WO2018043821A1 - Route guiding system, using weather information, of unmanned aerial vehicle, method thereof, and recording medium recorded with computer program - Google Patents

Route guiding system, using weather information, of unmanned aerial vehicle, method thereof, and recording medium recorded with computer program Download PDF

Info

Publication number
WO2018043821A1
WO2018043821A1 PCT/KR2016/013300 KR2016013300W WO2018043821A1 WO 2018043821 A1 WO2018043821 A1 WO 2018043821A1 KR 2016013300 W KR2016013300 W KR 2016013300W WO 2018043821 A1 WO2018043821 A1 WO 2018043821A1
Authority
WO
WIPO (PCT)
Prior art keywords
route
path
unmanned aerial
aerial vehicle
destination
Prior art date
Application number
PCT/KR2016/013300
Other languages
French (fr)
Korean (ko)
Inventor
장석웅
Original Assignee
에스케이테크엑스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이테크엑스 주식회사 filed Critical 에스케이테크엑스 주식회사
Publication of WO2018043821A1 publication Critical patent/WO2018043821A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/02Automatic approach or landing aids, i.e. systems in which flight data of incoming planes are processed to provide landing data
    • G08G5/025Navigation or guidance aids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/006Navigation or guidance aids for a single aircraft in accordance with predefined flight zones, e.g. to avoid prohibited zones
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/02Automatic approach or landing aids, i.e. systems in which flight data of incoming planes are processed to provide landing data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]

Definitions

  • the present invention relates to a path guide system for unmanned aerial vehicles using meteorological information, a method, and a recording medium on which computer programs are recorded.
  • a route guidance system of an unmanned aerial vehicle using meteorological information which calculates a plurality of routes that can be operated using weather information of and provides an optimal route corresponding to an effective shortest time path or an optimal fuel consumption route among the calculated plurality of routes,
  • a method and a recording medium having recorded thereon a computer program is a route guidance system of an unmanned aerial vehicle using meteorological information which calculates a plurality of routes that can be operated using weather information of and provides an optimal route corresponding to an effective shortest time path or an optimal fuel consumption route among the calculated plurality of routes.
  • Small unmanned aerial vehicles are used in various fields such as traffic control, video shooting, reconnaissance missions and fire surveillance. Advances in processors, sensors, and communication technologies have improved performance and functionality, while miniaturizing and lowering costs, and have expanded their reach in many areas and will accelerate further.
  • These small unmanned aerial vehicles determine the possibility of operation by using wide-area weather information for the flight area when calculating the shortest flight path considering the obstacle between the starting point and the destination for the flight. There is a risk of loss or fall if the battery or fuel consumption is increased during operation, the control of unmanned aerial vehicles becomes difficult or severe.
  • An object of the present invention is to calculate a plurality of routes that can operate using the weather information of a plurality of dense observatories that are observed in real time based on the base station existing between the start and destination of the unmanned aerial vehicle, the effective shortest time among the calculated plurality of paths
  • the present invention provides a path guide system for an unmanned aerial vehicle using a weather information that provides an optimum path corresponding to a path or an optimal fuel consumption path, a method, and a computer program.
  • Another object of the present invention is an unmanned aerial vehicle using weather information that provides an optimal route based on forecasted time information of an unmanned vehicle and forecast information generated for each station, among a plurality of operable routes calculated using a plurality of weather information.
  • the present invention provides a recording medium on which a route guidance system, a method and a computer program are recorded.
  • a method for guiding an unmanned aerial vehicle using weather information includes a plurality of weather information measured by a communication unit at a plurality of stations located within a radius set based on a shortest path from a starting point to a destination provided from a server.
  • Receiving Determining, by a controller, whether the flight is from the departure point to the destination based on the received plurality of weather information; Searching, by the controller, for a flight route from a departure point to a destination based on the at least one safe route that can be operated when there is at least one safe route that can be operated from the departure point to the destination; And moving, by the controller, the unmanned aerial vehicle along a flight path from the found starting point to the destination through at least one of attitude control and position control of the unmanned aerial vehicle including the communication unit.
  • the weather information may include at least one of location information of a region where the station is located, wind direction, wind speed, rainfall or not, lightning occurrence and measurement time information.
  • the determining of the operation may include determining, by the controller, an avoiding route from a plurality of routes from a departure point to a destination based on a plurality of weather information on the plurality of routes from the departure point to the destination. Removing process; Determining, by the controller, the one or more remaining paths as a safe path when a remaining path exists after removing an avoiding path among the plurality of paths; Determining, by the controller, a state in which an unmanned flight is possible when there is at least one safe route that can be operated from the origin to the destination; And determining, by the controller, that the unmanned aerial vehicle cannot be operated when at least one safe route capable of operating from the starting point to the destination does not exist.
  • the avoidance path corresponds to a path in which wind speeds included in weather information for each station exceeds a preset wind speed threshold value among a plurality of paths from a starting point to a destination, and corresponds to weather information in which current rainfall is observed.
  • the forecast information is included in the forecast information based on a route, a route corresponding to weather information on which a current lightning strike is observed, and a corresponding route at the time when the unmanned aerial vehicle reaches the plurality of routes according to a driving speed of the unmanned aerial vehicle.
  • the searching of the flight route from the departure point to the destination may include: calculating, by the controller, a total valid time for each route for one or more safe routes that can be operated; And selecting, by the controller, a route from the starting point corresponding to the shortest time to the destination among the calculated total valid time for each route as the final operating route.
  • the searching of the flight route from the departure point to the destination may include: calculating, by the controller, fuel consumption for each route for one or more safe routes that can be operated; And selecting, by the controller, a route from the starting point to the destination that consumes the least fuel among the calculated fuel consumption for each route as the final operating route.
  • a computer program for performing the method according to the above-described embodiments may be stored in a recording medium on which a computer program according to an embodiment of the present invention is recorded.
  • the unmanned aerial vehicle route guidance system using weather information is a communication unit for receiving a plurality of weather information measured from a plurality of stations located within a radius set based on the shortest route from the starting point to the destination provided from the server ; And determining whether to operate from the departure point to the destination based on the received plurality of weather information, and when there is at least one safe route that can be operated from the departure point to the destination, the operation is determined.
  • the controller may be configured to remove an avoiding route from a plurality of routes from a departure point to a destination based on a plurality of weather information on the plurality of routes from the departure point to the destination, and avoid the avoidance route among the plurality of routes.
  • the remaining one or more paths can be determined as a safe path.
  • the controller may determine that the flight in the unmanned flight is possible.
  • the controller calculates a total valid time for each route for one or more safe routes that can be operated, and a route from a starting point to a destination corresponding to the shortest time among the calculated total valid times for each route. Can be selected as the final route of travel.
  • the controller calculates fuel consumption for each route for one or more safe routes that can be operated, and finalizes a route from the starting point to the destination that consumes the least fuel among the calculated fuel consumption for each route. Can be selected as a flight route.
  • the present invention calculates a plurality of routes that can be operated by using weather information of a plurality of dense observatories that are observed in real time based on a base station existing between a starting point and a destination of an unmanned aerial vehicle, and among the calculated plurality of paths, an effective shortest time path or By providing the optimum path corresponding to the optimum fuel consumption path, there is an effect that can accurately determine whether the unmanned vehicle is running.
  • the present invention provides an optimal route based on the estimated time information of the operation of the unmanned vehicle and the forecast information generated for each station among the plurality of routes that can be calculated using a plurality of weather information, for economical and stable operation It has the effect of choosing a path.
  • FIG. 1 is a block diagram showing the configuration of a route guidance system for an unmanned aerial vehicle using weather information according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing the configuration of an unmanned aerial vehicle according to an embodiment of the present invention.
  • 3 and 4 are diagrams showing an example for the path search of the unmanned aerial vehicle according to an embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating a route guidance method for an unmanned aerial vehicle using weather information according to an exemplary embodiment of the present invention.
  • FIG. 6 is a view showing an example for the path search of the unmanned aerial vehicle according to an embodiment of the present invention.
  • first and second used in the present invention may be used to describe components, but the components should not be limited by the terms. The terms are used only to distinguish one component from another.
  • first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • FIG. 1 is a block diagram showing the configuration of a route guidance system 10 of an unmanned aerial vehicle using weather information according to an embodiment of the present invention.
  • the path guidance system 10 of an unmanned aerial vehicle using weather information includes an observation station 100, a server 200, and an unmanned aerial vehicle 300. Not all components of the path guide system 10 of the unmanned aerial vehicle shown in FIG. 1 are essential components, and the path guide system 10 of the unmanned aerial vehicle is implemented by more components than those shown in FIG. The path guide system 10 of the unmanned aerial vehicle may be implemented with fewer components.
  • the unmanned aerial vehicle 300 determines whether to fly (or whether to fly) based on a plurality of weather information measured by a plurality of stations 100 located within a predetermined radius based on the shortest path from the starting point to the destination instead of the wide area weather information. do. In addition, when the operation is determined, the unmanned aerial vehicle 300 calculates the total effective time for each route and / or fuel consumption for each route, for the plurality of safety routes determined from the plurality of operation routes from the origin to the destination, and is calculated. The final route of travel is selected based on the total valid time per route and / or fuel consumption per route. Thereafter, the unmanned aerial vehicle 300 operates along the selected final navigation route.
  • Observation station 100 may be a base station in which communication facilities are installed.
  • the station 100 includes various weather sensors (not shown) for measuring (or collecting) weather information.
  • the weather information includes information such as wind direction, wind speed, rainfall, lightning strike, and measurement time information.
  • the station 100 measures (or collects) weather information of the region where the station 100 is located.
  • the station 100 also transmits the measured (or collected) weather information to the server 200 and / or the unmanned aerial vehicle 300.
  • the weather information may further include location information (eg, including latitude, longitude, etc.) of the region where the corresponding observatory 100 is located.
  • the server 200 communicates with one or more observation stations 100, one or more unmanned aerial vehicles 300, and the like.
  • the server 200 receives a plurality of weather information transmitted from one or more stations 100, respectively. At this time, the server 200 receives the weather information transmitted from the corresponding station 100 at predetermined time intervals, or receives the weather information transmitted from the specific station 100 in response to a request for transmitting the weather information of the server 200. can do.
  • the server 200 receives unique identification information, origin information, destination information, etc. of the unmanned aerial vehicle 300 transmitted from the unmanned aerial vehicle 300.
  • the server 200 based on the received source information and destination information, a plurality of (or one or more) weather information corresponding to the corresponding source information and the destination information among the plurality of weather information for each station previously stored in the server 200.
  • a plurality of (or one or more) weather information corresponding to the corresponding source information and the destination information among the plurality of weather information for each station previously stored in the server 200.
  • the server 200 is located within a preset radius based on the shortest path from the corresponding departure point to the destination among the plurality of weather information for each station stored in the corresponding server 200 based on the received departure point information and the destination information.
  • the plurality of weather information collected from the observation station 100 is transmitted to the unmanned aerial vehicle 300.
  • the unmanned aerial vehicle (or drone) 300 includes a communication unit 310, a storage unit 320, a display unit 330, and a controller 340. Not all components of the unmanned aerial vehicle 300 shown in FIG. 2 are essential components, and the unmanned aerial vehicle 300 may be implemented by more components than those shown in FIG. 2, and fewer components thereof. The unmanned aerial vehicle 300 may also be implemented.
  • the communication unit 310 communicates with any component inside or any at least one terminal outside through a wired / wireless communication network.
  • any external terminal may include the observatory 100, the server 200, and the like.
  • the wireless Internet technologies include a wireless LAN (WLAN), a digital living network alliance (DLNA), a wireless broadband (Wibro), a WiMAX (World Interoperability for Microwave Access: Wimax), and an HSDPA (High Speed Downlink Packet Access). ), HSUPA (High Speed Uplink Packet Access), IEEE 802.16, Long Term Evolution (LTE), Long Term Evolution-Advanced (LTE-A), Wireless Mobile Broadband Service (WMBS), etc.
  • WLAN wireless LAN
  • DLNA digital living network alliance
  • Wibro wireless broadband
  • WiMAX Worldwide Interoperability for Microwave Access: Wimax
  • HSDPA High Speed Downlink Packet Access
  • HSUPA High Speed Uplink Packet Access
  • the communication unit 310 transmits and receives data according to at least one wireless Internet technology in a range including the Internet technologies not listed above.
  • short-range communication technologies may include Bluetooth, RFID, infrared communication (IrDA), UWB, Zigbee, adjacent field communication (NFC), ultrasonic communication (USC), visible light communication (VLC), Wi-Fi, Wi-Fi Direct, etc. have.
  • the wired communication technology may include power line communication (PLC), USB communication, Ethernet, serial communication, serial communication, optical / coaxial cable, and the like.
  • the communicator 310 may mutually transmit information with an arbitrary terminal through a universal serial bus (USB).
  • USB universal serial bus
  • the communication unit 310 may include technical standards or communication schemes (eg, Global System for Mobile communication (GSM), Code Division Multi Access (CDMA), Code Division Multi Access 2000 (CDMA2000), and EV-) for mobile communication.
  • GSM Global System for Mobile communication
  • CDMA Code Division Multi Access
  • CDMA2000 Code Division Multi Access 2000
  • EV- Enhanced Voice-Data Optimized or Enhanced Voice-Data Only (DO), Wideband CDMA (WCDMA), High Speed Downlink Packet Access (HSDPA), High Speed Uplink Packet Access (HSUPA), Long Term Evolution (LTE), LTE-A ( Long Term Evolution-Advanced, etc.) to transmit and receive radio signals to the base station, the observatory 100, the server 200 and the like on a mobile communication network.
  • GSM Global System for Mobile communication
  • CDMA Code Division Multi Access
  • CDMA2000 Code Division Multi Access 2000
  • EV- Enhanced Voice-Data Optimized or Enhanced Voice-Data Only (DO)
  • WCDMA Wideband CDMA
  • the communication unit 310 controls a plurality of weather conditions measured by the plurality of observation stations 100 located within a predetermined radius based on the shortest path from the starting point to the destination provided by the server 200 under the control of the control unit 340.
  • Receive information includes information such as location information (eg, latitude, longitude, etc.), wind direction, wind speed, rainfall, lightning strike, and measurement time information of the region where the corresponding observatory 100 is located.
  • the communicator 310 may receive weather information transmitted for each individual observing station 100.
  • the storage unit 320 stores data and programs required for operating the path guidance system 10 of the unmanned aerial vehicle.
  • the storage unit 320 stores a plurality of applications (application programs or applications) driven in the path guidance system 10 of the unmanned aerial vehicle, data for the operation of the path guidance system 10 of the unmanned aerial vehicle, and instructions. Can be. At least some of these applications may be downloaded from an external service providing apparatus through wireless communication.
  • the application is stored in the storage unit 320, is installed in the path guide system 10 of the unmanned aerial vehicle, the control unit 340 performs the operation (or function) of the path guide system 10 of the unmanned aerial vehicle. Can be driven.
  • the storage unit 320 may include a flash memory type, a hard disk type, a multimedia card micro type, a card type memory (eg, SD or XD memory). Etc.), magnetic memory, magnetic disk, optical disk, random access memory (RAM), static random access memory (SRAM), read-only memory (ROM), electrically erasable programmable read-only memory (EPM), PROM It may include at least one storage medium of (Programmable Read-Only Memory).
  • the route guidance system 10 of the unmanned aerial vehicle may operate a web storage that performs a storage function of the storage unit 320 on the Internet, or may operate in connection with the web storage.
  • the storage 320 stores a plurality of weather information for each station received through the communication unit 310 under the control of the controller 340.
  • the display unit 330 may display various contents such as various menu screens using a user interface and / or a graphic user interface stored in the storage 320 under the control of the controller 340.
  • the content displayed on the display unit 330 includes a menu screen including various text or image data (including various information data) and data such as icons, list menus, combo boxes, and the like.
  • the display unit 330 may be a touch screen.
  • the display unit 330 may include a liquid crystal display (LCD), a thin film transistor liquid crystal display (TFT LCD), an organic light-emitting diode (OLED), a flexible display (
  • the display device may include at least one of a flexible display, a 3D display, an e-ink display, and a light emitting diode (LED).
  • the display unit 330 may be configured as a stereoscopic display unit for displaying a stereoscopic image.
  • the stereoscopic display unit may be a three-dimensional display method such as a stereoscopic method (glasses method), an auto stereoscopic method (glasses-free method), a projection method (holographic method).
  • the display unit 330 may include an LED for indicating an operating state of the unmanned aerial vehicle 300.
  • the display unit 330 displays an operating state, an abnormal state state, and the like of the unmanned aerial vehicle 300 under the control of the controller 340 through the LED.
  • the controller 340 executes an overall control function of the unmanned aerial vehicle 300.
  • the controller 340 executes an overall control function of the unmanned aerial vehicle 300 by using a program and data stored in the storage 320.
  • the controller 340 may include a RAM, a ROM, a CPU, a GPU, a bus, and the RAM, a ROM, a CPU, a GPU, and the like may be connected to each other through a bus.
  • the CPU may access the storage 320 to perform booting using the O / S stored in the storage 320, and various operations using various programs, contents, and data stored in the storage 320 may be performed. Can be performed.
  • 340 does not simply determine whether the wind speed of the station A closest to the origin exceeds the preset wind speed threshold, but on the path 1 line. Operation is determined in consideration of weather information including wind speed, wind direction, and the like of various stations present in the possible path, including station B in the vicinity, station C on the route 2, and destination station D in the detour route.
  • the controller 340 may consider whether to operate by selecting a path that avoids the wind speed.
  • controller 340 determines whether to operate from the corresponding starting point to the destination based on the plurality of weather information received through the communication unit 310.
  • the controller 340 removes the avoiding route from the plurality of routes from the starting point to the destination based on the plurality of weather information on the plurality of routes from the starting point to the destination.
  • the avoidance path includes a path in which wind speeds included in weather information for each station exceeds a preset wind speed threshold value among a plurality of paths from a source to a destination, a path corresponding to weather information (or a station) at which current rainfall is observed.
  • the controller 340 determines the at least one remaining path as a safe path.
  • controller 340 determines that the unmanned aerial vehicle 300 can be operated when there is at least one safe route that can be operated from the starting point to the destination.
  • controller 340 determines that the unmanned aerial vehicle 300 cannot be operated when at least one safe path capable of operating from the starting point to the destination does not exist.
  • the controller 340 may include a path exceeding a previous wind speed threshold value among a plurality of paths from a starting point to a destination, a path corresponding to weather information for which current rainfall is observed, and a current lightning strike. Combines the speed of the unmanned aerial vehicle 300 with the distance of each section path and the forecast information provided for each station, as well as the path corresponding to the observed weather information (or station), to determine whether a safe path exists. You may.
  • the controller 340 is a path in which the wind speed included in the weather information for each station above the wind speed threshold value exceeds a wind speed threshold value, a path corresponding to weather information for which current rainfall is observed, and a current lightning strike, among a plurality of paths from a departure point to a destination.
  • the weather information (or station) corresponding to the weather information (or station) based on the forecast information on the corresponding path (or point) at the time when the unmanned aerial vehicle 300 reaches a plurality of paths according to the driving speed of the unmanned aerial vehicle 300.
  • Rainfall prediction information included in the forecast information is based on a path in which the wind speed included in the forecast information exceeds a corresponding wind speed threshold, and the forecast information on the path when the unmanned aerial vehicle 300 reaches the plurality of paths. It is also possible to determine whether a safe path exists by removing an avoiding path including a path exceeding a preset rainfall threshold.
  • the unmanned aerial vehicle 300 it is necessary to determine whether the unmanned aerial vehicle 300 can be operated based on the overall local representative weather (or weather information) announced by the Korea Meteorological Agency.
  • n is a natural number (for example, A 1 , A 2 , ..., A N , B 1 , B 2 , ..., B N , ...
  • the route corresponding to the weather information (or the station) where the lightning strike is observed may be removed, and it may be determined whether or not a safe route exists, thereby determining whether the vehicle can be operated.
  • the controller 340 when the operating speed and the distance of the path of the unmanned aerial vehicle 300 are calculated, and the combined forecast information (or point forecast information) produced for each station is used, the controller 340 is unmanned. It may be determined in more detail whether the vehicle 300 is safe driving.
  • the controller 340 uses logic for determining an optimal path by combining weather information for each station including actual wind direction, wind speed, etc., and actual physical distance.
  • the controller 340 controls the fuel efficiency and the actual flight speed when the station on the shortest path 1 shown in FIG. 3 blows a wind of 4 m / sec in the wind and a wind of 3 m / sec in the forward path on the path 2. Determine the optimal path (or optimal routing) considered.
  • the control unit 340 refers to a sub-route (Sub_route) that connects the station 100 existing on each path in a straight line.
  • the subroute length Length_Sub_route
  • the wind direction / wind vector for each station expressed in m / sec
  • another vector is defined as the flight speed (or flight speed) of the unmanned aerial vehicle 300 and the direction between the stations.
  • the effective speed is And the total valid time for each route is It can be expressed as
  • the effective shortest time path, the optimal fuel consumption path, and the like may be calculated by combining the actual traveling path along the path of the unmanned aerial vehicle 300 and the wind direction and / or wind speed on the path.
  • the station includes an observation station 100 exceeding the wind speed threshold value, which is a safe operation standard, and avoids a route such as when there is a rainfall observation, it may be excluded from the path selection target. have.
  • the controller 340 searcheses for a flight route from origin to destination based on one or more safe routes that can be operated.
  • the avoidance path is a path in which the wind speed included in the weather information for each station exceeds a preset wind speed threshold value among the plurality of paths from the starting point to the destination, the path corresponding to the weather information where the current rainfall is observed, and the current lightning strike.
  • the forecast based on the forecast information on the corresponding route (or point) at the time when the unmanned aerial vehicle 300 reaches a plurality of routes according to the route corresponding to the weather information (or the station) and the speed of the unmanned aerial vehicle 300.
  • Rainfall prediction information included in the forecasting information is preliminarily based on the forecasted information on the route at which the wind speed included in the information exceeds the corresponding wind speed threshold and the path when the unmanned aerial vehicle 300 reaches the plurality of routes. Paths exceeding the set rainfall threshold, and the like.
  • control unit 340 is the total valid time for each route and / or each route for a plurality of safety routes (or one or more safe routes that can be determined) determined from a plurality of navigation routes from the origin to the destination. Calculate fuel consumption.
  • controller 340 converts a route from the starting point to the destination (or a combination of the plurality of shortest times from the starting point to the destination) corresponding to the shortest time out of the calculated total valid time for each route as the final operating route. Select (or select)
  • controller 340 may determine a route from a corresponding starting point to a destination (or a combination of a plurality of minimum fuel consumptions from the starting point to the destination) that consumes the least fuel among the calculated fuel consumption for each route. Select (or select)
  • controller 340 controls the operation of the unmanned aerial vehicle 300 through the attitude control and / or the position control of the unmanned aerial vehicle 300 to control the operation of the unmanned aerial vehicle 300 at the corresponding starting point along the previously selected (or selected) final flight path.
  • the unmanned aerial vehicle 300 is moved to a destination.
  • controller 340 may dynamically update the optimum path through information updates such as real-time wind direction and wind speed on the path during the operation (or flight).
  • the controller 340 may operate the unmanned aerial vehicle 300 using the weather information by determining a flight status, predicting and selecting an optimal route, and applying a new route by updating real-time weather information during the flight.
  • controller 340 may be operated to avoid the terrain, such as high buildings, forests, among the plurality of paths.
  • the aforementioned avoidance paths may further include buildings (or buildings), mountains, forests, and danger areas (for example, amusement facilities and parks that are used by people) that are higher than a predetermined altitude according to user settings.
  • the unmanned aerial vehicle 300 may operate to avoid such an avoidance path.
  • the controller 340 when searching the flight route, if the operation time of the unmanned aerial vehicle 300 takes more than a predetermined time (or when the current and the weather may be different), the vector of each preceding station and the threshold for safe operation For comparison with the values, compare the current observations with the forecast information for each station, and calculate the total effective time for each route and / or fuel consumption per route based on the larger of the two, increasing the safety level and the optimum route. Can be calculated.
  • the controller 340 combines (or interpolates) the forecast model value (or forecast information) provided by the Meteorological Agency or the surrounding station 100 with the forecast information of the neighboring station.
  • One value can be used to calibrate.
  • Safety level can be further considered by selecting values such as wind direction, wind speed, rainfall occurrence probability, and lightning occurrence probability among the local forecast information.
  • the base station-based observation station 100 is located at a high position, mostly depending on the installation environment of the base station and the use of weather measurement, which may be adjacent to the flight path of the unmanned aerial vehicle 300.
  • the controller 340 transmits weather information on the route from the observatory 100. It can also be sent directly.
  • the unmanned aerial vehicle 300 receives a GPS signal transmitted from a satellite, and generates (or generates / confirms) location data of the unmanned aerial vehicle 300 in real time based on a longitude coordinate and a latitude coordinate included in the received GPS signal.
  • GPS receiver (not shown) may be further included.
  • the generated position data is defined as the current position (or current position data) of the unmanned aerial vehicle 300.
  • the location information may be received through Wi-Fi or Wibro as well as the GPS receiver.
  • the signal received through the GPS receiver is 802.11, Bluetooth, UWB, Zigbee, etc., which is a standard for wireless networks for wireless LANs, including wireless LANs and some infrared communications proposed by the Institute of Electrical and Electronics Engineers (IEEE).
  • 802.15 the standard for wireless personal area networks (PANs), including wireless metropolitan area networks (MANs) and broadband wireless access (BWA), including fixed wireless access (FWA), etc.
  • a terminal using a wireless communication method such as 802.16, which is a standard standard for wireless internet, and 802.20, which is a standard for the mobile Internet for mobile broadband (MBWA) including Wibro, WiMAX, etc. It can also be configured to provide the position information of the unmanned aerial vehicle 300.
  • the unmanned aerial vehicle 300 may further include an interface unit (not shown) that serves as an interface with all external devices connected to the unmanned aerial vehicle 300.
  • the interface unit may include a wired / wireless headset port, an external charger port, a wired / wireless data port, a memory card port, a port for connecting a device equipped with an identification module, an audio I / O ( Input / Output) port, video I / O (Input / Output) port, earphone port, and the like.
  • the identification module is a chip that stores various information for authenticating the use authority of the unmanned aerial vehicle 300, and includes a user identity module (UIM), a subscriber identity module (SIM), and universal user authentication.
  • the device equipped with the identification module may be manufactured in the form of a smart card. Therefore, the identification module may be connected to the unmanned aerial vehicle 300 through the port.
  • Such an interface unit receives data from an external device or receives power to transmit the data to each component inside the unmanned aerial vehicle 300 or transmit data within the unmanned aerial vehicle 300 to an external device.
  • the interface unit is a passage for supplying power from the cradle to the unmanned aerial vehicle 300, or various command signals inputted from the cradle by the user are corresponding unmanned aerial vehicle. It may be a passage that is delivered to (300). Various command signals or corresponding power input from the cradle may be operated as signals for recognizing that the unmanned aerial vehicle 300 is correctly mounted on the cradle.
  • the unmanned aerial vehicle 300 may include an input unit for receiving a command or control signal generated by an operation such as receiving a signal according to a button operation or an arbitrary function selection by a user, or touching / scrolling a displayed screen ( It may also include a).
  • the input unit is a means for receiving at least one of a user's command, selection, data, and information, and may include a plurality of input keys and function keys for receiving numeric or text information and setting various functions.
  • the input unit includes a key pad, a dome switch, a touch pad (static pressure / capacitance), a touch screen, a jog wheel, a jog switch, a jog shuttle, and a mouse.
  • a touch pad static pressure / capacitance
  • a touch screen a touch screen
  • jog wheel a jog wheel
  • a jog switch a jog shuttle
  • mouse a mouse.
  • Various devices such as a stylus pen, a touch pen, and the like may be used.
  • the display unit 330 is formed in the form of a touch screen, some or all of the input functions may be performed through the display unit 330.
  • each component (or module) of the unmanned aerial vehicle 300 may be software stored on a memory (or storage 320) of the unmanned aerial vehicle 300.
  • the memory may be an internal memory of the unmanned aerial vehicle 300 and may be an external memory or another type of storage device.
  • the memory may also be a nonvolatile memory.
  • Software stored on the memory may include a set of instructions that, when executed, cause the unmanned aerial vehicle 300 to perform a particular operation.
  • the processor mounted on the observation station 100, the server 200, and the unmanned aerial vehicle 300 according to the present invention may process a program command for executing the method according to the present invention.
  • this processor may be a single-threaded processor, and in other implementations, the processor may be a multi-threaded processor.
  • the processor is capable of processing instructions stored in memory or storage devices.
  • a plurality of routes that can be operated are calculated by using weather information of a plurality of dense observatories that are observed in real time based on a base station existing between a starting point and a destination of an unmanned aerial vehicle, and among the calculated plurality of paths, an effective shortest time path or It is possible to provide an optimal path corresponding to the optimal fuel consumption path.
  • the optimal route may be provided based on the estimated time information of the unmanned aerial vehicle and the forecast information generated for each station, among the plurality of operable routes calculated using the plurality of weather information.
  • FIG. 5 is a flowchart illustrating a route guidance method for an unmanned aerial vehicle using weather information according to an exemplary embodiment of the present invention.
  • the communication unit 310 receives a plurality of weather information measured by the plurality of observing stations 100 located within a preset radius with respect to the shortest path from the starting point to the destination provided from the server 200.
  • the weather information includes information such as location information (eg, latitude, longitude, etc.), wind direction, wind speed, rainfall, lightning strike, and measurement time information of the region where the corresponding observatory 100 is located.
  • the communication unit 310 may receive weather information transmitted for each individual observing station 100.
  • the communication unit 310 may include a plurality of paths (eg, route A, route B,. Receive a plurality of weather information, respectively, measured at stations A 1 , ..., A N , B 1 , ..., B M located on the. Where M and N are natural numbers.
  • the station 100 on each path may include all stations capable of collecting weather information between the starting point and the destination (S510).
  • the controller 340 determines whether to operate from the corresponding departure point to the destination based on the received plurality of weather information.
  • the controller 340 removes the avoiding route from the plurality of routes from the starting point to the destination based on the plurality of weather information on the plurality of routes from the starting point to the destination.
  • the avoidance path includes a path in which wind speeds included in weather information for each station exceeds a preset wind speed threshold value among a plurality of paths from a source to a destination, a path corresponding to weather information (or a station) at which current rainfall is observed.
  • the controller 340 determines the at least one remaining path as a safe path.
  • controller 340 determines that the unmanned aerial vehicle 300 can be operated when there is at least one safe route that can be operated from the starting point to the destination.
  • controller 340 determines that the unmanned aerial vehicle 300 cannot be operated when at least one safe path capable of operating from the starting point to the destination does not exist.
  • the controller 340 may correspond to a station corresponding to stations A 1 and A 3 providing weather information exceeding a wind speed threshold value among the plurality of paths shown in FIG. 6, and a station A 4 where current rainfall is observed.
  • a path corresponding to the stations A 1 and A 3 and a path corresponding to the station A 4 are respectively removed from the plurality of paths, and one or more remaining paths are determined as safe paths.
  • the controller 340 determines that the unmanned aerial vehicle 300 can be operated when the flight is possible from the starting point to the destination through a safe path including one or more paths.
  • the controller 340 may include a path exceeding a previous wind speed threshold value among a plurality of paths from a starting point to a destination, a path corresponding to weather information for which current rainfall is observed, and a current lightning strike.
  • the controller 340 may include a path exceeding a previous wind speed threshold value among a plurality of paths from a starting point to a destination, a path corresponding to weather information for which current rainfall is observed, and a current lightning strike.
  • the driving speed of the unmanned aerial vehicle 300, the distance of each section path and the forecast information provided for each station it may be determined whether a safe route exists.
  • the controller 340 is a path in which the wind speed included in the weather information for each station above the wind speed threshold value exceeds a wind speed threshold value, a path corresponding to weather information for which current rainfall is observed, and a current lightning strike, among a plurality of paths from a departure point to a destination. Included in the forecast information based on the forecast information on the corresponding route (or point) at the time when the unmanned aerial vehicle 300 reaches the plurality of paths according to the route corresponding to the weather information, and the speed of the unmanned aerial vehicle 300.
  • Rainfall threshold is a preset rainfall forecasting information included in the forecasting information based on the path that the wind speed exceeds the wind speed threshold, and the forecast information on the path when the unmanned vehicle 300 reaches the plurality of paths; Falls included in the forecast information based on the route exceeding the value, the forecast information for the route at the time when the unmanned aerial vehicle 300 reaches the plurality of routes.
  • the generation information is removed, the avoidance route comprising a path such as exceeding a pre-set threshold, an electrical storm, may determine whether the trusted path exists.
  • control unit 340 is a path corresponding to stations A 1 and A 3 , respectively, which provide weather information exceeding a wind speed threshold value among the plurality of paths shown in FIG. 6, and to a station A 4 where current rainfall is observed.
  • the corresponding path the unmanned air vehicle 300 is moving, including on forecast information at the time it reaches the station a 7 the station a 7 rainfall prediction information (e.g. the current station a 7, but without rain unattended Removes a path in which the vehicle 300 moves and approaches the corresponding station A 7 with a 70% rainfall probability) exceeding a preset rainfall threshold (eg, 60%), and removes a plurality of paths.
  • a preset rainfall threshold eg, 60%
  • the controller 340 Searches for a flight route from origin to destination based on one or more safe routes that can be operated.
  • the avoidance path is a path in which wind speeds included in weather information for each station exceeds a predetermined wind speed threshold value among a plurality of paths from a source to a destination, a path corresponding to weather information where current rainfall is observed, and an unmanned aerial vehicle 300.
  • control unit 340 is the total valid time for each route and / or each route for a plurality of safety routes (or one or more safe routes that can be determined) determined from a plurality of navigation routes from the origin to the destination. Calculate fuel consumption.
  • controller 340 converts a route from the starting point to the destination (or a combination of the plurality of shortest times from the starting point to the destination) corresponding to the shortest time out of the calculated total valid time for each route as the final operating route. Select (or select)
  • controller 340 may determine a route from a corresponding starting point to a destination (or a combination of a plurality of minimum fuel consumptions from the starting point to the destination) that consumes the least fuel among the calculated fuel consumption for each route. Select (or select)
  • the controller 340 may determine the total valid time for each path for the remaining safety path after the paths corresponding to the stations A 1 and A 3 and the paths corresponding to the station A 4 are removed from the plurality of paths shown in FIG. 6. To calculate.
  • controller 340 selects a route from the calculated total valid time for each route to the starting point corresponding to the shortest time-B 1 -B 2 -...-B M -to the destination as the first final flight route.
  • the controller 340 may include fuel consumption for each path of the safety paths remaining after the paths corresponding to the stations A 1 and A 3 and the paths corresponding to the station A 4 are removed from the plurality of paths shown in FIG. 6. To calculate.
  • controller 340 is a route-specific fuel consumption from the fuel consumption to the minimum calculated from - B 1 - B 2 - A 3 - A 5 ... - A N - a route to the destination, the second to the final flight path Select (S530).
  • the controller 340 controls the operation of the unmanned aerial vehicle 300 through the attitude control and / or the position control of the unmanned aerial vehicle 300 to control the operation of the unmanned aerial vehicle 300 at the corresponding starting point along the previously selected (or selected) final flight path.
  • the unmanned aerial vehicle 300 is moved (or operated / flighted) to a destination.
  • the controller 340 may operate the unmanned aerial vehicle 300 to move along the selected first final flight path (for example, a departure point-B 1 -B 2 -...-B M -a path to a destination). It controls (S540).
  • the selected first final flight path for example, a departure point-B 1 -B 2 -...-B M -a path to a destination. It controls (S540).
  • the path guidance system for an unmanned aerial vehicle using weather information can be prepared by a computer program, and codes and code segments constituting the computer program can be easily inferred by a computer programmer in the art.
  • the computer program is stored in a computer readable media, and is read and executed by a computer or an observation station, a server, an unmanned aerial vehicle, etc. according to an embodiment of the present invention to use an unmanned aerial vehicle using weather information.
  • the route guidance system can be implemented.
  • the information storage medium includes a magnetic recording medium, an optical recording medium and a carrier wave medium.
  • a computer program for implementing a route guidance system for an unmanned aerial vehicle using weather information according to an embodiment of the present invention may be stored and installed in an internal memory of an observation station, a server, an unmanned aerial vehicle, and the like.
  • an external memory such as a smart card that stores and installs a computer program for implementing a route guidance system for an unmanned aerial vehicle using meteorological information according to an embodiment of the present invention may be a route guidance system for an unmanned aerial vehicle using weather information through an interface. It may be mounted.
  • an embodiment of the present invention calculates a plurality of routes that can be operated by using weather information of a plurality of dense stations that are observed in real time based on a base station existing between an unmanned aerial vehicle's origin and a destination.
  • the embodiment of the present invention from among a plurality of routes that can be calculated using a plurality of weather information based on the estimated time of operation of the unmanned vehicle and forecast information generated for each station, the optimal route In addition, it is possible to select a route for economical and stable operation.
  • the present invention calculates a plurality of routes that can be operated by using weather information of a plurality of dense observatories that are observed in real time based on a base station existing between a starting point and a destination of an unmanned aerial vehicle, and among the calculated plurality of paths, an effective shortest time path or
  • By providing the optimal route corresponding to the optimal fuel consumption route it is possible to precisely determine whether the unmanned vehicle is operated, and to select the route for economical and stable operation, and to select the UAV (unmanned aerial vehicle) field and the aircraft field. It can be widely used in the field of quadrotor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Navigation (AREA)

