, 강우 관측이 있을 경우 등의 회피 경로에 대해서는, 경로 선정 대상에서 제외할 수 있다.In addition, even if the validity time is the shortest, if the station includes an observation station 100 exceeding the wind speed threshold value, which is a safe operation standard, and avoids a route such as when there is a rainfall observation, it may be excluded from the path selection target. have.
또한, 운항이 결정된 경우 즉, 출발지에서 목적지까지의 복수의 경로 중에서 회피 경로가 제거되고 남은 안전한 경로가 존재하는 경우(또는 출발지로부터 목적지까지 운항가능한 하나 이상의 안전한 경로가 존재하는 경우), 제어부(360)는 운항가능한 하나 이상의 안전한 경로를 근거로 출발지부터 목적지까지의 운항 경로를 탐색한다. 여기서, 회피 경로는 출발지에서 목적지까지의 복수의 경로 중에서 관측소별 기상 정보에 포함된 풍속이 미리 설정된 풍속 임계값을 초과하는 경로, 현재 강우가 관측되는 기상 정보에 대응하는 경로, 현재 낙뢰가 관측되는 기상 정보(또는 관측소)에 대응하는 경로, 무인 비행체(300)의 운행 속도에 따라 복수의 경로에 무인 비행체(300)가 도달하는 시점의 해당 경로(또는 지점)에 대한 예보 정보를 근거로 해당 예보 정보에 포함된 풍속이 해당 풍속 임계값을 초과하는 경로, 해당 복수의 경로에 무인 비행체(300)가 도달하는 시점의 해당 경로에 대한 예보 정보를 근거로 해당 예보 정보에 포함된 강우 예상 정보가 미리 설정된 강우 임계값을 초과하는 경로 등을 포함한다.In addition, when the operation is determined, that is, when there is a safe route remaining after the avoidance route is removed from the plurality of routes from the origin to the destination (or when there is at least one safe route capable of operating from the origin to the destination), the controller 360 ) Searches for a flight route from origin to destination based on one or more safe routes that can be operated. Here, the avoidance path is a path in which the wind speed included in the weather information for each station exceeds a preset wind speed threshold value among the plurality of paths from the starting point to the destination, the path corresponding to the weather information where the current rainfall is observed, and the current lightning strike. The forecast based on the forecast information on the corresponding route (or point) at the time when the unmanned aerial vehicle 300 reaches a plurality of routes according to the route corresponding to the weather information (or the station) and the speed of the unmanned aerial vehicle 300. Rainfall prediction information included in the forecasting information is preliminarily based on the forecasted information on the route at which the wind speed included in the information exceeds the corresponding wind speed threshold and the path when the unmanned aerial vehicle 300 reaches the plurality of routes. Paths exceeding the set rainfall threshold, and the like.
즉, 운항이 결정된 경우, 제어부(360)는 출발지에서 목적지까지의 복수의 운항 경로 중에서 판정된 복수의 안전 경로(또는 운항가능한 하나 이상의 안전한 경로)에 대해, 경로별 총 유효 시간 및/또는 경로별 연료 소모량을 산출한다.That is, when the flight is determined, the control unit 360, for a plurality of safety routes (or one or more safe routes that can be operated) determined from a plurality of navigation routes from the origin to the destination, the total valid time for each route and / or each route Calculate fuel consumption.
또한, 제어부(360)는 산출된 경로별 총 유효 시간 중에서 최단 시간에 해당하는 출발지부터 목적지까지의 경로를(또는 출발지부터 목적지까지의 복수의 최단 시간에 해당하는 경로를 조합하여) 최종 운항 경로로 선택(또는 선정)한다.In addition, the controller 360 converts the route from the starting point to the destination (or a combination of the plurality of shortest times from the starting point to the destination) corresponding to the shortest time out of the calculated total valid time for each route as the final operating route. Select (or select)
또한, 제어부(360)는 산출된 경로별 연료 소모량 중에서 최소 연료를 소모하는 해당 출발지부터 목적지까지의 경로를(또는 출발지부터 목적지까지의 복수의 최소 연료 소모에 해당하는 경로를 조합하여) 최종 운항 경로로 선택(또는 선정)한다.In addition, the controller 360 may determine a route from a corresponding starting point to a destination (or a combination of a plurality of minimum fuel consumptions from the starting point to the destination) that consumes the least fuel among the calculated fuel consumption for each route. Select (or select)
또한, 제어부(360)는 해당 무인 비행체(300)의 자세 제어 및/또는 위치 제어를 통해 해당 무인 비행체(300)의 동작을 제어하여, 앞서 선택된(또는 선정된) 최종 운항 경로를 따라 해당 출발지에서 목적지까지 해당 무인 비행체(300)를 이동시킨다.In addition, the controller 360 controls the operation of the unmanned aerial vehicle 300 through the attitude control and / or the position control of the unmanned aerial vehicle 300 to control the operation of the unmanned aerial vehicle 300 at the corresponding starting point along the previously selected (or selected) final flight path. The unmanned aerial vehicle 300 is moved to a destination.
또한, 제어부(360)는 운항(또는 비행) 중 경로 상의 실시간 풍향, 풍속 등의 정보 업데이트를 통해, 동적으로 최적 경로를 업데이트할 수 있다.In addition, the controller 360 may dynamically update the optimal path through information updates such as real-time wind direction and wind speed on the path during the operation (or flight).
이와 같이, 제어부(360)는 운항 여부 판단, 최적 경로 예측 및 선택, 운항 중 실시간 기상 정보 업데이트에 의한 새로운 경로 적용을 통해서, 기상 정보를 활용한 안전한 무인 비행체(300)의 운행이 가능할 수 있다.As described above, the controller 360 may operate the unmanned aerial vehicle 300 using the weather information by determining a flight status, predicting and selecting an optimal route, and applying a new route by updating real-time weather information during the flight.
물론, 제어부(360)는 복수의 경로 중에서 높은 빌딩, 숲 등의 지형 지물이 있는 경우, 이를 피해서 운행하도록 할 수도 있다.Of course, the controller 360 may operate to avoid the terrain, such as high buildings, forests, among the plurality of paths.
즉, 앞서 설명한 회피 경로에는 사용자 설정에 따른 미리 설정된 고도 이상의 빌딩(또는 건물), 산, 숲, 추락 위험에 따른 위험 지역(예를 들어 사람들이 많이 이용하는 놀이시설, 공원 등 포함) 등이 더 포함될 수 있으며, 무인 비행체(300)는 이러한 회피 경로를 피해서 운행할 수 있다.That is, the aforementioned avoidance paths may further include buildings (or buildings), mountains, forests, and danger areas (for example, amusement facilities and parks that are used by people) that are higher than a predetermined altitude according to user settings. In addition, the unmanned aerial vehicle 300 may operate to avoid such an avoidance path.
또한, 제어부(360)는 운항 경로 탐색 시, 무인 비행체(300)의 운행 시간이 일정 시간 이상 걸릴 경우(또는 현재와 기상이 달라질 우려가 있는 경우), 앞선 각 관측소의 벡터 및 안전 운행을 위한 임계값과의 비교를 위해, 현재의 관측값과 각 관측소별 예보 정보를 비교하여, 둘 중 큰 값을 기준으로 경로별 총 유효 시간 및/또는 경로별 연료 소모량을 산출하여, 안전도를 높이고, 최적 경로를 계산할 수 있다.In addition, the control unit 360, when the operation time of the unmanned aerial vehicle 300 takes more than a predetermined time (or when the current and the weather may be different) when searching for a flight route, the critical vector for safe operation and the vector of each preceding station. For comparison with the values, compare the current observations with the forecast information for each station, and calculate the total effective time for each route and / or fuel consumption per route based on the larger of the two, increasing the safety level and the optimum route. Can be calculated.
또한, 경로 상에 관측소(100)가 존재하지 않는 경우, 제어부(360)는 기상청이나 주변 관측소(100)에서 제공되는 예보 모델 값(또는 예보 정보)과 인근 관측소의 예보 정보를 조합(또는 인터폴레이션)한 값을 활용해 보정할 수 있다.In addition, when the station 100 does not exist on the route, the controller 360 combines (or interpolates) the forecast model value (or forecast information) provided by the Meteorological Agency or the surrounding station 100 with the forecast information of the neighboring station. One value can be used to calibrate.
다만, 기상청이나 주변 관측소(100)에서 제공되는 예보 모델 값(또는 예보 정보)과 인근 관측소의 예보 정보를 조합한 값을 활용하는 경우, 오차 발생 확률이 높아질 수 있으므로, 실시간 관측값의 인터폴레이션된 값과 해당 지역 예보 정보 중 풍향, 풍속, 강우 발생 확률, 낙뢰 발생 확률 등의 수치나 확률값이 더 큰 값을 선택함으로써, 안전도를 추가로 고려할 수 있다.However, when using a combination of the forecast model value (or forecast information) provided by the Meteorological Agency or the surrounding station 100 and the forecast information of the neighboring station, the probability of error may increase, and thus the interpolated value of the real time observation value. Safety level can be further considered by selecting values such as wind direction, wind speed, rainfall occurrence probability, and lightning occurrence probability among the local forecast information.
또한, 기지국 기반 관측소(100)는 기지국의 설치 환경 및 기상 측정의 용도에 따라 대부분 높은 위치에 위치하며, 이는 무인 비행체(300)의 비행 경로와 인접해 있을 수 있다.In addition, the base station-based observation station 100 is located at a high position, mostly depending on the installation environment of the base station and the use of weather measurement, which may be adjacent to the flight path of the unmanned aerial vehicle 300.
따라서, 무인 비행체(300) 운행 중 관제 시스템(또는 경로 안내 시스템(10))의 통신 불량으로 미리 설정된 경로를 통해 자율 이동을 해야하는 경우, 제어부(360)는 경로 상 기상 정보를 관측소(100)로부터 직접 전송받을 수도 있다.Therefore, when autonomous movement is required through a preset route due to communication failure of the control system (or the route guidance system 10) during the operation of the unmanned aerial vehicle 300, the controller 360 receives weather information on the route from the observatory 100. It can also be sent directly.
또한, 제어부(360)는 GPS 수신기(320)를 통해 발생된(또는 생성된) 실시간 무인 비행체(300)의 위치 정보, 센서부(330)를 통해 측정되는 실시간 관측값 등을 근거로 미리 설정된 긴급 이벤트 발생 여부를 확인(또는 판단)한다. 여기서, 긴급 이벤트는 측정된 풍속이 풍속 임계값을 초과하는 경우, 강우가 발생하는 경우, 낙뢰가 발생하는 경우, 측정된 연료 저장부(또는 배터리)의 잔량(또는 상태)이 무인 비행체(300)의 현재 위치에서 목적지까지 운항이 불가능한 경우 등을 포함한다.In addition, the control unit 360 is an emergency set in advance based on the location information of the real-time unmanned aerial vehicle 300 (or generated) generated by the GPS receiver 320, the real-time observation value measured by the sensor unit 330, and the like. Check (or determine) whether an event occurs. Here, the emergency event is the unmanned air vehicle 300 when the measured wind speed exceeds the wind speed threshold value, when rainfall occurs, when a lightning strike occurs, the remaining amount (or state) of the measured fuel storage (or battery) is unmanned vehicle 300 This includes cases where the flight from the current location to the destination is impossible.
확인 결과(또는 판단 결과), 미리 설정된 긴급 이벤트가 발생하지 않는 경우, 제어부(360)는 앞선 GPS 수신기(320)를 통해 무인 비행체(300)의 현재 위치를 확인하고, 센서부(330)를 통해 무인 비행체(300)가 위치한 지역의 다양한 관측값을 측정하는 과정으로 복귀한다.As a result of the check (or determination), if a preset emergency event does not occur, the control unit 360 checks the current position of the unmanned aerial vehicle 300 through the preceding GPS receiver 320 and through the sensor unit 330. Return to the process of measuring a variety of observations of the area where the unmanned aerial vehicle 300 is located.
또한, 확인 결과(또는 판단 결과), 미리 설정된 긴급 이벤트가 발생하는 경우, 제어부(360)는 서버(200)로부터 추가로 제공되는 관측소별 복수의 추가 기상 정보, GPS 수신기(320)를 통해 확인된 무인 비행체(300)의 현재 위치, 센서부(330)를 통해 측정된 다양한 관측값, 목적지(또는 목적지 정보, 목적지에 대응하는 위도 및 경도 정보) 등을 근거로 운항 경로(또는 비행 경로)를 재탐색한다.In addition, when a check result (or determination result), a preset emergency event occurs, the control unit 360 is confirmed through the GPS receiver 320, a plurality of additional weather information for each station additionally provided from the server 200 Based on the current position of the unmanned aerial vehicle 300, various observation values measured by the sensor unit 330, the destination (or destination information, latitude and longitude information corresponding to the destination), etc. Search.
