KR101164739B1 - Method of producing etching material and the etching material - Google Patents

Method of producing etching material and the etching material Download PDF

Info

Publication number
KR101164739B1
KR101164739B1 KR1020100022700A KR20100022700A KR101164739B1 KR 101164739 B1 KR101164739 B1 KR 101164739B1 KR 1020100022700 A KR1020100022700 A KR 1020100022700A KR 20100022700 A KR20100022700 A KR 20100022700A KR 101164739 B1 KR101164739 B1 KR 101164739B1
Authority
KR
South Korea
Prior art keywords
etching
rolling
surface roughness
roll
etching processing
Prior art date
Application number
KR1020100022700A
Other languages
Korean (ko)
Other versions
KR20100105421A (en
Inventor
다쿠야 오카모토
야스유키 이이다
Original Assignee
히타치 긴조쿠 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 히타치 긴조쿠 가부시키가이샤 filed Critical 히타치 긴조쿠 가부시키가이샤
Publication of KR20100105421A publication Critical patent/KR20100105421A/en
Application granted granted Critical
Publication of KR101164739B1 publication Critical patent/KR101164739B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel

Abstract

본 발명은 고정세 패턴을 형성하는 리드프레임이나 마스크용도의 경우에도, 우수한 에칭가공이 가능한 에칭가공용 소재의 제조방법 및 에칭가공용 소재를 제공하는 것을 과제로 한다.
상기 과제를 해결하기 위해, 본 발명의 에칭가공용 소재의 제조방법은, 질량%로 C: ≤0.01%, Si: ≤0.5%, Mn: ≤1.0%, Ni: 30~50%를 함유하고, 잔부가 Fe 및 불순물을 포함하며, 판두께가 0.02~0.15 ㎜인 에칭가공용 소재의 제조방법으로서, 마무리 냉간압연의 최종 패스를 10% 이하의 압하율로 하고, 또한, 상기 마무리 압연의 롤에는, 원주방향으로 연마흔을 형성하여, 원주방향과 직각방향의 조도를 Ra: 0.10~0.25 ㎛로 한 롤을 사용해서 압연속도를 1.2 m/s 이상으로 행하는 것을 특징으로 한다.
An object of the present invention is to provide a method for producing an etching material and an etching material that can be excellently etched even in the case of a lead frame or a mask for forming a high-definition pattern.
In order to solve the above problems, the manufacturing method of the raw material for etching processing of the present invention contains C: ≤0.01%, Si: ≤0.5%, Mn: ≤1.0%, Ni: 30-50%, A method for producing a material for etching processing comprising an additional Fe and impurities and having a plate thickness of 0.02 to 0.15 mm, wherein a final pass of finish cold rolling is set to a reduction ratio of 10% or less, and the rolls of the finish rolling The grinding | polishing trace is formed in a direction, and it uses the roll whose roughness of the circumferential direction and the orthogonal direction was Ra: 0.10-0.25 micrometer, The rolling speed is performed at 1.2 m / s or more.

Description

에칭가공용 소재의 제조방법 및 에칭가공용 소재{Method of producing etching material and the etching material}Method for producing etching material and material for etching processing {Method of producing etching material and the etching material}

본 발명은 고정세(高精細) 에칭가공이 가능한 에칭가공용 소재의 제조방법 및 에칭가공용 소재에 관한 것이다.The present invention relates to a method for producing a material for etching processing capable of high-definition etching and a material for etching processing.

Fe-Ni 합금의 박판에 고정세 에칭가공을 행하는 용도로서, 종래부터 리드프레임재나 섀도마스크재 등의 각종 마스크재가 알려져 있다.Background Art Conventionally, various mask materials, such as lead frame materials and shadow mask materials, have been known for use in high-definition etching processing on thin plates of Fe-Ni alloy.

그런데, Fe-Ni 합금의 박판을 제조하는 경우, 최종공정에서 냉간압연이 실시된다. 이 냉간압연 중에 발생하는 문제로서는, 표면 형태에 관한 문제나 잔류응력에 관한 문제가 있고, 모두 고정세 에칭 특성에 영향을 미친다. 그 때문에, 고정세 에칭을 행하는 기판에는, 목적하는 에칭 특성을 얻기 위해서, 표면조도를 조정하거나, 잔류응력을 조정하는 각종 제안이 이루어져 있다.By the way, when manufacturing the thin plate of Fe-Ni alloy, cold rolling is performed in a final process. As a problem which arises during this cold rolling, there exist a problem regarding a surface form, a problem regarding residual stress, and all affect high-definition etching characteristics. Therefore, in order to obtain desired etching characteristic, the board | substrate which performs high-definition etching has various proposals which adjust surface roughness or adjust residual stress.

예를 들면, 일본국 특허공개 평8-269742호 공보(특허문헌 1)에는, 표면으로부터의 잔류응력의 평균값을 50 N/㎟ 이하로 함으로써 미세한 에칭패턴이 형성 가능한 Fe-Ni 합금을 소재로 한 제안이 이루어져 있다. 이 기술은 사이드 에치를 방지하여, 고정세 에칭가공을 가능하게 하는 것이다.For example, Japanese Patent Application Laid-open No. Hei 8-269742 (Patent Document 1) describes a Fe-Ni alloy having a Fe-Ni alloy capable of forming a fine etching pattern by setting the average value of residual stress from the surface to 50 N / mm 2 or less. The proposal is made. This technique prevents side etch and enables high-definition etching.

또한, 예를 들면, 일본국 특허공개 평6-122013호 공보(특허문헌 2)에는, 최종 냉간압연공정에 있어서, 압하율 5% 이상으로 압연하는 동시에 압연유 농도를 관리함으로써 오일 피트의 발생을 제어하여 목적하는 판면 조도를 얻는 섀도마스크나 어퍼쳐 그릴(aperture grill)용 강판의 제조방법이 제안되어 있다. 이 기술은 잔류응력을 억제하는 기술이다.For example, Japanese Patent Laid-Open No. 6-122013 (Patent Literature 2), in the final cold rolling process, controls the generation of oil pits by rolling at a reduction ratio of 5% or more and managing the rolling oil concentration. There is proposed a method for producing a shadow mask or a steel plate for an aperture grill to obtain a desired surface roughness. This technique is to suppress residual stress.

또한, 본원 출원인도 일본국 특허공개 제2004-39628호 공보(특허문헌 3)로서, 2장의 금속판을 중간층에서 접착한 적층박을 사용한 증착 마스크를 제안하고 있다.Moreover, the applicant of this application also proposes the vapor deposition mask using laminated foil which bonded two metal plates in the intermediate | middle layer as Unexamined-Japanese-Patent No. 2004-39628 (patent document 3).

