WO2018042743A1 - Substrate inspection device, substrate treatment device, substrate inspection method, and substrate treatment method - Google Patents

Substrate inspection device, substrate treatment device, substrate inspection method, and substrate treatment method Download PDF

Info

Publication number
WO2018042743A1
WO2018042743A1 PCT/JP2017/013870 JP2017013870W WO2018042743A1 WO 2018042743 A1 WO2018042743 A1 WO 2018042743A1 JP 2017013870 W JP2017013870 W JP 2017013870W WO 2018042743 A1 WO2018042743 A1 WO 2018042743A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
unit
imaging
rotation
inspection apparatus
Prior art date
Application number
PCT/JP2017/013870
Other languages
French (fr)
Japanese (ja)
Inventor
真人 柏山
チャー ペチュレスキー
森田 彰彦
友宏 松尾
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Priority to CN201780047626.XA priority Critical patent/CN109564853B/en
Priority to KR1020197007517A priority patent/KR20190039269A/en
Publication of WO2018042743A1 publication Critical patent/WO2018042743A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements

Definitions

  • the present invention relates to a substrate inspection apparatus, a substrate processing apparatus, a substrate inspection method, and a substrate processing method for inspecting a substrate.
  • a substrate supported horizontally by a spin chuck is rotated.
  • a coating solution such as a resist solution is discharged to the center of the upper surface of the substrate, whereby a coating film is formed on the entire surface of the substrate.
  • the coating film is exposed and then developed to form a predetermined pattern on the coating film.
  • the post-exposure state varies for each portion of the substrate, resulting in poor processing of the substrate. Therefore, the surface condition of the substrate may be inspected.
  • Patent Document 1 describes a substrate processing apparatus having a surface inspection processing unit.
  • illumination light is continuously applied to a radial region on the substrate, and reflected light from the substrate is received by a CCD (charge coupled device) line sensor.
  • CCD charge coupled device
  • An object of the present invention is to provide a substrate inspection apparatus, a substrate processing apparatus, a substrate inspection method, and a substrate processing method capable of detecting defects in the surface state of a substrate with high accuracy.
  • a substrate inspection apparatus includes a rotation holding unit that rotatably holds a substrate, an imaging unit that is provided to image the substrate held by the rotation holding unit, and a first imaging Sometimes, a first imaging control unit that controls the imaging unit so as to generate first image data indicating an image of the substrate, and rotation holding so that the substrate is rotated by a predetermined angle after the first imaging. A first rotation control unit that controls the imaging unit, and the second imaging data after the substrate is rotated by the first rotation control unit to control the imaging unit to generate second image data indicating an image of the substrate A second imaging control unit; and a determination unit that determines the presence / absence of a defect in the surface state of the substrate based on the first and second image data.
  • the substrate is rotatably held by the rotation holding unit.
  • the substrate held by the rotation holding unit is imaged to generate first image data indicating an image of the substrate.
  • the substrate is rotated by a predetermined angle by the rotation holding unit.
  • the second image data indicating the image of the substrate is generated by imaging the substrate held by the rotation holding unit. Based on the first and second image data, the presence or absence of a defect in the surface state of the substrate is determined.
  • the surface of the substrate indicated by the first image data and the surface of the substrate indicated by the second image data have different aspects such as gloss. Therefore, when a defect exists on the surface of the substrate, the possibility that the defect appears clearly in an image indicated by at least one of the first and second image data is improved. Thereby, it becomes possible to detect the surface state defect of the substrate with high accuracy.
  • the imaging unit receives a light projecting unit that emits light extending longer than the diameter of the substrate in the first direction, and reflected light from the substrate, and the first or second image data based on the amount of received light
  • a second direction that intersects the first direction, or the second direction so that the light from the light projecting unit is irradiated on the entire surface of the substrate.
  • a relative movement unit provided to be relatively movable in the third direction opposite to the imaging unit, and the imaging unit and the rotation holding unit in the second direction during the first imaging.
  • a first movement control unit that controls the relative movement unit to relatively move, and a relative movement unit that relatively moves the imaging unit and the rotation holding unit in the third direction during the second imaging.
  • a second movement control unit for controlling.
  • the first and second imaging data are generated by the reciprocating movement of the substrate and the imaging unit relatively by the relative movement unit.
  • the entire surface of the substrate can be imaged using a small imaging unit. Thereby, the first and second imaging data can be obtained in a short time, and the substrate inspection apparatus can be made compact.
  • the relative movement unit may include a movement holding unit that holds the rotation holding unit and moves the rotation holding unit in the second or third direction with respect to the imaging unit. In this case, the entire surface of the substrate can be imaged with a simple configuration.
  • the light projecting unit and the light receiving unit may be arranged separately. In this case, the degree of freedom of arrangement of the imaging unit can be improved.
  • the substrate inspection apparatus determines the direction of the substrate held by the rotation holding unit, and the substrate is identified before the first imaging based on the direction of the substrate determined by the direction determination unit.
  • the substrate is inspected with the plurality of substrates aligned. Thereby, a several board
  • the substrate inspection apparatus includes a third rotation control unit that controls the rotation holding unit so that the substrate rotates at least once before the rotation of the substrate by the second rotation control unit, and a third rotation control unit. And a notch detection unit for detecting a notch of the substrate rotated by the notch detection unit, wherein the direction determination unit determines the orientation of the substrate based on the rotation angle of the substrate when the notch detection unit detects the notch of the substrate. Also good. In this case, the orientation of the substrate can be accurately determined with a simple configuration.
  • the first rotation control unit may control the rotation holding unit so that the orientation of the substrate during the first imaging and the orientation of the substrate during the second imaging are non-parallel.
  • the aspect of the surface of the substrate indicated by the first image data and the aspect of the surface of the substrate indicated by the second image data are greatly different.
  • the predetermined angle may be an odd multiple of 90 degrees.
  • the aspect of the surface of the substrate indicated by the first image data is significantly different from the aspect of the surface of the substrate indicated by the second image data.
  • a substrate processing apparatus includes a film forming unit that forms a coating film on a surface by supplying a coating liquid to the surface of the substrate, and a substrate on which the coating film is formed by the film forming unit.
  • a substrate inspection apparatus for inspecting a surface state, and a transport mechanism for transporting the substrate between the film forming unit and the substrate inspection apparatus.
  • a coating film is formed on the surface by supplying a coating liquid to the surface of the substrate by the film forming unit.
  • the substrate having the coating film formed on the surface by the film forming unit is transported by the transport mechanism.
  • the surface state of the substrate transported by the transport mechanism is inspected by the inspection apparatus.
  • the substrate is rotatably held by the rotation holding unit.
  • the substrate held by the rotation holding unit is imaged to generate first image data indicating an image of the substrate.
  • the substrate is rotated by a predetermined angle by the rotation holding unit.
  • the second image data indicating the image of the substrate is generated by imaging the substrate held by the rotation holding unit. Based on the first and second image data, the presence or absence of a defect in the surface state of the substrate is determined.
  • the surface of the substrate indicated by the first image data and the surface of the substrate indicated by the second image data have different aspects such as gloss. Therefore, when a defect exists on the surface of the substrate, the possibility that the defect appears clearly in an image indicated by at least one of the first and second image data is improved. Thereby, it becomes possible to detect the surface state defect of the substrate with high accuracy.
  • a substrate inspection method includes a step of rotatably holding a substrate by a rotation holding unit, and a substrate by imaging the substrate held by the rotation holding unit during the first imaging.
  • Generating first image data indicating the image of the first image, rotating the substrate by a predetermined angle by the rotation holding unit after the first imaging, and rotating the second imaging after the rotation of the substrate Step of generating second image data indicating an image of the substrate by imaging the substrate held by the holding unit, and determining the presence or absence of a defect in the surface state of the substrate based on the first and second image data Including the step of.
  • the substrate is rotatably held by the rotation holding unit.
  • the substrate held by the rotation holding unit is imaged to generate first image data indicating an image of the substrate.
  • the substrate is rotated by a predetermined angle by the rotation holding unit.
  • the second image data indicating the image of the substrate is generated by imaging the substrate held by the rotation holding unit. Based on the first and second image data, the presence or absence of a defect in the surface state of the substrate is determined.
  • the surface of the substrate indicated by the first image data and the surface of the substrate indicated by the second image data have different aspects such as gloss. Therefore, when a defect exists on the surface of the substrate, the possibility that the defect appears clearly in an image indicated by at least one of the first and second image data is improved. Thereby, it becomes possible to detect the surface state defect of the substrate with high accuracy.
  • a substrate processing method includes a step of forming a coating film on a surface by supplying a coating liquid to the surface of the substrate by the film forming unit, and a coating film on the surface by the film forming unit.
  • the coating film is formed on the surface by supplying the coating liquid to the surface of the substrate by the film forming unit.
  • the substrate having the coating film formed on the surface by the film forming unit is transported by the transport mechanism.
  • the surface state of the substrate transported by the transport mechanism is inspected by the above-described substrate inspection method.
  • the substrate is rotatably held by the rotation holding unit.
  • the substrate held by the rotation holding unit is imaged to generate first image data indicating an image of the substrate.
  • the substrate is rotated by a predetermined angle by the rotation holding unit.
  • the second image data indicating the image of the substrate is generated by imaging the substrate held by the rotation holding unit. Based on the first and second image data, the presence or absence of a defect in the surface state of the substrate is determined.
  • the surface of the substrate indicated by the first image data and the surface of the substrate indicated by the second image data have different aspects such as gloss. Therefore, when a defect exists on the surface of the substrate, the possibility that the defect appears clearly in an image indicated by at least one of the first and second image data is improved. Thereby, it becomes possible to detect the surface state defect of the substrate with high accuracy.
  • FIG. 1 is a perspective view showing an appearance of a substrate inspection apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic side view showing an internal configuration of the substrate inspection apparatus.
  • FIG. 3 is a schematic plan view showing the internal configuration of the substrate inspection apparatus.
  • FIG. 4 is a block diagram showing a configuration of a local controller for controlling the substrate inspection apparatus.
  • FIG. 5 is a diagram for explaining the operation of the substrate inspection apparatus.
  • FIG. 6 is a diagram for explaining the operation of the substrate inspection apparatus.
  • FIG. 7 is a flowchart showing the operation of the main controller of the local controller of FIG. 4 in the inspection process.
  • FIG. 8 is a flowchart showing the operation of the main controller of the local controller of FIG. 4 in the inspection process.
  • FIG. 1 is a perspective view showing an appearance of a substrate inspection apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic side view showing an internal configuration of the substrate inspection apparatus.
  • FIG. 3 is a schematic plan view
  • FIG. 9 is a schematic plan view of a substrate processing apparatus provided with the substrate inspection apparatus of FIG.
  • FIG. 10 is a schematic side view showing the internal configuration of the coating processing section, the development processing section, and the cleaning / drying processing section of FIG.
  • FIG. 11 is a plan view showing the configuration of the coating processing unit.
  • 12 is a schematic side view showing the internal configuration of the heat treatment section and the cleaning / drying processing section of FIG.
  • FIG. 13 is a schematic side view showing the internal configuration of the transport unit.
  • the substrate means a semiconductor substrate, a liquid crystal display substrate, a plasma display substrate, an optical disk substrate, a magnetic disk substrate, a magneto-optical disk substrate, a photomask substrate, or the like.
  • the substrate used in this embodiment has at least a circular outer peripheral portion.
  • the outer peripheral portion excluding the positioning notch has a circular shape.
  • FIG. 1 is a perspective view showing an appearance of a substrate inspection apparatus 200 according to an embodiment of the present invention.
  • FIG. 2 is a schematic side view showing an internal configuration of the substrate inspection apparatus 200.
  • FIG. 3 is a schematic plan view showing an internal configuration of the substrate inspection apparatus 200.
  • the substrate inspection apparatus 200 includes a casing unit 210, a light projecting unit 220, a reflecting unit 230, a light receiving unit 240, a rotation driving unit 250, a moving unit 260, and a notch detecting unit 270.
  • the light projecting unit 220, the reflecting unit 230, and the light receiving unit 240 constitute the imaging unit 1.
  • the imaging unit 1, the rotation driving unit 250, the moving unit 260 and the notch detection unit 270 are accommodated in the housing unit 210.
  • the casing 210 includes a substantially rectangular bottom surface 211 and four substantially rectangular side surfaces 212 to 215.
  • the side surface portions 212 and 214 are located at both end portions in the longitudinal direction of the bottom surface portion 211, and the side surface portions 213 and 215 are located at both end portions in the width direction of the bottom surface portion 211, respectively.
  • casing part 210 has a substantially rectangular upper opening.
  • the housing part 210 may further include an upper surface part that closes the upper opening.
  • the width direction of the bottom surface portion 211 is simply referred to as the width direction, and the longitudinal direction of the bottom surface portion 211 is referred to as the front-rear direction. Further, in the front-rear direction, the direction from the side surface portion 214 toward the side surface portion 212 is defined as the front, and the opposite direction is defined as the rear.
  • a slit-like opening 216 for transporting the substrate W between the outside and the inside of the housing part 210 is formed in a part from the side part 212 to the front part of the side part 213.
  • the light projecting unit 220 includes, for example, one or a plurality of light sources, and is attached to the inner surfaces of the side surface portions 213 and 215 of the housing unit 210 so as to extend in the width direction. As will be described later, a substrate W to be inspected is carried into the housing unit 210 from the opening 216 and passes below the light projecting unit 220.
  • the light projecting unit 220 emits strip-shaped light larger than the diameter of the substrate W obliquely downward and rearward.
  • the reflection unit 230 includes, for example, a mirror, and is attached to the inner surfaces of the side surface portions 213 and 215 of the housing unit 210 so as to extend behind the light projecting unit 220 and in the width direction. As shown in FIG. 2, the strip-like light emitted obliquely downward and rearward by the light projecting unit 220 is reflected obliquely upward and backward by the substrate W.
  • the reflection unit 230 reflects the strip-shaped light reflected by the substrate W in the substantially horizontal direction from the rear.
  • the light receiving part 240 is attached on the bottom part 211 of the casing part 210 behind the reflecting part 230.
  • the light receiving unit 240 is a camera, for example, and includes a plurality of lenses and a color CCD (charge coupled device) line sensor.
  • the light receiving unit 240 receives the band-like light reflected by the reflecting unit 230 and generates image data based on pixel data corresponding to the amount of light received by each pixel.
  • the image data is composed of a plurality of pixel data corresponding to a plurality of pixels.
  • the rotation driving unit 250 is, for example, a spin chuck, and includes a driving device 251 and a rotation holding unit 252.
  • the drive device 251 is an electric motor, for example, and has a rotating shaft 251a.
  • the drive device 251 is provided with an encoder (not shown).
  • the rotation holding unit 252 is attached to the tip of the rotation shaft 251a of the driving device 251 and is driven to rotate around the vertical axis while holding the substrate W to be inspected.
  • the moving unit 260 includes a plurality of (two in this example) guide members 261 and a moving holding unit 262.
  • the plurality of guide members 261 are attached to the bottom surface portion 211 of the housing portion 210 so as to extend in the front-rear direction in a state of being separated in the width direction.
  • the movement holding unit 262 moves in the front-rear direction along the plurality of guide members 261 while holding the rotation driving unit 250.
  • the notch detection unit 270 is a reflective photoelectric sensor including, for example, a light projecting element and a light receiving element, and is attached to the front upper portion of the inner surface of the side surface part 215 of the housing part 210.
  • the notch detector 270 emits light downward and receives reflected light from the substrate W.
  • the notch detection unit 270 detects the presence or absence of a notch on the substrate W based on the amount of light received from the substrate W rotated by the rotation driving unit 250.
  • a transmissive photoelectric sensor may be used as the notch detection unit 270.
  • FIG. 4 is a block diagram showing a configuration of a local controller 400 for controlling the substrate inspection device 200.
  • the local controller 400 includes a main control unit 401, a storage unit 402, an imaging control unit 410, a rotation control unit 420, a movement control unit 430, a direction determination unit 440, and a defect determination unit 450.
  • the main control unit 401 includes, for example, a CPU (Central Processing Unit).
  • the storage unit 402 includes, for example, a non-volatile memory or a hard disk, and stores an inspection program for executing an inspection process.
  • the main control unit 401 executes the inspection program stored in the storage unit 402, thereby realizing the functions of the imaging control unit 410, the rotation control unit 420, the movement control unit 430, the direction determination unit 440, and the defect determination unit 450. .
  • the imaging control unit 410 controls the operation of the imaging unit 1.
  • the rotation control unit 420 acquires an output signal from the encoder of the driving device 251 (FIG. 2) of the rotation driving unit 250 to detect the rotation angle of the driving device 251 (the rotation angle of the substrate W), and from the direction determination unit 440. The determination result of the orientation of the substrate W is acquired.
  • the rotation control unit 420 controls the operation of the rotation driving unit 250 based on the rotation angle of the driving device 251 or the direction of the substrate W.
  • the movement control unit 430 controls the operation of the moving unit 260.
  • the direction determination unit 440 controls the operation of the notch detection unit 270.
  • the direction determination unit 440 acquires the detection result of the notch by the notch detection unit 270, acquires the rotation angle of the driving device 251 detected by the rotation control unit 420, and detects when the notch of the substrate W is detected.
  • the orientation of the substrate W is determined based on the rotation angle of the driving device 251.
  • the defect determination unit 450 acquires image data from the imaging unit 1 and determines whether there is a defect in the surface state of the substrate W based on the image data.
  • the determination result by the defect determination unit 450 is stored in the storage unit 402.
  • FIGS. 5A to 6B are diagrams for explaining the operation of the substrate inspection apparatus 200.
  • FIG. 5A, 5B and 6A, 6B a plan view of the substrate inspection apparatus 200 is shown on the left, and a schematic diagram of the substrate W to be inspected is shown on the right.
  • the substrate W after the development process is inspected. Therefore, as shown on the right side of FIGS. 5A to 6B, a plurality of chips CH to be products are formed on the surface of the substrate W.
  • the rotation drive unit 250 is located at the front part in the housing unit 210.
  • the substrate W to be inspected is carried into the casing unit 210 through the opening 216 by the substrate W transport mechanism (for example, the transport mechanism 137 or the transport mechanism 138 in FIG. 13 described later) and held by the rotation drive unit 250. Is done.
  • the substrate 260 is moved backward by the moving unit 260.
  • the strip-shaped light emitted from the light projecting unit 220 is scanned relatively on the substrate W in the front-rear direction.
  • the entire substrate W is irradiated with the band-like light.
  • the band-like light sequentially reflected from the substrate W is reflected by the reflection unit 230 and guided to the light receiving unit 240. Thereby, first image data indicating an image of the entire surface of the substrate W is generated.
  • the rotation drive unit 250 rotates the substrate W by 90 degrees.
  • the substrate 260 is moved to the initial initial position by the moving unit 260.
  • second image data indicating an image of the entire surface of the substrate W is generated in the same manner as the operation of FIG.
  • the defect determination unit 450 in FIG. The determination of the presence or absence of a defect on the substrate W by the defect determination unit 450 may be performed at an arbitrary time.
  • FIGS. 7 and 8 are flowcharts showing the operation of the main controller 401 of the local controller 400 of FIG. 4 in the inspection process.
  • the inspection process by the main control unit 401 will be described with reference to the substrate inspection apparatus 200 of FIGS. 1 and 2, the local controller 400 of FIG. 4, and the flowchart of FIG.
  • the main control unit 401 causes the moving unit 260 to move the rotation driving unit 250 to the initial position in the front part in the casing unit 210 (step S1). Note that when the rotation drive unit 250 is in the initial position in the initial state, the process of step S1 is omitted.
  • the inspection target substrate W after the development processing is carried into the casing unit 210 through the opening 216 by the transport mechanism.
  • the main control unit 401 holds the loaded substrate W by the rotation driving unit 250 (step S2).
  • the main control unit 401 rotates the substrate W by the rotation driving unit 250 (step S3) and detects the rotation angle of the substrate W (step S4). Further, the main control unit 401 irradiates the peripheral edge of the substrate W with the notch detection unit 270 (step S5) and receives light from the substrate W (step S6). Steps S3 to S6 are performed almost simultaneously.
  • the main control unit 401 determines whether or not the notch NT of the substrate W has been detected by the notch detection unit 270 based on the processing results of steps S3 to S6 (step S7). When the notch NT of the substrate W is detected, the main control unit 401 determines the orientation of the substrate W based on the rotation angle of the substrate W when the notch NT is detected (step S8). If the notch NT of the substrate W is not detected in step S7, the process proceeds to step S9.
  • step S9 the main control unit 401 determines whether or not the substrate W has rotated 360 degrees (step S9). If the substrate W has not rotated 360 degrees, the process returns to step S3 and the processes of steps S3 to S8 are repeated. When the substrate W has rotated 360 degrees, the main control unit 401 rotates the substrate W by the rotation driving unit 250 so that the substrate W faces a specific direction (step S10).
  • the main control unit 401 moves the substrate W together with the rotation driving unit 250 by the moving unit 260 (step S11).
  • the substrate W passes under the light projecting unit 220.
  • the main control unit 401 uses the imaging unit 1 to irradiate the substrate W with strip-shaped light (step S12) and receive the strip-shaped light from the substrate W (step S13). Steps S11 to S13 are performed almost simultaneously.
  • the main control unit 401 generates first image data by the imaging unit 1 based on the results of the processes in steps S11 to S13 (step S14). Subsequently, the main control unit 401 rotates the substrate W by 90 degrees by the rotation driving unit 250 (step S15).
  • the substrate 260 is moved forward (initial position) together with the rotation drive unit 250 by the moving unit 260 (step S16).
  • the substrate W passes again below the light projecting unit 220.
  • the main control unit 401 uses the imaging unit 1 to irradiate the substrate W with strip-shaped light (step S17) and receive the strip-shaped light from the substrate W (step S18). Steps S16 to S18 are performed almost simultaneously.