Abstract

The present invention provides a route guiding system, using weather information, of an unmanned aerial vehicle, a method thereof, and a recording medium recorded with a computer program. That is, the present invention: calculates a plurality of routes available for flight by using weather information obtained by the real-time observations of a plurality of densely located observatories based on a base station present between a place of departure of an unmanned aerial vehicle and a destination thereof; and provides an optimal route corresponding to a valid shortest time route or optimal fuel consumption route, among the calculated plurality of routes. Accordingly, the present invention can determine with precision whether or not to fly an unmanned aerial vehicle and can select a route for economical and safe flight.

Description

기상 정보를 이용한 무인 비행체의 경로 안내 시스템, 그 방법 및 컴퓨터 프로그램이 기록된 기록매체Recording medium recording route guidance system, method and computer program of unmanned aerial vehicle using weather information
본 발명은 기상 정보를 이용한 무인 비행체의 경로 안내 시스템, 그 방법 및 컴퓨터 프로그램이 기록된 기록매체에 관한 것으로, 특히 무인 비행체의 출발지와 목적지 사이에 존재하는 기지국 기반 실시간으로 관측되는 조밀한 복수의 관측소의 기상 정보를 이용하여 운행 가능한 복수의 경로를 산출하고, 산출된 복수의 경로 중에서 유효 최단 시간 경로 또는 최적 연료 소모 경로에 해당하는 최적의 경로를 제공하는 기상 정보를 이용한 무인 비행체의 경로 안내 시스템, 그 방법 및 컴퓨터 프로그램이 기록된 기록매체에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a path guide system for unmanned aerial vehicles using meteorological information, a method, and a recording medium on which computer programs are recorded. A route guidance system of an unmanned aerial vehicle using meteorological information which calculates a plurality of routes that can be operated using weather information of and provides an optimal route corresponding to an effective shortest time path or an optimal fuel consumption route among the calculated plurality of routes, A method and a recording medium having recorded thereon a computer program.
소형 무인비행체는 교통단속이나 비디오 촬영, 정찰임무, 화재감시 등의 다양한 분야에서 활용되고 있다. 프로세서, 센서 그리고 통신 기술의 발달로 성능과 기능이 개선이 되는 동시에 소형화와 가격 절감까지 되면서 다양한 분야에 점점 그 입지를 넓혀왔고 앞으로는 더욱 가속화될 것이다.Small unmanned aerial vehicles are used in various fields such as traffic control, video shooting, reconnaissance missions and fire surveillance. Advances in processors, sensors, and communication technologies have improved performance and functionality, while miniaturizing and lowering costs, and have expanded their reach in many areas and will accelerate further.
이러한 소형 무인비행체는 비행을 위해서 출발지와 목적지 사이의 장애물을 고려한 최단 비행 경로 산출 시, 비행 지역에 대한 광역 기상 정보를 활용하여 운행 가능성을 판단하고 있어, 강풍, 강우, 돌풍 등의 국지적인 기상 정보를 파악하기 어려워 운행 중 배터리나 연료 소모가 증가하거나 무인 비행체의 제어가 어려워지거나 심한 경우 망실이나 추락의 위험이 존재한다.These small unmanned aerial vehicles determine the possibility of operation by using wide-area weather information for the flight area when calculating the shortest flight path considering the obstacle between the starting point and the destination for the flight. There is a risk of loss or fall if the battery or fuel consumption is increased during operation, the control of unmanned aerial vehicles becomes difficult or severe.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
한국공개특허 제10-2015-0033792호 [명칭: 기상정보를 활용한 동적 경로 제공 방법, 이를 위한 시스템 및 장치]Korean Patent Publication No. 10-2015-0033792 [Name: Dynamic route providing method using weather information, system and apparatus for the same]
본 발명의 목적은 무인 비행체의 출발지와 목적지 사이에 존재하는 기지국 기반 실시간으로 관측되는 조밀한 복수의 관측소의 기상 정보를 이용하여 운행 가능한 복수의 경로를 산출하고, 산출된 복수의 경로 중에서 유효 최단 시간 경로 또는 최적 연료 소모 경로에 해당하는 최적의 경로를 제공하는 기상 정보를 이용한 무인 비행체의 경로 안내 시스템, 그 방법 및 컴퓨터 프로그램이 기록된 기록매체를 제공하는 데 있다.An object of the present invention is to calculate a plurality of routes that can operate using the weather information of a plurality of dense observatories that are observed in real time based on the base station existing between the start and destination of the unmanned aerial vehicle, the effective shortest time among the calculated plurality of paths The present invention provides a path guide system for an unmanned aerial vehicle using a weather information that provides an optimum path corresponding to a path or an optimal fuel consumption path, a method, and a computer program.
본 발명의 다른 목적은 복수의 기상 정보를 이용하여 산출된 운행 가능한 복수의 경로 중에서 무인 비행체의 운행 예상 시간 정보 및 관측소별로 생성되는 예보 정보를 근거로 최적의 경로를 제공하는 기상 정보를 이용한 무인 비행체의 경로 안내 시스템, 그 방법 및 컴퓨터 프로그램이 기록된 기록매체를 제공하는 데 있다.Another object of the present invention is an unmanned aerial vehicle using weather information that provides an optimal route based on forecasted time information of an unmanned vehicle and forecast information generated for each station, among a plurality of operable routes calculated using a plurality of weather information. The present invention provides a recording medium on which a route guidance system, a method and a computer program are recorded.
본 발명의 실시예에 따른 기상 정보를 이용한 무인 비행체의 경로 안내 방법은 통신부에 의해, 서버로부터 제공되는 출발지부터 목적지까지의 최단 경로를 기준으로 설정된 반경 내에 위치한 복수의 관측소에서 측정된 복수의 기상 정보를 수신하는 단계; 제어부에 의해, 상기 수신된 복수의 기상 정보를 근거로 상기 출발지부터 목적지까지의 운항 여부를 결정하는 단계; 상기 제어부에 의해, 상기 출발지로부터 목적지까지 운항가능한 하나 이상의 안전한 경로가 존재하여 운항이 결정된 상태일 때, 상기 운항가능한 하나 이상의 안전한 경로를 근거로 출발지부터 목적지까지의 운항 경로를 탐색하는 단계; 및 상기 제어부에 의해, 상기 통신부를 포함하는 무인 비행체의 자세 제어 및 위치 제어 중 하나 이상의 제어를 통해, 상기 탐색된 출발지부터 목적지까지의 운항 경로를 따라 상기 무인 비행체를 이동시키는 단계를 포함할 수 있다.According to an embodiment of the present invention, a method for guiding an unmanned aerial vehicle using weather information includes a plurality of weather information measured by a communication unit at a plurality of stations located within a radius set based on a shortest path from a starting point to a destination provided from a server. Receiving; Determining, by a controller, whether the flight is from the departure point to the destination based on the received plurality of weather information; Searching, by the controller, for a flight route from a departure point to a destination based on the at least one safe route that can be operated when there is at least one safe route that can be operated from the departure point to the destination; And moving, by the controller, the unmanned aerial vehicle along a flight path from the found starting point to the destination through at least one of attitude control and position control of the unmanned aerial vehicle including the communication unit. .
본 발명과 관련된 일 예로서 상기 기상 정보는, 상기 관측소가 위치한 지역의 위치 정보, 풍향, 풍속, 강우 여부, 낙뢰 발생 여부 및 측정 시각 정보 중 적어도 하나를 포함할 수 있다.As an example related to the present invention, the weather information may include at least one of location information of a region where the station is located, wind direction, wind speed, rainfall or not, lightning occurrence and measurement time information.
본 발명과 관련된 일 예로서 상기 운항 여부를 결정하는 단계는, 상기 제어부에 의해, 상기 출발지에서 목적지까지의 복수의 경로 상의 복수의 기상 정보를 근거로 출발지에서 목적지까지의 복수의 경로 중에서 회피 경로를 제거하는 과정; 상기 제어부에 의해, 상기 복수의 경로 중에서 회피 경로를 제거한 후 남아 있는 경로가 존재할 때, 상기 남아 있는 하나 이상의 경로를 안전한 경로로 판정하는 과정; 상기 제어부에 의해, 상기 출발지로부터 목적지까지 운항가능한 하나 이상의 안전한 경로가 존재할 때, 무인 비행에의 운항이 가능한 상태로 결정하는 과정; 및 상기 제어부에 의해, 상기 출발지로부터 목적지까지 운항가능한 하나 이상의 안전한 경로가 존재하지 않을 때, 상기 무인 비행체의 운항이 불가능한 상태로 결정하는 과정을 포함할 수 있다.As an example related to the present disclosure, the determining of the operation may include determining, by the controller, an avoiding route from a plurality of routes from a departure point to a destination based on a plurality of weather information on the plurality of routes from the departure point to the destination. Removing process; Determining, by the controller, the one or more remaining paths as a safe path when a remaining path exists after removing an avoiding path among the plurality of paths; Determining, by the controller, a state in which an unmanned flight is possible when there is at least one safe route that can be operated from the origin to the destination; And determining, by the controller, that the unmanned aerial vehicle cannot be operated when at least one safe route capable of operating from the starting point to the destination does not exist.
본 발명과 관련된 일 예로서 상기 회피 경로는, 출발지에서 목적지까지의 복수의 경로 중에서 관측소별 기상 정보에 포함된 풍속이 미리 설정된 풍속 임계값을 초과하는 경로, 현재 강우가 관측되는 기상 정보에 대응하는 경로, 현재 낙뢰가 관측되는 기상 정보에 대응하는 경로, 상기 무인 비행체의 운행 속도에 따라 상기 복수의 경로에 상기 무인 비행체가 도달하는 시점의 해당 경로에 대한 예보 정보를 근거로 상기 예보 정보에 포함된 풍속이 상기 풍속 임계값을 초과하는 경로, 상기 예보 정보에 포함된 강우 예상 정보가 미리 설정된 강우 임계값을 초과하는 경로 및 상기 예보 정보에 포함된 낙뢰 발생 정보가 미리 설정된 낙뢰 발생 임계값을 초과하는 경로 중 적어도 하나를 포함할 수 있다.As an example related to the present invention, the avoidance path corresponds to a path in which wind speeds included in weather information for each station exceeds a preset wind speed threshold value among a plurality of paths from a starting point to a destination, and corresponds to weather information in which current rainfall is observed. The forecast information is included in the forecast information based on a route, a route corresponding to weather information on which a current lightning strike is observed, and a corresponding route at the time when the unmanned aerial vehicle reaches the plurality of routes according to a driving speed of the unmanned aerial vehicle. A path in which the wind speed exceeds the wind speed threshold value, a path in which the rainfall prediction information included in the forecast information exceeds a preset rainfall threshold value, and a lightning occurrence information included in the forecast information exceeds a preset lightning occurrence threshold value. It may include at least one of the paths.
본 발명과 관련된 일 예로서 상기 출발지부터 목적지까지의 운항 경로를 탐색하는 단계는, 상기 제어부에 의해, 상기 운항가능한 하나 이상의 안전한 경로에 대해, 경로별 총 유효 시간을 산출하는 과정; 및 상기 제어부에 의해, 상기 산출된 경로별 총 유효 시간 중에서 최단 시간에 해당하는 출발지부터 목적지까지의 경로를 최종 운항 경로로 선택하는 과정을 포함할 수 있다.As an example related to the present invention, the searching of the flight route from the departure point to the destination may include: calculating, by the controller, a total valid time for each route for one or more safe routes that can be operated; And selecting, by the controller, a route from the starting point corresponding to the shortest time to the destination among the calculated total valid time for each route as the final operating route.
본 발명과 관련된 일 예로서 상기 출발지부터 목적지까지의 운항 경로를 탐색하는 단계는, 상기 제어부에 의해, 상기 운항가능한 하나 이상의 안전한 경로에 대해, 경로별 연료 소모량을 산출하는 과정; 및 상기 제어부에 의해, 상기 산출된 경로별 연료 소모량 중에서 최소 연료를 소모하는 출발지부터 목적지까지의 경로를 최종 운항 경로로 선택하는 과정을 포함할 수 있다.As an example related to the present invention, the searching of the flight route from the departure point to the destination may include: calculating, by the controller, fuel consumption for each route for one or more safe routes that can be operated; And selecting, by the controller, a route from the starting point to the destination that consumes the least fuel among the calculated fuel consumption for each route as the final operating route.
본 발명의 실시예에 따른 컴퓨터 프로그램이 기록된 기록매체에는 상술한 실시예에 따른 방법을 수행하는 컴퓨터 프로그램이 저장될 수 있다.A computer program for performing the method according to the above-described embodiments may be stored in a recording medium on which a computer program according to an embodiment of the present invention is recorded.
본 발명의 실시예에 따른 기상 정보를 이용한 무인 비행체의 경로 안내 시스템은 서버로부터 제공되는 출발지부터 목적지까지의 최단 경로를 기준으로 설정된 반경 내에 위치한 복수의 관측소에서 측정된 복수의 기상 정보를 수신하는 통신부; 및 상기 수신된 복수의 기상 정보를 근거로 상기 출발지부터 목적지까지의 운항 여부를 결정하고, 상기 출발지로부터 목적지까지 운항가능한 하나 이상의 안전한 경로가 존재하여 운항이 결정된 상태일 때, 상기 운항가능한 하나 이상의 안전한 경로를 근거로 출발지부터 목적지까지의 운항 경로를 탐색하고, 상기 통신부를 포함하는 무인 비행체의 자세 제어 및 위치 제어 중 하나 이상의 제어를 통해, 상기 탐색된 출발지부터 목적지까지의 운항 경로를 따라 상기 무인 비행체를 이동시키는 제어부를 포함할 수 있다.The unmanned aerial vehicle route guidance system using weather information according to an embodiment of the present invention is a communication unit for receiving a plurality of weather information measured from a plurality of stations located within a radius set based on the shortest route from the starting point to the destination provided from the server ; And determining whether to operate from the departure point to the destination based on the received plurality of weather information, and when there is at least one safe route that can be operated from the departure point to the destination, the operation is determined. Search for a navigation route from a departure point to a destination based on a route, and through at least one of attitude control and position control of the unmanned aerial vehicle including the communication unit, the unmanned aerial vehicle along the navigation route from the searched departure point to the destination; It may include a control unit for moving.
본 발명과 관련된 일 예로서 상기 제어부는, 상기 출발지에서 목적지까지의 복수의 경로 상의 복수의 기상 정보를 근거로 출발지에서 목적지까지의 복수의 경로 중에서 회피 경로를 제거하고, 상기 복수의 경로 중에서 회피 경로를 제거한 후 남아 있는 경로가 존재할 때, 상기 남아 있는 하나 이상의 경로를 안전한 경로로 판정할 수 있다.As an example related to the present invention, the controller may be configured to remove an avoiding route from a plurality of routes from a departure point to a destination based on a plurality of weather information on the plurality of routes from the departure point to the destination, and avoid the avoidance route among the plurality of routes. When there is a path remaining after removing, the remaining one or more paths can be determined as a safe path.
본 발명과 관련된 일 예로서 상기 제어부는, 상기 출발지로부터 목적지까지 운항가능한 하나 이상의 안전한 경로가 존재할 때, 무인 비행에의 운항이 가능한 상태로 결정할 수 있다.As an example related to the present invention, when there is at least one safe route that can be operated from the departure point to the destination, the controller may determine that the flight in the unmanned flight is possible.
본 발명과 관련된 일 예로서 상기 제어부는, 상기 운항가능한 하나 이상의 안전한 경로에 대해, 경로별 총 유효 시간을 산출하고, 상기 산출된 경로별 총 유효 시간 중에서 최단 시간에 해당하는 출발지부터 목적지까지의 경로를 최종 운항 경로로 선택할 수 있다.As an example related to the present invention, the controller calculates a total valid time for each route for one or more safe routes that can be operated, and a route from a starting point to a destination corresponding to the shortest time among the calculated total valid times for each route. Can be selected as the final route of travel.
본 발명과 관련된 일 예로서 상기 제어부는, 상기 운항가능한 하나 이상의 안전한 경로에 대해, 경로별 연료 소모량을 산출하고, 상기 산출된 경로별 연료 소모량 중에서 최소 연료를 소모하는 출발지부터 목적지까지의 경로를 최종 운항 경로로 선택할 수 있다.As an example related to the present invention, the controller calculates fuel consumption for each route for one or more safe routes that can be operated, and finalizes a route from the starting point to the destination that consumes the least fuel among the calculated fuel consumption for each route. Can be selected as a flight route.
본 발명은 무인 비행체의 출발지와 목적지 사이에 존재하는 기지국 기반 실시간으로 관측되는 조밀한 복수의 관측소의 기상 정보를 이용하여 운행 가능한 복수의 경로를 산출하고, 산출된 복수의 경로 중에서 유효 최단 시간 경로 또는 최적 연료 소모 경로에 해당하는 최적의 경로를 제공함으로써, 무인 비행체의 운행 여부를 정밀하게 판별할 수 있는 효과가 있다.The present invention calculates a plurality of routes that can be operated by using weather information of a plurality of dense observatories that are observed in real time based on a base station existing between a starting point and a destination of an unmanned aerial vehicle, and among the calculated plurality of paths, an effective shortest time path or By providing the optimum path corresponding to the optimum fuel consumption path, there is an effect that can accurately determine whether the unmanned vehicle is running.
또한, 본 발명은 복수의 기상 정보를 이용하여 산출된 운행 가능한 복수의 경로 중에서 무인 비행체의 운행 예상 시간 정보 및 관측소별로 생성되는 예보 정보를 근거로 최적의 경로를 제공함으로써, 경제적이고 안정적인 운행을 위한 경로를 선택할 수 있는 효과가 있다.In addition, the present invention provides an optimal route based on the estimated time information of the operation of the unmanned vehicle and the forecast information generated for each station among the plurality of routes that can be calculated using a plurality of weather information, for economical and stable operation It has the effect of choosing a path.
도 1은 본 발명의 실시예에 따른 기상 정보를 이용한 무인 비행체의 경로 안내 시스템의 구성을 나타낸 블록도이다.1 is a block diagram showing the configuration of a route guidance system for an unmanned aerial vehicle using weather information according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 무인 비행체의 구성을 나타낸 블록도이다.2 is a block diagram showing the configuration of an unmanned aerial vehicle according to an embodiment of the present invention.
도 3 및 도 4는 본 발명의 실시예에 따른 무인 비행체의 경로 탐색을 위한 예시를 나타낸 도이다.3 and 4 are diagrams showing an example for the path search of the unmanned aerial vehicle according to an embodiment of the present invention.
도 5는 본 발명의 실시예에 따른 기상 정보를 이용한 무인 비행체의 경로 안내 방법을 나타낸 흐름도이다.5 is a flowchart illustrating a route guidance method for an unmanned aerial vehicle using weather information according to an exemplary embodiment of the present invention.
도 6은 본 발명의 실시예에 따른 무인 비행체의 경로 탐색을 위한 예시를 나타낸 도이다.6 is a view showing an example for the path search of the unmanned aerial vehicle according to an embodiment of the present invention.
