WO2018038099A1 - 腐食防止剤、坑井、パイプライン、及び防食皮膜形成方法 - Google Patents

腐食防止剤、坑井、パイプライン、及び防食皮膜形成方法 Download PDF

Info

Publication number
WO2018038099A1
WO2018038099A1 PCT/JP2017/029924 JP2017029924W WO2018038099A1 WO 2018038099 A1 WO2018038099 A1 WO 2018038099A1 JP 2017029924 W JP2017029924 W JP 2017029924W WO 2018038099 A1 WO2018038099 A1 WO 2018038099A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
corrosion
corrosion inhibitor
oil
rate
Prior art date
Application number
PCT/JP2017/029924
Other languages
English (en)
French (fr)
Inventor
保義 巴
Original Assignee
国際石油開発帝石株式会社
独立行政法人石油天然ガス・金属鉱物資源機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国際石油開発帝石株式会社, 独立行政法人石油天然ガス・金属鉱物資源機構 filed Critical 国際石油開発帝石株式会社
Priority to US16/326,879 priority Critical patent/US11078576B2/en
Publication of WO2018038099A1 publication Critical patent/WO2018038099A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/54Compositions for in situ inhibition of corrosion in boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/10Wear protectors; Centralising devices, e.g. stabilisers
    • E21B17/1007Wear protectors; Centralising devices, e.g. stabilisers for the internal surface of a pipe, e.g. wear bushings for underwater well-heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L58/00Protection of pipes or pipe fittings against corrosion or incrustation
    • F16L58/02Protection of pipes or pipe fittings against corrosion or incrustation by means of internal or external coatings
    • F16L58/04Coatings characterised by the materials used