  • the main control unit 401 generates second image data by the imaging unit 1 based on the processing results of steps S16 to S18 (step S18).
  • the main control unit 401 determines the presence / absence of a defect in the surface state of the substrate W based on the generated first and second image data (step S20). Finally, the main control unit 401 stores the determination result about the presence or absence of defects in the surface state of the substrate W in the storage unit 402 of FIG. 4 (step S21), and ends the inspection process.
  • FIG. 9 is a schematic plan view of a substrate processing apparatus 100 provided with the substrate inspection apparatus 200 of FIG.
  • arrows indicating X direction, Y direction, and Z direction orthogonal to each other are attached in order to clarify the positional relationship.
  • the X direction and the Y direction are orthogonal to each other in the horizontal plane, and the Z direction corresponds to the vertical direction.
  • the substrate processing apparatus 100 includes an indexer block 11, a coating block 12, a developing block 13, a cleaning / drying processing block 14A, and a loading / unloading block 14B.
  • the cleaning / drying processing block 14A and the carry-in / carry-out block 14B constitute an interface block 14.
  • the exposure device 15 is disposed adjacent to the carry-in / carry-out block 14B.
  • the indexer block 11 includes a plurality of carrier placement units 111 and a conveyance unit 112. On each carrier placement section 111, a carrier 113 that houses a plurality of substrates W in multiple stages is placed.
  • the transport unit 112 is provided with a main controller 114 and a transport mechanism 115.
  • the main controller 114 controls various components of the substrate processing apparatus 100.
  • the transport mechanism 115 transports the substrate W while holding the substrate W.
  • the coating block 12 includes a coating processing unit 121, a transport unit 122, and a heat treatment unit 123.
  • the coating processing unit 121 and the heat treatment unit 123 are provided so as to face each other with the conveyance unit 122 interposed therebetween.
  • substrate platforms PASS1 to PASS4 (see FIG. 13) on which the substrate W is mounted are provided.
  • the transport unit 122 is provided with transport mechanisms 127 and 128 (see FIG. 13) for transporting the substrate W.
  • the development block 13 includes a development processing unit 131, a transport unit 132, and a heat treatment unit 133.
  • the development processing unit 131 and the heat treatment unit 133 are provided to face each other with the transport unit 132 interposed therebetween.
  • substrate platforms PASS5 to PASS8 (see FIG. 13) on which the substrate W is placed are provided.
  • the transport unit 132 is provided with transport mechanisms 137 and 138 (see FIG. 13) for transporting the substrate W.
  • the cleaning / drying processing block 14 ⁇ / b> A includes cleaning / drying processing units 161 and 162 and a transport unit 163.
  • the cleaning / drying processing units 161 and 162 are provided to face each other with the conveyance unit 163 interposed therebetween.
  • the transport unit 163 is provided with transport mechanisms 141 and 142.
  • placement / buffer units P-BF1 and P-BF2 are provided between the transport unit 163 and the transport unit 132.
  • the placement / buffer units P-BF1 and P-BF2 are configured to accommodate a plurality of substrates W.
  • a substrate platform PASS9 and a later-described placement / cooling unit P-CP are provided between the transport mechanisms 141 and 142 so as to be adjacent to the carry-in / carry-out block 14B.
  • the placement / cooling unit P-CP has a function of cooling the substrate W (for example, a cooling plate).
  • the substrate W is cooled to a temperature suitable for the exposure process.
  • a transport mechanism 143 is provided in the carry-in / carry-out block 14B. The transport mechanism 143 carries the substrate W into and out of the exposure apparatus 15.
  • FIG. 10 is a schematic side view showing the internal configuration of the application processing unit 121, the development processing unit 131, and the cleaning / drying processing unit 161 in FIG.
  • the coating processing section 121 is provided with coating processing chambers 21, 22, 23, and 24 in a hierarchical manner.
  • a coating processing unit 129 is provided in each of the coating processing chambers 21 to 24, a coating processing unit 129 is provided.
  • the development processing unit 131 is provided with development processing chambers 31, 32, 33, and 34 in a hierarchical manner.
  • a development processing unit 139 is provided in each of the development processing chambers 31 to 34.
  • FIG. 11 is a plan view showing the configuration of the coating processing unit 129.
  • each coating processing unit 129 includes a standby unit 20, a plurality of spin chucks 25, a plurality of cups 27, a plurality of processing liquid nozzles 28, a nozzle transport mechanism 29, and a plurality of edge rinse nozzles 30. Is provided. In the present embodiment, two spin chucks 25, cups 27, and edge rinse nozzles 30 are provided in each coating processing unit 129.
  • Each spin chuck 25 is rotationally driven by a driving device (not shown) (for example, an electric motor) while holding the substrate W.
  • the cup 27 is provided so as to surround the periphery of the spin chuck 25.
  • Various processing liquids are supplied to each processing liquid nozzle 28 from a processing liquid storage unit (not shown) through processing liquid piping. At the time when the processing liquid is not supplied to the substrate W, each processing liquid nozzle 28 is inserted into the standby unit 20.
  • any of the processing liquid nozzles 28 of the standby unit 20 is held by the nozzle transport mechanism 29 and transported above the substrate W.
  • the processing liquid is applied onto the rotating substrate W by discharging the processing liquid from the processing liquid nozzle 28 while the spin chuck 25 rotates.
  • a processing liquid for antireflection film (hereinafter referred to as antireflection liquid) is supplied from the processing liquid nozzle 28 to the substrate W. Is done.
  • a resist film processing liquid (hereinafter referred to as a resist liquid) is supplied from the processing liquid nozzle 28 to the substrate W.
  • the edge rinse nozzle 30 is moved from the predetermined standby position to the vicinity of the peripheral edge of the substrate W.
  • the peripheral portion of the substrate W refers to a region having a constant width along the outer peripheral portion of the substrate W on the surface of the substrate W.
  • the rinse liquid is discharged from the edge rinse nozzle 30 toward the peripheral edge of the rotating substrate W while the spin chuck 25 rotates, so that the peripheral edge of the processing liquid applied to the substrate W is dissolved. Thereby, the processing liquid at the peripheral edge of the substrate W is removed.
  • the development processing unit 139 includes a plurality of spin chucks 35 and a plurality of cups 37, similar to the coating processing unit 129. As shown in FIG. 9, the development processing unit 139 includes two slit nozzles 38 that discharge the developer and a moving mechanism 39 that moves the slit nozzles 38 in the X direction.
  • the spin chuck 35 is rotated by a driving device (not shown). Thereby, the substrate W is rotated. The developer is supplied to each substrate W that rotates while the slit nozzle 38 moves. Thereby, the development processing of the substrate W is performed.
  • the cleaning / drying processing unit 161 is provided with a plurality (four in this example) of cleaning / drying processing units SD1. In the cleaning / drying processing unit SD1, the substrate W before the exposure processing is cleaned and dried.
  • FIG. 12 is a schematic side view showing the internal configuration of the heat treatment units 123 and 133 and the cleaning / drying processing unit 162 of FIG.
  • the heat treatment part 123 has an upper heat treatment part 101 provided above and a lower heat treatment part 102 provided below.
  • the upper heat treatment unit 101 and the lower heat treatment unit 102 are provided with a plurality of heat treatment units PHP, a plurality of adhesion reinforcement processing units PAHP, and a plurality of cooling units CP.
  • the local controller 300 is provided at the top of the heat treatment unit 123.
  • the local controller 300 controls operations of the coating processing unit 121, the transport unit 122, and the heat treatment unit 123 based on a command from the main controller 114 in FIG.
  • the substrate W is heated and cooled.
  • adhesion reinforcement processing unit PAHP adhesion reinforcement processing for improving the adhesion between the substrate W and the antireflection film is performed.
  • an adhesion enhancing agent such as HMDS (hexamethyldisilazane) is applied to the substrate W, and the substrate W is subjected to heat treatment.
  • the cooling unit CP the substrate W is cooled.
  • the heat treatment part 133 includes an upper heat treatment part 103 provided above and a lower heat treatment part 104 provided below.
  • the upper heat treatment unit 103 and the lower heat treatment unit 104 are provided with a cooling unit CP, a plurality of heat treatment units PHP, an edge exposure unit EEW, and a substrate inspection apparatus 200.
  • the thermal processing units PHP of the upper thermal processing unit 103 and the lower thermal processing unit 104 are configured to be able to carry in the substrate W from the cleaning / drying processing block 14A.
  • the local controller 400 controls the operations of the substrate inspection apparatus 200 and the operations of the development processing unit 131, the transport unit 132, and the heat treatment unit 133 based on a command from the main controller 114 in FIG. 9.
  • edge exposure unit EEW exposure processing (edge exposure processing) of the peripheral portion of the substrate W is performed.
  • edge exposure processing edge exposure processing
  • the resist film on the peripheral edge of the substrate W is removed during the subsequent development process. This prevents the resist film on the peripheral portion of the substrate W from peeling off and becoming particles when the peripheral portion of the substrate W comes into contact with another portion after the development processing.
  • the substrate inspection apparatus 200 the surface state of the substrate W after the development processing is inspected.
  • the cleaning / drying processing section 162 is provided with a plurality (five in this example) of cleaning / drying processing units SD2.
  • the substrate W after the exposure processing is cleaned and dried.
  • FIG. 13 is a schematic side view showing the internal configuration of the conveying units 122, 132, and 163.
  • the transfer unit 122 includes an upper transfer chamber 125 and a lower transfer chamber 126.
  • the transfer unit 132 includes an upper transfer chamber 135 and a lower transfer chamber 136.
  • the upper transfer chamber 125 is provided with a transfer mechanism 127
  • the lower transfer chamber 126 is provided with a transfer mechanism 128.
  • the upper transfer chamber 135 is provided with a transfer mechanism 137
  • the lower transfer chamber 136 is provided with a transfer mechanism 138.
  • Substrate platforms PASS 1 and PASS 2 are provided between the transport unit 112 and the upper transport chamber 125, and substrate platforms PASS 3 and PASS 4 are provided between the transport unit 112 and the lower transport chamber 126.
  • Substrate platforms PASS5 and PASS6 are provided between the upper transport chamber 125 and the upper transport chamber 135, and substrate platforms PASS7 and PASS8 are provided between the lower transport chamber 126 and the lower transport chamber 136. It is done.
  • a placement / buffer unit P-BF1 is provided between the upper transfer chamber 135 and the transfer unit 163, and a placement / buffer unit P-BF2 is provided between the lower transfer chamber 136 and the transfer unit 163. .
  • a substrate platform PASS9 and a plurality of placement / cooling units P-CP are provided so as to be adjacent to the carry-in / carry-out block 14B in the transport unit 163.
  • the placement / buffer unit P-BF1 is configured such that the substrate W can be loaded and unloaded by the transport mechanism 137 and the transport mechanism 141 (FIG. 9).
  • the placement / buffer unit P-BF2 is configured such that the substrate W can be carried in and out by the transport mechanism 138 and the transport mechanism 141 (FIG. 9).
  • the substrate platform PASS9 and the placement / cooling unit P-CP are configured such that the substrate W can be carried in and out by the transport mechanisms 141 and 142 (FIG. 9) and the transport mechanism 143.
  • the substrate W to be transported from the indexer block 11 to the coating block 12 is placed on the substrate platform PASS1 and the substrate platform PASS3, and the coating block 12 is placed on the substrate platform PASS2 and the substrate platform PASS4.
  • a substrate W to be transported to the indexer block 11 is placed.
  • a substrate W transported from the coating block 12 to the development block 13 is placed on the substrate platform PASS5 and the substrate platform PASS7, and from the development block 13 on the substrate platform PASS6 and the substrate platform PASS8.
  • a substrate W to be transported to the coating block 12 is placed.
  • the substrate W transported from the development block 13 to the cleaning / drying processing block 14A is placed.
  • the substrate W to be transported from the cleaning / drying processing block 14A to the loading / unloading block 14B is placed on the placement / cooling section P-CP.
  • the substrate W to be transported from the carry-in / carry-out block 14B to the cleaning / drying processing block 14A is placed on the substrate platform PASS9.
  • the transport mechanism 127 delivers the substrate W to the coating processing chambers 21 and 22 (FIG. 10), the substrate platforms PASS1, PASS2, PASS5, PASS6 and the upper thermal processing unit 101 (FIG. 12).
  • the transport mechanism 128 delivers the substrate W to the coating processing chambers 23 and 24 (FIG. 10), the substrate platforms PASS3, PASS4, PASS7 and PASS8, and the lower thermal processing unit 102 (FIG. 12).
  • the transport mechanism 137 delivers the substrate W to the development processing chambers 31 and 32 (FIG. 10), the substrate platforms PASS5 and PASS6, the placement / buffer unit P-BF1, and the upper thermal processing unit 103 (FIG. 12).
  • the transport mechanism 138 delivers the substrate W to the development processing chambers 33 and 34 (FIG. 10), the substrate platforms PASS7 and PASS8, the placement / buffer unit P-BF2, and the lower thermal processing unit 104 (FIG. 12). .
  • a carrier 113 in which an unprocessed substrate W is accommodated is placed on the carrier placement portion 111 (FIG. 9) of the indexer block 11.
  • the transport mechanism 115 transports the unprocessed substrate W from the carrier 113 to the substrate platforms PASS1 and PASS3 (FIG. 13). Further, the transport mechanism 115 transports the processed substrate W placed on the substrate platforms PASS2 and PASS4 (FIG. 13) to the carrier 113.
  • the transport mechanism 127 applies the unprocessed substrate W placed on the substrate platform PASS1 to the adhesion strengthening processing unit PAHP (FIG. 12), the cooling unit CP (FIG. 12), and the coating process. It conveys to chamber 22 (FIG. 10) in order.
  • the transport mechanism 127 transfers the substrate W in the coating treatment chamber 22 to the heat treatment unit PHP (FIG. 12), the cooling unit CP (FIG. 12), the coating treatment chamber 21 (FIG. 10), the heat treatment unit PHP (FIG. 12), and The substrate is sequentially transferred to the substrate platform PASS5 (FIG. 13).
  • the cooling unit CP cools the substrate W to a temperature suitable for forming the antireflection film.
  • an antireflection film is formed on the substrate W by the coating processing unit 129 (FIG. 10).
  • the substrate W is cooled to a temperature suitable for formation of the resist film in the cooling unit CP.
  • a resist film is formed on the substrate W by the coating processing unit 129 (FIG. 10).
  • the substrate W is heat-treated in the heat treatment unit PHP, and the substrate W is placed on the substrate platform PASS5.
  • the transport mechanism 127 transports the substrate W after the development process and the inspection process placed on the substrate platform PASS6 (FIG. 13) to the substrate platform PASS2 (FIG. 13).
  • the transport mechanism 128 applies the unprocessed substrate W placed on the substrate platform PASS3 to the adhesion reinforcement processing unit PAHP (FIG. 12), the cooling unit CP (FIG. 12), and the coating processing chamber 24 (FIG. 10). ) In order. Next, the transport mechanism 128 transfers the substrate W in the coating processing chamber 24 to the thermal processing unit PHP (FIG. 12), the cooling unit CP (FIG. 12), the coating processing chamber 23 (FIG. 10), the thermal processing unit PHP (FIG. 12), and The substrate is sequentially transferred to the substrate platform PASS7 (FIG. 13).
  • the transport mechanism 128 transports the substrate W after the development process and the inspection process placed on the substrate platform PASS8 (FIG. 13) to the substrate platform PASS4 (FIG. 13).
  • the processing contents of the substrate W in the coating processing chambers 23 and 24 (FIG. 10) and the lower thermal processing section 102 (FIG. 12) are the same as those in the coating processing chambers 21 and 22 (FIG. 10) and the upper thermal processing section 101 (FIG. 12).
  • the processing contents of W are the same.
  • the transport mechanism 137 transfers the substrate W after the resist film formation placed on the substrate platform PASS5 to the edge exposure unit EEW (FIG. 12) and the placement / buffer unit P-BF1 ( It conveys in order to FIG. In this case, the edge exposure processing is performed on the substrate W in the edge exposure unit EEW. The substrate W after the edge exposure processing is placed on the placement / buffer unit P-BF1.
  • the transport mechanism 137 takes out the substrate W after the exposure processing and after the heat treatment from the heat treatment unit PHP (FIG. 12) adjacent to the cleaning / drying processing block 14A.
  • the transport mechanism 137 uses the cooling unit CP (FIG. 12), the development processing chambers 31 and 32 (FIG. 10), the heat treatment unit PHP (FIG. 12), the substrate inspection apparatus 200 (FIG. 12), and the substrate. It conveys to mounting part PASS6 (FIG. 13) in order.
  • the developing process of the substrate W is performed by the developing unit 139 in one of the developing chambers 31 and 32. Thereafter, the heat treatment of the substrate W is performed in the heat treatment unit PHP. Further, the substrate inspection apparatus 200 performs an inspection process on the substrate W, and the substrate W is placed on the substrate platform PASS6.
  • the transport mechanism 138 sequentially transfers the resist film-formed substrate W placed on the substrate platform PASS7 to the edge exposure unit EEW (FIG. 12) and the placement / buffer unit P-BF2 (FIG. 13). Transport.
  • the transport mechanism 138 takes out the substrate W after the exposure process and after the heat treatment from the heat treatment unit PHP (FIG. 12) adjacent to the interface block 14.
  • the transport mechanism 138 transfers the substrate W to the cooling unit CP (FIG. 12), one of the development processing chambers 33 and 34 (FIG. 10), the heat treatment unit PHP (FIG. 12), the substrate inspection apparatus 200 (FIG. 12), and the substrate. It conveys in order to mounting part PASS8 (FIG. 13).
  • the processing contents of the substrate W in the development processing chambers 33 and 34 and the lower thermal processing section 104 are the same as the processing contents of the substrate W in the development processing chambers 31 and 32 and the upper thermal processing section 103, respectively.
  • the transport mechanism 141 (FIG. 9) performs the cleaning / drying processing unit SD1 (FIG. 10) and the substrate W placed on the placement / buffer units P-BF1, P-BF2 (FIG. 13) and It is sequentially conveyed to the placement / cooling section P-CP (FIG. 13).
  • the substrate W is cooled to a temperature suitable for the exposure processing by the exposure device 15 (FIG. 9) in the placement / cooling unit P-CP. Is done.
  • the transport mechanism 142 (FIG. 9) performs cleaning and drying processing unit SD2 (FIG. 12) and the upper thermal processing unit 103 or the lower thermal processing unit 104 on the substrate W after the exposure processing placed on the substrate platform PASS9 (FIG. 13). It conveys to heat processing unit PHP (FIG. 12) in order. In this case, after the substrate W is cleaned and dried in the cleaning / drying processing unit SD2, a post-exposure bake (PEB) process is performed in the heat treatment unit PHP.
  • PEB post-exposure bake
  • the transport mechanism 143 (FIG. 9) transports the substrate W before the exposure process placed on the placement / cooling unit P-CP (FIG. 13) to the exposure apparatus 15. Further, the transport mechanism 143 (FIG. 9) takes out the substrate W after the exposure processing from the exposure apparatus 15, and transports the substrate W to the substrate platform PASS9 (FIG. 13).
  • first image data is generated by imaging the substrate W held by the rotation holding unit 252 by the imaging unit 1. Thereafter, the substrate W is rotated by a predetermined angle by the rotation holding unit 252. After the rotation of the substrate W, the substrate W held by the rotation holding unit 252 is imaged by the imaging unit 1, whereby second image data is generated. Based on the first and second image data, the presence / absence of a defect in the surface state of the substrate W is determined.
  • the surface of the substrate W indicated by the first image data and the surface of the substrate W indicated by the second image data have different aspects such as gloss. Therefore, when a defect exists on the surface of the substrate W, the possibility that the defect appears clearly in an image indicated by at least one of the first and second image data is improved. Thereby, it becomes possible to detect the surface state defect of the substrate W with high accuracy. In addition, since the inspection is performed in a state where the directions of the plurality of substrates W are aligned, the plurality of substrates W can be inspected uniformly.
  • the moving unit 260 causes the substrate W and the imaging unit 1 to reciprocate relative to each other in the front-rear direction to generate first and second imaging data. Further, the entire surface of the substrate W can be imaged using the small imaging unit 1. Thus, the first and second imaging data can be obtained in a short time, and the substrate inspection apparatus 200 can be made compact.
  • the inspection process is performed after the development process, but the present invention is not limited to this.
  • the inspection process may be performed before or after the edge exposure process, for example, or may be performed at another time.
  • the rotation angle of the substrate W in the process of step S15 is 90 degrees, but the present invention is not limited to this.
  • the rotation angle of the substrate W may be a desired angle.
  • the rotation angle of the substrate W is preferably an angle other than an integer multiple of 180 degrees, and more preferably an odd multiple of 90 degrees.
  • the aspect of the surface of the substrate W indicated by the first image data is greatly different from the aspect of the surface of the substrate W indicated by the second image data.
  • the substrate W is rotated so that the substrate W faces a specific direction in step S10, but the present invention is not limited to this.
  • the substrate processing apparatus 100 is configured such that the substrate W is carried into the substrate inspection apparatus 200 in a state where the substrate W is directed in a specific direction, the processing of steps S3 to S10 may be omitted, and the substrate inspection apparatus 200 is omitted.
  • the notch detector 270 may not be provided.
  • the inspection process may be performed with the substrate W facing in an arbitrary direction, the processes in steps S3 to S10 may be omitted, and the substrate inspection apparatus 200 is provided with a notch detection unit 270. It does not have to be done.
  • the light projecting unit 220 and the light receiving unit 240 of the imaging unit 1 are configured as separate bodies, but the present invention is not limited to this.
  • the light projecting unit 220 and the light receiving unit 240 of the imaging unit 1 may be configured integrally.
  • the imaging unit 1 is provided with the reflection unit 230, but the present invention is not limited to this.
  • the imaging unit 1 may not be provided with the reflecting unit 230.
  • the moving unit 260 is configured to move the rotation driving unit 250 (substrate W) in the front-rear direction with respect to the imaging unit 1, but the present invention is not limited to this.
  • the moving unit 260 may be configured to relatively move the imaging unit 1 and the rotation driving unit 250 in the front-rear direction. Therefore, the moving unit 260 may be configured to move the imaging unit 1 in the front-rear direction with respect to the rotation driving unit 250.
  • the imaging unit 1 and the rotation drive unit 250 are relatively moved, but the present invention is not limited to this.
  • the imaging area of the imaging unit 1 is larger than the entire surface of the substrate W, the imaging unit 1 and the rotation driving unit 250 do not have to be moved relatively, and the substrate inspection apparatus 200 is provided with the moving unit 260. It does not have to be.
  • the substrate inspection apparatus 200 is provided in the heat treatment section 133 of the substrate processing apparatus 100, but the present invention is not limited to this.
  • the substrate inspection apparatus 200 may be provided in other parts such as the coating block 12 of the substrate processing apparatus 100.
  • the substrate inspection apparatus 200 may not be provided in the substrate processing apparatus 100 but may be provided alone for performing an inspection process on the substrate.
  • the substrate W is an example of a substrate
  • the rotation holding unit 252 is an example of a rotation holding unit
  • the imaging unit 1 is an example of an imaging unit
  • the imaging control unit 410 is the first and second. This is an example of the imaging control unit.
  • the rotation control unit 420 is an example of first to third rotation control units
  • the defect determination unit 450 is an example of a determination unit
  • the substrate inspection device 200 is an example of a substrate inspection device
  • the light projecting unit 220 is a projector. It is an example of a light part
  • the light-receiving part 240 is an example of a light-receiving part.
  • the movement unit 260 is an example of a relative movement unit
  • the movement control unit 430 is an example of first and second movement control units
  • the movement holding unit 262 is an example of a movement holding unit
  • the direction determination unit 440 is a direction. It is an example of a determination part.
  • the notch detection unit 270 is an example of a notch detection unit
  • the coating processing unit 129 is an example of a film forming unit
  • the transfer mechanisms 127, 128, 137, and 138 are examples of transfer mechanisms
  • the substrate processing apparatus 100 is a substrate processing unit. It is an example of an apparatus.
  • the present invention can be effectively used for inspection of the surface of various substrates.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Robotics (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

