WO2018040347A1 - Co-Cr-W合金及其加工方法和应用 - Google Patents
Co-Cr-W合金及其加工方法和应用 Download PDFInfo
- Publication number
- WO2018040347A1 WO2018040347A1 PCT/CN2016/108632 CN2016108632W WO2018040347A1 WO 2018040347 A1 WO2018040347 A1 WO 2018040347A1 CN 2016108632 W CN2016108632 W CN 2016108632W WO 2018040347 A1 WO2018040347 A1 WO 2018040347A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alloy
- alloy according
- processing
- mpa
- content
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/07—Alloys based on nickel or cobalt based on cobalt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/14—Making metallic powder or suspensions thereof using physical processes using electric discharge
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/10—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
Definitions
- the present invention belongs to the technical field of cobalt-based alloys for medical devices, and in particular relates to a Co-Cr-W alloy and a processing method and application thereof.
- a Co-based alloy for living organisms that satisfies the above requirements is disclosed in Japanese Patent Publication No. 2007-162121, which discloses an alloy containing Co-20Cr-15W-10Ni as a main component (ASTM specification F90).
- ASTM F90 alloy hereinafter referred to as ASTM F90 alloy
- Co 30-60% ⁇ Ni in mass ⁇ 3 ⁇ 4
- Japanese Patent Publication No. 2007-517536 discloses a stent made of a Co-based alloy for a living body, which is composed of an alloy obtained by adding at least one of Zr, Ta, and Mo to 20% or more of Ti.
- ASTM F90 alloy is widely used in stents for very small blood vessels such as aortic stents, coronary artery stents, and bile duct stents because of its excellent characteristics.
- the alloys described in the ASTM F90 alloy or the Japanese Patent Publication No. 2007- 517121 and the Japanese Patent Publication No. 2007-517536 contain a large amount of Ni, which is a cause of Ni allergy. Therefore, it is sought to be excellent in many of the above characteristics without being contained in Ni.
- the material for the bracket is
- Cida 201310062930.5 discloses a Co-based alloy for a living body and a stent, and the Co-based alloy for the organism is a Co-based alloy for Co-Cr-W-Fe-based organisms.
- the alloy consists of Cr: 5 ⁇ 30 mass ⁇ 3 ⁇ 4, W: 5 ⁇ 20 mass ⁇ 3 ⁇ 4, Fe: 1 ⁇ 15 mass ⁇ 3 ⁇ 4, balance is Co and inevitable The composition of the impurities.
- This patent describes a nickel-free cobalt-based alloy which is considered to be an ideal material for stent materials due to its good modulus of elasticity, biocompatibility and good processing properties.
- the alloys prepared by casting or additive manufacturing of the alloys described in the above three patents are relatively coarse, and the mechanical properties and wear resistance of the alloy are low, and it is difficult to ensure that the alloy is required as a material for artificial joints and surgical instruments. Hardness and high wear resistance.
- the present invention provides a Co-Cr-W alloy and a processing method thereof.
- a Co-Cr-W alloy comprising the following components in mass percent:
- the processing method of the Co-Cr-W alloy includes at least the following steps
- the processed bar is subjected to a milling process.
- the Co-Cr-W alloy provided by the above embodiments of the present invention increases the alloy ⁇ phase by adding carbon to the Co-Cr-W, so that the alloy has a biocompatible homologous to form a dispersed carbide.
- the stability, especially the Zr element repairs the passivation film on the surface of the alloy, and compensates for the Cr and W elements at the interface between the carbide and the alloy matrix. Insufficient, improve the corrosion resistance at the interface, and because the alloy contains TN, Si, Zr not only can improve the biocompatibility of the Co-based alloy, but also improve the elastic modulus, tensile strength and wear resistance of the alloy.
- the processing method of the Co-Cr-W alloy provided by the embodiment of the invention homogenizes the alloy obtained by the smelting, so that the components of the alloy are uniform, the carbides and nitrides are dispersed, and the obtained alloy has uniform properties. stable.
- the Co-Cr-W alloy provided by the above embodiments of the present invention has a large amount of Cr , exhibits good biocompatibility, and has a high modulus of elasticity due to a large amount of carbides and nitrides dispersed. It has the characteristics of large tensile strength and good wear resistance, and is suitable as a processing material and artificial joint material for surgical instruments. Brief description of the drawing
- FIG. 5 is a view of a Co-20Cr-15W-3Fe, Co-20Cr-15W-lFe, Co-32cr-4W, Co-32 Cr-4W-0.4C-0.3N Co-32Cr-4W- according to an embodiment of the present invention.
- Embodiments of the present invention provide a Co-Cr-W alloy.
