WO2018038020A1 - 電動式直動アクチュエータ - Google Patents

電動式直動アクチュエータ Download PDF

Info

Publication number
WO2018038020A1
WO2018038020A1 PCT/JP2017/029680 JP2017029680W WO2018038020A1 WO 2018038020 A1 WO2018038020 A1 WO 2018038020A1 JP 2017029680 W JP2017029680 W JP 2017029680W WO 2018038020 A1 WO2018038020 A1 WO 2018038020A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
power supply
linear motion
electric
excitation
Prior art date
Application number
PCT/JP2017/029680
Other languages
English (en)
French (fr)
Inventor
唯 増田
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to EP17843500.4A priority Critical patent/EP3505406A4/en
Priority to CN201780051524.5A priority patent/CN109641575A/zh
Publication of WO2018038020A1 publication Critical patent/WO2018038020A1/ja
Priority to US16/281,529 priority patent/US10651779B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/028Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the motor continuing operation despite the fault condition, e.g. eliminating, compensating for or remedying the fault
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • B60T13/741Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive acting on an ultimate actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D55/00Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
    • F16D55/02Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members
    • F16D55/22Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads
    • F16D55/224Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members
    • F16D55/225Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members the braking members being brake pads
    • F16D55/226Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members the braking members being brake pads in which the common actuating member is moved axially, e.g. floating caliper disc brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • F16D65/16Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake
    • F16D65/18Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for drawing members together, e.g. for disc brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • F16D65/16Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake
    • F16D65/18Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for drawing members together, e.g. for disc brakes
    • F16D65/183Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for drawing members together, e.g. for disc brakes with force-transmitting members arranged side by side acting on a spot type force-applying member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H19/00Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion
    • F16H19/02Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • H02K1/2795Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2796Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets where both axial sides of the rotor face a stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2121/00Type of actuator operation force
    • F16D2121/18Electric or magnetic
    • F16D2121/24Electric or magnetic using motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/18Mechanical mechanisms
    • F16D2125/20Mechanical mechanisms converting rotation to linear movement or vice versa
    • F16D2125/34Mechanical mechanisms converting rotation to linear movement or vice versa acting in the direction of the axis of rotation
    • F16D2125/40Screw-and-nut
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/18Mechanical mechanisms
    • F16D2125/44Mechanical mechanisms transmitting rotation
    • F16D2125/46Rotating members in mutual engagement
    • F16D2125/50Rotating members in mutual engagement with parallel non-stationary axes, e.g. planetary gearing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/06Machines characterised by the presence of fail safe, back up, redundant or other similar emergency arrangements

Definitions

  • the present invention relates to, for example, an electric linear actuator applied to an electric brake device.
  • Electric actuators and electric motors have been proposed in the following documents.
  • An electric disc brake device in which an electric motor is arranged coaxially with the linear motion part on the outer periphery of the linear motion part (Patent Document 1).
  • An electric brake device in which an electric motor is arranged on an axis parallel to the rotation axis of the linear motion mechanism and different from the rotation axis (Patent Document 2).
  • An electric brake device in which an electric motor is arranged on an axis parallel to the rotation axis of the linear motion mechanism and different from the rotation axis (Patent Document 2).
  • a 8-pole, 9-slot double stator type axial gap motor Patent Document 3
  • 4 A radial gap motor in which two windings are arranged in the circumferential direction (Patent Document 4).
  • an electric brake device using an electric linear actuator as described in Patent Documents 1 and 2 has a very limited space for mounting on a vehicle, and it is necessary to realize a function with as little space as possible.
  • an electric brake is required to have high-speed and high-precision brake force control.
  • an axial gap type synchronous motor as shown in Patent Document 3 As an example of a motor structure that realizes high torque in a small space, an axial gap type synchronous motor as shown in Patent Document 3, for example, is known.
  • the axial gap motor generally has a short dimension in the rotation axis direction, but tends to have a large radial dimension.
  • the occupied space increases as a result. Problems may arise.
  • the outer diameter may be excessively widened locally.
  • the outer periphery of the electric motor when applied to the structure of Patent Document 2, when applied to the structure of Patent Document 2, when the outer periphery of the electric motor is increased, the distance between the shafts of the motor and the actuator is increased. Spread and dead space may increase.
  • An object of the present invention is to provide an electric linear actuator capable of saving space and reducing costs and improving redundancy.
  • the electric linear actuator 1 has an electric motor 2 and a rotation input / output shaft 5, and converts the rotational motion of the electric motor 2 into a linear motion of the linear motion portion 6 via the rotation input / output shaft 5.
  • An electric linear actuator comprising: a linear motion mechanism 3 for controlling the electric motor 2; and a control unit CU for controlling the electric motor 2.
  • the linear motion mechanism 3 and the electric motor 2 are arranged side by side on the same axis serving as the axis of the rotation input / output shaft 5 of the linear motion mechanism 3;
  • the electric motor 2 includes a stator 7 and a rotor 8 that are arranged so that the direction of the magnetic poles that generate the interlinkage magnetic flux that contributes to the torque is parallel to the rotation axis of the electric motor 2.
  • the rotor 8 has torque generating surfaces on both axial surfaces of the rotor 8
  • the stator 7 has a plurality of excitation mechanisms 7A and 7B disposed on both sides of the rotor 8 in the axial direction, and the plurality of excitation mechanisms 7A and 7B includes one of the excitation mechanisms 7A and 7A in the axial direction. (7B) with one or more systems, and two or more independent coil groups 11A and 11B in total with excitation mechanisms 7A and 7B on both sides in the axial direction, A power supply system 50 that supplies power independently to the independent coil groups 11A and 11B is provided.
  • the independent coil groups 11A and 11B can control the currents flowing through the coil groups 11A and 11B by the control unit CU (in other words, the excitation magnetic fluxes of the excitation mechanisms 7A and 7B are independent by the control unit CU).
  • the coil groups 11A and 11B on both sides in the axial direction are separated from each other in structure.
  • To supply power independently means that an abnormality occurs in a power supply system or a power transmission system that supplies power to one of the coil groups 11A and (11B), and power is supplied to the one coil group 11A and (11B). Even if the supply is impossible, if the power supply system and the power transmission system for supplying power to the other coil groups 11B and (11A) are normal, it is possible to supply power to the other coil groups 11B and (11A). It means that there is.
  • the electric motor 2 includes the stator 7 and the rotor 8 that are arranged so that the direction of the magnetic poles that generate the interlinkage magnetic flux that contributes to the torque is parallel to the rotation axis of the electric motor 2.
  • This is a so-called axial gap motor.
  • the linear motion mechanism 3 and the electric motor 2 are arranged side by side on the same axis serving as the axis of the rotation input / output shaft 5 of the linear motion mechanism 3. Therefore, compared to a structure in which the electric motor and the direct acting actuator are arranged in parallel, an electric linear acting actuator that has a small amount of invalid space and can save space, and has a small moment of inertia and high response. realizable.
