WO2018043588A1 - 圧力センサ内蔵静電容量型タッチパネル - Google Patents

圧力センサ内蔵静電容量型タッチパネル Download PDF

Info

Publication number
WO2018043588A1
WO2018043588A1 PCT/JP2017/031225 JP2017031225W WO2018043588A1 WO 2018043588 A1 WO2018043588 A1 WO 2018043588A1 JP 2017031225 W JP2017031225 W JP 2017031225W WO 2018043588 A1 WO2018043588 A1 WO 2018043588A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
detection electrode
electrode
touch panel
pressure detection
Prior art date
Application number
PCT/JP2017/031225
Other languages
English (en)
French (fr)
Inventor
武紀 丸山
杉田 靖博
和寿 木田
山岸 慎治
憲史 多田
ジョン ムジラネザ
秀次 川森
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201780037460.3A priority Critical patent/CN109952553B/zh
Priority to US16/310,788 priority patent/US10606432B2/en
Publication of WO2018043588A1 publication Critical patent/WO2018043588A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/205Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using distributed sensing elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/225Measuring circuits therefor
    • G01L1/2262Measuring circuits therefor involving simple electrical bridges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2287Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges
    • G01L1/2293Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges of the semi-conductor type
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04105Pressure sensors for measuring the pressure or force exerted on the touch surface without providing the touch position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • the present invention relates to a capacitive touch panel with a built-in pressure sensor.
  • Patent Document 1 A capacitive touch panel with a built-in pressure sensor is known as a prior art (Patent Document 1).
  • the sensor described in Patent Document 1 is configured to measure an electrostatic capacitance between an electrode pattern made of indium tin oxide (ITO) and an electrode pattern through a contact point, and the surrounding environment of the electrode pattern.
  • a resistance measuring device configured to measure a resistance between a pair of points of the electrode pattern.
  • the capacitance measuring device detects the position of the conductor based on the capacitance change. Thereafter, the resistance measuring device detects the pressure applied by the conductor from the change in the resistance value of the electrode pattern based on the pressure applied to the electrode pattern by the conductor.
  • Patent No. 5409944 (Registered on Nov. 8, 2013)”
  • the conventional technology as described above uses the same electrode pattern for detecting the position of the conductor and for detecting the pressure applied by the conductor, a capacitance for detecting the position is used.
  • the measurement device and the resistance measurement device for detecting pressure need to operate in a time-sharing manner. For this reason, there exists a problem that the position of a conductor and the pressure applied by the said conductor cannot be detected simultaneously.
  • the present invention has been made in view of the above problems, and an object thereof is a capacitive touch panel with a built-in pressure sensor that can simultaneously detect the position of the conductor and the pressure applied by the conductor. Is to realize.
  • a capacitive touch panel with a built-in pressure sensor includes a plurality of touch detection electrodes extending in a first direction to detect a touch position based on capacitance. And a pressure detection electrode extending in the first direction with a narrower width than the touch detection electrode between the plurality of touch detection electrodes, and having a resistance value that changes in response to the application of pressure.
  • (A) is a top view which shows typically the structure of the touchscreen which concerns on Embodiment 1
  • (b) is the sectional drawing.
  • (A) is a top view which shows typically the structure of the sense layer formed in the touchscreen which concerns on a comparative example,
  • (b) is an enlarged view of the A section shown by (a).
  • (A) is a top view which shows typically the structure of the sense layer formed in the touchscreen which concerns on Embodiment 1
  • (b) is an enlarged view of the B section shown by (a). It is a figure for demonstrating the method to measure the resistance of the pressure detection electrode arrange
  • (A) is a circuit diagram for simulating resistance value change when a pressure is applied to the pressure detection electrode, and (b) is a graph showing the simulation result.
  • (A) is a top view which shows typically the structure of the sense layer formed in the touchscreen which concerns on Embodiment 2,
  • (b) is an enlarged view which shows the structure of the C section shown by (a),
  • c) is an enlarged view showing another configuration of the C section.
  • (A) is a schematic diagram which shows the deformation
  • (b) is resistance value change of the pressure detection electrode which concerns on a comparative example.
  • FIG. (A) is a circuit diagram for simulating resistance value change when a pressure is applied to the pressure detection electrode, and (b) is a graph showing the simulation result.
  • (A) is a top view which shows typically the structure of the sense layer formed in the touchscreen which concerns on Embodiment 3
  • (b) is an enlarged view which shows the structure of the D section shown by (a)
  • c) is an enlarged view showing another configuration of the D section.
  • 10 is a plan view schematically showing a configuration of a sense layer formed on a touch panel according to Embodiment 4.
  • FIG. 10 is a plan view schematically showing a configuration of a sense layer formed on a touch panel according to Embodiment 5. It is a graph which shows the simulation result of resistance value change when a pressure is applied to the pressure detection electrode provided in the said touch panel. 10 is a cross-sectional view illustrating a configuration of a display panel according to Embodiment 6. FIG. It is sectional drawing which shows the structure of the touchscreen provided in the said display panel.
  • FIG. 1A is a plan view schematically showing the configuration of a touch panel 1 (capacitance type touch panel with a built-in pressure sensor) according to Embodiment 1, and FIG. 1B is a cross-sectional view thereof.
  • the touch panel 1 is provided on the display panel 10.
  • a cover glass 14 is provided so as to cover the touch panel 1.
  • the touch panel 1 includes a drive layer 7 and a sense layer 6.
  • a plurality of drive electrodes 3 extending in parallel with each other along the X direction are formed on the drive layer 7.
  • a plurality of sense electrodes 2 (touch detection electrodes) extending in parallel with each other along the Y direction are formed on the sense layer 6.
  • a plurality of capacitors are formed in a matrix between the plurality of drive electrodes 3 and the plurality of sense electrodes 2.
  • the capacitance of the capacitor on the touch panel 1 corresponding to the touch position changes. For this reason, when a signal based on the electric charge accumulated in the capacitor is read from the sense electrode 2 by applying a drive voltage to the drive electrode 3, the touch position of the detection target can be detected.
  • FIG. 2A is a plan view schematically showing the configuration of the sense layer 6 formed on the touch panel according to the comparative example
  • FIG. 2B is an enlarged view of a portion A shown in FIG.
  • the electrodes formed on the sense layer 6 for detecting the touch position are generally sense electrodes connected to a touch panel controller composed of an IC (Integrated Circuit) through a flexible printed circuit board 15 (Flexible Printed Circuit, FPC). 2 and a dummy electrode 95 which is disposed between the sense electrodes 2 and is not connected to the touch panel controller in order to improve the appearance.
  • IC Integrated Circuit
  • FPC Flexible Printed Circuit
  • FIG. 3A is a plan view schematically showing the configuration of the sense layer 6 formed on the touch panel 1 according to the first embodiment
  • FIG. 3B is an enlarged view of a portion B shown in FIG.
  • a part of the dummy electrode is connected as the pressure detection electrode 4 to the same controller as the controller to which the sense electrode 2 is connected.
  • the pressure detection electrode 4 is disposed between the adjacent sense electrodes 2.
  • a dummy electrode 5 is disposed between one of the adjacent sense electrodes 2 and the pressure detection electrode 4 and between the other of the adjacent sense electrodes 2 and the pressure detection electrode 4.
  • the width of the pressure detection electrode 4 is narrower than the width of the sense electrode 2.
  • the width of the dummy electrode 5 is the same as the width of the pressure detection electrode 4.
  • the dummy electrode 5, the pressure detection electrode 4, and the sense electrode 2 are made of indium tin oxide (ITO), which is the same material.
  • the material of the pressure detection electrode 4 is preferably a material having a large resistance value change (gauge rate) due to stress.
  • a semiconductor such as ITO is known to have a large gauge factor and is therefore suitable as a material for the pressure detection electrode 4.
  • the gauge factor of semiconductor the gauge factor of polycrystal is higher than that of amorphous, and the gage factor of single crystal is higher than that of polycrystal.
  • One end of the sense electrode 2 is connected to the touch panel controller 19 via the flexible printed board 15.
  • Each pressure detection electrode 4 is connected to the drive wiring 16 at both ends, and is connected to the touch panel controller 19 via the flexible printed circuit board 15.
  • Each dummy electrode 5 is not connected to the touch panel controller 19.
  • the amplifier provided in the touch panel controller 19 is preferably a differential amplifier that amplifies the difference between a pair of inputs. Thereby, the resistance value change between each pressure detection electrode 4 at the time of stress application can be detected more remarkably.
  • the position detection electrode arranged in the sense layer 6 includes a sense electrode 2 connected to the touch panel controller 19 and a dummy electrode 5 not connected to the touch panel controller 19.
  • the position detection electrode is generally formed by arranging a plurality of electrodes extending in one direction in order to increase detection accuracy.
  • a pressure detection electrode 4 is provided between the adjacent dummy electrodes 5.
  • the sense electrode 2 for detecting the position and the pressure detection electrode 4 for detecting the pressure are connected to the same touch panel drive IC (touch panel controller 19).