- the Co-Cr-W alloy comprises the following components in mass percent:
- Cr improves the corrosion resistance and biocompatibility of the alloy, and forms a large amount of carbide with C to improve the wear resistance and mechanical properties of the alloy, and the formation of a large amount of carbides reduces the alloy matrix.
- the C r content does not produce a brittle ⁇ phase (CoCr) in the alloy.
- the content of W in the range of 3-5% can improve the corrosion resistance of the alloy grain boundary, solid solution strengthening, a part of the same solid solution in the carbide, stabilize the chemical properties of the carbide, improve the hardness of the carbide Improve the mechanical properties of the alloy. Since the content of Cr and C in the alloy is high, and the bonding ability of W and C elements is strong, when the W content is higher than 5% ⁇ , the amount of carbide formation is too large, resulting in a decrease in alloy toughness.
- C element can be dissolved in the matrix to stabilize the high temperature ⁇ phase, improve the elongation and processing properties of the alloy, and the remaining C can form a large amount of carbide with Cr, W, Si, etc., distributed in the alloy matrix and grain boundaries. , inhibit the growth of alloy grains and improve the wear resistance and mechanical properties of the alloy. If the carbon content is less than 0.2%, the Cr content in the alloy matrix is still high due to insufficient carbide formation, which leads to easy formation of ⁇ phase in the alloy matrix and lower alloy. The toughness, carbon content is higher than 0.6% ⁇ , the formation of carbides in the matrix will consume too much Cr, which will reduce the corrosion resistance of the alloy.
- N is similar to C and can be dissolved in a matrix to stabilize the high-temperature ⁇ phase, which improves the elongation and processing properties of the alloy.
- the remaining bismuth can form a large amount of nano-nitride with Cr, which improves the mechanical properties of the alloy.
- Si is used as an oxygen scavenger in the alloy smelting process, and the solid solution strengthening effect on the alloy.
- Si content exceeds 0.8 ⁇ 3 ⁇ 4 ⁇ , a relatively brittle ⁇ phase is generated in the alloy, and the toughness of the alloy is lowered.
- Zr can repair the passivation film on the surface of the alloy, improve the corrosion resistance of the alloy, and further prevent the metal ions of the alloy from being precipitated in the living body.
- the Zr element does not participate in the reaction of the carbide, but the Zr element compensates for the deficiency of the Cr and W elements at the interface between the carbide and the alloy substrate, and improves the corrosion resistance at the interface.
- the mass percentage of Zr is 0.01 to 0.1%.
- the Zr content is generally controlled at 0.1%-down; and when the Zr content is less than 0.01%, it compensates for the carbide and The insufficiency of the Cr and W elements at the interface of the alloy substrate is not significant in improving the corrosion resistance at the interface.
- the obtained alloy should satisfy: Vickers (HV) hardness ⁇ 430, tensile strength ⁇ 1380 MPa, 0.2% yield] strength ⁇ 940 MPa.
- the Co-Cr-W alloy provided by the above embodiments of the present invention increases the alloy ⁇ phase by adding carbon to the Co-Cr-W, so that the alloy has a biocompatible homologous to form a dispersed carbide.
- the stability, especially the Zr element repairs the passivation film on the surface of the alloy compensates for the deficiency of Cr and W elements at the interface between the carbide and the alloy matrix, improves the corrosion resistance at the interface, and because the alloy contains TN, Si, Zr not only improves the biocompatibility of Co-based alloys, but also increases the elastic modulus, tensile strength and wear resistance of the alloy.
- the present invention further provides a processing method of the alloy based on the Co-Cr-W alloy formulation component provided in the above embodiments.
- the method for processing the Co-Cr-W alloy includes at least the following steps, and weighing the components according to the formulation of the Co-Cr-W alloy as described above;
- processing the bar [0058] processing the bar; [0059] The processed bar is subjected to a milling process.
- the alloy has a melting temperature of 1450 to 1600 °C. Within this temperature range, melting of all metal components can be achieved. When the temperature exceeds 1600 ° C, it will cause energy waste.
- the temperature of the homogenization treatment is 1250 to 1400 °C.
- the heating rate is 10 ⁇ 30°C/min, and the heating rate is lower than 10°C/min, which will cause the heat treatment to increase the cost too long.
- the heating rate is higher than 30°C/min, which will easily overheat and cause the sample to melt.
- the protective atmosphere here is generally an inert gas such as nitrogen, argon, helium or the like.
- the obtained alloy melt is poured into a corundum mold and naturally cooled in a high pressure inert gas, and the cooling rate is too slow (eg, with furnace cooling), which may result in an alloy matrix.
- the coarsening of the carbides results in a decrease in the processing properties of the alloy.
- the carbides can be uniformly refined and distributed, and the mechanical properties and processing properties of the alloy are ensured, and the alloys are formed by cooling the alloy.