일본국특허공개평8-269742호공보Japanese Patent Laid-Open No. 8-269742 일본국특허공개평6-122013호공보Japanese Patent Laid-Open No. 6-122013 일본국특허공개제2004-39628호공보Japanese Patent Laid-Open No. 2004-39628

전술한 고정세 에칭가공이 요구되는 용도에 있어서는, 예를 들면, 특허문헌 3에서 나타낸 적층박을 사용하면 고정도의 에칭가공이 가능하나, 특허문헌 3의 에칭가공용 소재의 경우에는, 판두께가 10 ㎛ 이하인 금속박을 준비할 필요가 있고, 또한, 이들을 특별한 압착?압연장치를 사용해서 적층박으로 할 필요가 있어, 매우 고가의 소재가 된다.In applications where the above-mentioned high-definition etching is required, for example, the laminated foil shown in Patent Document 3 can be used for high-precision etching processing, but in the case of the material for etching processing of Patent Document 3, the plate thickness is 10. It is necessary to prepare a metal foil having a thickness of less than or equal to μm, and furthermore, it is necessary to make them laminated foil using a special crimping and rolling apparatus, which is a very expensive material.

한편, 특허문헌 1이나 특허문헌 2에서 나타내어지는 미세가공 가능한 Fe-Ni 합금은 단체(單體)의 금속재료를 사용하는 점에서 경제적이다.On the other hand, the fine-processable Fe-Ni alloy shown by patent document 1 and patent document 2 is economical in the point which uses a single metal material.

특허문헌 1에서는, 고정세 에칭에 영향을 미치는 요인으로서, 통상의 냉간압연의 경우에는, 윤활유의 닿음이 완전히 균일하게 되지 않고, 재료 표면에, 오일 피트가 형성되거나, 소성 변형의 진행에 의한 신생면의 표출 등에 의해, 균일한 표면상태가 얻어지지 않아, 유기 피막과의 밀착성이 떨어지는 부분「WBL(Weak-Boundary-Layer)」을 발생하기 쉬운 것이 기재되어 있다.In Patent Literature 1, as a factor influencing high-definition etching, in the case of normal cold rolling, the lubricating oil does not become completely uniform, and oil pits are formed on the material surface, or new generation due to the progress of plastic deformation. It is described that surface uniformity is not obtained, and the portion "WBL (Weak-Boundary-Layer)" which is inferior to adhesiveness with an organic film is easy to generate | occur | produce by surface expression etc. are described.

그리고, [0006], [0016]~[0018] 란에는, 잔류응력에 더하여 표면조도를 거칠게 하는 것이 유효하다고 기재되어 있으나, 과도하게 표면조도를 거칠게 하는 것은, 더욱 고정세 에칭가공을 곤란하게 한다.In addition, in the columns [0016] to [0018], it is described that it is effective to roughen the surface roughness in addition to the residual stress, but excessively roughening the surface roughness makes it more difficult to make high-definition etching. .

또한, 특허문헌 2에 기재되어 있는 바와 같은 오일 피트를 적극적으로 이용해서 소재 표면의 조도를 조정하는 방법에서는, 과도하게 깊은 오일 피트가 형성되는 경우가 있다. 그리고, 그 오일 피트에 기인한 에칭 불량에 의해, 고정세 에칭가공이 곤란해진다.Moreover, in the method of adjusting the roughness of the surface of a raw material actively using the oil pit as described in patent document 2, an excessively deep oil pit may be formed. In addition, the high-definition etching processing becomes difficult due to the etching failure due to the oil pit.

본 발명의 목적은, 고정세 패턴을 형성하는 리드프레임이나 마스크용도의 경우에도, 우수한 에칭가공이 가능한 에칭가공용 소재의 제조방법 및 에칭가공용 소재를 제공하는 것이다.SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing an etching processing material and an etching processing material which can be excellently etched even in the case of a lead frame or a mask for forming a high-definition pattern.

본 발명자 등은, 고정세 패턴의 에칭가공을 고정도로 형성 가능하게 하기 위해, 화학 조성, 표면조도, 잔류응력 등의 에칭가공에 영향을 미치는 각종 요인에 대해서 예의 검토하였다.MEANS TO SOLVE THE PROBLEM The present inventor earnestly examined the various factors which affect etching processing, such as chemical composition, surface roughness, and residual stress, in order to be able to form highly precise etching processing.

그 결과, 가장 고정세 에칭가공에 영향을 미치는 원인이 표면조도인 것을 발견하였다. 과도하게 표면조도를 낮게 하면, 오일 피트의 영향이 강해져, 에칭시에 치수 불량이 발생하기 쉽고, 또한, 과도하게 표면조도를 거칠게 하면, 고정세 에칭가공 자체가 곤란해지는 것을 밝혀냈다.As a result, it was found that the most influential effect on the high-definition etching process is the surface roughness. When the surface roughness is excessively lowered, the effect of the oil pit becomes stronger, and dimensional defects are likely to occur during etching, and when the surface roughness is excessively roughened, the high-definition etching process itself is found to be difficult.

그리고, 최적의 표면조도를 부여할 수 있는 에칭가공용 소재의 제조방법을 예의 검토한 결과, 마무리 냉간압연시의 롤의 조도를 조정함으로써, 오일 피트의 발생을 억제할 수 있어, 최적의 표면조도를 갖는 에칭가공용 소재로 할 수 있는 것을 발견하였다.Then, as a result of earnestly examining the manufacturing method of the material for etching processing which can give the optimum surface roughness, the generation of oil pits can be suppressed by adjusting the roughness of the roll during the finish cold rolling, and the optimum surface roughness It discovered that it could be set as the raw material for etching process which has.

또한, 잔류응력의 저감에는 마무리 압연시의 압연속도를 조정함으로써, 에칭가공용 소재와 롤의 마찰계수를 저감시키는 것이 유효한 것을 밝혀내고, 본 발명에 도달하였다.In addition, it was found that it is effective to reduce the coefficient of friction between the raw material for etching processing and the roll by adjusting the rolling speed during finish rolling to reduce the residual stress.

즉 본 발명은, 질량%로 C: ≤0.01%, Si: ≤0.5%, Mn: ≤1.0%, Ni: 30~50%를 함유하고, 잔부가 Fe 및 불순물을 포함하며, 판두께가 0.02~0.15 ㎜인 에칭가공용 소재의 제조방법으로서, 마무리 냉간압연의 최종 패스를 10% 이하의 압하율로 하고, 또한, 상기 마무리 압연의 롤에는, 원주방향으로 연마흔을 형성하여, 원주방향과 직각방향의 조도를 Ra: 0.10~0.25 ㎛로 한 롤을 사용해서 압연속도를 1.2 m/s 이상으로 행하는 에칭가공용 소재의 제조방법이다.That is, the present invention contains C: ≤0.01%, Si: ≤0.5%, Mn: ≤1.0%, Ni: 30-50% by mass, the balance contains Fe and impurities, the plate thickness is 0.02 ~ A method for producing a material for etching processing of 0.15 mm, wherein the final pass of cold rolling is set to a rolling reduction of 10% or less, and in the roll of the finish rolling, grinding marks are formed in the circumferential direction and perpendicular to the circumferential direction. It is a manufacturing method of the raw material for etching processing which carries out the rolling speed to 1.2 m / s or more using the roll which made Ra: 0.10-0.25 micrometers.