  • the touch position is detected based on a change in mutual capacitance between the sense electrode 2 and the drive electrode 3.
  • the pressure is detected based on a change in the resistance value of the pressure detection electrode 4 due to the application of stress to the pressure detection electrode 4.
  • the pressure detection electrode 4 is provided with the same material on the same layer as the sense layer 6 on which the position detection sense electrode 2 is disposed. For this reason, the extra process, cost, and mechanical restrictions for providing the pressure detection electrode 4 are unnecessary.
  • the position detection sense electrode 2 and the pressure detection electrode 4 are both connected to the same touch panel controller 19. For this reason, it is not necessary to provide a resistance measuring device as a different IC from the capacitance measuring device as in Patent Document 1. Since the pressure detection electrode 4 is provided separately from the position detection sense electrode 2, it is possible to detect both the position and the pressure simultaneously by driving both electrodes simultaneously.
  • FIG. 4 is a diagram for explaining a method of measuring the resistance of the pressure detection electrode 4 arranged in the sense layer 6.
  • FIG. 5 is a graph showing the measurement results of the resistance of the pressure detection electrode 4.
  • the applied pressure and the resistance change amount of the pressure detection electrode 4 are proportional as shown in FIG. Therefore, the pressure applied to the touch panel 1 can be detected by measuring the resistance value of the pressure detection electrode 4.
  • FIG. 6A is a circuit diagram for simulating a change in resistance value when pressure is applied to the pressure detection electrode 4, and FIG. 6B is a graph showing the simulation result.
  • a change in resistance value of the pressure detection electrode 4 when a pressure of 300 g is applied to the pressure detection electrode 4 when the line resistance is 1 k ⁇ and the input voltage is 3.3 V is input to a differential amplifier provided in the touch panel controller 19
  • the simulation results are shown. It can be seen that the output can be detected from the actually measured resistance change when 300 g of pressure is applied to the touch panel 1 on the display panel 10.
  • the present invention is not limited to this.
  • the pressure detection electrode 4 may be disposed on the same drive layer 7 as the drive electrode 3. The same applies to the embodiments described later.
  • FIG. 7A is a plan view schematically showing the configuration of the sense layer 6 formed on the touch panel 1A according to the second embodiment
  • FIG. 7B is an enlarged view showing the configuration of the C portion shown in FIG. (C) is an enlarged view showing another configuration of the C section.
  • the folded pattern portion 8 is inserted into the pressure detection electrode 4A in order to make the change in resistance value when applying pressure more prominent.
  • the pressure detection electrode 4A is configured by bundling three pieces as shown in FIG. 7B in order to lower the resistance.
  • the folded pattern portion 8 of the pressure detection electrode 4A extends by a folding length L in the ⁇ Y direction and then extends by a length W in the ⁇ X direction. Then, after extending by the folding length L in the Y direction, it extends by the length W in the ⁇ X direction. Next, it extends by a folding length L in the -Y direction.
  • the folded pattern portion 8 of the pressure detection electrode 4A extends alternately in the ⁇ Y direction and the Y direction in order to increase the rate of change in resistance value according to the application of pressure.
  • FIG. 7A shows an example in which the folded pattern portion 8 is arranged near the center in the longitudinal direction of all the pressure detection electrodes 4A, but the present invention is not limited to this.
  • the folded pattern portion 8 may be configured to extend in an irregular shape as shown in FIG.
  • FIG. 8A is a schematic diagram showing a deformation state of the pressure detection electrode 4 when stress is applied to the pressure detection electrode formed in the sense layer 6, and FIG. 8B is a diagram of the pressure detection electrode according to the comparative example. It is a figure for demonstrating resistance value variation
  • FIG. 8A is a schematic diagram showing a deformation state of the pressure detection electrode 4 when stress is applied to the pressure detection electrode formed in the sense layer 6, and
  • FIG. 8B is a diagram of the pressure detection electrode according to the comparative example. It is a figure for demonstrating resistance value variation
  • Inserting the folded pattern portion 8 increases the distance in the longitudinal direction of the pressure detection electrode and increases the rate of resistance change with respect to stress. Further, by connecting the electrode lines before and after the folded pattern portion 8 is connected in parallel, the resistance value of the entire pressure detection electrode can be lowered, and the rate of change can be further increased.
  • the folding number of the folding pattern portion 8 is shown as three times in FIGS. 7 and 8, but the present invention is not limited to this. The number of folds can be changed depending on the actual pattern.
  • the folded length L of the pressure detection electrode 4A and the resistance value of the pressure detection electrode 4A are in a trade-off relationship.
  • FIG. 9A is a circuit diagram for simulating resistance value change when pressure is applied to the pressure detection electrode 4A
  • FIG. 9B is a graph showing the simulation result.
  • a simulation result is shown when a change in resistance value when a pressure of 300 g is applied to the pressure detection electrode 4A when the line resistance is 1 k ⁇ and the input voltage is 3.3 V is input to the differential amplifier.
  • the folding pattern of the pressure detection electrode 4A is a three-fold pattern shown in FIGS. Here, the simulation is performed assuming that the resistance value is simply 1/3 and the resistance value change amount is tripled.
  • FIG. 10A is a plan view schematically showing the configuration of the sense layer 6 formed on the touch panel according to the third embodiment
  • FIG. 10B is an enlarged view showing the configuration of the D portion shown in FIG. (C) is an enlarged view showing another configuration of the D section.
  • members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
  • the third embodiment In order to make the change in the resistance value when the pressure is applied to the pressure detection electrode even more remarkable than in the second embodiment, in the third embodiment, not only the pressure detection electrode but also part of the dummy electrodes on both sides thereof are used as the folding pattern. . For this reason, the number of turns can be increased as compared with the second embodiment.
  • the pressure detection electrode 4B is disposed between the sense electrodes 2. Actually, the pattern is arranged between the dummy electrodes 5B.
  • the pressure detection electrode 4B has a folded pattern portion 8B.
  • a part of the pressure detection electrode 4B may be changed to the folded pattern portion 8B.
  • the number of folding of the folding pattern portion 8B depends on the number of pressure detection electrodes 4B. For example, as shown in FIG. 10B, when the pressure detection electrode 4B is configured by connecting three electrode lines in parallel, the number of times of folding of the folding pattern portion 8B is limited to three. .
  • a part of the folded pattern portion 8B may be formed by changing a part of the dummy electrode 5B. As described above, a part of the dummy electrode 5B and the pressure detection electrode 4B may be changed to the folded pattern portion 8B.
  • the number of folding of the folding pattern portion 8B does not depend on the number of pressure detection electrodes 4B. For example, as shown in FIG. 10C, even if the pressure detection electrode 4B is configured by connecting three electrode lines in parallel, the number of times of folding of the folding pattern portion 8B is not limited to three. It may be 4 times or more. FIG. 10C shows an example of five times.
  • FIG. 11 is a plan view schematically showing the configuration of the sense layer 6 formed on the touch panel 1C according to the fourth embodiment.
  • FIG. 12 is a circuit diagram showing a configuration of the Wheatstone bridge circuit 9 provided in the touch panel 1C.
  • members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
  • a Wheatstone bridge circuit 9 is provided before connecting to the touch panel controller 19 in addition to the configuration of the first, second, or third embodiment, and a signal is sent to the touch panel controller 19 after making the resistance value change remarkable. By inputting, it becomes possible to detect the pressure more easily.
  • the Wheatstone bridge circuit 9 is connected to the terminal Q via the terminal C, connected to the terminal P via the terminal D, and connected to the resistor Rg1 (second resistor) and the resistor Rg2 (connected to the terminals P and S).
  • a third resistor a resistor Rg3 (fourth resistor) connected to the terminals R and S, a resistor Rg4 (first resistor) connected to the terminal Q via the terminal A, and connected to the terminal R via the terminal B. 1 resistance).
  • the input voltage E is applied to the terminals Q and S by the touch panel controller 19, and the output e 0 is read from the terminals P and R by the touch panel controller 19.
  • the central pressure detection electrode 4 having a large influence of stress application is connected as an active gauge (resistor Rg1) to the terminals C and D through the drive wiring 21, and the dummy electrode at the edge part having little influence of the stress application.
  • An example in which 5 is a dummy gauge (resistor Rg4) and is connected to the terminal A and the terminal B via the drive wiring 20 is shown.
  • K is a gauge factor and is a value specific to the material.
  • the signal can be further amplified by installing the capacitor Cs in front of the input of the touch panel controller 19 as shown in FIG.
  • the specific pressure detection electrode 4, the dummy electrode 5, and the Wheatstone bridge circuit 9 are used, it is effective when the resistance value change is extremely small.
  • the resistance value of ITO is high, the rate of change of the resistance value becomes small, but pressure can be detected by assembling the Wheatstone bridge circuit 9.
  • compensation for temperature changes can be obtained by using the pressure detection electrode 4 and the dummy electrode 5 in the touch panel for two of the four resistors of the Wheatstone bridge circuit 9.