  • the electric motor 2 has torque generating surfaces on both axial surfaces of the rotor 8, and the stator 7 has a plurality of excitation mechanisms 7A and 7B arranged on both sides of the rotor 8 in the axial direction.
  • This is a so-called double stator type axial gap motor. If such a double stator type axial gap motor is used, it is possible to improve the torque density and reduce the moment of inertia, which is considered preferable.
  • the plurality of excitation mechanisms 7A, 7B are independent coil groups 11A, including one or more systems per one axial excitation mechanism 7A, (7B) and a total of two or more systems by the excitation mechanisms 7A, 7B on both axial sides. 11B. Since the power supply system 50 supplies power independently to the independent coil groups 11A and 11B, it can be considered preferable because redundancy can be improved. For example, even when power cannot be supplied to one of the coil groups 11A and (11B), a desired axial direction can be applied to the linear motion unit 6 by supplying power to the other coil groups 11B and (11A). A load can be applied.
  • the control unit CU determines whether or not the power supply state to each of the excitation mechanisms 7A and 7B is normal based on a predetermined relationship between the current and voltage in the excitation mechanisms 7A and 7B. It is good also as what has the part 54.
  • FIG. The predetermined relationship is a current-voltage relationship arbitrarily determined by design or the like, and is determined by, for example, obtaining an appropriate relationship by one or both of testing and simulation. In this case, the motor power abnormality determination unit 54 accurately determines whether or not the power supply state to each excitation mechanism 7A, 7B is normal based on the predetermined relationship between the current and voltage in the excitation mechanisms 7A, 7B. be able to.
  • the motor power abnormality determining unit 54 determines the relationship between the average current and the average voltage in the plurality of excitation mechanisms 7A and 7B and the relationship between the current and the voltage in the individual excitation mechanisms 7A and 7B. Based on information including comparison, it may be determined whether or not the power supply state to each of the excitation mechanisms 7A and 7B is normal.
  • the “predetermined relationship” between the average current and the average voltage in the plurality of excitation mechanisms 7A and 7B and the “predetermined relationship” between the current and the voltage in the individual excitation mechanisms 7A and 7B are arbitrary depending on the design or the like. For example, an appropriate relationship is obtained and determined by one or both of testing and simulation.
  • the gaps on the both sides in the axial direction of the rotor 8 of the axial gap motor are often uneven due to the influence of machining tolerances, etc.
  • the gap is likely to fluctuate depending on the state of generation of the magnetic flux.
  • the excitation mechanism 7A, (7B) on the smaller gap side has a higher induced voltage
  • the excitation mechanism 7B, (7A) on the larger gap side has a lower induced voltage.
  • the abnormality determination includes both a predetermined relationship between the average current and the average voltage in the plurality of excitation mechanisms 7A and 7B and a predetermined relationship between the current and the voltage in the individual excitation mechanisms 7A and 7B. It is determined whether or not there is an abnormality. In this case, the influence due to the change in the gap is less likely to appear as a result of the average current and the average voltage (collectively referred to as “average value”), so that erroneous determination of abnormality can be prevented.
  • the control unit CU When the motor power abnormality determination unit 54 determines that the power supply state to one of the excitation mechanisms 7A and (7B) is abnormal, the power supply to the one excitation mechanism 7A and (7B) is limited or cut off.
  • a power supply restriction function unit 72 With respect to the other excitation mechanism 7B, (7A) whose power supply state is determined to be normal by the motor power abnormality determination unit 54, the torque reduced by the one excitation mechanism 7A, (7B) whose power supply is restricted or cut off Is supplemented by the other excitation mechanism 7B, (7A) determined to be normal, It is good also as what has.
  • the power supply restriction function unit 72 supplies power to the one excitation mechanism 7A, (7B) when it is determined that the power supply state to one excitation mechanism 7A, (7B) is abnormal. Limit or block.
  • the complementary function unit 71 supplements the torque reduced by the one excitation mechanism 7A, (7B) whose power supply is restricted or cut off by the other excitation mechanism 7B, (7A) determined to be normal.
  • the control unit CU includes an axial load estimation function unit 60 that estimates the magnitude of the axial load generated with the linear motion of the linear motion unit 6 of the linear motion mechanism 3;
  • the power supply restriction function unit 72 the power supply state to the one excitation mechanism 7A, (7B) is determined to be abnormal, and the axial load estimated by the shaft load estimation function unit 60 is determined.
  • the motor current may be limited so that the current that can be supplied to the electric motor 2 is smaller than that when the power supply is not limited or cut off.
  • the “determined magnitude” is the magnitude of the axial load arbitrarily determined by design or the like, and is determined by determining an appropriate magnitude by one or both of testing and simulation, for example.
  • the power supply restriction function unit 72 determines the axial load estimated by the axial load estimation function unit 60 when the power supply state to one of the excitation mechanisms 7A and (7B) is determined to be abnormal.
  • the motor current is limited so that the current that can be supplied to the electric motor 2 is smaller than that when the power supply is not limited or cut off. In this way, when the axial load is smaller than the predetermined magnitude, the instability of the posture of the rotor 8 can be reduced by limiting the motor current to be small.
  • FIG. 1 is a cross-sectional view of an electric linear actuator according to an embodiment of the present invention. It is a block diagram which shows the control system structural example of the same electric linear actuator. It is a block diagram which shows the control system structural example of the electric linear actuator which concerns on other embodiment of this invention. It is sectional drawing which fractured
  • the electric linear actuator 1 is an actuator in which an electric motor 2 and a linear mechanism 3 are connected in series in the axial direction.
  • the linear motion mechanism 3 and the electric motor 2 are arranged side by side on the same axis serving as the axis of the rotation input / output shaft 5 of the linear motion mechanism 3.
  • the electric linear actuator 1 includes a linear actuator body AH and a control unit CU described later.
  • the linear motion actuator main body AH includes an electric motor 2, a linear motion mechanism 3, and a housing 4.
  • the electric motor 2 of this example is a double stator type axial gap motor.
  • the linear motion mechanism 3 has a linear motion portion 6 and converts the rotational motion of the electric motor 2 into the linear motion of the linear motion portion 6 via the rotation input / output shaft 5.
  • the housing 4 holds the linear motion mechanism 3 and the electric motor 2. For simplification, some structures such as wiring are omitted.
  • the electric motor 2 will be described.
  • the electric motor 2 is a so-called axial gap type including a stator 7 and a rotor 8 in which the direction of the magnetic poles that generate the interlinkage magnetic flux contributing to the torque is arranged in parallel with the rotation axis of the electric motor 2.
  • the stator 7 is held statically with respect to the housing 4.
