WO2018043642A1 - Metal mask material and production method therefor - Google Patents

Metal mask material and production method therefor Download PDF

Info

Publication number
WO2018043642A1
WO2018043642A1 PCT/JP2017/031349 JP2017031349W WO2018043642A1 WO 2018043642 A1 WO2018043642 A1 WO 2018043642A1 JP 2017031349 W JP2017031349 W JP 2017031349W WO 2018043642 A1 WO2018043642 A1 WO 2018043642A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal mask
rolling
mask material
less
sample
Prior art date
Application number
PCT/JP2017/031349
Other languages
French (fr)
Japanese (ja)
Inventor
章博 大森
岡本 拓也
恭之 飯田
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to EP17846646.2A priority Critical patent/EP3508285B1/en
Priority to KR1020197005481A priority patent/KR102164912B1/en
Priority to JP2018537395A priority patent/JP6646882B2/en
Priority to CN201780052365.0A priority patent/CN109641248B/en
Publication of WO2018043642A1 publication Critical patent/WO2018043642A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the present invention relates to a metal mask material and a manufacturing method thereof.
  • a metal mask is used to generate color patterning by vapor deposition on a substrate.
  • a method of etching an Fe—Ni alloy thin plate is known as one of the methods for forming the opening.
  • various proposals have been made.
  • the surface roughness measured in the direction perpendicular to the rolling direction is Ra: 0.08 to 0.20 ⁇ m in order to enable formation of a high-definition etching pattern.
  • the surface roughness Ra was 0.01 to 0.10 ⁇ m, and the surface roughness measured in the direction perpendicular to the rolling direction exceeded 0.02 ⁇ m in Ra from the surface roughness measured in the rolling direction.
  • Patent Document 2 describes a metal mask material whose etching property is improved by adjusting the X-ray diffraction intensity of the crystal orientation (111), (200), (220), and (311) of the rolled surface. Yes.
  • Patent Document 1 and Patent Document 2 are excellent inventions in terms of improving the etching processability, but there is still room for further study regarding the point of improving the adhesiveness at the same time.
  • An object of the present invention is to provide a metal mask material and a method for manufacturing the metal mask that are suitable for suppressing shape change after etching and obtaining good resist adhesion and etching processability.
  • the present inventors diligently studied various factors affecting the etching process such as chemical composition, surface roughness, and residual stress. As a result, the present inventors have come up with the present invention by discovering an effective configuration for improving adhesion with a resist and performing uniform etching, and further suppressing shape change after etching.
  • one embodiment of the present invention contains, in mass%, C: 0.01% or less, Si: 0.5% or less, Mn: 1.0% or less, Ni: 30 to 50%, the balance being Fe and inevitable
  • a metal mask material made of mechanical impurities The metal mask material has a surface roughness in the rolling direction and a surface roughness in a direction orthogonal to the rolling direction, both 0.05 ⁇ m ⁇ Ra ⁇ 0.25 ⁇ m and Rz ⁇ 1.5 ⁇ m, The metal mask material has a skewness Rsk of 0 or more in a direction perpendicular to the rolling direction, A sample having a length of 150 mm and a width of 30 mm is cut out from the material for the metal mask, and the amount of warpage when the sample is etched from one side and 60% of the plate thickness of the sample is removed is 15 mm or less, and the plate thickness is 0.
  • a metal mask material that is 10 mm or more and 0.5 mm or less.
  • the skewness Rsk in the rolling direction of the metal mask material is smaller than Rsk in the direction orthogonal to the rolling direction of the metal mask material.
  • the surface roughness Ra in the direction orthogonal to the rolling direction of the metal mask material is larger than the surface roughness Ra in the rolling direction of the metal mask material.
  • Rsk in a direction orthogonal to the rolling direction of the metal mask material is 1 or less.
  • a sample having a length of 150 mm and a width of 30 mm is cut out from the metal mask material, and the sample is etched from one side to remove any of 20%, 30%, and 50% of the plate thickness of the sample. The amount of warpage is 15 mm or less.
  • Another embodiment of the present invention includes, in mass%, C: 0.01% or less, Si: 0.5% or less, Mn: 1.0% or less, Ni: 30 to 50%, and the balance being Fe.
  • a method for producing a metal mask material for cold rolling a cold rolling material comprising inevitable impurities to obtain a metal mask material The conditions of the final pass in the finish cold rolling process for the cold rolling material are rolling reduction: 35% or less, biting angle of the rolling roll: 1.0 ° or more,
  • both the surface roughness in the rolling direction and the surface roughness in the direction orthogonal to the rolling direction are 0.05 ⁇ m ⁇ Ra ⁇ 0.25 ⁇ m and Rz ⁇ 1.5 ⁇ m, and are orthogonal to the rolling direction.
  • the skewness Rsk in the direction is 0 or more
  • a sample having a length of 150 mm and a width of 30 mm was cut out from the material for the metal mask, the sample was etched from one side, and the amount of warpage when 60% of the plate thickness of the sample was removed was 15 mm or less
  • the metal mask material manufacturing method is characterized in that the thickness of the material after finish cold rolling is 0.10 mm or more and less than 0.5 mm.
  • the biting angle of the rolling roll is 3.0 ° or less.
  • the rolling reduction in the final pass in the finish cold rolling step is 15% to 35%.
  • the surface roughness Ra in the direction perpendicular to the circumferential direction of the roll used in the final pass of the finish cold rolling step is 0.05 to 0.25 ⁇ m.
  • the rolling speed of the finish cold rolling step is 150 m / min or less.
  • the metal mask material of the present invention includes a steel strip wound in a coil shape and a rectangular thin plate produced by cutting the steel strip.
  • the metal mask material of the present invention contains, by mass%, C: 0.01% or less, Si: 0.5% or less, Mn: 1.0% or less, Ni: 30 to 50%, with the balance being Fe.
  • the reason why the Fe—Ni alloy having a chemical composition as an inevitable impurity is used is as follows. [C: 0.01% by mass or less] C is an element that affects the etching property.
  • C When C is excessively contained, the etching property is inhibited, so the upper limit of C is set to 0.01%.
  • C may be 0%, but the lower limit is not particularly limited because it is included in the manufacturing process.
  • Si 0.5% by mass or less, Mn: 1.0% by mass or less
  • Si and Mn are usually used for the purpose of deoxidation and are contained in a small amount in the Fe—Ni alloy. However, if excessively contained, segregation is likely to occur. Therefore, Si: 0.5% or less, Mn: 1 0.0% or less.
  • Preferred amounts of Si and Mn are Si: 0.1% or less and Mn: 0.5% or less.
  • the lower limits of Si and Mn can be set to 0.05% for Si and 0.05% for Mn, for example.
  • Ni 30-50% by mass
  • Ni is an element having an effect of adjusting a thermal expansion coefficient and having a great influence on the low thermal expansion characteristics. If the content is less than 30% or exceeds 50%, the effect of lowering the thermal expansion coefficient is lost, so the range of Ni is 30 to 50%. A preferable amount of Ni is 32 to 45%. What constitutes other than the above is Fe and inevitable impurities.
  • the surface roughness of the metal mask material of the present invention has an arithmetic average roughness Ra (conforming to JIS-B-0601-2001) of 0.05 to 0.25 ⁇ m and a maximum height Rz (JIS-B-). 0601-2001) is 1.5 ⁇ m or less.
  • Ra arithmetic average roughness
  • Rz JIS-B-0601-2001
  • the material of the present invention can be etched with high accuracy.
  • Ra exceeds 0.25 ⁇ m, the surface of the material is too rough, causing variations in the progress of etching, making it difficult to perform highly accurate etching.
  • Ra is less than 0.05 ⁇ m, the adhesion of the resist tends to be lowered.
  • the lower limit of Rz is not particularly limited, but it is preferable to set the lower limit of Rz to 0.3 ⁇ m in order to obtain higher adhesion.
  • a more preferable upper limit of Ra is 0.20 ⁇ m, and a more preferable upper limit of Rz is 1.2 ⁇ m.
  • the above-mentioned surface roughness is defined as a surface roughness in a direction perpendicular to the rolling direction of the metal mask material (hereinafter also referred to as “width direction” or “rolling perpendicular direction”).
  • the surface roughness in the rolling direction (hereinafter also referred to as “longitudinal direction”) is preferable.
  • the surface roughness of the width direction of the raw material for metal masks in this embodiment is larger than the surface roughness measured in the rolling direction. Thereby, it becomes easy to discharge the rolling oil from between the roll and the material, and it is possible to suppress the oil pit formed by the biting of the rolling oil.
  • the Ra in the width direction is preferably 10% or more higher than the Ra in the rolling direction because the above-described oil pit suppressing effect is easily obtained.
  • a commonly used contact type or non-contact type roughness meter can be used.
  • the metal mask material of the present embodiment is characterized in that, in addition to the surface roughness described above, skewness Rsk (conforming to JIS-B-0601-2001) ⁇ 0 in a direction orthogonal to the rolling direction of the material. .
  • skewness Rsk conforming to JIS-B-0601-2001
  • ⁇ 0 in a direction orthogonal to the rolling direction of the material.
  • the upper limit of Rsk is preferably 1.0, and more preferably 0.5. Furthermore, the oil pit suppression effect mentioned above can be improved by making Rsk of the raw material rolling direction smaller than Rsk in the width direction. As long as Rsk in the rolling direction is smaller than the value of Rsk in the width direction, a value less than 0 (negative value) may be taken.
  • the metal mask material of the present embodiment is applied to a material having a thickness of 0.5 mm or less in order to sufficiently obtain the above-described Rsk effect.
  • the plate thickness is 0.2 mm or less.
