WO2018016663A1 - Vehicle to pedestrian (v2p) collision prevention system and method therefor - Google Patents

Vehicle to pedestrian (v2p) collision prevention system and method therefor Download PDF

Info

Publication number
WO2018016663A1
WO2018016663A1 PCT/KR2016/007922 KR2016007922W WO2018016663A1 WO 2018016663 A1 WO2018016663 A1 WO 2018016663A1 KR 2016007922 W KR2016007922 W KR 2016007922W WO 2018016663 A1 WO2018016663 A1 WO 2018016663A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
pedestrian
collision
module
gnss
Prior art date
Application number
PCT/KR2016/007922
Other languages
French (fr)
Korean (ko)
Inventor
최광주
Original Assignee
최광주
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 최광주 filed Critical 최광주
Priority to PCT/KR2016/007922 priority Critical patent/WO2018016663A1/en
Publication of WO2018016663A1 publication Critical patent/WO2018016663A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information

Definitions

  • the present invention relates to a V2P collision prevention device and a method thereof, and specifically, a WAVE module is mounted on a vehicle and vehicle information is transmitted to a smartphone to predict collision with a vehicle or a pedestrian in a short distance, so that the driver and the pedestrian can see, hear or
  • the present invention relates to a system and a method for preventing a collision by informing through tactile sense.
  • V2V communication vehicle-to-vehicle communication
  • WAVE IEEE802.11p
  • the WAVE standard can use frequencies in the 5.9 GHz band.
  • V2V communication based on the WAVE standard transmits standardized messages between terminals of a vehicle.
  • a terminal using V2V communication transmits and receives a message according to the message communication standard between terminals of SAE J2735.
  • SAE J2735 defines a message set, which defines a Basic Safety Message (BSM).
  • BSM Basic Safety Message
  • the known front or rear identification method of the vehicle cannot easily grasp the expected path of the vehicle because it utilizes the difference between the location data of the vehicle receiving the message and the vehicle transmitting the message. This is even more so when the direction of the vehicle receiving the message is variable.
  • An object of the present invention is to predict a collision with a vehicle or a pedestrian by using vehicle information to prevent a collision by informing the driver and the pedestrian through sight, hearing, or touch.
  • another object of the present invention is the low accuracy of the position measured by the GNSS of the vehicle and the GNSS of the pedestrian, the latency between the vehicle and the server, and the latency between the pedestrian and the server executed using the ACK packet Even if low, the relative distance between the vehicle and the pedestrian is calculated to provide V2P collision prevention service through WAVE.
  • V2P collision prevention system for achieving the above object of the present invention, in the V2P communication system for transmitting and receiving the GNSS position information of the vehicle and the GNSS position information of the pedestrian through WAVE wireless communication,
  • An OBU On Board Unit mounted on a vehicle on which a V2P collision prevention service is executed by calculating a relative distance between the pedestrians;
  • RSE Raster Side Equipment
  • a user terminal capable of transmitting the GNSS location information of the pedestrian through WAN / Internet;
  • Server includes.
  • a V2P collision prevention device is mounted on a vehicle, connected to an RSE, and transmitted from a GNSS satellite in a V2P communication device (OBU) that transmits and receives a dangerous signal from a server to a vehicle driver and a pedestrian through WAVE wireless communication.
  • OBU V2P communication device
  • a GNSS module for generating GNSS data by receiving the received radio signal and outputting the generated GNSS data to a route prediction module;
  • a measurement module connected to an ECU (Electronic Control Unit) inside the vehicle to receive data regarding the speed, RPM, and state of the vehicle and transmit the received data to a route prediction module;
  • a route prediction module that calculates an expected route of the vehicle and the pedestrian from the route vector of the vehicle and the route vector of the pedestrian using the data received from the GNSS module and the data received from the measurement module; And transmitting data of the GNSS module, the measurement module, and the route prediction module to the server via the RSE, and receiving information of at least one vehicle and a pedestrian provided from the server via the RSE.
  • a WAVE module for detecting a situation and transmitting a danger signal to the server via the RSE.
  • V2P collision prevention method in the V2P communication method for transmitting and receiving the GNSS position information of the vehicle and the GNSS position information of the pedestrian through the WAVE, the vehicle for a vehicle equipped with OBU (first V2P) Obtaining a parameter and communicating with at least one user terminal (second V2P); Predicting a route of the vehicle based on the at least one vehicle parameter; Receiving at least one basic safety message from at least one user terminal (second V2P) device via a WAVE communication channel; Obtaining the user terminal parameters including the position and speed of the user terminal from at least one user terminal (second V2P); Calculating a likelihood and risk of collision between the vehicle and the user based on at least one user terminal parameter; Determining a possibility of collision between the vehicle and the user; And providing at least one danger signal to the driver and the user of the vehicle when the collision probability between the vehicle and the user is high.
  • OBU first V2P
  • a danger signal is transmitted to the smartphone of the driver and the pedestrian, thereby preventing a safety accident and improving the driving convenience of the driver.
  • the relative distance between the vehicle and the pedestrian is more accurately estimated from the OBU of the vehicle equipped with the GNSS module and the user terminal of the pedestrian.
  • the present invention by reducing the amount of computation required to estimate the path of the OBU and pedestrians of the vehicle equipped with the GNSS module, it provides the driver and pedestrians with fast and accurate risk information in real time.
  • FIG. 1 is a block diagram showing the configuration of a V2P collision prevention system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a detailed configuration of a V2P collision prevention device (OBU) according to an embodiment of the present invention.
  • OBU V2P collision prevention device
  • FIG. 3 is a schematic diagram of Environment 1 for testing a V2P collision prevention device according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of Environment 2 for testing a V2P collision prevention device according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of Environment 3 for testing a V2P collision avoidance device according to an embodiment of the present invention.
  • FIG. 6 is a graph showing result 1 in a relative distance between a vehicle and a pedestrian test of the V2P collision prevention device according to an embodiment of the present invention.
  • Figure 7 is a graph showing the result 2 in the relative distance of the test of the vehicle and the pedestrian of the V2P collision prevention device according to an embodiment of the present invention.
  • FIG. 8 is a graph showing the result 3 in the relative distance of the test of the vehicle and the pedestrian of the V2P collision prevention device according to an embodiment of the present invention.
  • FIG. 9 is a graph illustrating a latency result 1 of a test of a vehicle and a pedestrian of a V2P collision prevention device according to an embodiment of the present invention.
  • FIG. 10 is a graph illustrating a latency result 2 of a test of a V2P collision prevention device according to an embodiment of the present invention.
  • FIG. 11 is a graph illustrating a latency result 3 of a test of a V2P collision prevention device according to an embodiment of the present invention.
  • FIG. 12 is a diagram illustrating a screen of a smartphone application of the V2P collision prevention system according to an embodiment of the present invention.
  • FIG. 13 is a flowchart of an OBU and user terminal reception information processing of a V2P collision prevention system according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of format 1 of a message set between devices according to an embodiment of the present invention.
  • 15 is a schematic diagram of format 2 of a message set between devices according to an embodiment of the present invention.
  • 16 is a schematic diagram of format 3 of a message set between devices according to an embodiment of the present invention.
  • 17 is a schematic diagram of format 4 of a message set between devices according to an embodiment of the present invention.
  • FIG. 18 is a flowchart illustrating a V2P collision prevention method according to an embodiment of the present invention.
  • 19 is an overall schematic diagram of a V2P collision prevention method according to an embodiment of the present invention.
  • 20 is a schematic diagram of an included angel between the speed vector of the vehicle and the speed vector of the pedestrian in the V2P collision prevention method according to an embodiment of the present invention.
  • 21 is a schematic diagram of various embodiments of an included angel between a speed vector of a vehicle and a speed vector of a pedestrian in a V2P collision prevention method according to an embodiment of the present invention.
  • FIG. 22 is a schematic diagram of a normal line of the V2P collision prevention method according to an embodiment of the present invention.
  • FIG. 23 is a schematic diagram of the crossing (Crossing) of the V2P collision prevention method according to an embodiment of the present invention.
  • FIG. 24 is a schematic diagram of a non-matching case 1 of the V2P collision prevention method according to an embodiment of the present invention.
  • 25 is a schematic diagram of a non-collision case 2 of the V2P collision prevention method according to an embodiment of the present invention.
  • 26 is a schematic diagram of scenario 1 of a V2P collision prevention method according to an embodiment of the present invention.
  • FIG. 27 is a schematic diagram of scenario 2 of a V2P collision prevention method according to an embodiment of the present invention.
  • FIG. 28 is a schematic diagram of scenario 3 of a V2P collision prevention method according to an embodiment of the present invention.
  • 29 is a schematic diagram of scenario 4 of a V2P collision prevention method according to an embodiment of the present invention.
  • FIG. 30 is a schematic diagram of scenario 5 of a V2P collision prevention method according to an embodiment of the present invention.
  • 31 is a schematic diagram of scenario 6 of a V2P collision prevention method according to an embodiment of the present invention.
  • 32 is a schematic diagram of scenario 7 of a V2P collision prevention method according to an embodiment of the present invention.
  • 33 is a schematic diagram of scenario 8 of a V2P collision prevention method according to an embodiment of the present invention.
  • 34 is a schematic diagram of scenario 9 of a V2P collision prevention method according to an embodiment of the present invention.
  • 35 is a schematic diagram of scenario 10 of a V2P collision prevention method according to an embodiment of the present invention.
  • FIG. 36 is a schematic diagram of scenario 11 of a V2P collision prevention method according to an embodiment of the present invention.
  • module as used herein is to be interpreted to include software, hardware or a combination thereof, depending on the context in which the term is used.
  • the software can be machine language, firmware, embedded code, and application software.
  • the hardware may be a circuit, a processor, a computer, an integrated circuit, an integrated circuit core, a sensor, a micro-electro-mechanical system (MEMS), a passive device, or a combination thereof.
  • MEMS micro-electro-mechanical system
  • FIG. 1 is a block diagram showing a schematic configuration of a V2P collision prevention system 10 according to an embodiment of the present invention.
  • the V2P collision prevention system 10 includes an OBU 100, an RSE 200, a user terminal 300, and a server 400.
  • the OBU 100 is mounted on a vehicle and enables wireless communication in WAVE (Wireless Access in Vehicular Environment).
  • the OBU 100 has a low accuracy of the position measured by the vehicle GNSS and the pedestrian GNSS, and is executed between the vehicle OBU 100 and the server 400 and the pedestrian user terminal 300 which is executed by using an ACK packet. Even if the latency between the servers 400 is low, the relative distance between the vehicle OBU 100 and the pedestrian user terminal 300 may be calculated to execute a V2P collision prevention service through WAVE wireless communication.
  • the RSE 200 may perform WAVE wireless communication with the OBU 100.
  • the RSE 200 collects driving information (eg, vehicle position and speed), traffic conditions, image information (eg, images and videos), etc. collected through the OBU 110 and a web camera by an access point (AP).
  • the receiving device is preferably a radio frequency (RF) transmitter and receiver capable of wirelessly communicating with the OBU 100.
  • RF radio frequency
  • the user terminal 300 transmits the location information of the pedestrian collected by the GNSS module 110.
  • the user terminal 300 may be a smart phone 310 of the pedestrian linked with the terminal capable of tethering.
  • Pedestrian smartphone 310 includes a smartphone application consisting of pedestrian data upload, upload stop, log file recording and the like.
  • the server 400 transmits and receives information to and from the RSE 200 through a wireless access network (WAN) or the Internet (Internet), and transmits and receives information to and from the user terminal 300 through a mobile communication network.
  • the server 400 transmits location and status information to the OBU 100 and the user terminal 300.
  • an OBU 100 of a V2P collision avoidance system 10 is disclosed.
  • the OBU 100 of the V2P collision prevention system 10 is an embodiment of the V2P collision prevention apparatus 20 of the present invention.
  • the OBU 100 includes a GNSS module 110 for measuring the position and speed of a vehicle, a measurement module 120 connected to an ECU (Electronic Control Unit) inside the vehicle, and receiving data regarding the state of the vehicle, and a GNSS module.
  • the path prediction module 130 for calculating the estimated path of the vehicle using the data of the 110 and the measurement module 120, the data of the GNSS module 110 and the measurement module 120 and the path prediction module 130 Transmitting data to the RSE 200, receiving the information of the surrounding vehicles and pedestrians provided via the RSE 200 from the server 400 to detect a dangerous situation to the server 400 via the RSE 200
  • It includes a WAVE module 140 for transmitting the dangerous signal it is preferable to further include an input module 150, an output module 160, a storage module 170, the interface module 180.
  • the OBU 100 is mounted on a vehicle.
  • the input module 150, the output module 160, and the storage module 170 of the OBU 100 may be omitted according to need or design change.
  • the GNSS module 110 may be omitted when the GNSS module 110 generating GNSS data outside the OBU 100 is embedded in the vehicle or attached to the vehicle.
  • the GNSS module 110 receives a radio signal transmitted from a GNSS satellite.
  • the GNSS module 110 generates GNSS data for identifying the location of the vehicle on which the OBU 100 is mounted according to wireless signals received from a plurality of GNSS satellites, and outputs the generated GNSS data to the path prediction module 130.
  • GNSS data includes latitude data, longitude data and heading angle data.
  • the orientation angle represents the angle with respect to the reference direction of the direction in which the OBU 100 is directed and proceeds.
  • the measurement module 120 is connected to an ECU (Electronic Control Unit) inside the vehicle.
  • the measurement module 120 may receive data according to the OBD-II standard and transmit the data to the ECU.
  • the measurement module 120 may receive various data for knowing the state of the vehicle according to the OBD-II standard. For example, the measurement module 120 may receive data indicating a vehicle state such as a vehicle speed, RPM, various sensors, and the like, and transmit the received data to the route prediction module 130. If the measurement module 120 determines that the vehicle is in an abnormal state, the vehicle is determined to be in an abnormal state, and the measurement module 120 determines that the vehicle is not in an abnormal state. If there is a possibility of collision between pedestrians, it is considered a dangerous situation.
  • the route prediction module 130 is based on the vehicle position, the speed data and the position of the pedestrian, and the speed data received from the GNSS module 110, the measurement module 120, and the WAVE module 140. Calculate According to one embodiment of the invention, the path prediction module 130 preferably includes instructions of a program stored in the storage module 170, including one or more execution units capable of performing instructions. The program can be executed by loading into the execution unit.
  • the path prediction module 130 may be configured or include logic (for example, a field programmable gate array (FPGA)) implementing the V2P collision prevention method 30.
  • the route prediction module 130 may load the discrimination program stored in the storage module 170 into the execution unit and communicate with another adjacent vehicle (second V2P) by executing the instructions of the discrimination program.
  • FPGA field programmable gate array
  • the route prediction module 130 is a vehicle (first V2P) on which the adjacent vehicle (second V2P) and the V2P collision prevention device 20 are mounted using latitude and longitude data of a message received from the adjacent vehicle (second V2P).
  • the relative orientation angle with the OBU 100 may be calculated and the position of the pedestrian with respect to the vehicle (first V2P) OBU 100 may be determined based on the calculated relative orientation angle.
  • the route prediction module 130 may further determine the position of the pedestrian by further using the latitude and longitude data and the direction angle data received through the GNSS module 110.
  • the route prediction module 130 also generates a message including latitude and longitude data received through the GNSS module 110 and a vehicle identifier indicating the vehicle (first V2P) and sends the generated message to the WAVE module 140. Can be sent through.
  • the message sent includes at least vehicle identifier, latitude and longitude data and may further include other data in accordance with the promised standard.
  • the path prediction module 130 may execute the determination program according to the control input from the user through the input module 150 and display the positions of the plurality of pedestrians determined according to the execution of the determination program through the output module 160. You may.
  • the route prediction module 130 determines that the vehicle is in a dangerous state when there is a possibility of collision between the vehicle and the pedestrian only when the measurement module 120 determines that the state of the vehicle is not an abnormal state of the vehicle. A signal is sent and it is determined whether the danger situation is due to a vehicle abnormality condition or whether there is a possibility of a collision between the vehicle and a pedestrian.
  • the V2P collision prevention method 30 performed by the path prediction module 130 will be described in more detail through the example of FIG. 18.
  • the WAVE module 140 receives information about the position and speed of the vehicle from the GNSS module 110 and receives information about the position and speed of the pedestrian from the server 400. According to an embodiment of the present invention, the WAVE module 140 transmits the MAC packet according to the WAVE standard to the path prediction module 130 and modulates it into a wireless signal of a designated band (for example, 5.9 GHz band). The vehicle may be transmitted to the adjacent vehicle (second V2P). In addition, the WAVE module 140 may demodulate a radio signal of a specified band, convert it into a MAC packet, and transmit the same to a path prediction module 130.
  • a designated band for example, 5.9 GHz band
  • the vehicle may be transmitted to the adjacent vehicle (second V2P).
  • the WAVE module 140 may demodulate a radio signal of a specified band, convert it into a MAC packet, and transmit the same to a path prediction module 130.
  • the WAVE module 140 receives a message (a wireless packet) according to the J2735 BSM standard including latitude and longitude data wirelessly from an adjacent vehicle (second V2P) through a demodulation process and routes the received message.
  • the module 130 may transmit the message received from the path prediction module 130 to the adjacent vehicle wirelessly through a modulation process.
  • the WAVE module 140 may be configured as a chipset capable of performing modulation and demodulation from the base frequency at a carrier frequency and configuring a MAC packet.
  • the WAVE module 140 may transmit and receive a message according to the V2V communication standard, and the message to be transmitted and received includes one or more network packets on a Mac layer.
  • the message received via the WAVE module 140 includes at least latitude and longitude data and further includes an identifier of the vehicle.
  • the input module 150 is an interface for receiving an input from a user using a vehicle on which the OBU 100 is mounted.
  • the input module 150 may be configured as a touch panel, a button, and / or a microphone, and receive a control input designated as a user touch input through a touch panel, a button input through a button, or a voice input through a microphone.
  • the received input may be transmitted to the route prediction module 130.
  • the output module 160 outputs data received from the path prediction module 130.
  • the output module 160 includes a display, a speaker, and / or one or more LEDs, and outputs an image, voice, or LED control signal to a corresponding display, speaker, or LED according to data received from the path prediction module 130. do.
  • the storage module 170 stores various data and programs, including a volatile memory and / or a nonvolatile memory.
  • the volatile memory of the storage module 170 temporarily stores various data and programs, and the nonvolatile memory stores at least configuration data and programs according to the present invention.
  • the program may be performed by the route prediction module 130 and may be a determination program for determining a collision between a vehicle and a pedestrian according to the present invention.
  • the nonvolatile memory of the storage module 170 stores at least a vehicle identifier on which the OBU 100 is mounted or a vehicle identifier for identifying the device and a determination program for vehicle position determination.
  • the interface module 180 transmits and receives various data between blocks.
  • the interface module 180 may transmit control data to another block under the control of the path predicting module 130 or transmit data according to the control data from the other block to the path predicting module 130.
  • the interface module 180 may be configured of, for example, a parallel bus or a serial bus that can be controlled by the path prediction module 130.
  • the parallel bus may for example be a 32-bit bus and the serial bus may consist of, for example, a TX (transmitter) line and / or a RX (receiver) line of a universal asynchronous receiver transmitter (UART).
  • V2P collision prevention device 20 is an OBU 100 mounted on a vehicle.
  • the vehicle may be equipped with the OBU 100 and share information between the vehicle and the pedestrian through the pedestrian and the WAVE communication.
  • a plurality of vehicles may be equipped with the OBU 100 and share information between the vehicles through V2V communication with other vehicles.
  • the OBU 100 wirelessly transmits a message indicating the information of the vehicle on which the device is mounted to the server 400 and transmits a message indicating the information of the pedestrian via the server 400 wirelessly from the user terminal 300 of the pedestrian. Can be received.
  • the OBU 100 may transmit a message according to the Society of Automotive Engineers (SAE) J2735 Basic Safety Message (BSM) standard.
  • SAE Society of Automotive Engineers
  • BSM Basic Safety Message
  • the OBU 100 may receive a message transmitted from the pedestrian and determine whether the pedestrian is near by using data included in the received message.
  • the message includes at least latitude data and longitude data determined by the Global Navigation Satellite System (GNSS) and also includes a vehicle identifier.
  • the vehicle identifier is an identifier for identifying the vehicle on which the OBU 100 itself or the OBU 100 is mounted. This identifier may be predetermined according to an appointment between the OBUs 100 or according to a V2V communication standard.
  • the transmitted message is sent out wirelessly periodically (e.g. 100mSec, etc.) and is preferably sent out as MAC (MAC) data according to the WAVE standard.
  • MAC MAC
  • the OBU 100 is generally mounted in a vehicle, but may be in the form of a terminal that may be embedded in the production of the vehicle or may be attached to the vehicle.
  • the OBU 100 may be a device capable of interfacing with the on-board diagnostics (OBD) -II and embedded in the front panel of the vehicle, or may be a portable terminal detachable to the front panel of the vehicle.
  • the OBU 100 may be a smart phone, a tablet PC, a PDA, or the like as a portable terminal.
  • the OBU 100 of the first V2P may determine whether the pedestrian or the vehicle is near by using latitude and longitude data of the message transmitted from the second V2P user terminal 300 of the adjacent vehicle.
  • the OBU 100 classifies the relative position of each object by feature based on itself using the position and the relative distance. This provides benefits such as reducing the computation time before making decisions by identifying objects that do not need to be included in the computation or applying more accurate operations.
  • the accuracy of the position measured by the GNSS module 110 of the vehicle OBU 100 and the GNSS of the pedestrian user terminal 300 is low, and is performed between the vehicle and the server executed by using an ACK packet.
  • the V2P collision prevention system can be operated. The test of the effect of the GNSS error on the relative distance between the vehicle and the pedestrian was conducted, and this will be described in more detail.
  • the latency between vehicle and server and between pedestrian and server was calculated. This process was performed using an ACK packet, which was performed as a ping. The calculation can evaluate how long it takes to service.
  • FIG. 3 to 5 are schematic diagrams of an environment for testing a V2P collision prevention device according to an embodiment of the present invention
  • Figures 6 to 8 are the distance (difference) and the difference (difference) according to an embodiment of the present invention Is a graph.
  • Example 1 a standard distance between a stationary pedestrian and a stationary vehicle is 36m, and a minimum allowed error of the user terminal GNSS is 10.
  • Example 1 the average pedestrian is 57.37m, the difference average is 21.48m, the vehicle average is 56.97m, and the difference average is Difference Average. 21.18m.
  • Example 2 a standard distance between a stationary pedestrian and a stationary vehicle is 36m, and a minimum allowed error of the user terminal GNSS is 3.
  • the average pedestrian is 35.77 m
  • the difference average is 2.60 m
  • the vehicle average is 35.30 m
  • the difference average is Difference Average. 2.53m.
  • Example 3 the standard distance between pedestrians traveling within 15m on a straight path and the stationary vehicle is 34m, and the minimum allowed error of the user terminal GNSS is 3. .
  • the average pedestrian is 34.96m
  • the difference average is 2.13m
  • the vehicle average is 33.43m
  • the difference average is Difference Average. 1.23m.
  • 9 to 11 are graphs illustrating a latency of the vehicle OBE 100 and the pedestrian user terminal 300.
  • the average delay speed of the pedestrian user terminal is 50.80 ms, and the average speed of the vehicle OBE is 8.57 ms.
  • the average delay speed of the pedestrian user terminal is 66.53 ms, and the average speed of the vehicle OBE is 9.81 ms.
  • the average delay speed of the pedestrian user terminal is 68.74 ms, and the average speed of the vehicle OBE is 11.54 ms.
  • the GNSS setting of the user terminal affects the relative distance error ratio between the vehicle and the pedestrian.
  • the V2P collision prevention service using the WAVE can be executed using the OBU 100 of the vehicle and the user terminal 300 of the pedestrian.
  • the smartphone 310 application of the user terminal 300 of the V2P collision prevention system includes a pedestrian data upload, upload stop, log file recording.
  • the operation steps for the reception information processing of the OBU 100 and the user terminal 300 of the V2P collision prevention system according to an embodiment of the present invention are as follows.
  • S410 is a step of downloading the packet to the OBU 100 and the user terminal 300 (S410).
  • S420 is a step of analyzing the packets downloaded to the OBU 100 and the user terminal 300 (S420).
  • S430 is a step of calculating a relative distance using the analyzed packet information (S430).
  • S440 is a step of calculating a V2P collision prevention service that anticipates a collision possibility from the relative distance (S440) or adding to the history queue (S441).
  • S450 is a step of updating the MIS (S450).
  • S460 is a step of storing information in the MIS when the decision manager is executed (S460).
  • S470 is a step of updating the PIS (S470).
  • the server 400 includes a MIB data structure, an MIS data structure, an HIS data structure, a PIS data structure, and an EIS data structure.
  • the Management Information Base includes various thresholds for determining alert conditions.
  • Minimum Warning Angle defines the minimum angle between warnings.
  • the default value is 85 (degrees), which corresponds to i of FIG.
  • Minimum Warning Distance defines the minimum distance for warning.
  • the default value is 100 (m) and corresponds to d in FIG. 19.
  • Minimum Warning Shortened Acceleration Distance defines the minimum distance deceleration that generates a warning, and the default value is 6 (mps), which corresponds to the variation of d in FIG. 19.
  • Minimum Warning Normal Line Distance defines the minimum normal distance for generating a warning.
  • the default value is 10 (m) and corresponds to n in FIG. 19.
  • Minimum Warning Vehicle Speed defines a minimum vehicle speed for generating a warning, the default value is 3 (mps), and corresponds to the speed of v of FIG. 19.
  • Minimum History Searching Count defines the minimum number of information needed to search History for risk determination. The default value is 10 (times), and Minimum Distance Decrease Count should be generated to determine the path access to v of P. Defines the minimum number of access determination through History Searching. The default value is ((Minimum History Searching Count / 2) +1). Max Estimation Count defines the maximum number of times the route prediction to support the risk determination, the default value is 50 (times).
  • MIS Management Information Structure
  • Object Identifier is used as an identifier to separate each item by vehicle or pedestrian.
  • Path collision possibility Flag is the current cross path state of the target. Included Angle is the angle between the target and its respective path. Distance is the distance value between the target and itself. Normal Line Distance is the distance value between the vehicle's path and pedestrians. Shortened Acceleration Distance is a decreasing trend of distance value between the target and itself.
  • HIS History Information Structure
  • Object Identifier is used as an identifier to separate each item by vehicle or pedestrian.
  • Distance is your distance from the target at that point.
  • Normal Line Distance is the normal distance between the vehicle's path and pedestrians at that time.
  • PIS Presentation Information Structure
  • Event type indicates the type of event that has occurred. This parameter is created for the case where both vehicles and pedestrians are later processed by smartphones.
  • MIS is MIS data about an event that occurred.
  • EIS is the EIS data about the event that occurred.
  • Estimation Information Structure contains prediction information about the future path of each target. Before saving, calculate the probability of collision with the target, location and time, and save the result.
  • the composition of the EIS is as follows. Object Identifier is used as an identifier to separate each item by vehicle or pedestrian.
  • Estimated Collision Time is the estimated collision estimated time.
  • Collision Occurrence Estimation Flag is the predicted collision value.
  • the frame format of a message set between devices includes a header and a payload.
  • the header consists of time (year, month, day, hour, minute, second, millisecond), device type, device identifier, sequence number, and data type.
  • the frame is 2 bytes per year, 1 byte per month, 1 byte for hour, 1 byte for hour, 1 byte for minute, 1 byte for second, 2 bytes for milliseconds, 1 byte for device type, 6 bytes for device identifier.
  • the sequence number is 4 bytes
  • the data type is 1 byte
  • the payload is n bytes.
  • the time (year, month, day, hour, minute, second, millisecond) is the time of the system obtained from GNSS.
  • the device type is 1 for pedestrians, 2 for vehicles, 3 for servers, and follows the initial setting for each device.
  • the device identifier identifies each device by its MAC address.
  • the sequence number is a value from 0 to 4294967295, and is reset to 0 upon device reboot.
  • the data type is 1 for information upstream, 2 for information downstream, 3 for ACK, and data type of payload. Payloads have different configuration values for different data types.
  • the payload is 4 bytes longitude, 4 bytes latitude, 2 bytes long, and 2 bytes long at the time of Information Upstream, and the longitude has a value of -1800000000 or more and less than 1800000001. This is not available for 1800000001 in 1/10 micro degree units.
  • Latitude is a value between -900000000 and less than 900000001. 900000001 cannot be used.
  • the value ranges from 0 to less than 28800, in 0.0125 degree units, and the 28800 cannot be used.
  • Speed is a value between 0 and 8191, in 0.02m / s units, and 8191 cannot be used.
  • a payload in an information downstream, includes one encapsuled data count of 1 byte and N encapsulated data of 28 bytes.
  • N is a maximum of 30 and has a value from 1 to 30.
  • One Encapsulated Data is 4 bytes longitude, 4 bytes latitude, 2 bytes speed, 2 bytes speed, 1 byte device type, 6 bytes device identifier, 2 bytes per year, 1 byte per month, 1 byte per hour, 1 byte per minute, 1 byte per minute. , 1 byte per second and 2 bytes in milliseconds.
  • Hardness has a value of -1800000000 or more and less than 1800000001. This is not available for 1800000001 in 1/10 micro degree units.
  • Latitude is a value between -900000000 and less than 900000001. 900000001 cannot be used.
  • the value ranges from 0 to less than 28800, in 0.0125 degree units, and the 28800 cannot be used.
  • Speed is a value between 0 and 8191, in 0.02m / s units, and 8191 cannot be used.
  • the device type is 1 for pedestrians and 2 for vehicles with values collected from the device.
  • the device identifier identifies each device by its MAC address.
  • the time is 2 bytes, the month is 1 byte, the day is 1 byte, the hour is 1 byte, the minute is 1 byte, the second is 1 byte, and the millisecond is 2 bytes.
  • ACK is 2 bytes in time, 1 byte in month, 1 byte in day, 1 byte in hour, 1 byte in minutes, 1 byte in seconds, 2 bytes in milliseconds, and 1 byte in device type.
  • the device identifier consists of 6 bytes, the sequence number of 4 bytes, the data type of 1 byte, and the payload of n bytes.
  • the payload consists of 2 bytes per year, 1 byte for month, 1 byte for day, 1 byte for hour, 1 byte for minute, 1 byte for second, 2 bytes for milliseconds, and 4 bytes for sequence number.
  • the time is a time stamp of the transmission packet and the sequence number is a value between 0 and 4294967295, and means the sequence number of the received packet.
  • FIG. 18 is a flowchart illustrating a V2P collision prevention method according to an embodiment of the present invention.
  • the method of preventing a V2P collision 30 may include obtaining vehicle parameters for a vehicle including a first V2P device and communicating with at least one user terminal (second V2P) (S510); Predicting a route of the vehicle based on the at least one vehicle parameter (S520); Receiving at least one basic safety message from at least one user terminal (second V2P) device via a WAVE communication channel (S530); Obtaining the user terminal parameters including the position and speed of the user terminal from at least one user terminal (second V2P) (S540); Estimating a collision potential path between the vehicle and the user terminal and a risk based on at least one user terminal parameter (S550); Determining a possibility of collision between the vehicle and the user (S560); And providing a dangerous signal to the driver and the user of the vehicle when the collision between the vehicle and the user is high (S570).
  • vehicle parameters for the vehicle including the first V2P device may be acquired and communicated with at least one pedestrian user terminal 300.
  • the meanings of the entities represented by the alphabet are as follows.
  • V is the position of the vehicle.
  • v is the moving direction vector of the vehicle.
  • P is the position of the pedestrian.
  • p is the moving direction vector of the pedestrian.
  • b is the cabinet between the direction vector of the vehicle and the pedestrian path and the moving direction vector of the vehicle.
  • i is a cabinet formed by the movement direction vector of the vehicle and the movement direction vector of the pedestrian.
  • n is the vertical distance between the moving direction vector of the vehicle and the pedestrian.
  • d is the distance between the vehicle and the pedestrian.
  • the path of the pedestrian is estimated based on the at least one parameter of the user terminal 300 of the pedestrian.
  • it refers to a value obtained by calculating an angle between each of v and d or between v and p (each b or i), and is one of values essential for calculating other variables. It is also possible to apply a threshold range of the value and use it to determine the risk. This is an optional threshold method.
  • the cabinets of the vectors b1 to b4 for a correspond to ⁇ 1 to ⁇ 4, respectively. First, subtract the smaller angle from the larger angle to find the angle difference.
  • a normal line refers to a distance of a normal line lowered from P with respect to a path v, and is used as a value for determining a proximity state and intersection of v and P.
  • d denotes a distance between two points of V and P
  • Such numerical methods are described in RW Sinnott, "Virtues of the Haversine", Sky and Telescope, vol. 68, no. 2, 1984, p. It is described in 159. R corresponds to the earth radius.
  • step 530 at least one basic safety message is received from the user terminal (second V2P) device of the pedestrian.
  • the pedestrian parameter including the position and the speed of at least one pedestrian is obtained.
  • the collision probability and the risk of the pedestrian are estimated based on the at least one pedestrian parameter.
  • the probability of collision refers to a judgment as to whether or not v and p intersect, and to determine this, it is determined by calculating the variation of n.
  • the collision timing and the degree of danger are determined by using other variables, and the value is used only to determine whether the paths intersect.
  • step 570 if the collision probability between the vehicle and the pedestrian is high, at least one danger signal is provided to the vehicle and the pedestrian.
  • 26 to 36 illustrate scenarios of the possibility of collision between the predicted vector of the vehicle and the predicted vector of the pedestrian.
  • scenario 7 includes an included angle between an expected path vector of a vehicle and an estimated path vector of a pedestrian within 5 degrees from 180 degrees, and a minimum warning distance between a vehicle and a pedestrian.
  • Normal Line Distance is closer than the default value, the collision probability T / F is True.
  • scenario 8 includes a minimum warning distance between an expected path vector of a vehicle and an estimated path vector of a pedestrian (included angle) within 180 degrees and a position of the vehicle and a pedestrian.
  • Normal Line Distance is farther than the default value
  • the probability of collision T / F False.
  • scenario 9 is a vehicle passed condition in an expected path vector of a vehicle and an expected path vector of a pedestrian.
  • Scenarios 10 and 11 are applied to prevent contact accidents with vehicles, bicycles, motorcycles and pedestrians in front of or behind the vehicle when the vehicle is stopped or the door is opened.
  • the vehicle and the GNSS location information of the vehicle provided by the OBU 100 of the vehicle equipped with the GNSS module 110 and the pedestrian user terminal 300 and the GNSS location information of the pedestrian Predict the relative distance of pedestrians more accurately.
  • the driver provides a fast and accurate danger signal in real time.
  • the V2P collision prevention method 30 may be implemented in a computer system or recorded on a recording medium.
  • the computer system may include at least one processor, memory, user input device, data communication bus, user output device, and storage. Each of the above components communicates data via a data communication bus.
  • the computer system can further include a network interface coupled to the network.
  • the processor may be a central processing unit (CPU) or a semiconductor device that processes instructions stored in a memory and / or a storage.
  • the memory and the storage may include various types of volatile or nonvolatile storage media.
  • the memory may include a ROM and a RAM.
  • the V2P collision prevention method 30 can be implemented as computer-readable code on a computer-readable recording medium.
  • Computer-readable recording media include all kinds of recording media having data stored thereon that can be decrypted by a computer system. For example, there may be a read only memory (ROM), a random access memory (RAM), a magnetic tape, a magnetic disk, a flash memory, an optical data storage device, and the like.
  • the computer readable recording medium can also be distributed over computer systems connected over a computer network, stored and executed as readable code in a distributed fashion.