  • the electrode pattern When temperature compensation is not performed, the electrode pattern need not be formed of the same material as that of the sense electrode 2 in the same sense layer 6. However, as long as it is a Wheatstone bridge, it is essential that the electrode pattern has the same resistance as the resistances Rg2 and Rg3.
  • FIG. 13A is a circuit diagram for simulating resistance value change when pressure is applied to the pressure detection electrode 4 provided on the touch panel 1C
  • FIG. 13B is a graph showing the simulation result.
  • a simulation result is shown when a change in resistance value when a pressure of 300 g is applied to the pressure detection electrode 4 when the line resistance is 1 k ⁇ and the input voltage is 3.3 V is input to the differential amplifier.
  • the folding pattern uses 3 folds. Here, the simulation is simply performed with the resistance value change amount being three times.
  • the output amplification factor is determined by the capacitance Cs shown in FIG. 12 and the integral capacitance provided in the touch panel controller 19.
  • the amplification factor is doubled, but this amplification factor varies depending on the line resistance and IC restrictions.
  • FIG. 14 is a plan view schematically showing the configuration of the sense layer 6 formed on the touch panel 1D according to the fifth embodiment.
  • members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
  • the pressure detection electrode 4 on the entire surface of the touch panel 1D is connected to the Wheatstone bridge circuit 9 (FIG. 12) via the drive wiring 22, and a difference is detected wherever pressure is applied across the entire area of the touch panel 1D.
  • the resistance value itself of the gauge (resistance Rg1) of the Wheatstone bridge circuit 9 can be lowered.
  • the signal can be further amplified by installing a capacitor Cs before the input of the touch panel controller 19 as shown in FIG.
  • the Wheatstone bridge circuit 9 When the Wheatstone bridge circuit 9 is formed as shown in FIG. 12, the change in the resistance value of the pressure detection electrode 4 existing in the entire area of the touch panel 1D with the dummy electrode 5 that is less affected by the pressure at the panel edge portion is observed. Therefore, there is an advantage that the difference can be seen regardless of the position where pressure is applied in the entire area of the touch panel 1D.
  • the resistance value is reduced by bundling the pressure detection electrodes 4 existing in the entire area of the touch panel 1D, but the resistance value change rate is also reduced. Therefore, it is desirable to provide and amplify the capacitor Cs.
  • FIG. 15 is a graph showing a simulation result of a change in resistance value when pressure is applied to the pressure detection electrode 4 provided in the touch panel 1D.
  • the simulation result when a resistance value change when a pressure of 300 g is applied to the pressure detection electrode 4 when the line resistance is 1 k ⁇ and the input voltage is 3.3 V is input to the differential amplifier is shown.
  • the folding pattern uses 3 folds.
  • the simulation is performed by simply assuming that the amount of change in resistance value is three times the number of turns and 1/6 the number of lines.
  • the output amplification factor is determined by the capacitance Cs and the integral capacitance Cint inside the touch panel controller 19.
  • the amplification factor is 30 times, but this amplification factor varies depending on the line resistance and IC restrictions.
  • FIG. 16 is a cross-sectional view illustrating a configuration of the display panel 10 according to the sixth embodiment.
  • FIG. 17 is a cross-sectional view showing the configuration of the touch panel 1 provided on the display panel 10.
  • a TFT (Thin Film Transistor) 11 and a CF (Color Filter) substrate 12 are configured as shown in FIG. 16, and when viewed from the viewing surface, the CF substrate 12, The TFT substrates 11 are arranged in this order.
  • a liquid crystal layer 13 is formed between the CF substrate 12 and the TFT substrate 11.
  • a TFT 23 is disposed on the TFT substrate 11.
  • a CF 24 and a black matrix 25 are disposed on the liquid crystal layer 13 side of the CF substrate 12.
  • the touch panel 1 is arranged in three positions: the LC module (outside), the CF substrate 12, and the LC module. It can be broadly classified.
  • FIG. 17 shows an example of an out-cell type touch panel 1 in which electrodes are arranged on (outside) the LC module.
  • the pressure detection electrode 4 is formed using the same material for the sense layer 6 in the same layer as the sense electrode 2. In this case, since the pressure detection electrode 4 is disposed immediately below the cover glass 14 that is the touch surface, it is more easily affected by stress and a change in resistance value is easily detected.
  • the capacitive touch panel with a built-in pressure sensor has a plurality of touches extending in the first direction to detect a touch position based on the capacitance. Between the detection electrode (sense electrode 2, drive electrode 3) and the plurality of touch detection electrodes (sense electrode 2, drive electrode 3), the width is narrower than the touch detection electrode (sense electrode 2, drive electrode 3). Pressure detection electrodes 4, 4A, and 4B that extend in the first direction and change in resistance value in response to application of pressure are provided.
  • the touch position is detected based on the plurality of touch detection electrodes, and the applied pressure is detected based on the pressure detection electrodes between the plurality of touch detection electrodes. For this reason, the position of the conductor and the pressure applied by the conductor can be detected simultaneously.
  • the width of the pressure detection electrode arranged between the plurality of touch detection electrodes is narrower than the width of the touch detection electrode, the applied pressure is applied to the touch position while maintaining the resolution of touch position detection by the touch detection electrode. It can be detected at the same time.
  • a capacitive touch panel with a built-in pressure sensor according to aspect 2 of the present invention is the above-described aspect 1, wherein the touch detection electrode (sense electrode 2, drive electrode 3) is a sense electrode. 2, the sense electrode 2 and the pressure detection electrodes 4, 4 ⁇ / b> A, 4 ⁇ / b> B are formed on the sense layer 6, and a plurality of drive electrodes 3 extending in the second direction intersecting the first direction are formed on the drive layer 7. May be.
  • the pressure can be detected by the pressure detection electrode arranged in the sense layer in which the sense electrode is formed.
  • the capacitive touch panel with built-in pressure sensor is the pressure detection electrode 4, 4A, 4B and the touch detection electrode according to aspect 1 or 2.
  • Dummy electrodes 5 and 5B extending in the first direction are formed between the sense electrode 2 and the drive electrode 3, and the dummy electrodes 5 and 5B, the pressure detection electrodes 4 and 4A and 4B, and the touch detection electrode ( The sense electrode 2 and the drive electrode 3) may be made of the same material.
  • the pressure detection electrode for pressure detection is made of the same material in the same layer as the touch detection electrode for position detection and the dummy electrode. This eliminates the need for extra process, cost, and mechanical constraints.
  • the capacitive sensor built-in capacitive touch panel (touch panels 1A, 1B, 1C, 1D) according to Aspect 4 of the present invention is the pressure sensor according to any one of Aspects 1 to 3, wherein the pressure detection electrodes 4A and 4B are the pressure sensors.
  • the folded pattern portions 8 and 8B extending alternately in the first direction and in a third direction opposite to the first direction may be provided.
  • the length of the pressure detection electrode in the longitudinal direction is increased by providing the folded pattern portion on the pressure detection electrode. Therefore, it is possible to increase the rate of change of the resistance value according to the application of pressure to the pressure detection electrode.
  • the capacitive touch panel with built-in pressure sensor (touch panels 1B, 1C, 1D) according to aspect 5 of the present invention is the above aspect 3, wherein the pressure detection electrode 4B has a change rate of the resistance value according to the application of the pressure.
  • the pressure detection electrode 4B has a change rate of the resistance value according to the application of the pressure.
  • the capacitive sensor built-in capacitive touch panel (touch panels 1C, 1D) according to Aspect 6 of the present invention is the same as that in Aspect 3, except that the first resistor (resistor Rg4), the second resistor (resistor Rg1), and the third resistor (resistor Rg2). And a Wheatstone bridge circuit 9 having a fourth resistance (resistance Rg3), the first resistance (resistance Rg4) is connected to the dummy electrode 5, and the second resistance (resistance Rg1) is the pressure detection. It may be connected to the electrode 4.
  • the pressure can be more easily detected by making the resistance value change noticeable by the Wheatstone bridge circuit and then inputting it to the touch panel controller.
  • the capacitive touch panel with built-in pressure sensor is the capacitive touch panel with built-in pressure sensor according to any one of the above aspects 2 to 6.
  • Touch panel 1, 1A, 1B, 1C, 1D is provided on the display panel 10, and the display panel 10 is disposed between the TFT substrate 11, the CF substrate 12, and the TFT substrate 11 and the CF substrate 12.
  • the driving layer 7 is disposed on the opposite side of the CF substrate 12 from the liquid crystal layer 13, and the sense layer 6 is disposed on the driving layer 7 opposite to the liquid crystal layer 13. May be.
  • the pressure detection electrode can be arranged immediately below the cover glass serving as the touch surface, the pressure detection electrode is more easily affected by stress, and a resistance value change is easily detected.
  • Touch panel Capacitive touch panel with built-in pressure sensor
  • Sense electrode Touch detection electrode
  • Reference Signs List 3 drive electrode
  • pressure detection electrode 5 dummy electrode
  • sense layer 7 drive layer 8 folded pattern portion 9
  • Wheatstone bridge circuit 10 display panel 11 TFT substrate 12 CF substrate 13 liquid crystal layer
  • Rg1 resistance (second resistance) Rg2 resistance (third resistance)
  • Rg3 resistance (4th resistance) Rg4 resistance (first resistance)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Position Input By Displaying (AREA)