  • the lower limit of the plate thickness is set to 0.10 mm in order to easily adjust the biting angle described later to 1.0 ° or more.
  • the metal mask material of the present embodiment has a length of 150 mm and a width of 30 mm cut out, etched from one side of the sample, and the amount of warpage when 60% of the thickness of the sample is removed is 15 mm or less. It is characterized by. As shown above, by reducing the residual stress in the region of 60% of the plate thickness, even when etching near the center of the plate thickness where the balance of stress is further lost, deformation is suppressed and the etching process proceeds well. Can be made. Therefore, it is possible to cope with half-etching of various depths and improve the degree of freedom of the etching pattern. Preferably, the warp amount when any of 20%, 30%, and 50% of the thickness of the sample is removed is 15 mm or less.
  • the warp amount is 15 mm or less.
  • the amount of warpage is preferably 13 mm or less, more preferably 11 mm or less, and even more preferably 9 mm or less. Most preferably, the stress balance tends to be lost, and a large warp is likely to occur.
  • the warp amount after removing 50% of the sample thickness is 9 mm or less, and the warp when 20% or 30% of the plate thickness is removed. The amount is preferably 7 mm or less. In this embodiment, the sample is cut so that the longitudinal direction is the rolling direction, and the warpage is measured.
  • the method for measuring the amount of warpage in this embodiment is that the upper end of the cut sample is suspended in contact with the vertical surface plate after being removed from one side of the sample by etching, and the lower end of the cut sample separated from the vertical surface plate by warpage.
  • the horizontal distance from the vertical surface plate is measured as the amount of warpage.
  • the manufacturing method of the metal mask raw material of this invention is demonstrated.
  • the steps of vacuum melting, hot forging, hot rolling, and cold rolling can be applied.
  • homogenization heat treatment is performed at about 1200 ° C. in the stage before cold rolling, and during the cold rolling process, annealing at 800 to 950 ° C. is performed in order to reduce the hardness of the cold rolled material.
  • annealing at 800 to 950 ° C. is performed in order to reduce the hardness of the cold rolled material.
  • a polishing process for removing the scale on the surface, an off-gauge part at the end of the material (part where the plate thickness is thick), and an ear-cutting process to remove the ear wave part generated in the rolling process are performed. You may go.
  • the rolling reduction in the final pass in the finish cold rolling process is adjusted to 35% or less.
  • a preferable upper limit of the rolling reduction is 30%.
  • a more preferable lower limit of the rolling reduction is 18%, and a more preferable lower limit of the rolling reduction is 20%.
  • the number of passes in finish cold rolling is not particularly specified, and may be performed a plurality of times (for example, 3 times or more). However, in order to perform rolling so as not to crush polishing marks described later, finishing is performed with a single pass number. It is preferable to perform rolling.
  • the roll used for finish cold rolling is a roll having a surface roughness Ra: 0.05 to 0.25 ⁇ m in a direction perpendicular to the circumferential direction of the roll (the rotation direction of the roll). Can be used.
  • a preferable upper limit of Ra is 0.15 ⁇ m. Thereby, desired roughness can be imparted to the metal mask material.
  • the material of the roll is not particularly limited, and for example, an alloy tool steel roll defined in JIS-G4404 can be used.
  • the roll of the manufacturing method which concerns on this invention It is preferable to form polishing marks on the surface in the circumferential direction of the roll.
  • the difference between the circumferential roughness of the roll in this embodiment and the surface roughness in the direction perpendicular to the circumferential direction is Ra of 0.02 ⁇ m or more due to this polishing mark. Due to this feature, it is possible to intentionally make a difference between the surface roughness in the direction perpendicular to the rolling direction of the metal mask material and the surface roughness in the rolling direction, and it becomes easier to discharge the rolling oil. Can be further suppressed.
  • the manufacturing method according to the present invention sets the biting angle, which is the angle at which the material to be rolled and the work roll start to contact, to 1.0 ° or more.
  • the biting angle By adjusting the biting angle in this way, it is possible to obtain a desired surface roughness while suppressing excessive generation of oil pits.
  • the upper limit of the biting angle can be set to 3.0 °.
  • the upper limit of the preferable biting angle is 2.0 °. Further, it is preferable that the above-mentioned biting angle is applied to all finish cold rolling passes.
  • the biting angle in the present embodiment is ⁇
  • R roll radius
  • h 0 material plate thickness before rolling
  • h 1 material plate thickness after rolling.
  • the rolling speed it is preferable to set the rolling speed to 150 m / min or less.
  • the rolling speed By setting the rolling speed to 150 m / min or less, the amount of rolling oil introduced between the work roll and the metal mask material is reduced to suppress the occurrence of oil pits, and Rsk is set to a positive value more reliably. It is possible to adjust.
  • a more preferable upper limit of the rolling speed is 120 m / min. More preferably, the upper limit is set to 100 m / min.
  • the lower limit of the rolling speed is not particularly set, but if it is too slow, the production efficiency is lowered, so that it can be set to 20 m / min. Preferably it is 30 m / min.
  • strain relief annealing may be performed in order to remove strain remaining in the etching material after finish rolling and suppress shape defects generated in the material.
  • the strain relief annealing is preferably performed at a temperature of about 400 to 700 ° C.
  • the annealing time is not particularly limited, but if it is too long, the properties such as tensile strength are significantly deteriorated. If it is too short, the effect of removing strain cannot be obtained. preferable.
  • a more preferable lower limit of the strain relief annealing time is 1.2 min, and a further preferable lower limit of the strain relief annealing time is 1.5 min.
  • Table 1 shows the chemical composition of the metal mask material of this example.
  • the Fe—Ni alloy of this example was subjected to cold rolling after a step of finishing to a thickness of 2 to 3 mm by vacuum melting, hot forging, homogenizing heat treatment, hot rolling.
  • the hot-rolled Fe—Ni alloy was cold-rolled including two annealings to produce a Fe—Ni alloy cold-rolled material.
  • the thicknesses of the Fe-Ni alloy cold rolled material before the final pass of the finish cold rolling were 0.125 mm (sample No. 1) and 0.275 mm (sample No. 2).
  • No. 1 is 0.10 mm (rolling rate 20%) after finish cold rolling. In No.
  • Sample 2 was subjected to strain relief annealing at a temperature of 630 ° C. for 1 minute.
  • the sample No. 1 in which the rolling conditions were adjusted to adjust the roll biting angle to less than 1.0 °. 11 was created.
  • the surface roughness and warpage of the obtained sample were measured.
  • the surface roughness Ra, Rz, and Rsk were measured according to the measurement method shown in JISB0601, JISB0651, and randomly selected three locations to measure the surface roughness in the longitudinal direction and the width direction.
  • a stylus type roughness meter was used as the measuring device, and measurement was performed under the conditions of an evaluation length of 4 mm, a measurement speed of 0.3 mm / s, and a cutoff value of 0.8 mm.
  • Table 2 shows the average values at three locations.
  • a cut sample with a length of 150 mm and a width of 30 mm was prepared, etched from one side so as to be 2/5 of the plate thickness (60% of the plate thickness was removed), and then the cut sample was placed on the vertical upper plate The amount of warpage when suspended on the surface was measured and evaluated.
  • the said cut sample was extract
  • the etching solution used was an aqueous ferric chloride solution and sprayed with an etching solution having a liquid temperature of 50 ° C. to corrode the test piece. The results are shown in Table 2.
  • sample No. which is a metal mask material of the present invention example. 1 and sample no. No. 2 is an optimal surface state for exhibiting good adhesion and uniform etching processability, and it was confirmed that shape change after deep etching exceeding half of the plate thickness can be suppressed.
  • sample No. which is a comparative example. No. 11 had a negative value in the width direction of Rsk, and thus it was confirmed that the adhesiveness is likely to be inferior to that of the examples of the present invention.
  • sample No. 1 and sample no. Sample No. 2 of the present invention was prepared by preparing a plurality of cut samples having a length of 150 mm and a width of 30 mm, and changing the amount of etching removal as shown in Table 3. 3 to 8 were prepared and the amount of warpage was measured.
  • sample no. 3 to 5 are sample Nos. 1 is a sample prepared from sample No. 1.
  • Samples 6 to 8 are sample Nos. Sample prepared from 2.
  • the method for measuring the amount of warpage and the etching solution used are the same as those used in Example 1. The results are shown in Table 3.
  • the metal mask material of the present invention can suppress the amount of warp even if the etching depth is changed.
  • the amount of material removed by etching is 50% of the plate thickness, the balance between compressive residual stress and tensile residual stress tends to be lost, and excessive warpage tends to occur.
  • the material of the present invention has excessive warpage. It was confirmed that it was suitable for etching use.
  • sample no. 3 to 5 are sample Nos. It was confirmed that there was less warpage than 6-8. This is because the sample No. 6 to 8 strain relief annealing times This is probably because the remaining strain amount was slightly increased because it was shorter than 3-5.