Abstract

A vehicle to pedestrian (V2P) collision prevention system and a method therefor are disclosed. In a V2P communication system for transmitting and receiving vehicle global navigation satellite system (GNSS) location information and pedestrian GNSS location information via wireless access in vehicular environments (WAVE) standard wireless communication, a V2P collision prevention system comprises: an on-board unit (OBU) in which a V2P collision prevention service is executed by calculating a relative distance between the vehicle and the pedestrian and which is mounted in the vehicle, road side equipment (RSE) which is capable of WAVE standard wireless communication with the OBU, and a user terminal which is capable of transmitting the pedestrian GNSS location information via WAN/Internet; and a server which calculates the possibility of collision between the vehicle and the pedestrian using the vehicle GNSS location information and the pedestrian GNSS location information via the RSE and WAN/Internet, and which transmits a danger signal to the driver of the vehicle and to the user terminal of the pedestrian. According to the present invention, the OBU provides a V2P collision prevention service via WAVE by calculating the relative distance between the vehicle and the pedestrian even when the accuracy of locations measured using the vehicle GNSS and measured using the pedestrian GNSS is low, and the latency executed using an ACK packet between the vehicle and the server, and between the pedestrian and the server is low.

Description

V2P 충돌예방 시스템 및 그 방법V2P collision prevention system and method
본 발명은 V2P 충돌예방 장치와 그 방법에 관한 것으로서, 구체적으로 WAVE 모듈을 차량에 탑재하고 차량정보를 스마트폰에 전송해서 근거리의 차량이나 보행자와의 충돌을 예측하여 운전자와 보행자에게 시각, 청각 또는 촉각을 통해 알려줌으로써 충돌을 예방하는 시스템 및 그 방법에 관한 것이다.The present invention relates to a V2P collision prevention device and a method thereof, and specifically, a WAVE module is mounted on a vehicle and vehicle information is transmitted to a smartphone to predict collision with a vehicle or a pedestrian in a short distance, so that the driver and the pedestrian can see, hear or The present invention relates to a system and a method for preventing a collision by informing through tactile sense.
최근 지능형 자동차에 대한 연구가 활발히 이루어 지고 있다. 그중에서도 사고예방에 관한 정보 처리 기술에 대한 관심이 날로 증가되고 있다. 특히, 차량의 위치와 속도정보를 실시간으로 제공하여, 주행 편의 및 안전사고 예방을 위한 노력이 계속되고 있다.Recently, research on intelligent cars has been actively conducted. Among them, interest in information processing technology regarding accident prevention is increasing day by day. In particular, by providing the location and speed information of the vehicle in real time, efforts to prevent driving convenience and safety accidents are continuing.
대표적인 예로 기술의 진화에 따라 차량과 차량간 통신(Vehicle to Vehicle Communication, 이하 'V2V 통신'이라고 함)이 활발히 연구되고 있다. V2V 통신은 지능형 교통 시스템(Intelligent Transport System)에 필수적인 핵심 기술로 정착할 것으로 예상된다. V2V 통신은 차량간 통신에 따라 자율 주행을 가능하게 하고 차량 충돌을 방지하기 위해 IEEE802.11p(WAVE, 이하 'WAVE'라고 함) 통신 표준을 이용하여 표준화될 것으로 예상된다.As a representative example, with the evolution of technology, vehicle-to-vehicle communication (V2V communication) has been actively studied. V2V communication is expected to settle as a core technology essential for Intelligent Transport Systems. V2V communication is expected to be standardized using IEEE802.11p (WAVE) communication standard to enable autonomous driving and prevent vehicle collisions according to inter-vehicle communication.
WAVE 표준은 5.9GHz 대역의 주파수를 이용할 수 있다. WAVE 표준에 기반한 V2V 통신은 차량의 단말기간 표준화된 메시지를 전송한다. 예를 들어 V2V 통신을 이용하는 단말기는 SAE J2735의 단말기간 메시지 통신 규격에 따라 메시지를 송수신한다. SAE J2735는 메시지 세트(Set)를 정의하고 이 메시지 세트는 BSM(Basic Safety Message)을 정의한다. BSM을 통해서 단말기간 위치 정보를 포함하는 다양한 유형의 메시지를 송수신할 수 있다.The WAVE standard can use frequencies in the 5.9 GHz band. V2V communication based on the WAVE standard transmits standardized messages between terminals of a vehicle. For example, a terminal using V2V communication transmits and receives a message according to the message communication standard between terminals of SAE J2735. SAE J2735 defines a message set, which defines a Basic Safety Message (BSM). Through BSM, various types of messages including location information between terminals can be transmitted and received.
차량과 보행자의 충돌을 예방하기 위해서는 V2P 통신을 통해 가장 기본적으로 V2P 통신에 따른 메시지로부터 메시지를 전송한 보행자의 경로를 예상하고 차량의 경로를 예상하여 이에 따른 필요한 액션을 취할 필요가 있다.In order to prevent the collision between the vehicle and the pedestrian, it is necessary to anticipate the path of the pedestrian who has transmitted the message from the message according to the V2P communication, and to take the necessary action according to the path of the vehicle.
그러나 기존에 알려진 차량의 전방 또는 후방 식별 방법은 메시지를 수신한 차량과 메시지를 전송한 차량의 위치 데이터의 차이를 활용하기에 차량의 예상경로를 용이하게 파악할 수 없다. 메시지를 수신한 차량의 방향이 가변적인 점을 고려하면 더욱 그러하다. However, the known front or rear identification method of the vehicle cannot easily grasp the expected path of the vehicle because it utilizes the difference between the location data of the vehicle receiving the message and the vehicle transmitting the message. This is even more so when the direction of the vehicle receiving the message is variable.
이와 같이 V2P 통신에서 이용되는 데이터를 활용하여 차량과 보행자의 방향성을 고려하고 차량과 보행자의 경로를 예상하여 차량과 보행자간 충돌을 예방하는 시스템과 방법이 필요하다.As such, there is a need for a system and method for preventing collisions between vehicles and pedestrians by considering the direction of vehicles and pedestrians using the data used in V2P communication and predicting the paths of vehicles and pedestrians.
본 발명의 목적은 차량정보를 이용하여 근거리의 차량이나 보행자와의 충돌을 예측하여 운전자와 보행자에게 시각, 청각 또는 촉각을 통해 알려줌으로써 충돌을 예방하게 하는 것이다.An object of the present invention is to predict a collision with a vehicle or a pedestrian by using vehicle information to prevent a collision by informing the driver and the pedestrian through sight, hearing, or touch.
또한, 본 발명의 다른 목적은, 차량의 GNSS와 보행자의 GNSS로 측정한 위치의 정확도가 낮고, ACK 패킷(packet)를 이용하여 실행되는 차량과 서버간 그리고 보행자와 서버간의 지연속도(latency)가 낮아도, 차량과 보행자간의 상대거리를 계산하여 WAVE를 통해 V2P 충돌 예방 서비스를 제공하는 것이다.In addition, another object of the present invention is the low accuracy of the position measured by the GNSS of the vehicle and the GNSS of the pedestrian, the latency between the vehicle and the server, and the latency between the pedestrian and the server executed using the ACK packet Even if low, the relative distance between the vehicle and the pedestrian is calculated to provide V2P collision prevention service through WAVE.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problems to be achieved in the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned above will be clearly understood by those skilled in the art from the following description. Could be.
상술한 본 발명의 목적을 달성하기 위한 본 발명의 일면에 따른 V2P 충돌예방 시스템은, 차량의 GNSS 위치정보와 보행자의 GNSS 위치정보를 WAVE 무선통신을 통해 송수신하는 V2P 통신 시스템에 있어서, 상기 차량과 상기 보행자간의 상대거리를 계산하여 V2P 충돌 예방 서비스가 실행되는 차량에 탑재된 OBU(On Board Unit); 상기 OBU와 WAVE 무선통신이 가능한 RSE(Road Side Equipment); 상기 보행자의 GNSS 위치정보를 WAN/Internet을 통해 전송가능한 사용자단말기; 및 상기 RSE와 WAN/Internet을 통해 상기 차량의 GNSS 위치정보와 상기 보행자의 GNSS 위치정보로부터 상기 차량과 상기 보행자간의 충돌가능성을 계산하여 상기 차량의 운전자와 상기 보행자의 사용자단말기에 위험신호를 전송하는 서버;를 포함한다.V2P collision prevention system according to an aspect of the present invention for achieving the above object of the present invention, in the V2P communication system for transmitting and receiving the GNSS position information of the vehicle and the GNSS position information of the pedestrian through WAVE wireless communication, An OBU (On Board Unit) mounted on a vehicle on which a V2P collision prevention service is executed by calculating a relative distance between the pedestrians; RSE (Road Side Equipment) capable of wireless communication with the OBU; A user terminal capable of transmitting the GNSS location information of the pedestrian through WAN / Internet; And calculating a possibility of collision between the vehicle and the pedestrian from the GNSS position information of the vehicle and the GNSS position information of the pedestrian through the RSE and the WAN / Internet, and transmitting a danger signal to the driver of the vehicle and the user terminal of the pedestrian. Server; includes.
본 발명의 다른 일면에 따른 V2P 충돌예방 장치는, 차량에 탑재되고 RSE와 접속되어 서버로부터 차량 운전자와 보행자에게 위험신호를 WAVE 무선통신으로 송수신하는 V2P 통신 장치(OBU)에 있어서, GNSS 위성으로부터 송출된 무선 신호를 수신하여 GNSS 데이터를 생성하고 생성된 상기 GNSS 데이터를 경로예상모듈로 출력하는 GNSS모듈; 상기 차량내부의 ECU(Electronic Control Unit)와 접속되어 상기 차량의 속도, RPM, 센서의 상태에 관한 데이터를 수신하고 수신된 상기 데이터를 경로예상모듈로 전송하는 측정모듈; 상기 GNSS모듈로부터 수신받은 데이터와 상기 측정모듈로부터 수신받은 데이터를 이용하여 상기 차량의 경로벡터와 상기 보행자의 경로벡터로부터 상기 차량과 상기 보행자의 예상경로를 산정하는 경로예상모듈; 및 상기 GNSS모듈과 상기 측정모듈과 상기 경로예상모듈의 데이터를 상기 RSE를 경유하여 상기 서버로 전송하고, 상기 서버로부터 상기 RSE를 경유하여 제공된 주변의 적어도 하나의 차량과 보행자의 정보를 수신받아 위험상황을 검출하여 상기 RSE를 경유하여 상기 서버에 위험신호를 전송하는 WAVE 모듈;을 포함한다.According to another aspect of the present invention, a V2P collision prevention device is mounted on a vehicle, connected to an RSE, and transmitted from a GNSS satellite in a V2P communication device (OBU) that transmits and receives a dangerous signal from a server to a vehicle driver and a pedestrian through WAVE wireless communication. A GNSS module for generating GNSS data by receiving the received radio signal and outputting the generated GNSS data to a route prediction module; A measurement module connected to an ECU (Electronic Control Unit) inside the vehicle to receive data regarding the speed, RPM, and state of the vehicle and transmit the received data to a route prediction module; A route prediction module that calculates an expected route of the vehicle and the pedestrian from the route vector of the vehicle and the route vector of the pedestrian using the data received from the GNSS module and the data received from the measurement module; And transmitting data of the GNSS module, the measurement module, and the route prediction module to the server via the RSE, and receiving information of at least one vehicle and a pedestrian provided from the server via the RSE. And a WAVE module for detecting a situation and transmitting a danger signal to the server via the RSE.
본 발명의 또 다른 일면에 따른 V2P 충돌예방 방법은, 차량의 GNSS 위치정보와 보행자의 GNSS 위치정보를 WAVE를 통해 송수신하는 V2P 통신 방법에 있어서, OBU(제1 V2P)를 탑재한 차량을 위한 차량 패러미터를 획득하여 적어도 하나의 사용자단말기(제2 V2P)와 통신하는 단계; 상기 적어도 하나의 차량 패러미터에 근거하여 차량의 경로를 예상하는 단계; WAVE 통신 채널을 경유하여 적어도 하나의 사용자단말기(제2 V2P) 장치로부터 적어도 하나의 기본 안전 메시지를 수신하는 단계; 적어도 하나의 사용자단말기(제2 V2P)로부터 상기 사용자단말기의 위치와 속도를 포함하는 상기 사용자단말기 패러미터를 획득하는 단계; 적어도 하나의 상기 사용자단말기 패러미터에 근거하여 상기 차량과 상기 사용자의 충돌 가능성 및 위험도를 계산하는 단계; 상기 차량과 상기 사용자의 충돌 가능성을 결정하는 단계; 및 상기 차량과 상기 사용자의 충돌 가능성이 높은 경우, 상기 차량의 운전자와 상기 사용자에게 적어도 하나의 위험신호를 제공하는 단계;를 포함한다.V2P collision prevention method according to another aspect of the present invention, in the V2P communication method for transmitting and receiving the GNSS position information of the vehicle and the GNSS position information of the pedestrian through the WAVE, the vehicle for a vehicle equipped with OBU (first V2P) Obtaining a parameter and communicating with at least one user terminal (second V2P); Predicting a route of the vehicle based on the at least one vehicle parameter; Receiving at least one basic safety message from at least one user terminal (second V2P) device via a WAVE communication channel; Obtaining the user terminal parameters including the position and speed of the user terminal from at least one user terminal (second V2P); Calculating a likelihood and risk of collision between the vehicle and the user based on at least one user terminal parameter; Determining a possibility of collision between the vehicle and the user; And providing at least one danger signal to the driver and the user of the vehicle when the collision probability between the vehicle and the user is high.
본 발명에 따르면, 차량의 예상경로와 보행자의 예상경로로부터 충돌이 예상되면 운전자와 보행자의 스마트폰에 위험신호를 전송함으로써, 안전사고를 예방하고 운전자의 주행 편의를 향상시킨다.According to the present invention, if a collision is expected from the predicted path of the vehicle and the predicted path of the pedestrian, a danger signal is transmitted to the smartphone of the driver and the pedestrian, thereby preventing a safety accident and improving the driving convenience of the driver.
또한, 본 발명에 따르면, GNSS모듈이 탑재된 차량의 OBU와 보행자의 사용자단말기로부터 차량과 보행자의 상대적인 거리를 보다 정확하게 예상한다.In addition, according to the present invention, the relative distance between the vehicle and the pedestrian is more accurately estimated from the OBU of the vehicle equipped with the GNSS module and the user terminal of the pedestrian.
또한, 본 발명에 따르면, 차량의 GNSS와 보행자의 GNSS로 측정한 위치의 정확도가 낮고, ACK 패킷(packet)을 이용하여 실행되는 차량과 서버간 그리고 보행자와 서버간의 지연속도(latency)가 낮아도, 차량과 보행자간의 상대거리를 계산하여 WAVE 무선통신을 통해 V2P 충돌 예방 서비스를 제공한다.Further, according to the present invention, even if the accuracy of the position measured by the GNSS of the vehicle and the GNSS of the pedestrian is low, and the latency between the vehicle and the server and the pedestrian and the server executed using the ACK packet is low, Calculate the relative distance between vehicle and pedestrian and provide V2P collision prevention service through WAVE wireless communication.
또한, 본 발명에 따르면, GNSS모듈이 탑재된 차량의 OBU와 보행자의 경로를 예상하는데 소요되는 연산량을 감소시킴으로써 운전자와 보행자에게 신속하고 정확한 위험요소 정보를 실시간으로 제공한다.In addition, according to the present invention, by reducing the amount of computation required to estimate the path of the OBU and pedestrians of the vehicle equipped with the GNSS module, it provides the driver and pedestrians with fast and accurate risk information in real time.
도 1은 본 발명의 일실시예에 따른 V2P 충돌예방 시스템의 구성을 나타낸 구성도이다. 1 is a block diagram showing the configuration of a V2P collision prevention system according to an embodiment of the present invention.
도 2는 본 발명의 일실시예에 따른 V2P 충돌예방 장치(OBU)의 상세한 구성을 나타낸 블록도이다.2 is a block diagram showing a detailed configuration of a V2P collision prevention device (OBU) according to an embodiment of the present invention.
도 3은 본 발명의 일실시예에 따른 V2P 충돌예방 장치의 테스트를 위한 환경 1에 대한 개략도이다.3 is a schematic diagram of Environment 1 for testing a V2P collision prevention device according to an embodiment of the present invention.
도 4는 본 발명의 일실시예에 따른 V2P 충돌예방 장치의 테스트를 위한 환경 2에 대한 개략도이다.4 is a schematic diagram of Environment 2 for testing a V2P collision prevention device according to an embodiment of the present invention.
도 5는 본 발명의 일실시예에 따른 V2P 충돌예방 장치의 테스트를 위한 환경 3에 대한 개략도이다.5 is a schematic diagram of Environment 3 for testing a V2P collision avoidance device according to an embodiment of the present invention.
도 6은 본 발명의 일실시예에 따른 V2P 충돌예방 장치의 차량과 보행자의 테스트의 상대거리에 결과 1를 도시한 그래프이다.FIG. 6 is a graph showing result 1 in a relative distance between a vehicle and a pedestrian test of the V2P collision prevention device according to an embodiment of the present invention.
도 7은 본 발명의 일실시예에 따른 V2P 충돌예방 장치의 차량과 보행자의 테스트의 상대거리에 결과 2를 도시한 그래프이다.Figure 7 is a graph showing the result 2 in the relative distance of the test of the vehicle and the pedestrian of the V2P collision prevention device according to an embodiment of the present invention.
도 8은 본 발명의 일실시예에 따른 V2P 충돌예방 장치의 차량과 보행자의 테스트의 상대거리에 결과 3를 도시한 그래프이다.8 is a graph showing the result 3 in the relative distance of the test of the vehicle and the pedestrian of the V2P collision prevention device according to an embodiment of the present invention.
도 9는 본 발명의 일실시예에 따른 V2P 충돌예방 장치의 차량과 보행자의 테스트의 지연속도(latency) 결과 1을 도시한 그래프이다.FIG. 9 is a graph illustrating a latency result 1 of a test of a vehicle and a pedestrian of a V2P collision prevention device according to an embodiment of the present invention.
도 10은 본 발명의 일실시예에 따른 V2P 충돌예방 장치의 테스트의 지연속도(latency) 결과 2를 도시한 그래프이다.FIG. 10 is a graph illustrating a latency result 2 of a test of a V2P collision prevention device according to an embodiment of the present invention.
도 11은 본 발명의 일실시예에 따른 V2P 충돌예방 장치의 테스트의 지연속도(latency) 결과 3을 도시한 그래프이다.FIG. 11 is a graph illustrating a latency result 3 of a test of a V2P collision prevention device according to an embodiment of the present invention.