또한 본 발명은, 질량%로 C: ≤0.01%, Si: ≤0.5%, Mn: ≤1.0%, Ni: 30~50%를 함유하고, 잔부가 Fe 및 불순물을 포함하며, 판두께가 0.02~0.15 ㎜인 에칭가공용 소재로서, 그 에칭가공용 소재는, 압연방향과 직각방향으로 측정한 표면조도가 Ra: 0.08~0.20 ㎛이고, 압연방향으로 측정한 표면조도가 Ra: 0.01~0.10 ㎛이며, 또한, 압연방향과 직각방향으로 측정한 표면조도가, 압연방향으로 측정한 표면조도보다, Ra로 0.02 ㎛를 초과하여 거친 표면조도를 갖는 에칭가공용 소재이다.In addition, the present invention contains C: ≤0.01%, Si: ≤0.5%, Mn: ≤1.0%, Ni: 30-50% by mass, the balance contains Fe and impurities, the plate thickness is 0.02 ~ 0.15 mm of etching material, the etching material has a surface roughness measured in a direction perpendicular to the rolling direction of Ra: 0.08 to 0.20 µm, and a surface roughness measured in a rolling direction of Ra: 0.01 to 0.10 µm, and The surface roughness measured in the direction perpendicular to the rolling direction is a material for etching processing having a rough surface roughness exceeding 0.02 μm in Ra than the surface roughness measured in the rolling direction.

본 발명방법으로 얻어지는 에칭가공용 소재는, 고정세 패턴의 에칭가공이 고정도로 형성 가능해지고, 또한, 에칭시의 치수 불량도 억제할 수 있다.In the raw material for etching processing obtained by the method of the present invention, the etching processing of a high-definition pattern can be formed with high accuracy, and the dimensional defect during etching can also be suppressed.

도 1은 본 발명의 제조방법을 적용한, 이방성이 있는 표면조도를 부여한 표면을 갖는 에칭가공용 소재의 표면의 일례를 나타내는 현미경사진이다.
도 2는 등방성의 표면조도를 부여한 표면을 갖는 에칭가공용 소재의 표면의 일례를 나타내는 현미경사진이다.
도 3은 표면 측정방향을 나타내는 모식도이다.
BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a micrograph showing an example of the surface of an etching processing material having a surface to which anisotropic surface roughness is applied to which the manufacturing method of the present invention is applied.
Fig. 2 is a micrograph showing an example of the surface of a material for etching processing having a surface to which isotropic surface roughness is applied.
3 is a schematic diagram showing the surface measurement direction.

본 발명에서 규정한 한정 이유를 이하에 기술한다.The reason for limitation prescribed | regulated by this invention is described below.

본 발명의 에칭가공용 소재의 화학 조성을 질량%로 C: ≤0.01%, Si: ≤0.5%, Mn: ≤1.0%, Ni: 30~50%를 함유하고, 잔부가 Fe 및 불순물을 포함하는 Fe-Ni 합금으로 한 이유는 이하와 같다.The chemical composition of the etching processing material of the present invention contains, by mass%, Fe: Fe: 0.01%, Si: 0.5%, Mn: 1.0%, Ni: 30-50%, and remainder containing Fe and impurities. The reason for using Ni alloy is as follows.

C: ≤0.01 질량%C: ≤0.01 mass%

C는 에칭성에 영향을 미치는 원소이다. C가 과도하게 많이 포함되면 에칭성을 저해하기 때문에, C의 상한을 0.01%로 하였다.C is an element which affects etching property. When C contains excessively, since etching property is inhibited, the upper limit of C was made into 0.01%.

Si: ≤0.5 질량%, Mn: ≤1.0 질량%Si: ≤0.5 mass%, Mn: ≤1.0 mass%

Si, Mn은 통상, 탈산을 목적으로 미량 함유되어 있으나, 과잉으로 첨가하면 편석을 일으키기 쉬워지기 때문에, Si: 0.5% 이하, Mn: 1.0% 이하로 하였다. 바람직한 Si량과 Mn량은, Si: 0.1% 이하, Mn: 0.5% 이하이다.Si and Mn are usually contained in a small amount for the purpose of deoxidation, but when added excessively, segregation is likely to occur, so that Si: 0.5% or less and Mn: 1.0% or less. Preferable Si amount and Mn amount are Si: 0.1% or less and Mn: 0.5% or less.

Ni: 30~50 질량%Ni: 30-50 mass%

Ni는, 예를 들면 리드프레임으로서 사용하는 경우의 열팽창계수를 조정하는 작용을 가져, 저열팽창 특성에 커다란 영향을 미치는 원소이다. 함유량이 30%보다 적거나, 또는 50%를 초과하는 것에서는 열팽창계수를 낮추는 효과가 없어지기 때문에, Ni의 범위는 30~50%로 한다. 바람직하게는 32~45%이다.Ni is an element which has the effect | action which adjusts a thermal expansion coefficient in the case of using as a lead frame, for example, and has a big influence on low thermal expansion characteristics. If the content is less than 30% or more than 50%, the effect of lowering the coefficient of thermal expansion is lost, so the range of Ni is made 30 to 50%. Preferably it is 32 to 45%.

상기 이외를 구성하는 것은 Fe와 불순물이다.What constitutes other than the above is Fe and an impurity.

다음으로 판두께 및 표면조도에 대해서 설명한다.Next, plate | board thickness and surface roughness are demonstrated.

본 발명에서 판두께를 0.02~0.15 ㎜로 한 것은, 0.02 ㎜ 미만이 되면 핸들링성에 문제가 발생하고, 0.15 ㎜를 초과하면 에칭가공시에 사이드 에치량이 증가하여, 예를 들면 특히 고정세 에칭가공을 필요로 하는 용도에서는, 고정세 에칭 패턴의 형성이 곤란해진다. 그 때문에, 판두께를 0.02~0.15 ㎜로 한정하였다. 또한, 고정세에 유리한 판두께는 0.02~0.10 ㎜의 범위이고, 더욱 바람직하게는 0.02~0.06 ㎜의 범위이다.In the present invention, the plate thickness of 0.02 to 0.15 mm causes problems in handling when the thickness is less than 0.02 mm, and the amount of side etch increases during the etching process when the thickness exceeds 0.15 mm, for example, particularly high-definition etching. In the use which requires the formation of a high-definition etching pattern becomes difficult. Therefore, the plate | board thickness was limited to 0.02-0.15 mm. Moreover, the plate | board thickness favorable for high definition is the range of 0.02-0.10 mm, More preferably, it is the range of 0.02-0.06 mm.

본 발명에서 에칭가공용 소재의 압연방향과 직각방향으로 측정한 표면조도가 Ra: 0.08~0.20 ㎛이고, 또한, 압연방향으로 측정한 표면조도를 Ra: 0.01~0.10 ㎛로 한 이유는 이하와 같다.In the present invention, the surface roughness measured in the direction perpendicular to the rolling direction of the etching processing material is Ra: 0.08 to 0.20 µm, and the surface roughness measured in the rolling direction is Ra: 0.01 to 0.10 µm.

