WO2018041099A1 - 镜片防污染装置及方法 - Google Patents

镜片防污染装置及方法 Download PDF

Info

Publication number
WO2018041099A1
WO2018041099A1 PCT/CN2017/099513 CN2017099513W WO2018041099A1 WO 2018041099 A1 WO2018041099 A1 WO 2018041099A1 CN 2017099513 W CN2017099513 W CN 2017099513W WO 2018041099 A1 WO2018041099 A1 WO 2018041099A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
gas
protective layer
pollution
contamination
Prior art date
Application number
PCT/CN2017/099513
Other languages
English (en)
French (fr)
Inventor
郝保同
郎东春
Original Assignee
上海微电子装备(集团)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微电子装备(集团)股份有限公司 filed Critical 上海微电子装备(集团)股份有限公司
Priority to SG11201901811RA priority Critical patent/SG11201901811RA/en
Priority to JP2019510647A priority patent/JP6954996B2/ja
Priority to EP17845401.3A priority patent/EP3508920A4/en
Priority to US16/329,496 priority patent/US10539887B2/en
Priority to KR1020197009167A priority patent/KR102212629B1/ko
Publication of WO2018041099A1 publication Critical patent/WO2018041099A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0006Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means to keep optical surfaces clean, e.g. by preventing or removing dirt, stains, contamination, condensation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70825Mounting of individual elements, e.g. mounts, holders or supports
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70916Pollution mitigation, i.e. mitigating effect of contamination or debris, e.g. foil traps
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70933Purge, e.g. exchanging fluid or gas to remove pollutants
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70983Optical system protection, e.g. pellicles or removable covers for protection of mask
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7049Technique, e.g. interferometric
    • G03F9/7053Non-optical, e.g. mechanical, capacitive, using an electron beam, acoustic or thermal waves
    • G03F9/7057Gas flow, e.g. for focusing, leveling or gap setting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70925Cleaning, i.e. actively freeing apparatus from pollutants, e.g. using plasma cleaning