- the alloy bar is processed, it is machined to make the bar suitable for bar with plasma rotating electrode.
- a high carbon content alloy powder is prepared by a plasma rotating electrode, and the alloy powder is subjected to sieving treatment, so that the obtained powder is suitable for use in 3D printing.
- the final powder has a particle size of 40 ⁇ 14 ⁇ and a D50 of 75-85.
- the alloy component is prepared by electron melt additive. A large amount of carbides and nitrides in the manufactured additive alloy parts are dispersed, thereby solving the problems of insufficient mechanical properties and hardness after the manufacture of the conventional cobalt alloy additive.
- the processing method of the Co-Cr-W alloy provided by the embodiment of the invention homogenizes the alloy obtained by the smelting, so that the components of the alloy are uniform, the carbides and nitrides are dispersed, and the obtained alloy has uniform properties. stable.
- Example 1-10 only the Co, Cr, W, and C ⁇ were contained in the composition, and the obtained alloy had a 0.2% yield strength of 905 to 931 MPa and a Vickers (HV) hardness of 394 to 427.
- the tensile strength is 1270 ⁇ 1375MPa.
- an N element was added. After the addition of N element, the 0.2% yield strength of the alloy exceeds 935 MPa, the highest can reach 975 MPa, the Vickers hardness also reaches 430 or more, and the tensile strength reaches 1380 MPa, and the highest is 1410 MPa.
- the Si element is added, and the addition of the Si element has no significant effect on the mechanical properties of the alloy.
- the Si mainly functions to remove oxygen, and avoids pitting or pores which may occur in the alloy containing oxygen.
- Zr element was added. The Zr element repaired the passivation film on the surface of the alloy, improved the corrosion resistance of the alloy, and prevented the metal ion precipitation of the alloy in the living body.
- Examples 16 to 17 are Chinese Patent Application No. 201310062930.5, which discloses a Co-based alloy for a living body and a stent. As can be seen from Table 1, the physical properties of the alloy are in accordance with the embodiment of the present invention. Than, the gap is far. It is also from the side that the alloy of the embodiment of the invention is very suitable for use in living organisms.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials For Medical Uses (AREA)
- Manufacturing & Machinery (AREA)
Abstract