  • the rotor 8 is statically held with respect to the rotation input / output shaft 5 of the linear motion mechanism 3, and generates a rotational torque by the interlinkage magnetic flux with the stator 7 arranged at an interval.
  • the rotor 8 is a field mechanism having torque generating surfaces on both axial surfaces of the rotor 8.
  • Each “statically” means a relationship in which the motions are generally synchronized (in other words, relatively constrained) excluding the influence of a clearance or the like.
  • An electric motor 2 is provided in a cylindrical housing 4.
  • a linear motion mechanism accommodating portion 4a that accommodates most of the linear motion mechanism 3
  • a motor accommodating portion 4b that accommodates the electric motor 2
  • the linear motion mechanism accommodating portion 4a and the motor accommodating portion 4b are partitioned.
  • a partition wall 4c is provided.
  • the motor housing portion 4 b is provided on one axial end side in the housing 4, and the linear motion mechanism housing portion 4 a is provided on the other axial end side in the housing 4.
  • the partition wall 4c is provided perpendicular to the axial direction of the rotation input / output shaft 5 and has a through hole into which the rotation input / output shaft 5 is inserted from the linear motion mechanism housing portion 4a to the motor housing portion 4b.
  • a motor cover 45 is provided that closes the opening end of the housing 4 on the side of the electric motor 2 (one end side in the axial direction) in a state where the electric motor 2 is housed in the motor housing portion 4 b of the housing 4.
  • the stator 7 is provided with a pair of excitation mechanisms 7A and 7B arranged to face both sides of the rotor 8 in the axial direction. Of these excitation mechanisms 7A and 7B, one on the partition 4c side is the first excitation mechanism 7A, and the other on the motor cover 45 side is the second excitation mechanism 7B.
  • the first excitation mechanism 7A includes a magnetic core 10A, a back yoke 9A, and a first group of coils 11A.
  • the second excitation mechanism 7B has a magnetic core 10B, a back yoke 9B, and a second group of coils 11B.
  • the first excitation mechanism 7A will be described.
  • a back yoke 9A is provided so as to abut against the partition wall 4c, and a magnetic core 10A protruding in the axial direction from the back yoke 9A is provided. It has been.
  • a plurality of the magnetic cores 10A are provided at regular intervals in the circumferential direction.
  • the magnetic core 10A is made of, for example, a laminated steel plate or a dust core.
  • a first group of coils 11A is wound around each magnetic core 10A.
  • a back yoke 9B is provided so as to contact the motor cover 45, and a magnetic core 10B protruding in the axial direction from the back yoke 9B is provided. Is provided. A plurality of magnetic cores 10B are also provided at regular intervals in the circumferential direction, similarly to the magnetic core 10A. A second group of coil groups 11B is wound around each magnetic core 10B. Other configurations of the magnetic core 10B and the second group of coil groups 11B are the same as those of the magnetic core 10A and the first group of coils 11A.
  • the magnetic core 10A and the magnetic core 10B made of laminated steel plates or dust cores because the torque per unit copper loss is improved.
  • an air-core coil that is effective in reducing component costs and torque fluctuation can be used without using a magnetic core.
  • the winding method of the first and second system coil groups 11A and 11B may be partial winding or concentrated winding.
  • the first and second coil groups 11A and 11B can control the current flowing in each coil group by the control unit CU, and the first and second coil groups 11A and 11B are structurally axial with respect to each other. Have been separated.
  • Such first and second coil groups 11A and 11B are referred to as independent coil groups.
  • the rotor 8 is a disk-shaped member having, for example, a permanent magnet 8a and a holding portion 8b that holds the permanent magnet 8a.
  • the holding portion 8b is made of, for example, a nonmagnetic material such as resin or stainless steel.
  • the stator 7 is configured as an excitation mechanism including the first and second system coil groups 11A and 11B, and the rotor 8 is configured as a field mechanism using the permanent magnet 8a.
  • a permanent magnet synchronous motor which is excellent in durability, torque density, etc., and is considered suitable for an electric linear actuator.
  • the rotor 8 is fixed to the tip end portion of the rotation input / output shaft 5 in the linear motion mechanism 3.
  • the rotor 8 is sandwiched between two retaining rings 24, 24 and positioned in the axial direction on the outer peripheral surface of the tip portion of the rotary input / output shaft 5 that has entered the motor housing 4 b. It is fixed.
  • annular grooves for fixing these two retaining rings 24, 24 are formed on the outer peripheral surface of the tip portion of the rotary input / output shaft 5.
  • the rotor 8 is fixed to the axial position corresponding to the rotation input / output shaft 5 between the first excitation mechanism 7A and the second excitation mechanism 7B by the retaining rings 24, 24.
  • the rotation shaft of the electric motor 2 is arranged coaxially with the rotation input / output shaft 5 of the linear motion mechanism 3.
  • the positioning structure in the circumferential direction of the rotating shaft that enables torque transmission from the rotor 8 to the rotation input / output shaft 5 can be realized by plane machining, spline, fitting frictional force, welding, or the like.
  • the linear motion mechanism 3 will be described. Most of the linear motion mechanism 3 is incorporated in the linear motion mechanism accommodating portion 4 a in the housing 4. The linear motion mechanism 3 applies a braking force to a brake rotor described later by the output of the electric motor 2. The linear motion mechanism 3 converts the rotational motion of the electric motor 2 into the linear motion of the linear motion portion 6 via the rotation input / output shaft 5.
  • the linear motion mechanism 3 includes a rotational input / output shaft 5 that is rotationally driven by the electric motor 2 and a conversion mechanism unit 31 that converts the rotational motion of the rotational input / output shaft 5 into a linear motion.
  • the conversion mechanism portion 31 includes a linear motion portion 6, a bearing case 32, a back plate 33 that is an annular thrust plate, and a thrust bearing 34 that holds a reaction force against an axial load associated with the linear motion of the linear motion portion 6. And a radial bearing 35, a carrier 36, slide bearings 37 and 38, and a planetary roller 39.
  • a cylindrical linear motion portion 6 is supported on the inner peripheral surface of the linear motion mechanism accommodating portion 4a so as to be prevented from rotating and movable in the axial direction.
  • a spiral protrusion that protrudes inward in the radial direction and is formed in a spiral shape is provided.
  • a plurality of planetary rollers 39 are engaged with the spiral protrusions.
  • a bearing case 32 is provided on one end side in the axial direction of the linear motion portion 6 in the linear motion mechanism accommodating portion 4a.
  • the bearing case 32 has a cylindrical boss portion and a flange portion extending radially outward from the boss portion.
  • a plurality of radial bearings 35 are fitted into the boss portions, and the rotation input / output shaft 5 is fitted to the inner ring inner surface of the radial bearings 35.
  • the rotation input / output shaft 5 is rotatably supported by the support member 32 via a plurality of radial bearings 35.
  • a carrier 36 that can rotate around the rotation input / output shaft 5 is provided on the inner periphery of the linear motion portion 6.