즉, 확인 결과(또는 판단 결과), 미리 설정된 긴급 이벤트가 발생하는 경우, 제어부(360)는 관측소별 복수의 추가 기상 정보, GPS 수신기(320)를 통해 확인된 무인 비행체(300)의 현재 위치, 센서부(330)를 통해 측정된 다양한 관측값, 목적지(또는 목적지 정보, 목적지에 대응하는 위도 및 경도 정보) 등을 근거로 현재 위치로부터 목적지까지 운항가능한 하나 이상의 안전한 경로를 재확인하고, 재확인된 현재 위치로부터 목적지까지 운항가능한 하나 이상의 안전한 경로를 근거로 현재 위치로부터 목적지까지의 운항 경로를 재탐색한다.That is, when a confirmation result (or determination result), a preset emergency event occurs, the controller 360 is a plurality of additional weather information for each station, the current position of the unmanned aerial vehicle 300 confirmed through the GPS receiver 320, Based on the various observation values measured by the sensor unit 330, the destination (or destination information, latitude and longitude information corresponding to the destination), etc., one or more safe routes that can be operated from the current location to the destination are reconfirmed, and the reconfirmed current Rediscover the navigation route from the current location to the destination based on one or more safe routes capable of navigation from the location to the destination.
또한, 제어부(350)는 해당 무인 비행체(300)의 자세 제어 및/또는 위치 제어를 통해 해당 무인 비행체(300)의 동작을 제어하여, 재탐색된 운항 경로를 따라 무인 비행체(300)의 현재 위치에서 목적지까지 해당 무인 비행체(300)를 이동(또는 운항/비행)시킨다.In addition, the control unit 350 controls the operation of the unmanned aerial vehicle 300 through the attitude control and / or position control of the unmanned aerial vehicle 300, and thus the current position of the unmanned aerial vehicle 300 along the re-discovered flight path. To move (or operate / fly) the unmanned aerial vehicle 300 to the destination.
또한, 앞선 미리 설정된 긴급 이벤트가 발생하는 경우 또는 긴급 이벤트 발생에 따라 경로를 재탐색하는 경우에 있어서, 센서부(330)를 통해 측정되는 실시간 관측값 등을 근거로 무인 비행체(300)의 현재 위치를 기준으로 목적지 도착이나 출발지 회항이 어렵다고 판단되는 경우, 제어부(360)는 센서부(330)를 통해 측정되는 관측값에 포함된 풍향 및/또는 풍속을 근거로 실질 연료(또는 배터리) 소모가 최소치인 인근 관측소(100)(또는 현재 위치로부터 운항가능한 하나 이상의 안전한 경로 중에서 실질 연료 소모가 최소치인 관측소/최단 거리인 관측소/최소 경유 경로에 해당하는 관측소/최소 경유 경로를 갖는 관측소)를 확인한다.In addition, in the case where a previously set emergency event occurs or when re-navigating a path according to the occurrence of an emergency event, the current position of the unmanned aerial vehicle 300 based on a real-time observation value measured through the sensor unit 330 or the like. If it is determined that the arrival or departure of the destination is difficult based on the reference point, the controller 360 minimizes the actual fuel (or battery) consumption based on the wind direction and / or wind speed included in the observation value measured by the sensor unit 330. Identify a nearby station 100 (or a station with a minimum fuel route / minimum station / minimum pass / stop station) of one or more safe routes that can be operated from the current location.
또한, 제어부(360)는 확인된 실질 연료(또는 배터리) 소모가 최소치인 관측소(100)또는 현재 위치로부터 운항가능한 하나 이상의 안전한 경로 중에서 실질 연료 소모가 최소치인 관측소/최단 거리인 관측소/최소 경유 경로에 해당하는 관측소/최소 경유 경로를 갖는 관측소)로 자동 회항하도록 회항 경로를 업데이트(또는 재탐색)한다. 이때, 앞선 미리 설정된 긴급 이벤트가 발생하는 경우 또는 긴급 이벤트 발생에 따라 경로를 재탐색하는 경우에 있어서, 센서부(330)를 통해 측정되는 실시간 관측값 등을 근거로 무인 비행체(300)의 현재 위치를 기준으로 목적지 도착이 어렵다고 판단되는 경우, 제어부(360)는 현재 위치로부터 운항가능한 하나 이상의 안전한 경로를 근거로 출발지로 회항하도록 회항 경로를 업데이트할 수도 있다.In addition, the controller 360 may include a station 100 having a minimum real fuel (or battery) identified value or a station / minimum pass path having a minimum station / minimum distance of real fuel consumption among one or more safe routes operable from the current location. Update (or rescan) the route to automatically return to the station corresponding to the station / station with the least route. At this time, in the case where a previously set emergency event occurs or when re-navigating the path according to the occurrence of the emergency event, the current position of the unmanned aerial vehicle 300 based on a real-time observation value measured through the sensor unit 330 or the like. If it is determined that the arrival of the destination is difficult, the controller 360 may update the return route to return to the starting point based on one or more safe routes that can be operated from the current location.
또한, 제어부(360)는 해당 무인 비행체(300)의 자세 제어 및/또는 위치 제어를 통해 해당 무인 비행체(300)의 동작을 제어하여, 업데이트된 회항 경로를 따라 무인 비행체(300)의 현재 위치에서 회항지(또는 실질 연료(또는 배터리) 소모가 최소치인 관측소(100)/현재 위치로부터 운항가능한 하나 이상의 안전한 경로 중에서 실질 연료 소모가 최소치인 관측소/최단 거리인 관측소/최소 경유 경로에 해당하는 관측소/최소 경유 경로를 갖는 관측소)까지 해당 무인 비행체(300)를 이동(또는 운항/비행)시킨다.In addition, the controller 360 controls the operation of the unmanned aerial vehicle 300 through the attitude control and / or the position control of the unmanned aerial vehicle 300, and at the current position of the unmanned aerial vehicle 300 along the updated return path. Observatory 100 with minimum fuel (or real fuel (or battery)) consumption / one of the one or more safe routes that can be operated from the current location / minimal station / minimum station / minimum station / The unmanned aerial vehicle 300 is moved (or operated / flighted) to a station having a minimum transit route.
이와 같이, 제어부(360)는 무인 비행체(300)의 운항 중, 돌풍을 만나거나 예상보다 높은 풍속으로 인해 무인 비행체(300) 자체가 가지고 있는 자세 제어 프로그램에 의해서 해결이 어려운 상황이 발생하거나 센서부(330)에 포함된 자체적으로 탑재한 자이로 센서 혹은 모션 센서, 수분 센서, GPS 수신기(320) 등에서 관측된 관측값을 근거로 무인 비행체(300)의 정상적인 운항이 어려운 상황이 인지될 경우, 서버(200)(또는 관제소)(미도시)와 통신을 통해 경로 재탐색을 수행할 수 있다. 이때, 서버(200)와 통신 불가 시, 제어부(360)는 자체적으로 경로 재탐색을 수행 및 무인 비행체(300)를 자율 이동시킨 이후에, 추후 서버(200)에 경로 재탐색 결과에 대한 정보를 통보(또는 통지/전송)할 수도 있다.As such, the controller 360 encounters a gust of wind during the operation of the unmanned aerial vehicle 300 or a situation in which it is difficult to solve the situation due to a posture control program that the unmanned aerial vehicle 300 itself has due to a higher wind speed than expected or the sensor unit If a situation in which normal operation of the unmanned aerial vehicle 300 is difficult based on observations observed by a self-mounted gyro sensor or a motion sensor, a moisture sensor, or a GPS receiver 320 included in 330 is recognized, the server ( The route rescan may be performed through communication with the 200 (or control center) (not shown). At this time, when communication with the server 200 is not possible, the controller 360 performs the path rescan by itself and autonomously moves the unmanned aerial vehicle 300, and then provides information on the result of the path rescan to the server 200 later. It may also notify (or notify / send).
또한, 이와 같이, 재탐색을 실시한 결과, 최적 안전 루트가 발견되지 않을 경우, 제어부(360)는 출발지를 포함하여 인근 착륙장(또는 관측소(100))을 검색하여, 회항 경로를 재탐색하여, 무인 비행체(300)의 손망실을 방지할 수 있다.In addition, if the optimal safety route is not found as a result of the re-search, the control unit 360 searches the nearby landing site (or the station 100) including the starting point, re-searches the return route, and is unmanned. The loss of the aircraft 300 can be prevented.
또한, 제어부(360)는 경로 재탐색 중에 무인 비행체(300)의 배터리 잔량(또는 연료 잔량)과 목적지까지 운행을 위한 예상 배터리 잔량(또는 연료 잔량)을 비교하여, 배터리 성능 열화 등으로 인해 배터리 소모(또는 연료 소모)가 예상보다 큰 경우, 충전이 가능한 인근 착륙장을 검색하고, 해당 검색된 착륙장을 경유(또는 목적지로)하는 새로운 경로를 탐색할 수도 있다.In addition, the controller 360 compares the battery level (or fuel level) of the unmanned aerial vehicle 300 with the estimated battery level (or fuel level) for driving to the destination during the route re-search, and consumes the battery due to deterioration of battery performance. If (or fuel consumption) is greater than expected, it may search for a nearby landing site that can be recharged and search for a new route via (or to) the searched landing site.
이처럼 충전을 위해서 새로운 경로를 탐색한 경우, 제어부(360)는 해당 무인 비행체(300)의 자세 제어 및/또는 위치 제어를 통해 해당 무인 비행체(300)의 동작을 제어하여, 충전을 위해서 탐색된 새로운 경로를 따라 무인 비행체(300)의 현재 위치에서 해당 충전을 위한 목적지까지 해당 무인 비행체(300)를 이동(또는 운항/비행)시킨다.As such, when a new path is searched for charging, the controller 360 controls the operation of the unmanned aerial vehicle 300 through the attitude control and / or the position control of the unmanned aerial vehicle 300, thereby finding a new searched for charging. The unmanned aerial vehicle 300 is moved (or operated / flighted) from the current position of the unmanned aerial vehicle 300 along the path to the destination for charging.
또한, 해당 무인 비행체(300)에 대한 배터리 충전(또는 연료 충전)이 완료된 이후, 운항을 재개하고자 하는 경우, 제어부(360)는 충전 이후 최적 재개 타이밍과 최초 목적지까지 도착하기 위한 경로를 새롭게 탐색할 수 있다.In addition, when battery operation (or fuel charging) for the unmanned aerial vehicle 300 is completed, and the flight is to be resumed, the controller 360 may newly search for the optimum resumption timing after the charging and the route to arrive at the first destination. Can be.
또한, 무인 비행체(300)의 충전 이후, 제어부(360)는 해당 무인 비행체(300)의 자세 제어 및/또는 위치 제어를 통해 해당 무인 비행체(300)의 동작을 제어하여, 충전을 위한 임시 변경된 목적지에서 최초 목적지까지 해당 무인 비행체(300)를 이동(또는 운항/비행)시킨다.In addition, after charging of the unmanned aerial vehicle 300, the controller 360 controls the operation of the unmanned aerial vehicle 300 through the attitude control and / or position control of the unmanned aerial vehicle 300, the temporary changed destination for charging Moves (or operates / flies) the unmanned aerial vehicle 300 to the first destination at the.
또한, 무인 비행체(300)는 해당 무인 비행체(300)에 연결되는 모든 외부기기와의 인터페이스 역할을 수행하는 인터페이스부(미도시)를 더 포함할 수도 있다. 예를 들면, 인터페이스부는 유/무선 헤드셋 포트(Headset Port), 외부 충전기 포트, 유/무선 데이터 포트, 메모리 카드(Memory Card) 포트, 식별 모듈이 구비된 장치를 연결하는 포트, 오디오 I/O(Input/Output) 포트, 비디오 I/O(Input/Output) 포트, 이어폰 포트 등으로 구성될 수 있다. 여기서, 식별 모듈은 무인 비행체(300)의 사용 권한을 인증하기 위한 각종 정보를 저장한 칩으로서, 사용자 인증 모듈(User Identity Module: UIM), 가입자 인증 모듈(Subscriber Identity Module: SIM), 범용 사용자 인증 모듈(Universal Subscriber Identity Module: USIM) 등을 포함할 수 있다. 또한, 식별 모듈이 구비된 장치는 스마트 카드(Smart Card) 형식으로 제작될 수 있다. 따라서, 식별 모듈은 포트를 통하여 무인 비행체(300)와 연결될 수 있다. 이와 같은 인터페이스부는 외부 기기로부터 데이터를 수신하거나 전원을 수신하여 무인 비행체(300) 내부의 각 구성 요소에 전달하거나 무인 비행체(300) 내부의 데이터가 외부 기기로 전송되도록 한다.In addition, the unmanned aerial vehicle 300 may further include an interface unit (not shown) that serves as an interface with all external devices connected to the unmanned aerial vehicle 300. For example, the interface unit may include a wired / wireless headset port, an external charger port, a wired / wireless data port, a memory card port, a port for connecting a device equipped with an identification module, an audio I / O ( Input / Output) port, video I / O (Input / Output) port, earphone port, and the like. Here, the identification module is a chip that stores various information for authenticating the use authority of the unmanned aerial vehicle 300, and includes a user identity module (UIM), a subscriber identity module (SIM), and universal user authentication. And a module (Universal Subscriber Identity Module (USIM)). In addition, the device equipped with the identification module may be manufactured in the form of a smart card. Therefore, the identification module may be connected to the unmanned aerial vehicle 300 through the port. Such an interface unit receives data from an external device or receives power to transmit the data to each component inside the unmanned aerial vehicle 300 or transmit data within the unmanned aerial vehicle 300 to an external device.