Abstract

導電体の位置と上記導電体により印加される圧力とを同時に検出する。タッチパネル(1)は、静電容量に基づいてタッチ位置を検出するために第1方向に伸びる複数のセンス電極(2)と、複数のセンス電極(2)の間でセンス電極(2)よりも狭い幅で第1方向に伸び、圧力の印加に応じて抵抗値が変化する圧力検出電極(4)とを備える。

Description

圧力センサ内蔵静電容量型タッチパネル
 本発明は圧力センサが内蔵された静電容量型のタッチパネルに関する。
 圧力センサが内蔵された静電容量型のタッチパネルが従来技術として知られている(特許文献1)。特許文献1に記載のセンサは、酸化インジウムスズ(ITO)から成る電極パターンと、コンタクト点を介して電極パターンに接続され、電極パターンの周囲環境との間の静電容量を測定するように構成された静電容量測定装置と、当該電極パターンの一対の点の間の抵抗を測定するように構成された抵抗測定装置とを備える。
 指等の導電体が電極パターンに接近すると、静電容量測定装置が静電容量変化に基づいて上記導電体の位置を検出する。その後、抵抗測定装置が、導電体による電極パターンへの圧力印加に基づく電極パターンの抵抗値の変化から上記導電体により印加される圧力を検出する。
日本国特許公報「特許第5406944号明細書(2013年11月08日登録)」
 しかしながら、上述のような従来技術は、導電体の位置の検出と、上記導電体により印加される圧力の検出とに同一の電極パターンを使用しているため、位置を検出するための静電容量測定装置と圧力を検出するための抵抗測定装置とは、時分割で動作する必要がある。このため、導電体の位置と上記導電体により印加される圧力とを同時に検出することができないという問題がある。
 本発明は、前記の問題点に鑑みてなされたものであり、その目的は、導電体の位置と上記導電体により印加される圧力とを同時に検出することができる圧力センサ内蔵静電容量型タッチパネルを実現することにある。
 上記の課題を解決するために、本発明の一態様に係る圧力センサ内蔵静電容量型タッチパネルは、静電容量に基づいてタッチ位置を検出するために第1方向に伸びる複数のタッチ検出電極と、前記複数のタッチ検出電極の間で前記タッチ検出電極よりも狭い幅で前記第1方向に伸び、圧力の印加に応じて抵抗値が変化する圧力検出電極とを備えることを特徴とする。
 本発明の一態様によれば、導電体の位置と上記導電体により印加される圧力とを同時に検出することができる圧力センサ内蔵静電容量型タッチパネルを実現することができるという効果を奏する。
(a)は実施形態1に係るタッチパネルの構成を模式的に示す平面図であり、(b)はその断面図である。 (a)は比較例に係るタッチパネルに形成されたセンス層の構成を模式的に示す平面図であり、(b)は(a)に示されるA部の拡大図である。 (a)は実施形態1に係るタッチパネルに形成されたセンス層の構成を模式的に示す平面図であり、(b)は(a)に示されるB部の拡大図である。 上記センス層に配置された圧力検出電極の抵抗を測定する方法を説明するための図である。 上記圧力検出電極の抵抗の測定結果を示すグラフである。 (a)は上記圧力検出電極に圧力が印加されたときの抵抗値変化をシミュレーションするための回路図であり、(b)はそのシミュレーション結果を示すグラフである。 (a)は実施形態2に係るタッチパネルに形成されたセンス層の構成を模式的に示す平面図であり、(b)は(a)に示されるC部の構成を示す拡大図であり、(c)は上記C部の他の構成を示す拡大図である。 (a)は上記センス層に形成された圧力検出電極に応力が印加されるときの圧力検出電極の変形状態を示す模式図であり、(b)は比較例に係る圧力検出電極の抵抗値変化量を説明するための図であり、(c)は実施形態2に係る圧力検出電極の抵抗値変化量を説明するための図である。 (a)は上記圧力検出電極に圧力が印加されたときの抵抗値変化をシミュレーションするための回路図であり、(b)はそのシミュレーション結果を示すグラフである。 (a)は実施形態3に係るタッチパネルに形成されたセンス層の構成を模式的に示す平面図であり、(b)は(a)に示されるD部の構成を示す拡大図であり、(c)は上記D部の他の構成を示す拡大図である。 実施形態4に係るタッチパネルに形成されたセンス層の構成を模式的に示す平面図である。 上記タッチパネルに設けられたホイーストンブリッジ回路の構成を示す回路図である。 (a)は上記タッチパネルに設けられた圧力検出電極に圧力が印加されたときの抵抗値変化をシミュレーションするための回路図であり、(b)はそのシミュレーション結果を示すグラフである。 実施形態5に係るタッチパネルに形成されたセンス層の構成を模式的に示す平面図である。 上記タッチパネルに設けられた圧力検出電極に圧力が印加されたときの抵抗値変化のシミュレーション結果を示すグラフである。 実施形態6に係る表示パネルの構成を示す断面図である。 上記表示パネルに設けられたタッチパネルの構成を示す断面図である。
 以下、本発明の実施の形態について、詳細に説明する。
 〔実施形態1〕
 図1(a)は実施形態1に係るタッチパネル1(圧力センサ内蔵静電容量型タッチパネル)の構成を模式的に示す平面図であり、(b)はその断面図である。タッチパネル1は表示パネル10に設けられる。タッチパネル1を覆うようにカバーガラス14が設けられる。
 タッチパネル1は駆動層7とセンス層6とを備える。X方向に沿って互いに平行に伸びる複数の駆動電極3が駆動層7に形成される。そして、Y方向に沿って互いに平行に伸びる複数のセンス電極2(タッチ検出電極)がセンス層6に形成される。複数の駆動電極3と複数のセンス電極2との間に複数のコンデンサがマトリックス状に形成される。
 検出対象物がカバーガラス14上にタッチすると、タッチ位置に対応するタッチパネル1上のコンデンサの静電容量が変化する。このため、駆動電極3に駆動電圧を印加することによりコンデンサに蓄積された電荷に基づく信号をセンス電極2から読み出すと、検出対象物のタッチ位置を検出することができる。
 図2(a)は比較例に係るタッチパネルに形成されたセンス層6の構成を模式的に示す平面図であり、(b)は(a)に示されるA部の拡大図である。タッチ位置を検出するためのセンス層6に形成される電極は、一般的に、フレキシブルプリント基板15(Flexible Printed Circuit、FPC)を介してIC(Integrated Circuit)から成るタッチパネルコントローラに接続されるセンス電極2と、外観を向上させるためにセンス電極2の間に配置されてタッチパネルコントローラには接続されないダミー電極95とを含む。
 図3(a)は実施形態1に係るタッチパネル1に形成されたセンス層6の構成を模式的に示す平面図であり、(b)は(a)に示されるB部の拡大図である。本実施形態では、ダミー電極の一部が、圧力検出電極4として、センス電極2が接続されるコントローラと同一のコントローラに接続される。具体的には、隣接するセンス電極2の間に圧力検出電極4が配置される。そして、隣接するセンス電極2の一方と圧力検出電極4との間、及び、隣接するセンス電極2の他方と圧力検出電極4との間にダミー電極5が配置される。圧力検出電極4の幅はセンス電極2の幅よりも狭い。ダミー電極5の幅は圧力検出電極4の幅と同じである。ダミー電極5と圧力検出電極4とセンス電極2とは同じ材料である酸化インジウムスズ(ITO)により構成される。圧力検出電極4の材料は、応力による抵抗値変化(ゲージ率)の大きい材料であることが好ましい。例えば、ITO等の半導体はゲージ率が大きいことで知られているため、圧力検出電極4の材料として適している。半導体のゲージ率は、アモルファスよりも多結晶のゲージ率が高く、多結晶よりも単結晶の方がゲージ率が高くなる。
 センス電極2の一端は、フレキシブルプリント基板15を介してタッチパネルコントローラ19に接続される。各圧力検出電極4は、その両端が駆動配線16に接続され、フレキシブルプリント基板15を介してタッチパネルコントローラ19に接続される。各ダミー電極5はタッチパネルコントローラ19には接続されない。
 タッチパネルコントローラ19に設けられる増幅器は一対の入力の差分を増幅する差分方式の増幅器であることが好ましい。これにより、応力印加時の各圧力検出電極4間の抵抗値変化をより顕著に検出することができる。
 センス層6に配置される位置検出用電極は、タッチパネルコントローラ19に接続されるセンス電極2と、タッチパネルコントローラ19に接続されないダミー電極5とからなる。位置検出用電極は、一般的に、検出精度を上げるために、1方向に伸びる電極を複数配置して成る。そして、隣り合うダミー電極5の間に圧力検出電極4が設けられる。タッチパネルコントローラ19に接続される圧力検出電極4に圧力が印加されると、圧力検出電極4の抵抗値が変化する。このため、タッチパネルコントローラ19によりセンシングする際に、圧力検出電極4から読み出される信号が、圧力が印加されない時に比べて変化する。これにより、タッチパネルに印加される圧力の検知が可能となる。
 また、位置を検出するためのセンス電極2と、圧力を検出するための圧力検出電極4とが、同一のタッチパネル駆動用IC(タッチパネルコントローラ19)に接続される。タッチ位置は、センス電極2と駆動電極3との間の相互容量の変化に基づいて検出される。圧力は、圧力検出電極4への応力印加による圧力検出電極4の抵抗値の変化に基づいて検出される。
 本実施形態によれば、位置検出用のセンス電極2が配置されるセンス層6と同じ層に、同じ材料で圧力検出電極4が設けられる。このため、圧力検出電極4を設けるための余分なプロセス・コスト・機構的制約は不要である。
 また、位置検出用のセンス電極2と圧力検出電極4とは、共に同じタッチパネルコントローラ19に接続される。このため、特許文献1のように抵抗測定装置を静電容量測定装置とを異なるICとして別に設ける必要が無い。そして、圧力検出電極4を位置検出用のセンス電極2とは別に設けているので、両電極を同時に駆動して、位置と圧力とを同時に検出することができる。
 図4はセンス層6に配置された圧力検出電極4の抵抗を測定する方法を説明するための図である。図5は圧力検出電極4の抵抗の測定結果を示すグラフである。タッチパネル1と厚さt=0.55mmのカバーガラス14とを搭載した表示パネル10を固定部材18の上に固定し、圧力印加部材17によりカバーガラス14に圧力を印加し、タッチパネル1に設けられた圧力検出電極4の抵抗値を測定した。