Abstract

Provided are: a metal mask material the shape change of which after etching is suppressed and which is preferable in order to achieve good resist adhesiveness and good etching workability; and a production method for the metal mask material. The metal mask material has a surface roughness in the rolling direction and a surface roughness in a direction perpendicular to the rolling direction, which satisfy 0.05 μm≤Ra≤0.25 μm and Rz≤1.5 μm. The metal mask material has a skewness Rsk of 0 or greater in the direction perpendicular to the rolling direction. When a sample having a length of 150 mm and a width of 30 mm is cut out of the metal mask material and the thickness of the sample is reduced by 60% by etching from one side of the sample, the amount of warpage of the sample is 15 mm or less. The metal mask material has a thickness of 0.10-0.5 mm.

Description

メタルマスク用素材およびその製造方法Metal mask material and manufacturing method thereof
 本発明は、メタルマスク用素材およびその製造方法に関するものである。 The present invention relates to a metal mask material and a manufacturing method thereof.
 例えば有機ELディスプレイの作製において、基板へ蒸着しカラーパターニングを生成する為にメタルマスクが用いられる。このようなメタルマスクは、開孔部を作製する方法の一つとして、Fe-Ni合金の薄板にエッチング加工を行う方法が知られている。このエッチング特性を向上させるために、種々の提案がなされている。例えば特許文献1には、高精細なエッチングパターンの形成を可能とするために、圧延方向と直角方向に測定した表面粗さが、Ra:0.08~0.20μmであり、圧延方向に測定した表面粗さが、Ra:0.01~0.10μmであり、且つ、圧延方向と直角方向に測定した表面粗さが、圧延方向に測定した表面粗さより、Raで0.02μmを超えて粗い表面粗さを有することを特徴とするエッチング加工用素材について記載されている。また特許文献2には、圧延面の結晶方位(111)、(200)、(220)、(311)のX線回折強度を調整することでエッチング性を向上させたメタルマスク材料について記載されている。 For example, in the production of an organic EL display, a metal mask is used to generate color patterning by vapor deposition on a substrate. For such a metal mask, a method of etching an Fe—Ni alloy thin plate is known as one of the methods for forming the opening. In order to improve the etching characteristics, various proposals have been made. For example, in Patent Document 1, the surface roughness measured in the direction perpendicular to the rolling direction is Ra: 0.08 to 0.20 μm in order to enable formation of a high-definition etching pattern. The surface roughness Ra was 0.01 to 0.10 μm, and the surface roughness measured in the direction perpendicular to the rolling direction exceeded 0.02 μm in Ra from the surface roughness measured in the rolling direction. A material for etching is described which has a rough surface roughness. Patent Document 2 describes a metal mask material whose etching property is improved by adjusting the X-ray diffraction intensity of the crystal orientation (111), (200), (220), and (311) of the rolled surface. Yes.
特開2010-214447号公報JP 2010-214447 A 特開2014-101543号公報JP 2014-101543 A
 高精彩な有機ELディスプレイ等の製品を作製するために、使用するマスクにはより高精度なパターンの形成が必要である。そのためにはエッチングが均一に進行できる表面肌に加えて、サイドエッチング抑制のためにレジストと素材との密着性をより向上させることも求められる。特許文献1、特許文献2はそれぞれエッチング加工性を向上させる点において優れた発明だが、密着性も同時に向上させる点に関しては、さらなる検討の余地が残されている。
 本発明の目的は、エッチング後の形状変化を抑制するとともに、良好なレジスト密着性とエッチング加工性を得るうえで好適なメタルマスク用素材とその製造方法を提供することである。
In order to produce a product such as a high-definition organic EL display, it is necessary to form a more accurate pattern on the mask used. For this purpose, in addition to the surface skin where etching can proceed uniformly, it is also required to improve the adhesion between the resist and the material in order to suppress side etching. Patent Document 1 and Patent Document 2 are excellent inventions in terms of improving the etching processability, but there is still room for further study regarding the point of improving the adhesiveness at the same time.
An object of the present invention is to provide a metal mask material and a method for manufacturing the metal mask that are suitable for suppressing shape change after etching and obtaining good resist adhesion and etching processability.
 本発明者等は上記目的を達成するために、化学組成、表面粗さ、残留応力等のエッチング加工に影響を及ぼす種々の要因について鋭意検討した。その結果、レジストとの密着性向上や均一なエッチング加工を可能とし、さらにエッチング後の形状変化抑制に有効な構成を知見し、本発明に想到した。 In order to achieve the above object, the present inventors diligently studied various factors affecting the etching process such as chemical composition, surface roughness, and residual stress. As a result, the present inventors have come up with the present invention by discovering an effective configuration for improving adhesion with a resist and performing uniform etching, and further suppressing shape change after etching.
 すなわち本発明の一態様は 質量%で、C:0.01%以下、Si:0.5%以下、Mn:1.0%以下、Ni:30~50%を含有し、残部がFe及び不可避的不純物からなるメタルマスク用素材であって、
 前記メタルマスク用素材は、圧延方向における表面粗さと圧延方向と直交する方向における表面粗さとがともに、0.05μm≦Ra≦0.25μm、Rz≦1.5μm以下であり、
 前記メタルマスク用素材は、圧延方向と直交する方向におけるスキューネスRskが0以上であり、
 前記メタルマスク用素材から長さ150mm、幅30mmの試料を切り出し、前記試料を片側からエッチングし、前記試料の板厚の60%を除去したときの反り量が15mm以下であり、板厚が0.10mm以上0.5mm以下であるメタルマスク用素材である。
 好ましくは、前記メタルマスク用素材の圧延方向におけるスキューネスRskが前記メタルマスク用素材の圧延方向と直交する方向におけるRskよりも小さい。
 好ましくは、前記メタルマスク用素材の圧延方向と直交する方向における表面粗さRaが、前記メタルマスク用素材の圧延方向における表面粗さRaよりも大きい。
 好ましくは、前記メタルマスク用素材の圧延方向と直交する方向におけるRskが1以下である。
 好ましくは、前記メタルマスク用素材から長さ150mm、幅30mmの試料を切り出し、前記試料を片側からエッチングし、前記試料の板厚の20%、30%、50%のいずれかを除去したときの反り量が15mm以下である。 
That is, one embodiment of the present invention contains, in mass%, C: 0.01% or less, Si: 0.5% or less, Mn: 1.0% or less, Ni: 30 to 50%, the balance being Fe and inevitable A metal mask material made of mechanical impurities,
The metal mask material has a surface roughness in the rolling direction and a surface roughness in a direction orthogonal to the rolling direction, both 0.05 μm ≦ Ra ≦ 0.25 μm and Rz ≦ 1.5 μm,
The metal mask material has a skewness Rsk of 0 or more in a direction perpendicular to the rolling direction,
A sample having a length of 150 mm and a width of 30 mm is cut out from the material for the metal mask, and the amount of warpage when the sample is etched from one side and 60% of the plate thickness of the sample is removed is 15 mm or less, and the plate thickness is 0. A metal mask material that is 10 mm or more and 0.5 mm or less.
Preferably, the skewness Rsk in the rolling direction of the metal mask material is smaller than Rsk in the direction orthogonal to the rolling direction of the metal mask material.
Preferably, the surface roughness Ra in the direction orthogonal to the rolling direction of the metal mask material is larger than the surface roughness Ra in the rolling direction of the metal mask material.
Preferably, Rsk in a direction orthogonal to the rolling direction of the metal mask material is 1 or less.
Preferably, a sample having a length of 150 mm and a width of 30 mm is cut out from the metal mask material, and the sample is etched from one side to remove any of 20%, 30%, and 50% of the plate thickness of the sample. The amount of warpage is 15 mm or less.
 本発明の他の一態様は、質量%で、C:0.01%以下、Si:0.5%以下、Mn:1.0%以下、Ni:30~50%を含有し、残部がFe及び不可避的不純物からなる冷間圧延用素材を冷間圧延してメタルマスク用素材を得るメタルマスク用素材の製造方法であって、
 前記冷間圧延用素材に対する仕上冷間圧延工程における最終パスの条件が、圧下率:35%以下、圧延ロールの噛み込み角:1.0°以上であり、
 前記メタルマスク用素材は、圧延方向における表面粗さと圧延方向と直交する方向における表面粗さとがともに、0.05μm≦Ra≦0.25μm、Rz≦1.5μm以下であり、圧延方向と直交する方向におけるスキューネスRskが0以上であるとともに、
 前記メタルマスク用素材から長さ150mm、幅30mmの試料を切り出し、前記試料を片側からエッチングし、前記試料の板厚の60%を除去したときの反り量が15mm以下であり、
仕上冷間圧延後の素材の板厚が0.10mm以上0.5mm未満であることを特徴とするメタルマスク用素材の製造方法である。
 好ましくは、前記圧延ロールの噛み込み角が3.0°以下である。
 好ましくは、前記仕上冷間圧延工程における最終パスの圧下率が、15%~35%である。
 好ましくは、前記仕上冷間圧延工程の最終パスに用いるロールの円周方向と直交する方向の表面粗さRaが0.05~0.25μmである。
 好ましくは、前記仕上冷間圧延工程の圧延速度が150m/min以下である。
Another embodiment of the present invention includes, in mass%, C: 0.01% or less, Si: 0.5% or less, Mn: 1.0% or less, Ni: 30 to 50%, and the balance being Fe. And a method for producing a metal mask material for cold rolling a cold rolling material comprising inevitable impurities to obtain a metal mask material,
The conditions of the final pass in the finish cold rolling process for the cold rolling material are rolling reduction: 35% or less, biting angle of the rolling roll: 1.0 ° or more,
In the metal mask material, both the surface roughness in the rolling direction and the surface roughness in the direction orthogonal to the rolling direction are 0.05 μm ≦ Ra ≦ 0.25 μm and Rz ≦ 1.5 μm, and are orthogonal to the rolling direction. The skewness Rsk in the direction is 0 or more,
A sample having a length of 150 mm and a width of 30 mm was cut out from the material for the metal mask, the sample was etched from one side, and the amount of warpage when 60% of the plate thickness of the sample was removed was 15 mm or less,
The metal mask material manufacturing method is characterized in that the thickness of the material after finish cold rolling is 0.10 mm or more and less than 0.5 mm.
Preferably, the biting angle of the rolling roll is 3.0 ° or less.
Preferably, the rolling reduction in the final pass in the finish cold rolling step is 15% to 35%.
Preferably, the surface roughness Ra in the direction perpendicular to the circumferential direction of the roll used in the final pass of the finish cold rolling step is 0.05 to 0.25 μm.