또한, 인터페이스부는 무인 비행체(300)가 외부 크래들(Cradle)과 연결될 때 크래들로부터의 전원이 해당 무인 비행체(300)에 공급되는 통로가 되거나, 사용자에 의해 크래들에서 입력되는 각종 명령 신호가 해당 무인 비행체(300)로 전달되는 통로가 될 수 있다. 크래들로부터 입력되는 각종 명령 신호 또는 해당 전원은 무인 비행체(300)가 크래들에 정확히 장착되었음을 인지하기 위한 신호로 동작될 수도 있다.In addition, when the unmanned aerial vehicle 300 is connected to the external cradle, the interface unit is a passage for supplying power from the cradle to the unmanned aerial vehicle 300, or various command signals inputted from the cradle by the user are corresponding unmanned aerial vehicle. It may be a passage that is delivered to (300). Various command signals or corresponding power input from the cradle may be operated as signals for recognizing that the unmanned aerial vehicle 300 is correctly mounted on the cradle.
또한, 무인 비행체(300)는 사용자에 의한 버튼 조작 또는 임의의 기능 선택에 따른 신호를 수신하거나, 디스플레이되는 화면을 터치/스크롤하는 등의 조작에 의해 생성된 명령 또는 제어 신호를 수신하기 위한 입력부(미도시)를 더 포함할 수도 있다.In addition, the unmanned aerial vehicle 300 may include an input unit for receiving a command or control signal generated by an operation such as receiving a signal according to a button operation or an arbitrary function selection by a user, or touching / scrolling a displayed screen ( It may also include a).
입력부는 사용자의 명령, 선택, 데이터, 정보 중에서 적어도 하나를 입력 받기 위한 수단으로서, 숫자 또는 문자 정보를 입력 받고 다양한 기능을 설정하기 위한 다수의 입력키 및 기능키를 포함할 수 있다.The input unit is a means for receiving at least one of a user's command, selection, data, and information, and may include a plurality of input keys and function keys for receiving numeric or text information and setting various functions.
또한, 입력부는 키 패드(Key Pad), 돔 스위치 (Dome Switch), 터치 패드(정압/정전), 터치 스크린(Touch Screen), 조그 휠, 조그 스위치, 조그 셔틀(Jog Shuttle), 마우스(mouse), 스타일러스 펜(Stylus Pen), 터치 펜(Touch Pen) 등의 다양한 장치가 사용될 수 있다. 특히, 표시부(350)가 터치스크린 형태로 형성된 경우, 입력의 기능 중 일부 또는 전부는 표시부(350)를 통해 수행될 수 있다.In addition, the input unit includes a key pad, a dome switch, a touch pad (static pressure / capacitance), a touch screen, a jog wheel, a jog switch, a jog shuttle, and a mouse. Various devices such as a stylus pen, a touch pen, and the like may be used. In particular, when the display unit 350 is formed in the form of a touch screen, some or all of the input functions may be performed through the display unit 350.
또한, 무인 비행체(300)의 각각의 구성부(또는 모듈)는 무인 비행체(300)의 메모리(또는 저장부(340)) 상에 저장되는 소프트웨어일 수 있다. 메모리는 무인 비행체(300)의 내부 메모리 일 수 있으며, 외장형 메모리 또는 다른 형태의 저장 장치일 수 있다. 또한, 메모리는 비휘발성 메모리일 수 있다. 메모리 상에 저장되는 소프트웨어는 실행 시 무인 비행체(300)로 하여금 특정 동작을 수행하도록 하는 명령어 세트를 포함할 수 있다.In addition, each component (or module) of the unmanned aerial vehicle 300 may be software stored on a memory (or a storage unit 340) of the unmanned aerial vehicle 300. The memory may be an internal memory of the unmanned aerial vehicle 300 and may be an external memory or another type of storage device. The memory may also be a nonvolatile memory. Software stored on the memory may include a set of instructions that, when executed, cause the unmanned aerial vehicle 300 to perform a particular operation.
또한, 본 발명에 따른 관측소(100), 서버(200) 및 무인 비행체(300)에 탑재되는 프로세서는 본 발명에 따른 방법을 실행하기 위한 프로그램 명령을 처리할 수 있다. 일 구현 예에서, 이 프로세서는 싱글 쓰레드(Single-threaded) 프로세서일 수 있으며, 다른 구현 예에서 본 프로세서는 멀티 쓰레드(Multi-threaded) 프로세서일 수 있다. 나아가 본 프로세서는 메모리 혹은 저장 장치에 저장된 명령을 처리하는 것이 가능하다.In addition, the processor mounted on the observation station 100, the server 200, and the unmanned aerial vehicle 300 according to the present invention may process a program command for executing the method according to the present invention. In one implementation, this processor may be a single-threaded processor, and in other implementations, the processor may be a multi-threaded processor. Furthermore, the processor is capable of processing instructions stored in memory or storage devices.
이와 같이, 무인 비행체의 출발지와 목적지 사이에 존재하는 기지국 기반 실시간으로 관측되는 조밀한 복수의 기상 관측소의 기상 정보를 이용하여 무인 비행체의 운항 여부를 결정하고, 무인 비행체에 대한 운항이 결정되는 경우 운행 가능한 복수의 경로에 대한 유효 최단 시간 경로 또는 최적 연료 소모 경로에 해당하는 최적의 경로를 제공할 수 있다.As such, the operation of the unmanned aerial vehicle is determined by using weather information of a plurality of dense weather stations that are observed in real time based on the base station existing between the starting point and the destination of the unmanned aerial vehicle, and operated when the operation of the unmanned aerial vehicle is determined. It is possible to provide an optimal path corresponding to an effective shortest time path or an optimal fuel consumption path for a plurality of paths possible.
또한, 이와 같이, 운항 중 운항 예정 경로 상에서의 실시간 관측값이 미리 설정된 기준값을 일정 시간 초과하거나 운항 예정 경로 상에서 새롭게 강풍이나 강수나 낙뢰가 관측되거나, 무인 비행체에 탑재된 센서 등을 통해 지속 운항이 어렵다고 판단되는 경우, 운항 경로를 재탐색하거나 회항 경로를 탐색할 수 있다.In addition, the real-time observation value on the scheduled flight route during the flight exceeds a predetermined reference value for a predetermined time, new winds, precipitation or lightning are observed on the scheduled flight route, or continuous operation is performed through a sensor mounted on an unmanned aerial vehicle. If deemed difficult, the route may be re-searched or the route may be searched.
이하에서는, 본 발명에 따른 기상 정보를 이용한 무인 비행체의 경로 안내 방법을 도 1 내지 도 6을 참조하여 상세히 설명한다.Hereinafter, a path guidance method of an unmanned aerial vehicle using weather information according to the present invention will be described in detail with reference to FIGS. 1 to 6.
도 5는 본 발명의 실시예에 따른 기상 정보를 이용한 무인 비행체의 경로 안내 방법을 나타낸 흐름도이다.5 is a flowchart illustrating a route guidance method for an unmanned aerial vehicle using weather information according to an exemplary embodiment of the present invention.
먼저, 통신부(310)는 서버(200)로부터 제공되는 출발지에서부터 목적지까지의 최단 경로를 기준으로 미리 설정된 반경 내에 위치한 복수의 관측소(100)에서 측정된 복수의 기상 정보를 수신한다. 여기서, 기상 정보는 해당 관측소(100)가 위치한 지역의 위치 정보(예를 들어 위도, 경도 등 포함), 풍향, 풍속, 강우 여부, 낙뢰 발생 여부, 측정 시각 정보 등의 정보를 포함한다. 이때, 통신부(310)는 개별 관측소(100)별로 전송되는 기상 정보를 각각 수신할 수도 있다.First, the communication unit 310 receives a plurality of weather information measured by the plurality of observing stations 100 located within a preset radius with respect to the shortest path from the starting point to the destination provided from the server 200. Here, the weather information includes information such as location information (eg, latitude, longitude, etc.), wind direction, wind speed, rainfall, lightning strike, and measurement time information of the region where the corresponding observatory 100 is located. In this case, the communication unit 310 may receive weather information transmitted for each individual observing station 100.
일 예로, 도 6에 도시한 바와 같이, 통신부(310)는 서버(200)로부터 제공되는 출발지 최인근 관측소, 목적지 최인근 관측소, 출발지와 목적지 사이의 복수의 경로(예를 들어 경로 A, 경로 B, ... , 경로 Z 등 포함) 상에 위치하는 A1, ... , AN, B1, ... , BM 관측소에서 각각 측정되는 복수의 기상 정보를 수신한다. 여기서, M과 N은 자연수이다. 또한, 각 경로상 관측소(100)는 출발지와 목적지 사이에서 기상 정보 수집이 가능한 모든 관측소를 포함할 수 있다(S510).For example, as illustrated in FIG. 6, the communication unit 310 may include a plurality of paths (eg, route A, route B,. Receive a plurality of weather information, respectively, measured at stations A 1 , ..., A N , B 1 , ..., B M located on the. Where M and N are natural numbers. In addition, the station 100 on each path may include all stations capable of collecting weather information between the starting point and the destination (S510).
이후, 제어부(360)는 수신된 복수의 기상 정보를 근거로 해당 출발지부터 목적지까지의 운항 여부를 결정한다.Thereafter, the controller 360 determines whether to operate from the corresponding departure point to the destination based on the received plurality of weather information.
즉, 제어부(360)는 출발지에서 목적지까지의 복수의 경로 상의 복수의 기상 정보를 근거로 출발지에서 목적지까지의 복수의 경로 중에서 회피 경로를 제거한다. 여기서, 회피 경로는 출발지에서 목적지까지의 복수의 경로 중에서 관측소별 기상 정보에 포함된 풍속이 미리 설정된 풍속 임계값을 초과하는 경로, 현재 강우가 관측되는 기상 정보(또는 관측소)에 대응하는 경로 등을 포함한다.That is, the controller 360 removes the avoiding path from the plurality of paths from the starting point to the destination based on the plurality of weather information on the plurality of paths from the starting point to the destination. Here, the avoidance path includes a path in which wind speeds included in weather information for each station exceeds a preset wind speed threshold value among a plurality of paths from a source to a destination, a path corresponding to weather information (or a station) at which current rainfall is observed. Include.
또한, 제어부(360)는 복수의 경로 중에서 회피 경로를 제거한 후 남아 있는 경로가 존재하는 경우, 해당 남은 하나 이상의 경로를 안전한 경로로 판정한다.In addition, when there is a path remaining after removing the avoidance path among the plurality of paths, the controller 360 determines the at least one remaining path as a safe path.
또한, 제어부(360)는 출발지로부터 목적지까지 운항가능한 하나 이상의 안전한 경로가 존재하는 경우, 무인 비행체(300)의 운항이 가능한 상태로 결정한다.In addition, the controller 360 determines that the unmanned aerial vehicle 300 can be operated when there is at least one safe path that can be operated from the starting point to the destination.
또한, 제어부(360)는 출발지로부터 목적지까지 운항가능한 하나 이상의 안전한 경로가 존재하지 않는 경우, 무인 비행체(300)의 운항이 불가한 상태로 결정한다.In addition, the controller 360 determines that the unmanned aerial vehicle 300 cannot be operated when at least one safe path capable of operating from the starting point to the destination does not exist.
일 예로, 제어부(360)는 도 6에 도시한 복수의 경로 중에서 풍속 임계값을 초과하는 기상 정보를 제공한 관측소 A1과 A3에 각각 대응하는 경로, 현재 강우가 관측되는 관측소 A4에 대응하는 경로 등을 제거하며, 복수의 경로 중에서 관측소 A1과 A3에 각각 대응하는 경로 및 관측소 A4에 대응하는 경로가 제거되고 남은 하나 이상의 경로를 안전한 경로로 판정한다. 또한, 제어부(360)는 하나 이상의 경로를 포함하는 안전한 경로를 통해 출발지에서 목적지까지 운항이 가능한 상태일 때, 무인 비행체(300)의 운항이 가능한 상태로 결정한다.For example, the controller 360 corresponds to a station corresponding to stations A 1 and A 3 providing weather information exceeding a wind speed threshold value among the plurality of paths shown in FIG. 6, and to a station A 4 where current rainfall is observed. A path corresponding to the stations A 1 and A 3 and a path corresponding to the station A 4 are respectively removed from the plurality of paths, and one or more remaining paths are determined as safe paths. In addition, the controller 360 determines that the unmanned aerial vehicle 300 can be operated when the flight is possible from the starting point to the destination through a safe path including one or more paths.
또한, 안전한 경로가 존재하는지 여부를 판정할 때, 제어부(360)는 출발지에서 목적지까지의 복수의 경로 중에서 앞선 풍속 임계값을 초과하는 경로, 현재 강우가 관측되는 기상 정보에 대응하는 경로, 현재 낙뢰가 관측되는 기상 정보에 대응하는 경로뿐만 아니라, 무인 비행체(300)의 운행 속도와 각 구간 경로의 거리와 각 관측소별로 제공되는 예보 정보를 결합하여, 안전한 경로가 존재하는지 여부를 판정할 수도 있다.In addition, when determining whether a safe route exists, the controller 360 includes a route exceeding a previous wind speed threshold value among a plurality of routes from the starting point to the destination, a path corresponding to weather information for which current rainfall is observed, and a current lightning strike. In addition to the path corresponding to the observed weather information, the driving speed of the unmanned aerial vehicle 300, the distance of each section path and the forecast information provided for each station, it may be determined whether a safe route exists.