도 12는 본 발명의 일실시예에 따른 V2P 충돌예방 시스템의 스마트폰 어플리케이션의 화면을 도시한 그림이다.12 is a diagram illustrating a screen of a smartphone application of the V2P collision prevention system according to an embodiment of the present invention.
도 13은 본 발명의 일실시예에 따른 V2P 충돌예방 시스템의 OBU와 사용자 단말기 수신 정보 처리의 흐름도이다.13 is a flowchart of an OBU and user terminal reception information processing of a V2P collision prevention system according to an embodiment of the present invention.
도 14는 본 발명의 일실시예에 따른 각 장치 간의 메시지 셋의 형식 1에 대한 개략도이다.14 is a schematic diagram of format 1 of a message set between devices according to an embodiment of the present invention.
도 15는 본 발명의 일실시예에 따른 각 장치 간의 메시지 셋의 형식 2에 대한 개략도이다.15 is a schematic diagram of format 2 of a message set between devices according to an embodiment of the present invention.
도 16은 본 발명의 일실시예에 따른 각 장치 간의 메시지 셋의 형식 3에 대한 개략도이다.16 is a schematic diagram of format 3 of a message set between devices according to an embodiment of the present invention.
도 17은 본 발명의 일실시예에 따른 각 장치 간의 메시지 셋의 형식 4에 대한 개략도이다.17 is a schematic diagram of format 4 of a message set between devices according to an embodiment of the present invention.
도 18은 본 발명의 일실시예에 따른 V2P 충돌예방 방법의 흐름도이다.18 is a flowchart illustrating a V2P collision prevention method according to an embodiment of the present invention.
도 19는 본 발명의 일실시예에 따른 V2P 충돌예방 방법의 전체적인 개략도이다.19 is an overall schematic diagram of a V2P collision prevention method according to an embodiment of the present invention.
도 20은 본 발명의 일실시예에 따른 V2P 충돌예방 방법의 차량의 속도벡터와 보행자의 속도벡터의 사이각(Included Angel)에 대한 개략도이다.20 is a schematic diagram of an included angel between the speed vector of the vehicle and the speed vector of the pedestrian in the V2P collision prevention method according to an embodiment of the present invention.
도 21은 본 발명의 일실시예에 따른 V2P 충돌예방 방법의 차량의 속도벡터와 보행자의 속도벡터의 사이각(Included Angel)에 대한 다양한 실시예의 개략도이다.21 is a schematic diagram of various embodiments of an included angel between a speed vector of a vehicle and a speed vector of a pedestrian in a V2P collision prevention method according to an embodiment of the present invention.
도 22는 본 발명의 일실시예에 따른 V2P 충돌예방 방법의 법선거리(Normal Line) 에 대한 개략도이다.22 is a schematic diagram of a normal line of the V2P collision prevention method according to an embodiment of the present invention.
도 23은 본 발명의 일실시예에 따른 V2P 충돌예방 방법의 충돌(Crossing) 에 대한 개략도이다.23 is a schematic diagram of the crossing (Crossing) of the V2P collision prevention method according to an embodiment of the present invention.
도 24는 본 발명의 일실시예에 따른 V2P 충돌예방 방법의 비충돌(None Matching) 케이스 1에 대한 개략도이다.24 is a schematic diagram of a non-matching case 1 of the V2P collision prevention method according to an embodiment of the present invention.
도 25는 본 발명의 일실시예에 따른 V2P 충돌예방 방법의 비충돌(None Matching) 케이스 2에 대한 개략도이다.25 is a schematic diagram of a non-collision case 2 of the V2P collision prevention method according to an embodiment of the present invention.
도 26은 본 발명의 일실시예에 따른 V2P 충돌예방 방법의 시나리오 1에 대한 개략도이다.26 is a schematic diagram of scenario 1 of a V2P collision prevention method according to an embodiment of the present invention.
도 27은 본 발명의 일실시예에 따른 V2P 충돌예방 방법의 시나리오 2에 대한 개략도이다.27 is a schematic diagram of scenario 2 of a V2P collision prevention method according to an embodiment of the present invention.
도 28은 본 발명의 일실시예에 따른 V2P 충돌예방 방법의 시나리오 3에 대한 개략도이다.28 is a schematic diagram of scenario 3 of a V2P collision prevention method according to an embodiment of the present invention.
도 29는 본 발명의 일실시예에 따른 V2P 충돌예방 방법의 시나리오 4에 대한 개략도이다.29 is a schematic diagram of scenario 4 of a V2P collision prevention method according to an embodiment of the present invention.
도 30은 본 발명의 일실시예에 따른 V2P 충돌예방 방법의 시나리오 5에 대한 개략도이다.30 is a schematic diagram of scenario 5 of a V2P collision prevention method according to an embodiment of the present invention.
도 31은 본 발명의 일실시예에 따른 V2P 충돌예방 방법의 시나리오 6에 대한 개략도이다.31 is a schematic diagram of scenario 6 of a V2P collision prevention method according to an embodiment of the present invention.
도 32는 본 발명의 일실시예에 따른 V2P 충돌예방 방법의 시나리오 7에 대한 개략도이다.32 is a schematic diagram of scenario 7 of a V2P collision prevention method according to an embodiment of the present invention.
도 33은 본 발명의 일실시예에 따른 V2P 충돌예방 방법의 시나리오 8에 대한 개략도이다.33 is a schematic diagram of scenario 8 of a V2P collision prevention method according to an embodiment of the present invention.
도 34는 본 발명의 일실시예에 따른 V2P 충돌예방 방법의 시나리오 9에 대한 개략도이다.34 is a schematic diagram of scenario 9 of a V2P collision prevention method according to an embodiment of the present invention.
도 35는 본 발명의 일실시예에 따른 V2P 충돌예방 방법의 시나리오 10에 대한 개략도이다.35 is a schematic diagram of scenario 10 of a V2P collision prevention method according to an embodiment of the present invention.
도 36은 본 발명의 일실시예에 따른 V2P 충돌예방 방법의 시나리오 11에 대한 개략도이다.36 is a schematic diagram of scenario 11 of a V2P collision prevention method according to an embodiment of the present invention.
<부호의 설명><Description of the code>
10 : V2P 충돌예방 시스템10: V2P collision prevention system
20 : V2P 충돌예방 장치20: V2P collision prevention device
30 : V2P 충돌예방 방법30: V2P collision prevention method
100 : OBU100: OBU
110 : GNSS모듈110: GNSS Module
120 : 측정모듈120: measurement module
130 : 경로예상모듈130: route prediction module
140 : WAVE모듈140: WAVE module
150 : 입력모듈150: input module
160 : 출력모듈160: output module
170 : 저장모듈170: storage module
180 : 인터페이스모듈180: interface module
200 : RSE200: RSE
300 : 사용자단말기300: user terminal
310 : 스마트폰310: smart phone
400 : 서버400: server
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 한편, 본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다.Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms, and only the present embodiments are intended to complete the disclosure of the present invention, and the general knowledge in the art to which the present invention pertains. It is provided to fully convey the scope of the invention to those skilled in the art, and the present invention is defined only by the scope of the claims. Meanwhile, the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. In this specification, the singular also includes the plural unless specifically stated otherwise in the phrase.
본 명세서에서 사용되는 ‘모듈’이라는 용어는 용어가 사용된 문맥에 따라서, 소프트웨어, 하드웨어 또는 그 조합을 포함할 수 있는 것으로 해석되어야 한다. 예를 들어, 소프트웨어는 기계어, 펌웨어(firmware), 임베디드코드(embedded code), 및 애플리케이션 소프트웨어일 수 있다. 또 다른 예로, 하드웨어는 회로, 프로세서, 컴퓨터, 직접 회로, 직접 회로 코어, 센서, 멤스(MEMS; Micro-Electro-Mechanical System), 수동 디바이스, 또는 그 조합일 수 있다. The term "module" as used herein is to be interpreted to include software, hardware or a combination thereof, depending on the context in which the term is used. For example, the software can be machine language, firmware, embedded code, and application software. As another example, the hardware may be a circuit, a processor, a computer, an integrated circuit, an integrated circuit core, a sensor, a micro-electro-mechanical system (MEMS), a passive device, or a combination thereof.
도 1은 본 발명의 일실시예에 따른 V2P 충돌예방 시스템(10)의 대략적인 구성을 나타낸 구성도이다. 1 is a block diagram showing a schematic configuration of a V2P collision prevention system 10 according to an embodiment of the present invention.
도 1을 참조하면, V2P 충돌예방 시스템(10)은 OBU(100), RSE(200), 사용자단말기(300), 및 서버(400)를 포함한다.Referring to FIG. 1, the V2P collision prevention system 10 includes an OBU 100, an RSE 200, a user terminal 300, and a server 400.
OBU(100)는 차량에 탑재되고 WAVE(Wireless Access in Vehicular Environment) 무선통신이 가능하다. OBU(100)는 차량의 GNSS와 보행자의 GNSS로 측정한 위치의 정확도가 낮고, ACK 패킷(packet)을 이용하여 실행되는 차량 OBU(100)와 서버(400)간 그리고 보행자 사용자단말기(300)와 서버(400)간의 지연속도(latency)가 낮아도, 차량 OBU(100)과 보행자 사용자 단말기(300)간의 상대거리를 계산하여 WAVE 무선통신을 통해 V2P 충돌 예방 서비스가 실행가능하다.The OBU 100 is mounted on a vehicle and enables wireless communication in WAVE (Wireless Access in Vehicular Environment). The OBU 100 has a low accuracy of the position measured by the vehicle GNSS and the pedestrian GNSS, and is executed between the vehicle OBU 100 and the server 400 and the pedestrian user terminal 300 which is executed by using an ACK packet. Even if the latency between the servers 400 is low, the relative distance between the vehicle OBU 100 and the pedestrian user terminal 300 may be calculated to execute a V2P collision prevention service through WAVE wireless communication.
RSE(200)는 OBU(100)와 WAVE 무선통신이 가능하다. RSE(200)는 AP(Access Point)에 의해, OBU(110)와 웹 카메라를 통해 수집된 주행정보(예컨대, 차량의 위치와 속도), 교통상황, 화상정보(예컨대, 이미지 및 동영상) 등을 수신하는 장치로서, 무선으로 OBU(100)와 통신이 가능한 RF(Radio Frequency) 송신기 및 수신기인 것이 바람직하다.The RSE 200 may perform WAVE wireless communication with the OBU 100. The RSE 200 collects driving information (eg, vehicle position and speed), traffic conditions, image information (eg, images and videos), etc. collected through the OBU 110 and a web camera by an access point (AP). The receiving device is preferably a radio frequency (RF) transmitter and receiver capable of wirelessly communicating with the OBU 100.
사용자단말기(300)는 GNSS모듈(110)에서 수집된 보행자의 위치정보를 전송한다. 사용자단말기(300)는 테더링이 가능한 단말기와 연동되는 보행자의 스마트폰(310) 일 수 있다. 보행자의 스마트폰(310)은 보행자 데이터 업로드, 업로드 정지, 로그 파일 기록 등으로 구성되는 스마트폰 어플리케이션을 포함한다.The user terminal 300 transmits the location information of the pedestrian collected by the GNSS module 110. The user terminal 300 may be a smart phone 310 of the pedestrian linked with the terminal capable of tethering. Pedestrian smartphone 310 includes a smartphone application consisting of pedestrian data upload, upload stop, log file recording and the like.
서버(400)는 RSE(200)와는 WAN(Wireless Access Network) 또는 인터넷(Internet)을 통해 정보를 송수신하고, 사용자단말기(300)와는 이동통신망을 통해 정보를 송수신한다. 서버(400)는 OBU(100) 및 사용자단말기(300)에 위치 및 상태 정보를 전송한다.The server 400 transmits and receives information to and from the RSE 200 through a wireless access network (WAN) or the Internet (Internet), and transmits and receives information to and from the user terminal 300 through a mobile communication network. The server 400 transmits location and status information to the OBU 100 and the user terminal 300.
이하, 실시예를 나타낸 도면들을 함께 참조하여 각 구성요소의 동작 및 V2P 충돌예방 시스템 동작에 대해 상세히 설명하도록 한다. Hereinafter, the operation of each component and the V2P collision prevention system operation will be described in detail with reference to the accompanying drawings.
도 2를 참조하면, V2P 충돌예방 시스템(10)의 OBU(100)가 개시된다. V2P 충돌예방 시스템(10)의 OBU(100)는 본 발명의 V2P 충돌예방 장치(20)의 일 실시예이다.2, an OBU 100 of a V2P collision avoidance system 10 is disclosed. The OBU 100 of the V2P collision prevention system 10 is an embodiment of the V2P collision prevention apparatus 20 of the present invention.
OBU(100)는 자동차의 위치와 속도를 측정하는 GNSS모듈(110)과, 차량 내부의 ECU(Electronic Control Unit)와 접속되어 차량의 상태에 관한 데이터를 수신하는 측정모듈(120)과, GNSS모듈(110)과 측정모듈(120)의 데이터를 이용하여 자동차의 예상경로를 산정하는 경로예상모듈(130)과, GNSS모듈(110)과 측정모듈(120)의 데이터와 경로예상모듈(130)의 데이터를 RSE(200)로 전송하고, 서버(400)로부터 RSE(200)를 경유하여 제공된 주변의 차량과 보행자의 정보를 수신받아 위험상황을 검출하여 RSE(200)를 경유하여 서버(400)에 위험신호를 전송하는 WAVE모듈(140)을 포함하고, 입력모듈(150), 출력모듈(160), 저장모듈(170), 인터페이스모듈(180)을 더 포함하는 것이 바람직하다. The OBU 100 includes a GNSS module 110 for measuring the position and speed of a vehicle, a measurement module 120 connected to an ECU (Electronic Control Unit) inside the vehicle, and receiving data regarding the state of the vehicle, and a GNSS module. The path prediction module 130 for calculating the estimated path of the vehicle using the data of the 110 and the measurement module 120, the data of the GNSS module 110 and the measurement module 120 and the path prediction module 130 Transmitting data to the RSE 200, receiving the information of the surrounding vehicles and pedestrians provided via the RSE 200 from the server 400 to detect a dangerous situation to the server 400 via the RSE 200 It includes a WAVE module 140 for transmitting the dangerous signal, it is preferable to further include an input module 150, an output module 160, a storage module 170, the interface module 180.
OBU(100)는 차량에 탑재된다. OBU(100)의 입력모듈(150), 출력모듈(160), 저장모듈(170)은 필요나 설계 변경에 따라 생략될 수 있다. OBU(100) 외부에 GNSS 데이터를 생성하는 GNSS모듈(110)이 차량 내부에 별도로 내장되거나 또는 차량에 부착된 경우 이 GNSS모듈(110)은 생략될 수 있다. The OBU 100 is mounted on a vehicle. The input module 150, the output module 160, and the storage module 170 of the OBU 100 may be omitted according to need or design change. The GNSS module 110 may be omitted when the GNSS module 110 generating GNSS data outside the OBU 100 is embedded in the vehicle or attached to the vehicle.
GNSS모듈(110)은 GNSS 위성으로부터 송출된 무선 신호를 수신한다. GNSS모듈(110)은 다수의 GNSS 위성으로부터 수신된 무선 신호에 따라 OBU(100)가 탑재된 차량의 위치를 식별할 수 있는 GNSS 데이터를 생성하고 생성된 GNSS 데이터를 경로예상모듈(130)로 출력한다. GNSS 데이터는 위도 데이터, 경도 데이터 및 지향(heading)각 데이터를 포함한다. 지향각은 OBU(100)가 지향하여 진행하고 있는 방향의 기준방향에 대한 각도를 나타낸다.The GNSS module 110 receives a radio signal transmitted from a GNSS satellite. The GNSS module 110 generates GNSS data for identifying the location of the vehicle on which the OBU 100 is mounted according to wireless signals received from a plurality of GNSS satellites, and outputs the generated GNSS data to the path prediction module 130. do. GNSS data includes latitude data, longitude data and heading angle data. The orientation angle represents the angle with respect to the reference direction of the direction in which the OBU 100 is directed and proceeds.
측정모듈(120)은 차량 내부의 ECU(Electronic Control Unit)와 접속된다. 측정모듈(120)은 OBD-II 표준에 따른 데이터를 수신하고 데이터를 ECU로 송신할 수 있다. 측정모듈(120)은 OBD-II 표준에 따라 차량의 상태를 알 수 있는 각종 데이터를 수신할 수 있다. 예를 들어 측정모듈(120)은 차량 속도, RPM, 각종 센서 등의 차량상태 등을 나타내는 데이터를 수신하고 수신된 데이터를 경로예상모듈(130)로 전송할 수 있다. 측정모듈(120)에서 차량의 상태가 이상이 있을 경우에는 차량이상상태로 판단하고, 측정모듈(120)에서 차량의 상태가 차량이상상태가 아니라고 판단한 경우에 한해서 경로예상모듈(130)은 차량과 보행자간의 충돌가능성이 있을 경우 위험상황이라고 판단하게 된다.The measurement module 120 is connected to an ECU (Electronic Control Unit) inside the vehicle. The measurement module 120 may receive data according to the OBD-II standard and transmit the data to the ECU. The measurement module 120 may receive various data for knowing the state of the vehicle according to the OBD-II standard. For example, the measurement module 120 may receive data indicating a vehicle state such as a vehicle speed, RPM, various sensors, and the like, and transmit the received data to the route prediction module 130. If the measurement module 120 determines that the vehicle is in an abnormal state, the vehicle is determined to be in an abnormal state, and the measurement module 120 determines that the vehicle is not in an abnormal state. If there is a possibility of collision between pedestrians, it is considered a dangerous situation.