  • the carrier 36 is rotatably supported on the rotation input / output shaft 5 by slide bearings 37 and 38 fitted between the rotation input / output shaft 5.
  • a retaining ring 40 that restricts the axial positions of the rotational input / output shaft 5 and the carrier 36 with respect to the bearing case 32 is provided at the tip portion of the rotational input / output shaft 5 in the axial direction.
  • the carrier 36 is provided with a plurality of roller shafts 41 at intervals in the circumferential direction.
  • a plurality of shaft insertion holes are formed at both ends of the carrier 36 in the axial direction.
  • Each shaft insertion hole is composed of a long hole extending a predetermined distance in the radial direction. Both axial ends of each roller shaft 41 are inserted into each shaft insertion hole, and these roller shafts 41 are supported so as to be movable in the radial direction within the range of each shaft insertion hole.
  • the elastic rings 42 that urge the roller shafts 41 radially inward are spanned at both axial ends of the plurality of roller shafts 41.
  • the planetary roller 39 is rotatably supported on each roller shaft 41. On the outer peripheral surface of each planetary roller 39, a circumferential groove or a spiral groove that meshes with the spiral protrusion of the linear motion portion 6 is formed. Each planetary roller 39 is interposed between the outer peripheral surface of the rotation input / output shaft 5 and the inner peripheral surface of the linear motion portion 6. Each planetary roller 39 is pressed against the outer peripheral surface of the rotation input / output shaft 5 by the urging force of the elastic ring 42. When the rotation input / output shaft 5 is rotated by the electric motor 2, each planetary roller 39 in contact with the outer peripheral surface of the rotation input / output shaft 5 is rotated by contact friction.
  • FIG. 2 is a block diagram illustrating a control system configuration example of the electric linear actuator 1.
  • the control unit CU is a device that controls the electric motor 2, and includes an actuator load controller 53, a motor power abnormality determination unit 54, an abnormality report unit 46, a current converter 55, a current controller 56, A control device power supply 47, an OR circuit 48, and a motor driver 57 are included.
  • the control unit CU includes a current estimator 58, an angle estimator 59, and an axial load estimator 60 which is an axial load estimation function unit.
  • a plurality of power supply units (first and second power supply units 49A and 49B in this example) are connected to the control unit CU.
  • Actuator load controller 53 obtains a motor torque necessary for following the estimated shaft load of linear motion mechanism 3 with respect to the load command value, and outputs the motor torque as a motor torque command value.
  • the load command value is given from, for example, the upper control means 61 of the control unit CU based on the operation amount of a brake operation means such as a brake pedal (not shown).
  • a brake operation means such as a brake pedal (not shown).
  • As the upper control means 61 for example, an electric control unit (ECU) for controlling the entire vehicle is applied.
  • the estimated axial load is estimated by an axial load estimator 60 described later, for example.
  • the axial load estimator 60 detects the pressing force when the friction pad 43 (FIG. 4) presses the brake rotor 44 (FIG. 4) by the linear motion portion 6 (FIG. 1) of the linear motion mechanism 3. Based on the sensor output from the load sensor 62, the estimated axial load can be estimated.
  • the load sensor 62 includes, for example, a magnetic sensor and a magnetic target.
  • the friction pad 43 presses the brake rotor 44 a reaction force to the inboard side shown in FIG.
  • the vehicle width direction center side of the vehicle is referred to as the inboard side
  • the vehicle width direction outer side of the vehicle is referred to as the outboard side.
  • the load sensor 62 shown in FIG. 2 including the magnetic sensor and the magnetic target magnetically detects the reaction force as an axial displacement amount.
  • an optical sensor other than the magnetic sensor an eddy current sensor, a capacitance sensor, or the like can be applied.
  • the axial load estimator 60 confirms the relationship between the sensor output from the load sensor 62 and the axial load (thrust force) of the linear motion mechanism 3 in advance by a test or the like, and sets the estimated value on a table or the like.
  • the axial load can be estimated. Note that the estimated axial load can be estimated from the relationship between the motor current estimated by the current estimator 58 and the motor angle estimated by the angle estimator 59.
  • Actuator load controller 53 obtains a motor torque necessary for following the estimated axial load with respect to a given load command value using feedback control or feedforward control as appropriate.
  • the current estimator 58 includes, for example, a first current sensor 58a for obtaining a motor current flowing in the first group of coil groups 11A and a second current sensor 58b for obtaining a motor current flowing in the second group of coil groups 11B.
  • Each of the current sensors 58a and 58b can use, for example, a magnetic field detection type that detects a magnetic field due to a current, or a voltage measurement type that measures a voltage across a shunt resistor or an FET.
  • the angle estimator 59 can estimate the angle of the rotor 8 with respect to the stator 7 from the sensor output from the angle sensor 63. For example, a resolver or an encoder is applied as the angle sensor 63.
  • the motor power abnormality determination unit 54 determines whether or not the power supply state to each of the excitation mechanisms 7A and 7B is normal based on the predetermined relationship between the current and voltage in the first and second excitation mechanisms 7A and 7B. to decide.
  • the power supply state is determined to be abnormal. For example, the power line 69 between the first and second power supply devices 49A and 49B and the motor driver 57 or a power supply harness (not shown) is disconnected, a short circuit in the motor driver 57, or an abnormality in the power supply device itself has occurred.
  • the power supply state is determined to be abnormal.
  • the motor power abnormality determination unit 54 is configured to determine whether the first and second coil groups 11A and 11B are energized, for example, currents depending on coil inductance, coil resistance, induced voltage due to rotor magnetic flux, rotor angular velocity, and the like. Based on the relationship with the voltage, it can be diagnosed as normal or abnormal based on a comparison with a predetermined result measured or analyzed in advance. In addition, although not shown, when a harness or a connector is used, a disconnection detection structure may be separately provided.
  • the gaps (gap) on both sides in the axial direction of the rotor 8 of the axial gap motor are often non-uniform due to processing tolerances, etc. Therefore, the gap is likely to fluctuate.
  • the excitation mechanism on the side with the smaller gap has a higher induced voltage
  • the excitation mechanism on the side with the larger gap has a lower induced voltage, resulting in a larger error from the predetermined result measured or analyzed in advance. It may be determined as desired.
  • the abnormality determination is performed based on the defined relationship between the average current and the average voltage in the plurality of excitation mechanisms (first and second excitation mechanisms 7A and 7B) and the current in each excitation mechanism 7A and (7B). And a function for determining whether or not there is an abnormality in both of the predetermined relationship between the voltage and the voltage.
  • the influence due to the change in the gap is less likely to appear as a result of the average current and the average voltage (collectively referred to as “average value”), so that erroneous determination of abnormality can be prevented.