Definitions

  • the present invention relates to the field of optical technologies, and in particular, to a lens anti-pollution device and method.
  • Lithography is a very important process in the semiconductor manufacturing process. It is a process of transferring the chip patterns on a series of masks to the corresponding layers of the silicon wafer by exposure. It is considered to be the core of large-scale integrated circuit manufacturing. step. A series of complex and time consuming lithography processes in semiconductor fabrication are primarily performed by corresponding lithography machines.
  • the organic solvent in the photoresist on the surface of the silicon wafer is slowly volatilized after being heated, and the volatilized organic matter adheres to the lens on the lower surface of the objective lens, and the adhesion directly affects the objective lens.
  • the transmittance of the medium light which in turn affects the image quality of the product. Since the last lens of the lower surface of the objective lens is at a small distance from the surface of the wafer, the volatilized organic matter easily adheres to the surface of the lens.
  • the conventional lithography machine adopts a method of installing the objective lens protective film 102 on the lower surface mirror base 101 of the objective lens to prevent organic substances from contaminating the lens.
  • the protective film anti-pollution device and method have many disadvantages. .
  • the normal service life of the protective film is determined by the energy of the transmitted light. Even under normal use, the protective film can only withstand 500000 J/cm 2 of energy under the illumination of 365 nm and 436 nm ultraviolet light. The replacement frequency is Once in a month or two.
  • the protective film is expensive, and the price of each protective film is 1,500 yuan. The normal loss is 9,000-18,000 yuan/year. Frequent replacement increases the cost of use.
  • the distance between the surface of the silicon wafer and the lower surface of the objective lens is only 40 mm, replacing the protective film is a difficult task, and the protective film is easily broken during the replacement process; and because the thickness of the film is very thin, the change of the external air pressure is also It will cause the rupture of the protective film. At present, the abnormal damage rate is as high as 15%. If the protective film is inadvertently broken during use, the lens being imaged will be contaminated, and in severe cases, the imaging will fail.
  • the protective film does not completely prevent the contamination of the lens by the organic matter volatilized from the photoresist; even, because the protective film cannot completely ensure the removal of volatile organic matter, the entire lithography machine There may be contaminated parts inside, such as lenses inside the objective cavity, upper surface lenses, wafer surface and mask surface, etc., which are required for cleanliness. Since the lithography machine is a sophisticated high-end device, this will be used. Cause more serious losses.
  • the object of the present invention is to provide a lens anti-pollution device and method, which can better solve the problem that the existing pollution control is not in place and the internal cavity of the contaminant mirror cavity.
  • the present invention provides a lens anti-pollution device, the lens anti-pollution device comprising a first device and a second device connected to the first device, the first device being opposite to the second device The device is closer to the lens; wherein the first device is for outputting a protective layer gas to form a curtain protection layer on the surface of the lens; and the second device is for pumping the protective layer gas and/or the contaminated gas.
  • the lens anti-pollution device further includes an exhaust passage, and the first device and the second device are respectively connected to the exhaust passage.
  • the exhaust passage is connected with pumping power.
  • the protective layer gas is a gas having a purity of 99.999% or more.
  • the first device comprises a closed container.
  • the closed container has an air inlet and a spray a nozzle through which the protective layer gas enters the inside of the closed container and is output through the nozzle.
  • the second device comprises an annular cavity.
  • the annular cavity has a plurality of small holes on a lower surface thereof.
  • the distance between the small holes is equal.
  • the invention also provides a lens anti-pollution method, comprising the following:
  • Step 1 the protective layer gas is output near the lower surface of the lens, and a gas curtain protective layer is formed on the surface of the lens;
  • step 2 the protective layer gas and/or the polluting gas are sucked near the pollution source and discharged to an environment away from the lens.
  • the lens is a lens of a lithography machine
  • the protective layer gas output is continued before the exposure of the lithography machine to the end of the exposure.
  • the lens is a lens of a lithography machine, and in the step 2, the protective layer gas and/or the polluting gas is sucked and discharged in the light. Continued from the time of exposure to the end of exposure.
  • the protective layer is formed by the first device close to the lens to form a protective layer to prevent lens contamination; further, the protective layer gas can also be carried away from the contaminated lens. Things.
  • the gas is removed from the vicinity of the pollution source, so that the pollutants are directly discharged to the external environment away from the lens; further, the precision components of the lithography system can be protected; when the lithography machine is exposed, Open two gas passages for double guarantee and high reliability.
  • Figure 1 is a conventional lens anti-pollution protective film
  • Figure 2 is a schematic view of a first device in the first embodiment of the present invention.
  • Figure 3 is a cross-sectional view showing a second device in the first embodiment of the present invention.
  • Figure 4 is a schematic view of a second device in the first embodiment of the present invention.
  • Figure 5 is a schematic exploded view showing the first device and the second device in the second embodiment of the present invention.
  • Figure 6 is a schematic view showing the assembly of the first device and the second device and the lens of the present invention.
  • the core idea of the present invention is to provide a lens anti-pollution device and method, which can solve the problem that the existing protective film is difficult to use, high in cost, easy to be broken, pollution control is not in place, and internal problems of the contaminant mirror cavity.
  • the invention is different from the prior art anti-pollution protection device and method, and better solves the lens pollution by using the gas circulation device to isolate the contaminants from the lens and directly remove the contaminants from the pollution source directly from the components of the objective lens.
  • the lens anti-pollution device and method of the invention are not only used to prevent surface lens contamination under the objective lens, but also can be used to protect components that may be contaminated inside the entire lithography machine, such as an objective lens, an alignment lens, and an upper surface lens.
  • the present invention provides a lens anti-pollution device and method, the lens anti-pollution device comprising a first device for outputting a protective layer gas and a second device with a gas adjacent to the pollution source
  • the lens anti-pollution method achieves the technical effect of anti-pollution of the lens by outputting a protective layer gas near the lower surface of the lens, sucking the gas near the pollution source, and discharging the gas to an environment away from the lens.
  • the lens anti-contamination device of the present invention is basically disposed between the silicon wafer and the objective lens.
  • “upper” or “upper” hereinafter means a side close to the objective lens in the axial direction of the lens, "lower” or “lower”. Indicates the side of the lens that is adjacent to the wafer in the axial direction; “inside” or “inside” refers to the side of the lens that is closer to the center of the lens in the radial direction, and "outside” or “outside” means away from the center of the lens in the radial direction of the lens.
  • the embodiment discloses a lens anti-pollution device, which may be a lens of an objective lens of a photolithography machine, or may be another lens of an optical device such as a microscope, the contaminant. It may be a volatile organic substance of the photoresist, and may be various air impurities that affect light transmittance, such as water vapor, dust, floating microorganisms, and the like.
  • the lens anti-pollution device of the embodiment includes a first device 300 and a second device 400 connected to the first device.
  • the first device 300 is adjacent to the lens 100, and the second device 400 is far away.
  • the lens 100 wherein the first device 300 outputs a protective layer gas, forms a curtain protection layer on the surface of the lens, cleans the contaminated lens and forms a protective layer of gas to prevent re-contamination;
  • the second device 400 For the extraction of the protective layer gas and/or the polluting gas, the gas in the vicinity of the pollution source is away from the lens, and the gas protective layer may be a gas having a purity requirement, and the purity is at least 99.999%, such as high-purity nitrogen. Or other high purity gases.