즉, 제어부(360)는 출발지에서 목적지까지의 복수의 경로 중에서 앞선 관측소별 기상 정보에 포함된 풍속이 풍속 임계값을 초과하는 경로, 현재 강우가 관측되는 기상 정보에 대응하는 경로, 현재 낙뢰가 관측되는 기상 정보에 대응하는 경로, 무인 비행체(300)의 운행 속도에 따라 복수의 경로에 무인 비행체(300)가 도달하는 시점의 해당 경로(또는 지점)에 대한 예보 정보를 근거로 해당 예보 정보에 포함된 풍속이 해당 풍속 임계값을 초과하는 경로, 해당 복수의 경로에 무인 비행체(300)가 도달하는 시점의 해당 경로에 대한 예보 정보를 근거로 해당 예보 정보에 포함된 강우 예상 정보가 미리 설정된 강우 임계값을 초과하는 경로, 해당 복수의 경로에 무인 비행체(300)가 도달하는 시점의 해당 경로에 대한 예보 정보를 근거로 해당 예보 정보에 포함된 낙뢰 발생 정보가 미리 설정된 낙뢰 발생 임계값을 초과하는 경로 등을 포함하는 회피 경로를 제거하여, 안전한 경로가 존재하는지 여부를 판정할 수도 있다.That is, the control unit 360 is a path in which the wind speed included in the weather information for each station above the wind speed threshold value exceeds a threshold value, a path corresponding to weather information for which current rainfall is observed, and a current lightning strike, among a plurality of paths from a departure point to a destination. Included in the forecast information based on the forecast information on the corresponding route (or point) at the time when the unmanned aerial vehicle 300 reaches the plurality of paths according to the route corresponding to the weather information, and the speed of the unmanned aerial vehicle 300. Rainfall threshold is a preset rainfall forecasting information included in the forecasting information based on the path that the wind speed exceeds the wind speed threshold, and the forecast information on the path when the unmanned vehicle 300 reaches the plurality of paths; Falls included in the forecast information based on the route exceeding the value, the forecast information for the route at the time when the unmanned aerial vehicle 300 reaches the plurality of routes. The generation information is removed, the avoidance route comprising a path such as exceeding a pre-set threshold, an electrical storm, may determine whether the trusted path exists.
다른 일 예로, 제어부(360)는 도 6에 도시한 복수의 경로 중에서 풍속 임계값을 초과하는 기상 정보를 제공한 관측소 A1과 A3에 각각 대응하는 경로, 현재 강우가 관측되는 관측소 A4에 대응하는 경로, 해당 무인 비행체(300)가 이동하여 관측소 A7에 도달할 시점의 해당 관측소 A7에서의 예보 정보에 포함된 강우 예상 정보(예를 들어 현재 관측소 A7에서는 비가 오지 않고 있으나, 무인 비행체(300)가 이동하여 해당 관측소 A7에 인접할 시점의 강우 확률이 70%인 예보 정보)가 미리 설정된 강우 임계값(예를 들어 60%)을 초과하는 경로 등을 제거하며, 복수의 경로 중에서 관측소 A1과 A3에 각각 대응하는 경로, 관측소 A4에 대응하는 경로, 강우 확률이 70%인 예보 정보에 해당하는 관측소 A7에 대응하는 경로가 제거되고 남은 경로를 안전한 경로로 판정한다(S520).As another example, the controller 360 may include a path corresponding to stations A 1 and A 3 , respectively, which provide weather information exceeding a wind speed threshold value among the plurality of paths shown in FIG. 6, and a station A 4 where current rainfall is observed. the corresponding path, the unmanned air vehicle 300 is moving, including on forecast information at the time it reaches the station a 7 the station a 7 rainfall prediction information (e.g. the current station a 7, but without rain unattended Removes a path in which the vehicle 300 moves and approaches the corresponding station A 7 with a 70% rainfall probability) exceeding a preset rainfall threshold (eg, 60%), and removes a plurality of paths. among them, the path corresponding to the station a 1 and a 3 each corresponding route, station a 4 a 7 stations corresponding path, the probability of rainfall corresponding to 70% of the forecast information on which the determination is removed the rest of the path to a safe path The (S520).
이후, 운항이 결정된 경우 즉, 출발지에서 목적지까지의 복수의 경로 중에서 회피 경로가 제거되고 남은 안전한 경로가 존재하는 경우(또는 출발지로부터 목적지까지 운항가능한 하나 이상의 안전한 경로가 존재하는 경우), 제어부(360)는 운항가능한 하나 이상의 안전한 경로를 근거로 출발지부터 목적지까지의 운항 경로를 탐색한다. 여기서, 회피 경로는 출발지에서 목적지까지의 복수의 경로 중에서 관측소별 기상 정보에 포함된 풍속이 미리 설정된 풍속 임계값을 초과하는 경로, 현재 강우가 관측되는 기상 정보에 대응하는 경로, 무인 비행체(300)의 운행 속도에 따라 복수의 경로에 무인 비행체(300)가 도달하는 시점의 해당 경로(또는 지점)에 대한 예보 정보를 근거로 해당 예보 정보에 포함된 풍속이 해당 풍속 임계값을 초과하는 경로, 해당 복수의 경로에 무인 비행체(300)가 도달하는 시점의 해당 경로에 대한 예보 정보를 근거로 해당 예보 정보에 포함된 강우 예상 정보가 미리 설정된 강우 임계값을 초과하는 경로 등을 포함한다.Then, when the operation is determined, that is, when the avoidance route is removed from the plurality of routes from the starting point to the destination and there is a remaining safe route (or when there is at least one safe route capable of operating from the starting point to the destination), the controller 360 ) Searches for a flight route from origin to destination based on one or more safe routes that can be operated. Here, the avoidance path is a path in which wind speeds included in weather information for each station exceeds a predetermined wind speed threshold value among a plurality of paths from a source to a destination, a path corresponding to weather information where current rainfall is observed, and an unmanned aerial vehicle 300. A route in which the wind speed included in the forecast information exceeds the corresponding wind speed threshold based on the forecast information on the route (or point) at the time when the unmanned aerial vehicle 300 reaches the plurality of routes according to the driving speed of The rain prediction information included in the forecast information exceeds a preset rainfall threshold based on the forecast information on the corresponding path when the unmanned aerial vehicle 300 reaches the plurality of paths.
즉, 운항이 결정된 경우, 제어부(360)는 출발지에서 목적지까지의 복수의 운항 경로 중에서 판정된 복수의 안전 경로(또는 운항가능한 하나 이상의 안전한 경로)에 대해, 경로별 총 유효 시간 및/또는 경로별 연료 소모량을 산출한다.That is, when the flight is determined, the control unit 360, for a plurality of safety routes (or one or more safe routes that can be operated) determined from a plurality of navigation routes from the origin to the destination, the total valid time for each route and / or each route Calculate fuel consumption.
또한, 제어부(360)는 산출된 경로별 총 유효 시간 중에서 최단 시간에 해당하는 출발지부터 목적지까지의 경로를(또는 출발지부터 목적지까지의 복수의 최단 시간에 해당하는 경로를 조합하여) 최종 운항 경로로 선택(또는 선정)한다.In addition, the controller 360 converts the route from the starting point to the destination (or a combination of the plurality of shortest times from the starting point to the destination) corresponding to the shortest time out of the calculated total valid time for each route as the final operating route. Select (or select)
또한, 제어부(360)는 산출된 경로별 연료 소모량 중에서 최소 연료를 소모하는 해당 출발지부터 목적지까지의 경로를(또는 출발지부터 목적지까지의 복수의 최소 연료 소모에 해당하는 경로를 조합하여) 최종 운항 경로로 선택(또는 선정)한다.In addition, the controller 360 may determine a route from a corresponding starting point to a destination (or a combination of a plurality of minimum fuel consumptions from the starting point to the destination) that consumes the least fuel among the calculated fuel consumption for each route. Select (or select)
일 예로, 제어부(360)는 도 6에 도시한 복수의 경로 중에서 관측소 A1과 A3에 각각 대응하는 경로 및 관측소 A4에 대응하는 경로가 제거되고 남은 안전 경로에 대해서, 경로별 총 유효 시간을 산출한다.For example, the controller 360 may determine a total valid time for each path for the remaining safety path after the paths corresponding to the stations A 1 and A 3 and the paths corresponding to the station A 4 are removed from the plurality of paths shown in FIG. 6. To calculate.
또한, 제어부(360)는 산출된 경로별 총 유효 시간 중에서 최단 시간에 해당하는 출발지 - B1 - B2 - ... - BM - 목적지까지의 경로를 제 1 최종 운항 경로로 선택한다.In addition, the controller 360 selects a route from the calculated total valid time for each route to the starting point corresponding to the shortest time-B 1 -B 2 -...-B M -to the destination as the first final flight route.
다른 일 예로, 제어부(360)는 도 6에 도시한 복수의 경로 중에서 관측소 A1과 A3에 각각 대응하는 경로 및 관측소 A4에 대응하는 경로가 제거되고 남은 안전 경로에 대해서, 경로별 연료 소모량을 산출한다.As another example, the controller 360 may include fuel consumption for each path of the safety paths remaining after the paths corresponding to the stations A 1 and A 3 and the paths corresponding to the station A 4 are removed from the plurality of paths shown in FIG. 6. To calculate.
또한, 제어부(360)는 산출된 경로별 연료 소모량 중에서 최소 연료를 소모하는 출발지 - B1 - B2 - A3 - A5 ... - AN - 목적지까지의 경로를 제 2 최종 운항 경로로 선택한다(S530).Further, the control unit 360 has a route-specific fuel consumption from the minimum to the fuel consumption calculated from - B 1 - B 2 - A 3 - A 5 ... - A N - a route to a destination to a second final flight path Select (S530).
이후, 제어부(360)는 해당 무인 비행체(300)의 자세 제어 및/또는 위치 제어를 통해 해당 무인 비행체(300)의 동작을 제어하여, 앞서 선택된(또는 선정된) 최종 운항 경로를 따라 해당 출발지에서 목적지까지 해당 무인 비행체(300)를 이동(또는 운항/비행)시킨다.Thereafter, the controller 360 controls the operation of the unmanned aerial vehicle 300 through the attitude control and / or the position control of the unmanned aerial vehicle 300 to control the operation of the unmanned aerial vehicle 300 at the corresponding starting point along the previously selected (or selected) final flight path. The unmanned aerial vehicle 300 is moved (or operated / flighted) to a destination.
일 예로, 제어부(360)는 선택된 제 1 최종 운항 경로(예를 들어 출발지 - B1 - B2 - ... - BM - 목적지까지의 경로)를 따라 이동하도록 해당 무인 비행체(300)의 동작을 제어한다(S540).For example, the controller 360 may operate the unmanned aerial vehicle 300 to move along the selected first final flight path (for example, a departure point-B 1 -B 2 -...-B M -a path to a destination). It controls (S540).
이후, GPS 수신기(320)는 무인 비행체(300)가 목적지로 운항(또는 비행)하는 중에 해당 무인 비행체(300)의 현재 위치를 실시간으로 확인한다.Thereafter, the GPS receiver 320 checks the current position of the unmanned aerial vehicle 300 in real time while the unmanned aerial vehicle 300 is sailing (or flying) to a destination.
즉, GPS 수신기(320)는 위성으로부터 전송된 GPS 신호를 수신하고, 수신된 GPS 신호에 포함된 경도 좌표 및 위도 좌표를 근거로 무인 비행체(300)의 위치 데이터를 실시간으로 발생(또는 생성/확인)시킨다.That is, the GPS receiver 320 receives the GPS signal transmitted from the satellite, and generates (or generates / confirms) the location data of the unmanned aerial vehicle 300 in real time based on the longitude coordinate and the latitude coordinate included in the received GPS signal. )
일 예로, GPS 수신기(320)는 도 6에 도시된 경로 B에 해당하는 제 1 최종 운항 경로로 운행 중인 무인 비행체(300)의 관측소 B1 지점에서의 위치 정보(예를 들어 관측소 B1 지점에 대응하는 위도 및 경도 정보)를 생성한다(S550).In one embodiment, GPS receiver 320 is in the position information (for example stations B 1 point in the station B 1 point of the first unmanned air vehicle 300 is being operated as the final flight path for the path B shown in Figure 6 Corresponding latitude and longitude information) is generated (S550).
또한, 센서부(330)는 무인 비행체(300)가 위치한 지역(또는 영역)의 습도, 기온, 풍향, 풍속, 강우 발생 여부, 낙뢰 발생 여부, 무인 비행체(300)에 구비된 연료 저장부(또는 배터리)(미도시)의 잔량(또는 상태) 등을 포함하는 관측값을 각각 측정(또는 수집)한다.In addition, the sensor unit 330 may be a humidity storage area (or region) where the unmanned aerial vehicle 300 is located, humidity, temperature, wind direction, wind speed, rainfall occurrence, lightning strike, fuel storage unit provided in the unmanned aerial vehicle 300 (or Each measured value (or collected) including the remaining amount (or state) of the battery (not shown) is measured.
일 예로, 센서부(330)는 도 6에 도시된 경로 B에 해당하는 제 1 최종 운항 경로로 운행 중인 무인 비행체(300)의 관측소 B1 지점에서의 습도, 기온, 풍향, 풍속, 강우 발생 여부, 낙뢰 발생 여부, 무인 비행체(300)의 배터리 잔량 등을 각각 측정한다(S560).For example, the sensor unit 330 may generate humidity, temperature, wind direction, wind speed, and rainfall at the station B 1 of the unmanned aerial vehicle 300 which is operating on the first final operation path corresponding to the path B shown in FIG. 6. In operation S560, a lightning strike occurs and a battery remaining amount of the unmanned aerial vehicle 300 is measured.