본 발명에서 사용되는 기술적 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아님을 유의해야 한다. 또한, 본 발명에서 사용되는 기술적 용어는 본 발명에서 특별히 다른 의미로 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 의미로 해석되어야 하며, 과도하게 포괄적인 의미로 해석되거나, 과도하게 축소된 의미로 해석되지 않아야 한다. 또한, 본 발명에서 사용되는 기술적인 용어가 본 발명의 사상을 정확하게 표현하지 못하는 잘못된 기술적 용어일 때에는 당업자가 올바르게 이해할 수 있는 기술적 용어로 대체되어 이해되어야 할 것이다. 또한, 본 발명에서 사용되는 일반적인 용어는 사전에 정의되어 있는 바에 따라, 또는 전후 문맥상에 따라 해석되어야 하며, 과도하게 축소된 의미로 해석되지 않아야 한다.It should be noted that the technical terms used in the present invention are merely used to describe specific embodiments, and are not intended to limit the present invention. In addition, the technical terms used in the present invention should be interpreted as meanings generally understood by those skilled in the art unless the present invention has a special meaning defined in the present invention, and is excessively comprehensive. It should not be interpreted in the sense of or in the sense of being excessively reduced. In addition, when a technical term used in the present invention is an incorrect technical term that does not accurately express the spirit of the present invention, it should be replaced with a technical term that can be understood by those skilled in the art. In addition, the general terms used in the present invention should be interpreted as defined in the dictionary or according to the context before and after, and should not be interpreted in an excessively reduced sense.
또한, 본 발명에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함한다. 본 발명에서 "구성된다" 또는 "포함한다" 등의 용어는 발명에 기재된 여러 구성 요소들 또는 여러 단계를 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다.Also, the singular forms used in the present invention include plural forms unless the context clearly indicates otherwise. Terms such as “consisting of” or “comprising” in the present invention should not be construed as necessarily including all of the various components or steps described in the present invention, and some of the components or some steps may not be included. It should be construed that it may further include, or further include, additional components or steps.
또한, 본 발명에서 사용되는 제 1, 제 2 등과 같이 서수를 포함하는 용어는 구성 요소들을 설명하는데 사용될 수 있지만, 구성 요소들은 용어들에 의해 한정되어서는 안 된다. 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제 1 구성 요소는 제 2 구성 요소로 명명될 수 있고, 유사하게 제 2 구성 요소도 제 1 구성 요소로 명명될 수 있다.In addition, terms including ordinal numbers such as first and second used in the present invention may be used to describe components, but the components should not be limited by the terms. The terms are used only to distinguish one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings, and the same or similar components will be given the same reference numerals regardless of the reference numerals, and redundant description thereof will be omitted.
또한, 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 발명의 사상을 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 발명의 사상이 제한되는 것으로 해석되어서는 아니 됨을 유의해야 한다.In addition, in describing the present invention, when it is determined that the detailed description of the related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted. In addition, it should be noted that the accompanying drawings are only for easily understanding the spirit of the present invention and should not be construed as limiting the spirit of the present invention by the accompanying drawings.
도 1은 본 발명의 실시예에 따른 기상 정보를 이용한 무인 비행체의 경로 안내 시스템(10)의 구성을 나타낸 블록도이다.1 is a block diagram showing the configuration of a route guidance system 10 of an unmanned aerial vehicle using weather information according to an embodiment of the present invention.
도 1에 도시된 바와 같이, 기상 정보를 이용한 무인 비행체의 경로 안내 시스템(10)은 관측소(100), 서버(200) 및 무인 비행체(300)로 구성된다. 도 1에 도시된 무인 비행체의 경로 안내 시스템(10)의 구성 요소 모두가 필수 구성 요소인 것은 아니며, 도 1에 도시된 구성 요소보다 많은 구성 요소에 의해 무인 비행체의 경로 안내 시스템(10)이 구현될 수도 있고, 그보다 적은 구성 요소에 의해서도 무인 비행체의 경로 안내 시스템(10)이 구현될 수도 있다.As shown in FIG. 1, the path guidance system 10 of an unmanned aerial vehicle using weather information includes an observation station 100, a server 200, and an unmanned aerial vehicle 300. Not all components of the path guide system 10 of the unmanned aerial vehicle shown in FIG. 1 are essential components, and the path guide system 10 of the unmanned aerial vehicle is implemented by more components than those shown in FIG. The path guide system 10 of the unmanned aerial vehicle may be implemented with fewer components.
무인 비행체(300)는 광역 기상 정보 대신 출발지에서 목적지까지의 최단 경로를 기준으로 미리 설정된 반경 내에 위치한 복수의 관측소(100)에서 측정된 복수의 기상 정보를 근거로 운항 여부(또는 비행 여부)를 결정한다. 또한, 운항이 결정된 경우, 무인 비행체(300)는 출발지에서 목적지까지의 복수의 운항 경로 중에서 판정된 복수의 안전 경로에 대해서, 경로별 총 유효 시간 및/또는 경로별 연료 소모량을 산출하고, 산출된 경로별 총 유효 시간 및/또는 경로별 연료 소모량을 근거로 최종 운항 경로를 선택한다. 이후, 무인 비행체(300)는 선택된 최종 운항 경로를 따라 운항한다.The unmanned aerial vehicle 300 determines whether to fly (or whether to fly) based on a plurality of weather information measured by a plurality of stations 100 located within a predetermined radius based on the shortest path from the starting point to the destination instead of the wide area weather information. do. In addition, when the operation is determined, the unmanned aerial vehicle 300 calculates the total effective time for each route and / or fuel consumption for each route, for the plurality of safety routes determined from the plurality of operation routes from the origin to the destination, and is calculated. The final route of travel is selected based on the total valid time per route and / or fuel consumption per route. Thereafter, the unmanned aerial vehicle 300 operates along the selected final navigation route.
관측소(100)는 통신 설비가 설치된 기지국일 수 있다. Observation station 100 may be a base station in which communication facilities are installed.
또한, 관측소(100)는 기상 정보를 측정(또는 수집)하기 위한 다양한 기상 센서(미도시)를 포함한다. 여기서, 기상 정보는 풍향, 풍속, 강우 여부, 낙뢰 발생 여부, 측정 시각 정보 등의 정보를 포함한다.In addition, the station 100 includes various weather sensors (not shown) for measuring (or collecting) weather information. Here, the weather information includes information such as wind direction, wind speed, rainfall, lightning strike, and measurement time information.
또한, 관측소(100)는 해당 관측소(100)가 위치한 지역의 기상 정보를 측정(또는 수집)한다.In addition, the station 100 measures (or collects) weather information of the region where the station 100 is located.
또한, 관측소(100)는 측정된(또는 수집된) 기상 정보를 서버(200) 및/또는 무인 비행체(300)에 전송한다. 이때, 기상 정보는 해당 관측소(100)가 위치한 지역의 위치 정보(예를 들어 위도, 경도 등 포함) 등을 더 포함할 수도 있다.The station 100 also transmits the measured (or collected) weather information to the server 200 and / or the unmanned aerial vehicle 300. In this case, the weather information may further include location information (eg, including latitude, longitude, etc.) of the region where the corresponding observatory 100 is located.
서버(200)는 하나 이상의 관측소(100), 하나 이상의 무인 비행체(300) 등과 통신한다.The server 200 communicates with one or more observation stations 100, one or more unmanned aerial vehicles 300, and the like.
또한, 서버(200)는 하나 이상의 관측소(100)로부터 각각 전송되는 복수의 기상 정보를 수신한다. 이때, 서버(200)는 미리 설정된 시간 간격으로 해당 관측소(100)로부터 전송되는 기상 정보를 수신하거나, 서버(200)의 기상 정보 전송 요청에 응답하여 특정 관측소(100)로부터 전송되는 기상 정보를 수신할 수 있다.In addition, the server 200 receives a plurality of weather information transmitted from one or more stations 100, respectively. At this time, the server 200 receives the weather information transmitted from the corresponding station 100 at predetermined time intervals, or receives the weather information transmitted from the specific station 100 in response to a request for transmitting the weather information of the server 200. can do.
또한, 서버(200)는 무인 비행체(300)로부터 전송되는 무인 비행체(300)의 고유 식별 정보, 출발지 정보, 목적지 정보 등을 수신한다.In addition, the server 200 receives unique identification information, origin information, destination information, etc. of the unmanned aerial vehicle 300 transmitted from the unmanned aerial vehicle 300.
또한, 서버(200)는 수신된 출발지 정보 및 목적지 정보를 근거로 해당 서버(200)에 미리 저장된 복수의 관측소별 기상 정보 중에서 해당 출발지 정보 및 목적지 정보에 대응하는 복수의(또는 하나 이상의) 기상 정보를 해당 무인 비행체(300)에 전송한다.In addition, the server 200 based on the received source information and destination information, a plurality of (or one or more) weather information corresponding to the corresponding source information and the destination information among the plurality of weather information for each station previously stored in the server 200. To transmit to the unmanned aerial vehicle (300).
즉, 서버(200)는 수신된 출발지 정보 및 목적지 정보를 근거로 해당 서버(200)에 미리 저장된 복수의 관측소별 기상 정보 중에서 해당 출발지에서 목적지까지의 최단 경로를 기준으로 미리 설정된 반경 내에 위치한 복수의 관측소(100)에서 수집된 복수의 기상 정보를 해당 무인 비행체(300)에 전송한다.That is, the server 200 is located within a preset radius based on the shortest path from the corresponding departure point to the destination among the plurality of weather information for each station stored in the corresponding server 200 based on the received departure point information and the destination information. The plurality of weather information collected from the observation station 100 is transmitted to the unmanned aerial vehicle 300.
도 2에 도시된 바와 같이, 무인 비행체(또는 드론)(300)는 통신부(310), 저장부(320), 표시부(330) 및 제어부(340)로 구성된다. 도 2에 도시된 무인 비행체(300)의 구성 요소 모두가 필수 구성 요소인 것은 아니며, 도 2에 도시된 구성 요소보다 많은 구성 요소에 의해 무인 비행체(300)가 구현될 수도 있고, 그보다 적은 구성 요소에 의해서도 무인 비행체(300)가 구현될 수도 있다.As shown in FIG. 2, the unmanned aerial vehicle (or drone) 300 includes a communication unit 310, a storage unit 320, a display unit 330, and a controller 340. Not all components of the unmanned aerial vehicle 300 shown in FIG. 2 are essential components, and the unmanned aerial vehicle 300 may be implemented by more components than those shown in FIG. 2, and fewer components thereof. The unmanned aerial vehicle 300 may also be implemented.
통신부(310)는 유/무선 통신망을 통해 내부의 임의의 구성 요소 또는 외부의 임의의 적어도 하나의 단말기와 통신 연결한다. 이때, 외부의 임의의 단말기는 관측소(100), 서버(200) 등을 포함할 수 있다. 여기서, 무선 인터넷 기술로는 무선랜(Wireless LAN: WLAN), DLNA(Digital Living Network Alliance), 와이브로(Wireless Broadband: Wibro), 와이맥스(World Interoperability for Microwave Access: Wimax), HSDPA(High Speed Downlink Packet Access), HSUPA(High Speed Uplink Packet Access), IEEE 802.16, 롱 텀 에볼루션(Long Term Evolution: LTE), LTE-A(Long Term Evolution-Advanced), 광대역 무선 이동 통신 서비스(Wireless Mobile Broadband Service: WMBS) 등이 있으며, 통신부(310)는 상기에서 나열되지 않은 인터넷 기술까지 포함한 범위에서 적어도 하나의 무선 인터넷 기술에 따라 데이터를 송수신하게 된다. 또한, 근거리 통신 기술로는 블루투스, RFID, 적외선 통신(IrDA), UWB, 지그비, 인접 자장 통신(NFC), 초음파 통신(USC), 가시광 통신(VLC), 와이 파이, 와이 파이 다이렉트 등이 포함될 수 있다. 또한, 유선 통신 기술로는 전력선 통신(Power Line Communication: PLC), USB 통신, 이더넷(Ethernet), 시리얼 통신(serial communication), 광/동축 케이블 등이 포함될 수 있다.The communication unit 310 communicates with any component inside or any at least one terminal outside through a wired / wireless communication network. In this case, any external terminal may include the observatory 100, the server 200, and the like. Here, the wireless Internet technologies include a wireless LAN (WLAN), a digital living network alliance (DLNA), a wireless broadband (Wibro), a WiMAX (World Interoperability for Microwave Access: Wimax), and an HSDPA (High Speed Downlink Packet Access). ), HSUPA (High Speed Uplink Packet Access), IEEE 802.16, Long Term Evolution (LTE), Long Term Evolution-Advanced (LTE-A), Wireless Mobile Broadband Service (WMBS), etc. The communication unit 310 transmits and receives data according to at least one wireless Internet technology in a range including the Internet technologies not listed above. In addition, short-range communication technologies may include Bluetooth, RFID, infrared communication (IrDA), UWB, Zigbee, adjacent field communication (NFC), ultrasonic communication (USC), visible light communication (VLC), Wi-Fi, Wi-Fi Direct, etc. have. In addition, the wired communication technology may include power line communication (PLC), USB communication, Ethernet, serial communication, serial communication, optical / coaxial cable, and the like.
또한, 통신부(310)는 유니버설 시리얼 버스(Universal Serial Bus: USB)를 통해 임의의 단말과 정보를 상호 전송할 수 있다.In addition, the communicator 310 may mutually transmit information with an arbitrary terminal through a universal serial bus (USB).
또한, 통신부(310)는 이동통신을 위한 기술표준들 또는 통신방식(예를 들어, GSM(Global System for Mobile communication), CDMA(Code Division Multi Access), CDMA2000(Code Division Multi Access 2000), EV-DO(Enhanced Voice-Data Optimized or Enhanced Voice-Data Only), WCDMA(Wideband CDMA), HSDPA(High Speed Downlink Packet Access), HSUPA(High Speed Uplink Packet Access), LTE(Long Term Evolution), LTE-A(Long Term Evolution-Advanced) 등)에 따라 구축된 이동 통신망 상에서 기지국, 관측소(100), 서버(200) 등과 무선 신호를 송수신한다.In addition, the communication unit 310 may include technical standards or communication schemes (eg, Global System for Mobile communication (GSM), Code Division Multi Access (CDMA), Code Division Multi Access 2000 (CDMA2000), and EV-) for mobile communication. Enhanced Voice-Data Optimized or Enhanced Voice-Data Only (DO), Wideband CDMA (WCDMA), High Speed Downlink Packet Access (HSDPA), High Speed Uplink Packet Access (HSUPA), Long Term Evolution (LTE), LTE-A ( Long Term Evolution-Advanced, etc.) to transmit and receive radio signals to the base station, the observatory 100, the server 200 and the like on a mobile communication network.
또한, 통신부(310)는 제어부(340)의 제어에 의해, 서버(200)로부터 제공되는 출발지에서부터 목적지까지의 최단 경로를 기준으로 미리 설정된 반경 내에 위치한 복수의 관측소(100)에서 측정된 복수의 기상 정보를 수신한다. 여기서, 기상 정보는 해당 관측소(100)가 위치한 지역의 위치 정보(예를 들어 위도, 경도 등 포함), 풍향, 풍속, 강우 여부, 낙뢰 발생 여부, 측정 시각 정보 등의 정보를 포함한다.In addition, the communication unit 310 controls a plurality of weather conditions measured by the plurality of observation stations 100 located within a predetermined radius based on the shortest path from the starting point to the destination provided by the server 200 under the control of the control unit 340. Receive information. Here, the weather information includes information such as location information (eg, latitude, longitude, etc.), wind direction, wind speed, rainfall, lightning strike, and measurement time information of the region where the corresponding observatory 100 is located.
또한, 통신부(310)는 개별 관측소(100)별로 전송되는 기상 정보를 각각 수신할 수도 있다.In addition, the communicator 310 may receive weather information transmitted for each individual observing station 100.
저장부(320)는 무인 비행체의 경로 안내 시스템(10)이 동작하는데 필요한 데이터와 프로그램 등을 저장한다.The storage unit 320 stores data and programs required for operating the path guidance system 10 of the unmanned aerial vehicle.
즉, 저장부(320)는 무인 비행체의 경로 안내 시스템(10)에서 구동되는 다수의 응용 프로그램(application program 또는 애플리케이션), 무인 비행체의 경로 안내 시스템(10)의 동작을 위한 데이터들, 명령어들을 저장할 수 있다. 이러한 응용 프로그램 중 적어도 일부는 무선 통신을 통해 외부 서비스 제공 장치로부터 다운로드 될 수 있다. 한편, 응용 프로그램은 저장부(320)에 저장되고, 무인 비행체의 경로 안내 시스템(10)에 설치되어, 제어부(340)에 의하여 무인 비행체의 경로 안내 시스템(10)의 동작(또는 기능)을 수행하도록 구동될 수 있다.That is, the storage unit 320 stores a plurality of applications (application programs or applications) driven in the path guidance system 10 of the unmanned aerial vehicle, data for the operation of the path guidance system 10 of the unmanned aerial vehicle, and instructions. Can be. At least some of these applications may be downloaded from an external service providing apparatus through wireless communication. On the other hand, the application is stored in the storage unit 320, is installed in the path guide system 10 of the unmanned aerial vehicle, the control unit 340 performs the operation (or function) of the path guide system 10 of the unmanned aerial vehicle. Can be driven.
또한, 저장부(320)는 플래시 메모리 타입(Flash Memory Type), 하드 디스크 타입(Hard Disk Type), 멀티미디어 카드 마이크로 타입(Multimedia Card Micro Type), 카드 타입의 메모리(예를 들면, SD 또는 XD 메모리 등), 자기 메모리, 자기 디스크, 광디스크, 램(Random Access Memory: RAM), SRAM(Static Random Access Memory), 롬(Read-Only Memory: ROM), EEPROM(Electrically Erasable Programmable Read-Only Memory), PROM(Programmable Read-Only Memory) 중 적어도 하나의 저장매체를 포함할 수 있다. 또한, 무인 비행체의 경로 안내 시스템(10)은 인터넷(internet)상에서 저장부(320)의 저장 기능을 수행하는 웹 스토리지(web storage)를 운영하거나, 또는 웹 스토리지와 관련되어 동작할 수도 있다.In addition, the storage unit 320 may include a flash memory type, a hard disk type, a multimedia card micro type, a card type memory (eg, SD or XD memory). Etc.), magnetic memory, magnetic disk, optical disk, random access memory (RAM), static random access memory (SRAM), read-only memory (ROM), electrically erasable programmable read-only memory (EPM), PROM It may include at least one storage medium of (Programmable Read-Only Memory). In addition, the route guidance system 10 of the unmanned aerial vehicle may operate a web storage that performs a storage function of the storage unit 320 on the Internet, or may operate in connection with the web storage.
또한, 저장부(320)는 제어부(340)의 제어에 의해 통신부(310)를 통해 수신된 관측소별 복수의 기상 정보를 저장한다.In addition, the storage 320 stores a plurality of weather information for each station received through the communication unit 310 under the control of the controller 340.
표시부(330)는 제어부(340)의 제어에 의해 저장부(320)에 저장된 사용자 인터페이스 및/또는 그래픽 사용자 인터페이스를 이용하여 다양한 메뉴 화면 등과 같은 다양한 콘텐츠를 표시할 수 있다. 여기서, 표시부(330)에 표시되는 콘텐츠는 다양한 텍스트 또는 이미지 데이터(각종 정보 데이터 포함)와 아이콘, 리스트 메뉴, 콤보 박스 등의 데이터를 포함하는 메뉴 화면 등을 포함한다. 또한, 표시부(330)는 터치 스크린 일 수 있다.The display unit 330 may display various contents such as various menu screens using a user interface and / or a graphic user interface stored in the storage 320 under the control of the controller 340. Here, the content displayed on the display unit 330 includes a menu screen including various text or image data (including various information data) and data such as icons, list menus, combo boxes, and the like. In addition, the display unit 330 may be a touch screen.