一种Co-Cr-W合金,包括质量百分含量如下的组分: Co58~70%;Cr 30~35%;W 3~5%; C0.3~0.6%;N 0.2~0.3%;Si 0.1~0.8%;Zr 0~0.1%;其中,所述Zr的含量不取0值。这种Co-Cr-W合金由于大量的碳化物、氮化物弥散分布,基体内含有大量的Cr,表现出良好的生物相容性,而且具有弹性模量高、拉伸强度大及耐磨性好等特点,适合作为手术用具的加工材料和人工关节材料。
Description
Co-Cr-W合金及其加工方法和应用 技术领域
[0001] 本发明属于医疗器具钴基合金技术领域, 特别涉及一种 Co-Cr-W合金及其加工 方法和应用。
背景技术
[0002] 随着现代科技的不断发展, 医疗水平也越来越发达, 生物材料作为生命科学研 究最重要的一个领域, 人体大多数器官都可以被人造器官等植入生物体内的医 疗器具所替代, 如人体的骨骼、 心脏起搏器等人体硬组织可以用金属钛合金、 铬合金替代。 由于植入生物体内的医疗器具、 合金或与生物体表面直接接触, 因此, 要求这些医疗器具具有高耐腐蚀性和生物相容性。 另外, 当这些医疗器 具作为人工关节材料吋, 要求其具有高强度和高耐磨性。
[0003] 目前满足上述要求的生物体用 Co基合金有日本特幵 2007-162121专利, 该专利 公布了以 Co-20Cr-15W-10Ni为主要成分的合金 (ASTM规格 F90
: 以下简称为 ASTM F90合金)或以质量<¾计具有 Co : 30-60% ^ Ni
: 4-20% ^ Cr: 13-25% ^ C: 0.3%以下、 Si : 2.0%以下、 Mn: 2.0%以下的 组成的合金等。 日本特表 2007-517536号专利公布了一种以生物体用 Co基合金的 支架, 该支架由在 20%以上的 Ti中添加 Zr、 Ta、 Mo中的至少一种而得的合金构 成的管状主体, 规定上述合金的屈服强度、 磁化率和质量吸收系数的支架。
[0004] ASTM F90合金的由于具有上述优异特性, 被广泛应用在大动脉支架、 冠状动 脉支架、 胆管用支架等极细血管用支架材料。 但是, ASTM F90合金或专利文献 日本特幵 2007- 162121、 日本特表 2007-517536中记载的合金含有大量的 Ni, 成为 引起 Ni过敏的原因, 因而寻求在不含有 Ni的同吋上述诸多特性优异的支架用材 料。
[0005] 申请号为 201310062930.5的中国专利公布了一种生物体用 Co基合金及支架, 该生物体用 Co基合金为 Co-Cr-W-Fe类生物体用 Co基合金。 所述合金由 Cr : 5~30质量 <¾、 W: 5~20质量 <¾、 Fe: 1~15质量 <¾、 余量为 Co和不可避免的
杂质的组成。 该专利所记载的为一种无镍钴基合金, 由于其具有良好的弹性模 量、 生物相容性及良好加工性能, 被认为是支架材料理想材料。
[0006] 但是, 上述三篇专利记载的合金通过铸造或增材制造制备的合金晶粒比较粗大 , 合金的力学性能及耐磨性较低, 难以保证合金作为人工关节及手术器械材料 要求的高硬度和高耐磨性的特性。
技术问题
[0007] 针对目前生物体用 Co基合金存在的合金力学性能不佳、 耐磨性能较低等问题 , 本发明实施例提供一种 Co-Cr-W合金及其加工方法。
问题的解决方案
技术解决方案
[0008] 为了实现上述发明目的, 本发明的技术方案如下:
[0009] 一种 Co-Cr-W合金, 包括质量百分含量如下的组分:
[0010] Co 58-70%;
[0011] Cr 30-35%;
[0012] W 3-5%;
[0013] C 0.3-0.6%;
[0014] N 0.2-0.3%;
[0015] Si 0.1-0.8%;
[0016] Zr 0-0.1%; 其中, 所述 Zr的含量不取 0值。
[0017] 以及, 所述 Co-Cr-W合金的加工方法, 至少包括以下步骤
[0018] 按照如上所述的 Co-Cr-W合金的配方称取各组分;
[0019] 将称取的所述各组分进行熔炼处理;
[0020] 将所述熔炼后的合金进行均匀化、 浇注棒材处理;
[0021] 将所述棒材进行加工处理;
[0022] 将所述加工后的棒材进行制粉处理。
[0023] 本发明上述实施例提供的 Co-Cr-W合金, 通过向 Co-Cr-W中加入了碳元素, 使 得合金具有生物相容性的同吋形成弥散碳化物, 提高了合金 γ相的稳定性, 尤其 是 Zr元素修复合金表面的钝化膜、 弥补了碳化物与合金基体界面处的 Cr、 W元素
的不足, 提高界面处的抗腐蚀性能, 并且由于合金中包含 TN、 Si、 Zr不仅能够 提高 Co基合金的生物相容性, 而且还提高合金的弹性模量、 拉伸强度及耐磨性
[0024] 本发明实施例提供的 Co-Cr-W合金的加工方法, 将熔炼获得的合金进行均匀化 处理, 使得合金各个组分均匀, 碳化物、 氮化物弥散分布, 使获得的合金性能 均一稳定。
发明的有益效果
有益效果
[0025] 本发明上述实施例提供的 Co-Cr-W合金由于大量的碳化物、 氮化物弥散分布, 基体内含有大量的 Cr, 表现出良好的生物相容性, 而且具有弹性模量高、 拉伸 强度大及耐磨性好等特点, 适合作为手术用具的加工材料和人工关节材料。 对附图的简要说明
附图说明
[0026] 图 1为本发明实施例 Co-32Cr-xW(x=0~7mass<¾)合金的计算相图;
[0027] 图 2为本发明实施例 Co-32Cr-5W-XC(x=0.2~0.5<¾)合金的计算相图;
[0028] 图 3为本发明实施例 Co-32Cr-5W-xN(x=0.15~0.4<¾)合金的计算相图;
[0029] 图 4为本发明实施例 Co-32Cr-5W-0.4C-xN(x=0.15~0.4<¾)合金的计算相图;
[0030] 图 5为本发明实施例 Co-20Cr-15W-3Fe、 Co-20Cr-15W-lFe、 Co-32cr-4W、 Co-32 Cr-4W-0.4C-0.3N Co-32Cr-4W-0.4C-0.3N-0.05Zr合金的片状样品 (厚度 lmm、 长 50mm. 宽 10mm)在 5%乳酸溶液中 37°C、 6个月浸泡后的合金组成元素的析出离 子浓度比较图;