  • the lens anti-pollution device of this embodiment further includes an exhaust passage 200, and the first device 300 and the second device 400 are respectively connected to the exhaust passage 200.
  • the exhaust passage 200 has pumping power.
  • the exhaust passage 200 is for extracting gas that enters the first device 300 or is originally in the first device 300 from the outside environment, and enters the second device 400 or the gas originally in the second device 400 from the external environment.
  • the pumping power at the exhaust passage 200 is preferably sufficient to allow gas in the first device 300 and/or the second device 400 to enter from the outside environment and flow through the first device 300 and/or the second device 400, and to reach the row
  • the gas passage 200 is discharged and does not flow in the reverse direction, and a certain flow rate is maintained.
  • the flow rate is 3 m/s.
  • the exhaust passage 200 may also have a partition in the middle such that the exhaust passage 200 forms two chambers, one communicating with the first device 300 and the other communicating with the second device 400, and may also form a first device 300 and The second device 400 is in
  • the first device 300 includes a closed container 320.
  • the closed container 320 is located at the lower surface of the edge of the lens 100 and away from the end of the exhaust passage 200.
  • the closed container 320 is a fan-ring type air curtain cavity, and generally comprises: two fan-ring surfaces arranged one above the other, a radially arranged inner curved surface and The outer curved surface, and the two end faces connecting the fan ring surface and the inner/outer side arc surface.
  • the inner radius of the closed container 320 ie, the radius corresponding to the inner curved surface
  • matches the radius of the lens 100 preferably coincides with the radius of the lens 100
  • the outer radius ie, the radius corresponding to the outer curved surface
  • the assembly relationship with the other device may be, preferably, greater than the radius of the lens 100 by 2-3 cm; the arc length of the inner curved surface is between the half circumference and the quarter circumference of the lens 100, preferably, the inner side curved surface The arc length is one-third of the circumference of the lens 100, the inner curved surface of the closed container 320 is placed against the outer side surface of the lens 100, and the radial direction of the closed container 320 is radial to the lens 100. The directions coincide.
  • the closed container 320 has an intake port 310 and a nozzle 330.
  • the air inlet 310 is located substantially at a center point of the outer curved surface of the closed container 320, and is a cylinder perpendicular to the outer curved surface.
  • One end of the air inlet 310 is connected to a device for generating gas, and the air inlet 310 may also be perpendicular to the outer side.
  • Other shapes of the curved surface such as a cuboid.
  • Nozzle 330 The surface of the curved surface of the closed container 320 is evenly distributed, and is composed of a plurality of small holes.
  • the shape of the nozzle 330 can be selected in different shapes, such as a circle or a square, in different use cases, and can be seen in this embodiment.
  • the number of small holes of the nozzle 330 can be selected as needed; the distance between the small holes can be uniform, so that the protective layer gas can be uniformly distributed on the surface of the lens 100, or it may not be uniform. For example, because the middle airflow has a longer path, the distance between several small holes in the middle is smaller, and the distance between the small holes on both sides is larger, so that the gas flow in the middle protective layer is stronger; the small holes are arranged in a row.
  • the protective layer gas Due to the pumping power of the exhaust passage 200, the protective layer gas is sucked from the intake port 310, passes through the closed container 320, and is output through the nozzle 330, flows through the lower surface of the lens 100, and is discharged through the exhaust passage 200.
  • the second device 400 includes an annular cavity 420.
  • the inner diameter of the annular cavity 420 is not less than the diameter of the lens 100, and the lens 100 cannot be shielded to affect the exposure.
  • the upper surface of the annular cavity 420 is surrounded and abuts against the edge of the lower surface of the lens 100 and the first device 300, and the lower surface of the annular cavity 420 is directly surfaced.
  • the annular cavity 420 has a plurality of small holes 410 on the lower surface thereof. Further, the distance between the small holes 410 is equal.
  • the small holes are opposite to the photoresist contamination source on the silicon wafer 500.
  • the shape of the small holes may be various shapes such as a circular shape and a square shape, and the number may be selected according to the magnitude of the gas flow rate and the severity of the volatilization of the pollutants, and the small holes are selected.
  • the small holes are arranged in a row, or may be arranged in a plurality of rows, mainly depending on the need of the number of small holes and the ring width of the annular cavity 420.
  • the photoresist organic volatile gas on the silicon wafer 500 facing the lower surface of the annular cavity 420 is sucked into the small hole 410, enters the annular cavity 420, and then from the ring
  • the cavity 420 flows through, directly reaches the exhaust passage 200, and is discharged into the external environment away from the lens 100.
  • the main difference between the second embodiment and the first embodiment is that the first device 300 and the second device 400 can be integrally formed to form a whole.
  • the integrated first and second means can be made by separately forming a convex container on the upper and lower surfaces of the annular partition 600 (preferably an annular thin plate).
  • the upper surface of the partition 600 can be used to form the closed container 320.
  • the closed container 320 is a fan-shaped ring having an arc length of about half a circumference of the partition 600, and the partition 600 can be taken between quarter and half a week.
  • the inner diameter and outer diameter of the closed container 320 are equal to the inner and outer diameters of the partition 600; the lower surface of the partition 600 can be used to form the annular cavity 420, the annular cavity 420 being the entire circle
  • the ring shape, inner diameter and outer diameter are equal to the spacer 600.
  • the shape, positional relationship, and function of the exhaust passage 200, the intake port 310, the small hole 410, and the nozzle 330, and the path, direction, and airflow dynamics and generation manner of the gas passage are the same as or similar to those of the previous embodiment. It is not described in detail in this embodiment. For details, refer to the description in the previous embodiment.
  • the above embodiments describe the different configurations of the lens 100 anti-contamination device.
  • the present invention includes, but is not limited to, the configurations listed in the above embodiments, and any of the configurations provided in the above embodiments are based.
  • the contents of the transformation are all within the scope of protection of the present invention. Those skilled in the art can make the same according to the content of the above embodiments.
  • the invention also provides a lens anti-pollution method, comprising the following steps:
  • Step 1 the protective layer gas is output near the lower surface of the lens, and a gas curtain protective layer is formed on the surface of the lens;
  • step 2 the protective layer gas and/or the polluting gas are sucked near the pollution source and discharged to an environment away from the lens.
  • step 1 the protective layer gas output is continued before and after the exposure of the lithography machine.
  • step 2 the suction and discharge of the protective layer gas and/or the contaminated gas are continued until the exposure ends after the exposure of the photolithography machine.
  • the polluting gas extraction channel is closed 12 hours after the exposure of the photolithography machine to save cost and energy consumption, and the protective layer gas can be opened all the time to form a continuous protective layer, and can also prevent other pollutants and impurities in the air from being polluted.
  • Lens 100 The polluting gas extraction channel is closed 12 hours after the exposure of the photolithography machine to save cost and energy consumption, and the protective layer gas can be opened all the time to form a continuous protective layer, and can also prevent other pollutants and impurities in the air from being polluted.
  • Lens 100 is closed 12 hours after the exposure of the photolithography machine to save cost and energy consumption
  • the protective layer gas circulation passage takes the first device 300 and the exhaust passage 200 as a passage, and the path direction is the intake port 310, to the closed container 320, to the nozzle 330 to the lower surface of the lens 100, and to the exhaust passage 200 and discharged to the exhaust passage 200.
  • the external environment; the polluting gas pumping passage is the passage of the second device 400 and the exhaust passage 200, and the path direction is the small hole 410, to the annular cavity 420, and is discharged to the external environment after the exhaust passage 200.
  • the protective layer gas is a gas having a purity of 99.999% or more.