경로예상모듈(130)은 GNSS모듈(110)과 측정모듈(120)과 WAVE모듈(140)에서 수신받은 차량의 위치, 속도 데이터와 보행자의 위치, 속도 데이터를 근거로 차량의 경로와 보행자의 경로를 계산한다. 본 발명의 일실시예에 의하면, 경로예상모듈(130)은 바람직하게는 명령어(instruction)를 수행할 수 있는 하나 이상의 실행 유닛(Execution Unit)을 포함하여 저장모듈(170)에 저장된 프로그램의 명령어들을 실행 유닛에 로딩하여 프로그램을 수행할 수 있다. 경로예상모듈(130)은 V2P 충돌예방 방법(30)을 구현한 로직(예를 들어 Field Programmable Gate Array: FPGA 등)으로 구성되거나 포함할 수도 있다. 경로예상모듈(130)은 바람직하게는 저장모듈(170)에 저장된 판별 프로그램을 실행 유닛에 로딩하고 판별 프로그램의 명령어들의 실행으로 다른 인접차량(제2 V2P)와 통신할 수 있다. 특히 경로예상모듈(130)은 인접차량(제2 V2P)으로부터 수신된 메시지의 위도 및 경도 데이터를 이용하여 인접차량(제2 V2P)과 V2P 충돌예방 장치(20)가 탑재된 차량(제1 V2P) OBU(100)와의 상대적 지향각을 계산하고 계산된 상대적 지향각에 기초해서 본 차량(제1 V2P) OBU(100)에 대해 보행자의 위치를 판별할 수도 있다. 경로예상모듈(130)은 GNSS모듈(110)을 통해 수신된 위도 및 경도 데이터 나아가 지향각 데이터를 더 이용하여 보행자의 위치를 판별할 수도 있다. 경로예상모듈(130)은 또한 GNSS모듈(110)를 통해 수신된 위도 및 경도 데이터와 본 차량(제1 V2P)을 나타내는 차량 식별자를 포함하는 메시지를 생성하고 생성된 메시지를 WAVE모듈(140)를 통해 전송할 수 있다. 전송되는 메시지는 차량 식별자, 위도 및 경도 데이터를 적어도 포함하고 그 외 약속된 표준에 따른 다른 데이터를 더 포함할 수 있다. 경로예상모듈(130)은 입력모듈(150)을 통한 사용자로부터의 제어 입력에 따라 판별 프로그램을 실행시킬 수 있고 판별프로그램의 실행에 따라 판별된 다수의 보행자의 위치를 출력모듈(160)을 통해 표시할 수도 있다. The route prediction module 130 is based on the vehicle position, the speed data and the position of the pedestrian, and the speed data received from the GNSS module 110, the measurement module 120, and the WAVE module 140. Calculate According to one embodiment of the invention, the path prediction module 130 preferably includes instructions of a program stored in the storage module 170, including one or more execution units capable of performing instructions. The program can be executed by loading into the execution unit. The path prediction module 130 may be configured or include logic (for example, a field programmable gate array (FPGA)) implementing the V2P collision prevention method 30. The route prediction module 130 may load the discrimination program stored in the storage module 170 into the execution unit and communicate with another adjacent vehicle (second V2P) by executing the instructions of the discrimination program. In particular, the route prediction module 130 is a vehicle (first V2P) on which the adjacent vehicle (second V2P) and the V2P collision prevention device 20 are mounted using latitude and longitude data of a message received from the adjacent vehicle (second V2P). The relative orientation angle with the OBU 100 may be calculated and the position of the pedestrian with respect to the vehicle (first V2P) OBU 100 may be determined based on the calculated relative orientation angle. The route prediction module 130 may further determine the position of the pedestrian by further using the latitude and longitude data and the direction angle data received through the GNSS module 110. The route prediction module 130 also generates a message including latitude and longitude data received through the GNSS module 110 and a vehicle identifier indicating the vehicle (first V2P) and sends the generated message to the WAVE module 140. Can be sent through. The message sent includes at least vehicle identifier, latitude and longitude data and may further include other data in accordance with the promised standard. The path prediction module 130 may execute the determination program according to the control input from the user through the input module 150 and display the positions of the plurality of pedestrians determined according to the execution of the determination program through the output module 160. You may.
바람직하게는 경로예상모듈(130)은 측정모듈(120)에서 차량의 상태가 차량이상상태가 아니라고 판단한 경우에 한해서 차량과 보행자간의 충돌가능성이 있을 경우 위험상황이라고 판단하여 WAVE(140)모듈에 위험신호를 송신하고, 위험상황이 차량이상상태에 기인한 것인지 실제로 차량과 보행자간의 충돌가능성이 있는 것인지를 판단한다. 경로예상모듈(130)에서 수행되는 V2P 충돌예방 방법(30)에 대해서는 도 18 의 예를 통해서 보다 상세히 살펴보도록 한다.Preferably, the route prediction module 130 determines that the vehicle is in a dangerous state when there is a possibility of collision between the vehicle and the pedestrian only when the measurement module 120 determines that the state of the vehicle is not an abnormal state of the vehicle. A signal is sent and it is determined whether the danger situation is due to a vehicle abnormality condition or whether there is a possibility of a collision between the vehicle and a pedestrian. The V2P collision prevention method 30 performed by the path prediction module 130 will be described in more detail through the example of FIG. 18.
WAVE모듈(140)은 GNSS모듈(110)로부터 차량의 위치와 속도에 관한 정보를 수신하고 서버(400)로부터 보행자의 위치와 속도에 관한 정보를 수신한다. 본 발명의 일 실시예에 의하면, WAVE모듈(140)은 WAVE 표준에 따른 맥(MAC) 패킷을 경로예상모듈(130)로 전달하고 지정된 대역(예를 들어 5.9 GHz 대역)의 무선 신호로 변조하여 인접차량(제2 V2P)으로 전송할 수 있다. 또한 WAVE모듈(140)은 지정된 대역의 무선 신호를 복조하고 맥 패킷으로 변환하여 경로예상모듈(130)로 전송할 수 있다. 예를 들어 WAVE모듈(140)은 인접차량(제2 V2P)으로부터 무선으로 위도 및 경도 데이터를 포함하는 J2735 BSM 표준에 따른 메시지(의 무선 패킷)를 복조과정을 통해 수신하고 수신된 메시지를 경로예상모듈(130)로 전송하고 경로예상모듈(130)로부터 수신된 메시지를 변조과정을 통해 인접차량으로 무선으로 전송할 수 있다. WAVE모듈(140)은 기저 주파수(carrier frequency)에 변조 및 기저 주파수로부터 복조를 수행하고 맥 패킷을 구성할 수 있는 칩셋으로 구성될 수 있다. WAVE모듈(140)은 V2V 통신 표준에 따른 메시지를 송수신할 수 있고 송수신하는 메시지는 맥 레이어(Mac Layer)상의 하나 이상의 네트워크 패킷으로 구성된다. WAVE모듈(140)을 통해서 수신된 메시지는 적어도 위도 및 경도 데이터를 포함하고 차량의 식별자를 더 포함한다. The WAVE module 140 receives information about the position and speed of the vehicle from the GNSS module 110 and receives information about the position and speed of the pedestrian from the server 400. According to an embodiment of the present invention, the WAVE module 140 transmits the MAC packet according to the WAVE standard to the path prediction module 130 and modulates it into a wireless signal of a designated band (for example, 5.9 GHz band). The vehicle may be transmitted to the adjacent vehicle (second V2P). In addition, the WAVE module 140 may demodulate a radio signal of a specified band, convert it into a MAC packet, and transmit the same to a path prediction module 130. For example, the WAVE module 140 receives a message (a wireless packet) according to the J2735 BSM standard including latitude and longitude data wirelessly from an adjacent vehicle (second V2P) through a demodulation process and routes the received message. The module 130 may transmit the message received from the path prediction module 130 to the adjacent vehicle wirelessly through a modulation process. The WAVE module 140 may be configured as a chipset capable of performing modulation and demodulation from the base frequency at a carrier frequency and configuring a MAC packet. The WAVE module 140 may transmit and receive a message according to the V2V communication standard, and the message to be transmitted and received includes one or more network packets on a Mac layer. The message received via the WAVE module 140 includes at least latitude and longitude data and further includes an identifier of the vehicle.
입력모듈(150)은 OBU(100)가 탑재된 차량을 이용하는 사용자로부터 입력을 수신하기 위한 인터페이스이다. 입력모듈(150)은 터치 패널, 버튼 및/또는 마이크로 구성될 수 있고 터치 패널을 통한 사용자 터치입력, 버튼을 통한 버튼 입력 또는 마이크를 통한 음성 입력으로 지정된 제어 입력을 수신할 수 있다. 수신된 입력은 경로예상모듈(130)로 전송될 수 있다.The input module 150 is an interface for receiving an input from a user using a vehicle on which the OBU 100 is mounted. The input module 150 may be configured as a touch panel, a button, and / or a microphone, and receive a control input designated as a user touch input through a touch panel, a button input through a button, or a voice input through a microphone. The received input may be transmitted to the route prediction module 130.
출력모듈(160)은 경로예상모듈(130)로부터 수신된 데이터를 출력한다. 출력모듈(160)은 디스플레이, 스피커, 및/또는 하나 이상의 LED 등을 구비하고 경로예상모듈(130)로부터 수신된 데이터에 따라 대응하는 디스플레이, 스피커, 또는 LED로 이미지, 음성 또는 LED 제어 신호를 출력한다.The output module 160 outputs data received from the path prediction module 130. The output module 160 includes a display, a speaker, and / or one or more LEDs, and outputs an image, voice, or LED control signal to a corresponding display, speaker, or LED according to data received from the path prediction module 130. do.
저장모듈(170)은 휘발성 메모리 및/또는 비휘발성 메모리를 포함하여 각종 데이터와 프로그램을 저장한다. 저장모듈(170)의 휘발성 메모리는 각종 데이터와 프로그램을 임시로 저장하고 비휘발성 메모리는 적어도 본 발명에 따른 설정 데이터와 프로그램을 저장한다. 프로그램은 경로예상모듈(130)에 의해서 수행될 수 있고 본 발명에 따른 차량과 보행자간의 충돌을 판별할 수 있는 판별 프로그램일 수 있다. 저장모듈(170)의 비휘발성 메모리는 적어도 OBU(100)가 탑재된 차량 또는 이 장치를 식별하기 위한 차량 식별자 및 차량위치 판별을 위한 판별 프로그램을 저장한다.The storage module 170 stores various data and programs, including a volatile memory and / or a nonvolatile memory. The volatile memory of the storage module 170 temporarily stores various data and programs, and the nonvolatile memory stores at least configuration data and programs according to the present invention. The program may be performed by the route prediction module 130 and may be a determination program for determining a collision between a vehicle and a pedestrian according to the present invention. The nonvolatile memory of the storage module 170 stores at least a vehicle identifier on which the OBU 100 is mounted or a vehicle identifier for identifying the device and a determination program for vehicle position determination.
인터페이스모듈(180)은 블록들 사이의 각종 데이터를 송수신한다. 인터페이스모듈(180)은 경로예상모듈(130)의 제어하에 제어 데이터를 다른 블록으로 전송하거나 제어 데이터에 따른 데이터를 다른 블록으로부터 경로예상모듈(130)로 전달할 수 있다. 인터페이스모듈(180)은 예를 들어 경로예상모듈(130)에서 제어가능한 병렬 버스나 시리얼 버스로 구성될 수 있다. 병렬 버스는 예를 들어 32비트(bit) 버스일 수 있고 시리얼 버스는 예를 들어 UART(universal asynchronous receiver transmitter)의 TX(Transmitter) 라인 및/또는 RX(Receiver) 라인으로 구성될 수 있다.The interface module 180 transmits and receives various data between blocks. The interface module 180 may transmit control data to another block under the control of the path predicting module 130 or transmit data according to the control data from the other block to the path predicting module 130. The interface module 180 may be configured of, for example, a parallel bus or a serial bus that can be controlled by the path prediction module 130. The parallel bus may for example be a 32-bit bus and the serial bus may consist of, for example, a TX (transmitter) line and / or a RX (receiver) line of a universal asynchronous receiver transmitter (UART).
이하, 실시예를 나타낸 도면들을 함께 참조하여 각 구성요소의 동작 및 V2P 충돌예방장치(20)의 동작에 대해 상세히 설명하도록 한다. Hereinafter, the operation of each component and the operation of the V2P collision prevention device 20 will be described in detail with reference to the drawings showing the embodiments.
V2P 충돌예방장치(20)의 일실시예는 차량에 탑재된 OBU(100)이다. 도 2에 도시된 바와 같이 차량은 OBU(100)를 탑재하고 보행자와 WAVE 통신을 통해 차량과 보행자간의 정보를 공유할 수 있다. 바람직하게는 복수개의 차량이 OBU(100)를 탑재하고 다른 차량과 V2V 통신을 통해 차량간의 정보를 공유할 수도 있다.One embodiment of the V2P collision prevention device 20 is an OBU 100 mounted on a vehicle. As shown in FIG. 2, the vehicle may be equipped with the OBU 100 and share information between the vehicle and the pedestrian through the pedestrian and the WAVE communication. Preferably, a plurality of vehicles may be equipped with the OBU 100 and share information between the vehicles through V2V communication with other vehicles.
OBU(100)는 이 장치가 탑재된 차량의 정보를 나타내는 메시지를 무선으로 서버(400)로 전송하고 보행자의 사용자단말기(300)로부터 무선으로 서버(400)를 경유하여 보행자의 정보를 나타내는 메시지를 수신할 수 있다. 예를 들어 OBU(100)는 미자동차공학회의 SAE(Society of Automotive Engineers) J2735 BSM(Basic Safety Message)표준에 따른 메시지를 전송할 수 있다.The OBU 100 wirelessly transmits a message indicating the information of the vehicle on which the device is mounted to the server 400 and transmits a message indicating the information of the pedestrian via the server 400 wirelessly from the user terminal 300 of the pedestrian. Can be received. For example, the OBU 100 may transmit a message according to the Society of Automotive Engineers (SAE) J2735 Basic Safety Message (BSM) standard.
OBU(100)는 보행자로부터 전송된 메시지를 수신하고 수신된 메시지에 포함된 데이터를 이용하여 보행자가 주변에 있는지를 판별할 수 있다.The OBU 100 may receive a message transmitted from the pedestrian and determine whether the pedestrian is near by using data included in the received message.
메시지는 적어도 GNSS(Global Navigation Satellite System)에 의해서 결정되는 위도 데이터 및 경도 데이터를 포함하고 차량 식별자를 또한 포함한다. 차량 식별자는 OBU(100) 자체 또는 OBU(100)가 탑재된 차량을 식별하기 위한 식별자이다. 이러한 식별자는 OBU(100)간 약속에 따라 또는 V2V 통신 표준에 따라 미리 결정될 수 있다.The message includes at least latitude data and longitude data determined by the Global Navigation Satellite System (GNSS) and also includes a vehicle identifier. The vehicle identifier is an identifier for identifying the vehicle on which the OBU 100 itself or the OBU 100 is mounted. This identifier may be predetermined according to an appointment between the OBUs 100 or according to a V2V communication standard.
전송되는 메시지는 무선으로 주기적(예를 들어 100mSec 등)으로 송출되고 바람직하게는 WAVE 표준에 따른 맥(MAC) 데이터로 송출된다. The transmitted message is sent out wirelessly periodically (e.g. 100mSec, etc.) and is preferably sent out as MAC (MAC) data according to the WAVE standard.
OBU(100)는 일반적으로 차량에 탑재되지만, 차량의 생산시에 내장되는 단말기이거나 차량에 부착될 수 있는 단말기 형태일 수 있다. 예를 들어 OBU(100)는 OBD(On-board diagnostics)-II와 인터페이스 가능하고 차량의 전면 판넬에 내장된 장치일 수 있으며, 차량의 전면 판넬에 탈부착 가능한 휴대형 단말기일 수 있다. OBU(100)는 휴대형 단말기로서 스마트 폰, 태블릿 PC, PDA 등 일 수 있다. 제1 V2P의 OBU(100)는 인접차량의 제2 V2P 사용자단말기(300)로부터 전송된 메시지의 위도 및 경도 데이터를 이용하여 보행자나 차량이 주변에 있는지를 판별할 수도 있다.The OBU 100 is generally mounted in a vehicle, but may be in the form of a terminal that may be embedded in the production of the vehicle or may be attached to the vehicle. For example, the OBU 100 may be a device capable of interfacing with the on-board diagnostics (OBD) -II and embedded in the front panel of the vehicle, or may be a portable terminal detachable to the front panel of the vehicle. The OBU 100 may be a smart phone, a tablet PC, a PDA, or the like as a portable terminal. The OBU 100 of the first V2P may determine whether the pedestrian or the vehicle is near by using latitude and longitude data of the message transmitted from the second V2P user terminal 300 of the adjacent vehicle.
OBU(100)는 위치와 상대거리를 이용하여 자신을 기준으로 각 대상의 상대적 위치를 특징별로 분류한다. 이를 통해 더 정확한 연산을 적용하거나 연산에 포함시키지 않아도 되는 대상을 구분하여 결정을 내리기까지의 연산 시간을 단축 시키는 등의 이득을 볼 수 있다. 또한, 상대거리를 이용하면 차량 OBU(100)의 GNSS모듈(110)과 보행자 사용자단말기(300)의 GNSS로 측정한 위치의 정확도가 낮고, ACK 패킷(packet)을 이용하여 실행되는 차량과 서버간 그리고 보행자와 서버간의 지연속도(latency)가 낮아도 V2P 충돌예방 시스템의 작동이 가능하다. 이러한 차량과 보행자간의 상대거리에 대한 GNSS 오차의 영향에 관한 테스트를 실시하였고, 이에 대하여 보다 구체적으로 설명한다.The OBU 100 classifies the relative position of each object by feature based on itself using the position and the relative distance. This provides benefits such as reducing the computation time before making decisions by identifying objects that do not need to be included in the computation or applying more accurate operations. In addition, when the relative distance is used, the accuracy of the position measured by the GNSS module 110 of the vehicle OBU 100 and the GNSS of the pedestrian user terminal 300 is low, and is performed between the vehicle and the server executed by using an ACK packet. And even if the latency between the pedestrian and the server is low, the V2P collision prevention system can be operated. The test of the effect of the GNSS error on the relative distance between the vehicle and the pedestrian was conducted, and this will be described in more detail.
차량과 보행자간의 상대 거리에 대한 GNSS 오차의 영향 테스트Test of the Effect of GNSS Error on Relative Distance between Vehicle and Pedestrian
차량과 보행자간의 거리를 계산하여 이를 지도상의 실제 거리와 비교하여 GNSS의 오차가 상대 거리의 오차에 어느 정도 영향을 주는지를 확인하였다.We calculated the distance between the vehicle and the pedestrian and compared it with the actual distance on the map to see how the error of GNSS affects the relative distance error.
또한, 차량과 서버간 그리고 보행자와 서버간의 지연속도(latency)를 계산하였다. 이러한 과정은 ACK 패킷(packet)을 이용하여 실행되었는데 핑(ping)과 같은 실행을 하였다. 계산결과는 서비스를 위해 시간이 얼마나 걸리는지를 평가할 수 있다. In addition, the latency between vehicle and server and between pedestrian and server was calculated. This process was performed using an ACK packet, which was performed as a ping. The calculation can evaluate how long it takes to service.
도 3 내지 도 5는 본 발명의 일 실시예에 따른 V2P 충돌예방 장치의 테스트를 위한 환경에 대한 개략도이고, 도 6 내지 8은 본 발명의 일 실시예에 따른 거리(distance)와 차이(difference)의 그래프이다.3 to 5 are schematic diagrams of an environment for testing a V2P collision prevention device according to an embodiment of the present invention, Figures 6 to 8 are the distance (difference) and the difference (difference) according to an embodiment of the present invention Is a graph.
도 3을 참조하면, 실시예 1에서 정지해 있는 보행자와 정지해 있는 차량간의 표준 거리(Standard Distance)는 36m이며, 사용자단말기 GNSS의 최소 허용 오차(Minimum allowed error)는 10이다. Referring to FIG. 3, in Example 1, a standard distance between a stationary pedestrian and a stationary vehicle is 36m, and a minimum allowed error of the user terminal GNSS is 10.
도 6을 참조하면, 실시예 1에서 보행자의 평균(Average)은 57.37m이고, 차이 평균(Difference Average)은 21.48m 이고, 차량의 평균(Average)은 56.97m이고, 차이 평균(Difference Average)은 21.18m 이다.Referring to FIG. 6, in Example 1, the average pedestrian is 57.37m, the difference average is 21.48m, the vehicle average is 56.97m, and the difference average is Difference Average. 21.18m.
도 4를 참조하면, 실시예 2에서 정지해 있는 보행자와 정지해 있는 차량간의 표준 거리(Standard Distance)는 36m 이며, 사용자단말기 GNSS의 최소 허용 오차(Minimum allowed error)는 3이다. Referring to FIG. 4, in Example 2, a standard distance between a stationary pedestrian and a stationary vehicle is 36m, and a minimum allowed error of the user terminal GNSS is 3.