이후, 제어부(360)는 GPS 수신기(320)를 통해 발생된(또는 생성된) 실시간 무인 비행체(300)의 위치 정보, 센서부(330)를 통해 측정되는 실시간 관측값 등을 근거로 미리 설정된 긴급 이벤트 발생 여부를 확인(또는 판단)한다. 여기서, 긴급 이벤트는 측정된 풍속이 풍속 임계값을 초과하는 경우, 강우가 발생하는 경우, 낙뢰가 발생하는 경우, 측정된 연료 저장부(또는 배터리)의 잔량(또는 상태)이 무인 비행체(300)의 현재 위치에서 목적지까지 운항이 불가능한 경우 등을 포함한다.Subsequently, the control unit 360 is an emergency set in advance based on the location information of the real-time unmanned aerial vehicle 300 (or generated) generated by the GPS receiver 320 and the real-time observation value measured by the sensor unit 330. Check (or determine) whether an event has occurred. Here, the emergency event is the unmanned air vehicle 300 when the measured wind speed exceeds the wind speed threshold value, when rainfall occurs, when a lightning strike occurs, the remaining amount (or state) of the measured fuel storage (or battery) is unmanned vehicle 300 This includes cases where the flight from the current location to the destination is impossible.
일 예로, 제어부(360)는 도 6에 도시된 경로 B에 해당하는 제 1 최종 운항 경로로 운행 중인 무인 비행체(300)의 관측소 B1 지점에서 측정된 풍속이 풍속 임계값을 초과하는지 여부를 확인한다.As an example, the controller 360 checks whether the wind speed measured at the station B 1 point of the unmanned aerial vehicle 300 operating in the first final operating path corresponding to the route B shown in FIG. 6 exceeds the wind speed threshold. do.
다른 일 예로, 제어부(360)는 도 6에 도시된 경로 B에 해당하는 제 1 최종 운항 경로로 운행 중인 무인 비행체(300)의 관측소 B1 지점에서 강우 측정되는지 여부를 확인한다.As another example, the controller 360 confirms whether or not rainfall measurement is performed at the station B 1 point of the unmanned aerial vehicle 300 which is operating on the first final flight path corresponding to the path B shown in FIG. 6.
또 다른 일 예로, 제어부(360)는 도 6에 도시된 경로 B에 해당하는 제 1 최종 운항 경로로 운행 중인 무인 비행체(300)의 관측소 B1 지점에서 낙뢰가 발생하는지 여부를 확인한다.As another example, the controller 360 checks whether a lightning strike occurs at the station B 1 point of the unmanned aerial vehicle 300 which is operating on the first final flight path corresponding to the path B shown in FIG. 6.
또 다른 일 예로, 제어부(360)는 도 6에 도시된 경로 B에 해당하는 제 1 최종 운항 경로로 운행 중인 무인 비행체(300)의 관측소 B7 지점에서 측정된 무인 비행체(300)의 배터리 잔량이 현재 위치에서 목적지까지 운항 가능한지 여부를 확인한다(S570).As another example, the controller 360 may determine that the battery remaining amount of the unmanned aerial vehicle 300 measured at the station B 7 point of the unmanned aerial vehicle 300 operating in the first final operating path corresponding to the route B shown in FIG. Check whether the flight is possible from the current location to the destination (S570).
확인 결과(또는 판단 결과), 미리 설정된 긴급 이벤트가 발생하지 않는 경우, 제어부(360)는 앞선 GPS 수신기(320)를 통해 무인 비행체(300)의 현재 위치를 확인하고, 센서부(330)를 통해 무인 비행체(300)가 위치한 지역의 다양한 관측값을 측정하는 과정으로 복귀한다.As a result of the check (or determination), if a preset emergency event does not occur, the control unit 360 checks the current position of the unmanned aerial vehicle 300 through the preceding GPS receiver 320 and through the sensor unit 330. Return to the process of measuring a variety of observations of the area where the unmanned aerial vehicle 300 is located.
일 예로, 도 6에 도시된 경로 B에 해당하는 제 1 최종 운항 경로로 운행 중인 무인 비행체(300)의 관측소 B1 지점에서 측정된 풍속이 풍속 임계값보다 작고, 해당 지점에서 강우 및 낙뢰가 발생(또는 측정)되지 않고, 해당 지점에서 측정된 무인 비행체(300)의 배터리 잔량이 현재 위치에서 목적지까지 운항 가능한 상태일 때, 제어부(360)는 앞선 GPS 수신기(320)를 통해 무인 비행체(300)의 현재 위치를 확인하는 단계(예를 들어 S550 단계)로 복귀한다(S580).For example, the wind speed measured at the station B 1 point of the unmanned aerial vehicle 300 operating in the first final operating path corresponding to the path B shown in FIG. 6 is smaller than the wind speed threshold, and rainfall and lightning occur at that point. (Or not measured), and when the battery level of the unmanned aerial vehicle 300 measured at the corresponding point is in a state capable of operating from the current position to the destination, the controller 360 controls the unmanned aerial vehicle 300 through the preceding GPS receiver 320. The process returns to the step of checking the current position of (for example, step S550) (S580).
또한, 확인 결과(또는 판단 결과), 미리 설정된 긴급 이벤트가 발생하는 경우, 제어부(360)는 서버(200)로부터 추가로 제공되는 관측소별 복수의 추가 기상 정보, GPS 수신기(320)를 통해 확인된 무인 비행체(300)의 현재 위치, 센서부(330)를 통해 측정된 다양한 관측값, 목적지(또는 목적지 정보, 목적지에 대응하는 위도 및 경도 정보) 등을 근거로 운항 경로(또는 비행 경로)를 재탐색한다.In addition, when a check result (or determination result), a preset emergency event occurs, the control unit 360 is confirmed through the GPS receiver 320, a plurality of additional weather information for each station additionally provided from the server 200 Based on the current position of the unmanned aerial vehicle 300, various observation values measured by the sensor unit 330, the destination (or destination information, latitude and longitude information corresponding to the destination), etc. Search.
즉, 확인 결과(또는 판단 결과), 미리 설정된 긴급 이벤트가 발생하는 경우, 제어부(360)는 관측소별 복수의 추가 기상 정보, GPS 수신기(320)를 통해 확인된 무인 비행체(300)의 현재 위치, 센서부(330)를 통해 측정된 다양한 관측값, 목적지(또는 목적지 정보, 목적지에 대응하는 위도 및 경도 정보) 등을 근거로 현재 위치로부터 목적지까지 운항가능한 하나 이상의 안전한 경로를 재확인하고, 재확인된 현재 위치로부터 목적지까지 운항가능한 하나 이상의 안전한 경로를 근거로 현재 위치로부터 목적지까지의 운항 경로를 재탐색한다.That is, when a confirmation result (or determination result), a preset emergency event occurs, the controller 360 is a plurality of additional weather information for each station, the current position of the unmanned aerial vehicle 300 confirmed through the GPS receiver 320, Based on the various observation values measured by the sensor unit 330, the destination (or destination information, latitude and longitude information corresponding to the destination), etc., one or more safe routes that can be operated from the current location to the destination are reconfirmed, and the reconfirmed current Rediscover the navigation route from the current location to the destination based on one or more safe routes capable of navigation from the location to the destination.
또한, 제어부(350)는 해당 무인 비행체(300)의 자세 제어 및/또는 위치 제어를 통해 해당 무인 비행체(300)의 동작을 제어하여, 재탐색된 운항 경로를 따라 무인 비행체(300)의 현재 위치에서 목적지까지 해당 무인 비행체(300)를 이동(또는 운항/비행)시킨다.In addition, the control unit 350 controls the operation of the unmanned aerial vehicle 300 through the attitude control and / or position control of the unmanned aerial vehicle 300, and thus the current position of the unmanned aerial vehicle 300 along the re-discovered flight path. To move (or operate / fly) the unmanned aerial vehicle 300 to the destination.
일 예로, 도 6에 도시된 경로 B에 해당하는 제 1 최종 운항 경로로 운행 중인 무인 비행체(300)의 관측소 B1 지점에서 측정된 풍속이 풍속 임계값을 초과하고 해당 관측소 B1 지점에서 강우가 측정될 때, 제어부(360)는 서버(200)로부터 추가로 제공되는 관측소별 복수의 추가 기상 정보, GPS 수신기(320)를 통해 확인된 무인 비행체(300)의 현재 위치, 센서부(330)를 통해 측정된 다양한 관측값, 목적지(또는 목적지 정보, 목적지에 대응하는 위도 및 경도 정보) 등을 근거로 현재 위치로부터 목적지까지 운항가능한 하나 이상의 안전한 경로를 재확인한다.For example, the wind speed measured at the station B 1 point of the unmanned aerial vehicle 300 operating in the first final operating path corresponding to the path B shown in FIG. 6 exceeds the wind speed threshold and the rainfall at the corresponding station B 1 point When measured, the control unit 360 is a plurality of additional weather information for each station further provided from the server 200, the current position of the unmanned aerial vehicle 300 confirmed through the GPS receiver 320, the sensor unit 330 Reconfirm one or more safe routes from the current location to the destination based on various observations, destinations (or destination information, latitude and longitude information corresponding to the destination), and the like.
또한, 제어부(360)는 재확인된 현재 위치로부터 목적지까지 운항가능한 하나 이상의 안전한 경로에 대해, 경로별 총 유효 시간 및/또는 경로별 연료 소모량을 산출한다.In addition, the controller 360 calculates the total valid time for each route and / or the fuel consumption for each route for one or more safe routes that can be operated from the reconfirmed current position to the destination.
또한, 제어부(360)는 산출된 경로별 총 유효 시간 중에서 최단 시간에 해당하는 현재 위치인 B1으로부터 목적지까지의 경로(또는 현재 위치부터 목적지까지의 복수의 최단 시간에 해당하는 경로를 조합하여)인 B1 - A2 - A5 - ... - BM-1 - BM - 목적지까지의 경로를 재탐색 최종 운항 경로(또는 제 3 최종 운항 경로)로 선택(또는 선정)한다.In addition, the controller 360 may include a path from the current location B 1 corresponding to the shortest time to the destination (or a combination of a plurality of shortest times from the current location to the destination) of the calculated total effective time for each route. B 1 -A 2 -A 5 -...- B M-1 -B M -Select (or select) the route to the destination as the final search route (or third final route).
이때, 제어부(360)는 산출된 경로별 연료 소모량 중에서 최소 연료를 소모하는 해당 현재 위치인 B1으로부터 목적지까지의 경로인 B1 - A2 - B54 - ... - BM - 목적지까지의 경로를 재탐색 최종 운항 경로(또는 제 4 최종 운항 경로)로 선택(또는 선정)할 수도 있다.At this time, the control unit 360 is the path from the current position B 1 that consumes the minimum fuel among the calculated fuel consumption for each route to the destination B 1 -A 2 -B 54-...- B M -to the destination The route may be selected (or selected) as the re-search final flight route (or fourth final flight route).
또한, 제어부(360)는 재탐색된 제 3 최종 운항 경로(예를 들어 무인 비행체(300)의 현재 위치인 B1 - A2 - A5 - ... - BM-1 - BM - 목적지까지의 경로)를 따라 이동하도록 해당 무인 비행체(300)의 동작을 제어한다(S590).In addition, the controller 360 may rescan the third final flight route (for example, B 1 -A 2 -A 5 -...- B M-1 -B M -which is the current position of the unmanned aerial vehicle 300). The operation of the unmanned aerial vehicle 300 is controlled to move along the path (S590).
또한, 앞선 미리 설정된 긴급 이벤트가 발생하는 경우 또는 긴급 이벤트 발생에 따라 경로를 재탐색하는 경우에 있어서, 센서부(330)를 통해 측정되는 실시간 관측값 등을 근거로 무인 비행체(300)의 현재 위치를 기준으로 목적지 도착이나 출발지 회항이 어렵다고 판단되는 경우, 제어부(360)는 센서부(330)를 통해 측정되는 관측값에 포함된 풍향 및/또는 풍속을 근거로 실질 연료(또는 배터리) 소모가 최소치인 인근 관측소(100)(또는 현재 위치로부터 운항가능한 하나 이상의 안전한 경로 중에서 실질 연료 소모가 최소치인 관측소/최단 거리인 관측소/최소 경유 경로에 해당하는 관측소/최소 경유 경로를 갖는 관측소)를 확인한다.In addition, in the case where a previously set emergency event occurs or when re-navigating a path according to the occurrence of an emergency event, the current position of the unmanned aerial vehicle 300 based on a real-time observation value measured through the sensor unit 330 or the like. If it is determined that the arrival or departure of the destination is difficult based on the reference point, the controller 360 minimizes the actual fuel (or battery) consumption based on the wind direction and / or wind speed included in the observation value measured by the sensor unit 330. Identify a nearby station 100 (or a station with a minimum fuel route / minimum station / minimum pass / stop station) of one or more safe routes that can be operated from the current location.