Definitions

  • the present invention relates to a corrosion inhibitor, a well, a pipeline, and a method for forming an anticorrosive film.
  • the material of the oil collection pipe (tubing) installed to guide oil and natural gas from the oil layer and gas layer to the ground inside the casing is Mainly carbon steel and stainless steel. Also, carbon steel, stainless steel, and the like are adopted for the material of the transport pipes of pipelines constructed to transport oil and natural gas from production wells to processing facilities and delivery terminals. Crude oil and natural gas that are mined from the underground contain corrosive gases such as carbon dioxide and hydrogen sulfide together with moisture. Therefore, it is necessary to consider the corrosion of the inner surface due to these wet corrosive gases in the oil collection pipe of the production well and the transport pipe of the pipeline.
  • Patent Document 1 discloses an organic inhibitor (inhibitor) such as long-chain fatty acids and hydrocarbon oil such as aromatic hydrocarbon in suppressing local corrosion of metals.
  • organic inhibitor inhibitor
  • hydrocarbon oil such as aromatic hydrocarbon
  • Patent Document 1 does not necessarily satisfy corrosion prevention.
  • the present invention has been made in view of the above circumstances, and a corrosion inhibitor, a well, a pipeline, and the corrosion inhibitor that can sufficiently prevent the corrosion of the inner surface of a production well oil collection pipe and a pipeline transportation pipe
  • An object of the present invention is to provide a method of forming an anticorrosion film using
  • a corrosion inhibitor comprising a polar group capable of providing electrons to a metal and an inhibitor (A) having a hydrophobic group, an aromatic solvent (B), and hydrophobic fine particles (C).
  • a corrosion inhibitor according to [1] wherein the aromatic solvent (B) has a boiling point of 60 to 200 ° C.
  • the corrosion inhibitor according to [1] or [2], wherein the hydrophobic fine particles (C) are carbon nanotubes.
  • the corrosion inhibitor according to [3], wherein the carbon nanotube is a cup-stacked carbon nanotube.
  • the wells in the present invention are not limited to production wells such as oil fields and gas fields, but are injection wells for injecting gas and water into the basement, and to observe the state of the underground with the production of crude oil and natural gas.
  • the pipeline in the present invention is a facility for transporting mined fossil fuels such as oil and natural gas, and does not indicate a simple aggregate of pipes.
  • An anticorrosive film is formed on the inner surface of the pipe by adding the corrosion inhibitor according to any one of [1] to [4] to the hydrocarbon oil or the production fluid inside the pipe.
  • Anticorrosion film forming method In the present invention, the hydrocarbon oil includes crude oil as it is mined, and the production fluid includes natural gas and groundwater as mined, and corrosive gases such as carbon dioxide and hydrogen sulfide.
  • the pipe is a tubing installed in a well or a pipeline transport pipe.
  • the corrosion inhibitor of the present invention it is possible to sufficiently prevent corrosion of members whose inner surfaces are exposed to wet corrosive gas, such as oil collection pipes of production wells and transport pipes of pipelines. Moreover, the wells and pipelines of the present invention are less likely to corrode the inner surfaces of oil collection pipes and transport pipes. Thereby, the service life of the oil collection pipe and the transport pipe can be extended, and the operation cost of the equipment can be suppressed.
  • FIG. 5 is a schematic diagram showing an apparatus for measuring a corrosion rate used in tests 1 to 4. It is a graph which shows the result (anticorrosion rate) of test 1. It is a graph which shows the result (anticorrosion rate) of test 2. It is a graph which shows the result (anticorrosion rate) of test 3. 6 is a graph showing the result (corrosion rate) of Test Example 1 of Test 3. It is a graph which shows the result (anticorrosion rate) of test 4.
  • the corrosion inhibitor of this embodiment includes an inhibitor (A) having a polar group capable of providing electrons to a metal and a hydrophobic group (hereinafter also referred to as “component (A)”), and an aromatic solvent (B). (Hereinafter also referred to as “component (B)”) and hydrophobic fine particles (C) (hereinafter also referred to as “component (C)”).
  • component (A) a polar group capable of providing electrons to a metal and a hydrophobic group
  • B aromatic solvent
  • component (B) hydrophobic fine particles
  • component (C) hydrophobic fine particles
  • the component (A) is an inhibitor having a polar group capable of providing electrons to a metal and a hydrophobic group.
  • the hydrophobic group include an alkyl group having 6 to 20 carbon atoms and an alkenyl group having 6 to 20 carbon atoms.
  • polar groups capable of providing electrons to metals include those containing Group 15 elements and Group 16 elements of the periodic table, such as nitrogen (N), phosphorus (P), oxygen (O), and sulfur (S).
  • Specific examples thereof include a carboxy group and a salt thereof, a hydroxy group, a group having a basic nitrogen (for example, an amino group) and a salt thereof, a sulfonic acid group and a salt thereof, a phosphoric acid group and a salt thereof.
  • the salt include alkali metal salts and alkaline earth metal salts.
  • the number of polar groups may be one per molecule or two or more. When the component (A) has two or more polar groups, the types of polar groups may be the same or different.
  • component (A) The component is adsorbed on the metal surface when the polar group supplies electrons to the metal to form a layer (film).
  • component (A) is also referred to as “adsorption inhibitor” or “filming amine”.
  • component (A) examples include sodium N-dodecanoyl sarcosinate, dodecylamine, stearic acid, oleic imidazoline and the like.
  • Commercially available products may be used as the component (A), such as water-soluble inhibitors (trade name: “EC1304A”), oil-soluble / water-dispersible inhibitors (trade name: “EC1103A”) manufactured by Nalco Champion. Can be mentioned.
  • These (A) components may be used individually by 1 type, and may use 2 or more types together.
  • the component (B) is an aromatic solvent.
  • the aromatic solvent is easier to disperse the component (C) described later than other solvents.
  • Examples of the component (B) include monocyclic aromatic hydrocarbons having one aromatic ring in one molecule and polycyclic aromatic hydrocarbons having two or more aromatic rings in one molecule.
  • Monocyclic aromatic hydrocarbons are preferred in that the compatibility with the component (A) is good, the component (C) can be highly dispersed, and the effect of the present embodiment (corrosion prevention) is more easily exhibited, and the boiling point is 60 to 200.
  • Monocyclic aromatic hydrocarbons at ° C are particularly preferred.
  • the boiling point of the monocyclic aromatic hydrocarbon is more preferably 70 to 180 ° C, and further preferably 80 to 150 ° C.
  • a polycyclic aromatic hydrocarbon as the component (B) in that the effect (anticorrosion) of the present embodiment is more easily exhibited, and the polycyclic aromatic hydrocarbon and the component (A) It is more preferable to use in combination with amine compounds such as dodecylamine, stearic acid, and oleic imidazoline.
  • Examples of monocyclic aromatic hydrocarbons include benzene (boiling point 80.1 ° C.), toluene (boiling point 110.6 ° C.), xylene (boiling point 138 to 144 ° C.), ethylbenzene (boiling point 136 ° C.), and the like. These monocyclic aromatic hydrocarbons may be used alone or in combination of two or more.
  • Examples of the polycyclic aromatic hydrocarbons include Solvesso 100, Solvesso 150 and Solvesso 200 manufactured by Exxon Mobil. These polycyclic aromatic hydrocarbons may be used alone or in combination of two or more.
  • the content of the component (B) in the corrosion inhibitor is preferably 400 to 3500 parts by mass, more preferably 800 to 2800 parts by mass with respect to 100 parts by mass of the pure component (A). If content of (B) component is 400 mass parts or more, the increase in the corrosion prevention effect by (B) component addition will be acquired. Although the effect of preventing corrosion tends to increase as the content of the component (B) increases, the effect reaches a limit even when the content exceeds 3500 parts by mass. Considering the balance between the effect of preventing corrosion and the production cost, the content of the component (B) is preferably 3500 parts by mass or less.
  • Component (C) is hydrophobic fine particles.
  • the component (C) include carbon nanotubes, carbon black, graphene, and silica fine powder.
  • the corrosion inhibitor of the present embodiment is used for forming an anticorrosive film on the inner surface of an oil collection pipe or a transport pipe. Even if the (C) component is dropped from the anticorrosion film and mixed into the hydrocarbon during use of the oil collecting pipe or the transport pipe in which the anticorrosion film is formed on the inner surface by the corrosion inhibitor of this embodiment, Since the component (C) is also burned during combustion, carbon nanotubes, carbon black, and graphene are preferred, and carbon nanotubes are more preferred from the viewpoint of little influence.
  • Examples of carbon nanotubes include single-walled carbon nanotubes, multi-walled carbon nanotubes, and cup-stacked carbon nanotubes.
  • Single-walled carbon nanotubes are molecules formed from a graphene sheet, and the shape thereof is a hollow cylinder.
  • the multi-walled carbon nanotube is a molecule formed from a multi-layer graphene sheet, and the shape thereof is a structure in which the graphene sheets are stacked in a coaxial cylindrical shape.
  • a cup-stacked carbon nanotube is a carbon fiber having a structure in which a plurality of bottomless cup-shaped nanocarbons formed from graphene sheets are stacked in the height direction of the cup, and the number of cup-shaped nanocarbons stacked is From several to several hundred.
  • cup-stacked carbon nanotubes are particularly preferable among the carbon nanotubes.