도 7을 참조하면, 실시예 2에서 보행자의 평균(Average)은 35.77m이고, 차이 평균(Difference Average)은 2.60m 이고, 차량의 평균(Average)은 35.30m이고, 차이 평균(Difference Average)은 2.53m 이다.Referring to FIG. 7, in Example 2, the average pedestrian is 35.77 m, the difference average is 2.60 m, the vehicle average is 35.30 m, and the difference average is Difference Average. 2.53m.
도 5를 참조하면, 실시예 3에서 직선경로상의 15m 이내를 왕복하는 보행자와 정지해 있는 차량간의 표준 거리(Standard Distance)는 34m 이며, 사용자단말기 GNSS의 최소 허용 오차(Minimum allowed error)는 3이다. Referring to FIG. 5, in Example 3, the standard distance between pedestrians traveling within 15m on a straight path and the stationary vehicle is 34m, and the minimum allowed error of the user terminal GNSS is 3. .
도 8을 참조하면, 실시예 3에서 보행자의 평균(Average)은 34.96m이고, 차이평균(Difference Average)은 2.13m 이고, 차량의 평균(Average)은 33.43m이고, 차이 평균(Difference Average)은 1.23m 이다.Referring to FIG. 8, in Example 3, the average pedestrian is 34.96m, the difference average is 2.13m, the vehicle average is 33.43m, and the difference average is Difference Average. 1.23m.
도 9 내지 도 11은 차량 OBE(100)와 보행자 사용자단말기(300)의 지연속도(Latency)에 관한 그래프이다.9 to 11 are graphs illustrating a latency of the vehicle OBE 100 and the pedestrian user terminal 300.
도 9를 참조하면, 실시예 1에서 보행자 사용자단말기의 지연속도 평균(Average)은 50.80ms 이고, 차량 OBE의 지연속도 평균(Average)은 8.57ms 이다.Referring to FIG. 9, in Embodiment 1, the average delay speed of the pedestrian user terminal is 50.80 ms, and the average speed of the vehicle OBE is 8.57 ms.
도 10을 참조하면, 실시예 2에서 보행자 사용자단말기의 지연속도 평균 (Average)은 66.53ms 이고, 차량 OBE의 지연속도 평균(Average)은 9.81ms 이다.Referring to FIG. 10, in Example 2, the average delay speed of the pedestrian user terminal is 66.53 ms, and the average speed of the vehicle OBE is 9.81 ms.
도 11을 참조하면, 실시예 3에서 보행자 사용자단말기의 지연속도 평균( Average)은 68.74ms 이고, 차량 OBE의 지연속도 평균(Average)은 11.54ms 이다.Referring to FIG. 11, in Example 3, the average delay speed of the pedestrian user terminal is 68.74 ms, and the average speed of the vehicle OBE is 11.54 ms.
위의 결과에 의하면, 사용자단말기의 GNSS 설정이 차량과 보행자간의 상대 거리 오차 비율에 영향을 준다는 사실을 알 수 있다. According to the above results, it can be seen that the GNSS setting of the user terminal affects the relative distance error ratio between the vehicle and the pedestrian.
또한, 위의 결과에 의하면, 차량의 OBU(100)와 보행자의 사용자단말기(300)를 이용하여 WAVE를 이용한 V2P 충돌예방 서비스가 실행될 수 있음을 알 수 있다.In addition, according to the above results, it can be seen that the V2P collision prevention service using the WAVE can be executed using the OBU 100 of the vehicle and the user terminal 300 of the pedestrian.
도 12를 참조하면, 본 발명의 일실시예에 따른 V2P 충돌예방 시스템의 사용자단말기(300)의 스마트폰(310) 어플리케이션은 보행자 데이터 업로드, 업로드 정지, 로그 파일 기록을 포함한다.12, the smartphone 310 application of the user terminal 300 of the V2P collision prevention system according to an embodiment of the present invention includes a pedestrian data upload, upload stop, log file recording.
도 13을 참조하면, 본 발명의 일 실시예에 따른 V2P 충돌예방 시스템의 OBU(100)와 사용자 단말기(300)의 수신정보 처리에 대한 작동단계는 다음과 같다.Referring to FIG. 13, the operation steps for the reception information processing of the OBU 100 and the user terminal 300 of the V2P collision prevention system according to an embodiment of the present invention are as follows.
S410은 패킷을 OBU(100) 및 사용자 단말기(300)에 내려받는 단계(S410)이다.S410 is a step of downloading the packet to the OBU 100 and the user terminal 300 (S410).
S420은 OBU(100) 및 사용자 단말기(300)에 내려받은 패킷을 분석하는 단계(S420)이다.S420 is a step of analyzing the packets downloaded to the OBU 100 and the user terminal 300 (S420).
S430은 분석된 패킷의 정보를 이용하여 상대거리를 계산하는 단계(S430)이다.S430 is a step of calculating a relative distance using the analyzed packet information (S430).
S440은 상대거리로부터 충돌 가능성을 예상하는 V2P 충돌예방서비스를 계산하는 단계(S440)이거나 히스토리 큐에 더하는 단계(S441)이다.S440 is a step of calculating a V2P collision prevention service that anticipates a collision possibility from the relative distance (S440) or adding to the history queue (S441).
S450은 MIS를 업데이트하는 단계(S450)이다.S450 is a step of updating the MIS (S450).
S460은 판단 매니저가 실행되면 MIS에 정보를 저장하는 단계(S460)이다.S460 is a step of storing information in the MIS when the decision manager is executed (S460).
S470은 PIS를 업데이트하는 단계(S470)이다.S470 is a step of updating the PIS (S470).
서버(400)는 MIB 데이터 구조와, MIS 데이터 구조와, HIS 데이터 구조와, PIS 데이터 구조와, EIS 데이커 구조를 포함하며 이를 설명하면 다음과 같다.The server 400 includes a MIB data structure, an MIS data structure, an HIS data structure, a PIS data structure, and an EIS data structure.
MIB(Management Information Base)는 경고 상황 판단을 위한 각종 한계치(threshold)를 포함한다. Minimum Warning Angle은 경고를 발생시키는 최소 사이각을 정의하고, 기본 값은 85(도)이며, 도 19의 i에 해당한다. Minimum Warning Distance는 경고를 발생시키는 최소 거리를 정의하고, 기본 값은 100(m)이며 도 19의 d에 해당한다. Minimum Warning Shortened Acceleration Distance는 경고를 발생시키는 최소 거리 감가속도를 정의하고, 기본 값은 6(mps)이며, 도 19의 d의 변화량에 해당한다. Minimum Warning Normal Line Distance는 경고를 발생시키는 최소 법선 거리를 정의하고, 기본 값은 10(m)이며 도 19의 n에 해당한다. Minimum Warning Vehicle Speed는 경고를 발생시키는 최소 차량 속도를 정의하고, 기본 값은 3(mps)이며, 도 19의 v의 속도에 해당한다. Minimum History Searching Count는 위험 여부 판정을 위해 History를 탐색할 때 필요한 최소 정보의 개수를 정의하고, 기본값은 10(회)이며, Minimum Distance Decrease Count는 P의 v에 대한 경로 접근 판정을 위해 발생해야 하는 History Searching을 통한 최소 접근 판정 회수를 정의하고, 기본값은 ((Minimum History Searching Count/2)+1) 이다. Max Estimation Count는 위험 여부 판정을 지원하기 위한 경로 예측을 최대 몇 회 진행할 것인지 정의하고, 기본값은 50(회)이다. The Management Information Base (MIB) includes various thresholds for determining alert conditions. Minimum Warning Angle defines the minimum angle between warnings. The default value is 85 (degrees), which corresponds to i of FIG. Minimum Warning Distance defines the minimum distance for warning. The default value is 100 (m) and corresponds to d in FIG. 19. Minimum Warning Shortened Acceleration Distance defines the minimum distance deceleration that generates a warning, and the default value is 6 (mps), which corresponds to the variation of d in FIG. 19. Minimum Warning Normal Line Distance defines the minimum normal distance for generating a warning. The default value is 10 (m) and corresponds to n in FIG. 19. Minimum Warning Vehicle Speed defines a minimum vehicle speed for generating a warning, the default value is 3 (mps), and corresponds to the speed of v of FIG. 19. Minimum History Searching Count defines the minimum number of information needed to search History for risk determination. The default value is 10 (times), and Minimum Distance Decrease Count should be generated to determine the path access to v of P. Defines the minimum number of access determination through History Searching. The default value is ((Minimum History Searching Count / 2) +1). Max Estimation Count defines the maximum number of times the route prediction to support the risk determination, the default value is 50 (times).
MIS(Management Information Structure)는 각 대상(차량 또는 보행자)을 관리하기 위한 정보이며, 각각에 대한 데이터(data)를 포함한다. MIS의 구성은 다음과 같다. Object Identifier는 각 항목을 차량 또는 보행자 별로 분리하기 위한 구분자로 사용된다. Path 충돌 가능성 Flag는 해당 대상의 현재 교차 경로 상태이다. Included Angle는 대상과 자신 각각의 경로간의 사이각 값이다. Distance는 대상과 자신 간의 거리 값이다. Normal Line Distance는 차량의 경로와 보행자 간의 거리 값이다. Shortened Acceleration Distance는 대상과 자신 간의 거리 값 감소 추세 수치이다.MIS (Management Information Structure) is information for managing each object (vehicle or pedestrian), and includes data for each. The composition of MIS is as follows. Object Identifier is used as an identifier to separate each item by vehicle or pedestrian. Path collision possibility Flag is the current cross path state of the target. Included Angle is the angle between the target and its respective path. Distance is the distance value between the target and itself. Normal Line Distance is the distance value between the vehicle's path and pedestrians. Shortened Acceleration Distance is a decreasing trend of distance value between the target and itself.
HIS(History Information Structure)는 각 대상(차량 또는 보행자)의 지나온 위치 정보를 포함한다. HIS의 구성은 다음과 같다. Object Identifier는 각 항목을 차량 또는 보행자 별로 분리하기 위한 구분자로 사용된다. Distance는 해당 시점에서 대상과 자신의 거리이다. Normal Line Distance는 해당 시점에서 차량의 경로와 보행자 간의 법선 거리이다. HIS (History Information Structure) includes past location information of each target (vehicle or pedestrian). The configuration of the HIS is as follows. Object Identifier is used as an identifier to separate each item by vehicle or pedestrian. Distance is your distance from the target at that point. Normal Line Distance is the normal distance between the vehicle's path and pedestrians at that time.
Presentation Information Structure (PIS)는 이벤트에 대한 표출을 하기 위한 정보를 포함하고, 큐(Queue) 형태로 관리된다. PIS의 구성은 다음과 같다. Event type은 발생한 이벤트의 종류를 나타낸다. 나중에 차량과 보행자를 모두 스마트폰에서 처리할 경우를 위해 만들어진 변수이다. MIS는 발생한 이벤트에 대한 MIS data이다. EIS는 발생한 이벤트에 대한 EIS data이다.Presentation Information Structure (PIS) contains information for presentation of events and is managed in the form of queues. The configuration of the PIS is as follows. Event type indicates the type of event that has occurred. This parameter is created for the case where both vehicles and pedestrians are later processed by smartphones. MIS is MIS data about an event that occurred. EIS is the EIS data about the event that occurred.
Estimation Information Structure (EIS)는 각 대상의 이후 경로에 대한 예측 정보를 포함한다. 저장 전에 미리 대상과의 충돌 가능성과 위치 및 시간을 계산하여 결과를 저장한다. EIS의 구성은 다음과 같다. Object Identifier는 각 항목을 차량 또는 보행자 별로 분리하기 위한 구분자로 사용된다. Estimated Collision Time는 예측된 충돌 예상 시간이다. Collision Occurrence Estimation Flag는 예측된 충돌 여부 값이다.Estimation Information Structure (EIS) contains prediction information about the future path of each target. Before saving, calculate the probability of collision with the target, location and time, and save the result. The composition of the EIS is as follows. Object Identifier is used as an identifier to separate each item by vehicle or pedestrian. Estimated Collision Time is the estimated collision estimated time. Collision Occurrence Estimation Flag is the predicted collision value.
도 14를 참조하면, 각 장치 간의 메시지 셋의 프레임 형식은 헤더(Header)와 페이로드(Payload)로 구성된다. 헤더는 시간(연,월,일,시,분,초,밀리초), 장치유형, 장치식별자, 순서번호, 데이터유형으로 구성된다. 프레임은 시간의 연은 2 바이트, 월은 1바이트, 일은 1바이트, 시는 1바이트, 분은 1바이트, 초는 1바이트, 밀리초는 2바이트, 장치유형은 1바이트, 장치식별자는 6바이트, 순서번호는 4바이트, 데이터유형은 1바이트, 페이로드는 n바이트로 구성된다. 시간(연,월,일,시,분,초,밀리초)는 GNSS로부터 획득하여 설정된 시스템의 시각이다. 장치유형은 1은 보행자, 2는 차량, 3은 서버를 의미하고 장치 별 초기 설정을 따른다. 장치식별자는 MAC Address로 각 장치를 식별한다. 순서번호는 0에서 4294967295에 해당하는 값으로 장치 재부팅시 0으로 리셋된다. 데이터 유형은 1은 Information Upstream이고 2는 Information Downstream이고 3은 ACK이며 페이로드의 Data Type을 나타낸다. 페이로드는 데이터 유형별로 구성값이 다르다. Referring to FIG. 14, the frame format of a message set between devices includes a header and a payload. The header consists of time (year, month, day, hour, minute, second, millisecond), device type, device identifier, sequence number, and data type. The frame is 2 bytes per year, 1 byte per month, 1 byte for hour, 1 byte for hour, 1 byte for minute, 1 byte for second, 2 bytes for milliseconds, 1 byte for device type, 6 bytes for device identifier. The sequence number is 4 bytes, the data type is 1 byte, and the payload is n bytes. The time (year, month, day, hour, minute, second, millisecond) is the time of the system obtained from GNSS. The device type is 1 for pedestrians, 2 for vehicles, 3 for servers, and follows the initial setting for each device. The device identifier identifies each device by its MAC address. The sequence number is a value from 0 to 4294967295, and is reset to 0 upon device reboot. The data type is 1 for information upstream, 2 for information downstream, 3 for ACK, and data type of payload. Payloads have different configuration values for different data types.
도 15를 참조하면, Information Upstream 시에 페이로드는 경도 4바이트, 위도 4바이트, 방면 2바이트, 속도 2바이트이고, 경도는 -1800000000 이상 1800000001 미만의 값을 갖는다. 이는 1/10 마이크로 디그리 단위로 1800000001은 사용이 불가능하다. 위도는 -900000000 이상 900000001 미만의 값으로 900000001은 사용이 불가능하다. 방면은 0 이상 28800미만의 값으로 0.0125 디그리 단위이며 28800은 사용이 불가능하다. 속도는 0이상 8191 미만의 값으로 0.02m/s 단위이며 8191은 사용이 불가능하다. Referring to FIG. 15, the payload is 4 bytes longitude, 4 bytes latitude, 2 bytes long, and 2 bytes long at the time of Information Upstream, and the longitude has a value of -1800000000 or more and less than 1800000001. This is not available for 1800000001 in 1/10 micro degree units. Latitude is a value between -900000000 and less than 900000001. 900000001 cannot be used. The value ranges from 0 to less than 28800, in 0.0125 degree units, and the 28800 cannot be used. Speed is a value between 0 and 8191, in 0.02m / s units, and 8191 cannot be used.
도 16을 참조하면, Information Downstream 시에 페이로드는 1바이트인 하나의 Encapsuled Data Count 와 28바이트인 N개의 Encapsulated Data로 구성된다. N은 최대 30개로 1에서 30까지의 값을 가진다. 하나의 Encapsulated Data는 경도 4바이트, 위도 4바이트, 방면 2바이트, 속도 2바이트, 장치유형 1바이트, 장치식별자 6바이트, 연 2바이트, 월 1바이트, 일 1바이트, 시 1바이트, 분 1바이트, 초 1바이트, 밀리초 2바이트로 구성된다. Referring to FIG. 16, in an information downstream, a payload includes one encapsuled data count of 1 byte and N encapsulated data of 28 bytes. N is a maximum of 30 and has a value from 1 to 30. One Encapsulated Data is 4 bytes longitude, 4 bytes latitude, 2 bytes speed, 2 bytes speed, 1 byte device type, 6 bytes device identifier, 2 bytes per year, 1 byte per month, 1 byte per hour, 1 byte per minute, 1 byte per minute. , 1 byte per second and 2 bytes in milliseconds.
경도는 -1800000000 이상 1800000001 미만의 값을 갖는다. 이는 1/10 마이크로 디그리 단위로 1800000001은 사용이 불가능하다. 위도는 -900000000 이상 900000001 미만의 값으로 900000001은 사용이 불가능하다. 방면은 0 이상 28800미만의 값으로 0.0125 디그리 단위이며 28800은 사용이 불가능하다. 속도는 0이상 8191 미만의 값으로 0.02m/s 단위이며 8191은 사용이 불가능하다. 장치유형은 1은 보행자이고 2는 차량이며 장치로부터 수집된 값을 갖는다. 장치식별자는 MAC Address로 각 장치를 식별한다. Hardness has a value of -1800000000 or more and less than 1800000001. This is not available for 1800000001 in 1/10 micro degree units. Latitude is a value between -900000000 and less than 900000001. 900000001 cannot be used. The value ranges from 0 to less than 28800, in 0.0125 degree units, and the 28800 cannot be used. Speed is a value between 0 and 8191, in 0.02m / s units, and 8191 cannot be used. The device type is 1 for pedestrians and 2 for vehicles with values collected from the device. The device identifier identifies each device by its MAC address.
시간의 연은 2 바이트, 월은 1바이트, 일은 1바이트, 시는 1바이트, 분은 1바이트, 초는 1바이트, 밀리초는 2바이트로 해당 장치가 송신한 시점의 시스템 시각이다. The time is 2 bytes, the month is 1 byte, the day is 1 byte, the hour is 1 byte, the minute is 1 byte, the second is 1 byte, and the millisecond is 2 bytes.
도 17을 참조하면, ACK는 시간의 연은 2 바이트, 월은 1바이트, 일은 1바이트, 시는 1바이트, 분은 1바이트, 초는 1바이트, 밀리초는 2바이트, 장치유형은 1바이트, 장치식별자는 6바이트, 순서번호는 4바이트, 데이터유형은 1바이트, 페이로드는 n바이트로 구성된다. 페이로드는 연은 2 바이트, 월은 1바이트, 일은 1바이트, 시는 1바이트, 분은 1바이트, 초는 1바이트, 밀리초는 2바이트, 순서번호는 4바이트로 구성된다.Referring to FIG. 17, ACK is 2 bytes in time, 1 byte in month, 1 byte in day, 1 byte in hour, 1 byte in minutes, 1 byte in seconds, 2 bytes in milliseconds, and 1 byte in device type. The device identifier consists of 6 bytes, the sequence number of 4 bytes, the data type of 1 byte, and the payload of n bytes. The payload consists of 2 bytes per year, 1 byte for month, 1 byte for day, 1 byte for hour, 1 byte for minute, 1 byte for second, 2 bytes for milliseconds, and 4 bytes for sequence number.
시간은 송신 패킷의 타임 스템프이고 순서번호는 0 내지 4294967295 사이의 값으로 수신한 패킷의 순서번호를 의미한다.The time is a time stamp of the transmission packet and the sequence number is a value between 0 and 4294967295, and means the sequence number of the received packet.
도 18은 본 발명의 일실시예에 따른 V2P 충돌예방 방법의 흐름도이다.18 is a flowchart illustrating a V2P collision prevention method according to an embodiment of the present invention.