또한, 제어부(360)는 확인된 실질 연료(또는 배터리) 소모가 최소치인 관측소(100)또는 현재 위치로부터 운항가능한 하나 이상의 안전한 경로 중에서 실질 연료 소모가 최소치인 관측소/최단 거리인 관측소/최소 경유 경로에 해당하는 관측소/최소 경유 경로를 갖는 관측소)로 자동 회항하도록 회항 경로를 업데이트(또는 재탐색)한다. 이때, 앞선 미리 설정된 긴급 이벤트가 발생하는 경우 또는 긴급 이벤트 발생에 따라 경로를 재탐색하는 경우에 있어서, 센서부(330)를 통해 측정되는 실시간 관측값 등을 근거로 무인 비행체(300)의 현재 위치를 기준으로 목적지 도착이 어렵다고 판단되는 경우, 제어부(360)는 현재 위치로부터 운항가능한 하나 이상의 안전한 경로를 근거로 출발지로 회항하도록 회항 경로를 업데이트할 수도 있다.In addition, the controller 360 may include a station 100 having a minimum real fuel (or battery) identified value or a station / minimum pass path having a minimum station / minimum distance of real fuel consumption among one or more safe routes operable from the current location. Update (or rescan) the route to automatically return to the station corresponding to the station / station with the least route. At this time, in the case where a previously set emergency event occurs or when re-navigating the path according to the occurrence of the emergency event, the current position of the unmanned aerial vehicle 300 based on a real-time observation value measured through the sensor unit 330 or the like. If it is determined that the arrival of the destination is difficult, the controller 360 may update the return route to return to the starting point based on one or more safe routes that can be operated from the current location.
또한, 제어부(360)는 해당 무인 비행체(300)의 자세 제어 및/또는 위치 제어를 통해 해당 무인 비행체(300)의 동작을 제어하여, 업데이트된 회항 경로를 따라 무인 비행체(300)의 현재 위치에서 회항지(또는 실질 연료(또는 배터리) 소모가 최소치인 관측소(100)/현재 위치로부터 운항가능한 하나 이상의 안전한 경로 중에서 실질 연료 소모가 최소치인 관측소/최단 거리인 관측소/최소 경유 경로에 해당하는 관측소/최소 경유 경로를 갖는 관측소)까지 해당 무인 비행체(300)를 이동(또는 운항/비행)시킨다.In addition, the controller 360 controls the operation of the unmanned aerial vehicle 300 through the attitude control and / or the position control of the unmanned aerial vehicle 300, and at the current position of the unmanned aerial vehicle 300 along the updated return path. Observatory 100 with minimum fuel (or real fuel (or battery)) consumption / one of the one or more safe routes that can be operated from the current location / minimal station / minimum station / minimum station / The unmanned aerial vehicle 300 is moved (or operated / flighted) to a station having a minimum transit route.
일 예로, 도 6에 도시된 경로 B에 해당하는 제 1 최종 운항 경로로 운행 중인 무인 비행체(300)의 관측소 B7 지점에서 측정된 무인 비행체(300)의 배터리 잔량이 현재 위치인 B7 지점에서 목적지까지 운항이 불가능한 상태일 때, 제어부(360)는 현재 위치로부터 운항가능한 하나 이상의 안전한 경로 중에서 실질 연료 소모가 최소치인 관측소 A9를 확인하고, 확인된 실질 연료 소모가 최소치인 관측소 A9로 자동 회항하도록 회항 경로를 업데이트한다.For example, in the B 7 points battery when the current position of the first unmanned air vehicle (300) measured at the station B 7 point of the unmanned air vehicle 300 is being operated as the final flight path for the path B shown in Figure 6 when the route is unavailable state to a destination, automatically by the control unit 360 is a station a 9 determine the route of the real fuel consumption is the minimum value among the one or more trusted path available station a 9 from the present position, and the consumption the identified actual fuel is minimum Update the route to return.
또한, 제어부(360)는 업데이트된 회항 경로(예를 들어 무인 비행체(300)의 현재 위치인 B7 - A9까지의 경로)를 따라 이동하도록 해당 무인 비행체(300)의 동작을 제어한다.In addition, the controller 360 controls the operation of the unmanned aerial vehicle 300 to move along the updated return path (for example, a path from the current position of the unmanned aerial vehicle B 7 to A 9 ).
다른 일 예로, 도 6에 도시된 경로 B에 해당하는 제 1 최종 운항 경로로 운행 중인 무인 비행체(300)의 관측소 B1 지점에서 측정된 풍속이 풍속 임계값을 초과하고 해당 관측소 B1 지점에서 강우가 측정될 때, 제어부(360)는 서버(200)로부터 추가로 제공되는 관측소별 복수의 추가 기상 정보, GPS 수신기(320)를 통해 확인된 무인 비행체(300)의 현재 위치, 센서부(330)를 통해 측정된 다양한 관측값, 목적지(또는 목적지 정보, 목적지에 대응하는 위도 및 경도 정보) 등을 근거로 현재 위치로부터 목적지까지 운항가능한 하나 이상의 안전한 경로를 재확인한다.As another example, the wind speed measured at the station B 1 point of the unmanned aerial vehicle 300 operating in the first final operating path corresponding to the path B shown in FIG. 6 exceeds the wind speed threshold and the rainfall at the corresponding station B 1 point. Is measured, the controller 360 is a plurality of additional weather information for each station further provided from the server 200, the current position of the unmanned aerial vehicle 300 confirmed through the GPS receiver 320, the sensor unit 330 Reconfirm one or more safe routes that can be navigated from the current location to the destination based on various observations, destinations (or destination information, latitude and longitude information corresponding to the destination), and the like.
또한, 제어부(360)는 재확인된 현재 위치로부터 목적지까지 운항가능한 하나 이상의 안전한 경로에 대해, 경로별 총 유효 시간 및/또는 경로별 연료 소모량을 산출한다.In addition, the controller 360 calculates the total valid time for each route and / or the fuel consumption for each route for one or more safe routes that can be operated from the reconfirmed current position to the destination.
또한, 산출된 경로별 연료 소모량 및 앞서 측정된 무인 비행체(300)의 배터리 잔량을 근거로, 해당 무인 비행체(300)의 배터리 잔량에 의해 경로별 연료 소모량에 따라 현재 위치에서 목적지까지의 운항이 불가능한 상태일 때, 제어부(360)는 현재 위치인 B1 지점에서 출발지로 회항하도록 회항 경로를 업데이트한다.In addition, based on the calculated fuel consumption for each route and the battery remaining amount of the unmanned aerial vehicle 300 previously measured, it is impossible to operate from the current location to the destination according to the fuel consumption for each path by the remaining battery capacity of the unmanned aerial vehicle 300. In the state, the controller 360 updates the return path to return to the starting point from the current location B 1 .
또한, 제어부(360)는 업데이트된 회항 경로(예를 들어 무인 비행체(300)의 현재 위치인 B1 - 출발지까지의 경로)를 따라 이동하도록 해당 무인 비행체(300)의 동작을 제어한다(S600).In addition, the controller 360 controls the operation of the unmanned aerial vehicle 300 to move along the updated return path (for example, the path from the current position of the unmanned aerial vehicle B 1 to the starting point) (S600). .
본 발명의 실시예에 따른 기상 정보를 이용한 무인 비행체의 경로 안내 시스템은 컴퓨터 프로그램으로 작성 가능하며, 컴퓨터 프로그램을 구성하는 코드들 및 코드 세그먼트들은 당해 분야의 컴퓨터 프로그래머에 의하여 용이하게 추론될 수 있다. 또한, 해당 컴퓨터 프로그램은 컴퓨터가 읽을 수 있는 정보저장매체(computer readable media)에 저장되고, 컴퓨터나 본 발명의 실시예에 따른 관측소, 서버, 무인 비행체 등에 의하여 읽혀지고 실행됨으로써 기상 정보를 이용한 무인 비행체의 경로 안내 시스템을 구현할 수 있다.The path guidance system for an unmanned aerial vehicle using weather information according to an embodiment of the present invention can be prepared by a computer program, and codes and code segments constituting the computer program can be easily inferred by a computer programmer in the art. In addition, the computer program is stored in a computer readable media, and is read and executed by a computer or an observation station, a server, an unmanned aerial vehicle, etc. according to an embodiment of the present invention to use an unmanned aerial vehicle using weather information. The route guidance system can be implemented.
정보저장매체는 자기 기록매체, 광 기록매체 및 캐리어 웨이브 매체를 포함한다. 본 발명의 실시예에 따른 기상 정보를 이용한 무인 비행체의 경로 안내 시스템을 구현하는 컴퓨터 프로그램은 관측소, 서버, 무인 비행체 등의 내장 메모리에 저장 및 설치될 수 있다. 또는, 본 발명의 실시예에 따른 기상 정보를 이용한 무인 비행체의 경로 안내 시스템을 구현하는 컴퓨터 프로그램을 저장 및 설치한 스마트 카드 등의 외장 메모리가 인터페이스를 통해 기상 정보를 이용한 무인 비행체의 경로 안내 시스템 등에 장착될 수도 있다.The information storage medium includes a magnetic recording medium, an optical recording medium and a carrier wave medium. A computer program for implementing a route guidance system for an unmanned aerial vehicle using weather information according to an embodiment of the present invention may be stored and installed in an internal memory of an observation station, a server, an unmanned aerial vehicle, and the like. Alternatively, an external memory such as a smart card that stores and installs a computer program for implementing a route guidance system for an unmanned aerial vehicle using meteorological information according to an embodiment of the present invention may be a route guidance system for an unmanned aerial vehicle using weather information through an interface. It may be mounted.
본 발명의 실시예는 앞서 설명된 바와 같이, 무인 비행체의 출발지와 목적지 사이에 존재하는 기지국 기반 실시간으로 관측되는 조밀한 복수의 기상 관측소의 기상 정보를 이용하여 무인 비행체의 운항 여부를 결정하고, 무인 비행체에 대한 운항이 결정되는 경우 운행 가능한 복수의 경로에 대한 유효 최단 시간 경로 또는 최적 연료 소모 경로에 해당하는 최적의 경로를 제공하여, 무인 비행체의 운행 여부를 정밀하게 판별할 수 있으며, 경제적이고 안정적인 운행을 위한 경로를 선택할 수 있다.As described above, the embodiment of the present invention determines whether the unmanned aerial vehicle is operated by using weather information of a plurality of dense weather stations which are observed in real time based on a base station existing between the starting point and the destination of the unmanned aerial vehicle. When the operation of the vehicle is determined, the optimal path corresponding to the effective shortest time path or optimal fuel consumption path for the plurality of operable paths can be provided to precisely determine whether the unmanned vehicle is operated, and is economical and stable You can choose a route for your trip.
또한, 본 발명의 실시예는 앞서 설명된 바와 같이, 운항 중 운항 예정 경로 상에서의 실시간 관측값이 미리 설정된 기준값을 일정 시간 초과하거나 운항 예정 경로 상에서 새롭게 강풍이나 강수나 낙뢰가 관측되거나, 무인 비행체에 탑재된 센서 등을 통해 지속 운항이 어렵다고 판단되는 경우, 운항 경로를 재탐색하거나 회항 경로를 탐색하여, 기상 악화, 돌발적 상황, 긴급한 상황 등에서 무인 비행체의 손망실을 최소화할 수 있다.In addition, as described above, the embodiment of the present invention, the real-time observation value on the scheduled flight route during the flight exceeds a predetermined reference value for a predetermined time, a new strong wind, precipitation or lightning is observed on the scheduled flight route, If it is determined that continuous operation is difficult through onboard sensors, it is possible to minimize the loss of unmanned aerial vehicles in weather deterioration, accidental situation, emergency situation by re-navigating the navigation route or searching for a return route.
전술된 내용은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description may be modified and modified by those skilled in the art without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.
본 발명은 무인 비행체의 출발지와 목적지 사이에 존재하는 기지국 기반 실시간으로 관측되는 조밀한 복수의 기상 관측소의 기상 정보를 이용하여 무인 비행체의 운항 여부를 결정하고, 무인 비행체에 대한 운항이 결정되는 경우 운행 가능한 복수의 경로에 대한 유효 최단 시간 경로 또는 최적 연료 소모 경로에 해당하는 최적의 경로를 제공하며, 운항 중 운항 예정 경로 상에서의 실시간 관측값이 미리 설정된 기준값을 일정 시간 초과하거나 운항 예정 경로 상에서 새롭게 강풍이나 강수나 낙뢰가 관측되거나, 무인 비행체에 탑재된 센서 등을 통해 지속 운항이 어렵다고 판단되는 경우, 운항 경로를 재탐색하거나 회항 경로를 탐색함으로써, 무인 비행체의 운행 여부를 정밀하게 판별할 수 있으며, 경제적이고 안정적인 운행을 위한 경로를 선택할 수 있는 것으로, UAV(unmanned aerial vehicle) 분야, 비행체 분야, 쿼드로터 분야 등에서 광범위하게 이용될 수 있다.The present invention determines whether the unmanned aerial vehicle is operated by using weather information of a plurality of dense weather stations that are observed in real time based on a base station existing between the origin and destination of the unmanned aerial vehicle, and operates when the operation of the unmanned aerial vehicle is determined. It provides an optimal route corresponding to an effective shortest time route or an optimal fuel consumption route for a plurality of possible routes, and real-time observations on a scheduled route during a flight exceed a predetermined reference value or a new high wind on the scheduled route. In the event that precipitation or lightning strikes are observed, or if it is determined that continuous operation is difficult through sensors mounted on an unmanned aerial vehicle, it is possible to precisely determine whether the unmanned aerial vehicle is operated by re-navigating the navigation route or searching for a return route. You can choose a route for economical and stable operation It may be widely used in the field of unmanned aerial vehicle (UAV), aircraft, quadrotor, and the like.