[0031] 其中,
[0032] 图 1相图中, L: 液相; γ: Co(M), M=Cr、 W; δ: CoCr(W); hep: Co(M), M
=Cr、 W; R: WCo(Cr); μ: WCo(M) , M=Cr;
[0033] 图 2相图中, L: 液相; γ: Co(M), M=Cr、 W; δ: CoCr(W); hep: Co(M), M
=Cr、 W; R: WCo(Cr); M 23C 6: Cr(M) 23C 6;
[0034] 图 3相图中, Gas: 气相; L: 液相; γ: Co(M), M=Cr、 W; δ: CoCr(W); R:
WCo(Cr); hep: Co(M), M=Cr、 W; hcp#2: Cr(M)N;
[0035] 图 4相图中, Gas: 气相; L: 液相; γ: Co(M), M=Cr、 W; δ: CoCr(W); R: WCo(Cr); hep: Co(M), M=Cr、 W; M 23C 6: Cr(M) 23C 6; μ: WCo(M), M=Cr ; hcp#2: Cr(M)N。 本发明的实施方式
[0036] 为了使本发明要解决的技术问题、 技术方案及有益效果更加清楚明白, 以下结 合实施例, 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施 例仅仅用以解释本发明, 并不用于限定本发明。
[0037] 本发明实施例提供一种 Co-Cr-W合金。 该 Co-Cr-W合金, 包括质量百分含量如 下的组分:
[0038] Co 58-70%;
[0039] Cr 30-35%;
[0040] W 3-5%;
[0041] C 0.3-0.6%;
[0042] N 0.2-0.3%;
[0043] Si 0.1-0.8%;
[0044] Zr 0-0.1%; 其中, 所述 Zr的含量不取 0值。
[0045] 在任一实施例中, Cr提高合金的抗腐蚀性能与生物相容性, 且可与 C形成大量 碳化物提高合金的耐磨损及力学性能, 由于形成大量碳化物会降低合金基体的 C r含量, 合金内不会产生脆性的 δ相 (CoCr)。
[0046] W的质量百分含量在 3-5%可提高合金晶界抗腐蚀性能, 固溶强化, 同吋一部分 以固溶于碳化物内, 稳定碳化物的化学特性, 提高碳化物的硬度, 提高合金力 学性能。 由于本合金内的 Cr、 C含量较高, 且 W与 C元素的结合能力较强, 当 W 含量高于 5%吋, 碳化物形成量太多, 导致合金韧性下降。
[0047] C元素可固溶于基体中稳定高温 γ相, 提高合金的延伸率与加工性能, 其余的 C 可与 Cr、 W、 Si等形成大量的碳化物, 分布于合金基体与晶界内, 抑制合金晶粒 长大, 提高合金的耐磨损及力学性能。 碳含量低于 0.2%吋, 由于碳化物形成量 不足, 合金基体内的 Cr含量仍然较高, 导致合金基体内容易产生 δ相, 降低合金
的韧性, 碳含量高于 0.6%吋, 基体内形成碳化物会消耗过多的 Cr, 会降低合金 的抗腐蚀性能。
[0048] N类似于 C可固溶于基体中稳定高温 γ相, 提高合金的延伸率与加工性能, 其余 的 Ν可与 Cr形成大量的纳米氮化物, 提高合金的力学性能。
[0049] Si用于合金熔炼过程的除氧剂, 同吋对合金起固溶强化作用, 当 Si含量超过 0.8 <¾吋, 会导致合金内产生较脆性的 δ相, 降低合金的韧性。
[0050] Zr可修复合金表面的钝化膜, 提高合金的抗腐蚀性, 进一步阻止合金在生体内 的金属离子析出。 Zr元素不参与碳化物的反应, 但 Zr元素会弥补碳化物与合金基 体界面处的 Cr、 W元素的不足, 提高该界面处的抗腐蚀性能。
[0051] 作为优选地, Zr的质量百分含量为 0.01~0.1%。 Zr含量 >0.1<¾吋, 会导致合金内 产生大量的脆性 δ相, 降低合金的韧性, 故 Zr含量一般控制在 0.1%—下; 而当 Zr 的含量小于 0.01%, 则对弥补碳化物与合金基体界面处的 Cr, W元素的不足, 提 高该界面处的抗腐蚀性能的效果不明显。
[0052] 在上述各组分的配合下, 获得的合金应当满足: 维氏 (HV)硬度≥430、 拉伸强度 ≥1380MPa、 0.2%屈]!强度≥940MPa。
[0053] 本发明上述实施例提供的 Co-Cr-W合金, 通过向 Co-Cr-W中加入了碳元素, 使 得合金具有生物相容性的同吋形成弥散碳化物, 提高了合金 γ相的稳定性, 尤其 是 Zr元素修复合金表面的钝化膜、 弥补了碳化物与合金基体界面处的 Cr、 W元素 的不足, 提高界面处的抗腐蚀性能, 并且由于合金中包含 TN、 Si、 Zr不仅能够 提高 Co基合金的生物相容性, 而且还提高合金的弹性模量、 拉伸强度及耐磨性
[0054] 本发明在上述实施例提供的 Co-Cr-W合金配方组分的基础上, 进一步提供了该 合金的一种加工方法。
[0055] 在一实施例中, 所述 Co-Cr-W合金的加工方法至少包括以下步骤, 按照如上所 述的 Co-Cr-W合金的配方称取各组分;
[0056] 将称取的所述各组分进行熔炼处理;
[0057] 将所述熔炼后的合金进行均匀化、 浇注棒材处理;
[0058] 将所述棒材进行加工处理;
[0059] 将所述加工后的棒材进行制粉处理。
[0060] 上述加工处理方法中, 在任何实施例, 合金的熔炼温度为 1450~1600°C。 在该 温度范围内, 可以实现全部金属组分的熔融。 当温度超过 1600°C, 则会造成能源 的浪费。
[0061] 熔炼后经过冷却再均匀化处理, 均匀化处理的温度为 1250~1400°C。 升温速率 为 10~30°C/min, 升温速率低于 10°C/min会导致热处理吋间太长增加成本; 升温 速率大于 30°C/min, 容易过热导致样品熔化。 待升温至 1250~1400°C后, 保持该 温度 10~24h, 确保各个组分充分均匀分布。