Preferably, the rolling speed of the finish cold rolling step is 150 m / min or less.
 上記の特徴を有する本発明によれば、エッチング加工後の形状変化も少なく、レジストとの密着性向上に好適なメタルマスク用素材を得ることが可能である。 According to the present invention having the above characteristics, it is possible to obtain a metal mask material suitable for improving adhesion with a resist with little change in shape after etching.
 以下、本発明を詳細に説明する。ただし、本発明は、ここで取り挙げた実施形態に限定されるものではなく、その発明の技術的思想を逸脱しない範囲で適宜組み合わせや改良が可能である。なお本発明のメタルマスク用素材とは、コイル状に巻き回されている鋼帯や、その鋼帯を切断して作製された矩形状の薄板も含む。
 本発明のメタルマスク用素材を、質量%で、C:0.01%以下、Si:0.5%以下、Mn:1.0%以下、Ni:30~50%を含有し、残部がFe及び不可避的不純物である化学組成のFe-Ni合金とした理由は以下のとおりである。
 [C:0.01質量%以下]
 Cは、エッチング性に影響を及ぼす元素である。Cが過度に多く含まれるとエッチング性を阻害するため、Cの上限を0.01%とした。Cは0%でも良いが、製造工程上少なからず含まれるものであるため、下限は特に限定しない。
 [Si:0.5質量%以下、Mn:1.0質量%以下]
 Si、Mnは、通常、脱酸の目的で使用され、Fe-Ni合金に微量含有されているが、過剰に含有すれば偏析を起こし易くなるため、Si:0.5%以下、Mn:1.0%以下とした。好ましいSi量とMn量は、Si:0.1%以下、Mn:0.5%以下である。SiとMnの下限は、例えばSiは0.05%、Mnは0.05%と設定することができる。
 [Ni:30~50質量%]
 Niは、熱膨張係数を調整する作用を有し、低熱膨張特性に大きな影響を及ぼす元素である。含有量が30%より少なく、または50%を越えるものでは熱膨張係数を低める効果がなくなるため、Niの範囲は30~50%とする。好ましいNi量は32~45%である。
 上記以外を構成するのはFe及び不可避的不純物である。
Hereinafter, the present invention will be described in detail. However, the present invention is not limited to the embodiments described here, and can be appropriately combined and improved without departing from the technical idea of the present invention. The metal mask material of the present invention includes a steel strip wound in a coil shape and a rectangular thin plate produced by cutting the steel strip.
The metal mask material of the present invention contains, by mass%, C: 0.01% or less, Si: 0.5% or less, Mn: 1.0% or less, Ni: 30 to 50%, with the balance being Fe. The reason why the Fe—Ni alloy having a chemical composition as an inevitable impurity is used is as follows.
[C: 0.01% by mass or less]
C is an element that affects the etching property. When C is excessively contained, the etching property is inhibited, so the upper limit of C is set to 0.01%. C may be 0%, but the lower limit is not particularly limited because it is included in the manufacturing process.
[Si: 0.5% by mass or less, Mn: 1.0% by mass or less]
Si and Mn are usually used for the purpose of deoxidation and are contained in a small amount in the Fe—Ni alloy. However, if excessively contained, segregation is likely to occur. Therefore, Si: 0.5% or less, Mn: 1 0.0% or less. Preferred amounts of Si and Mn are Si: 0.1% or less and Mn: 0.5% or less. The lower limits of Si and Mn can be set to 0.05% for Si and 0.05% for Mn, for example.
[Ni: 30-50% by mass]
Ni is an element having an effect of adjusting a thermal expansion coefficient and having a great influence on the low thermal expansion characteristics. If the content is less than 30% or exceeds 50%, the effect of lowering the thermal expansion coefficient is lost, so the range of Ni is 30 to 50%. A preferable amount of Ni is 32 to 45%.
What constitutes other than the above is Fe and inevitable impurities.
 まず、本発明のメタルマスク用素材について説明する。
 (表面粗さ)
 本発明のメタルマスク用素材の表面粗さは、算術平均粗さRa(JIS-B-0601-2001に準拠)が0.05~0.25μmであり、かつ最大高さRz(JIS-B-0601-2001に準拠)が1.5μm以下であることを特徴とする。上記範囲内のRaおよびRzを有することで、本発明の素材は高精度なエッチング加工が可能となる。Raが0.25μmを超える場合、素材表面が粗すぎるためエッチングの進行にばらつきが生じ、高精度なエッチング加工が困難となる。Raが0.05μm未満の場合、レジストの密着性が低下する傾向にある。また上記Raの範囲を満たしていても、Rzが1.5μmを超える場合、素材表面の一部に、粗さ曲線における大きな山部分が形成され、その山部からエッチングが進行してエッチングムラの要因となるため、好ましくない。Rzの下限は特に限定しないが、より高い密着性を得るために、Rzの下限を0.3μmに設定すると好ましい。より好ましいRaの上限は0.20μmであり、より好ましいRzの上限は1.2μmである。上記の表面粗さの規定は、局所的なエッチングムラを抑制するために、メタルマスク用素材の圧延方向と直交する方向(以降、「幅方向」または「圧延直角方向とも記載する)の表面粗さと、圧延方向(以降、「長手方向」とも記載する)の表面粗さとの両方で満たすことが好ましい。また、本実施形態におけるメタルマスク用素材の幅方向の表面粗さは、圧延方向に測定した表面粗さよりも大きくなっていることが好ましい。これにより圧延油をロールと素材との間から排出させやすくなり、圧延油の噛み込みによって形成されるオイルピットを抑制することが可能である。具体的には幅方向のRaは圧延方向のRaより10%以上高い値であると、上述したオイルピット抑制効果を得やすくなるため好ましい。なお表面粗さの測定には、一般的に使用されている接触式または非接触式の粗さ計を用いることができる。
First, the metal mask material of the present invention will be described.
(Surface roughness)
The surface roughness of the metal mask material of the present invention has an arithmetic average roughness Ra (conforming to JIS-B-0601-2001) of 0.05 to 0.25 μm and a maximum height Rz (JIS-B-). 0601-2001) is 1.5 μm or less. By having Ra and Rz within the above ranges, the material of the present invention can be etched with high accuracy. When Ra exceeds 0.25 μm, the surface of the material is too rough, causing variations in the progress of etching, making it difficult to perform highly accurate etching. When Ra is less than 0.05 μm, the adhesion of the resist tends to be lowered. Even if the above Ra range is satisfied, if Rz exceeds 1.5 μm, a large crest portion in the roughness curve is formed on a part of the material surface, and etching proceeds from the crest portion to cause uneven etching. Since it becomes a factor, it is not preferable. The lower limit of Rz is not particularly limited, but it is preferable to set the lower limit of Rz to 0.3 μm in order to obtain higher adhesion. A more preferable upper limit of Ra is 0.20 μm, and a more preferable upper limit of Rz is 1.2 μm. In order to suppress local etching unevenness, the above-mentioned surface roughness is defined as a surface roughness in a direction perpendicular to the rolling direction of the metal mask material (hereinafter also referred to as “width direction” or “rolling perpendicular direction”). And the surface roughness in the rolling direction (hereinafter also referred to as “longitudinal direction”) is preferable. Moreover, it is preferable that the surface roughness of the width direction of the raw material for metal masks in this embodiment is larger than the surface roughness measured in the rolling direction. Thereby, it becomes easy to discharge the rolling oil from between the roll and the material, and it is possible to suppress the oil pit formed by the biting of the rolling oil. Specifically, the Ra in the width direction is preferably 10% or more higher than the Ra in the rolling direction because the above-described oil pit suppressing effect is easily obtained. For measuring the surface roughness, a commonly used contact type or non-contact type roughness meter can be used.
 本実施形態のメタルマスク用素材は、上述した表面粗さに加えて、素材の圧延方向と直交する方向におけるスキューネスRsk(JIS-B-0601-2001に準拠)≧0であることを特徴とする。上記の数値範囲を満たすことで、素材表面の粗さ曲線において、尖った形状の山部が多く形成されるため、高いアンカー効果が得ることができる。これによりメタルマスク用素材とレジストとの密着性を向上させ、エッチング液が素材とレジストとの境界に侵入することが要因で発生するサイドエッチングを抑制することが可能である。Rskの値が過度に高くなり過ぎるとエッチングの均一な進行を阻害する可能性があるため、Rskの上限は1.0が好ましく、0.5がさらに好ましい。さらに素材の圧延方向のRskを幅方向におけるRskよりも小さくすることで、前述したオイルピット抑制効果を向上させることができる。圧延方向のRskは幅方向のRskの値よりも小さければ、0未満の値(負値)をとってもよい。なお本実施形態のメタルマスク用素材は、上述したRskの効果を十分に得るためには、板厚0.5mm以下の素材に適用する。好ましくは、板厚0.2mm以下である。また板厚の下限は、後述する噛み込み角を1.0°以上に調整し易くするために、0.10mmに設定する。 The metal mask material of the present embodiment is characterized in that, in addition to the surface roughness described above, skewness Rsk (conforming to JIS-B-0601-2001) ≧ 0 in a direction orthogonal to the rolling direction of the material. . By satisfying the above numerical range, a lot of sharp peaks are formed in the roughness curve of the material surface, so that a high anchor effect can be obtained. As a result, it is possible to improve the adhesion between the metal mask material and the resist, and to suppress the side etching that occurs due to the etching liquid entering the boundary between the material and the resist. If the value of Rsk is excessively high, there is a possibility that uniform progress of etching may be hindered. Therefore, the upper limit of Rsk is preferably 1.0, and more preferably 0.5. Furthermore, the oil pit suppression effect mentioned above can be improved by making Rsk of the raw material rolling direction smaller than Rsk in the width direction. As long as Rsk in the rolling direction is smaller than the value of Rsk in the width direction, a value less than 0 (negative value) may be taken. Note that the metal mask material of the present embodiment is applied to a material having a thickness of 0.5 mm or less in order to sufficiently obtain the above-described Rsk effect. Preferably, the plate thickness is 0.2 mm or less. The lower limit of the plate thickness is set to 0.10 mm in order to easily adjust the biting angle described later to 1.0 ° or more.
 (反り量)
 本実施形態のメタルマスク用素材は、長さ150mm、幅30mmの試料を切り出し、前記試料を片側からエッチングし、前記試料の板厚の60%を除去したときの反り量が15mm以下であることを特徴とする。上記に示すように、板厚の60%の領域の残留応力も低減させることで、応力のバランスがより崩れる板厚中央付近のエッチングを行っても、変形を抑制し、良好にエッチング加工を進行させることができる。そのため多様な深さのハーフエッチングに対応でき、エッチングパターンの自由度を向上させることができる。好ましくは、前記試料の板厚の20%、30%、50%のいずれかを除去したときの反り量が15mm以下である。より好ましくは、前記試料の板厚の20、30、50%のいずれを除去しても反り量が15mm以下である。この反り量は13mm以下が好ましく、11mm以下がより好ましく、9mm以下がさらに好ましい。最も好ましくは、応力バランスが崩れやすく、大きな反りが発生しやすい、試料の板厚を50%除去した際における反り量が9mm以下であり、板厚の20%または30%を除去した際における反り量が7mm以下であることが好ましい。本実施形態では、長手方向が圧延方向となるように試料を切断し、反りを測定している。なお本実施形態における反り量の測定方法は、試料の片側からエッチングで除去した後、カットサンプルの上端を垂直定盤に接する状態で吊り下げ、反りにより垂直定盤から離れたカットサンプルの下端と、垂直定盤との水平距離を反り量として測定している。