Landscapes

  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Atmospheric Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Lens Barrels (AREA)

Abstract

一种镜片防污染装置,包括第一装置(300)及与第一装置(300)相连的第二装置(400),第一装置(300)相对于第二装置(400)更靠近镜片(100),其中第一装置(300)用于输出保护层气体,通过喷嘴(330)使保护层气体紧贴镜片(100)下表面均匀流过,可以清洁已污染的镜片(100)并形成保护层以防止再次污染;第二装置(400)用于带离污染源附近气体,污染气体通过小孔(410)进入环形腔体(420),并由排气通道(200)的抽排动力排到远离的环境中。还公开了一种镜片防污染方法。曝光前,先开启第一装置(300),再开启第二装置(400),曝光结束12小时后可关闭第二装置(400)。这种装置和方法能够更好地解决光刻胶有机物挥发污染镜片的问题,安装简便、寿命长、成本低、可靠性高,并保证污染物完全清除,不进入物镜内部。

Description

镜片防污染装置及方法 技术领域
本发明涉及光学技术领域,特别涉及一种镜片防污染装置及方法。
背景技术
光刻是半导体制造过程中一道非常重要的工序,它是将一系列掩膜版上的芯片图形通过曝光依次转移到硅片相应层上的工艺过程,被认为是大规模集成电路制造中的核心步骤。半导体制造中一系列复杂而耗时的光刻工艺主要由相应的光刻机来完成。
光刻机在曝光过程中,硅片表面的光刻胶中的有机溶剂受热后会慢慢的挥发,挥发出来的有机物会粘附在物镜下表面的镜片上,所述粘附物直接影响物镜中光的透过率,进而影响产品的成像质量。由于物镜下表面的最后一个镜片距离硅片表面的距离很小,挥发的有机物很容易就粘附在镜片表面。
如图1所示,现有的光刻机多采用在物镜的下表面镜座101安装物镜保护膜102的方法来阻止有机物污染镜片,但是,保护膜防污染装置和方法尚有许多不足之处。首先,保护膜的正常使用寿命是由透过的光的能量决定的,即使正常使用,在365nm和436nm紫外光的照射下,保护膜寿命也只能承受500000J/cm2的能量,更换频率为一到两个月一次。其次,保护膜价格昂贵,以每个保护膜的价格为1500元人民币计算,正常的损耗为9000-18000元/年,频繁的更换更是增加了使用成本。此外,由于硅片表面和物镜下表面的距离只有40mm,因此更换保护膜是一个难度较高的工作,在更换过程中保护膜很容易爆裂;另外由于膜的厚度很薄,外界气压的变化也会引起保护膜的破裂,目前非正常的损坏率高达15%,如果保护膜在使用过程中不慎破裂,会使正在成像的镜片受到污染,严重的情况下甚至成像失败。更为重要的是,实践 已经证明:由于安装结构的限制,保护膜并不能完全阻止从光刻胶挥发的有机物对镜片的污染;甚至,由于保护膜不能完全保证清除挥发有机物,整个光刻机内部都可能存在被污染的部件,例如物镜腔体内部的镜片、上表面镜片、硅片表面和掩模表面等对洁净度有要求的部件,由于光刻机是精密高端设备,这会给使用者造成更严重的损失。
因此,需要一种可以更好解决光刻胶有机物挥发污染镜片的装置和/或方法。
发明内容
本发明的目的在于提供一种镜片防污染装置及方法,以更好解决现有的污染控制不到位以及污染物镜腔体内部问题。
为解决上述技术问题,本发明提供一种镜片防污染装置,所述镜片防污染装置包括第一装置及与所述第一装置相连的第二装置,所述第一装置相对于所述第二装置更靠近镜片;其中,所述第一装置用于输出保护层气体,在所述镜片表面形成气帘保护层;所述第二装置用于对上述保护层气体和/或污染气体的抽排。
可选的,在所述的镜片防污染装置中,所述镜片防污染装置还包括排气通道,所述第一装置和所述第二装置分别连接所述排气通道。
可选的,在所述的镜片防污染装置中,所述排气通道连接有抽排动力。
可选的,在所述的镜片防污染装置中,所述保护层气体是纯度达到或超过99.999%的气体。
可选的,在所述的镜片防污染装置中,所述第一装置包括一个闭合容器。
可选的,在所述的镜片防污染装置中,所述闭合容器带有进气口和喷 嘴,所述保护层气体通过所述进气口进入所述闭合容器的内部,并通过所述喷嘴输出。
可选的,在所述的镜片防污染装置中,所述第二装置包括一个环形腔体。
可选的,在所述的镜片防污染装置中,所述环形腔体下表面有若干小孔。
可选的,在所述的镜片防污染装置中,所述小孔之间的距离相等。
本发明还提供了一种镜片防污染方法,包括以下:
步骤1,靠近镜片下表面处输出保护层气体,在所述镜片表面形成气帘保护层;
步骤2,靠近污染源处吸抽上述保护层气体和/或污染气体,并排出至远离镜片的环境。
可选的,在所述的镜片防污染方法中,所述镜片为光刻机的镜片,在所述步骤1中,所述保护层气体输出在光刻机曝光前至曝光结束后持续进行。