  • the abnormality report unit 46 When the motor power abnormality determination unit 54 determines that the power supply state is abnormal, the abnormality report unit 46 outputs abnormality occurrence information to the host control unit 61.
  • the upper control means 61 receives the abnormality occurrence information from the abnormality report means 46 and causes the display device 70 provided on the console panel of the vehicle to display a notification of the abnormality of the electric motor 2, for example.
  • the current converter 55 derives a current command value to be applied to the first and second system coil groups 11A and 11B in accordance with the motor torque command value and the like calculated by the actuator load controller 53.
  • the current converter 55 includes first d-axis and q-axis current determination units 64 and 65 and second d-axis and q-axis current determination units 66 and 67.
  • the first d-axis and q-axis current determination units 64 and 65 derive a d-axis current command value and a q-axis current command value for the first group of coils 11 ⁇ / b> A, respectively.
  • the second d-axis and q-axis current determining units 66 and 67 derive the d-axis current command value and the q-axis current command value for the coil group 11B of the second system, respectively.
  • the above-described motor power abnormality determination unit 54 determines that the power supply state to one of the excitation mechanisms 7A and (7B) is abnormal, and determines that the power supply state to the other excitation mechanisms 7B and (7A) is normal.
  • the current converter 55 may include a complementary function unit 71 that supplements the torque that is insufficient due to the abnormality by the other normal excitation mechanism 7B (7A).
  • the posture of the rotor 8 may become unstable due to electromagnetic force in the thrust direction.
  • the restraint force on the rotor 8 is weaker in the low load state where the axial load is weaker, so the posture of the rotor 8 is likely to become unstable. Therefore, as shown in FIG. 2, the current converter 55 removes the torque necessary for exerting the load, and allows a reduction in responsiveness to limit the torque (power supply) and so on. May be provided.
  • the power supply limiting function unit 72 determines that the power supply state to one of the excitation mechanisms 7A and (7B) is abnormal by the motor power abnormality determination unit 54 and the axial load estimated by the axial load estimator 60. Is smaller than the predetermined magnitude, the motor current is limited so that the current that can be supplied to the electric motor 2 is smaller than that when the power supply is not limited. Specifically, only when the axial load is smaller than a predetermined magnitude, the first and (first) are set so as to limit the power supply to one of the excitation mechanisms 7A and (7B) determined to be abnormal. 2) The d-axis current command value and the q-axis current command value for the coil groups 11A and (11B) of the system are respectively derived.
  • a look-up table (abbreviation: LUT) that appropriately refers to the parameter including the axial load and the motor current estimated by the current estimator 58 is obtained based on the results of analysis and tests in advance. If created, it can be considered preferable because the calculation load can be reduced.
  • the current controller 56 includes first and second current controllers 56a and 56b.
  • the first and second current controllers 56a and 56b are motor voltages for performing follow-up control on the current command value based on the current estimation results of the corresponding first and second coil groups 11A and 11B, respectively. Is output.
  • the calculation for outputting the motor voltage is executed by appropriately using feedback control or feedforward control.
  • the current of the first group of coils 11A is estimated by the first current sensor 58a.
  • the current of the second group of coil groups 11B is estimated by the second current sensor 58b. It is considered that each arithmetic unit including the controller is preferably implemented by an arithmetic unit such as a microcomputer, FPGA, ASIC, etc. because it can realize low-cost and high-performance control.
  • the motor driver 57 includes first and second motor drivers 57a and 57b. These first and second motor drivers 57 a and 57 b convert the DC currents of the corresponding first and second power supply devices 49 A and 49 B into three-phase AC power used for driving the electric motor 2.
  • the power supply system 50 includes at least first and second motor drivers 57a and 57b in the control unit CU, first and second power supply devices 49A and 49B, and a power line 69 that connects them.
  • the power supply system 50 has a function of supplying power independently to the independent first and second coil groups 11A and 11B.
  • the control device power supply 47 is redundant if the OR circuit 48 can supply power to the first and second power supply devices 49A and 49B. This is considered suitable.
  • the OR circuit 48 for example, a diode OR circuit is applied.
  • the first motor driver 57a outputs AC power to the first system coil group 11A
  • the second motor driver 57b outputs AC power to the second system coil group 11B.
  • the first and second motor drivers 57a and 57b are constituted by, for example, a half bridge circuit using a switching element such as an FET, and each of the high side and the low side from the first and second current controllers 56a and 56b.
  • Use of PWM control for inputting the ON / OFF signal of the switch is considered preferable because low-cost and high-precision control can be realized.
  • the means, controller, converter, and estimator in the control unit CU are specifically stored in a software or hardware LUT (Look Up Table) or a software library. Hardware that can perform the operation and output the result using the specified conversion function or equivalent hardware, and if necessary, using the library comparison function, arithmetic operation function, or equivalent hardware It is composed of software functions on a circuit or a processor (not shown).
  • the electric motor 2 is fixed so that the direction of the magnetic poles that generate the interlinkage magnetic flux contributing to the torque is parallel to the rotation axis of the electric motor 2.
  • This is a so-called axial gap motor including a child 7 and a rotor 8.
  • the linear motion mechanism 3 and the electric motor 2 are arranged side by side on the same axis serving as the axis of the rotation input / output shaft 5 of the linear motion mechanism 3. Therefore, compared to a structure in which the electric motor and the direct acting actuator are arranged in parallel, an electric linear acting actuator that has a small amount of invalid space and can save space, and has a small moment of inertia and high response. realizable.
  • the electric motor 2 has torque generating surfaces on both axial surfaces of the rotor 8, and the stator 7 has a plurality of excitation mechanisms 7A and 7B arranged on both sides of the rotor 8 in the axial direction.
  • This is a so-called double stator type axial gap motor. If such a double stator type axial gap motor is used, it is possible to improve the torque density and reduce the moment of inertia, which is considered preferable.
  • the first and second excitation mechanisms 7A and 7B include first and second coil groups 11A and 11B that are independent of each other, and the power supply system 50 includes the independent first and second coil groups 11A. , 11B are supplied with power independently, so that redundancy can be improved and it is considered preferable. For example, even when power cannot be supplied to one of the coil groups 11A and (11B), a desired axial direction can be applied to the linear motion unit 6 by supplying power to the other coil groups 11B and (11A). A load can be applied.
  • first and second excitation mechanisms 7A and 7B are separated in the axial direction in terms of structure in advance, it is only necessary to pull out the wiring from the first and second excitation mechanisms 7A and 7B, respectively, and a simple structure is realized. it can.
  • the first excitation mechanism 7A includes the first system coil group 11A
  • the second excitation mechanism 7B includes the second system coil group 11B.