(Warpage amount)
The metal mask material of the present embodiment has a length of 150 mm and a width of 30 mm cut out, etched from one side of the sample, and the amount of warpage when 60% of the thickness of the sample is removed is 15 mm or less. It is characterized by. As shown above, by reducing the residual stress in the region of 60% of the plate thickness, even when etching near the center of the plate thickness where the balance of stress is further lost, deformation is suppressed and the etching process proceeds well. Can be made. Therefore, it is possible to cope with half-etching of various depths and improve the degree of freedom of the etching pattern. Preferably, the warp amount when any of 20%, 30%, and 50% of the thickness of the sample is removed is 15 mm or less. More preferably, even if any of 20, 30, and 50% of the plate thickness of the sample is removed, the warp amount is 15 mm or less. The amount of warpage is preferably 13 mm or less, more preferably 11 mm or less, and even more preferably 9 mm or less. Most preferably, the stress balance tends to be lost, and a large warp is likely to occur. The warp amount after removing 50% of the sample thickness is 9 mm or less, and the warp when 20% or 30% of the plate thickness is removed. The amount is preferably 7 mm or less. In this embodiment, the sample is cut so that the longitudinal direction is the rolling direction, and the warpage is measured. The method for measuring the amount of warpage in this embodiment is that the upper end of the cut sample is suspended in contact with the vertical surface plate after being removed from one side of the sample by etching, and the lower end of the cut sample separated from the vertical surface plate by warpage. The horizontal distance from the vertical surface plate is measured as the amount of warpage.
 続いて、本発明のメタルマスク用素材の製造方法について説明する。
 本実施形態の製造方法は、例えば、真空溶解-熱間鍛造-熱間圧延-冷間圧延という工程を適用することができる。必要に応じて、冷間圧延前の段階で1200℃程度で均質化熱処理を行い、冷間圧延工程中には、冷間圧延材の硬さを低減するために800~950℃の焼鈍を1回以上行うことができる。上記冷間圧延工程では、表面のスケールを除去する研磨工程や、素材端部のオフゲージ部(板厚が厚い部分)の除去および圧延加工で発生する耳波部を除去するために耳切り工程を行ってもよい。熱処理工程時に使用する炉も、縦型炉、横型炉(水平炉)等既存のものを使用しても良いが、通板中の折れの防止や、素材の急峻度をより高めるために、自重によるたわみが発生し難い縦型炉を使用することが好ましい。
Then, the manufacturing method of the metal mask raw material of this invention is demonstrated.
In the manufacturing method of the present embodiment, for example, the steps of vacuum melting, hot forging, hot rolling, and cold rolling can be applied. If necessary, homogenization heat treatment is performed at about 1200 ° C. in the stage before cold rolling, and during the cold rolling process, annealing at 800 to 950 ° C. is performed in order to reduce the hardness of the cold rolled material. Can be done more than once. In the cold rolling process, a polishing process for removing the scale on the surface, an off-gauge part at the end of the material (part where the plate thickness is thick), and an ear-cutting process to remove the ear wave part generated in the rolling process are performed. You may go. Existing furnaces such as vertical furnaces and horizontal furnaces (horizontal furnaces) may be used as the furnace for the heat treatment process. However, in order to prevent breakage during threading and increase the steepness of the material, It is preferable to use a vertical furnace that is less likely to bend due to.
 本実施形態の製造方法は、仕上冷間圧延工程における最終パスにおける圧下率を35%以下に調整する。上記の圧下率が35%を超える場合、素材の残留歪が大きくなり、エッチング加工時に変形の発生が増加する傾向にある。好ましい圧下率の上限は30%である。なお過度に圧下率が少ないと、上述する表面粗さに調整することが困難となるため、圧下率の下限は15%に設定することが好ましい。より好ましい圧下率の下限は18%であり、さらに好ましい圧下率の下限は、20%である。なお仕上冷間圧延におけるパス回数は特に規定せず、複数回(例えば、3回以上)行っても良いが、後述する研磨痕が潰れないように圧延するために、1回のパス数で仕上圧延を行うことが好ましい。 In the manufacturing method of the present embodiment, the rolling reduction in the final pass in the finish cold rolling process is adjusted to 35% or less. When the above-mentioned rolling reduction exceeds 35%, the residual strain of the material increases, and the occurrence of deformation tends to increase during the etching process. A preferable upper limit of the rolling reduction is 30%. In addition, since it will become difficult to adjust to the surface roughness mentioned above when there is too little rolling reduction, it is preferable to set the minimum of rolling reduction to 15%. A more preferable lower limit of the rolling reduction is 18%, and a more preferable lower limit of the rolling reduction is 20%. The number of passes in finish cold rolling is not particularly specified, and may be performed a plurality of times (for example, 3 times or more). However, in order to perform rolling so as not to crush polishing marks described later, finishing is performed with a single pass number. It is preferable to perform rolling.
 本実施形態の製造方法において、仕上冷間圧延に使用するロールは、ロールの円周方向(ロールの回転方向)と直交する方向の表面粗さがRa:0.05~0.25μmのロールを用いることができる。好ましいRaの上限は0.15μmである。これによりメタルマスク用素材に所望の粗さを付与することができる。ロールの材質は特に限定せず、例えばJIS-G4404に規定される合金工具鋼ロールを使用することができる。また、圧延時のオイルが圧延材料表面とロールの間を通り抜けて行き易くする粗さをロールに付与することで、オイルピットの発生を抑制することができるため、本発明に係る製造方法のロール表面には、ロールの円周方向に研磨痕を形成することが好ましい。この研磨痕の形成には、ロールの円周方向と直交する方向の粗さがRa:0.05~0.25μmとすることができる粗さを有する砥石を用意し、ロールを転動しながら砥石を押し当てることで、形成することができる。この研磨痕により、本実施形態におけるロールの円周方向粗さと、円周方向に直交する方向の表面粗さとの差がRaで0.02μm以上であることがより好ましい。この特徴により、メタルマスク用素材の圧延直角方向の表面粗さと、圧延方向の表面粗さとの間に意図的に差を設けることができ、圧延油がより排出されやすくなるため、オイルピットの発生をさらに抑制することが可能である。 In the manufacturing method of this embodiment, the roll used for finish cold rolling is a roll having a surface roughness Ra: 0.05 to 0.25 μm in a direction perpendicular to the circumferential direction of the roll (the rotation direction of the roll). Can be used. A preferable upper limit of Ra is 0.15 μm. Thereby, desired roughness can be imparted to the metal mask material. The material of the roll is not particularly limited, and for example, an alloy tool steel roll defined in JIS-G4404 can be used. Moreover, since the oil at the time of rolling can give the roll the roughness which makes it easy to pass between the surface of a rolling material and a roll, generation | occurrence | production of an oil pit can be suppressed, Therefore The roll of the manufacturing method which concerns on this invention It is preferable to form polishing marks on the surface in the circumferential direction of the roll. For the formation of this polishing mark, a grindstone having a roughness in which the roughness in the direction orthogonal to the circumferential direction of the roll can be set to Ra: 0.05 to 0.25 μm is prepared, and the roll is rolled. It can be formed by pressing a grindstone. It is more preferable that the difference between the circumferential roughness of the roll in this embodiment and the surface roughness in the direction perpendicular to the circumferential direction is Ra of 0.02 μm or more due to this polishing mark. Due to this feature, it is possible to intentionally make a difference between the surface roughness in the direction perpendicular to the rolling direction of the metal mask material and the surface roughness in the rolling direction, and it becomes easier to discharge the rolling oil. Can be further suppressed.
 本発明に係る製造方法は仕上冷間圧延において、被圧延材とワークロールとが接触を開始する角度である噛み込み角を1.0°以上に設定する。噛み込み角をこのように調整することで、オイルピットの過度の発生を抑制しつつ、所望の表面粗さを得ることが可能である。ここで噛み込み角が大きすぎると、圧延荷重が過大となって所望の圧延形状が得られない可能性があるため、噛み込み角の上限を3.0°に設定することができる。好ましい噛み込み角の上限は、2.0°である。また上記噛み込み角の規定は、仕上冷間圧延の全パスに適用されることが好ましい。なお本実施形態における噛み込み角をθとしたとき、θ=180/π・arccos((R-(h-h)/2)/R)の計算式より噛み込み角を導出することができる。ここでR:ロール半径、h:圧延前の素材板厚、h:圧延後の素材板厚である。 In the finish cold rolling, the manufacturing method according to the present invention sets the biting angle, which is the angle at which the material to be rolled and the work roll start to contact, to 1.0 ° or more. By adjusting the biting angle in this way, it is possible to obtain a desired surface roughness while suppressing excessive generation of oil pits. Here, if the biting angle is too large, the rolling load becomes excessive and a desired rolled shape may not be obtained. Therefore, the upper limit of the biting angle can be set to 3.0 °. The upper limit of the preferable biting angle is 2.0 °. Further, it is preferable that the above-mentioned biting angle is applied to all finish cold rolling passes. When the biting angle in the present embodiment is θ, the biting angle can be derived from the calculation formula of θ = 180 / π · arccos ((R− (h 0 −h 1 ) / 2) / R). it can. Here, R: roll radius, h 0 : material plate thickness before rolling, h 1 : material plate thickness after rolling.