可选的,在所述的镜片防污染方法中,所述镜片为光刻机的镜片,在所述步骤2中,所述保护层气体和/或所述污染气体的吸抽及排出在光刻机曝光时至曝光结束后持续进行。
在本发明提供的镜片防污染装置及方法中,通过靠近镜片的第一装置输出保护层气体,形成保护层以防止镜片污染;进一步地,保护层气体还可以带离已污染的镜片上的污染物。通过远离镜片的第二装置,带离污染源附近气体,令污染物直接排到远离镜片的外部环境;进一步的,还可以使光刻机系统的各精密部件得到保护;在光刻机曝光时,开启两路气体通道,可进行双重保证,可靠性高。
附图说明
图1是现有的镜片防污染保护膜;
图2是本发明第一实施例中第一装置示意图;
图3是本发明第一实施例中第二装置剖面示意图;
图4是本发明第一实施例中第二装置示意图;
图5是本发明第二实施例中第一装置和第二装置分解结构示意图;
图6是本发明第一装置和第二装置与镜片的装配示意图。
其中,附图1~6的附图标记说明如下:
100-镜片;101-镜座;102-保护膜;200-排气通道;300-第一装置;310-进气口;320-闭合容器;330-喷嘴;400-第二装置;410-小孔;420-环形腔体;500-硅片;600-隔板。
具体实施方式
本发明的核心思想在于提供一种镜片防污染装置及方法,以解决现有的保护膜使用难度大,成本高,容易破裂,污染控制不到位以及污染物镜腔体内部问题。本发明有别于现有技术的防污染保护装置和方法,通过利用气体流通装置,使污染物与镜片隔离并将污染物从污染源头直接带离物镜各部件的方法,更好解决镜片污染。本发明所述的镜片防污染装置及方法不仅仅用于防止物镜下表面镜片污染,还可以用于保护整个光刻机内部可能被污染的部件,例如物镜内部镜片,对准镜片,上表面镜片,硅片表面和掩膜表面等对洁净度有要求的部件。虽然本发明说明书中仅对物镜下表面镜片的防污染装置和方法进行说明,然而本领域技术人员容易理解,也可以从本发明技术方案中提取想要的装置和方法并加以组合,能够实现同样的技术效果。
为实现上述思想,本发明提供了一种镜片防污染装置及方法,所述镜片防污染装置包括输出保护层气体的第一装置及带离污染源附近气体的第二装 置;所述镜片防污染方法通过靠近镜片下表面处输出保护层气体,靠近污染源处吸抽气体,并排出所述气体至远离镜片的环境来实现镜片防污染的技术效果。
以下结合附图和具体实施例对本发明提出的镜片防污染装置及方法作进一步详细说明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
本发明的镜片防污染装置基本设置在硅片和物镜之间,为了方便描述,下文中的“上”或者“上方”表示沿镜片的轴向靠近物镜的一侧,“下”或者“下方”表示沿镜片的轴向靠近硅片的一侧;“内侧”或者“内边”表示沿镜片的径向靠近镜片中心的一侧,“外侧”或者“外边”表示沿镜片的径向远离镜片中心的一侧。
<实施例一>
如图2、3和4所示,本实施例公开了一种镜片防污染装置,所述镜片可以是光刻机物镜的镜片,也可以是其他如显微镜等光学设备的镜片,所述污染物可以是光刻胶挥发有机物,可以是水蒸气、灰尘、漂浮的微生物等多种影响透光率的空气杂质。
请结合参阅图6,本实施例的镜片防污染装置包括第一装置300及与第一装置相连的第二装置400,所述第一装置300靠近所述镜片100,所述第二装置400远离所述镜片100;其中,所述第一装置300输出保护层气体,在所述镜片表面形成气帘保护层,清理已污染的镜片并使气体形成保护层以防止再次污染;所述第二装置400用于对上述保护层气体和/或污染气体的抽排,带离污染源附近气体远离镜片,所述气体保护层可以是纯度达到一定要求的气体,其纯度至少达到99.999%,如高纯氮气,或其他高纯度气体。
本实施例的镜片防污染装置还包括排气通道200,所述第一装置300和所述第二装置400分别连接所述排气通道200。所述排气通道200带有抽排动力。排气通道200用于抽排从外界环境中进入第一装置300或本来在第一装置300中的气体,和从外界环境进入第二装置400或本来在第二装置400中的气体。排气通道200处的抽排动力最好足以使第一装置300和/或第二装置400中的气体从外界环境中进入并流过第一装置300和/或第二装置400,并达到排气通道200处并排出,而不会逆向流动,并且保持一定的流速,优选的,流速为3m/s。排气通道200也可以在中间有一隔板,使排气通道200形成两个腔室,一个和第一装置300相通,另一个和第二装置400相通,也可以形成一个与第一装置300和第二装置400都相通的腔室。