또한, 표시부(330)는 액정 디스플레이(Liquid Crystal Display: LCD), 박막 트랜지스터 액정 디스플레이(Thin Film Transistor-Liquid Crystal Display: TFT LCD), 유기 발광 다이오드(Organic Light-Emitting Diode: OLED), 플렉시블 디스플레이(Flexible Display), 3차원 디스플레이(3D Display), 전자잉크 디스플레이(e-ink display), LED(Light Emitting Diode) 중에서 적어도 하나를 포함할 수 있다.In addition, the display unit 330 may include a liquid crystal display (LCD), a thin film transistor liquid crystal display (TFT LCD), an organic light-emitting diode (OLED), a flexible display ( The display device may include at least one of a flexible display, a 3D display, an e-ink display, and a light emitting diode (LED).
또한, 표시부(330)는 입체영상을 표시하는 입체 디스플레이부로서 구성될 수 있다.In addition, the display unit 330 may be configured as a stereoscopic display unit for displaying a stereoscopic image.
입체 디스플레이부에는 스테레오스코픽 방식(안경 방식), 오토 스테레오스코픽 방식(무안경 방식), 프로젝션 방식(홀로그래픽 방식) 등의 3차원 디스플레이 방식이 적용될 수 있다.The stereoscopic display unit may be a three-dimensional display method such as a stereoscopic method (glasses method), an auto stereoscopic method (glasses-free method), a projection method (holographic method).
또한, 표시부(330)는 무인 비행체(300)의 동작 상태를 나타내기 위한 LED를 포함할 수 있다.In addition, the display unit 330 may include an LED for indicating an operating state of the unmanned aerial vehicle 300.
또한, 표시부(330)는 제어부(340)의 제어에 의해, 무인 비행체(300)의 동작 상태, 이상 여부 상태 등을 LED를 통해 표시한다.In addition, the display unit 330 displays an operating state, an abnormal state state, and the like of the unmanned aerial vehicle 300 under the control of the controller 340 through the LED.
제어부(340)는 무인 비행체(300)의 전반적인 제어 기능을 실행한다.The controller 340 executes an overall control function of the unmanned aerial vehicle 300.
또한, 제어부(340)는 저장부(320)에 저장된 프로그램 및 데이터를 이용하여 무인 비행체(300)의 전반적인 제어 기능을 실행한다. 제어부(340)는 RAM, ROM, CPU, GPU, 버스를 포함할 수 있으며, RAM, ROM, CPU, GPU 등은 버스를 통해 서로 연결될 수 있다. CPU는 저장부(320)에 액세스하여, 저장부(320)에 저장된 O/S를 이용하여 부팅을 수행할 수 있으며, 저장부(320)에 저장된 각종 프로그램, 콘텐츠, 데이터 등을 이용하여 다양한 동작을 수행할 수 있다.In addition, the controller 340 executes an overall control function of the unmanned aerial vehicle 300 by using a program and data stored in the storage 320. The controller 340 may include a RAM, a ROM, a CPU, a GPU, a bus, and the RAM, a ROM, a CPU, a GPU, and the like may be connected to each other through a bus. The CPU may access the storage 320 to perform booting using the O / S stored in the storage 320, and various operations using various programs, contents, and data stored in the storage 320 may be performed. Can be performed.
또한, 출발지로부터 목적지로 해당 무인 비행체(300)가 비행을 하고자하는 경우, 해당 무인 비행체(300)가 출발하여 안전하게 목적지까지 비행이 가능할지 여부를 판단함에 있어서, 도 3에 도시한 바와 같이, 제어부(340)는 GIS 시스템 상에서 최단 거리에 해당하는 경로를 경로 1이라 할 경우, 단순하게 출발지와 가장 가까운 관측소 A의 풍속이 미리 설정된 풍속 임계값을 초과하는지 여부를 판단하는 것이 아니라, 경로 1 선상에 있는 관측소 B, 우회 경로인 경로 2 상에 있는 관측소 C 및 목적지 관측소 D 등을 포함하여, 가능 경로 안에 존재하는 다양한 관측소의 풍속, 풍향 등을 포함하는 기상 정보를 고려하여, 운항 여부를 결정한다.In addition, when the unmanned aerial vehicle 300 intends to fly from the starting point to the destination, in determining whether the unmanned aerial vehicle 300 departs and can safely fly to the destination, as shown in FIG. When the path corresponding to the shortest distance on the GIS system is path 1, 340 does not simply determine whether the wind speed of the station A closest to the origin exceeds the preset wind speed threshold, but on the path 1 line. Operation is determined in consideration of weather information including wind speed, wind direction, and the like of various stations present in the possible path, including station B in the vicinity, station C on the route 2, and destination station D in the detour route.
또한, 제어부(340)는 경로 상에 풍속이 미리 설정된 풍속 임계값을 초과하거나 또는 해당 풍속 임계값에 가까운 경로가 존재하는 경우, 이를 회피하는 경로를 선택하여 운항 여부를 고려할 수 있다.In addition, when a wind speed exceeds a preset wind speed threshold or a path close to the wind speed threshold exists on the path, the controller 340 may consider whether to operate by selecting a path that avoids the wind speed.
또한, 제어부(340)는 통신부(310)를 통해 수신된 복수의 기상 정보를 근거로 해당 출발지부터 목적지까지의 운항 여부를 결정한다.In addition, the controller 340 determines whether to operate from the corresponding starting point to the destination based on the plurality of weather information received through the communication unit 310.
즉, 제어부(340)는 출발지에서 목적지까지의 복수의 경로 상의 복수의 기상 정보를 근거로 출발지에서 목적지까지의 복수의 경로 중에서 회피 경로를 제거한다. 여기서, 회피 경로는 출발지에서 목적지까지의 복수의 경로 중에서 관측소별 기상 정보에 포함된 풍속이 미리 설정된 풍속 임계값을 초과하는 경로, 현재 강우가 관측되는 기상 정보(또는 관측소)에 대응하는 경로 등을 포함한다.That is, the controller 340 removes the avoiding route from the plurality of routes from the starting point to the destination based on the plurality of weather information on the plurality of routes from the starting point to the destination. Here, the avoidance path includes a path in which wind speeds included in weather information for each station exceeds a preset wind speed threshold value among a plurality of paths from a source to a destination, a path corresponding to weather information (or a station) at which current rainfall is observed. Include.
또한, 제어부(340)는 복수의 경로 중에서 회피 경로를 제거한 후 남아 있는 경로가 존재하는 경우, 해당 남은 하나 이상의 경로를 안전한 경로로 판정한다.In addition, when there is a path remaining after removing the avoiding path among the plurality of paths, the controller 340 determines the at least one remaining path as a safe path.
또한, 제어부(340)는 출발지로부터 목적지까지 운항가능한 하나 이상의 안전한 경로가 존재하는 경우, 무인 비행체(300)의 운항이 가능한 상태로 결정한다.In addition, the controller 340 determines that the unmanned aerial vehicle 300 can be operated when there is at least one safe route that can be operated from the starting point to the destination.
또한, 제어부(340)는 출발지로부터 목적지까지 운항가능한 하나 이상의 안전한 경로가 존재하지 않는 경우, 무인 비행체(300)의 운항이 불가한 상태로 결정한다.In addition, the controller 340 determines that the unmanned aerial vehicle 300 cannot be operated when at least one safe path capable of operating from the starting point to the destination does not exist.
또한, 안전한 경로가 존재하는지 여부를 판정할 때, 제어부(340)는 출발지에서 목적지까지의 복수의 경로 중에서 앞선 풍속 임계값을 초과하는 경로, 현재 강우가 관측되는 기상 정보에 대응하는 경로, 현재 낙뢰가 관측되는 기상 정보(또는 관측소)에 대응하는 경로뿐만 아니라, 무인 비행체(300)의 운행 속도와 각 구간 경로의 거리와 각 관측소별로 제공되는 예보 정보를 결합하여, 안전한 경로가 존재하는지 여부를 판정할 수도 있다.In addition, when determining whether a safe route exists, the controller 340 may include a path exceeding a previous wind speed threshold value among a plurality of paths from a starting point to a destination, a path corresponding to weather information for which current rainfall is observed, and a current lightning strike. Combines the speed of the unmanned aerial vehicle 300 with the distance of each section path and the forecast information provided for each station, as well as the path corresponding to the observed weather information (or station), to determine whether a safe path exists. You may.
즉, 제어부(340)는 출발지에서 목적지까지의 복수의 경로 중에서 앞선 관측소별 기상 정보에 포함된 풍속이 풍속 임계값을 초과하는 경로, 현재 강우가 관측되는 기상 정보에 대응하는 경로, 현재 낙뢰가 관측되는 기상 정보(또는 관측소)에 대응하는 경로, 무인 비행체(300)의 운행 속도에 따라 복수의 경로에 무인 비행체(300)가 도달하는 시점의 해당 경로(또는 지점)에 대한 예보 정보를 근거로 해당 예보 정보에 포함된 풍속이 해당 풍속 임계값을 초과하는 경로, 해당 복수의 경로에 무인 비행체(300)가 도달하는 시점의 해당 경로에 대한 예보 정보를 근거로 해당 예보 정보에 포함된 강우 예상 정보가 미리 설정된 강우 임계값을 초과하는 경로 등을 포함하는 회피 경로를 제거하여, 안전한 경로가 존재하는지 여부를 판정할 수도 있다.That is, the controller 340 is a path in which the wind speed included in the weather information for each station above the wind speed threshold value exceeds a wind speed threshold value, a path corresponding to weather information for which current rainfall is observed, and a current lightning strike, among a plurality of paths from a departure point to a destination. Corresponding to the weather information (or station) corresponding to the weather information (or station) based on the forecast information on the corresponding path (or point) at the time when the unmanned aerial vehicle 300 reaches a plurality of paths according to the driving speed of the unmanned aerial vehicle 300. Rainfall prediction information included in the forecast information is based on a path in which the wind speed included in the forecast information exceeds a corresponding wind speed threshold, and the forecast information on the path when the unmanned aerial vehicle 300 reaches the plurality of paths. It is also possible to determine whether a safe path exists by removing an avoiding path including a path exceeding a preset rainfall threshold.
이처럼 일반적인 경우에는 기상청 등에서 발표하는 전체 지역 대표 날씨(또는 기상 정보)에 의존하여 무인 비행체(300)의 운행 가능 여부를 결정해야 한다.In this general case, it is necessary to determine whether the unmanned aerial vehicle 300 can be operated based on the overall local representative weather (or weather information) announced by the Korea Meteorological Agency.
본 발명의 실시예에서와 같이, 출발지에서 목적지까지 위치하는 복수의 조밀한 관측소(100)를 활용하는 경우, 제어부(340)는 출발지와 도착지 인근 정보뿐만 아니라, 복수의 경로 1, 2, ... , n (여기서 n은 자연수) 상의 관측 정보(또는 기상 정보)(예를 들어 A1, A2, ... , AN, B1, B2, ... , BN, ... , Z1, Z2, ... , ZN (여기서 N은 자연수)의 정보)를 모두 종합하여, 경로 상에 풍속 임계값을 초과하는 경로, 현재 강우가 관측되는 관측소에 대응하는 경로, 현재 낙뢰가 관측되는 기상 정보(또는 관측소)에 대응하는 경로 등을 제거하고, 안전한 경로가 존재하는지 여부를 판정하여, 운행 가능 여부를 결정할 수 있다.As in the embodiment of the present invention, when utilizing a plurality of dense observatory 100 located from the starting point to the destination, the control unit 340, as well as the starting and destination nearby information, as well as the plurality of paths 1, 2, ... observation information (or weather information) on n, where n is a natural number (for example, A 1 , A 2 , ..., A N , B 1 , B 2 , ..., B N , ... , Z 1 , Z 2 , ..., Z N (where N is a natural number), the path that exceeds the wind speed threshold on the path, the path that corresponds to the station where the current rainfall is observed, The route corresponding to the weather information (or the station) where the lightning strike is observed may be removed, and it may be determined whether or not a safe route exists, thereby determining whether the vehicle can be operated.
이와 같이, 결정할 경우 안전상의 위험을 최소화하면서, 동시에 기상청 등에서 제공하는 대표값(또는 기상 정보)을 통해 운행 가능 여부를 판정할 때와 같이, 실제로는 비행 가능한 경로가 있는데도 운행 불가 판정을 내리는 경우를 방지할 수 있다.In this way, if the decision is made to minimize the safety risks and at the same time determine whether the vehicle can be operated using the representative value (or weather information) provided by the Meteorological Agency, it is possible to make a decision that the operation is impossible even though there is a route that can be flown. It can prevent.
또한, 이와 같은 결정을 할 때에, 무인 비행체(300)의 운행 속도와 경로의 거리를 계산하여, 각 관측소별로 생산되는 예보 정보(또는 포인트 예보 정보)를 결합하여 사용할 경우, 제어부(340)는 무인 비행체(300)의 안전 운행 여부를 더 세밀하게 결정할 수 있다.In addition, when making such a determination, when the operating speed and the distance of the path of the unmanned aerial vehicle 300 are calculated, and the combined forecast information (or point forecast information) produced for each station is used, the controller 340 is unmanned. It may be determined in more detail whether the vehicle 300 is safe driving.
또한, 비행이 가능하다고 판단된 경우, 제어부(340)는 각 관측소의 풍향, 풍속 등을 포함하는 관측소별 기상 정보와, 실제 물리적 거리를 결합하여, 최적의 경로를 판단하기 위한 로직을 이용한다.In addition, when it is determined that the flight is possible, the controller 340 uses logic for determining an optimal path by combining weather information for each station including actual wind direction, wind speed, etc., and actual physical distance.
예를 들어, 제어부(340)는 도 3에 도시한 최단 경로 1 상의 관측소에는 풍속 4m/sec의 맞바람이 불고, 경로 2 상에는 순방향 3m/sec의 바람이 부는 경우, 연료 효율 및 실제 비행 가능 속도를 고려한 최적 경로(또는 최적 라우팅)를 판정한다.For example, the controller 340 controls the fuel efficiency and the actual flight speed when the station on the shortest path 1 shown in FIG. 3 blows a wind of 4 m / sec in the wind and a wind of 3 m / sec in the forward path on the path 2. Determine the optimal path (or optimal routing) considered.
또한, 비행이 가능하다고 판단된 경우, 도 4에 도시한 바와 같이, 제어부(340)는 각 경로 상에 존재하는 관측소(100)를 직선으로 연결한 하위 경로를 서브 루트(Sub_route)라 하고, 각 관측소 간 하위 경로의 길이를 서브 루트 길이(Length_Sub_route)라 하고(여기서, k = 1 ~ n(경로상 관측소 개수 - 1)), 무인 비행체(300)가 경로를 따라 직선 이동한다 가정할 경우, 실제 이동 거리의 합은
Figure PCTKR2016013300-appb-I000001
으로 나타낸다. 또한, m/sec로 표현되는 관측소별 풍향/풍속 벡터를
Figure PCTKR2016013300-appb-I000002
라 하고, 각 서브 루트에서 무인 비행체(300)의 운항 속도(또는 비행 속도)와 관측소 간 방향을 또 다른 벡터를
Figure PCTKR2016013300-appb-I000003
라 하면, 유효 속도는
Figure PCTKR2016013300-appb-I000004
와 같으며, 경로별 총 유효 시간은
Figure PCTKR2016013300-appb-I000005
과 같이 나타낼 수 있다.
In addition, when it is determined that the flight is possible, as illustrated in FIG. 4, the control unit 340 refers to a sub-route (Sub_route) that connects the station 100 existing on each path in a straight line. If the length of the subpath between stations is called the subroute length (Length_Sub_route) (where k = 1 to n (the number of stations on the path-1)) and the unmanned aerial vehicle 300 is linearly moved along the path, the actual Sum of travel distance is
Figure PCTKR2016013300-appb-I000001
Represented by Also, the wind direction / wind vector for each station expressed in m / sec
Figure PCTKR2016013300-appb-I000002
In each sub-route, another vector is defined as the flight speed (or flight speed) of the unmanned aerial vehicle 300 and the direction between the stations.
Figure PCTKR2016013300-appb-I000003
The effective speed is
Figure PCTKR2016013300-appb-I000004
And the total valid time for each route is
Figure PCTKR2016013300-appb-I000005
It can be expressed as
이와 유사한 방식을, 실제 무인 비행체(300)의 경로상 진행 방향과 경로상 풍향 및/또는 풍속을 조합하여, 유효 최단 시간 경로, 최적 연료 소모 경로 등을 산출할 수 있다.In a similar manner, the effective shortest time path, the optimal fuel consumption path, and the like may be calculated by combining the actual traveling path along the path of the unmanned aerial vehicle 300 and the wind direction and / or wind speed on the path.
특히, 최적 연료 소모 경로의 경우, 무인 비행체(300) 운해에 대한 실질적인 효과를 기대할 수 있으므로, 중요한 경로 라우팅 방식의 하나로 활용될 수 있다.In particular, in the case of an optimal fuel consumption path, since a substantial effect on the sea of the unmanned aerial vehicle 300 can be expected, it may be utilized as one of important path routing methods.
또한, 유효 시간이 가장 짧다 하더라도, 경로 상에 안전 운항 기준임 풍속 임계값을 초과하는 관측소(100)가 포함된 경우, 강우 관측이 있을 경우 등의 회피 경로에 대해서는, 경로 선정 대상에서 제외할 수 있다.In addition, even if the validity time is the shortest, if the station includes an observation station 100 exceeding the wind speed threshold value, which is a safe operation standard, and avoids a route such as when there is a rainfall observation, it may be excluded from the path selection target. have.
또한, 운항이 결정된 경우 즉, 출발지에서 목적지까지의 복수의 경로 중에서 회피 경로가 제거되고 남은 안전한 경로가 존재하는 경우(또는 출발지로부터 목적지까지 운항가능한 하나 이상의 안전한 경로가 존재하는 경우), 제어부(340)는 운항가능한 하나 이상의 안전한 경로를 근거로 출발지부터 목적지까지의 운항 경로를 탐색한다. 여기서, 회피 경로는 출발지에서 목적지까지의 복수의 경로 중에서 관측소별 기상 정보에 포함된 풍속이 미리 설정된 풍속 임계값을 초과하는 경로, 현재 강우가 관측되는 기상 정보에 대응하는 경로, 현재 낙뢰가 관측되는 기상 정보(또는 관측소)에 대응하는 경로, 무인 비행체(300)의 운행 속도에 따라 복수의 경로에 무인 비행체(300)가 도달하는 시점의 해당 경로(또는 지점)에 대한 예보 정보를 근거로 해당 예보 정보에 포함된 풍속이 해당 풍속 임계값을 초과하는 경로, 해당 복수의 경로에 무인 비행체(300)가 도달하는 시점의 해당 경로에 대한 예보 정보를 근거로 해당 예보 정보에 포함된 강우 예상 정보가 미리 설정된 강우 임계값을 초과하는 경로 등을 포함한다.In addition, when the operation is determined, that is, when there is a safe route remaining after the avoidance route is removed from the plurality of routes from the origin to the destination (or when there is at least one safe route capable of operating from the origin to the destination), the controller 340 ) Searches for a flight route from origin to destination based on one or more safe routes that can be operated. Here, the avoidance path is a path in which the wind speed included in the weather information for each station exceeds a preset wind speed threshold value among the plurality of paths from the starting point to the destination, the path corresponding to the weather information where the current rainfall is observed, and the current lightning strike. The forecast based on the forecast information on the corresponding route (or point) at the time when the unmanned aerial vehicle 300 reaches a plurality of routes according to the route corresponding to the weather information (or the station) and the speed of the unmanned aerial vehicle 300. Rainfall prediction information included in the forecasting information is preliminarily based on the forecasted information on the route at which the wind speed included in the information exceeds the corresponding wind speed threshold and the path when the unmanned aerial vehicle 300 reaches the plurality of routes. Paths exceeding the set rainfall threshold, and the like.
즉, 운항이 결정된 경우, 제어부(340)는 출발지에서 목적지까지의 복수의 운항 경로 중에서 판정된 복수의 안전 경로(또는 운항가능한 하나 이상의 안전한 경로)에 대해, 경로별 총 유효 시간 및/또는 경로별 연료 소모량을 산출한다.That is, when the flight is determined, the control unit 340 is the total valid time for each route and / or each route for a plurality of safety routes (or one or more safe routes that can be determined) determined from a plurality of navigation routes from the origin to the destination. Calculate fuel consumption.