도 18을 참조하면, V2P 충돌예방 방법(30)은, 제1 V2P 장치를 포함한 차량을 위한 차량 패러미터를 획득하여 적어도 하나의 사용자 단말기(제2 V2P)와 통신하는 단계(S510); 상기 적어도 하나의 차량 패러미터에 근거하여 차량의 경로를 예상하는 단계(S520); WAVE 통신 채널을 경유하여 적어도 하나의 사용자 단말기(제2 V2P) 장치로부터 적어도 하나의 기본 안전 메시지를 수신하는 단계(S530); 적어도 하나의 사용자단말기(제2 V2P)로부터 상기 사용자단말기의 위치와 속도를 포함하는 상기 사용자단말기 패러미터를 획득하는 단계(S540); 적어도 하나의 상기 사용자단말기 패러미터에 근거하여 차량과 사용자단말기의 충돌 가능 경로 및 위험도를 예상하는 단계(S550); 차량과 사용자의 충돌 가능성을 결정하는 단계(S560); 및 상기 차량과 사용자의 충돌 가능성이 높은 경우, 차량의 운전자와 사용자에게 적어도 하나의 위험신호를 제공하는 단계(S570)를 포함한다.Referring to FIG. 18, the method of preventing a V2P collision 30 may include obtaining vehicle parameters for a vehicle including a first V2P device and communicating with at least one user terminal (second V2P) (S510); Predicting a route of the vehicle based on the at least one vehicle parameter (S520); Receiving at least one basic safety message from at least one user terminal (second V2P) device via a WAVE communication channel (S530); Obtaining the user terminal parameters including the position and speed of the user terminal from at least one user terminal (second V2P) (S540); Estimating a collision potential path between the vehicle and the user terminal and a risk based on at least one user terminal parameter (S550); Determining a possibility of collision between the vehicle and the user (S560); And providing a dangerous signal to the driver and the user of the vehicle when the collision between the vehicle and the user is high (S570).
이하, 각 과정에 대해 도면을 참조하여 보다 상세히 설명한다.Hereinafter, each process will be described in more detail with reference to the drawings.
510 단계에서 제1 V2P 장치를 포함한 차량을 위한 차량 패러미터를 획득하여 적어도 하나의 보행자의 사용자 단말기(300)와 통신한다. 도 19를 참조하면, 알파벳으로 표현된 각 개체들의 의미는 다음과 같다. V는 차량의 위치이다. v는 차량의 이동방향 벡터이다. P는 보행자의 위치이다. p는 보행자의 이동방향 벡터이다. b는 차량에서 보행자로의 방향벡터와 차량의 이동방향 벡터와의 내각이다. i는 차량의 이동방향벡터와 보행자의 이동방향벡터가 이루는 내각이다. n은 차량의 이동방향벡터와 보행자간의 수직거리이다. d는 차량과 보행자간의 거리이다.In operation 510, vehicle parameters for the vehicle including the first V2P device may be acquired and communicated with at least one pedestrian user terminal 300. Referring to FIG. 19, the meanings of the entities represented by the alphabet are as follows. V is the position of the vehicle. v is the moving direction vector of the vehicle. P is the position of the pedestrian. p is the moving direction vector of the pedestrian. b is the cabinet between the direction vector of the vehicle and the pedestrian path and the moving direction vector of the vehicle. i is a cabinet formed by the movement direction vector of the vehicle and the movement direction vector of the pedestrian. n is the vertical distance between the moving direction vector of the vehicle and the pedestrian. d is the distance between the vehicle and the pedestrian.
520 단계에서 상기 적어도 하나의 보행자의 사용자단말기(300) 패러미터에 근거하여 보행자의 경로를 예상한다. 도 20을 참조하면, v와 d, 또는 v와 p의 사이각(각 b 또는 i)을 계산한 값을 뜻하며, 다른 변수들을 계산하는 데에 필수적으로 사용되는 값 중 하나이다. 또한, 해당 값의 한계치(threshold) 범위를 적용하여, 위험도를 판정하는 데에 사용할 수도 있다. 이것은 선택적인 한계치(threshold) 방법이다. 도 21를 참조하면, a에 대한 각각의 벡터 b1 내지 b4의 내각은 Θ1 내지 Θ4에 각각 대응한다. 우선 각도 차이를 구하기 위하여 더 큰 각에서 더 작은 각을 뺀다. 내각의 정의에 따르면 내각은 180°보다 클 수 없으므로, 해당 결과 값이 180°보다 큰 경우, 360°에서 해당 값을 빼면 두 벡터 사이의 내각을 구할 수 있다. 도 22를 참조하면, 법선거리(Normal line)는 경로 v에 대한 P에서 내린 법선의 거리를 뜻하며, v와 P의 근접 상태와 교차 등을 파악하기 위한 값으로 사용된다. In step 520, the path of the pedestrian is estimated based on the at least one parameter of the user terminal 300 of the pedestrian. Referring to FIG. 20, it refers to a value obtained by calculating an angle between each of v and d or between v and p (each b or i), and is one of values essential for calculating other variables. It is also possible to apply a threshold range of the value and use it to determine the risk. This is an optional threshold method. Referring to FIG. 21, the cabinets of the vectors b1 to b4 for a correspond to Θ1 to Θ4, respectively. First, subtract the smaller angle from the larger angle to find the angle difference. According to the definition of the cabinet, the cabinet cannot be greater than 180 °, so if the result is greater than 180 °, subtract that value from 360 ° to find the cabinet between the two vectors. Referring to FIG. 22, a normal line refers to a distance of a normal line lowered from P with respect to a path v, and is used as a value for determining a proximity state and intersection of v and P.
Figure PCTKR2016007922-appb-I000001
Figure PCTKR2016007922-appb-I000001
Figure PCTKR2016007922-appb-I000002
Figure PCTKR2016007922-appb-I000002
도 19를 참조하면, d는 V와 P의 두 지점간의 거리를 뜻하며, 계산 방식은 Great Circle Distance Formula 중, haversine formula (hav(θ)=sin2(θ/2))가 적용된 Computational Formulas Method를 사용하여 구한다. 작은 거리의 수치계산을 할 때 haversine formula 가 보다 잘 적용된다. 이러한 수치계산 방법은 R.W. Sinnott, "Virtues of the Haversine", Sky and Telescope, vol. 68, no. 2, 1984, p. 159 에 서술되어 있다. 계산식에서 r은 지구반지름에 해당한다.Referring to FIG. 19, d denotes a distance between two points of V and P, and a calculation method is a Computational Formulas Method to which haversine formula (hav (θ) = sin 2 (θ / 2)) is applied among the Great Circle Distance Formula. Obtain it using The haversine formula works better when calculating small distances. Such numerical methods are described in RW Sinnott, "Virtues of the Haversine", Sky and Telescope, vol. 68, no. 2, 1984, p. It is described in 159. R corresponds to the earth radius.
Figure PCTKR2016007922-appb-I000003
Figure PCTKR2016007922-appb-I000003
Figure PCTKR2016007922-appb-I000004
Figure PCTKR2016007922-appb-I000004
530 단계에서 보행자의 사용자단말기(제2 V2P) 장치로부터 적어도 하나의 기본 안전 메시지를 수신한다.In step 530, at least one basic safety message is received from the user terminal (second V2P) device of the pedestrian.
540 단계에서 적어도 하나의 보행자의 위치와 속도를 포함하는 상기 보행자 패러미터를 획득한다.In operation 540, the pedestrian parameter including the position and the speed of at least one pedestrian is obtained.
550 단계에서 적어도 하나의 상기 보행자 패러미터에 근거하여 보행자의 충돌 가능성 및 위험도를 예상한다. 충돌 가능성은 v와 p의 교차 여부에 관한 판단을 뜻하며, 이를 확인하기 위하여 n의 변화량을 계산하여 판단한다. 충돌 타이밍이나 위험 정도 등은 다른 변수를 활용하여 판단하며, 해당 값은 단지 경로의 교차 여부를 판단하기 위한 변수로 활용한다. In step 550, the collision probability and the risk of the pedestrian are estimated based on the at least one pedestrian parameter. The probability of collision refers to a judgment as to whether or not v and p intersect, and to determine this, it is determined by calculating the variation of n. The collision timing and the degree of danger are determined by using other variables, and the value is used only to determine whether the paths intersect.
560 단계에서 상기 보행자와 차량의 충돌 가능성을 결정한다. In operation 560, a possibility of collision between the pedestrian and the vehicle is determined.
도 23을 참조하면, 시간이 지날수록 n1 > n2 인 경우, P와 V의 경로는 교차될 수 밖에 없는 점을 이용한다. Referring to FIG. 23, when n1> n2 over time, the paths of P and V must be crossed.
도 24를 참조하면, P가 V의 경로를 지나서 있는 경우, n1 < n2 이므로 두 경로가 교차하지 않음을 알 수 있다. Referring to FIG. 24, when P crosses the path of V, since n1 <n2, it can be seen that the two paths do not intersect.
도 25를 참조하면, V가 P의 경로를 지나서 있는 경우, n1 < n2 이지만, 또 다른 변수인 d1 < d2를 확인해보면, 두 경로가 교차되지 않음을 알 수 있다.Referring to FIG. 25, when V crosses a path of P, n1 <n2, but when checking another variable d1 <d2, it can be seen that the two paths do not cross each other.
570 단계에서 상기 차량과 상기 보행자의 충돌 가능성이 높은 경우, 상기 차량과 상기 보행자에게 적어도 하나의 위험신호를 제공한다.In step 570, if the collision probability between the vehicle and the pedestrian is high, at least one danger signal is provided to the vehicle and the pedestrian.
도 26 내지 도 36에는 차량의 예상경로 벡터와 보행자의 예상경로 벡터의 충돌 가능성에 대한 시나리오가 도시된다.26 to 36 illustrate scenarios of the possibility of collision between the predicted vector of the vehicle and the predicted vector of the pedestrian.
도 26을 참조하면, 시나리오 1은 차량의 예상경로 벡터와 보행자의 예상경로 벡터가 이루는 사이각(Included Angle)이 90도 일때, 충돌가능성 T/F는 True 이다.Referring to FIG. 26, in scenario 1, when the included angle between the expected path vector of the vehicle and the expected path vector of the pedestrian is 90 degrees, the collision probability T / F is true.
도 27를 참조하면, 시나리오 2는 차량의 예상경로 벡터와 보행자의 예상경로 벡터가 이루는 사이각이(Included Angle)이 90도 일때, 충돌가능성 T/F는 False 이다.Referring to FIG. 27, in scenario 2, when the included angle between the predicted path vector of the vehicle and the predicted vector of the pedestrian is 90 degrees, the collision probability T / F is False.
도 28를 참조하면, 시나리오 3은 차량의 예상경로 벡터와 보행자의 예상경로 벡터가 이루는 사이각(Included Angle)이 90 도 미만일때, 충돌가능성 T/F는 True 이다. Referring to FIG. 28, in scenario 3, when the included angle between the predicted path vector of the vehicle and the predicted vector of the pedestrian is less than 90 degrees, the collision probability T / F is true.
도 29를 참조하면, 시나리오 4는 차량의 예상경로 벡터와 보행자의 예상경로 벡터가 이루는 사이각(Included Angle)이 90 도 미만일때, 충돌가능성 T/F는 False 이다. Referring to FIG. 29, in scenario 4, when the included angle between the predicted path vector of the vehicle and the predicted vector of the pedestrian is less than 90 degrees, the collision probability T / F is False.
도 30를 참조하면, 시나리오 5는 차량의 예상경로 벡터와 보행자의 예상경로 벡터가 이루는 사이각(Included Angle)이 90도 초과일때, 충돌가능성 T/F는 True 이다. Referring to FIG. 30, in scenario 5, when the included angle between the predicted path vector of the vehicle and the predicted path vector of the pedestrian is greater than 90 degrees, the probability of collision T / F is true.
도 31를 참조하면, 시나리오 6은 차량의 예상경로 벡터와 보행자의 예상경로 벡터가 이루는 사이각(Included Angle)이 90도 초과일때, 충돌가능성 T/F는 False 이다. Referring to FIG. 31, in scenario 6, when the included angle between the predicted path vector of the vehicle and the predicted vector of the pedestrian is greater than 90 degrees, the probability of collision T / F is False.
도 32를 참조하면, 시나리오 7은 차량의 예상경로 벡터와 보행자의 예상경로 벡터가 이루는 사이각(Included Angle)이 180도로부터 5도 이내이고 차량의 위치와 보행자의 위치가 최소 법선 거리(Minimum Warning Normal Line Distance)가 기본 값보다 가까울때, 충돌가능성 T/F는 True 이다. Referring to FIG. 32, scenario 7 includes an included angle between an expected path vector of a vehicle and an estimated path vector of a pedestrian within 5 degrees from 180 degrees, and a minimum warning distance between a vehicle and a pedestrian. When Normal Line Distance is closer than the default value, the collision probability T / F is True.
도 33를 참조하면, 시나리오 8은 차량의 예상경로 벡터와 보행자의 예상경로 벡터가 이루는 사이각(Included Angle)이 180도로부터 5도 이내이고 차량의 위치와 보행자의 위치가 최소 법선 거리(Minimum Warning Normal Line Distance)가 기본 값보다 멀때, 충돌가능성 T/F: False 이다.Referring to FIG. 33, scenario 8 includes a minimum warning distance between an expected path vector of a vehicle and an estimated path vector of a pedestrian (included angle) within 180 degrees and a position of the vehicle and a pedestrian. When Normal Line Distance is farther than the default value, the probability of collision T / F: False.
도 34를 참조하면, 시나리오 9는 차량의 예상경로 벡터와 보행자의 예상경로 벡터에서 Vehicle Passed Condition 이다.Referring to FIG. 34, scenario 9 is a vehicle passed condition in an expected path vector of a vehicle and an expected path vector of a pedestrian.
도 35를 참조하면, 시나리오 10은 차량의 예상경로 벡터와 보행자의 예상경로 벡터가 이루는 사이각(Included Angle)이 180도로부터 5도 이내이고 차량의 속도가 5km/h 이하이면서 감속중일때, 차량과 보행자의 위치가 최소 법선 거리(Minimum Warning Normal Line Distance)가 기본 값보다 가까우면 충돌가능성 T/F는 True 이다. Referring to FIG. 35, in scenario 10, when the included angle between the predicted vector of the vehicle and the predicted vector of the pedestrian is less than 5 degrees from 180 degrees and the speed of the vehicle is less than 5 km / h, the vehicle is decelerated. The probability of collision T / F is true if the location of the pedestrian and the pedestrian is close to the minimum warning normal line distance.
도 36을 참조하면, 시나리오 11은 차량의 예상경로 벡터와 보행자의 예상경로 벡터가 이루는 사이각(Included Angle)이 180도로부터 5도 이내이고 차량의 속도가 5km/h 이하이면서 감속중일때, 차량과 보행자의 위치가 최소 법선 거리(Minimum Warning Normal Line Distance)가 기본 값보다 멀면 충돌가능성 T/F는 False 이다.Referring to FIG. 36, in scenario 11, when the included angle between the predicted vector of the vehicle and the predicted vector of the pedestrian is less than 5 degrees from 180 degrees and the speed of the vehicle is 5 km / h or less, the vehicle is decelerated. The collision probability T / F is False if the location of the pedestrian and pedestrian is farther away than the minimum warning normal line distance.
시나리오 10과 시나리오 11은 차량 정차시 또는 차량에서 문을 개방시에 차량 전방이나 후방의 차량, 자전거, 오토바이, 보행자와 접촉사고를 예방하기 위한 경우에 적용된다.Scenarios 10 and 11 are applied to prevent contact accidents with vehicles, bicycles, motorcycles and pedestrians in front of or behind the vehicle when the vehicle is stopped or the door is opened.
전술한 바와 같이, 본 발명의 실시 예에서는 GNSS모듈(110)이 탑재된 차량의 OBU(100)와 보행자의 사용자단말기(300)에서 제공되는 차량의 GNSS 위치정보와 보행자의 GNSS 위치정보로부터 차량과 보행자의 상대적인 거리를 보다 정확하게 예상한다.As described above, in the embodiment of the present invention, the vehicle and the GNSS location information of the vehicle provided by the OBU 100 of the vehicle equipped with the GNSS module 110 and the pedestrian user terminal 300 and the GNSS location information of the pedestrian. Predict the relative distance of pedestrians more accurately.
또한, GNSS모듈(110)이 탑재된 차량의 OBU(100)와 보행자의 경로를 예상하는데 소요되는 연산량을 감소시킴으로써, 운전자에게 신속하고 정확한 위험신호를 실시간으로 제공한다.In addition, by reducing the amount of computation required to predict the route of the OBU 100 and the pedestrian of the vehicle on which the GNSS module 110 is mounted, the driver provides a fast and accurate danger signal in real time.
한편, 본 발명의 실시예에 따른 V2P 충돌예방 방법(30)은 컴퓨터 시스템에서 구현되거나, 또는 기록매체에 기록될 수 있다. 컴퓨터 시스템은 적어도 하나 이상의 프로세서와, 메모리와, 사용자 입력 장치와, 데이터 통신 버스와, 사용자 출력 장치와, 저장소를 포함할 수 있다. 전술한 각각의 구성 요소는 데이터 통신 버스를 통해 데이터 통신을 한다.Meanwhile, the V2P collision prevention method 30 according to an embodiment of the present invention may be implemented in a computer system or recorded on a recording medium. The computer system may include at least one processor, memory, user input device, data communication bus, user output device, and storage. Each of the above components communicates data via a data communication bus.
컴퓨터 시스템은 네트워크에 커플링된 네트워크 인터페이스를 더 포함할 수 있다. 상기 프로세서는 중앙처리 장치(central processing unit : CPU)이거나, 혹은 메모리 및/또는 저장소에 저장된 명령어를 처리하는 반도체 장치일 수 있다. The computer system can further include a network interface coupled to the network. The processor may be a central processing unit (CPU) or a semiconductor device that processes instructions stored in a memory and / or a storage.
상기 메모리 및 상기 저장소는 다양한 형태의 휘발성 혹은 비휘발성 저장매체를 포함할 수 있다. 예컨대, 상기 메모리는 ROM 및 RAM을 포함할 수 있다.The memory and the storage may include various types of volatile or nonvolatile storage media. For example, the memory may include a ROM and a RAM.
한편, 상술한 본 발명의 실시예에 따른 V2P 충돌예방 방법(30)은 컴퓨터로 읽을 수 있는 기록매체에 컴퓨터가 읽을 수 있는 코드로서 구현되는 것이 가능하다. 컴퓨터가 읽을 수 있는 기록 매체로는 컴퓨터 시스템에 의하여 해독될 수 있는 데이터가 저장된 모든 종류의 기록 매체를 포함한다. 예를 들어, ROM(Read Only Memory), RAM(Random Access Memory), 자기 테이프, 자기 디스크, 플래시 메모리, 광 데이터 저장장치 등이 있을 수 있다. 또한, 컴퓨터로 판독 가능한 기록매체는 컴퓨터 통신망으로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 읽을 수 있는 코드로서 저장되고 실행될 수 있다.On the other hand, the V2P collision prevention method 30 according to the embodiment of the present invention can be implemented as computer-readable code on a computer-readable recording medium. Computer-readable recording media include all kinds of recording media having data stored thereon that can be decrypted by a computer system. For example, there may be a read only memory (ROM), a random access memory (RAM), a magnetic tape, a magnetic disk, a flash memory, an optical data storage device, and the like. The computer readable recording medium can also be distributed over computer systems connected over a computer network, stored and executed as readable code in a distributed fashion.
본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 보호범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구의 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Those skilled in the art will appreciate that the present invention can be embodied in other specific forms without changing the technical spirit or essential features of the present invention. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. The protection scope of the present invention is shown by the following claims rather than the above description, and all changes or modifications derived from the claims and their equivalents should be construed as being included in the scope of the present invention.