A substrate W is held by a rotating holding unit (252) such that the substrate can rotate. First image data indicating an image of the substrate is generated by picking up, at the time of performing first image pickup, the image of the substrate by means of an image pickup unit (1), said substrate being held by the rotating holding unit. After performing the first image pickup, the substrate is rotated by a predetermined angle by means of the rotating holding unit. Second image data indicating an image of the substrate is generated by picking up, at the time of performing second image pickup after rotating the substrate, the image of the substrate by means of the image pickup unit, said substrate being held by the rotating holding unit. On the basis of the first and second image data, whether there is a defective in the surface state of the substrate is determined.

Description

基板検査装置、基板処理装置、基板検査方法および基板処理方法Substrate inspection apparatus, substrate processing apparatus, substrate inspection method, and substrate processing method
 本発明は、基板の検査を行う基板検査装置、基板処理装置、基板検査方法および基板処理方法に関する。 The present invention relates to a substrate inspection apparatus, a substrate processing apparatus, a substrate inspection method, and a substrate processing method for inspecting a substrate.
 基板処理装置においては、スピンチャックにより水平に支持された基板が回転される。この状態で、基板の上面の中央部にレジスト液等の塗布液が吐出されることにより、基板の表面全体に塗布膜が形成される。塗布膜が露光された後、現像されることにより、塗布膜に所定のパターンが形成される。ここで、基板の表面が不均一な状態であると、基板の部分ごとに露光後の状態にばらつきが生じ、基板の処理不良が発生する。そこで、基板の表面状態の検査が行われることがある。 In the substrate processing apparatus, a substrate supported horizontally by a spin chuck is rotated. In this state, a coating solution such as a resist solution is discharged to the center of the upper surface of the substrate, whereby a coating film is formed on the entire surface of the substrate. The coating film is exposed and then developed to form a predetermined pattern on the coating film. Here, if the surface of the substrate is in a non-uniform state, the post-exposure state varies for each portion of the substrate, resulting in poor processing of the substrate. Therefore, the surface condition of the substrate may be inspected.
 特許文献1には、表面検査処理ユニットを有する基板処理装置が記載されている。表面検査処理ユニットにおいては、基板上の半径領域に継続的に照明光が照射され、基板からの反射光がCCD(電荷結合素子)ラインセンサにより受光される。この状態で、基板が1回転することにより、基板の表面の全体に照明光が照射され、CCDラインセンサの受光量分布に基づいて、基板の表面全体での反射光の明るさの分布が表面画像データとして得られる。表面画像データに基づいて、基板の表面状態が正常であるか否かが判定される。
特開2011-66049号公報
Patent Document 1 describes a substrate processing apparatus having a surface inspection processing unit. In the surface inspection processing unit, illumination light is continuously applied to a radial region on the substrate, and reflected light from the substrate is received by a CCD (charge coupled device) line sensor. In this state, when the substrate rotates once, the entire surface of the substrate is irradiated with illumination light, and the brightness distribution of the reflected light on the entire surface of the substrate is based on the received light amount distribution of the CCD line sensor. Obtained as image data. Whether or not the surface state of the substrate is normal is determined based on the surface image data.
JP 2011-66049 A
 検査においては、基板の表面状態の欠陥が高い精度で検出されることが好ましい。そこで、基板の表面状態の欠陥を従来よりも高い精度で検出することが可能な検査装置および方法の実現が望まれる。 In the inspection, it is preferable that defects in the surface state of the substrate are detected with high accuracy. Therefore, it is desired to realize an inspection apparatus and method capable of detecting defects in the surface state of the substrate with higher accuracy than before.
 本発明の目的は、基板の表面状態の欠陥を高い精度で検出することが可能な基板検査装置、基板処理装置、基板検査方法および基板処理方法を提供することである。 An object of the present invention is to provide a substrate inspection apparatus, a substrate processing apparatus, a substrate inspection method, and a substrate processing method capable of detecting defects in the surface state of a substrate with high accuracy.
 (1)本発明の一局面に従う基板検査装置は、基板を回転可能に保持する回転保持部と、回転保持部により保持された基板を撮像するように設けられた撮像部と、第1の撮像時に、基板の画像を示す第1の画像データを生成するように撮像部を制御する第1の撮像制御部と、第1の撮像後に、予め定められた角度だけ基板を回転させるように回転保持部を制御する第1の回転制御部と、第1の回転制御部による基板の回転後の第2の撮像時に、基板の画像を示す第2の画像データを生成するように撮像部を制御する第2の撮像制御部と、第1および第2の画像データに基づいて、基板の表面状態の欠陥の有無を判定する判定部とを備える。 (1) A substrate inspection apparatus according to an aspect of the present invention includes a rotation holding unit that rotatably holds a substrate, an imaging unit that is provided to image the substrate held by the rotation holding unit, and a first imaging Sometimes, a first imaging control unit that controls the imaging unit so as to generate first image data indicating an image of the substrate, and rotation holding so that the substrate is rotated by a predetermined angle after the first imaging. A first rotation control unit that controls the imaging unit, and the second imaging data after the substrate is rotated by the first rotation control unit to control the imaging unit to generate second image data indicating an image of the substrate A second imaging control unit; and a determination unit that determines the presence / absence of a defect in the surface state of the substrate based on the first and second image data.
 この基板検査装置においては、回転保持部により基板が回転可能に保持される。第1の撮像時に、回転保持部により保持された基板が撮像されることにより、基板の画像を示す第1の画像データが生成される。第1の撮像後に、回転保持部により予め定められた角度だけ基板が回転される。基板の回転後の第2の撮像時に、回転保持部により保持された基板が撮像されることにより、基板の画像を示す第2の画像データが生成される。第1および第2の画像データに基づいて、基板の表面状態の欠陥の有無が判定される。 In this substrate inspection apparatus, the substrate is rotatably held by the rotation holding unit. During the first imaging, the substrate held by the rotation holding unit is imaged to generate first image data indicating an image of the substrate. After the first imaging, the substrate is rotated by a predetermined angle by the rotation holding unit. At the time of the second imaging after the rotation of the substrate, the second image data indicating the image of the substrate is generated by imaging the substrate held by the rotation holding unit. Based on the first and second image data, the presence or absence of a defect in the surface state of the substrate is determined.
 この構成によれば、第1の画像データにより示される基板の表面と、第2の画像データにより示される基板の表面とでは、光沢等の態様が異なる。そのため、基板の表面に欠陥が存在する場合には、第1および第2の画像データの少なくとも一方により示される画像に当該欠陥が鮮明に現れる可能性が向上する。これにより、基板の表面状態の欠陥を高い精度で検出することが可能になる。 According to this configuration, the surface of the substrate indicated by the first image data and the surface of the substrate indicated by the second image data have different aspects such as gloss. Therefore, when a defect exists on the surface of the substrate, the possibility that the defect appears clearly in an image indicated by at least one of the first and second image data is improved. Thereby, it becomes possible to detect the surface state defect of the substrate with high accuracy.
 (2)撮像部は、第1の方向において基板の直径よりも長く延びる光を出射する投光部と、基板からの反射光を受光し、受光量に基づいて第1または第2の画像データを生成する受光部とを含み、基板検査装置は、投光部からの光が基板の一面の全体に照射されるように、第1の方向に交差する第2の方向、または第2の方向とは逆の第3の方向に撮像部と回転保持部とを相対的に移動可能に設けられた相対移動部と、第1の撮像時に、撮像部と回転保持部とを第2の方向に相対的に移動させるように相対移動部を制御する第1の移動制御部と、第2の撮像時に、撮像部と回転保持部とを第3の方向に相対的に移動させるように相対移動部を制御する第2の移動制御部とをさらに備えてもよい。 (2) The imaging unit receives a light projecting unit that emits light extending longer than the diameter of the substrate in the first direction, and reflected light from the substrate, and the first or second image data based on the amount of received light A second direction that intersects the first direction, or the second direction so that the light from the light projecting unit is irradiated on the entire surface of the substrate. A relative movement unit provided to be relatively movable in the third direction opposite to the imaging unit, and the imaging unit and the rotation holding unit in the second direction during the first imaging. A first movement control unit that controls the relative movement unit to relatively move, and a relative movement unit that relatively moves the imaging unit and the rotation holding unit in the third direction during the second imaging. And a second movement control unit for controlling.
 この場合、相対移動部により基板と撮像部とが相対的に往復移動することにより第1および第2の撮像データが生成される。また、小型の撮像部を用いて基板の一面の全体を撮像することができる。これにより、第1および第2の撮像データを短時間で得ることができるとともに、基板検査装置をコンパクトにすることができる。 In this case, the first and second imaging data are generated by the reciprocating movement of the substrate and the imaging unit relatively by the relative movement unit. In addition, the entire surface of the substrate can be imaged using a small imaging unit. Thereby, the first and second imaging data can be obtained in a short time, and the substrate inspection apparatus can be made compact.
 (3)相対移動部は、回転保持部を保持しかつ撮像部に対して回転保持部を第2または第3の方向に移動させる移動保持部を含んでもよい。この場合、簡単な構成で基板の一面の全体を撮像することができる。 (3) The relative movement unit may include a movement holding unit that holds the rotation holding unit and moves the rotation holding unit in the second or third direction with respect to the imaging unit. In this case, the entire surface of the substrate can be imaged with a simple configuration.
 (4)投光部と受光部とは別体として配置されてもよい。この場合、撮像部の配置の自由度を向上させることができる。 (4) The light projecting unit and the light receiving unit may be arranged separately. In this case, the degree of freedom of arrangement of the imaging unit can be improved.
 (5)基板検査装置は、回転保持部により保持された基板の向きを判定する方向判定部と、方向判定部により判定された基板の向きに基づいて、第1の撮像前に基板が特定の方向を向くように回転保持部を制御する第2の回転制御部とをさらに備えてもよい。この場合、複数の基板の向きが揃った状態で基板が検査される。これにより、複数の基板を画一的に検査することができる。 (5) The substrate inspection apparatus determines the direction of the substrate held by the rotation holding unit, and the substrate is identified before the first imaging based on the direction of the substrate determined by the direction determination unit. You may further provide the 2nd rotation control part which controls a rotation holding | maintenance part so that it may face a direction. In this case, the substrate is inspected with the plurality of substrates aligned. Thereby, a several board | substrate can be test | inspected uniformly.
 (6)基板検査装置は、第2の回転制御部による基板の回転の前に、基板が少なくとも1回転するように回転保持部を制御する第3の回転制御部と、第3の回転制御部により回転される基板のノッチを検出するノッチ検出部とをさらに備え、方向判定部は、ノッチ検出部により基板のノッチが検出されたときの基板の回転角度に基づいて基板の向きを判定してもよい。この場合、簡単な構成で基板の向きを正確に判定することができる。 (6) The substrate inspection apparatus includes a third rotation control unit that controls the rotation holding unit so that the substrate rotates at least once before the rotation of the substrate by the second rotation control unit, and a third rotation control unit. And a notch detection unit for detecting a notch of the substrate rotated by the notch detection unit, wherein the direction determination unit determines the orientation of the substrate based on the rotation angle of the substrate when the notch detection unit detects the notch of the substrate. Also good. In this case, the orientation of the substrate can be accurately determined with a simple configuration.
 (7)第1の回転制御部は、第1の撮像時における基板の向きと第2の撮像時における基板の向きとが非平行となるように回転保持部を制御してもよい。この場合、第1の画像データにより示される基板の表面の態様と、第2の画像データにより示される基板の表面の態様とが大きく異なる。これにより、基板の表面に欠陥が存在する場合に、第1または第2の画像データにより示される画像に当該欠陥が鮮明に現れる可能性をより向上させることができる。 (7) The first rotation control unit may control the rotation holding unit so that the orientation of the substrate during the first imaging and the orientation of the substrate during the second imaging are non-parallel. In this case, the aspect of the surface of the substrate indicated by the first image data and the aspect of the surface of the substrate indicated by the second image data are greatly different. Thereby, when a defect exists in the surface of a board | substrate, possibility that the said defect will appear clearly in the image shown by the 1st or 2nd image data can be improved more.
 (8)予め定められた角度は90度の奇数倍の角度であってもよい。この場合、第1の画像データにより示される基板の表面の態様と、第2の画像データにより示される基板の表面の態様とがさらに大きく異なる。これにより、基板の表面に欠陥が存在する場合に、第1または第2の画像データにより示される画像に当該欠陥が鮮明に現れる可能性をさらに向上させることができる。 (8) The predetermined angle may be an odd multiple of 90 degrees. In this case, the aspect of the surface of the substrate indicated by the first image data is significantly different from the aspect of the surface of the substrate indicated by the second image data. Thereby, when a defect exists in the surface of a board | substrate, possibility that the said defect will appear clearly in the image shown by the 1st or 2nd image data can further be improved.
 (9)本発明の他の局面に従う基板処理装置は、塗布液を基板の表面に供給することにより表面に塗布膜を形成する膜形成部と、膜形成部により塗布膜が形成された基板の表面状態を検査する本発明の一局面に従う基板検査装置と、膜形成部と基板検査装置との間で基板を搬送する搬送機構とを備える。 (9) A substrate processing apparatus according to another aspect of the present invention includes a film forming unit that forms a coating film on a surface by supplying a coating liquid to the surface of the substrate, and a substrate on which the coating film is formed by the film forming unit. A substrate inspection apparatus according to one aspect of the present invention for inspecting a surface state, and a transport mechanism for transporting the substrate between the film forming unit and the substrate inspection apparatus.
 この基板処理装置においては、膜形成部により塗布液が基板の表面に供給されることにより、表面に塗布膜が形成される。膜形成部により表面に塗布膜が形成された基板が搬送機構により搬送される。搬送機構により搬送された基板の表面状態が上記の検査装置により検査される。 In this substrate processing apparatus, a coating film is formed on the surface by supplying a coating liquid to the surface of the substrate by the film forming unit. The substrate having the coating film formed on the surface by the film forming unit is transported by the transport mechanism. The surface state of the substrate transported by the transport mechanism is inspected by the inspection apparatus.
 基板検査装置においては、回転保持部により基板が回転可能に保持される。第1の撮像時に、回転保持部により保持された基板が撮像されることにより、基板の画像を示す第1の画像データが生成される。第1の撮像後に、回転保持部により予め定められた角度だけ基板が回転される。基板の回転後の第2の撮像時に、回転保持部により保持された基板が撮像されることにより、基板の画像を示す第2の画像データが生成される。第1および第2の画像データに基づいて、基板の表面状態の欠陥の有無が判定される。 In the substrate inspection apparatus, the substrate is rotatably held by the rotation holding unit. During the first imaging, the substrate held by the rotation holding unit is imaged to generate first image data indicating an image of the substrate. After the first imaging, the substrate is rotated by a predetermined angle by the rotation holding unit. At the time of the second imaging after the rotation of the substrate, the second image data indicating the image of the substrate is generated by imaging the substrate held by the rotation holding unit. Based on the first and second image data, the presence or absence of a defect in the surface state of the substrate is determined.
 この構成によれば、第1の画像データにより示される基板の表面と、第2の画像データにより示される基板の表面とでは、光沢等の態様が異なる。そのため、基板の表面に欠陥が存在する場合には、第1および第2の画像データの少なくとも一方により示される画像に当該欠陥が鮮明に現れる可能性が向上する。これにより、基板の表面状態の欠陥を高い精度で検出することが可能になる。 According to this configuration, the surface of the substrate indicated by the first image data and the surface of the substrate indicated by the second image data have different aspects such as gloss. Therefore, when a defect exists on the surface of the substrate, the possibility that the defect appears clearly in an image indicated by at least one of the first and second image data is improved. Thereby, it becomes possible to detect the surface state defect of the substrate with high accuracy.
 (10)本発明のさらに他の局面に従う基板検査方法は、回転保持部により基板を回転可能に保持するステップと、第1の撮像時に、回転保持部により保持された基板を撮像することにより基板の画像を示す第1の画像データを生成するステップと、第1の撮像後に、回転保持部により予め定められた角度だけ基板を回転させるステップと、基板の回転後の第2の撮像時に、回転保持部により保持された基板を撮像することにより基板の画像を示す第2の画像データを生成するステップと、第1および第2の画像データに基づいて、基板の表面状態の欠陥の有無を判定するステップとを含む。 (10) A substrate inspection method according to still another aspect of the present invention includes a step of rotatably holding a substrate by a rotation holding unit, and a substrate by imaging the substrate held by the rotation holding unit during the first imaging. Generating first image data indicating the image of the first image, rotating the substrate by a predetermined angle by the rotation holding unit after the first imaging, and rotating the second imaging after the rotation of the substrate Step of generating second image data indicating an image of the substrate by imaging the substrate held by the holding unit, and determining the presence or absence of a defect in the surface state of the substrate based on the first and second image data Including the step of.
 この基板検査方法によれば、回転保持部により基板が回転可能に保持される。第1の撮像時に、回転保持部により保持された基板が撮像されることにより、基板の画像を示す第1の画像データが生成される。第1の撮像後に、回転保持部により予め定められた角度だけ基板が回転される。基板の回転後の第2の撮像時に、回転保持部により保持された基板が撮像されることにより、基板の画像を示す第2の画像データが生成される。第1および第2の画像データに基づいて、基板の表面状態の欠陥の有無が判定される。 According to this substrate inspection method, the substrate is rotatably held by the rotation holding unit. During the first imaging, the substrate held by the rotation holding unit is imaged to generate first image data indicating an image of the substrate. After the first imaging, the substrate is rotated by a predetermined angle by the rotation holding unit. At the time of the second imaging after the rotation of the substrate, the second image data indicating the image of the substrate is generated by imaging the substrate held by the rotation holding unit. Based on the first and second image data, the presence or absence of a defect in the surface state of the substrate is determined.
 この方法によれば、第1の画像データにより示される基板の表面と、第2の画像データにより示される基板の表面とでは、光沢等の態様が異なる。そのため、基板の表面に欠陥が存在する場合には、第1および第2の画像データの少なくとも一方により示される画像に当該欠陥が鮮明に現れる可能性が向上する。これにより、基板の表面状態の欠陥を高い精度で検出することが可能になる。 According to this method, the surface of the substrate indicated by the first image data and the surface of the substrate indicated by the second image data have different aspects such as gloss. Therefore, when a defect exists on the surface of the substrate, the possibility that the defect appears clearly in an image indicated by at least one of the first and second image data is improved. Thereby, it becomes possible to detect the surface state defect of the substrate with high accuracy.
 (11)本発明のさらに他の局面に従う基板処理方法は、膜形成部により塗布液を基板の表面に供給することにより表面に塗布膜を形成するステップと、膜形成部により表面に塗布膜が形成された基板を搬送機構により搬送するステップと、搬送機構により搬送された基板の表面状態を検査する本発明のさらに他の局面に従う基板検査方法におけるステップとを含む。 (11) A substrate processing method according to still another aspect of the present invention includes a step of forming a coating film on a surface by supplying a coating liquid to the surface of the substrate by the film forming unit, and a coating film on the surface by the film forming unit. A step of transporting the formed substrate by the transport mechanism; and a step in the substrate inspection method according to still another aspect of the present invention for inspecting the surface state of the substrate transported by the transport mechanism.
 この基板処理方法によれば、膜形成部により塗布液が基板の表面に供給されることにより、表面に塗布膜が形成される。膜形成部により表面に塗布膜が形成された基板が搬送機構により搬送される。搬送機構により搬送された基板の表面状態が上記の基板検査方法により検査される。 According to this substrate processing method, the coating film is formed on the surface by supplying the coating liquid to the surface of the substrate by the film forming unit. The substrate having the coating film formed on the surface by the film forming unit is transported by the transport mechanism. The surface state of the substrate transported by the transport mechanism is inspected by the above-described substrate inspection method.
 上記の基板検査方法によれば、回転保持部により基板が回転可能に保持される。第1の撮像時に、回転保持部により保持された基板が撮像されることにより、基板の画像を示す第1の画像データが生成される。第1の撮像後に、回転保持部により予め定められた角度だけ基板が回転される。基板の回転後の第2の撮像時に、回転保持部により保持された基板が撮像されることにより、基板の画像を示す第2の画像データが生成される。第1および第2の画像データに基づいて、基板の表面状態の欠陥の有無が判定される。 According to the above substrate inspection method, the substrate is rotatably held by the rotation holding unit. During the first imaging, the substrate held by the rotation holding unit is imaged to generate first image data indicating an image of the substrate. After the first imaging, the substrate is rotated by a predetermined angle by the rotation holding unit. At the time of the second imaging after the rotation of the substrate, the second image data indicating the image of the substrate is generated by imaging the substrate held by the rotation holding unit. Based on the first and second image data, the presence or absence of a defect in the surface state of the substrate is determined.
 この方法によれば、第1の画像データにより示される基板の表面と、第2の画像データにより示される基板の表面とでは、光沢等の態様が異なる。そのため、基板の表面に欠陥が存在する場合には、第1および第2の画像データの少なくとも一方により示される画像に当該欠陥が鮮明に現れる可能性が向上する。これにより、基板の表面状態の欠陥を高い精度で検出することが可能になる。 According to this method, the surface of the substrate indicated by the first image data and the surface of the substrate indicated by the second image data have different aspects such as gloss. Therefore, when a defect exists on the surface of the substrate, the possibility that the defect appears clearly in an image indicated by at least one of the first and second image data is improved. Thereby, it becomes possible to detect the surface state defect of the substrate with high accuracy.
 本発明によれば、基板の表面状態の欠陥を高い精度で検出することが可能になる。 According to the present invention, it is possible to detect a defect in the surface state of the substrate with high accuracy.