 印加した圧力と圧力検出電極4の抵抗値変化量とは図5に示すように比例している。従って、圧力検出電極4の抵抗値を測定することにより、タッチパネル1に印加される圧力を検出することができる。
 図6(a)は圧力検出電極4に圧力が印加されたときの抵抗値変化をシミュレーションするための回路図であり、(b)はそのシミュレーション結果を示すグラフである。ライン抵抗1kΩ、入力電圧3.3V時に、圧力検出電極4に300gの圧力が印加された際の圧力検出電極4の抵抗値変化を、タッチパネルコントローラ19に設けられた差分方式の増幅器に入力した際のシミュレーション結果が示されている。表示パネル10上のタッチパネル1に300gの圧力を印可した際の実測の抵抗値変化から出力検知できることがわかる。
 なお、圧力検出電極4が、センス電極2と同じセンス層6に配置される例を示したが、本発明はこれに限定されない。圧力検出電極4は、駆動電極3と同じ駆動層7に配置されてもよい。後述する実施形態も同様である。
 〔実施形態2〕
 本発明の他の実施形態について、図7~図9に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図7(a)は実施形態2に係るタッチパネル1Aに形成されたセンス層6の構成を模式的に示す平面図であり、(b)は(a)に示されるC部の構成を示す拡大図であり、(c)は上記C部の他の構成を示す拡大図である。
 実施形態2では、圧力印加時の抵抗値変化をより顕著にするため、圧力検出電極4Aに折り返しパターン部8を挿入する。圧力検出電極4Aは、抵抗を下げるために、図7(b)に示すように、3本を束ねて構成される。圧力検出電極4Aの折り返しパターン部8は、-Y方向に折り返し長さLだけ伸びた後、-X方向に長さWだけ伸びる。そして、Y方向に折り返し長さLだけ伸びた後、-X方向に長さWだけ伸びる。次に、-Y方向に折り返し長さLだけ伸びる。このように、圧力検出電極4Aの折り返しパターン部8は、圧力の印加に応じた抵抗値の変化率を増大させるために、-Y方向とY方向とに交互に伸びている。これにより、圧力検出電極4Aの長手方向の距離が増加するので、圧力の印加に応じた圧力検出電極4Aの抵抗値の変化率を増大させることができる。
 図7(a)に示す例では、すべての圧力検出電極4Aの長手方向の中央付近に折り返しパターン部8を配置した例を示したが、本発明はこれに限定されない。この折り返しパターン部8の位置をラインごとにずらしていくことで、差分方式の増幅器を使用する場合は、抵抗値変化をより顕著にとらえることが可能となる。
 折り返しパターン部8は、直線状に伸びる例を示したが、本発明はこれに限定されない。視認性を向上させるため、図7(c)に示すように、不規則な形に伸びるように折り返しパターン部8を構成してもよい。
 図8(a)はセンス層6に形成された圧力検出電極に応力が印加されるときの圧力検出電極4の変形状態を示す模式図であり、(b)は比較例に係る圧力検出電極の抵抗値変化量を説明するための図であり、(c)は実施形態2に係る圧力検出電極の抵抗値変化量を説明するための図である。
 折り返しパターン部8を挿入することで圧力検出電極の長手方向の距離が増加し、応力に対して抵抗変化率が増加する。また、折り返しパターン部8を仕込む前後の電極ラインを並列に接続することで圧力検出電極全体としての抵抗値を下げることができ、さらに変化率を上げることが可能となる。
 折り返しパターン部8の折り返し数は図7及び図8では3回の例を示したが、本発明はこれに限定されない。折り返し数は実際のパターンに依存して変更可能である。
 折り返し長さLが長いと抵抗値変化は増加するが抵抗値自体も増加する。このため、圧力検出電極4Aの折り返し長さLと圧力検出電極4Aの抵抗値とはトレードオフの関係にある。
 図9(a)は圧力検出電極4Aに圧力が印加されたときの抵抗値変化をシミュレーションするための回路図であり、(b)はそのシミュレーション結果を示すグラフである。ライン抵抗1kΩ、入力電圧3.3V時に圧力検出電極4Aに300gの圧力が印加された際の抵抗値変化を差分方式の増幅器に入力した際のシミュレーション結果が示されている。圧力検出電極4Aの折り返しパターンは図7及び図8に示す3回折り返しのパターンを用いている。ここでは単純に抵抗値が1/3になり、抵抗値変化量は3倍になるとしてシミュレーションしている。
 〔実施形態3〕
 図10(a)は実施形態3に係るタッチパネルに形成されたセンス層6の構成を模式的に示す平面図であり、(b)は(a)に示されるD部の構成を示す拡大図であり、(c)は上記D部の他の構成を示す拡大図である。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 圧力検出電極への圧力印可時の抵抗値変化を実施形態2よりもさらに顕著にするため、実施形態3では、圧力検出電極だけでなく、その両側のダミー電極の一部も折り返しパターンとして使用する。このため、折り返し数を実施形態2よりも増大させることができる。
 折り返し数に依存して圧力検出電極の抵抗値変化は大きくなるため応力による抵抗値変化量は増加する。
 この折り返しパターンの位置をラインごとにずらしていくことで、差分方式の増幅器を使う場合はより顕著に抵抗値変化をとらえることが可能となる。
 圧力検出電極4Bはセンス電極2の間に配置される。実際にはダミー電極5Bの間に配置されるパターンとなる。
 圧力検出電極4Bとセンス電極2との間には、図10(b)に示すように、3本のダミー電極5Bが配置される。圧力検出電極4Bは、折り返しパターン部8Bを有する。このように、圧力検出電極4Bの一部を折り返しパターン部8Bに変更してもよい。折り返しパターン部8Bの折り返し回数は、圧力検出電極4Bの本数に依存する。例えば、図10(b)に示すように、圧力検出電極4Bが、3本の電極ラインを並列に接続して構成されていると、折り返しパターン部8Bの折り返し回数は、3回に制限される。
 図10(c)に示すように、折り返しパターン部8Bの一部が、ダミー電極5Bの一部を変更して形成されてもよい。このように、ダミー電極5Bの一部と圧力検出電極4Bとを折り返しパターン部8Bに変更してもよい。折り返しパターン部8Bの折り返し回数は、圧力検出電極4Bの本数に依存しない。例えば、図10(c)に示すように、圧力検出電極4Bが、3本の電極ラインを並列に接続して構成されていても、折り返しパターン部8Bの折り返し回数は、3回に制限されず、4回以上であってもよい。図10(c)は5回の例を示している。
 〔実施形態4〕
 図11は実施形態4に係るタッチパネル1Cに形成されたセンス層6の構成を模式的に示す平面図である。図12はタッチパネル1Cに設けられたホイーストンブリッジ回路9の構成を示す回路図である。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 実施形態4では、実施形態1、2、又は3の構成に追加して、タッチパネルコントローラ19に接続する前にホイーストンブリッジ回路9を設け、抵抗値変化を顕著にしてからタッチパネルコントローラ19に信号を入力することで圧力をより検出しやすくすることが可能となる。
 ホイーストンブリッジ回路9は、端子Cを介して端子Qと接続され、端子Dを介して端子Pと接続される抵抗Rg1(第2抵抗)と、端子P及び端子Sと接続される抵抗Rg2(第3抵抗)と、端子R及び端子Sと接続される抵抗Rg3(第4抵抗)と、端子Aを介して端子Qと接続され、端子Bを介して端子Rと接続される抵抗Rg4(第1抵抗)とを備える。
 端子Q及び端子Sには、入力電圧Eがタッチパネルコントローラ19により印加され、端子P及び端子Rからは、出力e0がタッチパネルコントローラ19により読み出される。
 ここでは応力印加の影響の大きい中央部の圧力検出電極4を、アクティブゲージ(抵抗Rg1)として駆動配線21を介して端子C、端子Dに接続し、応力印加の影響の少ないエッジ部のダミー電極5をダミーゲージ(抵抗Rg4)として駆動配線20を介して端子A、端子Bに接続した例を示す。
 ひずみゲージの原理として、対象物にひずみεが発生した際に、ひずみεと抵抗値Rとの関係は以下の式であらわされる。
 K×ε=ΔR/R
 ここで、Kはゲージ率であり材料固有の値である。
 図12に示されるホイーストンブリッジ回路9において、抵抗Rg1~抵抗Rg4のすべての抵抗値が等しい場合、以下の式により出力であるe0は0[V]を示す。
e=((Rg1×Rg3)-(Rg2×Rg4))/(Rg1+Rg2)/(Rg3+Rg4)×E
 しかし、応力印加により抵抗Rg1が変化するとe≠0[V]となるため、電流が流れることがわかる。
 端子M、端子Nをそれぞれタッチパネルコントローラ19に接続することで、上記の電流値変化を検出でき、これにより圧力の検出が可能となる。
 差動方式の増幅器を設けたタッチパネルコントローラ19を使用する場合は図12に示すように容量Csをタッチパネルコントローラ19の入力の前段に設置することでさらに信号を増幅できる。
 このように、特定の圧力検出電極4とダミー電極5とホイーストンブリッジ回路9とを使用する場合、抵抗値変化が極端に小さい場合に有効である。特にITOの抵抗値が高い場合、抵抗値の変化率は小さくなってしまうが、ホイーストンブリッジ回路9を組むことで圧力検出が可能となる。
 また、ホイーストンブリッジ回路9の4つの抵抗うちの2つにタッチパネル内の圧力検出電極4とダミー電極5とを使用することで温度変化に対する補償も得られる。
 応力印加の影響の少ないエッジ部に配置されたダミー電極5の替わりに、上記エッジ部に配置された圧力検出電極4をダミーゲージ(抵抗Rg4)として端子A、端子Bに接続してもよい。また、同じセンス層6にセンス電極2と同じ材料で形成された同抵抗の電極パターンであれば、ダミーゲージ(抵抗Rg4)として端子A、端子Bに接続される電極が配置される位置はセンサーエリア内外を問わない。センサーエリアの外に配置された応力印加の影響の少ない電極パターンをダミーゲージ(抵抗Rg4)として端子A、端子Bに接続してもよい。また、温度補償をしない場合は、同じセンス層6にセンス電極2と同じ材料で上記電極パターンが形成されている必要は無い。但し、ホイーストンブリッジである以上は上記電極パターンが抵抗Rg2・Rg3と同抵抗であることは必須である。