具体的,所述第一装置300包括一个闭合容器320。闭合容器320位于镜片100边缘下表面、远离排气通道200的一端,闭合容器320为扇环型气帘腔体,大致包括:上下布置的两个扇环面,径向布置的内边弧面和外边弧面,以及连接所述扇环面和内/外边弧面的两个端面。所述闭合容器320的内边半径(即内边弧面对应的半径)与镜片100半径匹配,优选为与镜片100半径一致,外边半径(即外边弧面对应的半径)只要不影响物镜和/或其他装置的装配关系即可,优选的,大于镜片100半径2-3cm;内边弧面的弧长为镜片100的半圆周到四分之一圆周之间,优选地,内边弧面的弧长为镜片100的三分之一圆周,所述的闭合容器320的内边弧面紧贴放置在镜片100边缘外侧表面,并且,所述闭合容器320径向方向与镜片100的径向方向重合。
如图2所示,在本实施例的镜片防污染装置中,所述闭合容器320带有进气口310和喷嘴330。进气口310大致位于闭合容器320的外边弧面的中心点上,是垂直于外边弧面的一个圆柱体,进气口310一端连接产生气体的装置,进气口310也可以是垂直于外边弧面的其他形状,如长方体等。喷嘴330 均匀分布在闭合容器320内边弧面的表面,由多个小孔构成,喷嘴330的形状可以在不同的使用情况下选择不同形状,如圆形或方形等,在本实施例中可以看到,是圆形小孔;另外,喷嘴330小孔的数量可根据需要选择;小孔之间的距离可以是均匀的,使保护层气体可均匀的分布在镜片100的表面,也可以不是均匀的,比如,因为中间的气流流过的路径更长,所以中间若干个小孔间距离较小,两边的小孔间距离较大,以让中间的保护层气体气流更强;小孔排列成一排,也可以排成多排,主要取决于小孔的数量的需要和闭合容器320内边弧面的高度(沿镜片轴向延伸的距离)。由于排气通道200的抽排动力,保护层气体从进气口310被吸入,通过闭合容器320,并通过喷嘴330输出,流过镜片100下表面后顺排气通道200排出。
如图3-4所示,所述第二装置400包括一个环形腔体420。环形腔体420内径不小于镜片100的直径,不能遮挡镜片100以影响曝光,环形腔体420上表面环绕并紧贴在镜片100和第一装置300下表面边缘,环形腔体420下表面直接面对硅片500。
在本实施例的镜片防污染装置中,所述环形腔体420下表面有若干小孔410。进一步地,所述小孔410之间的距离相等。所述小孔正对硅片500上光刻胶污染源,小孔的形状可以是圆形、方形等各种形状,数量可根据气体流量的大小和污染物挥发的严重程度而选择,各个小孔之间的距离应相等,以对污染源各处的气体的吸力强度相等,小孔排列成一排,也可以排成多排,主要取决于小孔的数量的需要和环形腔体420的环宽。其中,由于排气通道200的抽排动力,环形腔体420的下表面正对的硅片500上的光刻胶有机物挥发气体被吸入到小孔410中,进入环形腔体420,再从环形腔体420中流过,直接到达排气通道200处,被排出到远离镜片100的外部环境中。
<实施例二>
如图5及图6所示,本实施例二与实施例一的主要差别在于:第一装置300和第二装置400可以一体成型,构成一个整体。例如,可以通过在环形隔板600(优选为环形薄板)的上下表面分别形成凸起的容器来制作一体化的第一和第二装置。隔板600上表面可用于形成所述闭合容器320,所述的闭合容器320为扇环形,弧长大约为隔板600的半个圆周,可以取隔板600四分之一周到半周之间的值,闭合容器320的内径和外径与隔板600的内径和外径相等;所述隔板600的下表面可用于形成所述环形腔体420,所述的环形腔体420为整个圆环形,内径和外径与隔板600相等。
本实施例中,排气通道200、进气口310、小孔410及喷嘴330的形状,位置关系和功能以及气体通道的路径、方向及气流动力及产生方式与上个实施例相同或相似,本实施例中不予详细说明,具体可参考上一实施例中的说明。
综上,上述实施例对镜片100防污染装置的不同构型进行了详细说明,当然,本发明包括但不局限于上述实施中所列举的构型,任何在上述实施例提供的构型基础上进行变换的内容,均属于本发明所保护的范围。本领域技术人员可以根据上述实施例的内容举一反三。
<实施例三>
本发明还提供了一种镜片防污染方法,包括以下步骤:
步骤1,靠近镜片下表面处输出保护层气体,在所述镜片表面形成气帘保护层;
步骤2,靠近污染源处吸抽上述保护层气体和/或污染气体,并排出至远离镜片的环境。
进一步地,在步骤1中,所述保护层气体输出在光刻机曝光前和结束后持续进行。
进一步地,在步骤2中,所述保护层气体和/或所述污染气体的吸抽及排出在光刻机曝光时至曝光结束后持续进行。
所述污染气体抽排通道在光刻机曝光结束12小时后关闭以节省成本和能耗,保护层气体可以一直开启,以形成持续的保护层,还可以防止空气中的其他污染物及杂质污染镜片100。
其中,保护层气体流通通道以第一装置300及排气通道200为通道,路径方向为进气口310,到闭合容器320,到喷嘴330到镜片100下表面,到排气通道200后排出到外界环境;污染气体抽排通道以第二装置400及排气通道200为通道,路径方向为小孔410,到环形腔体420,到排气通道200后排出到外界环境。保护层气体为纯度达到或超过99.999%的气体。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (12)