고정세 에칭 패턴을 소재에 형성할 때, 에칭가공용 소재의 표면에 오일 피트가 많이 형성되어 있으면, 에칭가공을 행하는 위치에 따라, 에칭액의 진행에 차이가 발생하여, 에칭 후의 개공정도(開孔精度)에 악영향을 미칠 가능성이 있다.When the high-definition etching pattern is formed on the material, if a lot of oil pits are formed on the surface of the material for etching processing, a difference occurs in the progress of the etching solution depending on the position at which the etching processing is performed. There is a possibility of adversely affecting the precision.

그 때문에, 에칭가공용 소재 표면에 형성되는 오일 피트를 적게 함으로써, 에칭 패턴을 보다 고정세로 하는 것이 기대된다.Therefore, by reducing the oil pits formed on the surface of the material for etching, it is expected to make the etching pattern higher.

이에 본 발명에서는, 에칭가공용 소재의 압연방향과 직각방향 및 압연방향 각각으로, 의도적으로 상이한 조도를 부여하여, 오일 피트의 발생을 억제하도록 하였다.Accordingly, in the present invention, roughness is intentionally different from each other in the rolling direction, the right angle direction, and the rolling direction of the etching processing material to suppress the occurrence of oil pits.

그 구체적인 방법으로서는, 냉간압연시의 롤의 조도를 약간 거칠게 하고, 압연시의 오일이 압연재료 표면과 롤 사이를 빠져 나가기 쉽게 하기 위해서, 마무리 압연의 롤에는, 원주방향으로 연마흔을 형성함으로써 오일 피트의 발생을 억제하였다. 즉, 압연시에 오일의 도피로를 의도적으로 만들어 둠으로써 오일 피트의 발생을 억제한다.As a specific method, in order to roughen the roughness of the roll at the time of cold rolling slightly, and to make it easier for oil at the time of rolling out between the surface of a rolling material and a roll, the roll of finishing rolling forms a grinding mark in the circumferential direction, The occurrence of pits was suppressed. In other words, the oil pits are intentionally made during rolling to suppress the occurrence of oil pits.

그 결과, 압연 후에 있어서의 압연방향과 직각으로 측정했을 때의 표면의 조도는 거칠어지나, 오일 피트의 발생은 억제된다.As a result, the roughness of the surface when measured at a right angle with the rolling direction after rolling becomes rough, but generation | occurrence | production of an oil pit is suppressed.

상기 효과를 얻기 위해서, 본 발명의 에칭용 소재는, 압연방향과 직각방향으로 측정한 표면조도를 Ra: 0.08~0.20 ㎛로 한다.In order to obtain the said effect, the etching raw material of this invention makes Ra: 0.08-0.20 micrometer the surface roughness measured in the direction orthogonal to a rolling direction.

단, 압연방향과 직각방향으로 측정한 표면조도가 Ra로 0.20 ㎛를 초과하여 거칠어지면, 거친 표면에 기인하여 고정세 에칭가공이 어려워진다. However, when the surface roughness measured in the direction perpendicular to the rolling direction becomes rougher than 0.20 µm in Ra, high-definition etching becomes difficult due to the rough surface.

또한, 한편으로 과도하게 표면조도가 낮아지면, 상기 오일 피트의 발생을 억제하는 효과가 얻어지지 않아, 오일 피트에 기인한 에칭 불량이 되기 쉬워지기 때문에, 압연방향과 직각방향으로 측정한 표면조도의 하한을, Ra로 0.08 ㎛ 이상으로 한다.On the other hand, if the surface roughness is excessively lowered, the effect of suppressing the occurrence of the oil pit is not obtained, and the etching defect due to the oil pit tends to be easy, so that the surface roughness measured in the direction perpendicular to the rolling direction A minimum is made into 0.08 micrometer or more in Ra.

또한, 본 발명의 경우, 상기한 바와 같이, 압연방향과 직각방향으로 측정한 표면조도를 높임으로써 오일 피트의 발생을 억제하면서, 압연방향의 표면조도를 약간 평활하게 하여 고정세 에칭가공을 실현한다.In addition, in the present invention, as described above, the surface roughness measured in the direction perpendicular to the rolling direction is raised to suppress the occurrence of oil pits, while smoothing the surface roughness in the rolling direction slightly, thereby realizing a high-definition etching process. .

그것을 위해 필요한 압연방향의 표면조도는, Ra: 0.01~0.10 ㎛로 한다.The surface roughness of the rolling direction required for that is Ra: 0.01-0.10 micrometer.

또한, 본 발명에 있어서, 압연방향과 직각방향으로 측정한 표면조도는, 압연방향으로 측정한 표면조도보다도 높은 것이 필요하고, 상기 오일 피트의 발생을 확실히 억제하는 데는, 압연방향과 직각방향으로 측정한 표면조도가, 압연방향으로 측정한 표면조도보다, Ra로 0.02 ㎛를 초과하여 거친 표면조도가 필요하다.In the present invention, the surface roughness measured in the direction perpendicular to the rolling direction is required to be higher than the surface roughness measured in the rolling direction. In order to reliably suppress the occurrence of the oil pits, the surface roughness measured in the direction perpendicular to the rolling direction is measured. One surface roughness is more than 0.02 micrometer in Ra than the surface roughness measured in the rolling direction, and rough surface roughness is needed.

에칭가공용 소재의 표면조도를 상기 범위로 하는 데는, 이하의 제조방법을 적용하면 된다.What is necessary is just to apply the following manufacturing methods to make the surface roughness of an etching process material into the said range.

본 발명에서 가장 중요한 공정은, 마무리 압연공정이다. 마무리 압연공정까지는, 통상의 Fe-Ni 합금의 제조방법을 그대로 적용할 수 있다.The most important process in this invention is a finishing rolling process. Until the finishing rolling process, a conventional method for producing a Fe-Ni alloy can be applied as it is.

예를 들면, 진공용해(眞空溶解)-열간단조(熱間鍛造)-열간압연(熱間壓延)-냉간압연(冷間壓延)이라는 공정이어도 되고, 필요에 따라, 냉간압연 전의 단계에서 1200℃ 정도로 균질화 열처리를 행하고, 냉간압연공정 중에는, 냉간압연재의 경도를 저감하기 위해 800~950℃의 소둔(燒鈍)을 1회 이상 행하면 된다.For example, a process such as vacuum melting, hot forging, hot rolling, and cold rolling may be used, and if necessary, 1200 ° C. at the stage before cold rolling. What is necessary is just to perform an annealing at 800-950 degreeC once or more in order to reduce the hardness of a cold rolled material in the homogenization heat processing to a grade and a cold rolling process.

그리고, 냉간압연의 마무리 압연에 있어서, 최종 패스의 압하율을 10% 이하로 한다.And in finish rolling of cold rolling, the rolling reduction rate of a final pass shall be 10% or less.