[0062] 在均匀化处理吋, 应当确保均匀化合金处于真空或者保护气氛中。 这里的保护 气氛一般为惰性气体, 如氮气、 氩气、 氦气等。
[0063] 待经过 10~24h的保温处理后, 将得到的合金熔融物浇筑于刚玉形模具, 并在高 压惰性气体中自然冷却, 冷却速度太慢 (如随炉冷), 会导致合金基体内碳化物的 粗化, 使合金加工性能的下降, 一般自然冷却的条件下可使碳化物均匀细化分 布, 同吋保证合金的力学性能与加工性能, 经过冷却处理的合金, 形成合金棒 材。
[0064] 对合金棒材进行加工处理吋, 采用机加工处理, 使得棒材适合与等离子旋转电 极制粉的棒材。
[0065] 在制粉处理吋, 通过等离子旋转电极制备高碳含量的合金粉末, 对合金粉末进 行筛分处理, 使得得到的粉末适合用于 3D打印用。 最终得到的粉末粒度为 40~14 Ομηι, D50为 75~85。
[0066] 进一步地, 还包括增材的制造步骤。 在一个实施例中, 通过电子熔融增材制备 该合金部件。 制造的增材合金部件中大量碳化物、 氮化物为弥散分布, 从而解 决了传统钴合金增材制造后力学性能及硬度不足等问题。
[0067] 本发明实施例提供的 Co-Cr-W合金的加工方法, 将熔炼获得的合金进行均匀化 处理, 使得合金各个组分均匀, 碳化物、 氮化物弥散分布, 使获得的合金性能 均一稳定。
[0068] 为了更好的说明本发明实施例提供的 Co-Cr-W合金, 下面通过多个实施例进一 步解释说明。
实施例
[0069] 为节约篇幅, 将各个实施例的配方组分列于表 1中。
[0070] 表 1实施例配方表
[]
从表 1中可见, 实施例 1-10, 组分中只含有 Co、 Cr、 W、 C吋, 得到的合金 0.2% 屈服强度为 905~931MPa, 维氏 (HV)硬度为 394~427, 拉伸强度为 1270~1375MPa 。 实施例 11~13为在实施例 1~10的基础上, 添加了 N元素。 添加了 N元素后, 合 金的 0.2%屈服强度突破 935MPa, 最高可达到 975MPa, 维氏硬度也达到 430以上 , 且拉伸强度达到了 1380MPa, 最高为 1410MPa。 实施例 14为加入 Si元素, 加入 Si元素对合金的力学性能没有明显影响, Si主要起到除氧的作用, 避免合金内部 含有氧元素而可能出现的麻点或者孔隙。 实施例 15则添加了 Zr元素, Zr元素修复 了合金表面的钝化膜, 提高合金的抗腐蚀性能, 避免合金在生物体内的金属离 子析出。 为了进一步验证添加 Zr元素对合金金属离子析出的影响, 将 Co-20Cr-15 W-3Fe、 Co-20Cr-15W-lFe、 Co-32cr-4W、 Co-32Cr-4W-0.4C-0.3N、 Co-32Cr-4W- 0.4C-0.3N-0.05Zr合金分别置于 37°C的质量百分含量为 5%的乳酸溶液中浸泡 6个 月, 然后用 ICP-EOS进行分析, 分析结果如图 5。 从图 5可知, 添加了 Zr元素后, 合金中 Co、 Cr、 W离子析出的浓度均有较大幅度降低, 也就是说 Zr元素修复了 合金表面的钝化膜, 提高合金的抗腐蚀性能, 避免合金在生物体内的金属离子 析出。
[0072] 实施例 16~17则为背景技术申请号为 201310062930.5的中国专利公布了一种生 物体用 Co基合金及支架, 从表 1可知, 该合金的各项物理性能与本发明实施例 相比, 差距甚远。 也从侧面说明本发明实施例的合金非常适用于生物体中。
[0073] 以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的 精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明的保 护范围之内。
Claims
[权利要求 1] 一种 Co-Cr-W合金, 其特征在于: 包括质量百分含量如下的组分:
Co 58-70%;
Cr 30-35%;
W 3-5%;
C 0.3-0.6%;
N 0.2-0.3%;
Si 0.1-0.8%;
Zr 0-0.1%; 其中, 所述 Zr的含量不取 0值。
[权利要求 2] 如权利要求 1所述的 Co-Cr-W合金, 其特征在于: 所述 Zr的质量百分 含量为 0.01~0.1%。
[权利要求 3] 如权利要求 1~2任一所述的 Co-Cr-W合金, 其特征在于: 所述合金的 维氏硬度≥430、 拉伸强度≥1380MPa、 0.2%屈服强度≥940MPa。
[权利要求 4] 一种如权利要求 1~3任一所述的 Co-Cr- W合金的加工方法, 至少包括 以下步骤:
按照权利要求 1 ~3任一所述的 Co-Cr-W合金的配方称取各组分; 将称取的所述各组分进行熔炼处理;
将所述熔炼后的合金进行均匀化、 浇注棒材处理; 将所述棒材进行加工处理;
将所述加工后的棒材进行制粉处理。
[权利要求 5] 如权利要求 4所述的 Co-Cr-W合金的加工方法: 其特征在于: 所述熔 炼温度为 1450~1600°C。
[权利要求 6] 如权利要求 4所述的 Co-Cr-W合金的加工方法: 其特征在于: 所述均 匀化温度为 1250~1400°C, 均匀化的升温速率为 10~30°C/min, 保温时 间为 10~24h, 且在真空或保护气氛中均匀化处理。
[权利要求 7] 如权利要求 4所述的 Co-Cr-W合金的加工方法: 其特征在于: 所述浇 注模具为刚玉模具, 所述浇注冷却条件为高压惰性气体冷却。
[权利要求 8] 如权利要求 4所述的 Co-Cr-W合金的加工方法: 其特征在于: 所述制
粉处理得到的粉末粒度为 40~140μηι, D50为 75~85。
[权利要求 9] 如权利要求 6所述的 Co-Cr-W合金的加工方法: 其特征在于: 所述保 护气氛为惰性气体。