또한, 제어부(340)는 산출된 경로별 총 유효 시간 중에서 최단 시간에 해당하는 출발지부터 목적지까지의 경로를(또는 출발지부터 목적지까지의 복수의 최단 시간에 해당하는 경로를 조합하여) 최종 운항 경로로 선택(또는 선정)한다.In addition, the controller 340 converts a route from the starting point to the destination (or a combination of the plurality of shortest times from the starting point to the destination) corresponding to the shortest time out of the calculated total valid time for each route as the final operating route. Select (or select)
또한, 제어부(340)는 산출된 경로별 연료 소모량 중에서 최소 연료를 소모하는 해당 출발지부터 목적지까지의 경로를(또는 출발지부터 목적지까지의 복수의 최소 연료 소모에 해당하는 경로를 조합하여) 최종 운항 경로로 선택(또는 선정)한다.In addition, the controller 340 may determine a route from a corresponding starting point to a destination (or a combination of a plurality of minimum fuel consumptions from the starting point to the destination) that consumes the least fuel among the calculated fuel consumption for each route. Select (or select)
또한, 제어부(340)는 해당 무인 비행체(300)의 자세 제어 및/또는 위치 제어를 통해 해당 무인 비행체(300)의 동작을 제어하여, 앞서 선택된(또는 선정된) 최종 운항 경로를 따라 해당 출발지에서 목적지까지 해당 무인 비행체(300)를 이동시킨다.In addition, the controller 340 controls the operation of the unmanned aerial vehicle 300 through the attitude control and / or the position control of the unmanned aerial vehicle 300 to control the operation of the unmanned aerial vehicle 300 at the corresponding starting point along the previously selected (or selected) final flight path. The unmanned aerial vehicle 300 is moved to a destination.
또한, 제어부(340)는 운항(또는 비행) 중 경로 상의 실시간 풍향, 풍속 등의 정보 업데이트를 통해, 동적으로 최적 경로를 업데이트할 수 있다.In addition, the controller 340 may dynamically update the optimum path through information updates such as real-time wind direction and wind speed on the path during the operation (or flight).
이와 같이, 제어부(340)는 운항 여부 판단, 최적 경로 예측 및 선택, 운항 중 실시간 기상 정보 업데이트에 의한 새로운 경로 적용을 통해서, 기상 정보를 활용한 안전한 무인 비행체(300)의 운행이 가능할 수 있다.As such, the controller 340 may operate the unmanned aerial vehicle 300 using the weather information by determining a flight status, predicting and selecting an optimal route, and applying a new route by updating real-time weather information during the flight.
물론, 제어부(340)는 복수의 경로 중에서 높은 빌딩, 숲 등의 지형 지물이 있는 경우, 이를 피해서 운행하도록 할 수도 있다.Of course, the controller 340 may be operated to avoid the terrain, such as high buildings, forests, among the plurality of paths.
즉, 앞서 설명한 회피 경로에는 사용자 설정에 따른 미리 설정된 고도 이상의 빌딩(또는 건물), 산, 숲, 추락 위험에 따른 위험 지역(예를 들어 사람들이 많이 이용하는 놀이시설, 공원 등 포함) 등이 더 포함될 수 있으며, 무인 비행체(300)는 이러한 회피 경로를 피해서 운행할 수 있다.That is, the aforementioned avoidance paths may further include buildings (or buildings), mountains, forests, and danger areas (for example, amusement facilities and parks that are used by people) that are higher than a predetermined altitude according to user settings. In addition, the unmanned aerial vehicle 300 may operate to avoid such an avoidance path.
또한, 제어부(340)는 운항 경로 탐색 시, 무인 비행체(300)의 운행 시간이 일정 시간 이상 걸릴 경우(또는 현재와 기상이 달라질 우려가 있는 경우), 앞선 각 관측소의 벡터 및 안전 운행을 위한 임계값과의 비교를 위해, 현재의 관측값과 각 관측소별 예보 정보를 비교하여, 둘 중 큰 값을 기준으로 경로별 총 유효 시간 및/또는 경로별 연료 소모량을 산출하여, 안전도를 높이고, 최적 경로를 계산할 수 있다.In addition, the controller 340, when searching the flight route, if the operation time of the unmanned aerial vehicle 300 takes more than a predetermined time (or when the current and the weather may be different), the vector of each preceding station and the threshold for safe operation For comparison with the values, compare the current observations with the forecast information for each station, and calculate the total effective time for each route and / or fuel consumption per route based on the larger of the two, increasing the safety level and the optimum route. Can be calculated.
또한, 경로 상에 관측소(100)가 존재하지 않는 경우, 제어부(340)는 기상청이나 주변 관측소(100)에서 제공되는 예보 모델 값(또는 예보 정보)과 인근 관측소의 예보 정보를 조합(또는 인터폴레이션)한 값을 활용해 보정할 수 있다.In addition, when the station 100 does not exist on the route, the controller 340 combines (or interpolates) the forecast model value (or forecast information) provided by the Meteorological Agency or the surrounding station 100 with the forecast information of the neighboring station. One value can be used to calibrate.
다만, 기상청이나 주변 관측소(100)에서 제공되는 예보 모델 값(또는 예보 정보)과 인근 관측소의 예보 정보를 조합한 값을 활용하는 경우, 오차 발생 확률이 높아질 수 있으므로, 실시간 관측값의 인터폴레이션된 값과 해당 지역 예보 정보 중 풍향, 풍속, 강우 발생 확률, 낙뢰 발생 확률 등의 수치나 확률값이 더 큰 값을 선택함으로써, 안전도를 추가로 고려할 수 있다.However, when using a combination of the forecast model value (or forecast information) provided by the Meteorological Agency or the surrounding station 100 and the forecast information of the neighboring station, the probability of error may increase, and thus the interpolated value of the real time observation value. Safety level can be further considered by selecting values such as wind direction, wind speed, rainfall occurrence probability, and lightning occurrence probability among the local forecast information.
또한, 기지국 기반 관측소(100)는 기지국의 설치 환경 및 기상 측정의 용도에 따라 대부분 높은 위치에 위치하며, 이는 무인 비행체(300)의 비행 경로와 인접해 있을 수 있다.In addition, the base station-based observation station 100 is located at a high position, mostly depending on the installation environment of the base station and the use of weather measurement, which may be adjacent to the flight path of the unmanned aerial vehicle 300.
따라서, 무인 비행체(300) 운행 중 관제 시스템(또는 경로 안내 시스템(10))의 통신 불량으로 미리 설정된 경로를 통해 자율 이동을 해야하는 경우, 제어부(340)는 경로 상 기상 정보를 관측소(100)로부터 직접 전송받을 수도 있다.Therefore, when autonomous movement is required through a preset route due to communication failure of the control system (or the route guidance system 10) during the operation of the unmanned aerial vehicle 300, the controller 340 transmits weather information on the route from the observatory 100. It can also be sent directly.
또한, 무인 비행체(300)는 위성으로부터 전송된 GPS 신호를 수신하고, 수신된 GPS 신호에 포함된 경도 좌표 및 위도 좌표를 근거로 무인 비행체(300)의 위치 데이터를 실시간으로 발생(또는 생성/확인)시키는 GPS 수신기(미도시)를 더 포함할 수 있다. 여기서, 발생된 위치 데이터는 무인 비행체(300)의 현재 위치(또는 현재 위치 데이터)로 정의한다. 여기서, GPS 수신기뿐만 아니라 와이 파이(Wi-Fi) 또는 와이브로(Wibro) 통신을 통해 위치 정보를 수신할 수도 있다.In addition, the unmanned aerial vehicle 300 receives a GPS signal transmitted from a satellite, and generates (or generates / confirms) location data of the unmanned aerial vehicle 300 in real time based on a longitude coordinate and a latitude coordinate included in the received GPS signal. GPS receiver (not shown) may be further included. Here, the generated position data is defined as the current position (or current position data) of the unmanned aerial vehicle 300. Here, the location information may be received through Wi-Fi or Wibro as well as the GPS receiver.
또한, GPS 수신기를 통해 수신되는 신호는 IEEE(Institute of Electrical and Electronics Engineers)에서 제안한 무선 LAN 및 일부 적외선 통신 등을 포함하는 무선 LAN에 대한 무선 네트워크의 표준 규격인 802.11과, 블루투스, UWB, 지그비 등을 포함하는 무선 PAN(Personal Area Network)에 대한 표준 규격인 802.15과, 도시 광대역 네트워크(Fixed Wireless Access: FWA) 등을 포함하는 무선 MAN(Metropolitan Area Network), 광대역 무선 접속(Broadband Wireless Access: BWA)에 대한 표준 규격인 802.16과, 와이브로(Wibro), 와이맥스(WiMAX) 등을 포함하는 무선 MAN(Mobile Broadband Wireless Access: MBWA)에 대한 모바일 인터넷에 대한 표준 규격인 802.20 등의 무선 통신 방식을 이용하여 단말기의 위치 정보를 무인 비행체(300)에 제공하도록 구성할 수도 있다.In addition, the signal received through the GPS receiver is 802.11, Bluetooth, UWB, Zigbee, etc., which is a standard for wireless networks for wireless LANs, including wireless LANs and some infrared communications proposed by the Institute of Electrical and Electronics Engineers (IEEE). 802.15, the standard for wireless personal area networks (PANs), including wireless metropolitan area networks (MANs) and broadband wireless access (BWA), including fixed wireless access (FWA), etc. A terminal using a wireless communication method such as 802.16, which is a standard standard for wireless internet, and 802.20, which is a standard for the mobile Internet for mobile broadband (MBWA) including Wibro, WiMAX, etc. It can also be configured to provide the position information of the unmanned aerial vehicle 300.
또한, 무인 비행체(300)는 해당 무인 비행체(300)에 연결되는 모든 외부기기와의 인터페이스 역할을 수행하는 인터페이스부(미도시)를 더 포함할 수도 있다. 예를 들면, 인터페이스부는 유/무선 헤드셋 포트(Headset Port), 외부 충전기 포트, 유/무선 데이터 포트, 메모리 카드(Memory Card) 포트, 식별 모듈이 구비된 장치를 연결하는 포트, 오디오 I/O(Input/Output) 포트, 비디오 I/O(Input/Output) 포트, 이어폰 포트 등으로 구성될 수 있다. 여기서, 식별 모듈은 무인 비행체(300)의 사용 권한을 인증하기 위한 각종 정보를 저장한 칩으로서, 사용자 인증 모듈(User Identity Module: UIM), 가입자 인증 모듈(Subscriber Identity Module: SIM), 범용 사용자 인증 모듈(Universal Subscriber Identity Module: USIM) 등을 포함할 수 있다. 또한, 식별 모듈이 구비된 장치는 스마트 카드(Smart Card) 형식으로 제작될 수 있다. 따라서, 식별 모듈은 포트를 통하여 무인 비행체(300)와 연결될 수 있다. 이와 같은 인터페이스부는 외부 기기로부터 데이터를 수신하거나 전원을 수신하여 무인 비행체(300) 내부의 각 구성 요소에 전달하거나 무인 비행체(300) 내부의 데이터가 외부 기기로 전송되도록 한다.In addition, the unmanned aerial vehicle 300 may further include an interface unit (not shown) that serves as an interface with all external devices connected to the unmanned aerial vehicle 300. For example, the interface unit may include a wired / wireless headset port, an external charger port, a wired / wireless data port, a memory card port, a port for connecting a device equipped with an identification module, an audio I / O ( Input / Output) port, video I / O (Input / Output) port, earphone port, and the like. Here, the identification module is a chip that stores various information for authenticating the use authority of the unmanned aerial vehicle 300, and includes a user identity module (UIM), a subscriber identity module (SIM), and universal user authentication. And a module (Universal Subscriber Identity Module (USIM)). In addition, the device equipped with the identification module may be manufactured in the form of a smart card. Therefore, the identification module may be connected to the unmanned aerial vehicle 300 through the port. Such an interface unit receives data from an external device or receives power to transmit the data to each component inside the unmanned aerial vehicle 300 or transmit data within the unmanned aerial vehicle 300 to an external device.
또한, 인터페이스부는 무인 비행체(300)가 외부 크래들(Cradle)과 연결될 때 크래들로부터의 전원이 해당 무인 비행체(300)에 공급되는 통로가 되거나, 사용자에 의해 크래들에서 입력되는 각종 명령 신호가 해당 무인 비행체(300)로 전달되는 통로가 될 수 있다. 크래들로부터 입력되는 각종 명령 신호 또는 해당 전원은 무인 비행체(300)가 크래들에 정확히 장착되었음을 인지하기 위한 신호로 동작될 수도 있다.In addition, when the unmanned aerial vehicle 300 is connected to the external cradle, the interface unit is a passage for supplying power from the cradle to the unmanned aerial vehicle 300, or various command signals inputted from the cradle by the user are corresponding unmanned aerial vehicle. It may be a passage that is delivered to (300). Various command signals or corresponding power input from the cradle may be operated as signals for recognizing that the unmanned aerial vehicle 300 is correctly mounted on the cradle.
또한, 무인 비행체(300)는 사용자에 의한 버튼 조작 또는 임의의 기능 선택에 따른 신호를 수신하거나, 디스플레이되는 화면을 터치/스크롤하는 등의 조작에 의해 생성된 명령 또는 제어 신호를 수신하기 위한 입력부(미도시)를 더 포함할 수도 있다.In addition, the unmanned aerial vehicle 300 may include an input unit for receiving a command or control signal generated by an operation such as receiving a signal according to a button operation or an arbitrary function selection by a user, or touching / scrolling a displayed screen ( It may also include a).
입력부는 사용자의 명령, 선택, 데이터, 정보 중에서 적어도 하나를 입력 받기 위한 수단으로서, 숫자 또는 문자 정보를 입력 받고 다양한 기능을 설정하기 위한 다수의 입력키 및 기능키를 포함할 수 있다.The input unit is a means for receiving at least one of a user's command, selection, data, and information, and may include a plurality of input keys and function keys for receiving numeric or text information and setting various functions.
또한, 입력부는 키 패드(Key Pad), 돔 스위치 (Dome Switch), 터치 패드(정압/정전), 터치 스크린(Touch Screen), 조그 휠, 조그 스위치, 조그 셔틀(Jog Shuttle), 마우스(mouse), 스타일러스 펜(Stylus Pen), 터치 펜(Touch Pen) 등의 다양한 장치가 사용될 수 있다. 특히, 표시부(330)가 터치스크린 형태로 형성된 경우, 입력의 기능 중 일부 또는 전부는 표시부(330)를 통해 수행될 수 있다.In addition, the input unit includes a key pad, a dome switch, a touch pad (static pressure / capacitance), a touch screen, a jog wheel, a jog switch, a jog shuttle, and a mouse. Various devices such as a stylus pen, a touch pen, and the like may be used. In particular, when the display unit 330 is formed in the form of a touch screen, some or all of the input functions may be performed through the display unit 330.
또한, 무인 비행체(300)의 각각의 구성부(또는 모듈)는 무인 비행체(300)의 메모리(또는 저장부(320)) 상에 저장되는 소프트웨어일 수 있다. 메모리는 무인 비행체(300)의 내부 메모리 일 수 있으며, 외장형 메모리 또는 다른 형태의 저장 장치일 수 있다. 또한, 메모리는 비휘발성 메모리일 수 있다. 메모리 상에 저장되는 소프트웨어는 실행 시 무인 비행체(300)로 하여금 특정 동작을 수행하도록 하는 명령어 세트를 포함할 수 있다.In addition, each component (or module) of the unmanned aerial vehicle 300 may be software stored on a memory (or storage 320) of the unmanned aerial vehicle 300. The memory may be an internal memory of the unmanned aerial vehicle 300 and may be an external memory or another type of storage device. The memory may also be a nonvolatile memory. Software stored on the memory may include a set of instructions that, when executed, cause the unmanned aerial vehicle 300 to perform a particular operation.
또한, 본 발명에 따른 관측소(100), 서버(200) 및 무인 비행체(300)에 탑재되는 프로세서는 본 발명에 따른 방법을 실행하기 위한 프로그램 명령을 처리할 수 있다. 일 구현 예에서, 이 프로세서는 싱글 쓰레드(Single-threaded) 프로세서일 수 있으며, 다른 구현 예에서 본 프로세서는 멀티 쓰레드(Multi-threaded) 프로세서일 수 있다. 나아가 본 프로세서는 메모리 혹은 저장 장치에 저장된 명령을 처리하는 것이 가능하다.In addition, the processor mounted on the observation station 100, the server 200, and the unmanned aerial vehicle 300 according to the present invention may process a program command for executing the method according to the present invention. In one implementation, this processor may be a single-threaded processor, and in other implementations, the processor may be a multi-threaded processor. Furthermore, the processor is capable of processing instructions stored in memory or storage devices.
이와 같이, 무인 비행체의 출발지와 목적지 사이에 존재하는 기지국 기반 실시간으로 관측되는 조밀한 복수의 관측소의 기상 정보를 이용하여 운행 가능한 복수의 경로를 산출하고, 산출된 복수의 경로 중에서 유효 최단 시간 경로 또는 최적 연료 소모 경로에 해당하는 최적의 경로를 제공할 수 있다.In this way, a plurality of routes that can be operated are calculated by using weather information of a plurality of dense observatories that are observed in real time based on a base station existing between a starting point and a destination of an unmanned aerial vehicle, and among the calculated plurality of paths, an effective shortest time path or It is possible to provide an optimal path corresponding to the optimal fuel consumption path.
또한, 이와 같이, 복수의 기상 정보를 이용하여 산출된 운행 가능한 복수의 경로 중에서 무인 비행체의 운행 예상 시간 정보 및 관측소별로 생성되는 예보 정보를 근거로 최적의 경로를 제공할 수 있다.In addition, the optimal route may be provided based on the estimated time information of the unmanned aerial vehicle and the forecast information generated for each station, among the plurality of operable routes calculated using the plurality of weather information.
이하에서는, 본 발명에 따른 기상 정보를 이용한 무인 비행체의 경로 안내 방법을 도 1 내지 도 6을 참조하여 상세히 설명한다.Hereinafter, a path guidance method of an unmanned aerial vehicle using weather information according to the present invention will be described in detail with reference to FIGS. 1 to 6.
도 5는 본 발명의 실시예에 따른 기상 정보를 이용한 무인 비행체의 경로 안내 방법을 나타낸 흐름도이다.5 is a flowchart illustrating a route guidance method for an unmanned aerial vehicle using weather information according to an exemplary embodiment of the present invention.
먼저, 통신부(310)는 서버(200)로부터 제공되는 출발지에서부터 목적지까지의 최단 경로를 기준으로 미리 설정된 반경 내에 위치한 복수의 관측소(100)에서 측정된 복수의 기상 정보를 수신한다. 여기서, 기상 정보는 해당 관측소(100)가 위치한 지역의 위치 정보(예를 들어 위도, 경도 등 포함), 풍향, 풍속, 강우 여부, 낙뢰 발생 여부, 측정 시각 정보 등의 정보를 포함한다. 이때, 통신부(310)는 개별 관측소(100)별로 전송되는 기상 정보를 각각 수신할 수도 있다.First, the communication unit 310 receives a plurality of weather information measured by the plurality of observing stations 100 located within a preset radius with respect to the shortest path from the starting point to the destination provided from the server 200. Here, the weather information includes information such as location information (eg, latitude, longitude, etc.), wind direction, wind speed, rainfall, lightning strike, and measurement time information of the region where the corresponding observatory 100 is located. In this case, the communication unit 310 may receive weather information transmitted for each individual observing station 100.
일 예로, 도 6에 도시한 바와 같이, 통신부(310)는 서버(200)로부터 제공되는 출발지 최인근 관측소, 목적지 최인근 관측소, 출발지와 목적지 사이의 복수의 경로(예를 들어 경로 A, 경로 B, ... , 경로 Z 등 포함) 상에 위치하는 A1, ... , AN, B1, ... , BM 관측소에서 각각 측정되는 복수의 기상 정보를 수신한다. 여기서, M과 N은 자연수이다. 또한, 각 경로상 관측소(100)는 출발지와 목적지 사이에서 기상 정보 수집이 가능한 모든 관측소를 포함할 수 있다(S510).For example, as illustrated in FIG. 6, the communication unit 310 may include a plurality of paths (eg, route A, route B,. Receive a plurality of weather information, respectively, measured at stations A 1 , ..., A N , B 1 , ..., B M located on the. Where M and N are natural numbers. In addition, the station 100 on each path may include all stations capable of collecting weather information between the starting point and the destination (S510).
이후, 제어부(340)는 수신된 복수의 기상 정보를 근거로 해당 출발지부터 목적지까지의 운항 여부를 결정한다.Thereafter, the controller 340 determines whether to operate from the corresponding departure point to the destination based on the received plurality of weather information.