마무리 압연의 최종 패스의 압하율을 10% 이하로 하는 것은, 냉간압연의 최종 단계에서의 압하율이 10%를 초과하면, 에칭가공용 소재에 잔류하는 변형이 커져, 에칭가공하면, 잔류변형에 기인한 에칭가공용 소재의 변형이 발생할 위험성이 높아지기 때문이다.The reduction ratio of the final pass of the finish rolling to 10% or less is caused by a large amount of deformation remaining in the material for etching processing when the reduction ratio in the final stage of cold rolling exceeds 10%. This is because the risk of deformation of an etching processing material increases.

또한, 과도하게 압하율이 적으면, 전술한 표면조도로 조정하는 것이 곤란해지기 때문에, 마무리 압연의 하한은 2%로 하면 된다.In addition, when the reduction ratio is excessively small, it is difficult to adjust the surface roughness described above, so the lower limit of the finish rolling may be 2%.

본 발명에 있어서는, 롤의 표면조도를 조정하여 에칭가공용 소재 표면의 조도를 조정한다.In the present invention, the surface roughness of the roll is adjusted to adjust the roughness of the surface of the raw material for etching processing.

본 발명에서는, 마무리 압연의 최종 패스에서, 롤의 원주방향(롤의 회전방향)과는 직각방향의 조도가 Ra: 0.10~0.25 ㎛인 롤을 사용하는 것이 필요해진다.In the present invention, in the final pass of finish rolling, it is necessary to use a roll having a roughness Ra of 0.10 to 0.25 µm in the direction perpendicular to the circumferential direction of the roll (rotational direction of the roll).

롤의 원주방향과 직각방향의 조도를 Ra: 0.10~0.25 ㎛로 하는 첫째 이유는, 에칭가공용 소재의 표면조도의 조정이고, 둘째 이유는, 압연시의 오일이 압연재료 표면과 롤 사이를 빠져 나가기 쉽게 하는 조도를 롤에 부여함으로써, 오일 피트의 발생을 억제하기 위함이다.The first reason for the roughness in the circumferential direction and the perpendicular direction of the roll to Ra: 0.10 to 0.25 µm is the adjustment of the surface roughness of the material for etching processing, and the second reason is that the oil during rolling escapes between the surface of the rolling material and the roll. It is for suppressing generation | occurrence | production of an oil pit by giving roughness which makes it easy to a roll.

그 때문에, 본 발명의 롤 표면에는, 롤의 원주방향으로 연마흔을 형성한다. 연마흔의 형성에는, 롤의 원주방향과 직각방향의 조도를 Ra: 0.10~0.25 ㎛로 할 수 있는 조도를 갖는 연마지를 준비하고, 롤을 전동(轉動)하면서 연마지를 꽉 눌러, 롤에 연마흔을 롤의 원주방향으로 형성함으로써, 연마흔을 형성하면 된다.Therefore, a grinding mark is formed in the roll surface of this invention in the circumferential direction of a roll. To form the polishing trace, a polishing paper having a roughness in which the roughness in the circumferential direction and the perpendicular direction of the roll can be set to Ra: 0.10 to 0.25 µm is prepared, the abrasive paper is pressed firmly while rolling the roll, What is necessary is just to form a grinding | polishing trace by forming in the circumferential direction of a roll.

그리고 본 발명에서는, 잔류응력을 저감하기 위해, 압연속도를 1.2 m/s 이상으로 규정하였다. 압연속도가 1.2 m/s 미만이면, 롤과 에칭가공용 소재의 마찰계수가 높아져, 잔류응력을 저감할 수 없다. 그 때문에, 압연속도를 1.2 m/s 이상으로 한다. 바람직한 압연속도는 1.5 m/s 이상이다.And in this invention, in order to reduce residual stress, the rolling speed was prescribed | regulated to 1.2 m / s or more. If the rolling speed is less than 1.2 m / s, the coefficient of friction between the roll and the material for etching processing is high, and residual stress cannot be reduced. Therefore, rolling speed shall be 1.2 m / s or more. Preferred rolling speeds are at least 1.5 m / s.

또한, 압연속도의 상한은 특별히 규정하지 않으나, 속도가 지나치게 높으면, 가공열의 영향으로 롤의 열팽창이 발생하여 형상이 불안정해진다. 그 이유에서 10 m/s 이내이면 충분하다.The upper limit of the rolling speed is not particularly defined, but if the speed is too high, thermal expansion of the roll occurs under the influence of the heat of processing, and the shape becomes unstable. For that reason, within 10 m / s is sufficient.

본 발명에 있어서, 마무리 압연 후에 에칭가공용 소재에 잔류하는 변형의 제거를 목적으로, 변형 제거 소둔을 행해도 되고, 변형 제거 소둔은 400~700℃ 정도의 온도역이면 충분하다.In the present invention, the strain removal annealing may be performed for the purpose of removing the strain remaining in the raw material for etching after finish rolling, and the strain removal annealing is sufficient if the temperature range is about 400 to 700 ° C.

마무리 압연 후에 변형 제거 소둔을 행하면, 에칭가공용 소재에 대해 에칭가공을 행한 후에, 잔류응력에 기인한 불량을 보다 확실히 억제하는 것이 가능해져, 더욱 바람직하다.When the strain removal annealing is performed after the finish rolling, after etching is performed on the material for etching, it is possible to more reliably suppress the defect due to the residual stress, which is more preferable.

또한, 상기 압연방향과 직각방향, 압연방향, 롤의 원주방향과는 직각방향, 롤의 원주방향이란, 도 3에 모식적으로 나타내는 바와 같으며, 에칭가공용 소재(1)에 (A)로 나타내는 방향이 압연방향과 직각방향이고, (B)로 나타내는 방향이 압연방향이다.The direction perpendicular to the rolling direction, the rolling direction, the circumferential direction of the roll, and the circumferential direction of the roll are as shown schematically in FIG. 3, and are represented by (A) in the raw material 1 for etching processing. The direction is a direction perpendicular to the rolling direction, and the direction shown by (B) is the rolling direction.

또한, 롤(2)에 (C)로 나타내는 방향이 롤의 원주방향과는 직각방향이고, (D)로 나타내는 방향이 롤의 원주방향이다.In addition, the direction shown by (C) in the roll 2 is a direction perpendicular to the circumferential direction of a roll, and the direction shown by (D) is the circumferential direction of a roll.

실시예Example

이하의 실시예로 본 발명을 더욱 상세히 설명한다.The present invention will be described in more detail with reference to the following examples.

이번 실시예에서는, Ni 함유량이 가장 바람직한 범위인 32~45 질량%의 범위 내에 있는 Fe-Ni 합금을 사용하였다.In the present Example, the Fe-Ni alloy which exists in the range of 32-45 mass% whose Ni content is the most preferable range was used.