  • the component (C) when the component (C) is dropped from the anti-corrosion coating during use of the oil collection pipe or the transport pipe and mixed into the hydrocarbon, the component (C) contacts the valve connected to the tubing or the transport pipe, for example. The valve may be damaged. If a cup-stacked carbon nanotube is used as the component (C), the cup-shaped nanocarbon can be easily detached due to an impact when contacting the valve, and damage to the valve can be prevented.
  • the content of the component (C) in the corrosion inhibitor is preferably 0.02 to 0.5 parts by mass and more preferably 0.06 to 0.3 parts by mass with respect to 100 parts by mass of the component (B). If content of (C) component is 0.02 mass part or more, the effect of corrosion prevention will increase more. Although the effect of preventing corrosion tends to increase as the content of the component (C) increases, the effect reaches a limit even when the content exceeds 0.5 parts by mass. Considering the balance between the effect of preventing corrosion and the production cost, the content of the component (C) is preferably 0.5 parts by mass or less.
  • the corrosion inhibitor of this embodiment may contain arbitrary components as needed.
  • the optional component include low molecular weight (specifically, 1 to 10 carbon atoms) alcohol such as ethanol.
  • the corrosion inhibitor includes a low molecular weight alcohol, the dispersibility of the component (A) is further increased.
  • the corrosion inhibitor of the present embodiment can be obtained by mixing the component (A), the component (B), the component (C), and an optional component as necessary.
  • (C) Component is easy to disperse
  • the corrosion inhibitor of the present embodiment described above contains the component (C) in addition to the component (A) and the component (B), the corrosion inhibitor is excellent.
  • the present invention shows an excellent effect even on the inner surface of a pipe which is difficult to suppress corrosion with a current corrosion inhibitor and is separated from oil and water and wet with water. Therefore, if it is a corrosion inhibitor of this embodiment, corrosion of the inner surface of an oil collection pipe or a transportation pipe can fully be prevented.
  • the reason why the corrosion inhibitor of this embodiment is excellent in corrosion prevention is considered as follows.
  • the corrosion inhibitor of this embodiment for example, when an anticorrosion film is formed on the inner surface of the oil collection pipe, an anticorrosion film 12 made of a corrosion inhibitor is formed on the inner surface 11a of the main body 11 as shown in FIG.
  • the oil collection pipe 10 is obtained.
  • the anticorrosion film 12 is considered to be formed as follows. First, the polar group of the component (A) is adsorbed on the inner surface 11a of the main body 11 to form a layer (hereinafter referred to as “A layer”) 12a mainly composed of the component (A).
  • the (B) component and the (C) component are entangled with the hydrophobic group of the (A) component, and the layer mainly composed of the (B) component (hereinafter referred to as “B layer”) 12b, ) Component layer (hereinafter referred to as “C layer”) 12 c is formed on the A layer 12 a to form the anticorrosion coating 12.
  • B layer the layer mainly composed of the (B) component
  • C layer Component layer
  • the polar group of the component (A) is adsorbed on the inner surface 11a of the main body 11 to form the A layer 12a, and the component (B) is entangled with the hydrophobic group of the component (A).
  • the anti-corrosion effect is enhanced and the anti-corrosion property is exhibited.
  • the component (C) in the combination of the component (A) and the component (B) the stability is improved, and the rust prevention effect is further enhanced, so that the corrosion resistance is improved. It is thought that corrosion of the inner surface of can be sufficiently prevented.
  • the corrosion inhibitor of the present embodiment is suitable as a corrosion inhibitor for oil pipes in production wells for producing oil, natural gas, etc., and pipelines for transporting oil and natural gas. Specifically, it is used so that an anticorrosion film is formed on the inner surface of the oil collection pipe or the transport pipe.
  • the well and pipeline of the present embodiment include a steel pipe having an anti-corrosion coating formed on the inner surface by the above-described corrosion inhibitor of the present embodiment as an oil collection pipe of a production well or as a transport pipe of the pipeline.
  • the inner surface is a surface on the inner side of the oil collection pipe or the transport pipe, and is a surface in contact with crude oil or natural gas containing a wet corrosive gas.
  • the outer surfaces of the oil collection pipe and the transport pipe may be coated with a coating layer as necessary.
  • covers an outer surface the thing of the structure where the primer layer, the adhesive bond layer, and the polyolefin layer were laminated
  • the primer layer is formed of, for example, an epoxy resin.
  • the polyolefin layer is formed of at least one of polyethylene and polypropylene, and may be a single layer or a plurality of layers.
  • FIG. 1 is a cross-sectional view showing an example of an oil collection pipe included in a well according to the present embodiment.
  • the anticorrosion film 12 made of a corrosion inhibitor is formed on the inner surface 11a of the main body 11.
  • the adhesion amount of the component (A) per 1 m 2 of the inner surface 11a of the main body 11 is preferably 0.1 to 3 mg.
  • the adhesion amount of the component (B) per 1 m 2 of the inner surface 11a is preferably 20 mg to 3 g.
  • the adhesion amount of the component (C) per 1 m 2 of the inner surface 11a is preferably 0.4 mg to 0.9 g.
  • FIG. 3 shows an oil field intended for oil production.
  • the oil field includes a production well 20 for extracting crude oil from the underground oil reservoir 1, a separator 31 for separating impurities such as natural gas and groundwater from untreated crude oil, an oil storage tank 32 for storing the crude oil from which impurities have been separated, and an oil storage tank A pipeline system 34 for conveying crude oil from 32 to a processing facility 33 is included.
  • FIG. 4 shows the structure of the production well 20 in the oil field.
  • the production well 20 includes a cylindrical casing 21 that reaches the oil layer 1 and a tubing 22 as an oil collection pipe that is passed through the casing 21.
  • a plurality of small holes are formed in the lower wall surface of the casing 21.
  • An entry guide 23 for introducing the production fluid into the tubing 22 is connected to the lower end of the tubing 22 reaching the oil layer 1.
  • a wellhead device 24 including devices (not shown) such as a valve, a pressure gauge, a thermometer, and a blowout prevention device is attached to the upper end portion of the tubing 22 exposed to the ground.
  • the wellhead device 24 is connected to a tank 25 in which the corrosion inhibitor of this embodiment is placed.
  • the tank 25 communicates with the tubing 22 through an injection tube 26.
  • the injection pipe 26 is provided with a pump 27 that pressurizes the corrosion inhibitor into the tubing 22.
  • Crude oil present in the oil layer 1 flows into the tubing 22 from the entry guide 23.
  • the pressure of the oil layer 1 is high, the crude oil is self-injected from the well through the tubing 22, but when the pressure of the oil layer 1 is low, the oil is pumped to the ground using a pumping pump (not shown).
  • Crude oil mined from the oil layer 1 through the tubing 22 is conveyed to the separator 31 via the wellhead device 24, and impurities are separated and temporarily stored in the oil storage tank 32, and then to the processing facility 33 through the pipeline system 34. Be transported.
  • the corrosion inhibitor In a production well where the pressure of the oil layer 1 is high and the crude oil self-injects, the corrosion inhibitor is pressurized and injected into the tubing 22 at a pressure higher than that of the oil layer 1 while maintaining the sealing of the tubing 22. In the production well where the pressure of the oil layer 1 is low and the crude oil no longer self-injects, the corrosion inhibitor may be supplied into the tubing 22 with the valve of the wellhead device 24 open.
  • the corrosion inhibitor supplied to the inside of the tubing 22 settles inside the tubing 22, and in the process, the components (A), (B) and (C) adhere to the inner surface of the tubing 22,
  • the anticorrosion film 12 which consists of A layer, B layer, and C layer shown in FIG. 1 is formed.
  • the tube 22 is long enough to reach the entry guide 23.
  • An injection tube (capillary tube) having a thickness is attached, and the pump 27 is operated as necessary to supply the corrosion inhibitor into the tubing 22.
  • the corrosion inhibitor is injected into the inside of the tubing 22 from the tip of the injection pipe 26 reaching the entry guide 23 and circulates inside the tubing 22 together with the crude oil traveling from the oil layer 1 to the ground.
  • Each component of (A), (B) and (C) adheres, and the anticorrosion film 12 which consists of A layer, B layer, and C layer shown in FIG. 1 is formed.
  • the anticorrosion coating 12 can be formed on the inner surface of the existing tubing 22 in the production well.
  • FIG. 6 shows a pipeline system 34 for transporting crude oil from the wellhead device 24 to the processing facility 33 via the separator 31 and the oil storage tank 32.
  • the pipeline system 34 includes a pumping facility 35 that pumps crude oil temporarily stored in an oil storage tank toward the refinery, a pipeline 36 that connects many transport pipes, and the crude oil pumped through the pipeline 36 to the refinery. And a receiving facility 37 to receive.
  • a tank 25 containing a corrosion inhibitor is connected to the wellhead device 24.
  • the tank 25 is connected to the wellhead device 24 via an injection pipe 26 and communicates with a pipeline 36 via a separator 31 and an oil storage tank 32.
  • the injection pipe 26 is provided with a pump 27 that pressurizes a corrosion inhibitor into the pipeline 36 through the wellhead device 24.
  • the pump 27 When the anticorrosion film is formed on the inner surface of the pipeline 36 with the corrosion inhibitor, the pump 27 is operated and the corrosion inhibitor is injected into the pipeline 36 through the wellhead device 24. 36, and the components (A), (B), and (C) adhere to the inner surface of the pipeline 36 in the process, and from the A layer, the B layer, and the C layer shown in FIG.