  • the present invention is not limited to the above-described configuration, and each of a plurality of excitation mechanisms provided on both sides in the axial direction of the rotor 8 includes one or more independent coil groups. It is only necessary to provide a total of two or more independent coil groups with the excitation mechanisms on both sides in the axial direction. That is, the excitation mechanism provided on one side in the axial direction of the rotor 8 has a plurality of independent coil groups, and the excitation mechanism provided on the other side in the axial direction of the rotor 8 has one independent coil group. You may do it. Further, each of the plurality of excitation mechanisms provided on both axial sides of the rotor 8 may have a plurality of independent coil groups.
  • one power supply device 49 is provided, and between this power supply device 49 and the first and second motor drivers 57a and 57b.
  • Only the power transmission system may be multiplexed, that is, made redundant. In this case, for example, it is possible to achieve redundancy when the power line 69 between the power supply device 49 and the motor driver 57 or a power supply harness (not shown) is disconnected or a short circuit occurs in the motor driver 57. Further, the number of power supply devices can be reduced as compared with the configuration of FIG. Other effects similar to those of FIGS.
  • FIG. 4 is a partially broken cross-sectional view of the electric brake device including any one of the electric linear actuators 1 described above.
  • This electric brake device includes any one of the electric linear actuator 1, a brake rotor 44 that is a rotating member that rotates integrally with a wheel, and a friction pad (friction) that generates a braking force in contact with the brake rotor 44. Material) 43 and a control device (not shown) for controlling the electric linear actuator.
  • the vehicle is provided with calipers 51 so as to surround the outer peripheral side portion of the brake rotor 44.
  • the caliper 51 is provided integrally with the housing 4 of the electric linear actuator 1.
  • a claw 52 is provided at the end of the caliper 51 on the outboard side.
  • the claw portion 52 faces the side surface of the brake rotor 44 on the outboard side in the axial direction.
  • the claw portion 52 supports the friction pad 43 on the outboard side.
  • the inboard friction pad 43 is supported on the outboard side end of the linear motion portion 6 of the linear motion mechanism 3.
  • the friction pad 43 faces the side surface on the inboard side of the brake rotor 44 in the axial direction.
  • the electric linear actuator 1 drives the friction pad 43 to contact or separate from the brake rotor 44.
  • a mount (not shown) is supported by a knuckle (not shown) in the vehicle.
  • a pair of pin support pieces (not shown) are provided at both longitudinal ends of the mount.
  • a slide pin (not shown) extending parallel to the axial direction is provided at each end portion of the pin support pieces.
  • a caliper 51 is supported by these slide pins so as to be slidable in the axial direction.
  • the control device controls the rotation of the electric motor of the electric linear actuator 1 according to the amount of operation of a brake pedal (not shown).
  • a brake pedal (not shown).
  • the friction pad 43 on the inboard side contacts the brake rotor 44 by driving the electric linear actuator 1 and presses the brake rotor 44 in the axial direction.
  • the caliper 51 slides to the inboard side by the reaction force of the pressing force.
  • the friction pad 43 on the outboard side supported by the claw portion 52 of the caliper 51 contacts the brake rotor 44.
  • a braking force is applied to the brake rotor 44 by strongly holding the brake rotor 44 from both sides in the axial direction by the friction pads 43 on the outboard side and the inboard side.
  • the electric brake device can be mounted on a vehicle in which the space for mounting the electric linear actuator 1 is extremely limited. Therefore, the versatility of the electric brake device can be enhanced, and the electric brake device can be mounted on various vehicles.
  • the rotor is preferable when the permanent magnet is held by a holding portion made of a non-magnetic material, with less loss, but the permanent magnet can also be held by a holding portion made of a magnetic material.
  • the rotor may have a structure in which a single magnet magnetized on a plurality of axial magnetic poles is directly fixed to the rotation input / output shaft without using a holding portion.
  • a configuration of a reluctance motor using an iron core having a shape in which the stator inductance changes as the rotor rotates can be adopted.
  • the permanent magnet of the rotor is a magnet that penetrates in the axial direction and both sides of the magnetic pole are used as interlinkage magnetic fluxes, the volume of the magnet, the dimensions of the motor, and the number of parts can be reduced, thereby reducing costs and saving space.
  • various screw mechanisms such as a ball screw, a mechanism using an inclination of a ball ramp, etc. can be used in addition to the planetary roller.
  • the thrust bearing shown in FIG. 1 is arranged assuming that the object is pressed by an electric linear actuator. However, the thrust bearing is arranged so as to hold a load against the opposite side of FIG. An actuator that applies a load can also be configured.
  • a sensor that detects the motor angle and the shaft load of the linear motion mechanism is provided.
  • a sensorless angle estimation unit that estimates the motor angle from the motor voltage a unit that estimates the shaft load from the actuator efficiency, the motor current, etc. Also good.
  • the components necessary for the application of the electric linear actuator, such as the thermistor and wiring components of each electrical system, are appropriately provided.
  • the functional unit such as a power supply restriction may cut off the power supply to the one excitation mechanism when it is determined that the power supply state to the one excitation mechanism is abnormal.
  • a redundant mechanism In the electric brake device, a redundant mechanism, a power supply system, a sensor, and other components necessary for the electric brake are appropriately provided.
  • an example of configuring multiple feedback loops as a control calculation is shown.
  • a control system configuration is required, for example, a single feedback system that collectively processes all electromagnetic characteristics and motion characteristics of an electric motor. It shall be determined appropriately according to It is also possible to apply the electric linear actuator of each embodiment to, for example, a press device other than the electric brake device.