Claims (20)

  1. 차량의 GNSS 위치정보와 보행자의 GNSS 위치정보를 WAVE 무선통신을 통해 송수신하는 V2P 통신 시스템에 있어서,In the V2P communication system for transmitting and receiving the vehicle GNSS location information and the pedestrian GNSS location information via WAVE wireless communication,
    상기 차량과 상기 보행자간의 상대거리를 계산하여 V2P 충돌 예방 서비스가 실행되는 차량에 탑재된 OBU(On Board Unit);An OBU (On Board Unit) mounted on a vehicle on which a V2P collision prevention service is executed by calculating a relative distance between the vehicle and the pedestrian;
    상기 OBU와 WAVE 무선통신이 가능한 RSE(Road Side Equipment);RSE (Road Side Equipment) capable of wireless communication with the OBU;
    상기 보행자의 GNSS 위치정보를 WAN/Internet을 통해 전송가능한 사용자단말기; 및A user terminal capable of transmitting the GNSS location information of the pedestrian through WAN / Internet; And
    상기 RSE와 WAN/Internet을 통해 상기 차량의 GNSS 위치정보와 상기 보행자의 GNSS 위치정보로부터 상기 차량과 상기 보행자간의 충돌가능성을 계산하여 상기 차량의 운전자와 상기 보행자의 사용자단말기에 위험신호를 전송하는 서버;를 포함하는 V2P 충돌예방 시스템.A server for calculating a likelihood of collision between the vehicle and the pedestrian from the GNSS position information of the vehicle and the GNSS position information of the pedestrian through the RSE and WAN / Internet, and transmits a danger signal to a user terminal of the driver of the vehicle and the pedestrian. V2P collision prevention system comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 OBU는 상기 차량의 GNSS와 상기 보행자의 GNSS로 측정한 위치의 정확도가 낮고, ACK 패킷(packet)를 이용하여 실행되는 상기 차량과 상기 서버간 그리고 상기 보행자와 상기 서버간의 지연속도(latency)가 낮은 V2P 충돌예방 장치인 것을 특징으로 하는 V2P 충돌예방 시스템.The OBU has low accuracy of the position measured by the GNSS of the vehicle and the GNSS of the pedestrian, and the latency between the vehicle and the server and between the pedestrian and the server that is executed by using an ACK packet. V2P collision prevention system, characterized in that the low V2P collision prevention device.
  3. 제1항에 있어서,The method of claim 1,
    상기 RSE는 상기 OBU를 통해 수집된 주행정보, 교통상황, 화상정보를 수신하는 장치로서 상기 OBU와 WAVE 무선통신이 가능한 RF(Radio Frequency) 송신기 및 수신기인 것을 특징으로 하는 V2P 충돌예방 시스템.The RSE is a device for receiving driving information, traffic conditions and image information collected through the OBU, V2P collision prevention system, characterized in that the radio frequency (RF) transmitter and receiver capable of WAVE wireless communication with the OBU.
  4. 제1항에 있어서, The method of claim 1,
    상기 서버는 경고 상황 판단을 위한 각종 한계치(threshold) 정보를 구비한 MIB 데이터 구조와, 적어도 하나 이상의 차량 또는 보행자를 관리하기 위한 정보를 가지는 MIS 데이터 구조와, 적어도 하나 이상의 차량 또는 보행자의 지나온 위치 정보를 기록하는 HIS 데이터 구조와, 이벤트에 대한 표출을 하기 위한 정보를 저장하는 PIS 데이터 구조와, 각 대상의 위치 및 시간 데이터로부터 경로에 대한 예측 정보를 계산하고 각 대상간의 충돌가능성을 계산하여 결과를 저장하는 EIS 데이터 구조를 포함하는 것을 특징으로 하는 V2P 충돌예방 시스템.The server may include a MIB data structure having various threshold information for determining a warning situation, an MIS data structure having information for managing at least one vehicle or pedestrian, and past location information of at least one vehicle or pedestrian. HIS data structure that records the information, PIS data structure that stores information for expressing the event, calculates the prediction information about the route from the location and time data of each target, and calculates the probability of collision between the targets. V2P collision prevention system comprising an EIS data structure for storing.
  5. 제1항에 있어서,The method of claim 1,
    상기 OBU 및 상기 사용자 단말기는 패킷을 내려받는 단계(S410)와, OBU 및 상기 사용자 단말기에 내려받은 상기 패킷을 분석하는 단계(S420)와, 분석된 상기 패킷의 정보를 이용하여 상대거리를 계산하는 단계(S430)와, 상기 상대거리로부터 충돌가능성을 예상하는 V2P 충돌예방서비스를 계산하는 단계(S440)이거나 상기 상대거리를 히스토리 큐에 더하는 단계(S441)와, MIS를 업데이트하는 단계(S450)와, 판단 매니저가 실행되면 MIS에 정보를 저장하는 단계(S460), 및 PIS를 업데이트하는 단계(S470) 를 포함하는 것을 특징으로 하는 V2P 충돌예방 시스템.The OBU and the user terminal download the packet (S410), the step of analyzing the packet downloaded to the OBU and the user terminal (S420), and calculates the relative distance using the analyzed information of the packet In step S430, calculating a V2P collision prevention service predicting a collision possibility from the relative distance (S440) or adding the relative distance to the history queue (S441), updating the MIS (S450) and Storing the information in the MIS when the decision manager is executed (S460), and updating the PIS (S470).
  6. 차량에 탑재되고 RSE와 접속되어 서버로부터 차량 운전자와 보행자에게 위험신호를 WAVE 무선통신으로 송수신하는 V2P 통신 장치(OBU)에 있어서,In the V2P communication device (OBU) mounted on the vehicle and connected to the RSE to transmit and receive the dangerous signal from the server to the vehicle driver and pedestrian through WAVE wireless communication,
    GNSS 위성으로부터 송출된 무선 신호를 수신하여 위도 데이터, 경도 데이터 및 지향(heading)각 데이터를 포함하는 GNSS 데이터를 생성하고 생성된 상기 GNSS 데이터를 경로예상모듈로 출력하는 GNSS모듈;A GNSS module configured to receive a radio signal transmitted from a GNSS satellite to generate GNSS data including latitude data, longitude data, and heading angle data, and output the generated GNSS data to a route prediction module;
    상기 차량내부의 ECU(Electronic Control Unit)와 접속되어 상기 차량의 속도, RPM, 센서의 이상상태에 관한 데이터를 수신하고 수신된 상기 데이터를 경로예상모듈로 전송하는 측정모듈;A measurement module connected to an ECU (Electronic Control Unit) inside the vehicle to receive data regarding a speed, RPM, abnormal state of the vehicle, and transmit the received data to a route prediction module;
    상기 GNSS모듈로부터 수신받은 데이터와 상기 측정모듈로부터 수신받은 데이터를 이용하여 상기 차량의 경로벡터와 상기 보행자의 경로벡터로부터 상기 차량과 상기 보행자의 예상경로를 산정하는 경로예상모듈; 및A route prediction module that calculates an expected route of the vehicle and the pedestrian from the route vector of the vehicle and the route vector of the pedestrian using the data received from the GNSS module and the data received from the measurement module; And
    상기 GNSS모듈과 상기 측정모듈과 상기 경로예상모듈의 데이터를 상기 RSE를 경유하여 상기 서버로 전송하고, 상기 서버로부터 상기 RSE를 경유하여 제공된 주변의 적어도 하나의 차량과 보행자의 정보를 수신받아 위험상황을 검출하여 상기 RSE를 경유하여 상기 서버에 위험신호를 전송하는 WAVE 모듈;을 포함하는 V2P 충돌예방 장치.Transmit the data of the GNSS module, the measurement module and the route prediction module to the server via the RSE, and receives the information of at least one vehicle and pedestrian provided through the RSE from the server and receives a dangerous situation And a WAVE module for detecting a signal and transmitting a dangerous signal to the server via the RSE.
  7. 제6항에 있어서,The method of claim 6,
    상기 경로예상모듈은 상기 차량의 이동방향벡터와 상기 보행자의 이동방향벡터의 사이각 정보와, 상기 차량의 이동방향벡터와 상기보행자의 이동방향벡터의 법선거리 정보를 이용하여 시간이 지날수록 상기 법선거리가 짧아지고 상기 차량의 위치와 상기 보행자의 위치의 직선거리가 짧아지는 경우 충돌로 판단하는 것을 특징으로 하는 V2P 충돌예방 장치.The path prediction module uses the angle information between the moving direction vector of the vehicle and the moving direction vector of the pedestrian and the normal distance information of the moving direction vector of the vehicle and the moving direction vector of the pedestrian. V2P collision prevention device characterized in that the collision is determined when the distance is shortened and the linear distance between the position of the vehicle and the position of the pedestrian is shortened.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 차량의 위치와 상기 보행자의 위치의 직선거리는 Great Circle Distance Formula 중, haversine formula 인 hav(θ)=sin2(θ/2) 가 적용된 컴퓨터 계산 방법을 사용하여 구하는 것을 특징으로 하는 V2P 충돌예방 장치.The linear distance between the position of the vehicle and the position of the pedestrian is calculated using a computer calculation method in which hav (θ) = sin 2 (θ / 2), which is a haversine formula, of the Great Circle Distance Formula is applied. .
  9. 제6항에 있어서, The method of claim 6,
    상기 경로예상모듈은 상기 측정모듈에서 수신한 데이터가 차량이상상태가 아니라고 판단한 경우에 한해서 상기 GNSS모듈과 상기 경로예상모듈로부터 예상되는 차량과 보행자간의 충돌가능성이 있을 경우 위험상황이라고 판단하고, 차량이상상태인 경우에는 차량과 보행자간의 충돌가능성이 차량이상상태에 기인한 것인지 실제로 차량과 보행자간의 충돌가능성이 있는 것인지를 판단하는 것을 특징으로 하는 V2P 충돌예방 장치.The route prediction module determines that a dangerous situation exists when there is a possibility of collision between a vehicle and a pedestrian expected from the GNSS module and the route prediction module only when it is determined that the data received from the measurement module is not a vehicle abnormality state. In the case of a state, V2P collision prevention device characterized in that it is determined whether the possibility of collision between the vehicle and the pedestrian is due to the abnormal state of the vehicle or whether there is a possibility of collision between the vehicle and the pedestrian.
  10. 제6항에 있어서,The method of claim 6,
    상기 WAVE모듈은 기저 주파수(carrier frequency)에 변조 및 기저 주파수로부터 복조를 수행하며 맥 패킷을 구성할 수 있는 칩셋으로 구성되고, 수신된 메시지는 적어도 위도 및 경도 데이터를 포함하고 차량의 식별자를 더 포함하는 것을 특징으로 하는 V2P 충돌예방 장치.The WAVE module is composed of a chipset capable of modulating and demodulating from a base frequency at a carrier frequency and composing a MAC packet, and the received message includes at least latitude and longitude data and further includes an identifier of a vehicle. V2P collision prevention device, characterized in that.
  11. 제6항에 있어서, The method of claim 6,
    터치 패널을 통한 사용자 터치입력, 버튼을 통한 버튼 입력 또는 마이크를 통한 음성 입력으로 지정된 제어 입력을 수신하여 상기 제어 입력을 상기 경로예상모듈로 전송하는 입력모듈을 더 포함하는 것을 특징으로 하는 V2P 충돌예방 장치.V2P collision prevention, characterized in that it further comprises an input module for receiving a control input specified as a user touch input through a touch panel, a button input through a button or a voice input through a microphone to transmit the control input to the route prediction module. Device.
  12. 제6항에 있어서, The method of claim 6,
    상기 경로예상모듈로부터 수신된 데이터에 따라 이미지, 음성 또는 LED 제어 신호에 대응하는 디스플레이, 스피커, 또는 LED로 출력하는 출력모듈을 더 포함하는 것을 특징으로 하는 V2P 충돌예방 장치.And an output module for outputting a display, a speaker, or an LED corresponding to an image, voice, or LED control signal according to the data received from the path prediction module.
  13. 제6항에 있어서, The method of claim 6,
    상기 차량과 상기 보행자간의 충돌을 계산할 수 있는 V2P 충돌예방 프로그램과 데이터를 임시로 저장하는 휘발성 메모리와, 설정 데이터, 상기 OBU를 식별하기 위한 차량 식별자, 및 차량위치 판별을 위한 프로그램을 저장하는 비휘발성 메모리를 탑재한 저장모듈을 더 포함하는 것을 특징으로 하는 V2P 충돌예방 장치.V2P collision prevention program for calculating the collision between the vehicle and the pedestrian, a volatile memory for temporarily storing data, nonvolatile data for storing the setting data, the vehicle identifier for identifying the OBU, and the program for vehicle location determination V2P collision prevention device further comprising a storage module equipped with a memory.
  14. 제6항에 있어서,The method of claim 6,
    상기 경로예상모듈의 제어하에 제어 데이터를 적어도 하나의 GNSS모듈, WAVE모듈, 측정모듈, 입력모듈, 출력모듈, 저장모듈을 포함하는 다른 블록으로 전송하거나 상기 제어 데이터를 상기 다른 블록으로부터 상기 경로예상모듈로 전달하는 병렬 버스 또는 시리얼 버스로 구성되는 인터페이스모듈을 더 포함하는 것을 특징으로 하는 V2P 충돌예방 장치.Under the control of the route prediction module, control data is transmitted to another block including at least one GNSS module, a WAVE module, a measurement module, an input module, an output module, and a storage module, or the control data is transmitted from the other block to the route prediction module. V2P collision prevention device further comprises an interface module consisting of a parallel bus or a serial bus to transmit to.
  15. 차량의 GNSS 위치정보와 보행자의 GNSS 위치정보를 WAVE를 통해 송수신하는 V2P 통신 방법에 있어서,In the V2P communication method for transmitting and receiving the vehicle GNSS location information and the pedestrian GNSS location information through the WAVE,
    OBU(제1 V2P)를 탑재한 차량을 위한 차량 패러미터를 획득하여 적어도 하나의 사용자단말기(제2 V2P)와 통신하는 단계;Obtaining vehicle parameters for a vehicle equipped with an OBU (first V2P) and communicating with at least one user terminal (second V2P);
    상기 적어도 하나의 차량 패러미터에 근거하여 차량의 경로를 예상하는 단계;Predicting a route of the vehicle based on the at least one vehicle parameter;
    WAVE 통신 채널을 경유하여 적어도 하나의 사용자단말기(제2 V2P) 장치로부터 적어도 하나의 기본 안전 메시지를 수신하는 단계;Receiving at least one basic safety message from at least one user terminal (second V2P) device via a WAVE communication channel;
    적어도 하나의 사용자단말기(제2 V2P)로부터 상기 사용자단말기의 위치와 속도를 포함하는 상기 사용자단말기 패러미터를 획득하는 단계;Obtaining the user terminal parameters including the position and speed of the user terminal from at least one user terminal (second V2P);
    적어도 하나의 상기 사용자단말기 패러미터에 근거하여 상기 차량과 상기 사용자의 충돌 가능성 및 위험도를 계산하는 단계;Calculating a likelihood and risk of collision between the vehicle and the user based on at least one user terminal parameter;
    상기 차량과 상기 사용자의 충돌 가능성을 결정하는 단계; 및Determining a possibility of collision between the vehicle and the user; And
    상기 차량과 상기 사용자의 충돌 가능성이 높은 경우, 상기 차량의 운전자와 상기 사용자에게 적어도 하나의 위험신호를 제공하는 단계;를 포함하는 V2P 충돌예방 방법.And providing at least one danger signal to a driver and the user of the vehicle when the collision between the vehicle and the user is high.
  16. 제15항에 있어서,The method of claim 15,
    상기 충돌 가능성은 차량의 이동방향 벡터(v)와 보행자의 이동방향벡터(p)의 교차 여부에 관한 판단을 뜻하며, 이를 확인하기 위하여 차량의 이동방향벡터와 보행자의 위치와의 수직거리(n)의 변화량을 계산하여 경로의 교차 여부를 판단하기 위한 변수로 활용하며, 시간이 지날수록 n1 > n2 인 경우, 보행자(P)와 차량(V)의 경로는 교차될 수 밖에 없는 점을 이용하는 것을 특징으로 하는 V2P 충돌예방 방법.The collision possibility refers to a determination as to whether or not the vehicle's moving direction vector v and the pedestrian's moving direction vector p intersect, and to determine this, the vertical distance between the vehicle's moving direction vector and the pedestrian's position (n). Calculate the amount of change and use it as a variable to determine whether the route crosses, and when n1> n2 as time passes, the pedestrian (P) and the vehicle (V) path must cross only V2P collision prevention method.
  17. 제15항에 있어서,The method of claim 15,
    상기 충돌 가능성은 차량의 이동방향 벡터(v)와 보행자의 이동방향벡터(p)의 교차 여부에 관한 판단을 뜻하며, 이를 확인하기 위하여 차량의 이동방향벡터와 보행자의 위치와의 수직거리(n)의 변화량을 계산하여 경로의 교차 여부를 판단하기 위한 변수로 활용하며, 보행자(P)가 차량(V)의 경로를 지나서 있는 경우, n1 < n2 이므로 두 경로가 교차하지 않는 것을 특징으로 하는 V2P 충돌예방 방법.The collision possibility refers to a determination as to whether the moving direction vector (v) of the vehicle and the moving direction vector (p) of the pedestrian intersect, and to determine this, the vertical distance (n) between the moving direction vector of the vehicle and the position of the pedestrian is determined. V2P collision, characterized in that the two paths do not cross because n1 <n2 when the pedestrian P crosses the path of the vehicle V. Prevention method.
  18. 제15항에 있어서,The method of claim 15,
    상기 충돌 가능성은 차량의 이동방향 벡터(v)와 보행자의 이동방향벡터(p)의 교차 여부에 관한 판단을 뜻하며, 이를 확인하기 위하여 차량의 이동방향벡터와 보행자의 위치와의 수직거리(n)의 변화량을 계산하여 경로의 교차 여부를 판단하기 위한 변수로 활용하며, 차량(V)이 보행자(P)의 경로를 지나서 있는 경우, n1 > n2 이지만, 다른 변수인 d1 < d2 이면, 두 경로가 교차하지 않는 것을 특징으로 하는 V2P 충돌예방 방법.The collision possibility refers to a determination as to whether the moving direction vector (v) of the vehicle and the moving direction vector (p) of the pedestrian intersect, and to determine this, the vertical distance (n) between the moving direction vector of the vehicle and the position of the pedestrian is determined. Calculate the amount of change and use it as a variable to determine whether the paths cross. If the vehicle V passes the path of the pedestrian P, n1> n2, but if the other variable d1 <d2, the two paths V2P collision prevention method characterized in that it does not intersect.
  19. 제15항에 있어서,The method of claim 15,
    상기 충돌 가능성은 차량의 예상경로 벡터와 보행자의 예상경로 벡터가 이루는 사이각(Included Angle)이 180도로부터 5도 이내이고 차량의 속도가 5km/h 이하이면서 감속중일때, 차량과 보행자의 경고를 발생시키는 최소 법선 거리(Minimum Warning Normal Line Distance)의 기본 값 이내이면 충돌가능성 T/F는 True 인 것을 특징으로 하는 V2P 충돌예방 방법.The collision possibility is a warning of the vehicle and the pedestrian when the included angle between the predicted vector of the vehicle and the predicted vector of the pedestrian is less than 5 degrees from 180 degrees and the speed of the vehicle is less than 5 km / h. Collision likelihood T / F is True if the minimum warning normal line distance is within the default value, V2P collision prevention method characterized in that.
  20. 제15항에 있어서,The method of claim 15,
    상기 사용자단말기(제2 V2P)의 상기 사용자는 적어도 한 명의 보행자나 운전자인 것을 특징으로 하는 V2P 충돌예방 방법.And the user of the user terminal (second V2P) is at least one pedestrian or driver.
PCT/KR2016/007922 2016-07-20 2016-07-20 Vehicle to pedestrian (v2p) collision prevention system and method therefor WO2018016663A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2016/007922 WO2018016663A1 (en) 2016-07-20 2016-07-20 Vehicle to pedestrian (v2p) collision prevention system and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2016/007922 WO2018016663A1 (en) 2016-07-20 2016-07-20 Vehicle to pedestrian (v2p) collision prevention system and method therefor