즉, 제어부(340)는 출발지에서 목적지까지의 복수의 경로 상의 복수의 기상 정보를 근거로 출발지에서 목적지까지의 복수의 경로 중에서 회피 경로를 제거한다. 여기서, 회피 경로는 출발지에서 목적지까지의 복수의 경로 중에서 관측소별 기상 정보에 포함된 풍속이 미리 설정된 풍속 임계값을 초과하는 경로, 현재 강우가 관측되는 기상 정보(또는 관측소)에 대응하는 경로 등을 포함한다.That is, the controller 340 removes the avoiding route from the plurality of routes from the starting point to the destination based on the plurality of weather information on the plurality of routes from the starting point to the destination. Here, the avoidance path includes a path in which wind speeds included in weather information for each station exceeds a preset wind speed threshold value among a plurality of paths from a source to a destination, a path corresponding to weather information (or a station) at which current rainfall is observed. Include.
또한, 제어부(340)는 복수의 경로 중에서 회피 경로를 제거한 후 남아 있는 경로가 존재하는 경우, 해당 남은 하나 이상의 경로를 안전한 경로로 판정한다.In addition, when there is a path remaining after removing the avoiding path among the plurality of paths, the controller 340 determines the at least one remaining path as a safe path.
또한, 제어부(340)는 출발지로부터 목적지까지 운항가능한 하나 이상의 안전한 경로가 존재하는 경우, 무인 비행체(300)의 운항이 가능한 상태로 결정한다.In addition, the controller 340 determines that the unmanned aerial vehicle 300 can be operated when there is at least one safe route that can be operated from the starting point to the destination.
또한, 제어부(340)는 출발지로부터 목적지까지 운항가능한 하나 이상의 안전한 경로가 존재하지 않는 경우, 무인 비행체(300)의 운항이 불가한 상태로 결정한다.In addition, the controller 340 determines that the unmanned aerial vehicle 300 cannot be operated when at least one safe path capable of operating from the starting point to the destination does not exist.
일 예로, 제어부(340)는 도 6에 도시한 복수의 경로 중에서 풍속 임계값을 초과하는 기상 정보를 제공한 관측소 A1과 A3에 각각 대응하는 경로, 현재 강우가 관측되는 관측소 A4에 대응하는 경로 등을 제거하며, 복수의 경로 중에서 관측소 A1과 A3에 각각 대응하는 경로 및 관측소 A4에 대응하는 경로가 제거되고 남은 하나 이상의 경로를 안전한 경로로 판정한다. 또한, 제어부(340)는 하나 이상의 경로를 포함하는 안전한 경로를 통해 출발지에서 목적지까지 운항이 가능한 상태일 때, 무인 비행체(300)의 운항이 가능한 상태로 결정한다.For example, the controller 340 may correspond to a station corresponding to stations A 1 and A 3 providing weather information exceeding a wind speed threshold value among the plurality of paths shown in FIG. 6, and a station A 4 where current rainfall is observed. A path corresponding to the stations A 1 and A 3 and a path corresponding to the station A 4 are respectively removed from the plurality of paths, and one or more remaining paths are determined as safe paths. In addition, the controller 340 determines that the unmanned aerial vehicle 300 can be operated when the flight is possible from the starting point to the destination through a safe path including one or more paths.
또한, 안전한 경로가 존재하는지 여부를 판정할 때, 제어부(340)는 출발지에서 목적지까지의 복수의 경로 중에서 앞선 풍속 임계값을 초과하는 경로, 현재 강우가 관측되는 기상 정보에 대응하는 경로, 현재 낙뢰가 관측되는 기상 정보에 대응하는 경로뿐만 아니라, 무인 비행체(300)의 운행 속도와 각 구간 경로의 거리와 각 관측소별로 제공되는 예보 정보를 결합하여, 안전한 경로가 존재하는지 여부를 판정할 수도 있다.In addition, when determining whether a safe route exists, the controller 340 may include a path exceeding a previous wind speed threshold value among a plurality of paths from a starting point to a destination, a path corresponding to weather information for which current rainfall is observed, and a current lightning strike. In addition to the path corresponding to the observed weather information, the driving speed of the unmanned aerial vehicle 300, the distance of each section path and the forecast information provided for each station, it may be determined whether a safe route exists.
즉, 제어부(340)는 출발지에서 목적지까지의 복수의 경로 중에서 앞선 관측소별 기상 정보에 포함된 풍속이 풍속 임계값을 초과하는 경로, 현재 강우가 관측되는 기상 정보에 대응하는 경로, 현재 낙뢰가 관측되는 기상 정보에 대응하는 경로, 무인 비행체(300)의 운행 속도에 따라 복수의 경로에 무인 비행체(300)가 도달하는 시점의 해당 경로(또는 지점)에 대한 예보 정보를 근거로 해당 예보 정보에 포함된 풍속이 해당 풍속 임계값을 초과하는 경로, 해당 복수의 경로에 무인 비행체(300)가 도달하는 시점의 해당 경로에 대한 예보 정보를 근거로 해당 예보 정보에 포함된 강우 예상 정보가 미리 설정된 강우 임계값을 초과하는 경로, 해당 복수의 경로에 무인 비행체(300)가 도달하는 시점의 해당 경로에 대한 예보 정보를 근거로 해당 예보 정보에 포함된 낙뢰 발생 정보가 미리 설정된 낙뢰 발생 임계값을 초과하는 경로 등을 포함하는 회피 경로를 제거하여, 안전한 경로가 존재하는지 여부를 판정할 수도 있다.That is, the controller 340 is a path in which the wind speed included in the weather information for each station above the wind speed threshold value exceeds a wind speed threshold value, a path corresponding to weather information for which current rainfall is observed, and a current lightning strike, among a plurality of paths from a departure point to a destination. Included in the forecast information based on the forecast information on the corresponding route (or point) at the time when the unmanned aerial vehicle 300 reaches the plurality of paths according to the route corresponding to the weather information, and the speed of the unmanned aerial vehicle 300. Rainfall threshold is a preset rainfall forecasting information included in the forecasting information based on the path that the wind speed exceeds the wind speed threshold, and the forecast information on the path when the unmanned vehicle 300 reaches the plurality of paths; Falls included in the forecast information based on the route exceeding the value, the forecast information for the route at the time when the unmanned aerial vehicle 300 reaches the plurality of routes. The generation information is removed, the avoidance route comprising a path such as exceeding a pre-set threshold, an electrical storm, may determine whether the trusted path exists.
다른 일 예로, 제어부(340)는 도 6에 도시한 복수의 경로 중에서 풍속 임계값을 초과하는 기상 정보를 제공한 관측소 A1과 A3에 각각 대응하는 경로, 현재 강우가 관측되는 관측소 A4에 대응하는 경로, 해당 무인 비행체(300)가 이동하여 관측소 A7에 도달할 시점의 해당 관측소 A7에서의 예보 정보에 포함된 강우 예상 정보(예를 들어 현재 관측소 A7에서는 비가 오지 않고 있으나, 무인 비행체(300)가 이동하여 해당 관측소 A7에 인접할 시점의 강우 확률이 70%인 예보 정보)가 미리 설정된 강우 임계값(예를 들어 60%)을 초과하는 경로 등을 제거하며, 복수의 경로 중에서 관측소 A1과 A3에 각각 대응하는 경로, 관측소 A4에 대응하는 경로, 강우 확률이 70%인 예보 정보에 해당하는 관측소 A7에 대응하는 경로가 제거되고 남은 경로를 안전한 경로로 판정한다(S520).As another example, the control unit 340 is a path corresponding to stations A 1 and A 3 , respectively, which provide weather information exceeding a wind speed threshold value among the plurality of paths shown in FIG. 6, and to a station A 4 where current rainfall is observed. the corresponding path, the unmanned air vehicle 300 is moving, including on forecast information at the time it reaches the station a 7 the station a 7 rainfall prediction information (e.g. the current station a 7, but without rain unattended Removes a path in which the vehicle 300 moves and approaches the corresponding station A 7 with a 70% rainfall probability) exceeding a preset rainfall threshold (eg, 60%), and removes a plurality of paths. among them, the path corresponding to the station a 1 and a 3 each corresponding route, station a 4 a 7 stations corresponding path, the probability of rainfall corresponding to 70% of the forecast information on which the determination is removed the rest of the path to a safe path The (S520).
이후, 운항이 결정된 경우 즉, 출발지에서 목적지까지의 복수의 경로 중에서 회피 경로가 제거되고 남은 안전한 경로가 존재하는 경우(또는 출발지로부터 목적지까지 운항가능한 하나 이상의 안전한 경로가 존재하는 경우), 제어부(340)는 운항가능한 하나 이상의 안전한 경로를 근거로 출발지부터 목적지까지의 운항 경로를 탐색한다. 여기서, 회피 경로는 출발지에서 목적지까지의 복수의 경로 중에서 관측소별 기상 정보에 포함된 풍속이 미리 설정된 풍속 임계값을 초과하는 경로, 현재 강우가 관측되는 기상 정보에 대응하는 경로, 무인 비행체(300)의 운행 속도에 따라 복수의 경로에 무인 비행체(300)가 도달하는 시점의 해당 경로(또는 지점)에 대한 예보 정보를 근거로 해당 예보 정보에 포함된 풍속이 해당 풍속 임계값을 초과하는 경로, 해당 복수의 경로에 무인 비행체(300)가 도달하는 시점의 해당 경로에 대한 예보 정보를 근거로 해당 예보 정보에 포함된 강우 예상 정보가 미리 설정된 강우 임계값을 초과하는 경로 등을 포함한다.Then, when the operation is determined, that is, when the avoidance route is removed from the plurality of routes from the starting point to the destination and there is a remaining safe route (or when there is at least one safe route capable of operating from the starting point to the destination), the controller 340 ) Searches for a flight route from origin to destination based on one or more safe routes that can be operated. Here, the avoidance path is a path in which wind speeds included in weather information for each station exceeds a predetermined wind speed threshold value among a plurality of paths from a source to a destination, a path corresponding to weather information where current rainfall is observed, and an unmanned aerial vehicle 300. A route in which the wind speed included in the forecast information exceeds the corresponding wind speed threshold based on the forecast information on the route (or point) at the time when the unmanned aerial vehicle 300 reaches the plurality of routes according to the driving speed of The rain prediction information included in the forecast information exceeds a preset rainfall threshold based on the forecast information on the corresponding path when the unmanned aerial vehicle 300 reaches the plurality of paths.
즉, 운항이 결정된 경우, 제어부(340)는 출발지에서 목적지까지의 복수의 운항 경로 중에서 판정된 복수의 안전 경로(또는 운항가능한 하나 이상의 안전한 경로)에 대해, 경로별 총 유효 시간 및/또는 경로별 연료 소모량을 산출한다.That is, when the flight is determined, the control unit 340 is the total valid time for each route and / or each route for a plurality of safety routes (or one or more safe routes that can be determined) determined from a plurality of navigation routes from the origin to the destination. Calculate fuel consumption.
또한, 제어부(340)는 산출된 경로별 총 유효 시간 중에서 최단 시간에 해당하는 출발지부터 목적지까지의 경로를(또는 출발지부터 목적지까지의 복수의 최단 시간에 해당하는 경로를 조합하여) 최종 운항 경로로 선택(또는 선정)한다.In addition, the controller 340 converts a route from the starting point to the destination (or a combination of the plurality of shortest times from the starting point to the destination) corresponding to the shortest time out of the calculated total valid time for each route as the final operating route. Select (or select)
또한, 제어부(340)는 산출된 경로별 연료 소모량 중에서 최소 연료를 소모하는 해당 출발지부터 목적지까지의 경로를(또는 출발지부터 목적지까지의 복수의 최소 연료 소모에 해당하는 경로를 조합하여) 최종 운항 경로로 선택(또는 선정)한다.In addition, the controller 340 may determine a route from a corresponding starting point to a destination (or a combination of a plurality of minimum fuel consumptions from the starting point to the destination) that consumes the least fuel among the calculated fuel consumption for each route. Select (or select)
일 예로, 제어부(340)는 도 6에 도시한 복수의 경로 중에서 관측소 A1과 A3에 각각 대응하는 경로 및 관측소 A4에 대응하는 경로가 제거되고 남은 안전 경로에 대해서, 경로별 총 유효 시간을 산출한다.For example, the controller 340 may determine the total valid time for each path for the remaining safety path after the paths corresponding to the stations A 1 and A 3 and the paths corresponding to the station A 4 are removed from the plurality of paths shown in FIG. 6. To calculate.
또한, 제어부(340)는 산출된 경로별 총 유효 시간 중에서 최단 시간에 해당하는 출발지 - B1 - B2 - ... - BM - 목적지까지의 경로를 제 1 최종 운항 경로로 선택한다.In addition, the controller 340 selects a route from the calculated total valid time for each route to the starting point corresponding to the shortest time-B 1 -B 2 -...-B M -to the destination as the first final flight route.
다른 일 예로, 제어부(340)는 도 6에 도시한 복수의 경로 중에서 관측소 A1과 A3에 각각 대응하는 경로 및 관측소 A4에 대응하는 경로가 제거되고 남은 안전 경로에 대해서, 경로별 연료 소모량을 산출한다.As another example, the controller 340 may include fuel consumption for each path of the safety paths remaining after the paths corresponding to the stations A 1 and A 3 and the paths corresponding to the station A 4 are removed from the plurality of paths shown in FIG. 6. To calculate.
또한, 제어부(340)는 산출된 경로별 연료 소모량 중에서 최소 연료를 소모하는 출발지 - B1 - B2 - A3 - A5 ... - AN - 목적지까지의 경로를 제 2 최종 운항 경로로 선택한다(S530).In addition, controller 340 is a route-specific fuel consumption from the fuel consumption to the minimum calculated from - B 1 - B 2 - A 3 - A 5 ... - A N - a route to the destination, the second to the final flight path Select (S530).
이후, 제어부(340)는 해당 무인 비행체(300)의 자세 제어 및/또는 위치 제어를 통해 해당 무인 비행체(300)의 동작을 제어하여, 앞서 선택된(또는 선정된) 최종 운항 경로를 따라 해당 출발지에서 목적지까지 해당 무인 비행체(300)를 이동(또는 운항/비행)시킨다.Thereafter, the controller 340 controls the operation of the unmanned aerial vehicle 300 through the attitude control and / or the position control of the unmanned aerial vehicle 300 to control the operation of the unmanned aerial vehicle 300 at the corresponding starting point along the previously selected (or selected) final flight path. The unmanned aerial vehicle 300 is moved (or operated / flighted) to a destination.
일 예로, 제어부(340)는 선택된 제 1 최종 운항 경로(예를 들어 출발지 - B1 - B2 - ... - BM - 목적지까지의 경로)를 따라 이동하도록 해당 무인 비행체(300)의 동작을 제어한다(S540).For example, the controller 340 may operate the unmanned aerial vehicle 300 to move along the selected first final flight path (for example, a departure point-B 1 -B 2 -...-B M -a path to a destination). It controls (S540).
본 발명의 실시예에 따른 기상 정보를 이용한 무인 비행체의 경로 안내 시스템은 컴퓨터 프로그램으로 작성 가능하며, 컴퓨터 프로그램을 구성하는 코드들 및 코드 세그먼트들은 당해 분야의 컴퓨터 프로그래머에 의하여 용이하게 추론될 수 있다. 또한, 해당 컴퓨터 프로그램은 컴퓨터가 읽을 수 있는 정보저장매체(computer readable media)에 저장되고, 컴퓨터나 본 발명의 실시예에 따른 관측소, 서버, 무인 비행체 등에 의하여 읽혀지고 실행됨으로써 기상 정보를 이용한 무인 비행체의 경로 안내 시스템을 구현할 수 있다.The path guidance system for an unmanned aerial vehicle using weather information according to an embodiment of the present invention can be prepared by a computer program, and codes and code segments constituting the computer program can be easily inferred by a computer programmer in the art. In addition, the computer program is stored in a computer readable media, and is read and executed by a computer or an observation station, a server, an unmanned aerial vehicle, etc. according to an embodiment of the present invention to use an unmanned aerial vehicle using weather information. The route guidance system can be implemented.
정보저장매체는 자기 기록매체, 광 기록매체 및 캐리어 웨이브 매체를 포함한다. 본 발명의 실시예에 따른 기상 정보를 이용한 무인 비행체의 경로 안내 시스템을 구현하는 컴퓨터 프로그램은 관측소, 서버, 무인 비행체 등의 내장 메모리에 저장 및 설치될 수 있다. 또는, 본 발명의 실시예에 따른 기상 정보를 이용한 무인 비행체의 경로 안내 시스템을 구현하는 컴퓨터 프로그램을 저장 및 설치한 스마트 카드 등의 외장 메모리가 인터페이스를 통해 기상 정보를 이용한 무인 비행체의 경로 안내 시스템 등에 장착될 수도 있다.The information storage medium includes a magnetic recording medium, an optical recording medium and a carrier wave medium. A computer program for implementing a route guidance system for an unmanned aerial vehicle using weather information according to an embodiment of the present invention may be stored and installed in an internal memory of an observation station, a server, an unmanned aerial vehicle, and the like. Alternatively, an external memory such as a smart card that stores and installs a computer program for implementing a route guidance system for an unmanned aerial vehicle using meteorological information according to an embodiment of the present invention may be a route guidance system for an unmanned aerial vehicle using weather information through an interface. It may be mounted.
본 발명의 실시예는 앞서 설명된 바와 같이, 무인 비행체의 출발지와 목적지 사이에 존재하는 기지국 기반 실시간으로 관측되는 조밀한 복수의 관측소의 기상 정보를 이용하여 운행 가능한 복수의 경로를 산출하고, 산출된 복수의 경로 중에서 유효 최단 시간 경로 또는 최적 연료 소모 경로에 해당하는 최적의 경로를 제공하여, 무인 비행체의 운행 여부를 정밀하게 판별할 수 있다.As described above, an embodiment of the present invention calculates a plurality of routes that can be operated by using weather information of a plurality of dense stations that are observed in real time based on a base station existing between an unmanned aerial vehicle's origin and a destination. By providing an optimal path corresponding to an effective shortest time path or an optimal fuel consumption path among a plurality of paths, it is possible to precisely determine whether the unmanned vehicle operates.
또한, 본 발명의 실시예는 앞서 설명된 바와 같이, 복수의 기상 정보를 이용하여 산출된 운행 가능한 복수의 경로 중에서 무인 비행체의 운행 예상 시간 정보 및 관측소별로 생성되는 예보 정보를 근거로 최적의 경로를 제공하여, 경제적이고 안정적인 운행을 위한 경로를 선택할 수 있다.In addition, the embodiment of the present invention, as described above, from among a plurality of routes that can be calculated using a plurality of weather information based on the estimated time of operation of the unmanned vehicle and forecast information generated for each station, the optimal route In addition, it is possible to select a route for economical and stable operation.
전술된 내용은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description may be modified and modified by those skilled in the art without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.
본 발명은 무인 비행체의 출발지와 목적지 사이에 존재하는 기지국 기반 실시간으로 관측되는 조밀한 복수의 관측소의 기상 정보를 이용하여 운행 가능한 복수의 경로를 산출하고, 산출된 복수의 경로 중에서 유효 최단 시간 경로 또는 최적 연료 소모 경로에 해당하는 최적의 경로를 제공함으로써, 무인 비행체의 운행 여부를 정밀하게 판별할 수 있으며, 경제적이고 안정적인 운행을 위한 경로를 선택할 수 있는 것으로, UAV(unmanned aerial vehicle) 분야, 비행체 분야, 쿼드로터 분야 등에서 광범위하게 이용될 수 있다.The present invention calculates a plurality of routes that can be operated by using weather information of a plurality of dense observatories that are observed in real time based on a base station existing between a starting point and a destination of an unmanned aerial vehicle, and among the calculated plurality of paths, an effective shortest time path or By providing the optimal route corresponding to the optimal fuel consumption route, it is possible to precisely determine whether the unmanned vehicle is operated, and to select the route for economical and stable operation, and to select the UAV (unmanned aerial vehicle) field and the aircraft field. It can be widely used in the field of quadrotor.