Abstract

省スペース化およびコスト低減を図ると共に、冗長性を向上させることができる電動式直動アクチュエータを提供する。この電動式直動アクチュエータ(1)は、直動機構(3)と電動モータ(2)とが、直動機構(3)の回転入出力軸(5)の軸心となる同一の軸心上に並んで配置され、電動モータ(2)は、トルクに寄与する鎖交磁束を発生する磁極の向きが、モータ回転軸と平行となるように配置された固定子(7)および回転子(8)を備える。回転子(8)は、この軸方向の両面にそれぞれトルク発生面を有する。固定子(7)は、回転子(8)の前記軸方向の両側にそれぞれ配置される第1,第2の励磁機構(7A),(7B)を有し、第1,第2の励磁機構(7A),(7B)は独立した第1,第2系統のコイル群(11A),(11B)を備え、第1,第2系統のコイル群(11A),(11B)にそれぞれ独立して電力を供給する電力供給系統(50)が設けられた。

Description

電動式直動アクチュエータ 関連出願
 本出願は、2016年8月24日出願の特願2016-163589の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 この発明は、例えば、電動ブレーキ装置に適用される電動式直動アクチュエータに関する。
 電動アクチュエータおよび電動モータが、以下の文献に提案されている。
 1.直動部の外周に、この直動部と同軸に電動モータを配置した電動ディスクブレーキ装置(特許文献1)。
 2.電動モータを、直動機構の回転軸と平行で該回転軸と異なる軸に配置した電動ブレーキ装置(特許文献2)。
 3.8極9スロットのダブルステータ式のアキシアルギャップモータ(特許文献3)。
 4.周方向に2系統の巻線を配置したラジアルギャップモータ(特許文献4)。
特開2003-247576号公報 特開2010-270788号公報 特開2008-172884号公報 特開2004-201364号公報
 特許文献1~2に記載のような電動式直動アクチュエータを用いた電動ブレーキ装置は、一般に車両への搭載スペースが極めて限られており、可能な限り省スペースで機能を実現する必要がある。また、例えばアンチロックブレーキシステム(Antilock Brake System:略称ABS)に代表される車輪速制御等において、電動ブレーキは、高速・高精度なブレーキ力制御が求められる。
 例えば特許文献1のような、アクチュエータの外周に電動モータを配置する構造では、電動モータのロータ径が大きくなるため、慣性モーメントが増大し、応答性および制御精度を損なう場合がある。あるいは、ロータの回転に必要な運動エネルギーは慣性モーメントに比例するため、高速な応答を実現するために瞬時最大の消費電力が増大し、電力を供給する電源装置のコストが高くなる可能性がある。また、例えば電動ディスクブレーキ装置のように、アクチュエータの加圧対象物が摩擦パッドのように極めて高温になる場合、電動モータが熱源に近いため、耐久性が問題となる可能性がある。
 例えば特許文献2のような、電動モータと直動アクチュエータとを平行に配置する場合、一般に電動モータおよび直動アクチュエータの外観は円筒形状となることが多く、二つの円筒が隣接するため、隙間に一定量のデッドスペースが生じてしまう可能性がある。また電動モータと直動アクチュエータとの間に平行歯車のような連結機構が要求スペックによらず必要となり、コスト増となる可能性がある。その他、電動モータと直動アクチュエータそれぞれに支持構造が必要となるため、スペースおよびコストが問題になる場合がある。
 省スペースで高トルクを実現するモータ構造として、例えば特許文献3に示すようなアキシアルギャップ式同期モータが知られている。しかしながら、アキシアルギャップモータは、一般に回転軸方向の寸法が短くなる一方、径方向寸法は大きくなりやすく、例えば、特許文献1または特許文献2の構造のアクチュエータに適用すると、結果として占有スペースが増大する問題が生じる場合がある。例えば、特許文献1の構造に適用した場合、局所的に外径が大きく広がりすぎることがあり、特許文献2の構造に適用した場合、電動モータの外周が大きくなるとモータとアクチュエータの軸間距離が広がり、デッドスペースが増大することがある。
 また、例えば、特許文献1または特許文献2に記載のような、電動ブレーキ装置に適用される電動式直動アクチュエータにおいて、非常に高い冗長性が求められる場合がある。このとき、例えば、特許文献4のような、巻線系統を多重化して冗長性を向上した電動モータについて、ラジアルギャップ型モータの巻線を複数系統にして引き出す場合、内部の配線構造が複雑になり、コスト増またはスペース増となる可能性がある。また、巻線が複雑になるため、占積率が低下する可能性がある。
 この発明の目的は、省スペース化およびコスト低減を図ると共に、冗長性を向上させることができる電動式直動アクチュエータを提供することである。
 以下、この発明について、理解を容易にするために、便宜上実施形態の符号を参照して説明する。
 この発明の電動式直動アクチュエータ1は、電動モータ2と、回転入出力軸5を有し該回転入出力軸5を介してこの電動モータ2の回転運動を直動部6の直進運動に変換する直動機構3と、前記電動モータ2を制御する制御装置CUと、を備える電動式直動アクチュエータであって、
 前記直動機構3と前記電動モータ2とが、前記直動機構3の前記回転入出力軸5の軸心となる同一の軸心上に並んで配置され、
 前記電動モータ2は、トルクに寄与する鎖交磁束を発生する磁極の向きが、前記電動モータ2における回転軸と平行となるように配置された固定子7および回転子8を備え、
 前記回転子8は、この回転子8の軸方向の両面にそれぞれトルク発生面を有し、
 前記固定子7は、前記回転子8の前記軸方向の両側にそれぞれ配置される複数の励磁機構7A,7Bを有し、これら複数の励磁機構7A,7Bは、軸方向一方の励磁機構7A,(7B)につき1系統以上で、且つ、軸方向両側の励磁機構7A,7Bで合計2系統以上の独立したコイル群11A,11Bを備え、
 前記独立したコイル群11A,11Bにそれぞれ独立して電力を供給する電力供給系統50が設けられたものである。
 前記独立したコイル群11A,11Bとは、各コイル群11A,11Bに流れる電流を制御装置CUによりそれぞれ制御可能である(換言すれば、制御装置CUにより各励磁機構7A,7Bの励磁磁束が独立して制御可能である)うえ、軸方向両側のコイル群11A,11Bが構造上互いに分離されていることを意味する。前記独立して電力を供給するとは、いずれか一方のコイル群11A,(11B)へ電力を供給する電源系統または送電系統に異常が発生して前記一方のコイル群11A,(11B)に電力を供給不可能な状態となっても、他方のコイル群11B,(11A)へ電力を供給する電源系統および送電系統が正常であれば前記他方のコイル群11B,(11A)に電力を供給可能であることを意味する。
 この構成によると、電動モータ2は、トルクに寄与する鎖交磁束を発生する磁極の向きが、前記電動モータ2における回転軸と平行となるように配置された固定子7および回転子8を備えるいわゆるアキシアルギャップモータである。さらに直動機構3と電動モータ2とが、直動機構3の回転入出力軸5の軸心となる同一の軸心上に並んで配置されている。このため、電動モータと直動アクチュエータとを平行に配置する構造等に比べて、無効なスペースが少なく省スペース化を図ることができ、且つ、慣性モーメントが小さく高応答な電動式直動アクチュエータを実現できる。
 この電動モータ2は、回転子8の軸方向の両面にそれぞれトルク発生面を有し、固定子7は回転子8の軸方向の両側にそれぞれ配置される複数の励磁機構7A,7Bを有する、いわゆるダブルステータ型アキシアルギャップモータである。このようなダブルステータ型アキシアルギャップモータを用いると、トルク密度の向上および慣性モーメントの低減を図ることが可能となり、好適と考えられる。