 本実施形態の製造方法は、圧延速度を150m/min以下に設定することが好ましい。圧延速度を150m/min以下に設定することで、ワークロールとメタルマスク用素材との間に導入される圧延油量を少なくしてオイルピットの発生を抑制し、より確実にRskを正値に調整することが可能である。より好ましい圧延速度の上限は、120m/minである。さらに好ましくは100m/minに上限を設定する。なお、圧延速度の下限は特に設定しないが、遅すぎると生産効率が低下するため、20m/minと設定することができる。好ましくは30m/minである。 In the manufacturing method of the present embodiment, it is preferable to set the rolling speed to 150 m / min or less. By setting the rolling speed to 150 m / min or less, the amount of rolling oil introduced between the work roll and the metal mask material is reduced to suppress the occurrence of oil pits, and Rsk is set to a positive value more reliably. It is possible to adjust. A more preferable upper limit of the rolling speed is 120 m / min. More preferably, the upper limit is set to 100 m / min. The lower limit of the rolling speed is not particularly set, but if it is too slow, the production efficiency is lowered, so that it can be set to 20 m / min. Preferably it is 30 m / min.
 本実施形態の製造方法において、仕上圧延後にエッチング加工用素材に残留する歪を除去し、素材に発生する形状不良を抑制するために、歪取り焼鈍を行っても良い。歪取り焼鈍は、400~700℃程度の温度で行うことが好ましい。なお焼鈍時間は特に限定しないが、長すぎると引張強さ等の特性が大幅に劣化し、短すぎると歪みを除去する効果が得られないため、0.5~3.0min程度とすることが好ましい。より好ましい歪取り焼鈍時間の下限は1.2minであり、さらに好ましい歪取り焼鈍時間の下限は1.5minである。 In the manufacturing method of the present embodiment, strain relief annealing may be performed in order to remove strain remaining in the etching material after finish rolling and suppress shape defects generated in the material. The strain relief annealing is preferably performed at a temperature of about 400 to 700 ° C. The annealing time is not particularly limited, but if it is too long, the properties such as tensile strength are significantly deteriorated. If it is too short, the effect of removing strain cannot be obtained. preferable. A more preferable lower limit of the strain relief annealing time is 1.2 min, and a further preferable lower limit of the strain relief annealing time is 1.5 min.
 以下の実施例で本発明を更に詳しく説明する。
 本実施例のメタルマスク用素材の化学組成を表1に示す。本実施例のFe-Ni合金は、真空溶解-熱間鍛造-均質化熱処理-熱間圧延で厚さ2~3mmに仕上げる工程の後、冷間圧延を実施した。熱間圧延後のFe-Ni合金には2回の焼鈍を含む冷間圧延を行い、Fe-Ni合金冷間圧延材を作製した。仕上冷間圧延の最終パス前のFe-Ni合金冷間圧延材のそれぞれの厚さは、0.125mm(試料No.1)と0.275mm(試料No.2)であり、試料No.1は仕上冷間圧延後に0.10mm(圧下率20%)、試料No.2は仕上冷間圧延後に0.20mm(圧下率27%)となるように圧延条件を調整した。この時の試料No.1のロールの噛み込み角は1.28°であった。また試料No.2のロールの噛み込み角は2.22°であった。また、試料No.1と試料No.2において、仕上冷間圧延時の圧延速度はおよそ100m/minであった。また、仕上冷間圧延に用いたロールの円周方向(ロールの回転方向)と直交する方向の粗さRaが0.08~0.25μmの範囲内であるロールを用いた。仕上冷間圧延後には、No.1の試料は600℃の温度で2分間、No.2の試料は630℃の温度で1分間歪取り焼鈍を行った。また比較例として、圧延条件を調整してロール噛み込み角を1.0°未満に調整した試料No.11を作成した。試料No.11の化学組成や最終板厚、歪取り焼鈍条件は試料No.1と同様である。
The following examples further illustrate the present invention.
Table 1 shows the chemical composition of the metal mask material of this example. The Fe—Ni alloy of this example was subjected to cold rolling after a step of finishing to a thickness of 2 to 3 mm by vacuum melting, hot forging, homogenizing heat treatment, hot rolling. The hot-rolled Fe—Ni alloy was cold-rolled including two annealings to produce a Fe—Ni alloy cold-rolled material. The thicknesses of the Fe-Ni alloy cold rolled material before the final pass of the finish cold rolling were 0.125 mm (sample No. 1) and 0.275 mm (sample No. 2). No. 1 is 0.10 mm (rolling rate 20%) after finish cold rolling. In No. 2, the rolling conditions were adjusted to 0.20 mm (rolling rate 27%) after finish cold rolling. Sample No. at this time The biting angle of roll No. 1 was 1.28 °. Sample No. The biting angle of the roll No. 2 was 2.22 °. Sample No. 1 and sample no. In No. 2, the rolling speed at the time of finish cold rolling was about 100 m / min. Further, a roll having a roughness Ra in a direction perpendicular to the circumferential direction (roll rotation direction) of the roll used for finish cold rolling is in the range of 0.08 to 0.25 μm. After finish cold rolling, no. Sample No. 1 was No. 1 at a temperature of 600 ° C. for 2 minutes. Sample 2 was subjected to strain relief annealing at a temperature of 630 ° C. for 1 minute. In addition, as a comparative example, the sample No. 1 in which the rolling conditions were adjusted to adjust the roll biting angle to less than 1.0 °. 11 was created. Sample No. No. 11 chemical composition, final plate thickness and strain relief annealing conditions Same as 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 続いて得られた試料の表面粗さと反りを測定した。表面粗さRa、Rz、Rskの測定は、JISB0601,JISB0651で示される測定方法に従い、ランダムに3箇所を選んで長手方向と幅方向の表面粗さを測定した。測定装置には触針式粗さ計を使用し、評価長さ4mm、測定速度0.3mm/s、カットオフ値0.8mmの条件で測定した。表2には、3箇所の平均値を示す。また反りの測定は、長さ150mm、幅30mmのカットサンプルを作成し、板厚の2/5(板厚の60%を除去)となるように片側からエッチングした後、カットサンプルを垂直上盤に吊下げた際の反り量を測定し、評価を行った。なお上記カットサンプルは、長さ方向が圧延方向となるように、作製した試料の幅方向中央部から採取した。エッチング液は塩化第二鉄水溶液を使用し、液温50℃のエッチング液を噴霧させ試験片の腐食を実施した。結果を表2に示す。 Subsequently, the surface roughness and warpage of the obtained sample were measured. The surface roughness Ra, Rz, and Rsk were measured according to the measurement method shown in JISB0601, JISB0651, and randomly selected three locations to measure the surface roughness in the longitudinal direction and the width direction. A stylus type roughness meter was used as the measuring device, and measurement was performed under the conditions of an evaluation length of 4 mm, a measurement speed of 0.3 mm / s, and a cutoff value of 0.8 mm. Table 2 shows the average values at three locations. For the measurement of warpage, a cut sample with a length of 150 mm and a width of 30 mm was prepared, etched from one side so as to be 2/5 of the plate thickness (60% of the plate thickness was removed), and then the cut sample was placed on the vertical upper plate The amount of warpage when suspended on the surface was measured and evaluated. In addition, the said cut sample was extract | collected from the width direction center part of the produced sample so that a length direction might turn into a rolling direction. The etching solution used was an aqueous ferric chloride solution and sprayed with an etching solution having a liquid temperature of 50 ° C. to corrode the test piece. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の結果より、本発明例のメタルマスク用素材である試料No.1と試料No.2は、良好な密着性と均一なエッチング加工性を発揮するために最適な表面状態であり、板厚の半分を超える深いエッチング後の形状変化も抑制できることが確認できた。一方で比較例である試料No.11は、Rskの幅方向が負値となっているため、密着性が本発明例よりも劣る可能性が高いことが確認できた。 From the results of Table 2, sample No. which is a metal mask material of the present invention example. 1 and sample no. No. 2 is an optimal surface state for exhibiting good adhesion and uniform etching processability, and it was confirmed that shape change after deep etching exceeding half of the plate thickness can be suppressed. On the other hand, sample No. which is a comparative example. No. 11 had a negative value in the width direction of Rsk, and thus it was confirmed that the adhesiveness is likely to be inferior to that of the examples of the present invention.
(実施例2)
 次に、試料No.1および試料No.2の長さ150mm、幅30mmのカットサンプルを複数準備し、エッチングの除去量を表3に示すように変更した本発明例の試料No.3~8を作成し、反り量の測定を行った。表3において、試料No.3~5が試料No.1から作成した試料であり、試料No.6~8が試料No.2から作成した試料である。反り量の測定方法や使用したエッチング液は、実施例1で使用したものと同様である。結果を表3に示す。
(Example 2)
Next, sample No. 1 and sample no. Sample No. 2 of the present invention was prepared by preparing a plurality of cut samples having a length of 150 mm and a width of 30 mm, and changing the amount of etching removal as shown in Table 3. 3 to 8 were prepared and the amount of warpage was measured. In Table 3, sample no. 3 to 5 are sample Nos. 1 is a sample prepared from sample No. 1. Samples 6 to 8 are sample Nos. Sample prepared from 2. The method for measuring the amount of warpage and the etching solution used are the same as those used in Example 1. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3の結果より、本発明のメタルマスク用素材は、エッチング深さを変更しても、反り量を抑制できることを確認した。特にエッチングによる素材の除去量が板厚の50%の場合、圧縮残留応力と引張残留応力のバランスが崩れ、過大な反りが発生しやすい傾向にあるが、本発明例の素材には過大な反りは発生せず、エッチング用途に適することが確認できた。さらに、試料No.3~5は、試料No.6~8よりも反りが少ないことが確認できた。これは試料作製時において、試料No.6~8の歪取り焼鈍時間が試料No.3~5よりも短いため、残存する歪み量がわずかに大きくなったためと考えられる。 From the results in Table 3, it was confirmed that the metal mask material of the present invention can suppress the amount of warp even if the etching depth is changed. In particular, when the amount of material removed by etching is 50% of the plate thickness, the balance between compressive residual stress and tensile residual stress tends to be lost, and excessive warpage tends to occur. However, the material of the present invention has excessive warpage. It was confirmed that it was suitable for etching use. Furthermore, sample no. 3 to 5 are sample Nos. It was confirmed that there was less warpage than 6-8. This is because the sample No. 6 to 8 strain relief annealing times This is probably because the remaining strain amount was slightly increased because it was shorter than 3-5.