Claims (13)

  1. 통신부에 의해, 서버로부터 제공되는 출발지부터 목적지까지의 최단 경로를 기준으로 설정된 반경 내에 위치한 복수의 관측소에서 측정된 복수의 기상 정보를 수신하는 단계;Receiving, by the communication unit, a plurality of weather information measured at a plurality of stations located within a radius set based on a shortest path from a source to a destination provided from a server;
    제어부에 의해, 상기 수신된 복수의 기상 정보를 근거로 상기 출발지부터 목적지까지의 운항 여부를 결정하는 단계;Determining, by a controller, whether the flight is from the departure point to the destination based on the received plurality of weather information;
    상기 제어부에 의해, 상기 출발지로부터 목적지까지 운항가능한 하나 이상의 안전한 경로가 존재하여 운항이 결정된 상태일 때, 상기 운항가능한 하나 이상의 안전한 경로를 근거로 출발지부터 목적지까지의 운항 경로를 탐색하는 단계; 및Searching, by the controller, for a flight route from a departure point to a destination based on the at least one safe route that can be operated when there is at least one safe route that can be operated from the departure point to the destination; And
    상기 제어부에 의해, 상기 통신부를 포함하는 무인 비행체의 자세 제어 및 위치 제어 중 하나 이상의 제어를 통해, 상기 탐색된 출발지부터 목적지까지의 운항 경로를 따라 상기 무인 비행체를 이동시키는 단계를 포함하는 기상 정보를 이용한 무인 비행체의 경로 안내 방법.And, by the control unit, moving the unmanned aerial vehicle along the flight path from the searched starting point to the destination through at least one of attitude control and position control of the unmanned aerial vehicle including the communication unit. Route guidance method of unmanned aerial vehicle using.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 기상 정보는,The weather information is,
    상기 관측소가 위치한 지역의 위치 정보, 풍향, 풍속, 강우 여부, 낙뢰 발생 여부 및 측정 시각 정보 중 적어도 하나를 포함하는 것을 특징으로 하는 기상 정보를 이용한 무인 비행체의 경로 안내 방법.Method of guiding the unmanned aerial vehicle using weather information, characterized in that it comprises at least one of location information, wind direction, wind speed, rainfall, lightning strikes and measurement time information of the region where the station is located.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 운항 여부를 결정하는 단계는,Determining whether or not the operation,
    상기 제어부에 의해, 상기 출발지에서 목적지까지의 복수의 경로 상의 복수의 기상 정보를 근거로 출발지에서 목적지까지의 복수의 경로 중에서 회피 경로를 제거하는 과정;Removing, by the control unit, an avoiding route from a plurality of routes from a departure point to a destination based on a plurality of weather information on the plurality of routes from the departure point to the destination;
    상기 제어부에 의해, 상기 복수의 경로 중에서 회피 경로를 제거한 후 남아 있는 경로가 존재할 때, 상기 남아 있는 하나 이상의 경로를 안전한 경로로 판정하는 과정;Determining, by the controller, the one or more remaining paths as a safe path when a remaining path exists after removing an avoiding path among the plurality of paths;
    상기 제어부에 의해, 상기 출발지로부터 목적지까지 운항가능한 하나 이상의 안전한 경로가 존재할 때, 무인 비행에의 운항이 가능한 상태로 결정하는 과정; 및Determining, by the controller, a state in which an unmanned flight is possible when there is at least one safe route that can be operated from the origin to the destination; And
    상기 제어부에 의해, 상기 출발지로부터 목적지까지 운항가능한 하나 이상의 안전한 경로가 존재하지 않을 때, 상기 무인 비행체의 운항이 불가능한 상태로 결정하는 과정을 포함하는 것을 특징으로 하는 기상 정보를 이용한 무인 비행체의 경로 안내 방법.Determining, by the controller, that the unmanned aerial vehicle is inoperable when there is no one or more safe routes that can be operated from the starting point to the destination, the route guidance of the unmanned aerial vehicle using meteorological information Way.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 회피 경로는,The avoidance path is,
    출발지에서 목적지까지의 복수의 경로 중에서 관측소별 기상 정보에 포함된 풍속이 미리 설정된 풍속 임계값을 초과하는 경로, 현재 강우가 관측되는 기상 정보에 대응하는 경로, 현재 낙뢰가 관측되는 기상 정보에 대응하는 경로, 상기 무인 비행체의 운행 속도에 따라 상기 복수의 경로에 상기 무인 비행체가 도달하는 시점의 해당 경로에 대한 예보 정보를 근거로 상기 예보 정보에 포함된 풍속이 상기 풍속 임계값을 초과하는 경로, 상기 예보 정보에 포함된 강우 예상 정보가 미리 설정된 강우 임계값을 초과하는 경로 및 상기 예보 정보에 포함된 낙뢰 발생 정보가 미리 설정된 낙뢰 발생 임계값을 초과하는 경로 중 적어도 하나를 포함하는 것을 특징으로 하는 기상 정보를 이용한 무인 비행체의 경로 안내 방법.Among the plurality of paths from the starting point to the destination, the wind speed included in the weather information for each station exceeds a preset wind speed threshold value, the path corresponding to the weather information for which current rainfall is observed, and the weather information for which current lightning is observed. A path in which the wind speed included in the forecast information exceeds the wind speed threshold based on a forecast information on a corresponding path at the time when the unmanned aerial vehicle reaches the plurality of paths according to a path and a driving speed of the unmanned aerial vehicle; Weather characterized in that the rain prediction information included in the forecast information includes at least one of a path exceeding a predetermined rainfall threshold value, and a path in which the lightning occurrence information included in the forecast information exceeds a predetermined lightning occurrence threshold value. Route guidance method of unmanned aerial vehicle using information.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 출발지부터 목적지까지의 운항 경로를 탐색하는 단계는,Searching for a flight route from the departure point to the destination,
    상기 제어부에 의해, 상기 운항가능한 하나 이상의 안전한 경로에 대해, 경로별 총 유효 시간을 산출하는 과정; 및Calculating, by the controller, a total valid time for each route of the at least one safe route that can be operated; And
    상기 제어부에 의해, 상기 산출된 경로별 총 유효 시간 중에서 최단 시간에 해당하는 출발지부터 목적지까지의 경로를 최종 운항 경로로 선택하는 과정을 포함하는 것을 특징으로 하는 기상 정보를 이용한 무인 비행체의 경로 안내 방법.And selecting, by the controller, a route from the calculated starting time to the destination among the calculated total valid time for each route as a final navigation route. .
  6. 제 1 항에 있어서,The method of claim 1,
    상기 출발지부터 목적지까지의 운항 경로를 탐색하는 단계는,Searching for a flight route from the departure point to the destination,
    상기 제어부에 의해, 상기 운항가능한 하나 이상의 안전한 경로에 대해, 경로별 연료 소모량을 산출하는 과정; 및Calculating, by the controller, fuel consumption for each route of the at least one safe route that can be operated; And
    상기 제어부에 의해, 상기 산출된 경로별 연료 소모량 중에서 최소 연료를 소모하는 출발지부터 목적지까지의 경로를 최종 운항 경로로 선택하는 과정을 포함하는 것을 특징으로 하는 기상 정보를 이용한 무인 비행체의 경로 안내 방법.And selecting, by the controller, a route from a calculated starting point of a fuel consumption to a destination among the calculated fuel consumption for each route as a final operating route.
  7. 제 1 항 내지 제 6 항 중 어느 한 항에 따른 방법을 수행하는 컴퓨터 프로그램이 기록된 기록매체.A recording medium on which a computer program for performing the method according to any one of claims 1 to 6 is recorded.
  8. 서버로부터 제공되는 출발지부터 목적지까지의 최단 경로를 기준으로 설정된 반경 내에 위치한 복수의 관측소에서 측정된 복수의 기상 정보를 수신하는 통신부; 및A communication unit configured to receive a plurality of weather information measured at a plurality of stations located within a radius set based on a shortest path from a source to a destination provided from a server; And
    상기 수신된 복수의 기상 정보를 근거로 상기 출발지부터 목적지까지의 운항 여부를 결정하고, 상기 출발지로부터 목적지까지 운항가능한 하나 이상의 안전한 경로가 존재하여 운항이 결정된 상태일 때, 상기 운항가능한 하나 이상의 안전한 경로를 근거로 출발지부터 목적지까지의 운항 경로를 탐색하고, 상기 통신부를 포함하는 무인 비행체의 자세 제어 및 위치 제어 중 하나 이상의 제어를 통해, 상기 탐색된 출발지부터 목적지까지의 운항 경로를 따라 상기 무인 비행체를 이동시키는 제어부를 포함하는 기상 정보를 이용한 무인 비행체의 경로 안내 시스템.Determining whether to operate from the departure point to the destination based on the received plurality of weather information, and when there is at least one safe route that can be operated from the departure point to the destination, the operation is determined. Search for a flight route from a departure point to a destination based on the at least one of the posture control and the position control of the unmanned aerial vehicle including the communication unit; Route guidance system for an unmanned aerial vehicle using weather information including a control unit for moving.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 제어부는,The control unit,
    상기 출발지에서 목적지까지의 복수의 경로 상의 복수의 기상 정보를 근거로 출발지에서 목적지까지의 복수의 경로 중에서 회피 경로를 제거하고, 상기 복수의 경로 중에서 회피 경로를 제거한 후 남아 있는 경로가 존재할 때, 상기 남아 있는 하나 이상의 경로를 안전한 경로로 판정하는 것을 특징으로 하는 기상 정보를 이용한 무인 비행체의 경로 안내 시스템.When the avoiding route is removed from the plurality of routes from the starting point to the destination based on the plurality of weather information on the plurality of routes from the starting point to the destination, and the remaining path exists after removing the avoiding path among the plurality of paths, A route guidance system for an unmanned aerial vehicle using meteorological information, characterized in that determining one or more remaining routes as a safe route.
  10. 제 9 항에 있어서,The method of claim 9,
    상기 제어부는,The control unit,
    상기 출발지로부터 목적지까지 운항가능한 하나 이상의 안전한 경로가 존재할 때, 무인 비행에의 운항이 가능한 상태로 결정하는 것을 특징으로 하는 기상 정보를 이용한 무인 비행체의 경로 안내 시스템.The route guidance system of the unmanned aerial vehicle using meteorological information, characterized in that when there is at least one safe route that can be operated from the departure point to the destination, it is determined that the flight to the unmanned flight is possible.
  11. 제 8 항에 있어서,The method of claim 8,
    상기 회피 경로는,The avoidance path is,
    출발지에서 목적지까지의 복수의 경로 중에서 관측소별 기상 정보에 포함된 풍속이 미리 설정된 풍속 임계값을 초과하는 경로, 현재 강우가 관측되는 기상 정보에 대응하는 경로, 현재 낙뢰가 관측되는 기상 정보에 대응하는 경로, 상기 무인 비행체의 운행 속도에 따라 상기 복수의 경로에 상기 무인 비행체가 도달하는 시점의 해당 경로에 대한 예보 정보를 근거로 상기 예보 정보에 포함된 풍속이 상기 풍속 임계값을 초과하는 경로, 상기 예보 정보에 포함된 강우 예상 정보가 미리 설정된 강우 임계값을 초과하는 경로 및 상기 예보 정보에 포함된 낙뢰 발생 정보가 미리 설정된 낙뢰 발생 임계값을 초과하는 경로 중 적어도 하나를 포함하는 것을 특징으로 하는 기상 정보를 이용한 무인 비행체의 경로 안내 시스템.Among the plurality of paths from the starting point to the destination, the wind speed included in the weather information for each station exceeds a preset wind speed threshold value, the path corresponding to the weather information for which current rainfall is observed, and the weather information for which current lightning is observed. A path in which the wind speed included in the forecast information exceeds the wind speed threshold based on a forecast information on a corresponding path at the time when the unmanned aerial vehicle reaches the plurality of paths according to a path and a driving speed of the unmanned aerial vehicle; Weather characterized in that the rain prediction information included in the forecast information includes at least one of a path exceeding a predetermined rainfall threshold value, and a path in which the lightning occurrence information included in the forecast information exceeds a predetermined lightning occurrence threshold value. Unmanned aerial vehicle route guidance system using information.
  12. 제 8 항에 있어서,The method of claim 8,
    상기 제어부는,The control unit,
    상기 운항가능한 하나 이상의 안전한 경로에 대해, 경로별 총 유효 시간을 산출하고, 상기 산출된 경로별 총 유효 시간 중에서 최단 시간에 해당하는 출발지부터 목적지까지의 경로를 최종 운항 경로로 선택하는 것을 특징으로 하는 기상 정보를 이용한 무인 비행체의 경로 안내 시스템.Computing the total valid time of the route for the at least one safe route that can be operated, and selects the route from the starting point to the destination corresponding to the shortest time among the calculated total valid time of the route as the final operating route Route guidance system of unmanned aerial vehicle using weather information.
  13. 제 8 항에 있어서,The method of claim 8,
    상기 제어부는,The control unit,
    상기 운항가능한 하나 이상의 안전한 경로에 대해, 경로별 연료 소모량을 산출하고, 상기 산출된 경로별 연료 소모량 중에서 최소 연료를 소모하는 출발지부터 목적지까지의 경로를 최종 운항 경로로 선택하는 것을 특징으로 하는 기상 정보를 이용한 무인 비행체의 경로 안내 시스템.Computing fuel consumption for each of the at least one safe route that can be operated, the weather information, characterized in that for selecting the route from the starting point to the destination that consumes the least fuel among the calculated fuel consumption for each route as the final navigation route Route guidance system of the unmanned aerial vehicle using the.
PCT/KR2016/013300 2016-09-05 2016-11-17 Route guiding system, using weather information, of unmanned aerial vehicle, method thereof, and recording medium recorded with computer program WO2018043821A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160113755A KR101921122B1 (en) 2016-09-05 2016-09-05 Path guidance system of unmanned aerial vehicle using weather information, method thereof and computer readable medium having computer program recorded thereon
KR10-2016-0113755 2016-09-05