[权利要求 10] 如权利要求 1 ~3所述的 Co-Cr-W合金或如权利要求 4~9所述的 Co-Cr-W 合金的制备方法制备的 Co-Cr-W合金在手术用具及人工关节材料中的 应用。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610749801.7 | 2016-08-29 | ||
CN201610749801.7A CN106319289B (zh) | 2016-08-29 | 2016-08-29 | Co-Cr-W合金及其加工方法和应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018040347A1 true WO2018040347A1 (zh) | 2018-03-08 |
Family
ID=57788754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/108632 WO2018040347A1 (zh) | 2016-08-29 | 2016-12-06 | Co-Cr-W合金及其加工方法和应用 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106319289B (zh) |
WO (1) | WO2018040347A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT201800003601A1 (it) | 2018-03-15 | 2019-09-15 | Nuovo Pignone Tecnologie Srl | Lega metallica ad elevate prestazioni per la produzione additiva di componenti di macchine/high-performance metal alloy for additive manufacturing of machine components |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56102542A (en) * | 1980-01-22 | 1981-08-17 | Kubota Ltd | Cast cobalt alloy |
US4789412A (en) * | 1986-03-20 | 1988-12-06 | Hitachi, Ltd. | Cobalt-base alloy having high strength and high toughness, production process of the same, and gas turbine nozzle |
US20050232806A1 (en) * | 2002-11-07 | 2005-10-20 | Dentaurum J.P. Winkelstroeter Kg | Dental casting alloy |
CN1831166A (zh) * | 2005-02-16 | 2006-09-13 | Bego布雷默戈尔德施雷格爱威尔海姆.赫伯斯特两合公司 | 一种用于生产烤瓷镶饰的牙齿修复体的熔补合金 |
CN101144131A (zh) * | 2006-09-15 | 2008-03-19 | 海恩斯国际公司 | 易于氮化物强化的钴-铬-铁-镍合金 |
JP2014074227A (ja) * | 2012-09-14 | 2014-04-24 | Tohoku Univ | Co−Cr−W基合金熱間加工材、焼鈍材、鋳造材、均質化熱処理材、及びCo−Cr−W基合金熱間加工材の製造方法、焼鈍材の製造方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4820324A (en) * | 1987-05-18 | 1989-04-11 | Owens-Corning Fiberglas Corporation | Glass corrosion resistant cobalt-based alloy having high strength |
DE69101726T2 (de) * | 1990-02-16 | 1994-08-11 | Matsushita Electric Ind Co Ltd | Weichmagnetische Dünnschichten aus Legierung und Magnetköpfe daraus. |
JP5303718B2 (ja) * | 2006-06-22 | 2013-10-02 | 国立大学法人岩手大学 | 多孔質Co基合金焼結被覆材およびその製造方法 |
CN105256174B (zh) * | 2015-10-22 | 2017-03-29 | 东北大学 | 一种生物骨复合材料及其制备方法 |
-
2016
- 2016-08-29 CN CN201610749801.7A patent/CN106319289B/zh active Active
- 2016-12-06 WO PCT/CN2016/108632 patent/WO2018040347A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56102542A (en) * | 1980-01-22 | 1981-08-17 | Kubota Ltd | Cast cobalt alloy |
US4789412A (en) * | 1986-03-20 | 1988-12-06 | Hitachi, Ltd. | Cobalt-base alloy having high strength and high toughness, production process of the same, and gas turbine nozzle |