  • the anticorrosion film 12 is formed.
  • the anticorrosion coating 12 can be formed also on the inner surface of the transport pipe constituting the existing pipeline 36.
  • the wells and pipelines of the present embodiment described above are not easily corroded because the anticorrosion film is formed on the inner surfaces of the tubing and the pipeline by the corrosion inhibitor of the present embodiment.
  • the corrosion rate was measured using the apparatus 40 shown in FIG.
  • the apparatus 40 shown in FIG. 7 injects a gas such as carbon dioxide or the like into the pressure resistant container 41, a sealable corrosion resistant pressure resistant container 41 having a capacity of 2.3 L, an adding means 42 for adding a reagent to the pressure resistant container 41.
  • voltage resistant container 41, the electrode 45, and the stirring means 46 are comprised.
  • a heater 41 a is attached to the outer periphery of the pressure vessel 41 so that the temperature of the solution stored in the pressure vessel 41 can be kept constant.
  • the electrode 45 includes a reference electrode 45a, a working electrode 45b, and a counter electrode 45c. In this example, a carbon steel electrode was used as the reference electrode 45a and the working electrode 45b, and platinum was used as the counter electrode 45c.
  • the pressure vessel 41 is filled with 1.8 L of Akita prefecture-produced crude oil-associated water, kept at 40 ° C., and stirred by the stirring means 46 while the partial pressure of carbon dioxide in water is 1 ⁇ 10 4 Pa.
  • carbon dioxide was injected from the injection means 43.
  • a minute current was passed between the reference electrode 45a and the working electrode 45b, the potential difference between the electrodes was controlled to a predetermined set potential (10 mV), and the current density flowing between the working electrode 45b and the counter electrode 45c was measured.
  • the potential was controlled by sweeping from the corrosion potential to the anode side at a constant potential sweep rate. Based on the obtained potential / current density results, the corrosion rate was determined by the polarization resistance method. This was defined as the corrosion rate (r 0 ) at the time of blank.
  • the corrosion rate (r 0 ) when blank was 6 mpy.
  • a corrosion inhibitor comprising a mixture of the component (A), the component (B) and the component (C) is added from the adding means 42.
  • the speed (r 1 ) was determined.
  • the corrosion protection rate is 0%, and from the corrosion rate (r 0 ) and corrosion rate (r 1 ), after adding the corrosion inhibitor from the following formula (1)
  • the anticorrosion rate was determined. The results are shown in FIG.
  • Corrosion protection rate (%) (r 0 ⁇ r 1 ) / r 0 ⁇ 100 (1)
  • a water-soluble inhibitor manufactured by Nalco Champion, “EC1304A”
  • xylene is used as the component (B)
  • a cup-stacked carbon nanotube manufactured by GSI Creos Co., Ltd., “ Carbale ".
  • the amount added was 25 ppm for component (A), 2 mL for component (B), and 6 mg for component (C) with respect to 1.8 L of crude oil-associated water produced in Akita Prefecture in pressure vessel 41. That is, 4000 parts by mass of the (B) component was used with respect to 100 parts by mass of the (A) component, and 0.38 parts by mass of the (C) component was used with respect to 100 parts by mass of the (B) component.
  • Example 1 The anticorrosion rate was determined in the same manner as in Example 1 except that only the component (A) was added instead of the corrosion inhibitor. The results are shown in FIG. As the component (A), a water-soluble inhibitor (manufactured by Nalco Champion, “EC1304A”) was used, and the amount of component (A) added was 1.8 L of crude oil-associated water produced in Akita Prefecture in the pressure vessel 41. It was 25 ppm.
  • Example 1 the addition of the corrosion inhibitor increased the corrosion protection rate to about 75% compared to before adding the corrosion inhibitor (blank).
  • Comparative Example 1 the anticorrosion rate increased to some extent by adding the component (A) (about 20%), but was inferior to Example 1.
  • Example 2 The pressure vessel 41 is filled with 1.8 L of Niigata crude oil-accompanying water, sealed, kept at 80 ° C., and stirred by the stirring means 46, while the partial pressure of carbon dioxide in water is 1 ⁇ 10 4 Pa. Carbon dioxide was injected from the injection means 43 so that the corrosion rate (r 0 ) at the time of blanking was measured in the same manner as in Example 1. The corrosion rate (r 0 ) when blank was 99 mpy. After 55 minutes have elapsed from the measurement of the current density, a corrosion inhibitor comprising a mixture of the component (A), the component (B) and the component (C) is added from the adding means 42, and the anticorrosion rate is the same as in Example 1. Asked.
  • an oil-soluble / water-dispersible inhibitor (manufactured by Nalco Champion, “EC1103A”) is used as component (A), xylene is used as component (B), and cup-stacked carbon nanotube (GSI Co., Ltd.) is used as component (C). Creos “Carbale”) was used. The amount added was 150 ppm for component (A), 5 mL for component (B), and 3 mg for component (C) with respect to 1.8 L of crude water-associated water produced in Niigata Prefecture in pressure vessel 41. That is, 1850 parts by weight of component (B) was used with respect to 100 parts by weight of component (A), and 0.08 parts by weight of component (C) was used with respect to 100 parts by weight of component (B).
  • ⁇ Comparative example 2> The anticorrosion rate was determined in the same manner as in Example 2 except that only the component (A) was added instead of the corrosion inhibitor. The results are shown in FIG. It should be noted that an oil-soluble / water-dispersible inhibitor (manufactured by Nalco Champion, “EC1103A”) was used as the component (A), and the amount of the component (A) added was 1. It was 150 ppm with respect to 8 L.
  • EC1103A oil-soluble / water-dispersible inhibitor
  • Example 2 the corrosion protection rate increased to about 40% by adding the corrosion inhibitor as compared to before adding the corrosion inhibitor (blank). Furthermore, by adding (C) component, the anticorrosion rate rose to about 99%. On the other hand, in Comparative Example 2, the anticorrosion rate increased to some extent by adding the component (A), but it was inferior to Example 2. From these results, although commercially available oil-soluble / water-dispersible inhibitors can hardly obtain the anticorrosive effect of only the aqueous phase (corrosion prevention rate is up to about 5%), the corrosion inhibitor of the present invention has a very high inhibitory effect. It was shown that can be demonstrated.
  • Test 3 ⁇ Test Example 1> Sodium bicarbonate was added to 500 mL of sodium chloride aqueous solution having a concentration of 1% by mass so that the concentration was 400 mg / L, and hydrochloric acid was added so that the pH at room temperature was 3.9 to prepare test water. .
  • the pressure vessel 41 of the apparatus 40 used in Example 1 was changed to a glass cell, and the entire amount of the obtained test water was put into the glass cell and stirred in the open state in the same manner as in Example 1 during blanking. The corrosion rate (r 0 ) was measured. The corrosion rate (r 0 ) when blank was 38 mpy.
  • test water was put into a glass cell, and sodium N-dodecanoyl sarcosinate was added as component (A) so that the concentration was 5 ⁇ 10 ⁇ 4 mol / L.
  • the corrosion rate (r 1 ) was measured while stirring in an open state.
  • the anticorrosion rate at blank time was set to 0%, and the anticorrosion rate was determined in the same manner as in Example 1. The results are shown in FIG.
  • the corrosion protection rate improved as the components (A), (B), and (C) were sequentially added to the test water. That is, the anticorrosion rate was highest when all of the components (A), (B) and (C) were added to the test water.
  • the difference between the anticorrosion rate when the component (B) is added and the anticorrosion rate when the component (C) is further added is the result of FIG. 10 on the scale of the graph. Since it is difficult to understand, the effect of corrosion prevention is examined based on the corrosion rate.
  • FIG. 11 is a graph showing the results of the corrosion rate when the component (B) is added in Test Example 1 and the corrosion rate when the component (C) is added.
  • the corrosion rate when the component (B) was added to the test water to which the component (A) was added was 0.22 mpy.
  • the anticorrosion rate at this time is 99.4%.
  • the corrosion rate after adding (C) component and 40 minutes passed was 0.11 mpy.
  • the anticorrosion rate at this time is 99.7%.
  • the corrosion rate was reduced to half. This means that by adding the (C) component further in the combination of the (A) component and the (B) component, a high corrosion resistance could be expressed.
  • Test 4" ⁇ Test Example 4> Sodium bicarbonate was added to 500 mL of sodium chloride aqueous solution having a concentration of 1% by mass so that the concentration was 400 mg / L, and hydrochloric acid was added so that the pH at room temperature was 3.9 to prepare test water. .
  • the pressure vessel 41 of the apparatus 40 used in Example 1 was changed to a glass cell, and the entire amount of the obtained test water was put into the glass cell and stirred in the open state in the same manner as in Example 1 during blanking. The corrosion rate (r 0 ) was measured. The corrosion rate (r 0 ) when blank was 38 mpy.
  • test water was put into a glass cell, and dodecylamine was added as a component (A) so that the concentration was 2 ⁇ 10 ⁇ 4 mol / L.
  • the corrosion rate (r 1 ) was measured while stirring in an open state.
  • the anticorrosion rate at blank time was set to 0%, and the anticorrosion rate was determined in the same manner as in Example 1. The results are shown in FIG.
  • the corrosion protection rate improved as the components (A), (B) and (C) were added to the test water in sequence. That is, the anticorrosion rate was highest when all of the components (A), (B) and (C) were added to the test water.
  • Test Example 4 using xylene, which is a monocyclic aromatic hydrocarbon had a higher corrosion prevention rate than Test Example 5 using polycyclic aromatic hydrocarbons.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