  1. 一种镜片防污染装置,其特征在于,所述镜片防污染装置包括第一装置及与所述第一装置相连的第二装置,所述第一装置相对于所述第二装置更靠近镜片;其中,
    所述第一装置用于输出保护层气体,在所述镜片表面形成气帘保护层;
    所述第二装置用于对上述保护层气体和/或污染气体的抽排。
  2. 如权利要求1所述的镜片防污染装置,其特征在于,所述镜片防污染装置还包括排气通道,所述第一装置和所述第二装置分别连接所述排气通道。
  3. 如权利要求2所述的镜片防污染装置,其特征在于,所述排气通道连接有抽排动力。
  4. 如权利要求1所述的镜片防污染装置,其特征在于,所述保护层气体是纯度达到或超过99.999%的气体。
  5. 如权利要求1所述的镜片防污染装置,其特征在于,所述第一装置包括一个闭合容器。
  6. 如权利要求5所述的镜片防污染装置,其特征在于,所述闭合容器带有进气口和喷嘴,所述保护层气体通过所述进气口进入所述闭合容器的内部,并通过所述喷嘴输出。
  7. 如权利要求1所述的镜片防污染装置,其特征在于,所述第二装置包括一个环形腔体。
  8. 如权利要求7所述的镜片防污染装置,其特征在于,所述环形腔体下表面有若干小孔。
  9. 如权利要求8所述的镜片防污染装置,其特征在于,所述小孔之间的距离相等。
  10. 一种镜片防污染方法,其特征在于,所述镜片防污染方法包括:
    步骤1,靠近镜片下表面处输出保护层气体,在所述镜片表面形成气帘保护层;
    步骤2,靠近污染源处吸抽上述保护层气体和/或污染气体,并排出至远离镜片的环境。
  11. 如权利要求10所述的镜片防污染方法,其特征在于,所述镜片为光刻机的镜片,在所述步骤1中,所述保护层气体输出在光刻机曝光前至曝光结束后持续进行。
  12. 如权利要求10所述的镜片防污染方法,其特征在于,所述镜片为光刻机的镜片,在所述步骤2中,所述保护层气体和/或所述污染气体的吸抽及排出在光刻机曝光时至曝光结束后持续进行。
PCT/CN2017/099513 2016-08-30 2017-08-29 镜片防污染装置及方法 WO2018041099A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
SG11201901811RA SG11201901811RA (en) 2016-08-30 2017-08-29 Lens contamination prevention device and method
JP2019510647A JP6954996B2 (ja) 2016-08-30 2017-08-29 レンズ汚染防止装置および方法
EP17845401.3A EP3508920A4 (en) 2016-08-30 2017-08-29 DEVICE AND METHOD FOR PREVENTING OBJECTIVE POLLUTION
US16/329,496 US10539887B2 (en) 2016-08-30 2017-08-29 Lens contamination prevention device and method
KR1020197009167A KR102212629B1 (ko) 2016-08-30 2017-08-29 렌즈 오염 방지 장치 및 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610767140.0 2016-08-30
CN201610767140.0A CN107783283B (zh) 2016-08-30 2016-08-30 镜片防污染装置及方法