 図13(a)はタッチパネル1Cに設けられた圧力検出電極4に圧力が印加されたときの抵抗値変化をシミュレーションするための回路図であり、(b)はそのシミュレーション結果を示すグラフである。ライン抵抗1kΩ、入力電圧3.3V時に圧力検出電極4に300gの圧力が印加された際の抵抗値変化を差分方式の増幅器に入力した際のシミュレーション結果が示されている。折り返しパターンは3回折り返しを用いている。ここでは単純に抵抗値変化量は3倍としてシミュレーションしている。
 ホイーストンブリッジ回路9を使用した場合、図12に示される容量Csとタッチパネルコントローラ19の内部に設けられた積分容量とにより出力の増幅率は決定される。ここでは2倍としているが、この増幅率はライン抵抗、IC制約により異なる。
 〔実施形態5〕
 図14は実施形態5に係るタッチパネル1Dに形成されたセンス層6の構成を模式的に示す平面図である。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 実施形態5では、タッチパネル1Dの全面の圧力検出電極4を、駆動配線22を介してホイーストンブリッジ回路9(図12)に接続し、タッチパネル1Dの全域でどこに圧力が印加されても差分で検出できるパターンを示す。また、全ての圧力検出電極4を束ねることでホイーストンブリッジ回路9のゲージ(抵抗Rg1)の抵抗値自体を下げることが可能となる。
 ダミーゲージとしては影響の少ないエッジ部のダミー電極5を使用し、ホイーストンブリッジ回路9のそれ以外の抵抗Rg2・Rg3はパネル外にて接続した例を示す。
 差動方式の増幅器を備えたタッチパネルコントローラ19を使用する場合は図12に示すように容量Csをタッチパネルコントローラ19の入力の前段に設置することでさらに信号を増幅できる。
 図12に示すようにホイーストンブリッジ回路9を形成する場合、タッチパネル1Dの全域に存在する圧力検出電極4に対して、パネルエッジ部の圧力の影響の少ないダミー電極5との抵抗値変化を見るため、タッチパネル1Dの全域でどの位置に圧力を加えても差分が見て取れるといったメリットがある。タッチパネル1Dの全域に存在する圧力検出電極4を束ねることで抵抗値は減少するが、抵抗値変化率も減少するため、容量Csを設けて増幅することが望ましい。
 また、IC(タッチパネルコントローラ19)に接続するチャネルが少ないといったメリットも存在する。
 図15はタッチパネル1Dに設けられた圧力検出電極4に圧力が印加されたときの抵抗値変化のシミュレーション結果を示すグラフである。
 ライン抵抗1kΩ、入力電圧3.3V時に圧力検出電極4に300gの圧力が印加された際の抵抗値変化を差分方式の増幅器に入力した際のシミュレーション結果が示されている。折り返しパターンは3回折り返しを用いている。ここでは単純に抵抗値変化量は折り返し数で3倍、ライン数で1/6としてシミュレーションしている。ホイーストンブリッジ回路9を使用した場合、容量Csとタッチパネルコントローラ19の内部の積分容量Cintとにより出力の増幅率は決定される。ここでは30倍としているが、この増幅率はライン抵抗、IC制約により異なる。
 〔実施形態6〕
 図16は実施形態6に係る表示パネル10の構成を示す断面図である。図17は表示パネル10に設けられたタッチパネル1の構成を示す断面図である。
 一般的な液晶パネルの構成としてTFT(Thin Film Transistor、薄膜トランジスタ)基板11、CF(Color Filter、カラーフィルタ)基板12は図16に示すように構成され、視認面から見た際にCF基板12、TFT基板11の順に配置される。
 CF基板12とTFT基板11との間に液晶層13が形成される。TFT基板11の上にTFT23が配置される。CF基板12の液晶層13側にCF24とブラックマトリックス25とが配置される。
 図16に示す構成をLC(liquid crystal、液晶)モジュールと呼ぶと、タッチパネル1が配置される位置としては、LCモジュールの上(外)、CF基板12の上、LCモジュールの中の3種類に大きく分類され得る。
 ここで、圧力印加による圧力検出電極4の抵抗値変化を検出しようとする場合にはタッチの影響を受けやすい、すなわち視認面に近い側に圧力検出電極4を配置するほうが有利である。したがって、圧力検出電極4はCF基板12よりも視認面側に配置することが望ましい。
 一例として、図17に、LCモジュールの上(外)に電極を配置するアウトセル型のタッチパネル1の例を示す。本例では相互容量型タッチパネルの例を示すため、図17に示すようにタッチパネル電極層は、フィルム基板層26の両面に配置される駆動層7とセンス層6との2層存在する。本実施形態ではセンス電極2と同一レイヤーのセンス層6に同一材料を用いて圧力検出電極4を形成する。この場合、タッチ面であるカバーガラス14のすぐ下に圧力検出電極4が配置されるため、より応力の影響を受けやすく抵抗値変化が検出しやすくなる。
 〔まとめ〕
 本発明の態様1に係る圧力センサ内蔵静電容量型タッチパネル(タッチパネル1、1A、1B、1C、1D)は、静電容量に基づいてタッチ位置を検出するために第1方向に伸びる複数のタッチ検出電極(センス電極2、駆動電極3)と、前記複数のタッチ検出電極(センス電極2、駆動電極3)の間で前記タッチ検出電極(センス電極2、駆動電極3)よりも狭い幅で前記第1方向に伸び、圧力の印加に応じて抵抗値が変化する圧力検出電極4・4A・4Bとを備える。
 上記の構成によれば、複数のタッチ検出電極に基づいてタッチ位置が検出され、複数のタッチ検出電極の間の圧力検出電極に基づいて、印加された圧力が検出される。このため、導電体の位置と上記導電体により印加される圧力とを同時に検出することができる。また、複数のタッチ検出電極の間に配置される圧力検出電極の幅がタッチ検出電極の幅よりも狭いため、タッチ検出電極によるタッチ位置検出の分解能を維持しながら、印加される圧力をタッチ位置と同時に検出することができる。
 本発明の態様2に係る圧力センサ内蔵静電容量型タッチパネル(タッチパネル1、1A、1B、1C、1D)は、上記態様1において、前記タッチ検出電極(センス電極2、駆動電極3)がセンス電極2であり、前記センス電極2と前記圧力検出電極4・4A・4Bとがセンス層6に形成され、前記第1方向に交差する第2方向に伸びる複数の駆動電極3が駆動層7に形成されてもよい。
 上記の構成によれば、センス電極が形成されたセンス層に配置された圧力検出電極により圧力を検出することができる。
 本発明の態様3に係る圧力センサ内蔵静電容量型タッチパネル(タッチパネル1、1A、1B、1C、1D)は、上記態様1または2において、前記圧力検出電極4・4A・4Bと前記タッチ検出電極(センス電極2、駆動電極3)との間に前記第1方向に伸びるダミー電極5・5Bが形成され、前記ダミー電極5・5Bと前記圧力検出電極4・4A・4Bと前記タッチ検出電極(センス電極2、駆動電極3)とが同じ材料で構成されてもよい。
 上記の構成によれば、位置検出用のタッチ検出電極、ダミー電極と同じ層に、同じ材料で圧力検出用の圧力検出電極が設けられる。このため、余分なプロセス・コスト・機構的制約が不要となる。
 本発明の態様4に係る圧力センサ内蔵静電容量型タッチパネル(タッチパネル1A、1B、1C、1D)は、上記態様1から3のいずれか一態様において、前記圧力検出電極4A・4Bが、前記圧力の印加に応じた抵抗値の変化率を増大させるために、前記第1方向と、前記第1方向と逆の第3方向とに交互に伸びる折り返しパターン部8・8Bを有してもよい。
 上記の構成によれば、圧力検出電極に折り返しパターン部を設けることにより圧力検出電極の長手方向の長さが増大する。従って、圧力検出電極への圧力の印加に応じた抵抗値の変化率を増大させることができる。
 本発明の態様5に係る圧力センサ内蔵静電容量型タッチパネル(タッチパネル1B、1C、1D)は、上記態様3において、前記圧力検出電極4Bが、前記圧力の印加に応じた抵抗値の変化率を増大させるために、前記第1方向と、前記第1方向と逆の第3方向とに交互に伸びる折り返しパターン部8Bを有し、前記折り返しパターン部8Bの一部が、前記ダミー電極5Bの一部を変更して形成されてもよい。
 上記の構成によれば、折り返しパターン部の折り返し回数を増大させることができるので、圧力印加時の抵抗値変化をさらに顕著にすることができる。
 本発明の態様6に係る圧力センサ内蔵静電容量型タッチパネル(タッチパネル1C、1D)は、上記態様3において、第1抵抗(抵抗Rg4)、第2抵抗(抵抗Rg1)、第3抵抗(抵抗Rg2)、及び第4抵抗(抵抗Rg3)を有するホイーストンブリッジ回路9をさらに備え、前記第1抵抗(抵抗Rg4)が前記ダミー電極5に接続され、前記第2抵抗(抵抗Rg1)が前記圧力検出電極4に接続されてもよい。
 上記の構成によれば、ホイーストンブリッジ回路により抵抗値変化を顕著にしてからタッチパネルコントローラに入力することで圧力をより検出しやすくすることができる。
 本発明の態様7に係る圧力センサ内蔵静電容量型タッチパネル(タッチパネル1、1A、1B、1C、1D)は、上記態様2から6のいずれか一態様において、前記圧力センサ内蔵静電容量型タッチパネル(タッチパネル1、1A、1B、1C、1D)が表示パネル10に設けられ、前記表示パネル10が、TFT基板11と、CF基板12と、前記TFT基板11と前記CF基板12との間に配置された液晶層13とを含み、前記駆動層7が前記CF基板12の前記液晶層13と反対側に配置され、前記センス層6が前記駆動層7の前記液晶層13と反対側に配置されてもよい。
 上記の構成によれば、タッチ面となるカバーガラスのすぐ下に圧力検出電極を配置することができるため、圧力検出電極が応力の影響をより受けやすくなり、抵抗値変化が検出しやすくなる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 1 タッチパネル(圧力センサ内蔵静電容量型タッチパネル)
 2 センス電極(タッチ検出電極)
 3 駆動電極
 4 圧力検出電極
 5 ダミー電極
 6 センス層
 7 駆動層
 8 折り返しパターン部
 9 ホイーストンブリッジ回路
10 表示パネル
11 TFT基板
12 CF基板
13 液晶層
Rg1 抵抗(第2抵抗)
Rg2 抵抗(第3抵抗)
Rg3 抵抗(第4抵抗)
Rg4 抵抗(第1抵抗)
 