図1は本発明の一実施の形態に係る基板検査装置の外観を示す斜視図である。FIG. 1 is a perspective view showing an appearance of a substrate inspection apparatus according to an embodiment of the present invention. 図2は基板検査装置の内部の構成を示す模式的側面図である。FIG. 2 is a schematic side view showing an internal configuration of the substrate inspection apparatus. 図3は基板検査装置の内部の構成を示す模式的平面図である。FIG. 3 is a schematic plan view showing the internal configuration of the substrate inspection apparatus. 図4は基板検査装置を制御するためのローカルコントローラの構成を示すブロック図である。FIG. 4 is a block diagram showing a configuration of a local controller for controlling the substrate inspection apparatus. 図5は基板検査装置の動作を説明するための図である。FIG. 5 is a diagram for explaining the operation of the substrate inspection apparatus. 図6は基板検査装置の動作を説明するための図である。FIG. 6 is a diagram for explaining the operation of the substrate inspection apparatus. 図7は検査処理における図4のローカルコントローラの主制御部の動作を示すフローチャートである。FIG. 7 is a flowchart showing the operation of the main controller of the local controller of FIG. 4 in the inspection process. 図8は検査処理における図4のローカルコントローラの主制御部の動作を示すフローチャートである。FIG. 8 is a flowchart showing the operation of the main controller of the local controller of FIG. 4 in the inspection process. 図9は図1の基板検査装置を備えた基板処理装置の模式的平面図である。FIG. 9 is a schematic plan view of a substrate processing apparatus provided with the substrate inspection apparatus of FIG. 図10は図9の塗布処理部、現像処理部および洗浄乾燥処理部の内部構成を示す模式的側面図である。FIG. 10 is a schematic side view showing the internal configuration of the coating processing section, the development processing section, and the cleaning / drying processing section of FIG. 図11は塗布処理ユニットの構成を示す平面図である。FIG. 11 is a plan view showing the configuration of the coating processing unit. 図12は図9の熱処理部および洗浄乾燥処理部の内部構成を示す模式的側面図である。12 is a schematic side view showing the internal configuration of the heat treatment section and the cleaning / drying processing section of FIG. 図13は搬送部の内部構成を示す模式的側面図である。FIG. 13 is a schematic side view showing the internal configuration of the transport unit.
 (1)基板検査装置の構成
 以下、本発明の一実施の形態に係る基板検査装置、基板処理装置、基板検査方法および基板処理方法について図面を用いて説明する。なお、以下の説明において、基板とは、半導体基板、液晶表示装置用基板、プラズマディスプレイ用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板またはフォトマスク用基板等をいう。また、本実施の形態で用いられる基板は、少なくとも一部が円形の外周部を有する。例えば、位置決め用のノッチを除く外周部が円形を有する。
(1) Configuration of Substrate Inspection Apparatus Hereinafter, a substrate inspection apparatus, a substrate processing apparatus, a substrate inspection method, and a substrate processing method according to an embodiment of the present invention will be described with reference to the drawings. In the following description, the substrate means a semiconductor substrate, a liquid crystal display substrate, a plasma display substrate, an optical disk substrate, a magnetic disk substrate, a magneto-optical disk substrate, a photomask substrate, or the like. In addition, the substrate used in this embodiment has at least a circular outer peripheral portion. For example, the outer peripheral portion excluding the positioning notch has a circular shape.
 図1は、本発明の一実施の形態に係る基板検査装置200の外観を示す斜視図である。図2は、基板検査装置200の内部の構成を示す模式的側面図である。図3は、基板検査装置200の内部の構成を示す模式的平面図である。図1および図2に示すように、基板検査装置200は、筐体部210、投光部220、反射部230、受光部240、回転駆動部250、移動部260およびノッチ検出部270を含む。投光部220、反射部230および受光部240により撮像部1が構成される。撮像部1、回転駆動部250、移動部260およびノッチ検出部270は、筐体部210内に収容される。 FIG. 1 is a perspective view showing an appearance of a substrate inspection apparatus 200 according to an embodiment of the present invention. FIG. 2 is a schematic side view showing an internal configuration of the substrate inspection apparatus 200. FIG. 3 is a schematic plan view showing an internal configuration of the substrate inspection apparatus 200. As shown in FIGS. 1 and 2, the substrate inspection apparatus 200 includes a casing unit 210, a light projecting unit 220, a reflecting unit 230, a light receiving unit 240, a rotation driving unit 250, a moving unit 260, and a notch detecting unit 270. The light projecting unit 220, the reflecting unit 230, and the light receiving unit 240 constitute the imaging unit 1. The imaging unit 1, the rotation driving unit 250, the moving unit 260 and the notch detection unit 270 are accommodated in the housing unit 210.
 図1に示すように、筐体部210は、略矩形状の底面部211および略矩形状の4つの側面部212~215を含む。側面部212,214は底面部211の長手方向における両端部にそれぞれ位置し、側面部213,215は底面部211の幅方向における両端部にそれぞれ位置する。これにより、筐体部210は、略矩形状の上部開口を有する。筐体部210は、上部開口を閉塞する上面部をさらに含んでもよい。 As shown in FIG. 1, the casing 210 includes a substantially rectangular bottom surface 211 and four substantially rectangular side surfaces 212 to 215. The side surface portions 212 and 214 are located at both end portions in the longitudinal direction of the bottom surface portion 211, and the side surface portions 213 and 215 are located at both end portions in the width direction of the bottom surface portion 211, respectively. Thereby, the housing | casing part 210 has a substantially rectangular upper opening. The housing part 210 may further include an upper surface part that closes the upper opening.
 以下、底面部211の幅方向を単に幅方向と呼び、底面部211の長手方向を前後方向と呼ぶ。また、前後方向において、側面部214から側面部212に向かう方向を前方と定義し、その逆方向を後方と定義する。側面部212から側面部213の前部に至る部分には、筐体部210の外部と内部との間で基板Wを搬送するためのスリット状の開口部216が形成される。 Hereinafter, the width direction of the bottom surface portion 211 is simply referred to as the width direction, and the longitudinal direction of the bottom surface portion 211 is referred to as the front-rear direction. Further, in the front-rear direction, the direction from the side surface portion 214 toward the side surface portion 212 is defined as the front, and the opposite direction is defined as the rear. A slit-like opening 216 for transporting the substrate W between the outside and the inside of the housing part 210 is formed in a part from the side part 212 to the front part of the side part 213.
 投光部220は、例えば1または複数の光源を含み、幅方向に延びるように筐体部210の側面部213,215の内面に取り付けられる。後述するように、開口部216から筐体部210内に検査対象の基板Wが搬入され、投光部220の下方を通過する。投光部220は、基板Wの直径よりも大きい帯状の光を斜め下後方に出射する。 The light projecting unit 220 includes, for example, one or a plurality of light sources, and is attached to the inner surfaces of the side surface portions 213 and 215 of the housing unit 210 so as to extend in the width direction. As will be described later, a substrate W to be inspected is carried into the housing unit 210 from the opening 216 and passes below the light projecting unit 220. The light projecting unit 220 emits strip-shaped light larger than the diameter of the substrate W obliquely downward and rearward.
 反射部230は、例えばミラーを含み、投光部220よりも後方でかつ幅方向に延びるように筐体部210の側面部213,215の内面に取り付けられる。図2に示すように、投光部220により斜め下後方に出射された帯状光は、基板Wにより斜め上後方に反射される。反射部230は、基板Wにより反射された帯状の光を後方から略水平方向に反射する。 The reflection unit 230 includes, for example, a mirror, and is attached to the inner surfaces of the side surface portions 213 and 215 of the housing unit 210 so as to extend behind the light projecting unit 220 and in the width direction. As shown in FIG. 2, the strip-like light emitted obliquely downward and rearward by the light projecting unit 220 is reflected obliquely upward and backward by the substrate W. The reflection unit 230 reflects the strip-shaped light reflected by the substrate W in the substantially horizontal direction from the rear.
 受光部240は、反射部230よりも後方で筐体部210の底面部211上に取り付けられる。受光部240は、例えばカメラであり、複数のレンズおよびカラーCCD(電荷結合素子)ラインセンサを含む。受光部240は、反射部230により反射された帯状の光を受光し、各画素の受光量に対応する画素データに基づいて画像データを生成する。画像データは、複数の画素に対応する複数の画素データにより構成される。 The light receiving part 240 is attached on the bottom part 211 of the casing part 210 behind the reflecting part 230. The light receiving unit 240 is a camera, for example, and includes a plurality of lenses and a color CCD (charge coupled device) line sensor. The light receiving unit 240 receives the band-like light reflected by the reflecting unit 230 and generates image data based on pixel data corresponding to the amount of light received by each pixel. The image data is composed of a plurality of pixel data corresponding to a plurality of pixels.
 図2に示すように、回転駆動部250は、例えばスピンチャックであり、駆動装置251および回転保持部252を含む。駆動装置251は、例えば電動モータであり、回転軸251aを有する。駆動装置251には、図示しないエンコーダが設けられる。回転保持部252は、駆動装置251の回転軸251aの先端に取り付けられ、検査対象の基板Wを保持した状態で鉛直軸の周りで回転駆動される。 2, the rotation driving unit 250 is, for example, a spin chuck, and includes a driving device 251 and a rotation holding unit 252. The drive device 251 is an electric motor, for example, and has a rotating shaft 251a. The drive device 251 is provided with an encoder (not shown). The rotation holding unit 252 is attached to the tip of the rotation shaft 251a of the driving device 251 and is driven to rotate around the vertical axis while holding the substrate W to be inspected.
 図3に示すように、移動部260は、複数(本例では2個)のガイド部材261および移動保持部262を含む。複数のガイド部材261は、幅方向に離間した状態で、平行にかつ前後方向に延びるように筐体部210の底面部211に取り付けられる。移動保持部262は、回転駆動部250を保持した状態で、複数のガイド部材261に沿って前後方向に移動する。 As shown in FIG. 3, the moving unit 260 includes a plurality of (two in this example) guide members 261 and a moving holding unit 262. The plurality of guide members 261 are attached to the bottom surface portion 211 of the housing portion 210 so as to extend in the front-rear direction in a state of being separated in the width direction. The movement holding unit 262 moves in the front-rear direction along the plurality of guide members 261 while holding the rotation driving unit 250.
 ノッチ検出部270は、例えば投光素子および受光素子を含む反射型光電センサであり、筐体部210の側面部215における内面の前上部に取り付けられる。検査対象の基板Wの周縁部がノッチ検出部270の下方に位置するときに、ノッチ検出部270は、下方に光を出射するとともに基板Wからの反射光を受光する。ここで、ノッチ検出部270の下方に位置する基板Wの部分にノッチが形成されている場合には、ノッチ検出部270の受光量が低減する。ノッチ検出部270は、回転駆動部250により回転される基板Wからの受光量に基づいて基板Wのノッチの有無を検出する。なお、ノッチ検出部270として透過型光電センサが用いられてもよい。 The notch detection unit 270 is a reflective photoelectric sensor including, for example, a light projecting element and a light receiving element, and is attached to the front upper portion of the inner surface of the side surface part 215 of the housing part 210. When the peripheral edge of the substrate W to be inspected is positioned below the notch detector 270, the notch detector 270 emits light downward and receives reflected light from the substrate W. Here, when a notch is formed in the portion of the substrate W located below the notch detection unit 270, the amount of light received by the notch detection unit 270 is reduced. The notch detection unit 270 detects the presence or absence of a notch on the substrate W based on the amount of light received from the substrate W rotated by the rotation driving unit 250. Note that a transmissive photoelectric sensor may be used as the notch detection unit 270.
 (2)基板検査装置の動作
 図4は、基板検査装置200を制御するためのローカルコントローラ400の構成を示すブロック図である。図4に示すように、ローカルコントローラ400は、主制御部401、記憶部402、撮像制御部410、回転制御部420、移動制御部430、方向判定部440および欠陥判定部450を含む。
(2) Operation of Substrate Inspection Device FIG. 4 is a block diagram showing a configuration of a local controller 400 for controlling the substrate inspection device 200. As illustrated in FIG. 4, the local controller 400 includes a main control unit 401, a storage unit 402, an imaging control unit 410, a rotation control unit 420, a movement control unit 430, a direction determination unit 440, and a defect determination unit 450.
 主制御部401は、例えばCPU(中央演算処理装置)を含む。記憶部402は、例えば不揮発性メモリまたはハードディスクを含み、検査処理を実行するための検査プログラムを記憶する。主制御部401が記憶部402に記憶された検査プログラムを実行することにより、撮像制御部410、回転制御部420、移動制御部430、方向判定部440および欠陥判定部450の機能が実現される。 The main control unit 401 includes, for example, a CPU (Central Processing Unit). The storage unit 402 includes, for example, a non-volatile memory or a hard disk, and stores an inspection program for executing an inspection process. The main control unit 401 executes the inspection program stored in the storage unit 402, thereby realizing the functions of the imaging control unit 410, the rotation control unit 420, the movement control unit 430, the direction determination unit 440, and the defect determination unit 450. .
 撮像制御部410は、撮像部1の動作を制御する。回転制御部420は、回転駆動部250の駆動装置251(図2)のエンコーダから出力信号を取得して駆動装置251の回転角度(基板Wの回転角度)を検出するとともに、方向判定部440から基板Wの向きの判定結果を取得する。また、回転制御部420は、駆動装置251の回転角度または基板Wの向きに基づいて回転駆動部250の動作を制御する。移動制御部430は、移動部260の動作を制御する。 The imaging control unit 410 controls the operation of the imaging unit 1. The rotation control unit 420 acquires an output signal from the encoder of the driving device 251 (FIG. 2) of the rotation driving unit 250 to detect the rotation angle of the driving device 251 (the rotation angle of the substrate W), and from the direction determination unit 440. The determination result of the orientation of the substrate W is acquired. In addition, the rotation control unit 420 controls the operation of the rotation driving unit 250 based on the rotation angle of the driving device 251 or the direction of the substrate W. The movement control unit 430 controls the operation of the moving unit 260.
 方向判定部440は、ノッチ検出部270の動作を制御する。また、方向判定部440は、ノッチ検出部270によるノッチの検出結果を取得するとともに、回転制御部420により検出された駆動装置251の回転角度を取得し、基板Wのノッチが検出されたときの駆動装置251の回転角度に基づいて基板Wの向きを判定する。欠陥判定部450は、撮像部1から画像データを取得し、画像データに基づいて基板Wの表面状態の欠陥の有無を判定する。欠陥判定部450による判定結果は、記憶部402に記憶される。 The direction determination unit 440 controls the operation of the notch detection unit 270. In addition, the direction determination unit 440 acquires the detection result of the notch by the notch detection unit 270, acquires the rotation angle of the driving device 251 detected by the rotation control unit 420, and detects when the notch of the substrate W is detected. The orientation of the substrate W is determined based on the rotation angle of the driving device 251. The defect determination unit 450 acquires image data from the imaging unit 1 and determines whether there is a defect in the surface state of the substrate W based on the image data. The determination result by the defect determination unit 450 is stored in the storage unit 402.
 図5および図6は、基板検査装置200の動作を説明するための図である。図5(a),(b)および図6(a),(b)においては、左に基板検査装置200の平面図が示され、右に検査対象の基板Wの模式図が示される。本実施の形態においては、現像処理後の基板Wが検査される。そのため、図5(a)~図6(b)の右に示すように、基板Wの表面には、製品となる複数のチップCHが形成されている。 5 and 6 are diagrams for explaining the operation of the substrate inspection apparatus 200. FIG. 5A, 5B and 6A, 6B, a plan view of the substrate inspection apparatus 200 is shown on the left, and a schematic diagram of the substrate W to be inspected is shown on the right. In the present embodiment, the substrate W after the development process is inspected. Therefore, as shown on the right side of FIGS. 5A to 6B, a plurality of chips CH to be products are formed on the surface of the substrate W.
 初期状態においては、図5(a)に示すように、回転駆動部250が筐体部210内における前部に位置する。この状態で、基板Wの搬送機構(例えば後述する図13の搬送機構137または搬送機構138)により検査対象の基板Wが開口部216を通して筐体部210内に搬入され、回転駆動部250により保持される。 In the initial state, as shown in FIG. 5A, the rotation drive unit 250 is located at the front part in the housing unit 210. In this state, the substrate W to be inspected is carried into the casing unit 210 through the opening 216 by the substrate W transport mechanism (for example, the transport mechanism 137 or the transport mechanism 138 in FIG. 13 described later) and held by the rotation drive unit 250. Is done.
 ここで、回転駆動部250により基板Wが1回転されつつノッチ検出部270により基板Wの周縁部に光が出射され、その反射光がノッチ検出部270により受光される。これにより、基板WのノッチNTが検出される。また、図4の方向判定部440により基板Wの向きが判定される。その後、基板Wが特定の方向を向くように、回転駆動部250により基板Wが回転される。 Here, light is emitted to the peripheral edge of the substrate W by the notch detection unit 270 while the substrate W is rotated once by the rotation driving unit 250, and the reflected light is received by the notch detection unit 270. Thereby, the notch NT of the substrate W is detected. Further, the direction determination unit 440 in FIG. 4 determines the orientation of the substrate W. Thereafter, the rotation drive unit 250 rotates the substrate W so that the substrate W faces a specific direction.
 次に、図5(b)に白抜きの矢印で示すように、移動部260により基板Wが後方に移動される。この際に、基板Wが投光部220の下方を通過することにより、投光部220により出射される帯状の光が基板W上で前後方向に相対的に走査される。これにより、基板Wの全体に帯状の光が照射される。基板Wから順次反射される帯状の光は、反射部230により反射されて受光部240に導かれる。これにより、基板Wの表面全体の画像を示す第1の画像データが生成される。 Next, as shown by the white arrow in FIG. 5B, the substrate 260 is moved backward by the moving unit 260. At this time, when the substrate W passes below the light projecting unit 220, the strip-shaped light emitted from the light projecting unit 220 is scanned relatively on the substrate W in the front-rear direction. As a result, the entire substrate W is irradiated with the band-like light. The band-like light sequentially reflected from the substrate W is reflected by the reflection unit 230 and guided to the light receiving unit 240. Thereby, first image data indicating an image of the entire surface of the substrate W is generated.
 続いて、図6(a)に太い矢印で示すように、回転駆動部250により基板Wが90度回転される。その後、図6(b)に白抜きの矢印で示すように、移動部260により基板Wが前方の初期位置に移動される。この際に、基板Wが投光部220の下方を再度通過することにより、図5(b)の動作と同様に、基板Wの表面全体の画像を示す第2の画像データが生成される。生成された第1および第2のデータに基づいて、図4の欠陥判定部450により基板Wの欠陥の有無が判定される。欠陥判定部450による基板Wの欠陥の有無の判定は、任意の時点で行われてもよい。 Subsequently, as indicated by a thick arrow in FIG. 6A, the rotation drive unit 250 rotates the substrate W by 90 degrees. After that, as indicated by a white arrow in FIG. 6B, the substrate 260 is moved to the initial initial position by the moving unit 260. At this time, when the substrate W passes again below the light projecting unit 220, second image data indicating an image of the entire surface of the substrate W is generated in the same manner as the operation of FIG. Based on the generated first and second data, the defect determination unit 450 in FIG. The determination of the presence or absence of a defect on the substrate W by the defect determination unit 450 may be performed at an arbitrary time.
 (3)検査処理
 図7および図8は、検査処理における図4のローカルコントローラ400の主制御部401の動作を示すフローチャートである。図1および図2の基板検査装置200、図4のローカルコントローラ400ならびに図7のフローチャートを参照しながら主制御部401による検査処理を説明する。
(3) Inspection Process FIGS. 7 and 8 are flowcharts showing the operation of the main controller 401 of the local controller 400 of FIG. 4 in the inspection process. The inspection process by the main control unit 401 will be described with reference to the substrate inspection apparatus 200 of FIGS. 1 and 2, the local controller 400 of FIG. 4, and the flowchart of FIG.
 まず、主制御部401は、移動部260により回転駆動部250を筐体部210内の前部における初期位置に移動させる(ステップS1)。なお、初期状態において回転駆動部250が初期位置にある場合には、ステップS1の処理は省略される。ここで、現像処理後の検査対象の基板Wが開口部216を通して搬送機構により筐体部210内に搬入される。主制御部401は、搬入された基板Wを回転駆動部250により保持する(ステップS2)。 First, the main control unit 401 causes the moving unit 260 to move the rotation driving unit 250 to the initial position in the front part in the casing unit 210 (step S1). Note that when the rotation drive unit 250 is in the initial position in the initial state, the process of step S1 is omitted. Here, the inspection target substrate W after the development processing is carried into the casing unit 210 through the opening 216 by the transport mechanism. The main control unit 401 holds the loaded substrate W by the rotation driving unit 250 (step S2).
 主制御部401は、回転駆動部250により、基板Wを回転させる(ステップS3)とともに、基板Wの回転角度を検出する(ステップS4)。また、主制御部401は、ノッチ検出部270により、基板Wの周縁部に光を照射するとともに(ステップS5)、基板Wからの光を受光する(ステップS6)。ステップS3~S6の処理はほぼ同時に行われる。 The main control unit 401 rotates the substrate W by the rotation driving unit 250 (step S3) and detects the rotation angle of the substrate W (step S4). Further, the main control unit 401 irradiates the peripheral edge of the substrate W with the notch detection unit 270 (step S5) and receives light from the substrate W (step S6). Steps S3 to S6 are performed almost simultaneously.
 主制御部401は、ステップS3~S6の処理の結果に基づいて、ノッチ検出部270により基板WのノッチNTが検出されたか否かを判定する(ステップS7)。基板WのノッチNTが検出された場合には、主制御部401は、ノッチNTが検出されたときの基板Wの回転角度に基づいて基板Wの向きを判定する(ステップS8)。ステップS7において、基板WのノッチNTが検出されない場合には、ステップS9に進む。 The main control unit 401 determines whether or not the notch NT of the substrate W has been detected by the notch detection unit 270 based on the processing results of steps S3 to S6 (step S7). When the notch NT of the substrate W is detected, the main control unit 401 determines the orientation of the substrate W based on the rotation angle of the substrate W when the notch NT is detected (step S8). If the notch NT of the substrate W is not detected in step S7, the process proceeds to step S9.
 ステップS9において、主制御部401は、基板Wが360度回転したか否かを判定する(ステップS9)。基板Wが360度回転していない場合には、ステップS3に戻り、ステップS3~S8の処理を繰り返す。基板Wが360度回転した場合には、主制御部401は、基板Wが特定の方向を向くように回転駆動部250により基板Wを回転させる(ステップS10)。 In step S9, the main control unit 401 determines whether or not the substrate W has rotated 360 degrees (step S9). If the substrate W has not rotated 360 degrees, the process returns to step S3 and the processes of steps S3 to S8 are repeated. When the substrate W has rotated 360 degrees, the main control unit 401 rotates the substrate W by the rotation driving unit 250 so that the substrate W faces a specific direction (step S10).
 次に、主制御部401は、移動部260により回転駆動部250とともに基板Wを後方に移動させる(ステップS11)。ここで、基板Wは投光部220の下方を通過する。主制御部401は、撮像部1により、基板Wに帯状の光を照射するとともに(ステップS12)、基板Wからの帯状の光を受光する(ステップS13)。ステップS11~S13の処理はほぼ同時に行われる。主制御部401は、ステップS11~S13の処理の結果に基づいて、撮像部1により第1の画像データを生成する(ステップS14)。続いて、主制御部401は、回転駆動部250により基板Wを90度回転させる(ステップS15)。 Next, the main control unit 401 moves the substrate W together with the rotation driving unit 250 by the moving unit 260 (step S11). Here, the substrate W passes under the light projecting unit 220. The main control unit 401 uses the imaging unit 1 to irradiate the substrate W with strip-shaped light (step S12) and receive the strip-shaped light from the substrate W (step S13). Steps S11 to S13 are performed almost simultaneously. The main control unit 401 generates first image data by the imaging unit 1 based on the results of the processes in steps S11 to S13 (step S14). Subsequently, the main control unit 401 rotates the substrate W by 90 degrees by the rotation driving unit 250 (step S15).
 その後、移動部260により回転駆動部250とともに基板Wを前方(初期位置)に移動させる(ステップS16)。ここで、基板Wは投光部220の下方を再度通過する。主制御部401は、撮像部1により、基板Wに帯状の光を照射するとともに(ステップS17)、基板Wからの帯状の光を受光する(ステップS18)。ステップS16~S18の処理はほぼ同時に行われる。主制御部401は、ステップS16~S18の処理の結果に基づいて、撮像部1により第2の画像データを生成する(ステップS18)。 Thereafter, the substrate 260 is moved forward (initial position) together with the rotation drive unit 250 by the moving unit 260 (step S16). Here, the substrate W passes again below the light projecting unit 220. The main control unit 401 uses the imaging unit 1 to irradiate the substrate W with strip-shaped light (step S17) and receive the strip-shaped light from the substrate W (step S18). Steps S16 to S18 are performed almost simultaneously. The main control unit 401 generates second image data by the imaging unit 1 based on the processing results of steps S16 to S18 (step S18).