Publications (1)

Publication Number Publication Date
WO2018041099A1 true WO2018041099A1 (zh) 2018-03-08

Family

ID=61300017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099513 WO2018041099A1 (zh) 2016-08-30 2017-08-29 镜片防污染装置及方法

Country Status (8)

Country Link
US (1) US10539887B2 (zh)
EP (1) EP3508920A4 (zh)
JP (1) JP6954996B2 (zh)
KR (1) KR102212629B1 (zh)
CN (1) CN107783283B (zh)
SG (1) SG11201901811RA (zh)
TW (1) TWI639062B (zh)
WO (1) WO2018041099A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10946838B2 (en) 2019-03-21 2021-03-16 Ford Global Technologies, Llc Cleaning apparatus for sensor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109283797B (zh) * 2017-07-21 2021-04-30 上海微电子装备(集团)股份有限公司 物镜保护装置、物镜系统以及光刻设备
CN110764368A (zh) * 2018-07-27 2020-02-07 上海微电子装备(集团)股份有限公司 物镜防污染装置
CN110620858B (zh) * 2019-09-11 2024-03-22 昆山丘钛微电子科技有限公司 镜头保护元件、摄像头模组及摄像头模组的制造方法
CN112748641B (zh) * 2019-10-31 2022-08-12 上海微电子装备(集团)股份有限公司 镜片底部气帘防护装置
CN112718702A (zh) * 2020-12-30 2021-04-30 中国科学院微电子研究所 可控微透镜阵列清洁装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010048510A1 (en) * 2000-05-29 2001-12-06 Ahn Yo-Han Air shower head of photolithography equipment for directing air towards a wafer stage
US20020000519A1 (en) * 2000-04-14 2002-01-03 Masami Tsukamoto Contamination prevention in optical system
CN101034261A (zh) * 2006-03-09 2007-09-12 中芯国际集成电路制造(上海)有限公司 防止由阻挡处理对光学元件的污染的方法和设备
CN202837812U (zh) * 2012-11-01 2013-03-27 张添祥 应用于步进式曝光机的镜头组

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE412127B (sv) * 1978-06-15 1980-02-18 Aga Ab Anordning for ett optiskt element
WO2001084241A1 (en) * 2000-05-03 2001-11-08 Silicon Valley Group, Inc. Non-contact seal using purge gas
US6934003B2 (en) * 2002-01-07 2005-08-23 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method
US7057702B2 (en) * 2004-06-23 2006-06-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
DE102005020521B4 (de) * 2005-04-29 2013-05-02 Xtreme Technologies Gmbh Verfahren und Anordnung zur Unterdrückung von Debris bei der Erzeugung kurzwelliger Strahlung auf Basis eines Plasmas
CN104887311A (zh) * 2014-03-04 2015-09-09 镇江市新天医疗器械有限公司 口腔牙科手术显微镜光学镜头表面除雾器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020000519A1 (en) * 2000-04-14 2002-01-03 Masami Tsukamoto Contamination prevention in optical system
US20010048510A1 (en) * 2000-05-29 2001-12-06 Ahn Yo-Han Air shower head of photolithography equipment for directing air towards a wafer stage
CN101034261A (zh) * 2006-03-09 2007-09-12 中芯国际集成电路制造(上海)有限公司 防止由阻挡处理对光学元件的污染的方法和设备
CN202837812U (zh) * 2012-11-01 2013-03-27 张添祥 应用于步进式曝光机的镜头组

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3508920A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10946838B2 (en) 2019-03-21 2021-03-16 Ford Global Technologies, Llc Cleaning apparatus for sensor

Also Published As

Publication number Publication date
KR20190043168A (ko) 2019-04-25
EP3508920A1 (en) 2019-07-10
CN107783283A (zh) 2018-03-09
US20190187561A1 (en) 2019-06-20
SG11201901811RA (en) 2019-04-29
CN107783283B (zh) 2020-01-24
TW201812485A (zh) 2018-04-01
EP3508920A4 (en) 2019-09-04
JP6954996B2 (ja) 2021-10-27
TWI639062B (zh) 2018-10-21
JP2019525259A (ja) 2019-09-05
US10539887B2 (en) 2020-01-21
KR102212629B1 (ko) 2021-02-04

Similar Documents

Publication Publication Date Title
WO2018041099A1 (zh) 镜片防污染装置及方法
US7986395B2 (en) Immersion lithography apparatus and methods
JP6898867B2 (ja) 膜アセンブリを製造するための方法
US20160139501A1 (en) Mask Including Pellicle, Pellicle Repairing Apparatus, and Substrate Manufacturing Equipment
KR20110013705A (ko) 블로잉을 이용한 포토 마스크의 세정 방법 및 장치
KR102370165B1 (ko) 대물 렌즈 보호 장치, 대물 렌즈 시스템 및 리소그래피 장치
US11467508B2 (en) Pellicle adhesive residue removal system and methods
JP2002158153A (ja) 露光装置およびペリクル空間内ガス置換方法
JP6702672B2 (ja) インプリント装置、物品の製造方法及び供給装置
JP5533227B2 (ja) 露光装置
CA3124165A1 (en) Method of manufacturing a membrane assembly
US20080199783A1 (en) Double-Decker Pellicle-Mask Assembly
TW201331103A (zh) 逆止閥
KR102008057B1 (ko) 펠리클 제조방법
US11703754B2 (en) Particle prevention method in reticle pod
TW201921420A (zh) 管狀靜電裝置
JP4496862B2 (ja) 減圧乾燥装置
US20220382143A1 (en) Particle prevention method in reticle pod
JP2004310068A (ja) 不要膜除去装置及びマスクブランクスの製造方法
JP2007144361A (ja) 減圧乾燥装置及び減圧乾燥方法
TWM457902U (zh) 應用於步進式曝光機的鏡頭模組

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845401

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019510647

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197009167

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017845401

Country of ref document: EP

Effective date: 20190401