この腐食防止は、坑井やパイプラインの内表面の腐食を十分に防止できる腐食防止剤であり、金属に電子を提供可能な極性基、および疎水基を有するインヒビター(A)と、芳香族系溶剤(B)と、疎水性微粒子(C)とを含有する。

Description

腐食防止剤、坑井、パイプライン、及び防食皮膜形成方法
 本発明は、腐食防止剤、坑井、パイプライン、及び防食皮膜形成方法に関する。
 本願は、2016年8月23日に、日本に出願された特願2016-162848号に基づき優先権を主張し、その内容をここに援用する。
 石油を生産する油田、天然ガスを生産するガス田等の生産井において、ケーシングの内側に油層やガス層から石油や天然ガスを地上に導くために設置される採油管(チュービング)の材質は、主に炭素鋼やステンレス鋼である。また、石油や天然ガスを生産井から処理施設や送出ターミナルに輸送するために建設されるパイプラインの輸送管の材質にも、採油管と同様に炭素鋼やステンレス鋼等が採用されている。
 地下から採掘したままの原油や天然ガスには、水分と共に二酸化炭素や硫化水素等の腐食性ガスが含まれている。そのため、生産井の採油管やパイプラインの輸送管においては、それら湿潤腐食性ガスによる内表面の腐食を考慮する必要がある。
 金属の腐食を防止する方法として、例えば特許文献1には、金属類の局部腐食を抑制するに当たり、長鎖脂肪酸類等の有機抑制剤(インヒビター)と芳香族炭化水素等の炭化水素油とを添加する方法が開示されている。
特開2000-219980号公報
 しかしながら、特許文献1に記載の方法は、必ずしも腐食防止を満足するものではなかった。
 本発明は上記事情に鑑みてなされたもので、生産井の採油管やパイプラインの輸送管の内表面の腐食を十分に防止できる腐食防止剤、坑井、及びパイプライン、及び前記腐食防止剤を用いる防食皮膜形成方法を提供することを目的とする。
 本発明は、以下の態様を有する。
[1] 金属に電子を提供可能な極性基、および疎水基を有するインヒビター(A)と、芳香族系溶剤(B)と、疎水性微粒子(C)とを含有する、腐食防止剤。
[2] 前記芳香族系溶剤(B)の沸点が60~200℃である、[1]に記載の腐食防止剤。
[3] 前記疎水性微粒子(C)がカーボンナノチューブである、[1]または[2]に記載の腐食防止剤。
[4] 前記カーボンナノチューブがカップスタック型カーボンナノチューブである、[3]に記載の腐食防止剤。
[5] [1]~[4]のいずれか1つに記載の腐食防止剤により内表面に防食皮膜が形成されたチュービングを含む、坑井。なお、本発明における坑井とは、油田、ガス田等の生産井に限らず、ガスや水を地下に圧入するための圧入井、原油や天然ガスの生産に伴い地下の状態を観測するための観測井等、腐食性ガスにより内表面の腐食が懸念される管を有する設備を含む。
[6] [1]~[4]のいずれか1つに記載の腐食防止剤により内表面に防食皮膜が形成された輸送管を含む、パイプライン。なお、本発明におけるパイプラインとは、採掘された石油や天然ガス等の化石燃料を輸送する設備であって、単なる管の集合体を指すものではない。
[7] 管内部の炭化水素油又は生産流体に、[1]~[4]のいずれか一つに記載の腐食防止剤を添加することにより、前記管の内表面に防食皮膜を形成する、防食皮膜形成方法。なお、本発明における炭化水素油とは採掘したままの原油を含み、生産流体とは採掘したままの天然ガスや地下水、さらに二酸化炭素や硫化水素等の腐食性ガスを含む。
[8] 前記管は、坑井に設置されるチュービング、又はパイプラインの輸送管である、[7]に記載の防食皮膜形成方法。
 本発明の腐食防止剤によれば、生産井の採油管や、パイプラインの輸送管等、内表面が湿潤腐食性ガスに晒される部材の腐食を十分に防止できる。
 また、本発明の坑井およびパイプラインは、採油管や輸送管の内表面が腐食しにくい。
 これにより、採油管や輸送管の耐用期間を伸ばすことができ、設備の運用コストを抑えることができる。
本発明の坑井に含まれる採油管一例を模式的に示す断面図である。 図1の部分拡大図である。 石油の生産を目的とする油田の各設備を示す模式図である。 図3の生産井の一例を示す概略図である。 図3の生産井の他の例を示す概略図である。 図3のパイプラインシステムの一例を示す概略図である。 試験1~4で用いた、腐食速度を測定するための装置を示す模式図である。 試験1の結果(防食率)を示すグラフである。 試験2の結果(防食率)を示すグラフである。 試験3の結果(防食率)を示すグラフである。 試験3の試験例1の結果(腐食速度)を示すグラフである。 試験4の結果(防食率)を示すグラフである。
 以下、本発明の実施形態の一例について詳細に説明するが、本発明はこれらの実施形態に限定して解釈されるものではない。
「腐食防止剤」
 本実施形態の腐食防止剤は、金属に電子を提供可能な極性基、および疎水基を有するインヒビター(A)(以下、「(A)成分」ともいう。)と、芳香族系溶剤(B)(以下、「(B)成分」ともいう。)と、疎水性微粒子(C)(以下、「(C)成分」ともいう。)とを含有する。
 以下、各成分について説明する。
<(A)成分>
 (A)成分は、金属に電子を提供可能な極性基、および疎水基を有するインヒビターである。
 疎水基としては、炭素数6~20のアルキル基、炭素数6~20のアルケニル基などが挙げられる。
 金属に電子を提供可能な極性基としては、窒素(N)、リン(P)、酸素(O)、硫黄(S)等の周期表の第15族元素、第16族元素を含むものが挙げられ、具体的にはカルボキシ基およびその塩、ヒドロキシ基、塩基性窒素を有する基(例えばアミノ基等)およびその塩、スルホン酸基およびその塩、リン酸基およびその塩などが挙げられる。塩としては、アルカリ金属塩、アルカリ土類金属塩などが挙げられる。
 極性基の数は、1分子中に1つでもよいし2つ以上でもよい。(A)成分が極性基を2つ以上有する場合、極性基の種類は同じであってもよいし、異なっていてもよい。
 (A)成分は、極性基が金属に電子を供給する際に金属表面に吸着し、層(皮膜)を形成する。このような(A)成分は、「吸着型インヒビター」あるいは「フィルミングアミン」とも呼ばれる。
 (A)成分としては、例えばN-ドデカノイルサルコシン酸ナトリウム、ドデシルアミン、ステアリン酸、オレイックイミダゾリンなどが挙げられる。
 また、(A)成分として市販品を用いてもよく、例えばNalco Champion社製の水溶性インヒビター(商品名:「EC1304A」)、油溶性・水分散性インヒビター(商品名:「EC1103A」)などが挙げられる。
 これら(A)成分は、1種を単独で用いてもよいし、2種以上を併用してもよい。
<(B)成分>
 (B)成分は、芳香族系溶剤である。芳香族系溶剤は、他の溶剤に比べて後述する(C)成分を分散させやすい。
 (B)成分としては、1分子内に芳香環を1つ有する単環芳香族炭化水素、1分子内に芳香環を2つ以上有する多環芳香族炭化水素が挙げられる。(A)成分との相性がよく、(C)成分を高分散でき、本実施形態の効果(腐食防止)がより発揮されやすい点では、単環芳香族炭化水素が好ましく、沸点が60~200℃の単環芳香族炭化水素が特に好ましい。単環芳香族炭化水素の沸点は、70~180℃がより好ましく、80~150℃がさらに好ましい。一方、腐食防止剤のより高温下(例えば、100℃を超える温度)での使用(すなわち、生産井の採油管やパイプラインの輸送管がより高温下に曝される環境下での腐食防止剤の使用)において、本実施形態の効果(腐食防止)がより発揮されやすい点では、(B)成分として多環芳香族炭化水素を用いることが好ましく、多環芳香族炭化水素と(A)成分としてドデシルアミンやステアリン酸、オレイックイミダゾリン等のアミン系化合物とを組み合わせて用いることがより好ましい。
 単環芳香族炭化水素としては、例えばベンゼン(沸点80.1℃)、トルエン(沸点110.6℃)、キシレン(沸点138~144℃)、エチルベンゼン(沸点136℃)などが挙げられる。これら単環芳香族炭化水素は、1種を単独で用いてもよいし、2種以上を併用してもよい。
 多環芳香族炭化水素としては、Exxon Mobil社製のソルベッソ100、ソルベッソ150、ソルベッソ200などが挙げられる。これら多環芳香族炭化水素は、1種を単独で用いてもよいし、2種以上を併用してもよい。
 腐食防止剤中の(B)成分の含有量は、(A)成分の純分100質量部に対して、400~3500質量部が好ましく、800~2800質量部がより好ましい。(B)成分の含有量が400質量部以上であれば、(B)成分添加による腐食防止の効果の増大が得られる。(B)成分の含有量が増えるに連れて腐食防止の効果は高まる傾向にあるが、3500質量部を超えても効果は頭打ちとなる。腐食防止の効果と製造コストのバランスを考慮すると、(B)成分の含有量は3500質量部以下が好ましい。
<(C)成分>
 (C)成分は、疎水性微粒子である。
 (C)成分としては、カーボンナノチューブ、カーボンブラック、グラフェン、シリカ微粉末などが挙げられる。詳しくは後述するが、本実施形態の腐食防止剤は、採油管や輸送管の内表面への防食皮膜の形成に用いられる。本実施形態の腐食防止剤により内表面に防食皮膜が形成された採油管や輸送管の使用中に、防食皮膜から(C)成分が脱落して炭化水素中に混入したとしても、炭化水素の燃焼時に(C)成分も燃焼するので影響が少ない観点から、カーボンナノチューブ、カーボンブラック、グラフェンが好ましく、カーボンナノチューブがより好ましい。
 カーボンナノチューブとしては、単層カーボンナノチューブ、多層カーボンナノチューブ、カップスタック型カーボンナノチューブなどが挙げられる。
 単層カーボンナノチューブは、グラフェンシートから形成された分子であり、その形状は、中空の筒状である。
 多層カーボンナノチューブは、多層のグラフェンシートから形成された分子であり、その形状は、グラフェンシートが同軸円筒状に積み重なった構造である。
 カップスタック型カーボンナノチューブは、グラフェンシートから形成される複数の底のないカップ型のナノカーボンが、カップの高さ方向に積層した構造を有する炭素繊維であり、カップ型のナノカーボンの積層数は数個から数百個程度である。
 (C)成分としては、カーボンナノチューブの中でもカップスタック型カーボンナノチューブが特に好ましい。上述したように、採油管や輸送管の使用中に防食皮膜から(C)成分が脱落して炭化水素中に混入した場合、例えばチュービングや輸送管に接続されたバルブに(C)成分が接触してバルブが傷つくことがある。(C)成分としてカップスタック型カーボンナノチューブを用いれば、バルブと接触する際の衝撃でカップ型のナノカーボンが外れやすくなり、バルブの損傷を防止できる。