상기 Fe-Ni 합금은, 진공용해-열간단조-균질화열처리-열간압연으로 두께 2~3 ㎜로 마무리한다는 통상의 공정 후, 냉간압연을 실시하였다.The said Fe-Ni alloy was cold-rolled after the normal process of finishing it with thickness 2-3mm by vacuum melting-hot forging-homogenization heat processing-hot rolling.

본 발명에 사용한 Fe-Ni 합금의 화학 조성을 표 1에 나타낸다.Table 1 shows the chemical composition of the Fe-Ni alloy used in the present invention.

Figure 112010016148498-pat00001
Figure 112010016148498-pat00001

열간압연 후의 Fe-Ni 합금판재를 냉간압연하였다. 냉간압연 도중에 2회의 소둔을 행하여 마무리 압연 전의 Fe-Ni 합금 냉간압연재로 하였다. 또한, 냉간압연 중의 소둔온도는 약 900℃에서 연속 소둔으로 하고, 마무리 압연 최종 패스 전의 Fe-Ni 합금 냉간압연재의 두께는 0.054 ㎜로 하였다.The Fe-Ni alloy sheet material after hot rolling was cold rolled. Annealing was performed twice during cold rolling to obtain a Fe-Ni alloy cold rolling material before finish rolling. In addition, the annealing temperature in cold rolling was made into continuous annealing at about 900 degreeC, and the thickness of the Fe-Ni alloy cold-rolled material before final rolling final pass was 0.054 mm.

마무리 압연 후에, 판두께 0.050 ㎜가 되도록, 마무리 압연의 압하율을 7.4%로 하고, 압연속도는 1.3 m/s로 하며, 최종 패스에 사용하는 롤은, 조도를 5종류로 변화시킨 롤을 사용해서 에칭가공용 소재를 제조하였다. 또한, 조건 A~D는 본 발명의 범위에서 제조한 에칭가공용 소재이고, 의도적으로 조건 E, F는 평활한 표면으로 마무리한 비교예이다.After finishing rolling, the rolling reduction was 7.4%, the rolling speed was 1.3 m / s so that the sheet thickness was 0.050 mm, and the roll used for the final pass used a roll having five roughness variations. To prepare an etching processing material. In addition, conditions A-D are the raw materials for etching processes manufactured in the scope of the present invention, and conditions E and F are intentionally the comparative example which finished to the smooth surface.

또한, 롤에의 조도의 부여는, 롤을 회전시키면서, 원주방향으로 연마흔이 형성되도록 연마지를 사용하였다.In addition, the provision of the roughness to a roll used the abrasive paper so that a grinding mark may be formed in the circumferential direction, rotating a roll.

롤의 원주방향과 직각방향의 조도와, 마무리 압연 후의 에칭가공용 소재의 표면조도를 표 2에 나타낸다.Table 2 shows the roughness in the circumferential direction and the perpendicular direction of the roll, and the surface roughness of the raw material for etching after finishing rolling.

또한, 표면조도 Ra의 측정은, JISB0601, JISB0651에서 나타내어지는 측정방법에 따라 측정한 것이다. 또한, 에칭가공용 소재의 표면조도는, 랜덤으로 3개소를 선택하여, 압연방향, 직각방향, 압연방향의 조도를 측정하였다.In addition, the measurement of surface roughness Ra is measured according to the measuring method shown by JISB0601 and JISB0651. In addition, the surface roughness of the raw material for etching processing was selected at random from three places, and the roughness of the rolling direction, the perpendicular direction, and the rolling direction was measured.

Figure 112010016148498-pat00002
Figure 112010016148498-pat00002

마무리 압연 후, 약 700℃에서 변형 제거 소둔을 실시하고, 에칭가공용 소재 표면에 대해서, 오일 피트의 발생 유무를 조사하였다.After finish rolling, the strain removal annealing was performed at about 700 ° C., and the presence or absence of oil pits was examined on the surface of the raw material for etching processing.

오일 피트의 유무를, 화상해석 등의 수단에 의해, 정량적으로 평가하고자 시도하였으나, 식별이 잘 되지 않았다. 이에, 200배의 현미경사진에 의해, 오일 피트의 발생을 사진 판정에 의해 확인하기로 하였다.Attempts were made to quantitatively assess the presence or absence of oil pits by means of image analysis or the like, but the identification was not good. Therefore, the occurrence of oil pits was confirmed by photographic determination by a 200 times photomicrograph.

평가결과를 표 3에 나타내고, 또한, 조건 A로 제조한 에칭가공용 소재 표면의 광학현미경사진을 도 1로, 조건 E로 제조한 에칭가공용 소재 표면의 광학현미경사진을 도 2로 나타낸다. 또한, 도면 중에 흰 동그라미로 나타내는 개소가 특징적인 오일 피트이다.An evaluation result is shown in Table 3, and the optical micrograph of the surface of the etching process material manufactured on condition A is shown in FIG. 1, and the optical micrograph of the surface of the etching process material manufactured on condition E is shown in FIG. In addition, the part shown by the white circle in a figure is a characteristic oil pit.

Figure 112010016148498-pat00003
Figure 112010016148498-pat00003

표 3에 나타내는 바와 같이, 본 발명방법을 적용한 에칭가공용 소재는, 오일 피트의 발생을 매우 억제할 수 있는 것을 알 수 있다.As shown in Table 3, it turns out that the raw material for an etching process to which the method of this invention is applied can suppress the generation | occurrence | production of an oil pit very much.

또한, 도 1 및 도 2에 나타낸 바와 같이, 조건 E(도 2)의 에칭가공용 소재의 표면은, 수 ㎛~20 ㎛ 정도의 오일 피트가 분산하여 형성되어 있는 것을 확인할 수 있다. 한편, 본 발명의 조건 A(도 1)의 메탈 마스크용 소재의 표면은, 수 ㎛ 정도의 오일 피트가 약간 형성되어 있는 것을 알 수 있다.In addition, as shown in FIG. 1 and FIG. 2, it can be confirmed that the oil pit of several micrometers-about 20 micrometers is disperse | distributed and formed in the surface of the etching process material of condition E (FIG. 2). On the other hand, it turns out that the oil pit of several micrometers is slightly formed in the surface of the metal mask material of condition A (FIG. 1) of this invention.

다음으로, 조건 B와 동일한 롤을 사용하고, 압연속도를 1.0 m/s, 1.3 m/s, 1.7 m/s로 변화시켜, 잔류응력을 측정하였다.Next, using the roll same as condition B, the rolling speed was changed to 1.0 m / s, 1.3 m / s, 1.7 m / s, and residual stress was measured.

잔류응력은, 마무리 압연 후의 두께 0.050 ㎜의 에칭가공용 소재로부터, 폭 30 ㎜, 길이 150 ㎜의 커팅 샘플을 제작하고, 편면만을 판두께의 1/3 정도가 되는 0.016 ㎜으로 에칭에 의해 제거한 후, 커팅 샘플을 수직 상반(上盤)에 매달았을 때의 휨량을 측정하여, 평가를 행하였다.After the residual stress produced the cutting sample of width 30mm and length 150mm from the material for etching processing of thickness 0.050mm after finish rolling, and removes only one side by 0.016mm which becomes about 1/3 of plate | board thickness by etching, The curvature amount when the cutting sample was suspended on the vertical upper half was measured and evaluated.