Claims (7)

  1.  静電容量に基づいてタッチ位置を検出するために第1方向に伸びる複数のタッチ検出電極と、
     前記複数のタッチ検出電極の間で前記タッチ検出電極よりも狭い幅で前記第1方向に伸び、圧力の印加に応じて抵抗値が変化する圧力検出電極とを備えることを特徴とする圧力センサ内蔵静電容量型タッチパネル。
  2.  前記タッチ検出電極がセンス電極であり、
     前記センス電極と前記圧力検出電極とがセンス層に形成され、
     前記第1方向に交差する第2方向に伸びる複数の駆動電極が駆動層に形成される請求項1に記載の圧力センサ内蔵静電容量型タッチパネル。
  3.  前記圧力検出電極と前記タッチ検出電極との間に前記第1方向に伸びるダミー電極が形成され、
     前記ダミー電極と前記圧力検出電極と前記タッチ検出電極とが同じ材料で構成される請求項1又は2に記載の圧力センサ内蔵静電容量型タッチパネル。
  4.  前記圧力検出電極が、前記圧力の印加に応じた抵抗値の変化率を増大させるために、前記第1方向と、前記第1方向と逆の第3方向とに交互に伸びる折り返しパターン部を有する請求項1から3のいずれか一項に記載の圧力センサ内蔵静電容量型タッチパネル。
  5.  前記圧力検出電極が、前記圧力の印加に応じた抵抗値の変化率を増大させるために、前記第1方向と、前記第1方向と逆の第3方向とに交互に伸びる折り返しパターン部を有し、
     前記折り返しパターン部の一部が、前記ダミー電極の一部を変更して形成される請求項3に記載の圧力センサ内蔵静電容量型タッチパネル。
  6.  第1抵抗、第2抵抗、第3抵抗、及び第4抵抗を有するホイーストンブリッジ回路をさらに備え、
     前記第1抵抗が前記圧力の印加の影響の少ない位置に配置される電極に接続され、前記第2抵抗が前記圧力の印加の影響の大きい位置に配置される圧力検出電極に接続される請求項3に記載の圧力センサ内蔵静電容量型タッチパネル。
  7.  前記圧力センサ内蔵静電容量型タッチパネルが表示パネルに設けられ、
     前記表示パネルが、TFT基板と、CF基板と、前記TFT基板と前記CF基板との間に配置された液晶層とを含み、
     前記駆動層が前記CF基板の前記液晶層と反対側に配置され、
     前記センス層が前記駆動層の前記液晶層と反対側に配置される請求項2から6のいずれか一項に記載の圧力センサ内蔵静電容量型タッチパネル。
     