Publications (1)

Publication Number Publication Date
WO2018016663A1 true WO2018016663A1 (en) 2018-01-25

Family

ID=60993060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/007922 WO2018016663A1 (en) 2016-07-20 2016-07-20 Vehicle to pedestrian (v2p) collision prevention system and method therefor

Country Status (1)

Country Link
WO (1) WO2018016663A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110335479A (en) * 2019-07-02 2019-10-15 华人运通(上海)自动驾驶科技有限公司 Virtual zebra stripes method for controlling projection, device and virtual zebra stripes optical projection system
CN111405528A (en) * 2020-03-17 2020-07-10 中国汽车工程研究院股份有限公司 V2X test system and method under complex communication environment
CN113306566A (en) * 2021-06-16 2021-08-27 上海大学 Vehicle and pedestrian collision early warning method and device based on sniffing technology
CN114261336A (en) * 2020-09-16 2022-04-01 奥迪股份公司 Method and device for preventing vehicle door from being collided and vehicle
CN114466315A (en) * 2022-02-10 2022-05-10 广东满天星云信息技术有限公司 Railway on-line operating personnel safety protection system based on big dipper high accuracy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066805A (en) * 2006-09-04 2008-03-21 Matsushita Electric Ind Co Ltd Mobile communication terminal, and pedestrian detection system for vehicle
US20110090093A1 (en) * 2009-10-20 2011-04-21 Gm Global Technology Operations, Inc. Vehicle to Entity Communication
JP2013097606A (en) * 2011-11-01 2013-05-20 Daimler Ag Risk level determination system for vehicle, risk level determination device for vehicle, and risk notification device for vehicle using the same
JP2013171445A (en) * 2012-02-21 2013-09-02 Kato Electrical Mach Co Ltd Traffic safety system
KR101354049B1 (en) * 2012-10-30 2014-02-05 현대엠엔소프트 주식회사 Method for pedestrians jaywalking information notification system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066805A (en) * 2006-09-04 2008-03-21 Matsushita Electric Ind Co Ltd Mobile communication terminal, and pedestrian detection system for vehicle
US20110090093A1 (en) * 2009-10-20 2011-04-21 Gm Global Technology Operations, Inc. Vehicle to Entity Communication
JP2013097606A (en) * 2011-11-01 2013-05-20 Daimler Ag Risk level determination system for vehicle, risk level determination device for vehicle, and risk notification device for vehicle using the same
JP2013171445A (en) * 2012-02-21 2013-09-02 Kato Electrical Mach Co Ltd Traffic safety system
KR101354049B1 (en) * 2012-10-30 2014-02-05 현대엠엔소프트 주식회사 Method for pedestrians jaywalking information notification system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110335479A (en) * 2019-07-02 2019-10-15 华人运通(上海)自动驾驶科技有限公司 Virtual zebra stripes method for controlling projection, device and virtual zebra stripes optical projection system
CN110335479B (en) * 2019-07-02 2020-10-09 华人运通(上海)自动驾驶科技有限公司 Virtual zebra crossing projection control method and device and virtual zebra crossing projection system
CN111405528A (en) * 2020-03-17 2020-07-10 中国汽车工程研究院股份有限公司 V2X test system and method under complex communication environment
CN114261336A (en) * 2020-09-16 2022-04-01 奥迪股份公司 Method and device for preventing vehicle door from being collided and vehicle
CN113306566A (en) * 2021-06-16 2021-08-27 上海大学 Vehicle and pedestrian collision early warning method and device based on sniffing technology
CN113306566B (en) * 2021-06-16 2023-12-12 上海大学 Vehicle pedestrian collision early warning method and device based on sniffing technology
CN114466315A (en) * 2022-02-10 2022-05-10 广东满天星云信息技术有限公司 Railway on-line operating personnel safety protection system based on big dipper high accuracy
CN114466315B (en) * 2022-02-10 2022-10-21 广东满天星云信息技术有限公司 Beidou high-precision-based safety protection system for operating personnel on railway line

Similar Documents

Publication Publication Date Title
WO2018016663A1 (en) Vehicle to pedestrian (v2p) collision prevention system and method therefor
WO2017119737A1 (en) Method and device for sharing image information in communication system
US11074767B2 (en) Automatic crash detection
WO2019117614A1 (en) System and method for testing v2x-applied cooperative-automated driving roadway road and connected car
WO2021101054A1 (en) Electronic device for processing v2x message and operating method thereof
US7098806B2 (en) Traffic preemption system
WO2017183920A1 (en) Control device for vehicle
WO2020122270A1 (en) Vehicle control apparatus and vehicle including same
WO2014163307A1 (en) Automatic driving system for vehicle
EP3475723B1 (en) Rss-based parking detection system and method thereof
WO2013133464A1 (en) Image display device and method thereof
EP3219170A1 (en) Information providing apparatus and method thereof
WO2020226343A1 (en) Electronic device and method for assisting with driving of vehicle
WO2020149714A1 (en) Cpm message division method using object state sorting
WO2018043821A1 (en) Route guiding system, using weather information, of unmanned aerial vehicle, method thereof, and recording medium recorded with computer program
WO2014098373A1 (en) System and method for providing bus information by reflecting bus stop order
WO2020159109A1 (en) Method and electronic device for transmitting group message
EP3659302A1 (en) Method for processing message and electronic device implementing the same
KR20210032758A (en) System and method for providing traffic safty based on traffic flow information in a tunnel
KR20210056632A (en) Method for image processing based on message and electronic device implementing the same
WO2020071890A1 (en) Packet filtering method for vehicle communication data, and vehicle communication terminal device for performing same
WO2019139311A1 (en) Electronic device attached to vehicle and control method therefor
WO2021201425A1 (en) Vehicular driving guidance method and electronic device
WO2021040058A1 (en) Vehicle electronic device and operation method of vehicle electronic device
WO2019245124A1 (en) Intersection collision prevention method and system performing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16909578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16909578

Country of ref document: EP

Kind code of ref document: A1