 主制御部401は、生成した第1および第2の画像データに基づいて基板Wの表面状態の欠陥の有無を判定する(ステップS20)。最後に、主制御部401は、基板Wの表面状態の欠陥の有無についての判定結果を図4の記憶部402に記憶し(ステップS21)、検査処理を終了する。 The main control unit 401 determines the presence / absence of a defect in the surface state of the substrate W based on the generated first and second image data (step S20). Finally, the main control unit 401 stores the determination result about the presence or absence of defects in the surface state of the substrate W in the storage unit 402 of FIG. 4 (step S21), and ends the inspection process.
 (4)基板処理装置
 図9は、図1の基板検査装置200を備えた基板処理装置100の模式的平面図である。図9および以降の所定の図には、位置関係を明確にするために互いに直交するX方向、Y方向およびZ方向を示す矢印を付している。X方向およびY方向は水平面内で互いに直交し、Z方向は鉛直方向に相当する。
(4) Substrate Processing Apparatus FIG. 9 is a schematic plan view of a substrate processing apparatus 100 provided with the substrate inspection apparatus 200 of FIG. In FIG. 9 and the following predetermined drawings, arrows indicating X direction, Y direction, and Z direction orthogonal to each other are attached in order to clarify the positional relationship. The X direction and the Y direction are orthogonal to each other in the horizontal plane, and the Z direction corresponds to the vertical direction.
 図9に示すように、基板処理装置100は、インデクサブロック11、塗布ブロック12、現像ブロック13、洗浄乾燥処理ブロック14Aおよび搬入搬出ブロック14Bを備える。洗浄乾燥処理ブロック14Aおよび搬入搬出ブロック14Bにより、インターフェイスブロック14が構成される。搬入搬出ブロック14Bに隣接するように露光装置15が配置される。 As shown in FIG. 9, the substrate processing apparatus 100 includes an indexer block 11, a coating block 12, a developing block 13, a cleaning / drying processing block 14A, and a loading / unloading block 14B. The cleaning / drying processing block 14A and the carry-in / carry-out block 14B constitute an interface block 14. The exposure device 15 is disposed adjacent to the carry-in / carry-out block 14B.
 インデクサブロック11は、複数のキャリア載置部111および搬送部112を含む。各キャリア載置部111には、複数の基板Wを多段に収納するキャリア113が載置される。搬送部112には、メインコントローラ114および搬送機構115が設けられる。メインコントローラ114は、基板処理装置100の種々の構成要素を制御する。搬送機構115は、基板Wを保持しつつその基板Wを搬送する。 The indexer block 11 includes a plurality of carrier placement units 111 and a conveyance unit 112. On each carrier placement section 111, a carrier 113 that houses a plurality of substrates W in multiple stages is placed. The transport unit 112 is provided with a main controller 114 and a transport mechanism 115. The main controller 114 controls various components of the substrate processing apparatus 100. The transport mechanism 115 transports the substrate W while holding the substrate W.
 塗布ブロック12は、塗布処理部121、搬送部122および熱処理部123を含む。塗布処理部121および熱処理部123は、搬送部122を挟んで対向するように設けられる。搬送部122とインデクサブロック11との間には、基板Wが載置される基板載置部PASS1~PASS4(図13参照)が設けられる。搬送部122には、基板Wを搬送する搬送機構127,128(図13参照)が設けられる。 The coating block 12 includes a coating processing unit 121, a transport unit 122, and a heat treatment unit 123. The coating processing unit 121 and the heat treatment unit 123 are provided so as to face each other with the conveyance unit 122 interposed therebetween. Between the transport unit 122 and the indexer block 11, substrate platforms PASS1 to PASS4 (see FIG. 13) on which the substrate W is mounted are provided. The transport unit 122 is provided with transport mechanisms 127 and 128 (see FIG. 13) for transporting the substrate W.
 現像ブロック13は、現像処理部131、搬送部132および熱処理部133を含む。現像処理部131および熱処理部133は、搬送部132を挟んで対向するように設けられる。搬送部132と搬送部122との間には、基板Wが載置される基板載置部PASS5~PASS8(図13参照)が設けられる。搬送部132には、基板Wを搬送する搬送機構137,138(図13参照)が設けられる。 The development block 13 includes a development processing unit 131, a transport unit 132, and a heat treatment unit 133. The development processing unit 131 and the heat treatment unit 133 are provided to face each other with the transport unit 132 interposed therebetween. Between the transport unit 132 and the transport unit 122, substrate platforms PASS5 to PASS8 (see FIG. 13) on which the substrate W is placed are provided. The transport unit 132 is provided with transport mechanisms 137 and 138 (see FIG. 13) for transporting the substrate W.
 洗浄乾燥処理ブロック14Aは、洗浄乾燥処理部161,162および搬送部163を含む。洗浄乾燥処理部161,162は、搬送部163を挟んで対向するように設けられる。搬送部163には、搬送機構141,142が設けられる。 The cleaning / drying processing block 14 </ b> A includes cleaning / drying processing units 161 and 162 and a transport unit 163. The cleaning / drying processing units 161 and 162 are provided to face each other with the conveyance unit 163 interposed therebetween. The transport unit 163 is provided with transport mechanisms 141 and 142.
 搬送部163と搬送部132との間には、載置兼バッファ部P-BF1,P-BF2(図13参照)が設けられる。載置兼バッファ部P-BF1,P-BF2は、複数の基板Wを収容可能に構成される。 Between the transport unit 163 and the transport unit 132, placement / buffer units P-BF1 and P-BF2 (see FIG. 13) are provided. The placement / buffer units P-BF1 and P-BF2 are configured to accommodate a plurality of substrates W.
 また、搬送機構141,142の間において、搬入搬出ブロック14Bに隣接するように、基板載置部PASS9および後述の載置兼冷却部P-CP(図13参照)が設けられる。載置兼冷却部P-CPは、基板Wを冷却する機能(例えば、クーリングプレート)を備える。載置兼冷却部P-CPにおいて、基板Wが露光処理に適した温度に冷却される。搬入搬出ブロック14Bには、搬送機構143が設けられる。搬送機構143は、露光装置15に対する基板Wの搬入および搬出を行う。 Further, a substrate platform PASS9 and a later-described placement / cooling unit P-CP (see FIG. 13) are provided between the transport mechanisms 141 and 142 so as to be adjacent to the carry-in / carry-out block 14B. The placement / cooling unit P-CP has a function of cooling the substrate W (for example, a cooling plate). In the placement / cooling section P-CP, the substrate W is cooled to a temperature suitable for the exposure process. A transport mechanism 143 is provided in the carry-in / carry-out block 14B. The transport mechanism 143 carries the substrate W into and out of the exposure apparatus 15.
 (5)塗布処理部および現像処理部
 図10は、図9の塗布処理部121、現像処理部131および洗浄乾燥処理部161の内部構成を示す模式的側面図である。図10に示すように、塗布処理部121には、塗布処理室21,22,23,24が階層的に設けられる。各塗布処理室21~24には、塗布処理ユニット129が設けられる。現像処理部131には、現像処理室31,32,33,34が階層的に設けられる。各現像処理室31~34には、現像処理ユニット139が設けられる。
(5) Application Processing Unit and Development Processing Unit FIG. 10 is a schematic side view showing the internal configuration of the application processing unit 121, the development processing unit 131, and the cleaning / drying processing unit 161 in FIG. As shown in FIG. 10, the coating processing section 121 is provided with coating processing chambers 21, 22, 23, and 24 in a hierarchical manner. In each of the coating processing chambers 21 to 24, a coating processing unit 129 is provided. The development processing unit 131 is provided with development processing chambers 31, 32, 33, and 34 in a hierarchical manner. In each of the development processing chambers 31 to 34, a development processing unit 139 is provided.
 図11は、塗布処理ユニット129の構成を示す平面図である。図10および図11に示すように、各塗布処理ユニット129は、待機部20、複数のスピンチャック25、複数のカップ27、複数の処理液ノズル28、ノズル搬送機構29および複数のエッジリンスノズル30を備える。本実施の形態においては、スピンチャック25、カップ27およびエッジリンスノズル30は、各塗布処理ユニット129に2つずつ設けられる。 FIG. 11 is a plan view showing the configuration of the coating processing unit 129. As shown in FIGS. 10 and 11, each coating processing unit 129 includes a standby unit 20, a plurality of spin chucks 25, a plurality of cups 27, a plurality of processing liquid nozzles 28, a nozzle transport mechanism 29, and a plurality of edge rinse nozzles 30. Is provided. In the present embodiment, two spin chucks 25, cups 27, and edge rinse nozzles 30 are provided in each coating processing unit 129.
 各スピンチャック25は、基板Wを保持した状態で、図示しない駆動装置(例えば、電動モータ)により回転駆動される。カップ27はスピンチャック25の周囲を取り囲むように設けられる。各処理液ノズル28には、図示しない処理液貯留部から処理液配管を通して種々の処理液が供給される。基板Wに処理液が供給されない待機時には、各処理液ノズル28は待機部20に挿入される。基板Wへの処理液の供給時には、待機部20のいずれかの処理液ノズル28がノズル搬送機構29により保持され、基板Wの上方に搬送される。 Each spin chuck 25 is rotationally driven by a driving device (not shown) (for example, an electric motor) while holding the substrate W. The cup 27 is provided so as to surround the periphery of the spin chuck 25. Various processing liquids are supplied to each processing liquid nozzle 28 from a processing liquid storage unit (not shown) through processing liquid piping. At the time when the processing liquid is not supplied to the substrate W, each processing liquid nozzle 28 is inserted into the standby unit 20. When supplying the processing liquid to the substrate W, any of the processing liquid nozzles 28 of the standby unit 20 is held by the nozzle transport mechanism 29 and transported above the substrate W.
 スピンチャック25が回転しつつ処理液ノズル28から処理液が吐出されることにより、回転する基板W上に処理液が塗布される。本実施の形態においては、図10の塗布処理室22,24の塗布処理ユニット129において、反射防止膜用の処理液(以下、反射防止液と呼ぶ。)が処理液ノズル28から基板Wに供給される。塗布処理室21,23の塗布処理ユニット129において、レジスト膜用の処理液(以下、レジスト液と呼ぶ。)が処理液ノズル28から基板Wに供給される。 The processing liquid is applied onto the rotating substrate W by discharging the processing liquid from the processing liquid nozzle 28 while the spin chuck 25 rotates. In the present embodiment, in the coating processing unit 129 in the coating processing chambers 22 and 24 of FIG. 10, a processing liquid for antireflection film (hereinafter referred to as antireflection liquid) is supplied from the processing liquid nozzle 28 to the substrate W. Is done. In the coating processing units 129 in the coating processing chambers 21 and 23, a resist film processing liquid (hereinafter referred to as a resist liquid) is supplied from the processing liquid nozzle 28 to the substrate W.
 エッジリンスノズル30が所定の待機位置から基板Wの周縁部の近傍に移動される。ここで、基板Wの周縁部とは、基板Wの表面において基板Wの外周部に沿った一定幅の領域をいう。スピンチャック25が回転しつつエッジリンスノズル30から回転する基板Wの周縁部に向けてリンス液が吐出されることにより、基板Wに塗布された処理液の周縁部が溶解される。それにより、基板Wの周縁部の処理液が除去される。 The edge rinse nozzle 30 is moved from the predetermined standby position to the vicinity of the peripheral edge of the substrate W. Here, the peripheral portion of the substrate W refers to a region having a constant width along the outer peripheral portion of the substrate W on the surface of the substrate W. The rinse liquid is discharged from the edge rinse nozzle 30 toward the peripheral edge of the rotating substrate W while the spin chuck 25 rotates, so that the peripheral edge of the processing liquid applied to the substrate W is dissolved. Thereby, the processing liquid at the peripheral edge of the substrate W is removed.
 図10に示すように、現像処理ユニット139は、塗布処理ユニット129と同様に、複数のスピンチャック35および複数のカップ37を備える。また、図9に示すように、現像処理ユニット139は、現像液を吐出する2つのスリットノズル38およびそれらのスリットノズル38をX方向に移動させる移動機構39を備える。現像処理ユニット139においては、図示しない駆動装置によりスピンチャック35が回転される。それにより、基板Wが回転される。スリットノズル38が移動しつつ回転する各基板Wに現像液を供給する。これにより、基板Wの現像処理が行われる。 As shown in FIG. 10, the development processing unit 139 includes a plurality of spin chucks 35 and a plurality of cups 37, similar to the coating processing unit 129. As shown in FIG. 9, the development processing unit 139 includes two slit nozzles 38 that discharge the developer and a moving mechanism 39 that moves the slit nozzles 38 in the X direction. In the development processing unit 139, the spin chuck 35 is rotated by a driving device (not shown). Thereby, the substrate W is rotated. The developer is supplied to each substrate W that rotates while the slit nozzle 38 moves. Thereby, the development processing of the substrate W is performed.
 洗浄乾燥処理部161には、複数(本例では4つ)の洗浄乾燥処理ユニットSD1が設けられる。洗浄乾燥処理ユニットSD1においては、露光処理前の基板Wの洗浄および乾燥処理が行われる。 The cleaning / drying processing unit 161 is provided with a plurality (four in this example) of cleaning / drying processing units SD1. In the cleaning / drying processing unit SD1, the substrate W before the exposure processing is cleaned and dried.
 (6)熱処理部
 図12は、図9の熱処理部123,133および洗浄乾燥処理部162の内部構成を示す模式的側面図である。図12に示すように、熱処理部123は、上方に設けられる上段熱処理部101および下方に設けられる下段熱処理部102を有する。上段熱処理部101および下段熱処理部102には、複数の熱処理ユニットPHP、複数の密着強化処理ユニットPAHPおよび複数の冷却ユニットCPが設けられる。
(6) Heat Treatment Unit FIG. 12 is a schematic side view showing the internal configuration of the heat treatment units 123 and 133 and the cleaning / drying processing unit 162 of FIG. As shown in FIG. 12, the heat treatment part 123 has an upper heat treatment part 101 provided above and a lower heat treatment part 102 provided below. The upper heat treatment unit 101 and the lower heat treatment unit 102 are provided with a plurality of heat treatment units PHP, a plurality of adhesion reinforcement processing units PAHP, and a plurality of cooling units CP.
 熱処理部123の最上部には、ローカルコントローラ300が設けられる。ローカルコントローラ300は、図9のメインコントローラ114からの指令に基づいて、塗布処理部121、搬送部122および熱処理部123の動作を制御する。 The local controller 300 is provided at the top of the heat treatment unit 123. The local controller 300 controls operations of the coating processing unit 121, the transport unit 122, and the heat treatment unit 123 based on a command from the main controller 114 in FIG.
 熱処理ユニットPHPにおいては、基板Wの加熱処理および冷却処理が行われる。密着強化処理ユニットPAHPにおいては、基板Wと反射防止膜との密着性を向上させるための密着強化処理が行われる。具体的には、密着強化処理ユニットPAHPにおいて、基板WにHMDS(ヘキサメチルジシラサン)等の密着強化剤が塗布されるとともに、基板Wに加熱処理が行われる。冷却ユニットCPにおいては、基板Wの冷却処理が行われる。 In the heat treatment unit PHP, the substrate W is heated and cooled. In the adhesion reinforcement processing unit PAHP, adhesion reinforcement processing for improving the adhesion between the substrate W and the antireflection film is performed. Specifically, in the adhesion reinforcement processing unit PAHP, an adhesion enhancing agent such as HMDS (hexamethyldisilazane) is applied to the substrate W, and the substrate W is subjected to heat treatment. In the cooling unit CP, the substrate W is cooled.
 熱処理部133は、上方に設けられる上段熱処理部103および下方に設けられる下段熱処理部104を有する。上段熱処理部103および下段熱処理部104には、冷却ユニットCP、複数の熱処理ユニットPHP、エッジ露光部EEWおよび基板検査装置200が設けられる。上段熱処理部103および下段熱処理部104の熱処理ユニットPHPは、洗浄乾燥処理ブロック14Aからの基板Wの搬入が可能に構成される。 The heat treatment part 133 includes an upper heat treatment part 103 provided above and a lower heat treatment part 104 provided below. The upper heat treatment unit 103 and the lower heat treatment unit 104 are provided with a cooling unit CP, a plurality of heat treatment units PHP, an edge exposure unit EEW, and a substrate inspection apparatus 200. The thermal processing units PHP of the upper thermal processing unit 103 and the lower thermal processing unit 104 are configured to be able to carry in the substrate W from the cleaning / drying processing block 14A.
 熱処理部133の最上部には、図4のローカルコントローラ400が設けられる。ローカルコントローラ400は、図9のメインコントローラ114からの指令に基づいて、基板検査装置200の動作を制御するとともに、現像処理部131、搬送部132および熱処理部133の動作を制御する。 4 is provided at the top of the heat treatment unit 133. The local controller 400 controls the operations of the substrate inspection apparatus 200 and the operations of the development processing unit 131, the transport unit 132, and the heat treatment unit 133 based on a command from the main controller 114 in FIG. 9.
 エッジ露光部EEWにおいては、基板Wの周縁部の露光処理(エッジ露光処理)が行われる。基板Wにエッジ露光処理が行われることにより、後の現像処理時に、基板Wの周縁部上のレジスト膜が除去される。それにより、現像処理後において、基板Wの周縁部が他の部分と接触した場合に、基板Wの周縁部上のレジスト膜が剥離してパーティクルとなることが防止される。基板検査装置200においては、現像処理後の基板Wの表面状態が検査される。 In the edge exposure unit EEW, exposure processing (edge exposure processing) of the peripheral portion of the substrate W is performed. By performing the edge exposure process on the substrate W, the resist film on the peripheral edge of the substrate W is removed during the subsequent development process. This prevents the resist film on the peripheral portion of the substrate W from peeling off and becoming particles when the peripheral portion of the substrate W comes into contact with another portion after the development processing. In the substrate inspection apparatus 200, the surface state of the substrate W after the development processing is inspected.
 洗浄乾燥処理部162には、複数(本例では5つ)の洗浄乾燥処理ユニットSD2が設けられる。洗浄乾燥処理ユニットSD2においては、露光処理後の基板Wの洗浄および乾燥処理が行われる。 The cleaning / drying processing section 162 is provided with a plurality (five in this example) of cleaning / drying processing units SD2. In the cleaning / drying processing unit SD2, the substrate W after the exposure processing is cleaned and dried.
 (7)搬送部
 図13は、搬送部122,132,163の内部構成を示す模式的側面図である。図13に示すように、搬送部122は、上段搬送室125および下段搬送室126を有する。搬送部132は、上段搬送室135および下段搬送室136を有する。上段搬送室125には搬送機構127が設けられ、下段搬送室126には搬送機構128が設けられる。また、上段搬送室135には搬送機構137が設けられ、下段搬送室136には搬送機構138が設けられる。
(7) Conveying Unit FIG. 13 is a schematic side view showing the internal configuration of the conveying units 122, 132, and 163. As shown in FIG. 13, the transfer unit 122 includes an upper transfer chamber 125 and a lower transfer chamber 126. The transfer unit 132 includes an upper transfer chamber 135 and a lower transfer chamber 136. The upper transfer chamber 125 is provided with a transfer mechanism 127, and the lower transfer chamber 126 is provided with a transfer mechanism 128. The upper transfer chamber 135 is provided with a transfer mechanism 137, and the lower transfer chamber 136 is provided with a transfer mechanism 138.
 塗布処理室21,22(図10)と上段熱処理部101(図12)とは上段搬送室125を挟んで対向し、塗布処理室23,24(図10)と下段熱処理部102(図12)とは下段搬送室126を挟んで対向する。現像処理室31,32(図10)と上段熱処理部103(図12)とは上段搬送室135を挟んで対向し、現像処理室33,34(図10)と下段熱処理部104(図12)とは下段搬送室136を挟んで対向する。 The coating processing chambers 21 and 22 (FIG. 10) and the upper thermal processing section 101 (FIG. 12) face each other with the upper transport chamber 125 interposed therebetween, and the coating processing chambers 23 and 24 (FIG. 10) and the lower thermal processing section 102 (FIG. 12). Is opposed to the lower transfer chamber 126. The development processing chambers 31 and 32 (FIG. 10) and the upper thermal processing section 103 (FIG. 12) face each other with the upper transport chamber 135 interposed therebetween, and the development processing chambers 33 and 34 (FIG. 10) and the lower thermal processing section 104 (FIG. 12). Is opposed to the lower transfer chamber 136.
 搬送部112と上段搬送室125との間には、基板載置部PASS1,PASS2が設けられ、搬送部112と下段搬送室126との間には、基板載置部PASS3,PASS4が設けられる。上段搬送室125と上段搬送室135との間には、基板載置部PASS5,PASS6が設けられ、下段搬送室126と下段搬送室136との間には、基板載置部PASS7,PASS8が設けられる。 Substrate platforms PASS 1 and PASS 2 are provided between the transport unit 112 and the upper transport chamber 125, and substrate platforms PASS 3 and PASS 4 are provided between the transport unit 112 and the lower transport chamber 126. Substrate platforms PASS5 and PASS6 are provided between the upper transport chamber 125 and the upper transport chamber 135, and substrate platforms PASS7 and PASS8 are provided between the lower transport chamber 126 and the lower transport chamber 136. It is done.
 上段搬送室135と搬送部163との間には、載置兼バッファ部P-BF1が設けられ、下段搬送室136と搬送部163との間には載置兼バッファ部P-BF2が設けられる。搬送部163において搬入搬出ブロック14Bと隣接するように、基板載置部PASS9および複数の載置兼冷却部P-CPが設けられる。 A placement / buffer unit P-BF1 is provided between the upper transfer chamber 135 and the transfer unit 163, and a placement / buffer unit P-BF2 is provided between the lower transfer chamber 136 and the transfer unit 163. . A substrate platform PASS9 and a plurality of placement / cooling units P-CP are provided so as to be adjacent to the carry-in / carry-out block 14B in the transport unit 163.
 載置兼バッファ部P-BF1は、搬送機構137および搬送機構141(図9)による基板Wの搬入および搬出が可能に構成される。載置兼バッファ部P-BF2は、搬送機構138および搬送機構141(図9)による基板Wの搬入および搬出が可能に構成される。また、基板載置部PASS9および載置兼冷却部P-CPは、搬送機構141,142(図9)および搬送機構143による基板Wの搬入および搬出が可能に構成される。 The placement / buffer unit P-BF1 is configured such that the substrate W can be loaded and unloaded by the transport mechanism 137 and the transport mechanism 141 (FIG. 9). The placement / buffer unit P-BF2 is configured such that the substrate W can be carried in and out by the transport mechanism 138 and the transport mechanism 141 (FIG. 9). Further, the substrate platform PASS9 and the placement / cooling unit P-CP are configured such that the substrate W can be carried in and out by the transport mechanisms 141 and 142 (FIG. 9) and the transport mechanism 143.
 基板載置部PASS1および基板載置部PASS3には、インデクサブロック11から塗布ブロック12へ搬送される基板Wが載置され、基板載置部PASS2および基板載置部PASS4には、塗布ブロック12からインデクサブロック11へ搬送される基板Wが載置される。 The substrate W to be transported from the indexer block 11 to the coating block 12 is placed on the substrate platform PASS1 and the substrate platform PASS3, and the coating block 12 is placed on the substrate platform PASS2 and the substrate platform PASS4. A substrate W to be transported to the indexer block 11 is placed.
 基板載置部PASS5および基板載置部PASS7には、塗布ブロック12から現像ブロック13へ搬送される基板Wが載置され、基板載置部PASS6および基板載置部PASS8には、現像ブロック13から塗布ブロック12へ搬送される基板Wが載置される。 A substrate W transported from the coating block 12 to the development block 13 is placed on the substrate platform PASS5 and the substrate platform PASS7, and from the development block 13 on the substrate platform PASS6 and the substrate platform PASS8. A substrate W to be transported to the coating block 12 is placed.
 載置兼バッファ部P-BF1,P-BF2には、現像ブロック13から洗浄乾燥処理ブロック14Aへ搬送される基板Wが載置される。載置兼冷却部P-CPには、洗浄乾燥処理ブロック14Aから搬入搬出ブロック14Bへ搬送される基板Wが載置される。基板載置部PASS9には、搬入搬出ブロック14Bから洗浄乾燥処理ブロック14Aへ搬送される基板Wが載置される。 On the placement / buffer units P-BF1 and P-BF2, the substrate W transported from the development block 13 to the cleaning / drying processing block 14A is placed. The substrate W to be transported from the cleaning / drying processing block 14A to the loading / unloading block 14B is placed on the placement / cooling section P-CP. The substrate W to be transported from the carry-in / carry-out block 14B to the cleaning / drying processing block 14A is placed on the substrate platform PASS9.