Claims (10)

  1.  質量%で、C:0.01%以下、Si:0.5%以下、Mn:1.0%以下、Ni:30~50%を含有し、残部がFe及び不可避的不純物からなるメタルマスク用素材であって、
     前記メタルマスク用素材は、圧延方向における表面粗さと圧延方向と直交する方向における表面粗さとがともに、0.05μm≦Ra≦0.25μm、Rz≦1.5μm以下であり、
     前記メタルマスク用素材は、圧延方向と直交する方向におけるスキューネスRskが0以上であり、
     前記メタルマスク用素材から長さ150mm、幅30mmの試料を切り出し、前記試料を片側からエッチングし、前記試料の板厚の60%を除去したときの反り量が15mm以下であり、板厚が0.10mm以上0.5mm以下であるメタルマスク用素材。
    For metal masks containing C: 0.01% or less, Si: 0.5% or less, Mn: 1.0% or less, Ni: 30 to 50%, with the balance being Fe and inevitable impurities. Material,
    The metal mask material has a surface roughness in the rolling direction and a surface roughness in a direction orthogonal to the rolling direction, both 0.05 μm ≦ Ra ≦ 0.25 μm and Rz ≦ 1.5 μm,
    The metal mask material has a skewness Rsk of 0 or more in a direction perpendicular to the rolling direction,
    A sample having a length of 150 mm and a width of 30 mm is cut out from the material for the metal mask, and the amount of warpage when the sample is etched from one side and 60% of the plate thickness of the sample is removed is 15 mm or less, and the plate thickness is 0. .Metal mask material that is 10 mm or more and 0.5 mm or less.
  2.  前記メタルマスク用素材の圧延方向におけるスキューネスRskが前記メタルマスク用素材の圧延方向と直交する方向におけるRskよりも小さい、請求項1に記載のメタルマスク用素材。 The metal mask material according to claim 1, wherein a skewness Rsk in the rolling direction of the metal mask material is smaller than Rsk in a direction orthogonal to the rolling direction of the metal mask material.
  3.  前記メタルマスク用素材の圧延方向と直交する方向における表面粗さRaが、前記メタルマスク用素材の圧延方向における表面粗さRaよりも大きい、請求項1または2に記載のメタルマスク用素材。 The metal mask material according to claim 1 or 2, wherein a surface roughness Ra in a direction orthogonal to a rolling direction of the metal mask material is larger than a surface roughness Ra in the rolling direction of the metal mask material.
  4.  前記メタルマスク用素材の圧延方向と直交する方向におけるRskが1.0以下である、請求項1~3のいずれかに記載のメタルマスク用素材。 4. The metal mask material according to claim 1, wherein Rsk in a direction orthogonal to the rolling direction of the metal mask material is 1.0 or less.
  5.  前記メタルマスク用素材から長さ150mm、幅30mmの試料を切り出し、前記試料を片側からエッチングし、前記試料の板厚の20%、30%、50%のいずれかを除去したときの反り量が15mm以下であることを特徴とする、請求項1~4のいずれかに記載のメタルマスク用素材。 The amount of warpage when a sample having a length of 150 mm and a width of 30 mm is cut out from the metal mask material, the sample is etched from one side, and 20%, 30%, or 50% of the thickness of the sample is removed. The metal mask material according to any one of claims 1 to 4, wherein the material is 15 mm or less.
  6.  質量%で、C:0.01%以下、Si:0.5%以下、Mn:1.0%以下、Ni:30~50%を含有し、残部がFe及び不可避的不純物からなる冷間圧延用素材を冷間圧延してメタルマスク用素材を得るメタルマスク用素材の製造方法であって、
     前記冷間圧延用素材に対する仕上冷間圧延工程における最終パスの条件が、圧下率:35%以下、圧延ロールの噛み込み角:1.0°以上であり、
     前記メタルマスク用素材は、圧延方向における表面粗さと圧延方向と直交する方向における表面粗さとがともに、0.05μm≦Ra≦0.25μm、Rz≦1.5μm以下であり、圧延方向と直交する方向におけるスキューネスRskが0以上であるとともに、
     前記メタルマスク用素材から長さ150mm、幅30mmの試料を切り出し、前記試料を片側からエッチングし、前記試料の板厚の60%を除去したときの反り量が15mm以下であり、
    仕上冷間圧延後の素材の板厚が0.10mm以上0.5mm以下であることを特徴とするメタルマスク用素材の製造方法。
    Cold rolling comprising, in mass%, C: 0.01% or less, Si: 0.5% or less, Mn: 1.0% or less, Ni: 30 to 50%, the balance being Fe and inevitable impurities A method for producing a metal mask material by cold rolling a material for a metal mask to obtain a metal mask material,
    The conditions of the final pass in the finish cold rolling process for the cold rolling material are rolling reduction: 35% or less, biting angle of the rolling roll: 1.0 ° or more,
    In the metal mask material, both the surface roughness in the rolling direction and the surface roughness in the direction orthogonal to the rolling direction are 0.05 μm ≦ Ra ≦ 0.25 μm and Rz ≦ 1.5 μm, and are orthogonal to the rolling direction. The skewness Rsk in the direction is 0 or more,
    A sample having a length of 150 mm and a width of 30 mm was cut out from the material for the metal mask, the sample was etched from one side, and the amount of warpage when 60% of the plate thickness of the sample was removed was 15 mm or less,
    A method for producing a metal mask material, wherein the thickness of the material after finish cold rolling is 0.10 mm or more and 0.5 mm or less.
  7.  前記圧延ロールの噛み込み角が3.0°以下である、請求項6に記載のメタルマスク用素材の製造方法。 The method for producing a metal mask material according to claim 6, wherein a biting angle of the rolling roll is 3.0 ° or less.
  8.  前記仕上冷間圧延工程における最終パスの圧下率が、15%~35%である、請求項6または7に記載のメタルマスク用素材の製造方法。 The method for producing a metal mask material according to claim 6 or 7, wherein a rolling reduction of the final pass in the finish cold rolling step is 15% to 35%.
  9.  前記仕上冷間圧延工程の最終パスに用いるロールの円周方向と直交する方向の表面粗さRaが0.05~0.25μmである、請求項6~8のいずれかに記載のメタルマスク用素材の製造方法。 The metal mask for a metal mask according to any one of claims 6 to 8, wherein a surface roughness Ra in a direction orthogonal to a circumferential direction of a roll used in a final pass of the finish cold rolling step is 0.05 to 0.25 µm. Material manufacturing method.
  10.  前記仕上冷間圧延工程の圧延速度が150m/min以下である、請求項6~9のいずれかに記載のメタルマスク用素材の製造方法。 10. The method for producing a metal mask material according to claim 6, wherein a rolling speed in the finish cold rolling step is 150 m / min or less.
PCT/JP2017/031349 2016-08-31 2017-08-31 Metal mask material and production method therefor WO2018043642A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17846646.2A EP3508285B1 (en) 2016-08-31 2017-08-31 Metal mask material and production method therefor
KR1020197005481A KR102164912B1 (en) 2016-08-31 2017-08-31 Material for metal mask and its manufacturing method
JP2018537395A JP6646882B2 (en) 2016-08-31 2017-08-31 Material for metal mask and manufacturing method thereof
CN201780052365.0A CN109641248B (en) 2016-08-31 2017-08-31 Material for metal mask and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-169881 2016-08-31
JP2016169881 2016-08-31