PCT/JP2017/031225 2016-08-30 2017-08-30 圧力センサ内蔵静電容量型タッチパネル WO2018043588A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780037460.3A CN109952553B (zh) 2016-08-30 2017-08-30 内置压力传感器的静电容式触摸面板
US16/310,788 US10606432B2 (en) 2016-08-30 2017-08-30 Capacitance type touch panel with built-in pressure sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016168264 2016-08-30
JP2016-168264 2016-08-30

Publications (1)

Publication Number Publication Date
WO2018043588A1 true WO2018043588A1 (ja) 2018-03-08

Family

ID=61301466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031225 WO2018043588A1 (ja) 2016-08-30 2017-08-30 圧力センサ内蔵静電容量型タッチパネル

Country Status (3)

Country Link
US (1) US10606432B2 (ja)
CN (1) CN109952553B (ja)
WO (1) WO2018043588A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019186642A1 (ja) * 2018-03-26 2019-10-03 三菱電機株式会社 入力制御装置、入力システム、及び入力制御方法
CN110502141A (zh) * 2018-05-18 2019-11-26 三星显示有限公司 触摸传感器和显示装置
WO2020255816A1 (ja) * 2019-06-19 2020-12-24 Nissha株式会社 タッチパネル
JP2021002337A (ja) * 2019-06-19 2021-01-07 Nissha株式会社 タッチパネル
EP3769193A4 (en) * 2018-03-23 2021-05-26 Samsung Electronics Co., Ltd. DEVICE AND METHOD FOR COMPENSATING TEMPERATURE CHANGE IN A STRAIN GAUGE PRESSURE SENSOR AND METHOD OF PERFORMING A STRAIN GAUGE PRESSURE FROM A TOUCH SCREEN ELEMENT
JP2021189887A (ja) * 2020-06-02 2021-12-13 Nissha株式会社 タッチパネル

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102611455B1 (ko) * 2016-09-23 2023-12-08 삼성디스플레이 주식회사 표시 장치
CN110489007B (zh) * 2019-07-24 2021-01-15 武汉华星光电半导体显示技术有限公司 触控面板及有机发光显示器件
US11353373B2 (en) * 2020-05-29 2022-06-07 Stmicroelectronics Asia Pacific Pte Ltd Strain gauge pattern to prevent variation due to temperature
KR20220030460A (ko) * 2020-09-01 2022-03-11 삼성디스플레이 주식회사 표시 장치
WO2022170542A1 (en) * 2021-02-10 2022-08-18 Goertek Inc. Apparatus for force sensing and electronic device
KR20230087188A (ko) * 2021-12-09 2023-06-16 엘지디스플레이 주식회사 터치 디스플레이 장치
TWI812297B (zh) * 2022-06-22 2023-08-11 大陸商宸美(廈門)光電有限公司 觸控板組件
US20240010262A1 (en) * 2022-07-05 2024-01-11 Pixart Imaging Inc. Pressure sensing device, 3d gesture control system and vehicle control system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100128002A1 (en) * 2008-11-26 2010-05-27 William Stacy Touch-sensitive display method and apparatus
JP2015041160A (ja) * 2013-08-20 2015-03-02 日本写真印刷株式会社 タッチパネル

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101297387B1 (ko) * 2006-11-09 2013-08-19 삼성디스플레이 주식회사 터치 패널 일체형 액정 표시 장치
US8305358B2 (en) 2009-02-10 2012-11-06 Sony Ericsson Mobile Communications Ab Sensor, display including a sensor, and method for using a sensor
CN103218099A (zh) * 2013-04-25 2013-07-24 苏州瀚瑞微电子有限公司 单层电容式电极布局结构
EP3130984B1 (en) * 2014-04-07 2019-09-04 Murata Manufacturing Co., Ltd. Touch panel and electronic device
KR102242493B1 (ko) * 2014-09-05 2021-04-20 엘지디스플레이 주식회사 표시장치
JP6502178B2 (ja) * 2015-05-29 2019-04-17 株式会社ジャパンディスプレイ 表示装置
TWM525491U (zh) * 2015-07-10 2016-07-11 宸鴻科技(廈門)有限公司 壓力感應圖案層及包含其之壓力感測輸入裝置
CN204926052U (zh) * 2015-09-06 2015-12-30 南昌欧菲光科技有限公司 触摸显示装置
CN105867687A (zh) * 2016-03-29 2016-08-17 京东方科技集团股份有限公司 触控面板及显示装置
JP6682398B2 (ja) * 2016-08-02 2020-04-15 株式会社ジャパンディスプレイ 力検出装置、表示装置及び有機エレクトロルミネッセンス表示装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100128002A1 (en) * 2008-11-26 2010-05-27 William Stacy Touch-sensitive display method and apparatus
JP2015041160A (ja) * 2013-08-20 2015-03-02 日本写真印刷株式会社 タッチパネル

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3769193A4 (en) * 2018-03-23 2021-05-26 Samsung Electronics Co., Ltd. DEVICE AND METHOD FOR COMPENSATING TEMPERATURE CHANGE IN A STRAIN GAUGE PRESSURE SENSOR AND METHOD OF PERFORMING A STRAIN GAUGE PRESSURE FROM A TOUCH SCREEN ELEMENT
US11163404B2 (en) 2018-03-23 2021-11-02 Samsung Electronics Co., Ltd. Device and method for compensating for temperature change in strain-gauge pressure sensor and method for implementing strain-gauge pressure from touchscreen element
WO2019186642A1 (ja) * 2018-03-26 2019-10-03 三菱電機株式会社 入力制御装置、入力システム、及び入力制御方法
CN110502141A (zh) * 2018-05-18 2019-11-26 三星显示有限公司 触摸传感器和显示装置
CN110502141B (zh) * 2018-05-18 2024-04-23 三星显示有限公司 触摸传感器和显示装置
WO2020255816A1 (ja) * 2019-06-19 2020-12-24 Nissha株式会社 タッチパネル
JP2021002337A (ja) * 2019-06-19 2021-01-07 Nissha株式会社 タッチパネル
CN113748403A (zh) * 2019-06-19 2021-12-03 Nissha株式会社 触摸面板
US11762517B2 (en) 2019-06-19 2023-09-19 Nissha Co., Ltd. Touch panel
CN113748403B (zh) * 2019-06-19 2024-03-08 Nissha株式会社 触摸面板
JP2021189887A (ja) * 2020-06-02 2021-12-13 Nissha株式会社 タッチパネル

Also Published As

Publication number Publication date
US10606432B2 (en) 2020-03-31
CN109952553A (zh) 2019-06-28
US20190317641A1 (en) 2019-10-17
CN109952553B (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
WO2018043588A1 (ja) 圧力センサ内蔵静電容量型タッチパネル
US10678363B2 (en) Pressure sensor and display device
CN105975137B (zh) 一种触控显示面板及触控显示装置
US10318046B2 (en) Display panel
US10444928B2 (en) Display device
US10180747B2 (en) Touch display panel having touch electrodes and pressure sensing element and touch display device thereof
US8780074B2 (en) Dual-function transducer for a touch panel
US9612691B2 (en) Inducing capacitance detector and capacitive position detector of using same
US20170220191A1 (en) Touch control display panel and touch control display apparatus
US20180113556A1 (en) Touch substrate and display apparatus
CN106482631A (zh) 柔性显示装置
EP2685358A1 (en) Pressure sensitive input device
KR20100019808A (ko) 누름힘의 세기 및 작용위치 검출용 터치입력구조, 이를 이용한 터치입력장치 및 누름힘의 세기 및 작용위치 검출방법
US10452220B2 (en) Display substrate, display panel and display device
CN107340920B (zh) 一种触控显示面板及装置
KR20110111709A (ko) 터치 스크린 패널 및 이를 구비한 영상표시장치
US20150212620A1 (en) Touch Panel And Touch Screen Having The Same
KR102576092B1 (ko) 연성 표시장치
JP2015022563A (ja) タッチパネルおよびそれを用いたタッチ入力機能付き表示装置
KR102400399B1 (ko) 터치센서 일체형 변형인식센서를 구비하는 플렉서블 디스플레이 장치
CN108108061B (zh) 显示面板及显示装置
US20160216841A1 (en) Touch panel and touch panel equipped display device
TWI596524B (zh) 觸控結構及觸控顯示面板
CN108027674B (zh) 一种电子设备和终端
US11415405B2 (en) Strain gauge having unbalanced bias for single sided applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 17846592

Country of ref document: EP

Kind code of ref document: A1