 搬送機構127は、塗布処理室21,22(図10)、基板載置部PASS1,PASS2,PASS5,PASS6および上段熱処理部101(図12)に対して基板Wの受け渡しを行う。搬送機構128は、塗布処理室23,24(図10)、基板載置部PASS3,PASS4,PASS7,PASS8および下段熱処理部102(図12)に対して基板Wの受け渡しを行う。 The transport mechanism 127 delivers the substrate W to the coating processing chambers 21 and 22 (FIG. 10), the substrate platforms PASS1, PASS2, PASS5, PASS6 and the upper thermal processing unit 101 (FIG. 12). The transport mechanism 128 delivers the substrate W to the coating processing chambers 23 and 24 (FIG. 10), the substrate platforms PASS3, PASS4, PASS7 and PASS8, and the lower thermal processing unit 102 (FIG. 12).
 搬送機構137は、現像処理室31,32(図10)、基板載置部PASS5,PASS6、載置兼バッファ部P-BF1および上段熱処理部103(図12)に対して基板Wの受け渡しを行う。搬送機構138は、現像処理室33,34(図10)、基板載置部PASS7,PASS8、載置兼バッファ部P-BF2および下段熱処理部104(図12)に対して基板Wの受け渡しを行う。 The transport mechanism 137 delivers the substrate W to the development processing chambers 31 and 32 (FIG. 10), the substrate platforms PASS5 and PASS6, the placement / buffer unit P-BF1, and the upper thermal processing unit 103 (FIG. 12). . The transport mechanism 138 delivers the substrate W to the development processing chambers 33 and 34 (FIG. 10), the substrate platforms PASS7 and PASS8, the placement / buffer unit P-BF2, and the lower thermal processing unit 104 (FIG. 12). .
 (8)基板処理
 図9、図10、図12および図13を参照しながら基板処理を説明する。インデクサブロック11のキャリア載置部111(図9)には、未処理の基板Wが収容されたキャリア113が載置される。搬送機構115は、キャリア113から基板載置部PASS1,PASS3(図13)に未処理の基板Wを搬送する。また、搬送機構115は、基板載置部PASS2,PASS4(図13)に載置された処理済みの基板Wをキャリア113に搬送する。
(8) Substrate Processing The substrate processing will be described with reference to FIGS. 9, 10, 12, and 13. A carrier 113 in which an unprocessed substrate W is accommodated is placed on the carrier placement portion 111 (FIG. 9) of the indexer block 11. The transport mechanism 115 transports the unprocessed substrate W from the carrier 113 to the substrate platforms PASS1 and PASS3 (FIG. 13). Further, the transport mechanism 115 transports the processed substrate W placed on the substrate platforms PASS2 and PASS4 (FIG. 13) to the carrier 113.
 塗布ブロック12において、搬送機構127(図13)は、基板載置部PASS1に載置された未処理の基板Wを密着強化処理ユニットPAHP(図12)、冷却ユニットCP(図12)および塗布処理室22(図10)に順に搬送する。次に、搬送機構127は、塗布処理室22の基板Wを、熱処理ユニットPHP(図12)、冷却ユニットCP(図12)、塗布処理室21(図10)、熱処理ユニットPHP(図12)および基板載置部PASS5(図13)に順に搬送する。 In the coating block 12, the transport mechanism 127 (FIG. 13) applies the unprocessed substrate W placed on the substrate platform PASS1 to the adhesion strengthening processing unit PAHP (FIG. 12), the cooling unit CP (FIG. 12), and the coating process. It conveys to chamber 22 (FIG. 10) in order. Next, the transport mechanism 127 transfers the substrate W in the coating treatment chamber 22 to the heat treatment unit PHP (FIG. 12), the cooling unit CP (FIG. 12), the coating treatment chamber 21 (FIG. 10), the heat treatment unit PHP (FIG. 12), and The substrate is sequentially transferred to the substrate platform PASS5 (FIG. 13).
 この場合、密着強化処理ユニットPAHPにおいて、基板Wに密着強化処理が行われた後、冷却ユニットCPにおいて、反射防止膜の形成に適した温度に基板Wが冷却される。次に、塗布処理室22において、塗布処理ユニット129(図10)により基板W上に反射防止膜が形成される。続いて、熱処理ユニットPHPにおいて、基板Wの熱処理が行われた後、冷却ユニットCPにおいて、レジスト膜の形成に適した温度に基板Wが冷却される。次に、塗布処理室21において、塗布処理ユニット129(図10)により、基板W上にレジスト膜が形成される。その後、熱処理ユニットPHPにおいて、基板Wの熱処理が行われ、その基板Wが基板載置部PASS5に載置される。 In this case, after the adhesion strengthening process is performed on the substrate W in the adhesion reinforcement processing unit PAHP, the cooling unit CP cools the substrate W to a temperature suitable for forming the antireflection film. Next, in the coating processing chamber 22, an antireflection film is formed on the substrate W by the coating processing unit 129 (FIG. 10). Subsequently, after the heat treatment of the substrate W is performed in the heat treatment unit PHP, the substrate W is cooled to a temperature suitable for formation of the resist film in the cooling unit CP. Next, in the coating processing chamber 21, a resist film is formed on the substrate W by the coating processing unit 129 (FIG. 10). Thereafter, the substrate W is heat-treated in the heat treatment unit PHP, and the substrate W is placed on the substrate platform PASS5.
 また、搬送機構127は、基板載置部PASS6(図13)に載置された現像処理および検査処理後の基板Wを基板載置部PASS2(図13)に搬送する。 Further, the transport mechanism 127 transports the substrate W after the development process and the inspection process placed on the substrate platform PASS6 (FIG. 13) to the substrate platform PASS2 (FIG. 13).
 搬送機構128(図13)は、基板載置部PASS3に載置された未処理の基板Wを密着強化処理ユニットPAHP(図12)、冷却ユニットCP(図12)および塗布処理室24(図10)に順に搬送する。次に、搬送機構128は、塗布処理室24の基板Wを、熱処理ユニットPHP(図12)、冷却ユニットCP(図12)、塗布処理室23(図10)、熱処理ユニットPHP(図12)および基板載置部PASS7(図13)に順に搬送する。 The transport mechanism 128 (FIG. 13) applies the unprocessed substrate W placed on the substrate platform PASS3 to the adhesion reinforcement processing unit PAHP (FIG. 12), the cooling unit CP (FIG. 12), and the coating processing chamber 24 (FIG. 10). ) In order. Next, the transport mechanism 128 transfers the substrate W in the coating processing chamber 24 to the thermal processing unit PHP (FIG. 12), the cooling unit CP (FIG. 12), the coating processing chamber 23 (FIG. 10), the thermal processing unit PHP (FIG. 12), and The substrate is sequentially transferred to the substrate platform PASS7 (FIG. 13).
 また、搬送機構128(図13)は、基板載置部PASS8(図13)に載置された現像処理および検査処理後の基板Wを基板載置部PASS4(図13)に搬送する。塗布処理室23,24(図10)および下段熱処理部102(図12)における基板Wの処理内容は、上記の塗布処理室21,22(図10)および上段熱処理部101(図12)における基板Wの処理内容とそれぞれ同様である。 Further, the transport mechanism 128 (FIG. 13) transports the substrate W after the development process and the inspection process placed on the substrate platform PASS8 (FIG. 13) to the substrate platform PASS4 (FIG. 13). The processing contents of the substrate W in the coating processing chambers 23 and 24 (FIG. 10) and the lower thermal processing section 102 (FIG. 12) are the same as those in the coating processing chambers 21 and 22 (FIG. 10) and the upper thermal processing section 101 (FIG. 12). The processing contents of W are the same.
 現像ブロック13において、搬送機構137(図13)は、基板載置部PASS5に載置されたレジスト膜形成後の基板Wをエッジ露光部EEW(図12)および載置兼バッファ部P-BF1(図13)に順に搬送する。この場合、エッジ露光部EEWにおいて、基板Wにエッジ露光処理が行われる。エッジ露光処理後の基板Wが載置兼バッファ部P-BF1に載置される。 In the developing block 13, the transport mechanism 137 (FIG. 13) transfers the substrate W after the resist film formation placed on the substrate platform PASS5 to the edge exposure unit EEW (FIG. 12) and the placement / buffer unit P-BF1 ( It conveys in order to FIG. In this case, the edge exposure processing is performed on the substrate W in the edge exposure unit EEW. The substrate W after the edge exposure processing is placed on the placement / buffer unit P-BF1.
 また、搬送機構137(図13)は、洗浄乾燥処理ブロック14Aに隣接する熱処理ユニットPHP(図12)から露光処理後でかつ熱処理後の基板Wを取り出す。搬送機構137は、その基板Wを冷却ユニットCP(図12)、現像処理室31,32(図10)のいずれか一方、熱処理ユニットPHP(図12)、基板検査装置200(図12)および基板載置部PASS6(図13)に順に搬送する。 Further, the transport mechanism 137 (FIG. 13) takes out the substrate W after the exposure processing and after the heat treatment from the heat treatment unit PHP (FIG. 12) adjacent to the cleaning / drying processing block 14A. The transport mechanism 137 uses the cooling unit CP (FIG. 12), the development processing chambers 31 and 32 (FIG. 10), the heat treatment unit PHP (FIG. 12), the substrate inspection apparatus 200 (FIG. 12), and the substrate. It conveys to mounting part PASS6 (FIG. 13) in order.
 この場合、冷却ユニットCPにおいて、現像処理に適した温度に基板Wが冷却された後、現像処理室31,32のいずれか一方において、現像処理ユニット139により基板Wの現像処理が行われる。その後、熱処理ユニットPHPにおいて、基板Wの熱処理が行われる。また、基板検査装置200において、基板Wの検査処理が行われ、その基板Wが基板載置部PASS6に載置される。 In this case, after the substrate W is cooled to a temperature suitable for the developing process in the cooling unit CP, the developing process of the substrate W is performed by the developing unit 139 in one of the developing chambers 31 and 32. Thereafter, the heat treatment of the substrate W is performed in the heat treatment unit PHP. Further, the substrate inspection apparatus 200 performs an inspection process on the substrate W, and the substrate W is placed on the substrate platform PASS6.
 搬送機構138(図13)は、基板載置部PASS7に載置されたレジスト膜形成後の基板Wをエッジ露光部EEW(図12)および載置兼バッファ部P-BF2(図13)に順に搬送する。 The transport mechanism 138 (FIG. 13) sequentially transfers the resist film-formed substrate W placed on the substrate platform PASS7 to the edge exposure unit EEW (FIG. 12) and the placement / buffer unit P-BF2 (FIG. 13). Transport.
 また、搬送機構138(図13)は、インターフェイスブロック14に隣接する熱処理ユニットPHP(図12)から露光処理後でかつ熱処理後の基板Wを取り出す。搬送機構138は、その基板Wを冷却ユニットCP(図12)、現像処理室33,34(図10)のいずれか一方、熱処理ユニットPHP(図12)、基板検査装置200(図12)および基板載置部PASS8(図13)に順に搬送する。現像処理室33,34および下段熱処理部104における基板Wの処理内容は、上記の現像処理室31,32および上段熱処理部103における基板Wの処理内容とそれぞれ同様である。 Further, the transport mechanism 138 (FIG. 13) takes out the substrate W after the exposure process and after the heat treatment from the heat treatment unit PHP (FIG. 12) adjacent to the interface block 14. The transport mechanism 138 transfers the substrate W to the cooling unit CP (FIG. 12), one of the development processing chambers 33 and 34 (FIG. 10), the heat treatment unit PHP (FIG. 12), the substrate inspection apparatus 200 (FIG. 12), and the substrate. It conveys in order to mounting part PASS8 (FIG. 13). The processing contents of the substrate W in the development processing chambers 33 and 34 and the lower thermal processing section 104 are the same as the processing contents of the substrate W in the development processing chambers 31 and 32 and the upper thermal processing section 103, respectively.
 洗浄乾燥処理ブロック14Aにおいて、搬送機構141(図9)は、載置兼バッファ部P-BF1,P-BF2(図13)に載置された基板Wを洗浄乾燥処理ユニットSD1(図10)および載置兼冷却部P-CP(図13)に順に搬送する。この場合、洗浄乾燥処理ユニットSD1において基板Wの洗浄および乾燥処理が行われた後、載置兼冷却部P-CPにおいて露光装置15(図9)による露光処理に適した温度に基板Wが冷却される。 In the cleaning / drying processing block 14A, the transport mechanism 141 (FIG. 9) performs the cleaning / drying processing unit SD1 (FIG. 10) and the substrate W placed on the placement / buffer units P-BF1, P-BF2 (FIG. 13) and It is sequentially conveyed to the placement / cooling section P-CP (FIG. 13). In this case, after cleaning and drying processing of the substrate W is performed in the cleaning / drying processing unit SD1, the substrate W is cooled to a temperature suitable for the exposure processing by the exposure device 15 (FIG. 9) in the placement / cooling unit P-CP. Is done.
 搬送機構142(図9)は、基板載置部PASS9(図13)に載置された露光処理後の基板Wを洗浄乾燥処理ユニットSD2(図12)および上段熱処理部103または下段熱処理部104の熱処理ユニットPHP(図12)に順に搬送する。この場合、洗浄乾燥処理ユニットSD2において基板Wの洗浄および乾燥処理が行われた後、熱処理ユニットPHPにおいて露光後ベーク(PEB)処理が行われる。 The transport mechanism 142 (FIG. 9) performs cleaning and drying processing unit SD2 (FIG. 12) and the upper thermal processing unit 103 or the lower thermal processing unit 104 on the substrate W after the exposure processing placed on the substrate platform PASS9 (FIG. 13). It conveys to heat processing unit PHP (FIG. 12) in order. In this case, after the substrate W is cleaned and dried in the cleaning / drying processing unit SD2, a post-exposure bake (PEB) process is performed in the heat treatment unit PHP.
 搬入搬出ブロック14Bにおいて、搬送機構143(図9)は、載置兼冷却部P-CP(図13)に載置された露光処理前の基板Wを露光装置15に搬送する。また、搬送機構143(図9)は、露光装置15から露光処理後の基板Wを取り出し、その基板Wを基板載置部PASS9(図13)に搬送する。 In the carry-in / carry-out block 14B, the transport mechanism 143 (FIG. 9) transports the substrate W before the exposure process placed on the placement / cooling unit P-CP (FIG. 13) to the exposure apparatus 15. Further, the transport mechanism 143 (FIG. 9) takes out the substrate W after the exposure processing from the exposure apparatus 15, and transports the substrate W to the substrate platform PASS9 (FIG. 13).
 (9)効果
 本実施の形態に係る基板検査装置200においては、回転保持部252により保持された基板Wが撮像部1により撮像されることにより第1の画像データが生成される。その後に、回転保持部252により予め定められた角度だけ基板Wが回転される。基板Wの回転後、回転保持部252により保持された基板Wが撮像部1により撮像されることにより第2の画像データが生成される。第1および第2の画像データに基づいて、基板Wの表面状態の欠陥の有無が判定される。
(9) Effect In the substrate inspection apparatus 200 according to the present embodiment, first image data is generated by imaging the substrate W held by the rotation holding unit 252 by the imaging unit 1. Thereafter, the substrate W is rotated by a predetermined angle by the rotation holding unit 252. After the rotation of the substrate W, the substrate W held by the rotation holding unit 252 is imaged by the imaging unit 1, whereby second image data is generated. Based on the first and second image data, the presence / absence of a defect in the surface state of the substrate W is determined.
 この構成によれば、第1の画像データにより示される基板Wの表面と、第2の画像データにより示される基板Wの表面とでは、光沢等の態様が異なる。そのため、基板Wの表面に欠陥が存在する場合には、第1および第2の画像データの少なくとも一方により示される画像に当該欠陥が鮮明に現れる可能性が向上する。これにより、基板Wの表面状態の欠陥を高い精度で検出することが可能になる。また、検査は複数の基板Wの向きが揃った状態で行われるので、複数の基板Wを画一的に検査することができる。 According to this configuration, the surface of the substrate W indicated by the first image data and the surface of the substrate W indicated by the second image data have different aspects such as gloss. Therefore, when a defect exists on the surface of the substrate W, the possibility that the defect appears clearly in an image indicated by at least one of the first and second image data is improved. Thereby, it becomes possible to detect the surface state defect of the substrate W with high accuracy. In addition, since the inspection is performed in a state where the directions of the plurality of substrates W are aligned, the plurality of substrates W can be inspected uniformly.
 また、本実施の形態においては、移動部260により基板Wと撮像部1とが前後方向に相対的に往復移動することにより第1および第2の撮像データが生成される。さらに、小型の撮像部1を用いて基板Wの一面の全体を撮像することができる。これにより、第1および第2の撮像データを短時間で得ることができるとともに、基板検査装置200をコンパクトにすることができる。 In the present embodiment, the moving unit 260 causes the substrate W and the imaging unit 1 to reciprocate relative to each other in the front-rear direction to generate first and second imaging data. Further, the entire surface of the substrate W can be imaged using the small imaging unit 1. Thus, the first and second imaging data can be obtained in a short time, and the substrate inspection apparatus 200 can be made compact.
 (10)他の実施の形態
 (a)上記実施の形態において、検査処理は現像処理後に行われるが、本発明はこれに限定されない。検査処理は、例えばエッジ露光処理の前または後に行われてもよいし、他の時点で行われてもよい。
(10) Other Embodiments (a) In the above embodiment, the inspection process is performed after the development process, but the present invention is not limited to this. The inspection process may be performed before or after the edge exposure process, for example, or may be performed at another time.
 (b)上記実施の形態において、ステップS15の処理における基板Wの回転角度は90度であるが、本発明はこれに限定されない。基板Wの回転角度は、所望の角度であってもよい。この場合において、基板Wの回転角度は、180度の整数倍の角度以外の角度であることが好ましく、90度の奇数倍の角度であることがより好ましい。 (B) In the above embodiment, the rotation angle of the substrate W in the process of step S15 is 90 degrees, but the present invention is not limited to this. The rotation angle of the substrate W may be a desired angle. In this case, the rotation angle of the substrate W is preferably an angle other than an integer multiple of 180 degrees, and more preferably an odd multiple of 90 degrees.
 この場合、第1の画像データにより示される基板Wの表面の態様と、第2の画像データにより示される基板Wの表面の態様とが大きく異なる。これにより、基板Wの表面に欠陥が存在する場合に、第1または第2の画像データにより示される画像に当該欠陥が鮮明に現れる可能性をより向上させることができる。 In this case, the aspect of the surface of the substrate W indicated by the first image data is greatly different from the aspect of the surface of the substrate W indicated by the second image data. Thereby, when the defect exists in the surface of the board | substrate W, the possibility that the said defect appears clearly in the image shown by the 1st or 2nd image data can be improved more.
 (c)上記実施の形態において、ステップS10で基板Wが特定の方向を向くように基板Wが回転されるが、本発明はこれに限定されない。基板Wが特定の方向を向いた状態で基板検査装置200に搬入されるように基板処理装置100が構成される場合には、ステップS3~S10の処理が省略されてもよく、基板検査装置200にノッチ検出部270が設けられなくてもよい。同様に、基板Wが任意の方向を向いた状態で検査処理が行われてもよい場合には、ステップS3~S10の処理が省略されてもよく、基板検査装置200にノッチ検出部270が設けられなくてもよい。 (C) In the above embodiment, the substrate W is rotated so that the substrate W faces a specific direction in step S10, but the present invention is not limited to this. When the substrate processing apparatus 100 is configured such that the substrate W is carried into the substrate inspection apparatus 200 in a state where the substrate W is directed in a specific direction, the processing of steps S3 to S10 may be omitted, and the substrate inspection apparatus 200 is omitted. The notch detector 270 may not be provided. Similarly, when the inspection process may be performed with the substrate W facing in an arbitrary direction, the processes in steps S3 to S10 may be omitted, and the substrate inspection apparatus 200 is provided with a notch detection unit 270. It does not have to be done.
 (d)上記実施の形態において、撮像部1の投光部220および受光部240は別体として構成されるが、本発明はこれに限定されない。撮像部1の投光部220および受光部240は一体的に構成されてもよい。 (D) In the above embodiment, the light projecting unit 220 and the light receiving unit 240 of the imaging unit 1 are configured as separate bodies, but the present invention is not limited to this. The light projecting unit 220 and the light receiving unit 240 of the imaging unit 1 may be configured integrally.
 (e)上記実施の形態において、撮像部1に反射部230が設けられるが、本発明はこれに限定されない。受光部240が基板Wからの帯状の光を直接受光するように構成される場合には、撮像部1に反射部230が設けられなくてもよい。 (E) In the above embodiment, the imaging unit 1 is provided with the reflection unit 230, but the present invention is not limited to this. When the light receiving unit 240 is configured to directly receive the band-shaped light from the substrate W, the imaging unit 1 may not be provided with the reflecting unit 230.
 (f)上記実施の形態において、移動部260は、撮像部1に対して回転駆動部250(基板W)を前後方向に移動させるように構成されるが、本発明はこれに限定されない。移動部260は、撮像部1と回転駆動部250とを相対的に前後方向に移動させるように構成されてもよい。したがって、移動部260は、回転駆動部250に対して撮像部1を前後方向に移動させるように構成されてもよい。 (F) In the above embodiment, the moving unit 260 is configured to move the rotation driving unit 250 (substrate W) in the front-rear direction with respect to the imaging unit 1, but the present invention is not limited to this. The moving unit 260 may be configured to relatively move the imaging unit 1 and the rotation driving unit 250 in the front-rear direction. Therefore, the moving unit 260 may be configured to move the imaging unit 1 in the front-rear direction with respect to the rotation driving unit 250.
 (g)上記実施の形態において、撮像部1と回転駆動部250とが相対的に移動されるが、本発明はこれに限定されない。撮像部1の撮像領域が基板Wの表面全体よりも大きい場合には、撮像部1と回転駆動部250とが相対的に移動されなくてもよく、基板検査装置200に移動部260が設けられなくてもよい。 (G) In the above embodiment, the imaging unit 1 and the rotation drive unit 250 are relatively moved, but the present invention is not limited to this. When the imaging area of the imaging unit 1 is larger than the entire surface of the substrate W, the imaging unit 1 and the rotation driving unit 250 do not have to be moved relatively, and the substrate inspection apparatus 200 is provided with the moving unit 260. It does not have to be.
 (h)上記実施の形態において、基板検査装置200は基板処理装置100の熱処理部133に設けられるが、本発明はこれに限定されない。基板検査装置200は、基板処理装置100の塗布ブロック12等の他の部位に設けられてもよい。あるいは、基板検査装置200は、基板処理装置100に設けられず、基板に検査処理を行うために単体で設けられてもよい。 (H) In the above embodiment, the substrate inspection apparatus 200 is provided in the heat treatment section 133 of the substrate processing apparatus 100, but the present invention is not limited to this. The substrate inspection apparatus 200 may be provided in other parts such as the coating block 12 of the substrate processing apparatus 100. Alternatively, the substrate inspection apparatus 200 may not be provided in the substrate processing apparatus 100 but may be provided alone for performing an inspection process on the substrate.
 (11)請求項の各構成要素と実施の形態の各要素との対応関係
 以下、請求項の各構成要素と実施の形態の各要素との対応の例について説明するが、本発明は下記の例に限定されない。
(11) Correspondence relationship between each constituent element of claim and each element of the embodiment Hereinafter, an example of correspondence between each constituent element of the claim and each element of the embodiment will be described. It is not limited to examples.
 上記の実施の形態では、基板Wが基板の例であり、回転保持部252が回転保持部の例であり、撮像部1が撮像部の例であり、撮像制御部410が第1および第2の撮像制御部の例である。回転制御部420が第1~第3の回転制御部の例であり、欠陥判定部450が判定部の例であり、基板検査装置200が基板検査装置の例であり、投光部220が投光部の例であり、受光部240が受光部の例である。 In the above embodiment, the substrate W is an example of a substrate, the rotation holding unit 252 is an example of a rotation holding unit, the imaging unit 1 is an example of an imaging unit, and the imaging control unit 410 is the first and second. This is an example of the imaging control unit. The rotation control unit 420 is an example of first to third rotation control units, the defect determination unit 450 is an example of a determination unit, the substrate inspection device 200 is an example of a substrate inspection device, and the light projecting unit 220 is a projector. It is an example of a light part, and the light-receiving part 240 is an example of a light-receiving part.
 移動部260が相対移動部の例であり、移動制御部430が第1および第2の移動制御部の例であり、移動保持部262が移動保持部の例であり、方向判定部440が方向判定部の例である。ノッチ検出部270がノッチ検出部の例であり、塗布処理ユニット129が膜形成部の例であり、搬送機構127,128,137,138が搬送機構の例であり、基板処理装置100が基板処理装置の例である。 The movement unit 260 is an example of a relative movement unit, the movement control unit 430 is an example of first and second movement control units, the movement holding unit 262 is an example of a movement holding unit, and the direction determination unit 440 is a direction. It is an example of a determination part. The notch detection unit 270 is an example of a notch detection unit, the coating processing unit 129 is an example of a film forming unit, the transfer mechanisms 127, 128, 137, and 138 are examples of transfer mechanisms, and the substrate processing apparatus 100 is a substrate processing unit. It is an example of an apparatus.
 請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の要素を用いることもできる。 As the constituent elements of the claims, various other elements having configurations or functions described in the claims can be used.
 本発明は、種々の基板の表面の検査に有効に利用することができる。 The present invention can be effectively used for inspection of the surface of various substrates.