Claims (16)

  1. GPS 수신기에 의해, 출발지부터 목적지까지 탐색된 운항 경로를 따라 이동 중인 무인 비행체의 위치 정보를 발생시키는 단계;Generating, by a GPS receiver, location information of an unmanned aerial vehicle moving along a navigation route searched from a starting point to a destination;
    센서부에 의해, 상기 무인 비행체가 위치한 지역의 관측값을 측정하는 단계;Measuring, by a sensor unit, an observation value of an area where the unmanned aerial vehicle is located;
    제어부에 의해, 상기 발생된 무인 비행체의 위치 정보 및 상기 측정된 관측값을 근거로 긴급 이벤트 발생 여부를 확인하는 단계;Confirming, by a control unit, whether an emergency event occurs based on the generated position information of the unmanned aerial vehicle and the measured observation value;
    상기 제어부에 의해, 상기 확인 결과, 상기 긴급 이벤트가 발생할 때, 서버로부터 추가로 제공되는 관측소별 복수의 추가 기상 정보, 상기 발생된 무인 비행체의 위치 정보, 상기 측정된 관측값 및 목적지 정보를 근거로 운항 경로를 재탐색하는 단계; 및By the controller, when the emergency event occurs, a plurality of additional weather information for each station additionally provided from a server, location information of the generated unmanned aerial vehicle, the measured observation value, and the destination information, when the emergency event occurs Rediscovering the navigation route; And
    상기 제어부에 의해, 상기 무인 비행체의 자세 제어 및 위치 제어 중 하나 이상의 제어를 통해, 상기 재탐색된 운항 경로를 따라 상기 무인 비행체를 이동시키는 단계를 포함하는 기상 정보를 이용한 무인 비행체의 경로 안내 방법.And moving, by the controller, the unmanned aerial vehicle along the re-discovered flight path through at least one of attitude control and position control of the unmanned aerial vehicle.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 출발지부터 목적지까지 탐색된 운항 경로는,The navigation route searched from the departure point to the destination is
    통신부에 의해, 서버로부터 제공되는 출발지부터 목적지까지의 최단 경로를 기준으로 설정된 반경 내에 위치한 복수의 관측소에서 측정된 복수의 기상 정보를 수신하는 과정;Receiving, by the communication unit, a plurality of weather information measured at a plurality of stations located within a radius set based on a shortest path from a source to a destination provided from a server;
    상기 제어부에 의해, 상기 수신된 복수의 기상 정보를 근거로 상기 출발지부터 목적지까지의 운항 여부를 결정하는 과정; 및Determining, by the controller, whether the flight is from the departure point to the destination based on the received plurality of weather information; And
    상기 제어부에 의해, 상기 출발지로부터 목적지까지 운항가능한 하나 이상의 안전한 경로가 존재하여 운항이 결정된 상태일 때, 상기 운항가능한 하나 이상의 안전한 경로를 근거로 출발지부터 목적지까지의 운항 경로를 탐색하는 과정을 통해 생성된 것을 특징으로 하는 기상 정보를 이용한 무인 비행체의 경로 안내 방법.By the controller, when there is at least one safe route that can be operated from the departure point to the destination and is determined to be operated, the controller generates the navigation route from the starting point to the destination based on the at least one safe route that can be operated. Route guidance method using an unmanned aerial vehicle, characterized in that the weather.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 운항 여부를 결정하는 과정은,The process of determining whether the operation is,
    상기 제어부에 의해, 상기 출발지에서 목적지까지의 복수의 경로 상의 복수의 기상 정보를 근거로 출발지에서 목적지까지의 복수의 경로 중에서 회피 경로를 제거하는 과정;Removing, by the control unit, an avoiding route from a plurality of routes from a departure point to a destination based on a plurality of weather information on the plurality of routes from the departure point to the destination;
    상기 제어부에 의해, 상기 복수의 경로 중에서 회피 경로를 제거한 후 남아 있는 경로가 존재할 때, 상기 남아 있는 하나 이상의 경로를 안전한 경로로 판정하는 과정;Determining, by the controller, the one or more remaining paths as a safe path when a remaining path exists after removing an avoiding path among the plurality of paths;
    상기 제어부에 의해, 상기 출발지로부터 목적지까지 운항가능한 하나 이상의 안전한 경로가 존재할 때, 무인 비행에의 운항이 가능한 상태로 결정하는 과정; 및Determining, by the controller, a state in which an unmanned flight is possible when there is at least one safe route that can be operated from the origin to the destination; And
    상기 제어부에 의해, 상기 출발지로부터 목적지까지 운항가능한 하나 이상의 안전한 경로가 존재하지 않을 때, 상기 무인 비행체의 운항이 불가능한 상태로 결정하는 과정을 포함하는 것을 특징으로 하는 기상 정보를 이용한 무인 비행체의 경로 안내 방법.Determining, by the controller, that the unmanned aerial vehicle is inoperable when there is no one or more safe routes that can be operated from the starting point to the destination, the route guidance of the unmanned aerial vehicle using meteorological information Way.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 회피 경로는,The avoidance path is,
    출발지에서 목적지까지의 복수의 경로 중에서 관측소별 기상 정보에 포함된 풍속이 미리 설정된 풍속 임계값을 초과하는 경로, 현재 강우가 관측되는 기상 정보에 대응하는 경로, 현재 낙뢰가 관측되는 기상 정보에 대응하는 경로, 상기 무인 비행체의 운행 속도에 따라 상기 복수의 경로에 상기 무인 비행체가 도달하는 시점의 해당 경로에 대한 예보 정보를 근거로 상기 예보 정보에 포함된 풍속이 상기 풍속 임계값을 초과하는 경로, 상기 예보 정보에 포함된 강우 예상 정보가 미리 설정된 강우 임계값을 초과하는 경로 및 상기 예보 정보에 포함된 낙뢰 발생 정보가 미리 설정된 낙뢰 발생 임계값을 초과하는 경로 중 적어도 하나를 포함하는 것을 특징으로 하는 기상 정보를 이용한 무인 비행체의 경로 안내 방법.Among the plurality of paths from the starting point to the destination, the wind speed included in the weather information for each station exceeds a preset wind speed threshold value, the path corresponding to the weather information for which current rainfall is observed, and the weather information for which current lightning is observed. A path in which the wind speed included in the forecast information exceeds the wind speed threshold based on a forecast information on a corresponding path at the time when the unmanned aerial vehicle reaches the plurality of paths according to a path and a driving speed of the unmanned aerial vehicle; Weather characterized in that the rain prediction information included in the forecast information includes at least one of a path exceeding a predetermined rainfall threshold value, and a path in which the lightning occurrence information included in the forecast information exceeds a predetermined lightning occurrence threshold value. Route guidance method of unmanned aerial vehicle using information.
  5. 제 2 항에 있어서,The method of claim 2,
    상기 출발지부터 목적지까지의 운항 경로를 탐색하는 과정은,The process of searching for a flight route from the departure point to the destination,
    상기 제어부에 의해, 상기 운항가능한 하나 이상의 안전한 경로에 대해, 경로별 총 유효 시간을 산출하는 과정; 및Calculating, by the controller, a total valid time for each route of the at least one safe route that can be operated; And
    상기 제어부에 의해, 상기 산출된 경로별 총 유효 시간 중에서 최단 시간에 해당하는 출발지부터 목적지까지의 경로를 최종 운항 경로로 선택하는 과정을 포함하는 것을 특징으로 하는 기상 정보를 이용한 무인 비행체의 경로 안내 방법.And selecting, by the controller, a route from the calculated starting time to the destination among the calculated total valid time for each route as a final navigation route. .
  6. 제 2 항에 있어서,The method of claim 2,
    상기 출발지부터 목적지까지의 운항 경로를 탐색하는 과정은,The process of searching for a flight route from the departure point to the destination,
    상기 제어부에 의해, 상기 운항가능한 하나 이상의 안전한 경로에 대해, 경로별 연료 소모량을 산출하는 과정; 및Calculating, by the controller, fuel consumption for each route of the at least one safe route that can be operated; And
    상기 제어부에 의해, 상기 산출된 경로별 연료 소모량 중에서 최소 연료를 소모하는 출발지부터 목적지까지의 경로를 최종 운항 경로로 선택하는 과정을 포함하는 것을 특징으로 하는 기상 정보를 이용한 무인 비행체의 경로 안내 방법.And selecting, by the controller, a route from a calculated starting point of a fuel consumption to a destination among the calculated fuel consumption for each route as a final operating route.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 관측값은,The observation value is,
    상기 무인 비행체가 위치한 지역의 습도, 기온, 풍향, 풍속, 강우 발생 여부, 낙뢰 발생 여부 및 상기 무인 비행체에 구비된 연료 저장부나 배터리의 잔량 또는 상태 중 적어도 하나를 포함하는 것을 특징으로 하는 기상 정보를 이용한 무인 비행체의 경로 안내 방법.Humidity, temperature, wind direction, wind speed, rainfall occurs, whether there is a lightning strike in the area where the unmanned vehicle is located, and weather information, characterized in that it comprises at least one of the remaining amount or state of the fuel storage unit or battery provided in the unmanned vehicle Route guidance method of unmanned aerial vehicle using.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 긴급 이벤트는,The emergency event,
    상기 관측값에 포함된 풍속이 미리 설정된 풍속 임계값을 초과하는 경우, 강우가 발생하는 경우, 낙뢰가 발생하는 경우 및 상기 측정된 연료 저장부나 배터리의 잔량 또는 상태가 상기 무인 비행체의 현재 위치에서 목적지까지 운항이 불가능한 경우 중 적어도 하나를 포함하는 것을 특징으로 하는 기상 정보를 이용한 무인 비행체의 경로 안내 방법.When the wind speed included in the observed value exceeds a preset wind speed threshold, when a rain occurs, when a lightning strike, and the remaining amount or condition of the measured fuel reservoir or battery is the destination at the current position of the unmanned aerial vehicle Route guidance method of the unmanned aerial vehicle using weather information, characterized in that it comprises at least one of when the flight is impossible.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 운항 경로를 재탐색하는 단계는,Re-searching the flight route,
    상기 확인 결과, 상기 긴급 이벤트가 발생할 때, 상기 제어부에 의해, 상기 관측소별 복수의 추가 기상 정보, 상기 발생된 무인 비행체의 위치 정보, 상기 측정된 관측값 및 목적지 정보를 근거로 상기 무인 비행체의 현재 위치로부터 목적지까지 운항가능한 하나 이상의 안전한 경로를 재확인하는 과정; 및As a result of the checking, when the emergency event occurs, the control unit, based on the plurality of additional weather information for each station, the location information of the generated unmanned aerial vehicle, the present observation of the unmanned aerial vehicle based on the measured observation value and the destination information Reconfirming one or more safe routes from the location to the destination; And
    상기 제어부에 의해, 상기 재확인된 상기 무인 비행체의 현재 위치로부터 목적지까지 운항가능한 하나 이상의 안전한 경로를 근거로 상기 무인 비행체의 현재 위치로부터 목적지까지의 운항 경로를 재탐색하는 과정을 포함하는 것을 특징으로 하는 기상 정보를 이용한 무인 비행체의 경로 안내 방법.And re-navigating, by the controller, the navigation route from the current location of the unmanned vehicle to the destination based on one or more safe routes capable of navigation from the current location of the unmanned aerial vehicle to the destination. Route guidance method of unmanned aerial vehicle using weather information.
  10. 제 1 항에 있어서,The method of claim 1,
    상기 제어부에 의해, 상기 긴급 이벤트가 발생하는 경우 또는 상기 운항 경로를 재탐색하는 경우에 있어서 상기 측정된 관측값을 근거로 상기 무인 비행체의 현재 위치를 기준으로 목적지 도착이 어렵다고 판단될 때, 상기 무인 비행체의 현재 위치로부터 운항가능한 하나 이상의 안전한 경로 중에서 실질 연료 소모가 최소치인 관측소, 최단 거리인 관측소 및 최소 경유 경로를 갖는 관측소 중 어느 하나의 관측소를 확인하는 단계;When the emergency event occurs or when the navigation route is re-searched, it is determined by the controller that it is difficult to arrive at a destination based on the current position of the unmanned aerial vehicle based on the measured observation value. Identifying at least one of the stations with the lowest real fuel consumption, the station with the shortest distance, and the station with the least transit route, from among the one or more safe routes navigable from the current position of the vehicle;
    상기 제어부에 의해, 상기 확인된 관측소로 회항하도록 회항 경로를 업데이트하는 단계; 및Updating, by the controller, a return path to return to the identified station; And
    상기 제어부에 의해, 상기 무인 비행체의 자세 제어 및 위치 제어 중 하나 이상의 제어를 통해, 상기 업데이트된 회항 경로를 따라 상기 무인 비행체를 이동시키는 단계를 더 포함하는 것을 특징으로 하는 기상 정보를 이용한 무인 비행체의 경로 안내 방법.And moving, by the control unit, the unmanned aerial vehicle along the updated return path through at least one of attitude control and position control of the unmanned aerial vehicle. How to get directions.
  11. 제 1 항 내지 제 10 항 중 어느 한 항에 따른 방법을 수행하는 컴퓨터 프로그램이 기록된 기록매체.A recording medium having recorded thereon a computer program for performing the method according to any one of claims 1 to 10.
  12. 출발지부터 목적지까지 탐색된 운항 경로를 따라 이동 중인 무인 비행체의 위치 정보를 발생시키는 GPS 수신기;A GPS receiver for generating location information of an unmanned aerial vehicle moving along a navigation route searched from a starting point to a destination;
    상기 무인 비행체가 위치한 지역의 관측값을 측정하는 센서부; 및A sensor unit measuring an observation value of an area where the unmanned aerial vehicle is located; And
    상기 발생된 무인 비행체의 위치 정보 및 상기 측정된 관측값을 근거로 긴급 이벤트 발생 여부를 확인하고, 상기 확인 결과, 상기 긴급 이벤트가 발생할 때, 서버로부터 추가로 제공되는 관측소별 복수의 추가 기상 정보, 상기 발생된 무인 비행체의 위치 정보, 상기 측정된 관측값 및 목적지 정보를 근거로 운항 경로를 재탐색하고, 상기 무인 비행체의 자세 제어 및 위치 제어 중 하나 이상의 제어를 통해, 상기 재탐색된 운항 경로를 따라 상기 무인 비행체를 이동시키는 제어부를 포함하는 기상 정보를 이용한 무인 비행체의 경로 안내 시스템.Confirming whether an emergency event occurs based on the location information of the generated unmanned aerial vehicle and the measured observation value, and as a result of the checking, when the emergency event occurs, a plurality of additional weather information for each station further provided by a server; The navigation path is re-searched based on the generated position information of the unmanned aerial vehicle, the measured observation value and the destination information, and the one or more of the attitude control and the position control of the unmanned aerial vehicle is searched for the re-navigated navigation path. And a path guide system for using the unmanned aerial vehicle using weather information including a control unit for moving the unmanned aerial vehicle.
  13. 제 12 항에 있어서,The method of claim 12,
    상기 관측값은,The observation value is,
    상기 무인 비행체가 위치한 지역의 습도, 기온, 풍향, 풍속, 강우 발생 여부, 낙뢰 발생 여부 및 상기 무인 비행체에 구비된 연료 저장부나 배터리의 잔량 또는 상태 중 적어도 하나를 포함하는 것을 특징으로 하는 기상 정보를 이용한 무인 비행체의 경로 안내 시스템.Humidity, temperature, wind direction, wind speed, rainfall occurs, whether there is a lightning strike in the area where the unmanned vehicle is located, and weather information, characterized in that it comprises at least one of the remaining amount or state of the fuel storage unit or battery provided in the unmanned vehicle Unmanned aerial vehicle route guidance system.
  14. 제 12 항에 있어서,The method of claim 12,
    상기 긴급 이벤트는,The emergency event,
    상기 관측값에 포함된 풍속이 미리 설정된 풍속 임계값을 초과하는 경우, 강우가 발생하는 경우, 낙뢰가 발생하는 경우 및 상기 측정된 연료 저장부나 배터리의 잔량 또는 상태가 상기 무인 비행체의 현재 위치에서 목적지까지 운항이 불가능한 경우 중 적어도 하나를 포함하는 것을 특징으로 하는 기상 정보를 이용한 무인 비행체의 경로 안내 시스템.When the wind speed included in the observed value exceeds a preset wind speed threshold, when a rain occurs, when a lightning strike, and the remaining amount or condition of the measured fuel reservoir or battery is the destination at the current position of the unmanned aerial vehicle Route guidance system for an unmanned aerial vehicle using weather information, characterized in that it comprises at least one of when the flight is impossible until.
  15. 제 12 항에 있어서,The method of claim 12,
    상기 제어부는,The control unit,
    상기 확인 결과, 상기 긴급 이벤트가 발생할 때, 상기 제어부에 의해, 상기 관측소별 복수의 추가 기상 정보, 상기 발생된 무인 비행체의 위치 정보, 상기 측정된 관측값 및 목적지 정보를 근거로 상기 무인 비행체의 현재 위치로부터 목적지까지 운항가능한 하나 이상의 안전한 경로를 재확인하고, 상기 재확인된 상기 무인 비행체의 현재 위치로부터 목적지까지 운항가능한 하나 이상의 안전한 경로를 근거로 상기 무인 비행체의 현재 위치로부터 목적지까지의 운항 경로를 재탐색하는 것을 특징으로 하는 기상 정보를 이용한 무인 비행체의 경로 안내 시스템.As a result of the checking, when the emergency event occurs, the control unit, based on the plurality of additional weather information for each station, the location information of the generated unmanned aerial vehicle, the present observation of the unmanned aerial vehicle based on the measured observation value and the destination information Reconfirm one or more safe routes capable of navigating from a location to a destination, and renavigating the navigation route from the current location of the unmanned vehicle to a destination based on one or more safe routes capable of navigating from the current location of the reconfirmed unmanned aerial vehicle to the destination Route guidance system for an unmanned aerial vehicle using weather information, characterized in that the.
  16. 제 12 항에 있어서,The method of claim 12,
    상기 제어부는,The control unit,
    상기 긴급 이벤트가 발생하는 경우 또는 상기 운항 경로를 재탐색하는 경우에 있어서 상기 측정된 관측값을 근거로 상기 무인 비행체의 현재 위치를 기준으로 목적지 도착이 어렵다고 판단될 때, 상기 무인 비행체의 현재 위치로부터 운항가능한 하나 이상의 안전한 경로 중에서 실질 연료 소모가 최소치인 관측소, 최단 거리인 관측소 및 최소 경유 경로를 갖는 관측소 중 어느 하나의 관측소를 확인하고, 상기 확인된 관측소로 회항하도록 회항 경로를 업데이트하고, 상기 무인 비행체의 자세 제어 및 위치 제어 중 하나 이상의 제어를 통해, 상기 업데이트된 회항 경로를 따라 상기 무인 비행체를 이동시키는 것을 특징으로 하는 기상 정보를 이용한 무인 비행체의 경로 안내 시스템.When it is determined that the arrival of the destination is difficult based on the current position of the unmanned aerial vehicle based on the measured observation value when the emergency event occurs or when the navigation route is re-searched, from the current position of the unmanned aerial vehicle Identify one of the least navigable safe routes, the station with the lowest real fuel consumption, the station with the shortest distance and the station with the least transit route, update the return route to return to the identified station, and A route guidance system for an unmanned aerial vehicle using weather information, characterized in that for moving the unmanned aerial vehicle along the updated return path through at least one of attitude control and position control of an aircraft.
PCT/KR2016/013299 2016-09-05 2016-11-17 Route guiding system, using weather information, of unmanned aerial vehicle, method thereof, and recording medium recorded with computer program WO2018043820A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160113756A KR101874091B1 (en) 2016-09-05 2016-09-05 Path guidance system of unmanned aerial vehicle using weather information, method thereof and computer readable medium having computer program recorded thereon
KR10-2016-0113756 2016-09-05