US20050232806A1 (en) * | 2002-11-07 | 2005-10-20 | Dentaurum J.P. Winkelstroeter Kg | Dental casting alloy |
CN1831166A (zh) * | 2005-02-16 | 2006-09-13 | Bego布雷默戈尔德施雷格爱威尔海姆.赫伯斯特两合公司 | 一种用于生产烤瓷镶饰的牙齿修复体的熔补合金 |
CN101144131A (zh) * | 2006-09-15 | 2008-03-19 | 海恩斯国际公司 | 易于氮化物强化的钴-铬-铁-镍合金 |
JP2014074227A (ja) * | 2012-09-14 | 2014-04-24 | Tohoku Univ | Co−Cr−W基合金熱間加工材、焼鈍材、鋳造材、均質化熱処理材、及びCo−Cr−W基合金熱間加工材の製造方法、焼鈍材の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106319289A (zh) | 2017-01-11 |
CN106319289B (zh) | 2018-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ma et al. | Research progress of titanium-based high entropy alloy: methods, properties, and applications | |
Imam¹ et al. | Titanium alloys as implant materials | |
Yamanaka et al. | Developing high strength and ductility in biomedical Co–Cr cast alloys by simultaneous doping with nitrogen and carbon | |
JPH0784634B2 (ja) | 強度が高く、弾性率が低く、延性及び生物融和性のあるチタン合金 | |
WO2006054368A1 (ja) | 組織制御によってイオン溶出を抑えた生体用Co-Cr-Mo合金及びその製造方法 | |
CN108486408A (zh) | 一种低弹性模量补牙用β型钛合金及其制造方法 | |
CN113088652B (zh) | 一种弥散强化、高稳定性医用高氮无镍奥氏体不锈钢的制备方法 | |
JP2008111177A (ja) | 塑性加工性に優れる生体用Co基合金およびその製造方法 | |
Park et al. | Metallic implant materials | |
Ho et al. | Structure and mechanical properties of Ti–5Cr based alloy with Mo addition | |
US9464344B2 (en) | Method for the thermomechanical treatment of a titanium alloy, and resulting alloy and prosthesis | |
CN108456805A (zh) | 一种用于植入骨骼的β型钛合金及其制造方法 | |
Rokaya et al. | Modification of titanium alloys for dental applications | |
WO2018040347A1 (zh) | Co-Cr-W合金及其加工方法和应用 | |
AU2023201949A1 (en) | Titanium based ceramic reinforced alloy | |
CN115109979A (zh) | 一种Ti-Ta-Nb-Zr-Mo生物医用高熵合金 | |
CN113249632A (zh) | 一种高性能TiZrNb合金及其制备方法和应用 | |
JPH108227A (ja) | チタン材料、その製造方法およびその使用 | |
Hanawa et al. | Zirconium and Zirconium Alloys for Biomedical Use | |
Fikeni | Microstructural Evolution and its Influence on Mechanical Properties of Ti-Nb Binary Alloys | |
KR101943205B1 (ko) | 생분해성 합금과 생체적합성 합금의 이중연속구조 복합재 및 이를 통해 제조된 생체적합 다공성 합금 | |
WO2018040301A1 (zh) | Co-Cr-Mo 合金、微创手术刀的加工方法和微创手术刀 | |
KR100888679B1 (ko) | 생체 적합성 및 생체 안정성이 우수한 티타늄계 합금 | |
Zhang | Novel type of biomedical titanium-manganese-niobium alloy fabricated by arc melting and metal injection moulding | |
JP5239005B2 (ja) | 組織制御によってイオン溶出を抑えた生体用Co−Cr−Mo合金及びその製造法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16914909 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16914909 Country of ref document: EP Kind code of ref document: A1 |