 腐食防止剤中の(C)成分の含有量は、(B)成分100質量部に対して、0.02~0.5質量部が好ましく、0.06~0.3質量部がより好ましい。(C)成分の含有量が0.02質量部以上であれば、腐食防止の効果がより高まる。(C)成分の含有量が増えるに連れて腐食防止の効果は高まる傾向にあるが、0.5質量部を超えても効果は頭打ちとなる。腐食防止の効果と製造コストのバランスを考慮すると、(C)成分の含有量は0.5質量部以下が好ましい。
<任意成分>
 本実施形態の腐食防止剤は、本実施形態の効果を損なわない範囲内であれば、必要に応じて任意成分を含んでいてもよい。
 任意成分としては、例えばエタノール等の低分子量(具体的には炭素数1~10)のアルコールなどが挙げられる。腐食防止剤が低分子量のアルコールを含めば、(A)成分の分散性がより高まる。
<製造方法>
 本実施形態の腐食防止剤は、(A)成分と(B)成分と(C)成分と、必要に応じて任意成分とを混合することで得られる。(C)成分が(B)成分に均一に分散しやすい点で、予め(B)成分と(C)成分とを混合して分散液を調製しておき、この分散液に(A)成分を添加することが好ましい。
<作用効果>
 以上説明した本実施形態の腐食防止剤は、(A)成分および(B)成分に加えて(C)成分を含有するので、腐食防止性能に優れる。特に、現状の腐食防止剤での腐食抑制が困難な、油と水が分離し、水で濡れたパイプ内表面に対しても優れた効果を示す。よって、本実施形態の腐食防止剤であれば、採油管や輸送管の内表面の腐食を十分に防止できる。本実施形態の腐食防止剤が腐食防止性に優れる理由は、以下のように考えられる。
 本実施形態の腐食防止剤により、例えば採油管の内表面に防食皮膜が形成されると、図1に示すように、本体11の内表面11aに腐食防止剤からなる防食皮膜12が形成された採油管10が得られる。この防食皮膜12は、具体的には図2に模式的に示すように、以下のようにして形成されていると考えられる。
 まず、(A)成分の極性基が本体11の内表面11aに吸着し、主に(A)成分で構成される層(以下、「A層」という。)12aを形成する。さらに、(A)成分の疎水基に(B)成分および(C)成分が絡み、主に(B)成分で構成される層(以下、「B層」という。)12bと、主に(C)成分で構成される層(以下、「C層」という。)12cが、A層12a上に形成され、防食皮膜12を形成する。なお、図2では説明上、防食皮膜12を模式的に示すために、A層12aとB層12bとC層12cとを区別しているが、これら各層の界面は明確ではない。
 このように、(A)成分の極性基が本体11の内表面11aに吸着してA層12aを形成し、(A)成分の疎水基に(B)成分が絡むことで(A)成分の防食効果が高まり、腐食防止性が発揮される。この(A)成分と(B)成分との組み合わせにおいて(C)成分をさらに用いることで、安定性が向上し、防錆効果がさらに高まることで腐食防止性が向上し、採油管や輸送管の内表面の腐食を十分に防止できると考えられる。
 本実施形態の腐食防止剤は、石油や天然ガス等を生産するための生産井の採油管や、石油や天然ガスを移送するためのパイプラインの輸送管の腐食防止剤として好適であり、具体的には採油管や輸送管の内表面に防食皮膜が形成されるように使用される。
「坑井・パイプライン」
 本実施形態の坑井およびパイプラインは、上述した本実施形態の腐食防止剤により内表面に防食皮膜が形成された鋼管を生産井の採油管として、若しくはパイプラインの輸送管として含むものである。内表面とは、採油管や輸送管の内側の表面のことであり、湿潤腐食性ガスを含む原油や天然ガスが接する面である。
 なお、採油管及び輸送管の外表面も、必要に応じて被覆層にて被覆されていてもよい。
 外表面を被覆する被覆層としては、例えば、外表面側から順にプライマー層、接着剤層、ポリオレフィン層が積層した構造のものが挙げられる。プライマー層は、例えばエポキシ樹脂などで形成される。ポリオレフィン層は、ポリエチレンおよびポリプロピレンの少なくとも一方で形成され、単層でもよいし複数層でもよい。
 図1は、本実施形態の坑井に含まれる採油管の一例を示す断面図である。この例の採油管10は、上述したように、本体11の内表面11aに腐食防止剤からなる防食皮膜12が形成されている。
 本体11の内表面11aの1mあたり(A)成分の付着量は0.1~3mgが好ましい。
 また、内表面11aの1mあたり(B)成分の付着量は20mg~3gが好ましい。
 また、内表面11aの1mあたり(C)成分の付着量は0.4mg~0.9gが好ましい。
 なお、パイプラインの内表面1mあたりの(A)成分、(B)成分および(C)成分の付着量についても同様である。
 ここで、管の内表面11aへの防食皮膜12の形成方法の一例について、図3を参照しながら説明する。図3は、石油の生産を目的とする油田を示している。油田には、地下の油層1から原油を採掘する生産井20、未処理の原油から天然ガスや地下水等の不純物を分離するセパレータ31、不純物を分離された原油を貯留する貯油タンク32、貯油タンク32から処理施設33に原油を搬送するパイプラインシステム34を含んでいる。
 図4は、油田のうち特に生産井20の構造を示している。生産井20は、油層1にまで届く筒状のケーシング21と、ケーシング21の内部に通された採油管としてのチュービング22とを含んでいる。ケーシング21の下端壁面には複数の小孔が形成されている。
 油層1に達するチュービング22の下端には、生産流体をチュービング22内に導入するエントリーガイド23が接続されている。地上に露出したチュービング22の上端部分には、バルブ、圧力計、温度計、暴噴防止装置等の機器(図示略)を含む坑口装置24が取り付けられている。
 坑口装置24には、本実施形態の腐食防止剤を入れるタンク25が接続されている。タンク25は注入管26を介してチュービング22に連通している。注入管26には、腐食防止剤をチュービング22の内部に加圧供給するポンプ27が設けられている。
 油層1に存在する原油は、エントリーガイド23からチュービング22の内部に流入する。油層1の圧力が高い場合は、原油はチュービング22を通じて坑井から自噴するが、油層1の圧力が低い場合は不図示の汲上げポンプなどを使って地上に汲み上げられる。チュービング22を通じて油層1から採掘された原油は、坑口装置24を介してセパレータ31に搬送され、不純物を分離されたうえで貯油タンク32に一時保管され、その後、パイプラインシステム34を通じて処理施設33に搬送される。
 チュービング22の内表面に腐食防止剤により防食皮膜を形成する方法には、原油の生産を一時的に停止して行う方法と、原油の生産を継続しながら行う方法とがある。まず、原油の生産を停止して防食皮膜の形成を行う方法について説明すると、坑口装置24のバルブを閉め、チュービング22の内部を先端のエントリーガイド23の部分を除いて閉じた空間とする。閉空間となったチュービング22の内部には、天然ガスや地下水、さらに二酸化炭素や硫化水素等の腐食性ガスを含む採掘したままの原油が封止される。この状態を維持したまま、ポンプ27を稼働させてチュービング22の内部に腐食防止剤を注入する。油層1の圧力が高く原油が自噴する状態の生産井では、チュービング22の密封を維持しつつ、油層1よりも高い圧力で腐食防止剤を加圧してチュービング22の内部に注入する。
油層1の圧力が低く原油が自噴しなくなった生産井では、坑口装置24のバルブを開放したままで腐食防止剤をチュービング22の内部に供給してもよい。
 チュービング22の内部に供給された腐食防止剤は、チュービング22の内部を沈降し、その過程でチュービング22の内表面に上記(A)、(B)及び(C)の各成分が付着して、図1に示すA層、B層及びC層からなる防食皮膜12が形成される。
 次に、原油の生産を継続しながらチュービング22の内表面に防食皮膜の形成を行う方法について説明すると、図5に示すように、チュービング22の内部に、先端がエントリーガイド23に届く十分な長さを有する注入管(キャピラリチューブ)を装着しておき、必要に応じてポンプ27を稼働させてチュービング22の内部に腐食防止剤を供給する。
 腐食防止剤は、エントリーガイド23に達する注入管26の先端からチュービング22の内部に注入され、油層1から地上に向かう原油と共にチュービング22の内部を流通し、その過程でチュービング22の内表面に上記(A)、(B)及び(C)の各成分が付着して、図1に示すA層、B層及びC層からなる防食皮膜12が形成される。
 上記の方法により、生産井における既設のチュービング22の内表面にも、防食皮膜12を形成することができる。
 パイプラインの内表面に防食皮膜を形成する場合は、例えば以下のようにして行う。
 図6は、坑口装置24からセパレータ31、貯油タンク32を介して処理施設33に原油を搬送するパイプラインシステム34を示している。パイプラインシステム34は、貯油タンクに一時貯留された原油を製油所に向けて圧送する圧送施設35と、輸送管を多数接続したパイプライン36と、パイプライン36を通じて圧送された原油を製油所に受け入れる受入施設37とを含んでいる。
 一方、坑口装置24には、腐食防止剤を入れるタンク25が接続されている。タンク25は注入管26を介して坑口装置24に接続されており、セパレータ31、貯油タンク32を介してパイプライン36に連通している。注入管26には、坑口装置24を通じてパイプライン36の内部に腐食防止剤を加圧供給するポンプ27が設けられている。
 パイプライン36の内表面に腐食防止剤により防食皮膜を形成する際は、ポンプ27を稼働させてパイプライン36の内部に坑口装置24を通じて腐食防止剤を注入すると、腐食防止剤は原油と共にパイプライン36の内部を流通し、その過程でパイプライン36の内表面に上記(A)、(B)及び(C)の各成分が付着して、図1に示すA層、B層及びC層からなる防食皮膜12が形成される。
 上記の方法により、既設のパイプライン36を構成する輸送管の内表面にも、防食皮膜12を形成することができる。
 以上説明した本実施形態の坑井およびパイプラインは、チュービング及びパイプラインの内表面に、本実施形態の腐食防止剤により防食皮膜が形成されているので、腐食しにくい。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。
「試験1」
<実施例1>
 図7に示す装置40を用い、腐食速度を測定した。
 図7に示す装置40は、容量2.3Lの密閉可能な耐腐食性の耐圧容器41と、試薬を耐圧容器41に添加する添加手段42と、二酸化炭素等のガスを耐圧容器41に注入する注入手段43と、ガスを耐圧容器41から排出する排出手段44と、電極45と、撹拌手段46とを具備する。