Publications (1)

Publication Number Publication Date
WO2018043821A1 true WO2018043821A1 (en) 2018-03-08

Family

ID=61301120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013300 WO2018043821A1 (en) 2016-09-05 2016-11-17 Route guiding system, using weather information, of unmanned aerial vehicle, method thereof, and recording medium recorded with computer program

Country Status (2)

Country Link
KR (1) KR101921122B1 (en)
WO (1) WO2018043821A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109451373A (en) * 2018-10-30 2019-03-08 南昌大学 A kind of method and system based on cellular network control flight
CN114867032A (en) * 2022-04-29 2022-08-05 北京尚谷彤邺科技发展有限公司 5G communication service system based on big data and terminal equipment thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102289434B1 (en) 2019-12-30 2021-08-17 한국항공우주연구원 Safety operating system and method for UAV
KR102391210B1 (en) * 2020-07-17 2022-04-27 주식회사 함께드론맵핑 Drone and method for controlling drone
WO2023090465A1 (en) * 2021-11-16 2023-05-25 주식회사 함께드론맵핑 Drone and drone control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150336667A1 (en) * 2014-05-20 2015-11-26 Verizon Patent And Licensing Inc. Unmanned aerial vehicle platform
US20160111006A1 (en) * 2014-05-20 2016-04-21 Verizon Patent And Licensing Inc. User interfaces for selecting unmanned aerial vehicles and mission plans for unmanned aerial vehicles
US20160125740A1 (en) * 2014-05-20 2016-05-05 Verizon Patent And Licensing Inc. Unmanned aerial vehicle identity and capability verification
US20160140851A1 (en) * 2014-11-18 2016-05-19 Ziv LEVY Systems and methods for drone navigation
KR20160074896A (en) * 2014-12-19 2016-06-29 전자부품연구원 The method and apparatus for configuring flight path of drone

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150336667A1 (en) * 2014-05-20 2015-11-26 Verizon Patent And Licensing Inc. Unmanned aerial vehicle platform
US20160111006A1 (en) * 2014-05-20 2016-04-21 Verizon Patent And Licensing Inc. User interfaces for selecting unmanned aerial vehicles and mission plans for unmanned aerial vehicles
US20160125740A1 (en) * 2014-05-20 2016-05-05 Verizon Patent And Licensing Inc. Unmanned aerial vehicle identity and capability verification
US20160140851A1 (en) * 2014-11-18 2016-05-19 Ziv LEVY Systems and methods for drone navigation
KR20160074896A (en) * 2014-12-19 2016-06-29 전자부품연구원 The method and apparatus for configuring flight path of drone

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109451373A (en) * 2018-10-30 2019-03-08 南昌大学 A kind of method and system based on cellular network control flight
CN114867032A (en) * 2022-04-29 2022-08-05 北京尚谷彤邺科技发展有限公司 5G communication service system based on big data and terminal equipment thereof
CN114867032B (en) * 2022-04-29 2023-09-12 青岛乾程科技股份有限公司 Big data-based 5G communication service system

Also Published As

Publication number Publication date
KR20180026882A (en) 2018-03-14
KR101921122B1 (en) 2019-02-13

Similar Documents

Publication Publication Date Title
WO2018043820A1 (en) Route guiding system, using weather information, of unmanned aerial vehicle, method thereof, and recording medium recorded with computer program
WO2018043821A1 (en) Route guiding system, using weather information, of unmanned aerial vehicle, method thereof, and recording medium recorded with computer program
WO2020105898A1 (en) Big data-based autonomous flight drone system and autonomous flight method therefor
US20220107643A1 (en) Control device, imaging device, control method, imaging method, and computer program
US10935628B2 (en) Control device for vehicle
WO2020060308A1 (en) Electronic device and vehicle control method of electronic device, server and method for providing precise map data of server
WO2017119737A1 (en) Method and device for sharing image information in communication system
EP3399513A1 (en) Flight vehicle control device, flight permitted airspace setting system, flight vehicle control method and program
WO2019124639A1 (en) Wireless communication relay system using unmanned device and method therefor
US10673520B2 (en) Cellular command, control and application platform for unmanned aerial vehicles
KR101883292B1 (en) Disaster rescue and response system and operating method threrof
WO2021177595A1 (en) Zoning platform for parcel delivery using drone in wide target area, and delivery method using same
WO2019093677A1 (en) Three-dimensional based electronic navigational chart display system
WO2018016663A1 (en) Vehicle to pedestrian (v2p) collision prevention system and method therefor
US20220004922A1 (en) Information processing apparatus
JP2010062914A (en) Electronic apparatus with wireless communication functions, and wireless connection range calculation method
WO2022131584A1 (en) Control apparatus for aircraft and control method therefor
CN110494905B (en) Apparatus, system, method and recording medium for recording program
US10755582B2 (en) Drone physical and data interface for enhanced distance coverage
WO2021054579A1 (en) 3d head-up display system and control method thereof
JPWO2019107047A1 (en) Information processing device
WO2018088703A1 (en) Parking lot-sharing system factoring in driving skill levels, method thereof, and recording medium recorded with computer program
CN112731971B (en) Method and device for controlling unmanned aerial vehicle to land, readable storage medium and electronic equipment
WO2018203584A1 (en) Management system for searching for subject of protection
EP4046911A1 (en) Information processing device, information processing system, information processing method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16915301

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/06/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16915301

Country of ref document: EP

Kind code of ref document: A1