Claims (11)

  1. 基板を回転可能に保持する回転保持部と、
     前記回転保持部により保持された基板を撮像するように設けられた撮像部と、
     第1の撮像時に、基板の画像を示す第1の画像データを生成するように前記撮像部を制御する第1の撮像制御部と、
     前記第1の撮像後に、予め定められた角度だけ基板を回転させるように前記回転保持部を制御する第1の回転制御部と、
     前記第1の回転制御部による基板の回転後の第2の撮像時に、基板の画像を示す第2の画像データを生成するように前記撮像部を制御する第2の撮像制御部と、
     前記第1および第2の画像データに基づいて、基板の表面状態の欠陥の有無を判定する判定部とを備える、基板検査装置。
    A rotation holding unit for holding the substrate rotatably;
    An imaging unit provided to image the substrate held by the rotation holding unit;
    A first imaging control unit that controls the imaging unit so as to generate first image data indicating an image of the substrate during the first imaging;
    A first rotation control unit that controls the rotation holding unit to rotate the substrate by a predetermined angle after the first imaging;
    A second imaging control unit that controls the imaging unit to generate second image data indicating an image of the substrate at the time of the second imaging after the rotation of the substrate by the first rotation control unit;
    A substrate inspection apparatus comprising: a determination unit that determines presence or absence of a defect in a surface state of the substrate based on the first and second image data.
  2. 前記撮像部は、
     第1の方向において基板の直径よりも長く延びる光を出射する投光部と、
     基板からの反射光を受光し、受光量に基づいて前記第1または第2の画像データを生成する受光部とを含み、
     前記基板検査装置は、
     前記投光部からの光が基板の一面の全体に照射されるように、前記第1の方向に交差する第2の方向、または前記第2の方向とは逆の第3の方向に前記撮像部と前記回転保持部とを相対的に移動可能に設けられた相対移動部と、
     前記第1の撮像時に、前記撮像部と前記回転保持部とを前記第2の方向に相対的に移動させるように前記相対移動部を制御する第1の移動制御部と、
     前記第2の撮像時に、前記撮像部と前記回転保持部とを前記第3の方向に相対的に移動させるように前記相対移動部を制御する第2の移動制御部とをさらに備える、請求項1記載の基板検査装置。
    The imaging unit
    A light projecting portion that emits light that extends longer than the diameter of the substrate in the first direction;
    A light receiving unit that receives reflected light from the substrate and generates the first or second image data based on the amount of light received;
    The substrate inspection apparatus includes:
    The imaging is performed in a second direction intersecting the first direction or in a third direction opposite to the second direction so that light from the light projecting unit is irradiated on the entire surface of the substrate. A relative movement part provided to be relatively movable between the part and the rotation holding part;
    A first movement control unit that controls the relative movement unit so as to relatively move the imaging unit and the rotation holding unit in the second direction during the first imaging;
    The apparatus further comprises a second movement control unit that controls the relative movement unit so as to relatively move the imaging unit and the rotation holding unit in the third direction during the second imaging. 1. The substrate inspection apparatus according to 1.
  3. 前記相対移動部は、前記回転保持部を保持しかつ前記撮像部に対して前記回転保持部を前記第2または第3の方向に移動させる移動保持部を含む、請求項2記載の基板検査装置。 The substrate inspection apparatus according to claim 2, wherein the relative movement unit includes a movement holding unit that holds the rotation holding unit and moves the rotation holding unit in the second or third direction with respect to the imaging unit. .
  4. 前記投光部と前記受光部とは別体として配置される、請求項2または3記載の基板検査装置。 The substrate inspection apparatus according to claim 2, wherein the light projecting unit and the light receiving unit are arranged separately.
  5. 前記回転保持部により保持された基板の向きを判定する方向判定部と、
     前記方向判定部により判定された基板の向きに基づいて、前記第1の撮像前に基板が特定の方向を向くように前記回転保持部を制御する第2の回転制御部とをさらに備える、請求項1~4のいずれか一項に記載の基板検査装置。
    A direction determination unit that determines the orientation of the substrate held by the rotation holding unit;
    And a second rotation control unit configured to control the rotation holding unit so that the substrate faces a specific direction before the first imaging based on the orientation of the substrate determined by the direction determination unit. Item 5. The substrate inspection apparatus according to any one of Items 1 to 4.
  6. 前記第2の回転制御部による基板の回転の前に、基板が少なくとも1回転するように前記回転保持部を制御する第3の回転制御部と、
     前記第3の回転制御部により回転される基板のノッチを検出するノッチ検出部とをさらに備え、
     前記方向判定部は、前記ノッチ検出部により基板のノッチが検出されたときの基板の回転角度に基づいて基板の向きを判定する、請求項5記載の基板検査装置。
    A third rotation control unit that controls the rotation holding unit so that the substrate rotates at least once before the rotation of the substrate by the second rotation control unit;
    A notch detection unit for detecting a notch of the substrate rotated by the third rotation control unit,
    The substrate inspection apparatus according to claim 5, wherein the direction determination unit determines the orientation of the substrate based on a rotation angle of the substrate when the notch detection unit detects a notch of the substrate.
  7. 前記第1の回転制御部は、前記第1の撮像時における基板の向きと前記第2の撮像時における基板の向きとが非平行となるように前記回転保持部を制御する、請求項1~6のいずれか一項に記載の基板検査装置。 The first rotation control unit controls the rotation holding unit so that the orientation of the substrate during the first imaging and the orientation of the substrate during the second imaging are non-parallel. The board inspection apparatus according to any one of claims 6 to 6.
  8. 前記予め定められた角度は90度の奇数倍の角度である、請求項1~7のいずれか一項に記載の基板検査装置。 The substrate inspection apparatus according to any one of claims 1 to 7, wherein the predetermined angle is an odd multiple of 90 degrees.
  9. 塗布液を基板の表面に供給することにより表面に塗布膜を形成する膜形成部と、
     前記膜形成部により塗布膜が形成された基板の表面状態を検査する請求項1~8のいずれか一項に記載の基板検査装置と、
     前記膜形成部と前記基板検査装置との間で基板を搬送する搬送機構とを備える、基板処理装置。
    A film forming section for forming a coating film on the surface by supplying a coating liquid to the surface of the substrate;
    The substrate inspection apparatus according to any one of claims 1 to 8, wherein the substrate state on which the coating film is formed by the film forming unit is inspected.
    A substrate processing apparatus comprising: a transport mechanism that transports a substrate between the film forming unit and the substrate inspection apparatus.
  10. 回転保持部により基板を回転可能に保持するステップと、
     第1の撮像時に、前記回転保持部により保持された基板を撮像することにより基板の画像を示す第1の画像データを生成するステップと、
     前記第1の撮像後に、前記回転保持部により予め定められた角度だけ基板を回転させるステップと、
     基板の回転後の第2の撮像時に、前記回転保持部により保持された基板を撮像することにより基板の画像を示す第2の画像データを生成するステップと、
     前記第1および第2の画像データに基づいて、基板の表面状態の欠陥の有無を判定するステップとを含む、基板検査方法。
    Holding the substrate rotatably by the rotation holding unit;
    Generating first image data indicating an image of the substrate by imaging the substrate held by the rotation holding unit during the first imaging;
    After the first imaging, rotating the substrate by a predetermined angle by the rotation holding unit;
    Generating second image data indicating an image of the substrate by imaging the substrate held by the rotation holding unit during the second imaging after the rotation of the substrate;
    Determining the presence or absence of defects in the surface state of the substrate based on the first and second image data.
  11. 膜形成部により塗布液を基板の表面に供給することにより表面に塗布膜を形成するステップと、
     前記膜形成部により表面に塗布膜が形成された基板を搬送機構により搬送するステップと、
     前記搬送機構により搬送された基板の表面状態を検査する請求項10記載のステップとを含む、基板処理方法。
    Forming a coating film on the surface by supplying a coating liquid to the surface of the substrate by the film forming unit;
    Transporting the substrate having the coating film formed on the surface by the film forming unit by a transport mechanism;
    A substrate processing method comprising: inspecting a surface state of a substrate transported by the transport mechanism.
PCT/JP2017/013870 2016-09-02 2017-04-03 Substrate inspection device, substrate treatment device, substrate inspection method, and substrate treatment method WO2018042743A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780047626.XA CN109564853B (en) 2016-09-02 2017-04-03 Substrate inspection apparatus, substrate processing apparatus, substrate inspection method, and substrate processing method
KR1020197007517A KR20190039269A (en) 2016-09-02 2017-04-03 Substrate inspection apparatus, substrate processing apparatus, substrate inspection method, and substrate processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-172267 2016-09-02
JP2016172267A JP2018036235A (en) 2016-09-02 2016-09-02 Substrate checkup device, substrate processing device, substrate checkup method, and substrate processing method