에칭액은 염화제2철 수용액을 사용하여, 액온 50℃의 에칭액을 분무시켜서 시험편의 부식을 실시하였다. 표층에 발생하는 잔류응력은, 판두께방향에서 수 ㎛의 극표층부뿐일 가능성이 높으나, 표층의 영향을 충분히 무시할 수 있게 하기 위해, 판두께의 1/3 정도까지 에칭을 행하기로 하였다.The etching liquid was sprayed with the etching liquid of 50 degreeC of liquid temperature using the ferric chloride aqueous solution, and the test piece was corroded. The residual stress generated in the surface layer is likely to be only a few micrometers of the surface layer in the plate thickness direction, but in order to sufficiently ignore the influence of the surface layer, etching is performed to about 1/3 of the plate thickness.

이 평가법을 사용함으로써, 에칭 후 매달았을 때의 휨량이 작을수록, 표층의 압축 잔류응력이 저감하고 있는 것을 판단할 수 있다. 그 결과를 표 4에 나타낸다. 또한, 에칭가공용 소재의 표면조도에 대해서는, 표 2에서 나타낸 것과 동일하였다.By using this evaluation method, it can be judged that the compressive residual stress of the surface layer is reduced, so that the curvature amount when hanging after etching is small. The results are shown in Table 4. In addition, the surface roughness of the raw material for etching processing was the same as that shown in Table 2.

Figure 112010016148498-pat00004
Figure 112010016148498-pat00004

이번 잔류응력시험에 있어서는, 경험칙에서 휨량이 15 ㎜ 이하의 범위이면, 고정세 에칭으로의 영향은 거의 없다고 판단하였다.In this residual stress test, it was judged that the effect of high-definition etching had little effect as long as the amount of warpage was within the range of 15 mm in accordance with the rule of thumb.

표 4의 결과로부터, 압연속도가 본 발명의 범위인 것에서는, 휨량이 적은 결과가 되었다.From the result of Table 4, when the rolling speed was the range of the present invention, the result was that the amount of warpage was small.

이상의 결과로부터, 본 발명의 에칭용 소재는, 고정세 에칭 특성에 영향을 미치는 표면 형태에 관한 문제나 잔류응력에 관한 문제 양쪽을 함께 해결할 수 있었다. 그 때문에, 고정세 패턴을 형성하는 리드프레임이나 마스크용도에 최적이라 할 수 있다.From the above result, the etching material of this invention was able to solve both the problem regarding the surface form which affects high-definition etching characteristic, and the problem regarding residual stress. Therefore, it can be said that it is most suitable for the lead frame and mask use which form a high definition pattern.

본 발명은 에칭 후의 치수 특성에 영향을 미치고, 오일 피트의 발생을 억제할 수 있으며, 또한 잔류응력의 저감도 동시에 해결할 수 있었던 점에서, 고정세 에칭 특성이 요구되는 용도로의 적용을 기대할 수 있다.Since the present invention can affect the dimensional characteristics after etching, can suppress the occurrence of oil pits, and can also reduce the residual stress at the same time, it can be expected to be applied to applications requiring high-definition etching characteristics. .

1 에칭가공용 소재
2 롤
1 Etching material
2 roll

Claims (2)

질량%로 0<C≤0.01%, 0<Si≤0.5%, 0<Mn≤1.0%, 30≤Ni≤50%를 함유하고, 잔부가 Fe 및 불순물을 포함하며, 판두께가 0.02~0.15 ㎜인 에칭가공용 소재의 제조방법으로서, 마무리 냉간압연의 최종 패스를 10% 이하의 압하율로 하고, 또한, 상기 마무리 압연의 롤에는, 원주방향으로 연마흔을 형성하여, 원주방향과 직각방향의 조도를 Ra: 0.10~0.25 ㎛로 한 롤을 사용해서 압연속도를 1.2 m/s 이상으로 행하는 것을 특징으로 하는 에칭가공용 소재의 제조방법.The mass% contains 0 <C≤0.01%, 0 <Si≤0.5%, 0 <Mn≤1.0%, 30≤Ni≤50%, the balance contains Fe and impurities, and the plate thickness is 0.02-0.15 mm As a method for producing a raw material for etching etching, the final pass of the finish cold rolling is a reduction ratio of 10% or less, and the polishing roll is formed on the roll of the finish rolling, and roughness perpendicular to the circumferential direction is obtained. A method for producing an etching-processing material, characterized in that the rolling speed is set to 1.2 m / s or more using a roll of Ra: 0.10 to 0.25 µm. 질량%로 0<C≤0.01%, 0<Si≤0.5%, 0<Mn≤1.0%, 30≤Ni≤50%를 함유하고, 잔부가 Fe 및 불순물을 포함하며, 판두께가 0.02~0.15 ㎜인 에칭가공용 소재로서, 그 에칭가공용 소재는, 압연방향과 직각방향으로 측정한 표면조도가 Ra: 0.08~0.20 ㎛이고, 압연방향으로 측정한 표면조도가 Ra: 0.01~0.10 ㎛이며, 또한, 압연방향과 직각방향으로 측정한 표면조도가, 압연방향으로 측정한 표면조도보다, Ra로 0.02 ㎛를 초과하여 거친 표면조도를 갖는 것을 특징으로 하는 에칭가공용 소재.The mass% contains 0 <C≤0.01%, 0 <Si≤0.5%, 0 <Mn≤1.0%, 30≤Ni≤50%, the balance contains Fe and impurities, and the plate thickness is 0.02-0.15 mm As the material for etching etching, the material for etching processing has a surface roughness measured in a direction perpendicular to the rolling direction of Ra: 0.08 to 0.20 µm, a surface roughness measured in a rolling direction of Ra: 0.01 to 0.10 µm, and further rolled. The surface roughness measured in the direction perpendicular to the direction has a rough surface roughness exceeding 0.02 μm in Ra than the surface roughness measured in the rolling direction.
KR1020100022700A 2009-03-18 2010-03-15 Method of producing etching material and the etching material KR101164739B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2009-065949 2009-03-18
JP2009065949A JP5294072B2 (en) 2009-03-18 2009-03-18 Etching material manufacturing method and etching material

Publications (2)

Publication Number Publication Date
KR20100105421A KR20100105421A (en) 2010-09-29
KR101164739B1 true KR101164739B1 (en) 2012-07-12

Family

ID=42973849

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100022700A KR101164739B1 (en) 2009-03-18 2010-03-15 Method of producing etching material and the etching material

Country Status (2)