Publications (1)

Publication Number Publication Date
WO2018043820A1 true WO2018043820A1 (en) 2018-03-08

Family

ID=61301210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013299 WO2018043820A1 (en) 2016-09-05 2016-11-17 Route guiding system, using weather information, of unmanned aerial vehicle, method thereof, and recording medium recorded with computer program

Country Status (2)

Country Link
KR (1) KR101874091B1 (en)
WO (1) WO2018043820A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106485429A (en) * 2016-10-31 2017-03-08 广州极飞科技有限公司 A kind of unmanned plane job scheduling method and device
CN110647169A (en) * 2019-09-18 2020-01-03 安徽天德无人机科技有限公司 Intelligent battery charging system for plant protection unmanned aerial vehicle
CN111224833A (en) * 2018-11-26 2020-06-02 财团法人工业技术研究院 Communication failure detection method and device
CN111338366A (en) * 2020-02-26 2020-06-26 酷黑科技(北京)有限公司 Flight route determination method and flight auxiliary system
CN111510686A (en) * 2020-04-27 2020-08-07 中国南方电网有限责任公司超高压输电公司天生桥局 Vehicle-mounted unmanned aerial vehicle power inspection flight management and control method and system
CN112672314A (en) * 2020-12-23 2021-04-16 武汉量宇智能科技有限公司 Safe and reliable launching control method for aircraft
US20210407303A1 (en) * 2020-06-30 2021-12-30 Honeywell International Inc. Systems and methods for managing energy use in automated vehicles
CN114867032A (en) * 2022-04-29 2022-08-05 北京尚谷彤邺科技发展有限公司 5G communication service system based on big data and terminal equipment thereof
US11705009B2 (en) 2019-12-05 2023-07-18 Rockwell Collins, Inc. System and method for optimizing mission fulfillment by unmanned aircraft systems (UAS) via dynamic atmospheric modeling

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101990886B1 (en) * 2018-11-22 2019-06-19 주식회사 무지개연구소 Big data-based autonomous flight drone system and its autonomous flight method
KR102176132B1 (en) * 2018-12-11 2020-11-09 (주)씽크포비엘 Method and apparatus for determining an expected flight time for a plurality of drones, computer readable recording medium
KR102279146B1 (en) * 2019-02-11 2021-07-19 주식회사 엘지유플러스 Control server and method for setting flight path of unmanned aerial vehicle using this
KR102250247B1 (en) * 2019-06-27 2021-05-10 (주)에이치엠솔루션 A system and appratus for managing a solar panel using an unmaned aerial vehicle
KR102248333B1 (en) * 2019-10-17 2021-05-06 양연철 System for controlling self flight vehicle
KR102289434B1 (en) * 2019-12-30 2021-08-17 한국항공우주연구원 Safety operating system and method for UAV
KR102493780B1 (en) * 2020-09-16 2023-02-02 이민형 System and method for monitoring the ground using hybrid unmanned airship
KR102266109B1 (en) * 2020-11-30 2021-06-17 주식회사 코코드론 Drone Control method of Drone Manufacture Kit
KR102560693B1 (en) * 2021-02-04 2023-07-27 엘아이지넥스원 주식회사 Apparatus and method for determining return time of ship
KR102577562B1 (en) * 2022-08-26 2023-09-12 한화시스템 주식회사 Flying apparatus and flying method for urban air mobility

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006082774A (en) * 2004-09-17 2006-03-30 Hiroboo Kk Unmanned flying object and its controlling method
US20150336667A1 (en) * 2014-05-20 2015-11-26 Verizon Patent And Licensing Inc. Unmanned aerial vehicle platform
US20160111006A1 (en) * 2014-05-20 2016-04-21 Verizon Patent And Licensing Inc. User interfaces for selecting unmanned aerial vehicles and mission plans for unmanned aerial vehicles
US20160125740A1 (en) * 2014-05-20 2016-05-05 Verizon Patent And Licensing Inc. Unmanned aerial vehicle identity and capability verification
US20160140851A1 (en) * 2014-11-18 2016-05-19 Ziv LEVY Systems and methods for drone navigation
KR20160074896A (en) * 2014-12-19 2016-06-29 전자부품연구원 The method and apparatus for configuring flight path of drone

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006082774A (en) * 2004-09-17 2006-03-30 Hiroboo Kk Unmanned flying object and its controlling method
US20150336667A1 (en) * 2014-05-20 2015-11-26 Verizon Patent And Licensing Inc. Unmanned aerial vehicle platform
US20160111006A1 (en) * 2014-05-20 2016-04-21 Verizon Patent And Licensing Inc. User interfaces for selecting unmanned aerial vehicles and mission plans for unmanned aerial vehicles
US20160125740A1 (en) * 2014-05-20 2016-05-05 Verizon Patent And Licensing Inc. Unmanned aerial vehicle identity and capability verification
US20160140851A1 (en) * 2014-11-18 2016-05-19 Ziv LEVY Systems and methods for drone navigation
KR20160074896A (en) * 2014-12-19 2016-06-29 전자부품연구원 The method and apparatus for configuring flight path of drone

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106485429A (en) * 2016-10-31 2017-03-08 广州极飞科技有限公司 A kind of unmanned plane job scheduling method and device
CN111224833A (en) * 2018-11-26 2020-06-02 财团法人工业技术研究院 Communication failure detection method and device
CN111224833B (en) * 2018-11-26 2022-07-26 财团法人工业技术研究院 Communication failure detection method and device
CN110647169A (en) * 2019-09-18 2020-01-03 安徽天德无人机科技有限公司 Intelligent battery charging system for plant protection unmanned aerial vehicle
US11705009B2 (en) 2019-12-05 2023-07-18 Rockwell Collins, Inc. System and method for optimizing mission fulfillment by unmanned aircraft systems (UAS) via dynamic atmospheric modeling
CN111338366A (en) * 2020-02-26 2020-06-26 酷黑科技(北京)有限公司 Flight route determination method and flight auxiliary system
CN111510686A (en) * 2020-04-27 2020-08-07 中国南方电网有限责任公司超高压输电公司天生桥局 Vehicle-mounted unmanned aerial vehicle power inspection flight management and control method and system
CN111510686B (en) * 2020-04-27 2021-04-06 中国南方电网有限责任公司超高压输电公司天生桥局 Vehicle-mounted unmanned aerial vehicle power inspection flight management and control method and system
US20210407303A1 (en) * 2020-06-30 2021-12-30 Honeywell International Inc. Systems and methods for managing energy use in automated vehicles
CN112672314A (en) * 2020-12-23 2021-04-16 武汉量宇智能科技有限公司 Safe and reliable launching control method for aircraft
CN112672314B (en) * 2020-12-23 2023-10-24 武汉量宇智能科技有限公司 Safe and reliable emission control method for aircraft
CN114867032A (en) * 2022-04-29 2022-08-05 北京尚谷彤邺科技发展有限公司 5G communication service system based on big data and terminal equipment thereof
CN114867032B (en) * 2022-04-29 2023-09-12 青岛乾程科技股份有限公司 Big data-based 5G communication service system

Also Published As

Publication number Publication date
KR20180026883A (en) 2018-03-14
KR101874091B1 (en) 2018-07-03

Similar Documents

Publication Publication Date Title
WO2018043820A1 (en) Route guiding system, using weather information, of unmanned aerial vehicle, method thereof, and recording medium recorded with computer program
WO2018043821A1 (en) Route guiding system, using weather information, of unmanned aerial vehicle, method thereof, and recording medium recorded with computer program
US10394858B2 (en) Utilization of third party networks and third party unmanned aerial vehicle platforms
US20190272761A1 (en) Unmanned flight vehicle having rotor, motor rotating the rotor and control device
US20170372256A1 (en) Accommodating mobile destinations for unmanned aerial vehicles
WO2018066816A1 (en) Airport robot and operation method therefor
WO2017183920A1 (en) Control device for vehicle
WO2019147018A1 (en) Method of receiving map and server apparatus therefor
EP3668768A1 (en) Device and method for assisting with driving of vehicle
WO2018164377A1 (en) Electronic device for generating map data and operating method therefor
WO2020138516A1 (en) Communication device, method for controlling same, and communication system comprising same
WO2019107782A1 (en) System, server and method for information provision
WO2020242054A1 (en) Unmanned aerial vehicle service management system and method therefor
WO2022131584A1 (en) Control apparatus for aircraft and control method therefor
WO2019009624A1 (en) Method and apparatus for providing digital moving map service for safe navigation of unmanned aerial vehicle
WO2017030403A1 (en) Method for providing aviation/marine weather forecast chart, and electronic device for performing same
WO2022075514A1 (en) Method and system for controlling head-up display
WO2012153916A2 (en) Electronic device and electronic device operating method
WO2020138760A1 (en) Electronic device and control method thereof
WO2012124930A2 (en) Electronic device, controlling method thereof, and server communicating with electronic device
KR102143045B1 (en) Method and system for guiding long-range flight of unmanned aerial vehicle
WO2018203584A1 (en) Management system for searching for subject of protection
US20240044651A1 (en) Systems and methods for dispatching and navigating an unmanned aerial vehicle
WO2015178555A1 (en) Route guidance service providing system and method, device therefor, and recording medium with computer program recorded thereon
WO2021261695A1 (en) Method and system for removing foreign matter from solar panel surface by using drone swarm flight

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16915300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 21/06/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16915300

Country of ref document: EP

Kind code of ref document: A1