Publications (1)

Publication Number Publication Date
WO2018043642A1 true WO2018043642A1 (en) 2018-03-08

Family

ID=61301875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031349 WO2018043642A1 (en) 2016-08-31 2017-08-31 Metal mask material and production method therefor

Country Status (5)

Country Link
EP (1) EP3508285B1 (en)
JP (1) JP6646882B2 (en)
KR (1) KR102164912B1 (en)
CN (1) CN109641248B (en)
WO (1) WO2018043642A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020067537A1 (en) * 2018-09-27 2020-04-02 日鉄ケミカル&マテリアル株式会社 Metal mask material, method for producing same, and metal mask
EP3680949A4 (en) * 2017-09-07 2021-06-09 LG Innotek Co., Ltd. Metallic material deposition mask for oled pixel deposition, and method for producing same
JP2021119260A (en) * 2020-01-30 2021-08-12 凸版印刷株式会社 Vapor deposition mask
WO2021251296A1 (en) * 2020-06-08 2021-12-16 浜松ホトニクス株式会社 Manufacturing method of processed article, processed product and processing device
JP2021193211A (en) * 2017-11-14 2021-12-23 大日本印刷株式会社 Metal plate for producing vapor deposition mask, vapor deposition mask, and production method of vapor deposition mask

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210042026A (en) * 2019-10-08 2021-04-16 다이니폰 인사츠 가부시키가이샤 Metal plate for producing vapor deposition mask, production method for metal plate, vapor deposition mask and production method for vapor deposition mask

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04103743A (en) * 1990-08-22 1992-04-06 Nkk Corp Fe-ni alloy thin sheet for shadow mask and its manufacture
JPH07252602A (en) * 1994-03-14 1995-10-03 Nippon Steel Corp Iron-nickel alloy sheet for shadow mask and its production
JPH09262603A (en) * 1996-03-28 1997-10-07 Nippon Yakin Kogyo Co Ltd Metallic sheet for shadow mask and its manufacture
JP2002294407A (en) * 2001-03-30 2002-10-09 Nippon Mining & Metals Co Ltd Material with high surface cleanliness for shadow mask
JP2010214447A (en) * 2009-03-18 2010-09-30 Hitachi Metals Ltd Method for manufacturing material for etching, and material for etching

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2842022B2 (en) * 1992-02-13 1998-12-24 日本鋼管株式会社 Thin plate for Fe-Ni-based shadow mask and method for producing the same
JP3487471B2 (en) * 1996-01-30 2004-01-19 日立金属株式会社 Fe-Ni alloy thin plate with excellent etching processability
JP2005144466A (en) * 2003-11-12 2005-06-09 Jfe Steel Kk Manufacturing method of iron-nickel based alloy thin sheet for shadow mask with excellent etching performance
JP5721691B2 (en) 2012-11-20 2015-05-20 Jx日鉱日石金属株式会社 Metal mask material and metal mask
CA2890426C (en) * 2013-02-01 2018-01-02 Nippon Steel & Sumitomo Metal Corporation Titanium material or titanium alloy material for fuel cell separator having high contact conductivity with carbon and high durability, fuel cell separator including the same, and fuel cell
JP2015193871A (en) * 2014-03-31 2015-11-05 日立金属株式会社 Fe-Ni-BASED ALLOY THIN SHEET AND MANUFACTURING METHOD THEREFOR
JP6628082B2 (en) * 2015-01-20 2020-01-08 日立金属株式会社 Method for producing Fe-Ni alloy thin plate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04103743A (en) * 1990-08-22 1992-04-06 Nkk Corp Fe-ni alloy thin sheet for shadow mask and its manufacture
JPH07252602A (en) * 1994-03-14 1995-10-03 Nippon Steel Corp Iron-nickel alloy sheet for shadow mask and its production
JPH09262603A (en) * 1996-03-28 1997-10-07 Nippon Yakin Kogyo Co Ltd Metallic sheet for shadow mask and its manufacture
JP2002294407A (en) * 2001-03-30 2002-10-09 Nippon Mining & Metals Co Ltd Material with high surface cleanliness for shadow mask
JP2010214447A (en) * 2009-03-18 2010-09-30 Hitachi Metals Ltd Method for manufacturing material for etching, and material for etching

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3508285A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3680949A4 (en) * 2017-09-07 2021-06-09 LG Innotek Co., Ltd. Metallic material deposition mask for oled pixel deposition, and method for producing same
JP2021193211A (en) * 2017-11-14 2021-12-23 大日本印刷株式会社 Metal plate for producing vapor deposition mask, vapor deposition mask, and production method of vapor deposition mask
US11237481B2 (en) 2017-11-14 2022-02-01 Dai Nippon Printing Co., Ltd. Metal plate for manufacturing deposition mask and manufacturing method for metal plate, and deposition mask and manufacturing method for deposition mask
JP7125683B2 (en) 2017-11-14 2022-08-25 大日本印刷株式会社 Metal plate for manufacturing vapor deposition mask, vapor deposition mask, and method for manufacturing vapor deposition mask
US11733607B2 (en) 2017-11-14 2023-08-22 Dai Nippon Printing Co., Ltd. Metal plate for producing vapor deposition masks, inspection method for metal plates, production method for metal plates, vapor deposition mask, vapor deposition mask device, and production method for vapor deposition masks
WO2020067537A1 (en) * 2018-09-27 2020-04-02 日鉄ケミカル&マテリアル株式会社 Metal mask material, method for producing same, and metal mask
JP6704540B1 (en) * 2018-09-27 2020-06-03 日鉄ケミカル&マテリアル株式会社 Metal mask material, manufacturing method thereof, and metal mask
EP3859029A4 (en) * 2018-09-27 2022-11-02 NIPPON STEEL Chemical & Material Co., Ltd. Metal mask material, method for producing same, and metal mask
JP2021119260A (en) * 2020-01-30 2021-08-12 凸版印刷株式会社 Vapor deposition mask
WO2021251296A1 (en) * 2020-06-08 2021-12-16 浜松ホトニクス株式会社 Manufacturing method of processed article, processed product and processing device

Also Published As

Publication number Publication date
CN109641248B (en) 2021-04-06
EP3508285A4 (en) 2020-05-13
CN109641248A (en) 2019-04-16
EP3508285A1 (en) 2019-07-10
JP6646882B2 (en) 2020-02-14
JPWO2018043642A1 (en) 2019-06-24
EP3508285B1 (en) 2021-09-29
KR102164912B1 (en) 2020-10-13
KR20190030754A (en) 2019-03-22

Similar Documents

Publication Publication Date Title
JP6646882B2 (en) Material for metal mask and manufacturing method thereof
KR101164739B1 (en) Method of producing etching material and the etching material
WO2016190396A1 (en) Steel sheet and method for producing same
JP6598007B2 (en) Method for producing Fe-Ni alloy thin sheet
JP6855895B2 (en) Non-oriented electrical steel sheet and its manufacturing method
WO2016047734A1 (en) Austenitic stainless steel sheet and method for producing same
JP5843019B2 (en) Stainless steel sheet and its manufacturing method
JP6807038B2 (en) Material for metal mask and its manufacturing method
JP2021014639A (en) PRODUCING METHOD OF Fe-Ni ALLOY SHEET
KR102294111B1 (en) Manufacturing method of thin plate for metal mask and thin plate for metal mask
JP2018178198A (en) Nonoriented electromagnetic steel sheet and manufacturing method therefor
JP2007211313A (en) Ferritic stainless steel having excellent ridging resistance and its production method
JP2018178196A (en) Nonoriented electromagnetic steel sheet and manufacturing method therefor
JP2017110292A (en) Grain oriented silicon steel sheet and method for manufacturing the same
JP6134553B2 (en) Duplex stainless steel with good acid resistance
JP5167314B2 (en) Method for producing ferritic stainless steel with excellent ridging resistance
JP3562492B2 (en) Stainless steel plate for photoetching and method of manufacturing the same
JP3348565B2 (en) Method of producing Fe-Ni-based alloy thin plate for electronic parts and Fe-Ni-Co-based alloy thin plate excellent in degreasing property
JP6836318B2 (en) Directional electromagnetic steel sheet and its manufacturing method and heat-rolled sheet for grain-oriented electrical steel sheet and its manufacturing method
JP5927994B2 (en) Hot-rolled steel sheet, method for producing the same and method for producing cold-rolled steel sheet
JP7348524B2 (en) A steel plate processing method that eliminates grooves formed on the surface of grain-oriented electrical steel sheets
JP7296756B2 (en) Stainless steel plate and its manufacturing method
JP5928396B2 (en) Method for producing high carbon hot-rolled steel sheet for cold rolling
JP5943105B2 (en) Steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846646

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018537395

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197005481

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017846646

Country of ref document: EP

Effective date: 20190401