Country Link
JP (1) JP5294072B2 (en)
KR (1) KR101164739B1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6012192B2 (en) * 2012-02-08 2016-10-25 三菱重工業株式会社 Bending method for superalloy members
CN102716906B (en) * 2012-07-10 2015-04-01 冶科金属有限公司 Method for producing iron nickel strip for high plate-shaped integrated circuit (IC) lead frame
JP5721691B2 (en) * 2012-11-20 2015-05-20 Jx日鉱日石金属株式会社 Metal mask material and metal mask
JP5382259B1 (en) * 2013-01-10 2014-01-08 大日本印刷株式会社 Metal plate, method for producing metal plate, and method for producing vapor deposition mask using metal plate
JP5516816B1 (en) 2013-10-15 2014-06-11 大日本印刷株式会社 Metal plate, method for producing metal plate, and method for producing vapor deposition mask using metal plate
JP5641462B1 (en) 2014-05-13 2014-12-17 大日本印刷株式会社 Metal plate, metal plate manufacturing method, and mask manufacturing method using metal plate
JP6628082B2 (en) * 2015-01-20 2020-01-08 日立金属株式会社 Method for producing Fe-Ni alloy thin plate
CN105803333A (en) * 2015-01-20 2016-07-27 日立金属株式会社 Manufacturing method for Fe-Ni alloy sheet metal
CN110117767A (en) 2015-07-17 2019-08-13 凸版印刷株式会社 Metal mask substrate and its manufacturing method, vapor deposition metal mask and its manufacturing method
KR101810824B1 (en) 2015-07-17 2017-12-19 도판 인사츠 가부시키가이샤 Metal mask substrate, metal mask substrate control method, metal mask, and metal mask production method
DE112016003225T5 (en) 2015-07-17 2018-04-19 Toppan Printing Co., Ltd. METAL MASK SUBSTRATE, METAL MASK AND METAL MASK MANUFACTURING METHOD
KR102341452B1 (en) 2015-07-17 2021-12-21 도판 인사츠 가부시키가이샤 Metal mask substrate for vapor deposition, metal mask for vapor deposition, production method for metal mask substrate for vapor deposition, and production method for metal mask for vapor deposition
JP6598007B2 (en) * 2015-09-30 2019-10-30 日立金属株式会社 Method for producing Fe-Ni alloy thin sheet
JP6177298B2 (en) * 2015-11-04 2017-08-09 Jx金属株式会社 Metal mask material and metal mask
JP6177299B2 (en) 2015-11-04 2017-08-09 Jx金属株式会社 Metal mask material and metal mask
KR101931902B1 (en) 2016-04-14 2018-12-21 도판 인사츠 가부시키가이샤 Vapor deposition mask base material, vapor deposition mask base material manufacturing method, and vapor deposition mask manufacturing method
CN109642289B (en) * 2016-08-31 2021-06-01 日立金属株式会社 Material for metal mask and method for producing the same
CN109641248B (en) * 2016-08-31 2021-04-06 日立金属株式会社 Material for metal mask and method for producing the same
KR102217049B1 (en) * 2016-09-15 2021-02-18 히다찌긴조꾸가부시끼가이사 Material for metal mask and its manufacturing method
CN106623419B (en) * 2016-12-14 2018-07-27 无锡华生精密材料股份有限公司 The cold rolling production method of controlled expansion alloy band
JP6319505B1 (en) 2017-09-08 2018-05-09 凸版印刷株式会社 Vapor deposition mask substrate, vapor deposition mask substrate production method, vapor deposition mask production method, and display device production method
JP6299921B1 (en) 2017-10-13 2018-03-28 凸版印刷株式会社 Vapor deposition mask substrate, vapor deposition mask substrate production method, vapor deposition mask production method, and display device production method
CN117187746A (en) * 2017-11-14 2023-12-08 大日本印刷株式会社 Method for manufacturing metal plate and method for manufacturing vapor deposition mask
JP7294336B2 (en) * 2018-06-20 2023-06-20 株式会社プロテリアル Fe-Ni alloy sheet
CN112752860A (en) * 2018-09-27 2021-05-04 日铁化学材料株式会社 Metal mask material, manufacturing method thereof and metal mask
CN109834150B (en) * 2019-01-08 2021-05-04 上海航天精密机械研究所 Multi-wave tube hydraulic bulging forming method
TWI772066B (en) * 2021-06-16 2022-07-21 達運精密工業股份有限公司 Method of preparing metal mask substrate

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH057905A (en) * 1991-07-05 1993-01-19 Nippon Steel Corp Rolling method for low brightness stainless steel foil
JPH05317910A (en) * 1992-03-12 1993-12-03 Sumitomo Metal Ind Ltd Manufacture of metal strip with high glossiness
JP2941131B2 (en) * 1992-10-15 1999-08-25 川崎製鉄株式会社 Method for producing steel plate for shadow mask or aperture grill
JP2899235B2 (en) * 1995-08-24 1999-06-02 住友軽金属工業株式会社 Method for producing aluminum plate or aluminum alloy plate with low optical anisotropy
JP3487471B2 (en) * 1996-01-30 2004-01-19 日立金属株式会社 Fe-Ni alloy thin plate with excellent etching processability
JPH10270629A (en) * 1997-03-27 1998-10-09 Nikko Kinzoku Kk Iron alloy superior in resin adhesion
JP2002282902A (en) * 2001-03-28 2002-10-02 Kawasaki Steel Corp Method for tempering and rolling stainless steel sheet
JP2004039628A (en) * 2003-06-04 2004-02-05 Hitachi Metals Ltd Metal mask

Also Published As

Publication number Publication date
JP2010214447A (en) 2010-09-30
KR20100105421A (en) 2010-09-29
JP5294072B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
KR101164739B1 (en) Method of producing etching material and the etching material
KR102164912B1 (en) Material for metal mask and its manufacturing method
KR100390654B1 (en) Litho strip and method for its manufacture
KR102114022B1 (en) Martensitic stainless steel foil and its manufacturing method
KR101534293B1 (en) Litho sheet for electrochemical roughening, and method for producing the same
JP2013514890A (en) Martensitic stainless steel and method for producing the same
JP2011143440A (en) Method of manufacturing grain oriented silicon steel sheet
CN109642289B (en) Material for metal mask and method for producing the same
EP1114871B1 (en) Process for the production of material of metals and alloys having fine microstructure or fine nonmetallic inclusions and having less segregation of alloying elements.
JP2014073518A (en) Method for manufacturing oriented electromagnetic steel plate
JP3562492B2 (en) Stainless steel plate for photoetching and method of manufacturing the same
JP2011084800A (en) High purity aluminum rolled sheet and method for producing the rolled sheet
JP2015004095A (en) Aluminum alloy sheet for can body and production method thereof
JP2023046294A (en) Metal band material manufacturing method and metal band material
KR101204843B1 (en) Method for fabricating cold rolled sheet
CN110352101A (en) The manufacturing method and Fe-Ni system latten of Fe-Ni system latten
JP2019171403A (en) Stainless hot rolled steel sheet and stainless cold rolled steel sheet
JP2009120926A (en) Aluminum rolled sheet, and method for producing the same
JPH071001A (en) Stainless steel sheet for mirror finished surface material and its manufacture

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20150619

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160617

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170616

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180619

Year of fee payment: 7