Publications (1)

Publication Number Publication Date
WO2018042743A1 true WO2018042743A1 (en) 2018-03-08

Family

ID=61300356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013870 WO2018042743A1 (en) 2016-09-02 2017-04-03 Substrate inspection device, substrate treatment device, substrate inspection method, and substrate treatment method

Country Status (5)

Country Link
JP (1) JP2018036235A (en)
KR (1) KR20190039269A (en)
CN (1) CN109564853B (en)
TW (1) TWI660167B (en)
WO (1) WO2018042743A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020133542A1 (en) * 2018-12-29 2020-07-02 深圳配天智能技术研究院有限公司 Inspection apparatus and inspection method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7122192B2 (en) * 2018-08-21 2022-08-19 株式会社Screenホールディングス SUBSTRATE PROCESSING METHOD, SUBSTRATE PROCESSING APPARATUS, AND SUBSTRATE PROCESSING SYSTEM
JP7146528B2 (en) * 2018-08-28 2022-10-04 株式会社Screenホールディングス Substrate inspection device, substrate processing device, substrate inspection method, and substrate processing method
JP7090005B2 (en) * 2018-10-05 2022-06-23 東京エレクトロン株式会社 Board processing equipment and inspection method
JP7153521B2 (en) * 2018-10-05 2022-10-14 東京エレクトロン株式会社 SUBSTRATE PROCESSING APPARATUS AND INSPECTION METHOD
JP7294818B2 (en) * 2019-01-29 2023-06-20 株式会社Screenホールディングス Substrate inspection device, substrate processing device, substrate inspection method, and substrate processing method
JP7261052B2 (en) * 2019-03-26 2023-04-19 株式会社Screenホールディングス SUBSTRATE PROCESSING APPARATUS AND TRANSPORT CONTROL METHOD THEREOF
WO2020226095A1 (en) * 2019-05-08 2020-11-12 東京エレクトロン株式会社 Bonding device, bonding system, and bonding method
JP7360687B2 (en) * 2019-05-21 2023-10-13 株式会社昭和電気研究所 Wafer inspection equipment
JP2021048322A (en) * 2019-09-19 2021-03-25 株式会社Screenホールディングス Substrate transferring apparatus and substrate transfer method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034133A (en) * 2008-07-25 2010-02-12 Just:Kk Crack detecting device for polycrystalline silicon wafer
JP2012194059A (en) * 2011-03-16 2012-10-11 Tokyo Electron Ltd Image creation method, substrate inspection method, recording medium with program for executing image creation method or substrate inspection method recorded thereon, and substrate inspection device
JP2014115140A (en) * 2012-12-07 2014-06-26 Tokyo Electron Ltd Reference image creation method of substrate, defect inspection method of substrate, reference image creation device of substrate, defect inspection unit of substrate, program and computer storage medium
JP2014190797A (en) * 2013-03-27 2014-10-06 Tokushima Densei Kk Defect inspection device for silicon wafer
JP2016212008A (en) * 2015-05-12 2016-12-15 東京エレクトロン株式会社 Substrate inspection method, substrate processing system and computer recording medium

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6128810A (en) * 1984-07-20 1986-02-08 Hitachi Ltd Observing system of mask pattern
JP2002071576A (en) * 2000-09-04 2002-03-08 Sharp Corp Visual inspection apparatus and visual inspection method
JP2008064595A (en) * 2006-09-07 2008-03-21 Olympus Corp Substrate inspecting device
JP5410212B2 (en) 2009-09-15 2014-02-05 株式会社Sokudo Substrate processing apparatus, substrate processing system, and inspection peripheral exposure apparatus
JP5479253B2 (en) * 2010-07-16 2014-04-23 東京エレクトロン株式会社 Substrate processing apparatus, substrate processing method, program, and computer storage medium
JP5753020B2 (en) * 2011-08-03 2015-07-22 ヤマハ発動機株式会社 Component mounting equipment
JP3178129U (en) * 2012-06-21 2012-08-30 東京エレクトロン株式会社 Board inspection equipment
JP2015185648A (en) * 2014-03-24 2015-10-22 株式会社Screenホールディングス Positional deviation detection method, positional deviation detection device, drawing device and substrate examination device
JP2015219162A (en) * 2014-05-20 2015-12-07 株式会社サキコーポレーション Inspection device
JP5837150B2 (en) * 2014-07-01 2015-12-24 東京エレクトロン株式会社 Substrate processing method and recording medium storing program for executing the substrate processing method
JP6362466B2 (en) * 2014-07-24 2018-07-25 株式会社Screenホールディングス Substrate holding inspection method and substrate processing apparatus
JP6579739B2 (en) * 2014-09-18 2019-09-25 株式会社Screenホールディングス Inspection apparatus and substrate processing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034133A (en) * 2008-07-25 2010-02-12 Just:Kk Crack detecting device for polycrystalline silicon wafer
JP2012194059A (en) * 2011-03-16 2012-10-11 Tokyo Electron Ltd Image creation method, substrate inspection method, recording medium with program for executing image creation method or substrate inspection method recorded thereon, and substrate inspection device
JP2014115140A (en) * 2012-12-07 2014-06-26 Tokyo Electron Ltd Reference image creation method of substrate, defect inspection method of substrate, reference image creation device of substrate, defect inspection unit of substrate, program and computer storage medium
JP2014190797A (en) * 2013-03-27 2014-10-06 Tokushima Densei Kk Defect inspection device for silicon wafer
JP2016212008A (en) * 2015-05-12 2016-12-15 東京エレクトロン株式会社 Substrate inspection method, substrate processing system and computer recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020133542A1 (en) * 2018-12-29 2020-07-02 深圳配天智能技术研究院有限公司 Inspection apparatus and inspection method

Also Published As

Publication number Publication date
TW201825888A (en) 2018-07-16
TWI660167B (en) 2019-05-21
KR20190039269A (en) 2019-04-10
CN109564853A (en) 2019-04-02
JP2018036235A (en) 2018-03-08
CN109564853B (en) 2023-06-06

Similar Documents

Publication Publication Date Title
WO2018042743A1 (en) Substrate inspection device, substrate treatment device, substrate inspection method, and substrate treatment method
TWI783270B (en) Substrate processing method, substrate processing apparatus and a computer-readable storage medium
JP6880364B2 (en) Substrate processing equipment and substrate processing method
JP6754247B2 (en) Peripheral processing device and peripheral processing method
US8941809B2 (en) Substrate processing apparatus and substrate processing method
JP6473038B2 (en) Inspection apparatus and substrate processing apparatus
JP7202828B2 (en) Board inspection method, board inspection apparatus and recording medium
JP4295175B2 (en) Coating film forming apparatus and coating film forming method
TWI654034B (en) Peripheral portion processing device, substrate processing apparatus and peripheral portion processing method
JP5575691B2 (en) SUBSTRATE PROCESSING APPARATUS, SUBSTRATE PROCESSING METHOD, AND RECORDING MEDIUM RECORDING PROGRAM FOR EXECUTING THE SUBSTRATE PROCESSING METHOD
TWI696826B (en) Inspection apparatus and substrate processing apparatus
JP6086731B2 (en) Substrate processing equipment
JP7521979B2 (en) Circuit Board Inspection Equipment
JP5837150B2 (en) Substrate processing method and recording medium storing program for executing the substrate processing method
JP2017092306A (en) Substrate processing apparatus and substrate processing method
US20230221262A1 (en) Substrate inspection apparatus, substrate inspection method, and recording medium
JP2007299937A (en) Applying and developing device, applying and developing method, and storage medium
JP6788089B2 (en) Substrate processing method, substrate processing equipment and computer-readable recording medium
JP7314237B2 (en) Board imaging device and board imaging method
JP2019050417A (en) Substrate treatment method, substrate treatment device, and computer readable recording medium
JP2021015992A (en) Substrate treatment method, substrate treatment device, and computer readable recording medium
JP2012220896A (en) Periphery exposure method and periphery exposure device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197007517

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17845754

Country of ref document: EP

Kind code of ref document: A1