 耐圧容器41の外周には、ヒーター41aが取り付けられ、耐圧容器41内に収容された溶液の温度が一定に保持できるようになっている。
 電極45は、参照電極45aと、作用電極45bと、対極45cとを備える。本実施例では、参照電極45aと、作用電極45bとして炭素鋼電極を用い、対極45cとして白金を用いた。
 耐圧容器41に1.8Lの秋田県産の原油付随水を入れて密閉し、40℃に保持し、撹拌手段46にて撹拌しながら、水中の二酸化炭素の分圧が1×10Paとなるように注入手段43から二酸化炭素を注入した。
 参照電極45aと作用電極45bとの間に微小電流を流し、電極間の電位差を所定の設定電位(10mV)に制御し、作用電極45bと対極45cとの間を流れる電流密度を測定した。電位の制御は、腐食電位からアノード側に一定の電位掃引速度で掃引することで行った。
 得られた電位・電流密度の結果に基づき、分極抵抗法により腐食速度を求めた。これをブランク時の腐食速度(r)とした。ブランク時の腐食速度(r)は6mpyであった。
 電流密度の測定から60分経過した後、(A)成分と(B)成分と(C)成分との混合物からなる腐食防止剤を添加手段42から添加し、先と同様にして経時的に腐食速度(r)を求めた。
 ブランク時(すなわち、腐食防止剤を添加する前)の防食率を0%とし、腐食速度(r)と腐食速度(r)から、下記式(1)より腐食防止剤を添加した後の防食率を求めた。結果を図8に示す。
 防食率(%)=(r-r)/r ×100  ・・・(1)
 なお、(A)成分として水溶性インヒビター(Nalco Champion社製、「EC1304A」)を用い、(B)成分としてキシレンを用い、(C)成分としてカップスタック型カーボンナノチューブ(株式会社GSIクレオス製、「カルベール」)を用いた。添加量は、耐圧容器41中の秋田県産の原油付随水1.8Lに対して、(A)成分を25ppm、(B)成分を2mL、(C)成分を6mgとした。すなわち、(A)成分100質量部に対して(B)成分を4000質量部用い、(B)成分100質量部に対し(C)成分を0.38質量部用いた。
<比較例1>
 腐食防止剤の代わりに(A)成分のみを添加した以外は、実施例1と同様にして防食率を求めた。結果を図8に示す。
 なお、(A)成分として水溶性インヒビター(Nalco Champion社製、「EC1304A」)を用い、(A)成分の添加量は、耐圧容器41中の秋田県産の原油付随水1.8Lに対して25ppmとした。
 図8の結果から明らかなように、実施例1の場合、腐食防止剤を添加することによって、腐食防止剤を添加する前(ブランク)に比べて防食率が75%程度まで上昇した。
 一方、比較例1では、(A)成分を添加することである程度は防食率が上昇したが(20%程度)、実施例1に比べて劣るものであった。
「試験2」
<実施例2>
 耐圧容器41に1.8Lの新潟県産の原油付随水を入れて密閉し、80℃に保持し、撹拌手段46にて撹拌しながら、水中の二酸化炭素の分圧が1×10Paとなるように注入手段43から二酸化炭素を注入し、実施例1と同様にしてブランク時の腐食速度(r)を測定した。ブランク時の腐食速度(r)は99mpyであった。
 電流密度の測定から55分経過した後、(A)成分と(B)成分と(C)成分との混合物からなる腐食防止剤を添加手段42から添加し、実施例1と同様にして防食率を求めた。結果を図9に示す。
 なお、(A)成分として油溶性・水分散性インヒビター(Nalco Champion社製、「EC1103A」)を用い、(B)成分としてキシレンを用い、(C)成分としてカップスタック型カーボンナノチューブ(株式会社GSIクレオス製、「カルベール」)を用いた。添加量は、耐圧容器41中の新潟県産の原油付随水1.8Lに対して、(A)成分を150ppm、(B)成分を5mL、(C)成分を3mgとした。すなわち、(A)成分100質量部に対して(B)成分を1850質量部用い、(B)成分100質量部に対し(C)成分を0.08質量部用いた。
 さらに、電流密度の測定から210分経過した後、(C)成分3mgを水に分散させた分散液を添加手段42から添加し、先と同様にして防食率を求めた。結果を図9に示す。すなわち、(B)成分100質量部に対し(C)成分を0.15質量部添加した。
<比較例2>
 腐食防止剤の代わりに(A)成分のみを添加した以外は、実施例2と同様にして防食率を求めた。結果を図9に示す。
 なお、(A)成分として油溶性・水分散性インヒビター(Nalco Champion社製、「EC1103A」)を用い、(A)成分の添加量は、耐圧容器41中の新潟県産の原油付随水1.8Lに対して150ppmとした。
 図9の結果から明らかなように、実施例2の場合、腐食防止剤を添加することによって、腐食防止剤を添加する前(ブランク)に比べて防食率が40%程度まで上昇した。さらに(C)成分を添加することで、防食率は99%程度まで上昇した。
 一方、比較例2では、(A)成分を添加することである程度は防食率が上昇したが、実施例2に比べて劣るものであった。
 これらの結果から、市販の油溶性・水分散性インヒビターでは水相のみの防食効果がほとんど得られないが(防食率が5%程度まで)、当該発明の腐食防止剤であれば極めて高い抑制効果を発揮できることが示された。
「試験3」
<試験例1>
 濃度が1質量%である塩化ナトリウム水溶液500mLに、炭酸水素ナトリウムを濃度が400mg/Lとなるように添加し、室温でのpHが3.9となるように塩酸を添加、試験水を調製した。
 実施例1で用いた装置40の耐圧容器41をガラスセルに変更し、得られた試験水の全量をガラスセルに入れ、開放した状態で撹拌しながら、実施例1と同様にしてブランク時の腐食速度(r)を測定した。ブランク時の腐食速度(r)は38mpyであった。
 別途、ガラスセルに同量の試験水を入れ、(A)成分としてN-ドデカノイルサルコシン酸ナトリウムを濃度が5×10-4mol/Lとなるように添加した。開放した状態で撹拌しながら、腐食速度(r)を測定した。
 ブランク時(すなわち、腐食防止剤を添加する前)の防食率を0%とし、実施例1と同様にして防食率を求めた。結果を図10に示す。
 引き続き、(A)成分が添加された試験水に、(B)成分としてキシレンを0.5mL添加した。開放した状態で撹拌しながら、腐食速度(r)を測定し、防食率を求めた。
 結果を図10に示す。
 さらに、(A)成分および(B)成分が添加された試験水に、(C)成分としてカップスタック型カーボンナノチューブ(株式会社GSIクレオス製、「カルベール」)を1.3mg添加した。開放した状態で撹拌しながら、腐食速度(r)を測定し、防食率を求めた。結果を図10に示す。
 試験例1では、(A)成分100質量部に対して(B)成分を550質量部用い、(B)成分100質量部に対し(C)成分を0.3質量部用いた。
<試験例2>
 (A)成分としてドデシルアミンを用いた以外は、試験例1と同様にして各成分を添加したときの防食率を求めた。結果を図10に示す。
<試験例3>
 (A)成分としてステアリン酸を用いた以外は、試験例1と同様にして各成分を添加したときの防食率を求めた。結果を図10に示す。
 図10の結果から明らかなように、試験水に(A)成分、(B)成分および(C)成分を順次添加するに連れて、防食率が向上した。すなわち、(A)成分、(B)成分および(C)成分の全てが試験水に添加された状態が最も防食率が高かった。
 なお、試験例1、2の場合、(B)成分を添加したときの防食率と、(C)成分をさらに添加したときの防食率との差が、グラフの縮尺上、図10の結果では分かりにくいため、腐食速度に基づいて腐食防止性の効果を検討する。
 図11は、試験例1における(B)成分を添加したときの腐食速度と、(C)成分を添加したときの腐食速度の結果を示したグラフである。
 図11の結果から明らかなように、(A)成分が添加された試験水に(B)成分を添加したときの腐食速度は0.22mpyであった。なお、このときの防食率は99.4%である。
 さらに(C)成分を添加し、40分経過した後の腐食速度は0.11mpyであった。なお、このときの防食率は99.7%である。
 このように、(A)成分および(B)成分を含む試験水に、(C)成分をさらに添加すると、腐食速度は半分にまで低下した。これは、(A)成分および(B)成分の組み合わせにおいて(C)成分をさらに添加することで、高い腐食防止性を発現できたことを意味する。
「試験4」
<試験例4>
 濃度が1質量%である塩化ナトリウム水溶液500mLに、炭酸水素ナトリウムを濃度が400mg/Lとなるように添加し、室温でのpHが3.9となるように塩酸を添加、試験水を調製した。
 実施例1で用いた装置40の耐圧容器41をガラスセルに変更し、得られた試験水の全量をガラスセルに入れ、開放した状態で撹拌しながら、実施例1と同様にしてブランク時の腐食速度(r)を測定した。ブランク時の腐食速度(r)は38mpyであった。
 別途、ガラスセルに同量の試験水を入れ、(A)成分としてドデシルアミンを濃度が2×10-4mol/Lとなるように添加した。開放した状態で撹拌しながら、腐食速度(r)を測定した。
 ブランク時(すなわち、腐食防止剤を添加する前)の防食率を0%とし、実施例1と同様にして防食率を求めた。結果を図12に示す。
 引き続き、(A)成分が添加された試験水に、(B)成分としてキシレンを0.7mL添加した。開放した状態で撹拌しながら、腐食速度(r)を測定し、防食率を求めた。
 結果を図12に示す。
 さらに、(A)成分および(B)成分が添加された試験水に、(C)成分としてカップスタック型カーボンナノチューブ(株式会社GSIクレオス製、「カルベール」)を1.6mg添加した。開放した状態で撹拌しながら、腐食速度(r)を測定し、防食率を求めた。結果を図12に示す。
 試験例4では、(A)成分100質量部に対して(B)成分を1500質量部用い、(B)成分100質量部に対し(C)成分を0.3質量部用いた。
<試験例5>
 (B)成分として多環芳香族炭化水素(Exxon Mobil社製、「ソルベッソ100」、初留点161℃、終点179℃)を用いた以外は、試験例4と同様にして各成分を添加したときの防食率を求めた。結果を図12に示す。
 図12の結果から明らかなように、試験水に(A)成分、(B)成分および(C)成分を順次添加するに連れて、防食率が向上した。すなわち、(A)成分、(B)成分および(C)成分の全てが試験水に添加された状態が最も防食率が高かった。特に、単環芳香族系炭化水素であるキシレンを用いた試験例4は、多環芳香族炭化水素を用いた試験例5よりも防食率が高かった。
 10 採油管
 11 本体
 12 防食皮膜
 20 生産井
 22 チュービング(採油管)
 23 エントリーガイド
 34 パイプラインシステム
 36 パイプライン(輸送管)

Claims (8)

  1.  金属に電子を提供可能な極性基、および疎水基を有するインヒビター(A)と、芳香族系溶剤(B)と、疎水性微粒子(C)とを含有する、腐食防止剤。
  2.  前記芳香族系溶剤(B)の沸点が60~200℃である、請求項1に記載の腐食防止剤。
  3.  前記疎水性微粒子(C)がカーボンナノチューブである、請求項1または2に記載の腐食防止剤。
  4.  前記カーボンナノチューブがカップスタック型カーボンナノチューブである、請求項3に記載の腐食防止剤。
  5.  請求項1~4のいずれか一項に記載の腐食防止剤により内表面に防食皮膜が形成されたチュービングを含む、坑井。
  6.  請求項1~4のいずれか一項に記載の腐食防止剤により内表面に防食皮膜が形成された輸送管を含む、パイプライン。
  7.  管内部の炭化水素油又は生産流体に、請求項1~4のいずれか一項に記載の腐食防止剤を添加することにより前記管の内表面に防食皮膜を形成する、防食皮膜形成方法。
  8.  前記管は、坑井に設置されるチュービング、又はパイプラインの輸送管である、請求項7に記載の防食皮膜形成方法。
PCT/JP2017/029924 2016-08-23 2017-08-22 腐食防止剤、坑井、パイプライン、及び防食皮膜形成方法 WO2018038099A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/326,879 US11078576B2 (en) 2016-08-23 2017-08-22 Corrosion inhibitor, well, pipeline, and method for forming anticorrosion film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016162848A JP6829027B2 (ja) 2016-08-23 2016-08-23 腐食防止剤、坑井、パイプライン、及び防食皮膜形成方法
JP2016-162848 2016-08-23

Publications (1)

Publication Number Publication Date
WO2018038099A1 true WO2018038099A1 (ja) 2018-03-01

Family

ID=61244958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029924 WO2018038099A1 (ja) 2016-08-23 2017-08-22 腐食防止剤、坑井、パイプライン、及び防食皮膜形成方法

Country Status (3)

Country Link
US (1) US11078576B2 (ja)
JP (1) JP6829027B2 (ja)
WO (1) WO2018038099A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6829027B2 (ja) * 2016-08-23 2021-02-10 国際石油開発帝石株式会社 腐食防止剤、坑井、パイプライン、及び防食皮膜形成方法
JP2019123891A (ja) * 2018-01-11 2019-07-25 国際石油開発帝石株式会社 腐食防止剤組成物、輸送混合流体、腐食防止剤組成物の投入方法、坑井及びパイプライン
CA3028889A1 (en) 2018-11-01 2020-05-01 Pro Pipe Service & Sales Ltd Tubular for downhole use
CN116690180B (zh) * 2023-05-31 2024-02-13 珠海市新万山仪表有限公司 单直管液体密度测量装置及其装配方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183184A (ja) * 1987-01-02 1988-07-28 ペトロライト コーポレーション 二酸化炭素腐食抑制組成物とその使用方法
JPS63183183A (ja) * 1987-01-02 1988-07-28 ペトロライト コーポレーション 二酸化炭素腐食抑制組成物とその使用方法
JP2001081188A (ja) * 1999-09-16 2001-03-27 Nippon Shokubai Co Ltd 修飾ポリアスパラギン酸およびその用途
JP2001131779A (ja) * 1999-11-08 2001-05-15 Nippon Shokubai Co Ltd 金属腐食抑制剤
JP2008127275A (ja) * 2006-11-21 2008-06-05 United Technol Corp <Utc> 抗酸化コーティングの方法および被覆製品

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3350408A (en) * 1965-12-14 1967-10-31 Shell Oil Co Production of sulfur-containing heterocyclic compounds
US3457185A (en) * 1966-10-14 1969-07-22 Armour Ind Chem Co Corrosion inhibited acidic solutions containing alkyl hexahydropyrimidine-2-thione and quaternary ammonium compounds
US3791789A (en) * 1972-06-22 1974-02-12 Petrolite Corp 1,2-dithiolium compounds as corrosion inhibitors
US3959313A (en) * 1974-05-20 1976-05-25 Petrolite Corporation Preparation of dithiolium compounds
US4339349A (en) * 1980-02-11 1982-07-13 Petrolite Corporation Corrosion inhibitors for limited oxygen systems
US4435361A (en) * 1982-09-20 1984-03-06 Texaco Inc. Corrosion inhibition system containing dicyclopentadiene sulfonate salts
JP2000219980A (ja) 1999-02-02 2000-08-08 Teikoku Oil Co Ltd 金属類の局部腐食抑制方法
US9873827B2 (en) * 2014-10-21 2018-01-23 Baker Hughes Incorporated Methods of recovering hydrocarbons using suspensions for enhanced hydrocarbon recovery
WO2017214385A1 (en) * 2016-06-10 2017-12-14 Ecolab USA, Inc. Compositions and methods for corrosion inhibitor monitoring
JP6829027B2 (ja) * 2016-08-23 2021-02-10 国際石油開発帝石株式会社 腐食防止剤、坑井、パイプライン、及び防食皮膜形成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183184A (ja) * 1987-01-02 1988-07-28 ペトロライト コーポレーション 二酸化炭素腐食抑制組成物とその使用方法
JPS63183183A (ja) * 1987-01-02 1988-07-28 ペトロライト コーポレーション 二酸化炭素腐食抑制組成物とその使用方法
JP2001081188A (ja) * 1999-09-16 2001-03-27 Nippon Shokubai Co Ltd 修飾ポリアスパラギン酸およびその用途
JP2001131779A (ja) * 1999-11-08 2001-05-15 Nippon Shokubai Co Ltd 金属腐食抑制剤
JP2008127275A (ja) * 2006-11-21 2008-06-05 United Technol Corp <Utc> 抗酸化コーティングの方法および被覆製品

Also Published As

Publication number Publication date
JP2018031043A (ja) 2018-03-01
US11078576B2 (en) 2021-08-03
US20190203361A1 (en) 2019-07-04
JP6829027B2 (ja) 2021-02-10

Similar Documents

Publication Publication Date Title
WO2018038099A1 (ja) 腐食防止剤、坑井、パイプライン、及び防食皮膜形成方法
Obot et al. Progress in the development of sour corrosion inhibitors: Past, present, and future perspectives
Abd El-Lateef et al. Corrosion protection of steel pipelines against CO2 corrosion-a review
US20100219379A1 (en) Corrosion inhibitors containing amide surfactants for a fluid
WO2019139080A1 (ja) 腐食防止剤組成物、輸送混合流体、腐食防止剤組成物の投入方法、坑井及びパイプライン
Jevremović et al. Evaluation of a novel top-of-the-line corrosion (TLC) mitigation method in a large-scale flow loop
Zhang et al. Effect of temperature on corrosion behavior of VM110SS casing steel in the CO2/H2S coexistent environment
US8857457B2 (en) Systems and methods for producing and transporting viscous crudes
GB2529723A (en) Corrosion inhibition
JP2019123891A5 (ja)
Fouda et al. Lornoxicam & Tenoxicam Drugs as Green Corrosion Inhibitors for Carbon Steel in 1 MH 2 SO 4 Solution
US11142831B2 (en) Corrosion control for supercritical carbon dioxide fluids
Shaker et al. Protecting oil flowlines from corrosion using 5-ACETYL-2-ANILINO-4-DIMETHYLAMINOTHIAZOLE
CZ2012971A3 (cs) Způsob protikorozní ochrany zařízení pro těžbu ropy
US20150021200A1 (en) Protecting A Metal Surface From Corrosion
DK202070582A1 (en) Synergistic h2s scavenging compositions and methods thereof
Smith et al. A new MIC control strategy in low velocity gas gathering pipelines
Sparr Influence of test conditions and test methods in the evaluation of corrosion inhibitors used in pipelines-A review
Mékarbané et al. Development of Combined Corrosion and Scale Inhibitors
Gui et al. Evaluation of Ammonia Hydroxide for Mitigating Stress Corrosion Cracking of Carbon Steel in Fuel Grade Ethanol
Gui et al. Inhibition of Carbon Steel Stress Corrosion Cracking in Fuel Grade Ethanol by Chemical Addition or Oxygen Control: A Feasibility Evaluation
Al-Sayed et al. Protection of Offshore Platform Caisson Legs with a Vapor Corrosion Inhibitor-A Case Study
SAVITRI STUDIES ON CORROSION MITIGATION OF MILD STEEL USED IN OIL AND NATURAL GAS INDUSTRIES WITH SUITABLE CORROSION INHIBITORS
Steel Paper No. SS14
Bounoughaz Electrochemical study of efficiency of mixtures of corrosion inhibitor in multiphase medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17843578

Country of ref document: EP

Kind code of ref document: A1