 複数の励磁機構7A,7Bは、軸方向一方の励磁機構7A,(7B)につき1系統以上で、且つ、軸方向両側の励磁機構7A,7Bで合計2系統以上である独立したコイル群11A,11Bを備える。電力供給系統50は、前記独立したコイル群11A,11Bにそれぞれ独立して電力を供給するため、冗長性が向上できて好適と考えられる。例えば、一方のコイル群11A,(11B)に電力を供給不可能な状態となっても、他方のコイル群11B,(11A)へ電力を供給することで、直動部6に所望の軸方向荷重を付与することが可能となる。また軸方向一方の励磁機構7A,(7B)と軸方向他方の励磁機構7B,(7A)は、構造上予め軸方向に分離されているため、それぞれの励磁機構7A,7Bから配線を引き出せばよく、簡潔な構造で実現できる。
 前記制御装置CUは、前記励磁機構7A,7Bにおける電流および電圧の定められた関係に基づいて、前記各励磁機構7A,7Bへの電力供給状態が正常か否かをそれぞれ判断するモータ電力異常判断部54を有するものとしても良い。前記定められた関係は、設計等によって任意に定める電流と電圧の関係であって、例えば、試験およびシミュレーションのいずれか一方または両方により適切な関係が求められて定められる。この場合、モータ電力異常判断部54は、励磁機構7A,7Bにおける電流および電圧の定められた関係に基づいて、各励磁機構7A,7Bへの電力供給状態が正常か否かを精度良く判断することができる。
 前記モータ電力異常判断部54は、前記複数の励磁機構7A,7Bにおける平均電流と平均電圧との定められた関係と、個々の励磁機構7A,7Bにおける電流と電圧との定められた関係との比較を含む情報に基づいて、前記各励磁機構7A,7Bへの電力供給状態が正常か否かをそれぞれ判断するものとしても良い。前記複数の励磁機構7A,7Bにおける平均電流と平均電圧との「定められた関係」、前記個々の励磁機構7A,7Bにおける電流と電圧との「定められた関係」は、それぞれ設計等によって任意に定める関係であって、例えば、試験およびシミュレーションのいずれか一方または両方により適切な関係が求められて定められる。
 各励磁機構7A,7Bへの電力供給状態の異常判断において、アキシアルギャップモータの回転子8の軸方向両側のギャップ(隙間)は、加工公差等の影響により不均一になる場合が多く、また鎖交磁束の発生状況によって前記ギャップが変動し易い。その場合、ギャップが小さい側の励磁機構7A,(7B)は誘起電圧が高くなり、ギャップが大きい側の励磁機構7B,(7A)は誘起電圧が低くなり、予め計測ないし解析された所定結果との誤差が大きくなる結果、異常と不所望に判断される場合がある。
 このため、前記異常判断は、前記複数の励磁機構7A,7Bにおける平均電流と平均電圧との定められた関係と、個々の励磁機構7A,7Bにおける電流と電圧との定められた関係との両方において異常か否かの判断をする。この場合、前記ギャップが変動することによる影響は、平均電流と平均電圧(これらを総称して「平均値」という)における結果としては表れにくいため、異常の誤判断を防止することができる。
 前記制御装置CUは、
 前記モータ電力異常判断部54によりいずれか一方の励磁機構7A,(7B)への電力供給状態が異常と判断されたとき、前記一方の励磁機構7A,(7B)への電力供給を制限または遮断する電力供給制限等機能部72と、
 前記モータ電力異常判断部54により電力供給状態が正常と判断された他方の励磁機構7B,(7A)について、電力供給が制限または遮断された前記一方の励磁機構7A,(7B)により減少したトルクを、前記正常と判断された他方の励磁機構7B,(7A)によって補完する補完機能部71と、
を有するものとしても良い。
 この構成によると、電力供給制限等機能部72は、一方の励磁機構7A,(7B)への電力供給状態が異常と判断されたとき、前記一方の励磁機構7A,(7B)への電力供給を制限または遮断する。補完機能部71は、電力供給が制限または遮断された前記一方の励磁機構7A,(7B)により減少したトルクを、正常と判断された他方の励磁機構7B,(7A)によって補完する。このように異常による不足するトルクを他方の励磁機構7B,(7A)によって補完することで、直動部6に所望の軸方向荷重を付与することが可能となる。
 前記制御装置CUは、前記直動機構3の前記直動部6の直進運動に伴い発生する軸方向荷重の大きさを推定する軸荷重推定機能部60を有し、
 前記電力供給制限等機能部72は、前記一方の励磁機構7A,(7B)への電力供給状態が異常と判断され、かつ前記軸荷重推定機能部60で推定された軸方向荷重が定められた大きさより小さいとき、前記電動モータ2に通電し得る電流が、前記電力供給の制限または遮断が実行されていない場合と比較して小さくなるようにモータ電流を制限するものとしても良い。
 前記「定められた大きさ」は、設計等によって任意に定められる軸方向荷重の大きさであって、例えば、試験およびシミュレーションのいずれか一方または両方により適切な大きさが求められて定められる。
 前記補完機能部71によるトルク補完処理において、ダブルステータ型アキシアルギャップモータの1系統のみによる駆動では、スラスト方向の電磁力により回転子8の姿勢が不安定になる場合がある。例えば、軸方向荷重が弱い低負荷状態ほど回転子8に対する拘束力が弱いため、回転子8の姿勢が不安定化し易い。そこで、電力供給制限等機能部72は、一方の励磁機構7A,(7B)への電力供給状態が異常と判断されたとき、軸荷重推定機能部60で推定された軸方向荷重が定められた大きさより小さい場合に、電動モータ2に通電し得る電流が、前記電力供給の制限または遮断が実行されていない場合と比較して小さくなるようにモータ電流を制限する。このように軸方向荷重が定められた大きさより小さい場合に、モータ電流を小さく制限することで、回転子8の姿勢の不安定化を軽減できる。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、この発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、この発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の一実施形態に係る電動式直動アクチュエータの断面図である。 同電動式直動アクチュエータの制御システム構成例を示すブロック図である。 この発明の他の実施形態に係る電動式直動アクチュエータの制御システム構成例を示すブロック図である。 いずれかの電動式直動アクチュエータを備えた電動ブレーキ装置の一部破断した断面図である。
 この発明の一実施形態に係る電動式直動アクチュエータを図1および図2と共に説明する。この電動式直動アクチュエータは、例えば、車両に搭載される電動ブレーキ装置(後述する)に適用される。図1に示すように、この電動式直動アクチュエータ1は、電動モータ2と、直動機構3とを軸方向に直列に接続したアクチュエータである。直動機構3と電動モータ2とは、直動機構3の回転入出力軸5の軸心となる同一の軸心上に並んで配置されている。この電動式直動アクチュエータ1は、直動アクチュエータ本体AHと、後述の制御装置CUとを備える。
 直動アクチュエータ本体AHは、電動モータ2と、直動機構3と、ハウジング4とを備える。この例の電動モータ2は、ダブルステータ型のアキシアルギャップモータである。直動機構3は、直動部6を有し、回転入出力軸5を介して、電動モータ2の回転運動を直動部6の直進運動に変換する。ハウジング4は、直動機構3および電動モータ2を保持する。なお、簡略化のため配線等の一部構造は省略している。
 電動モータ2について説明する。電動モータ2は、トルクに寄与する鎖交磁束を発生する磁極の向きが、この電動モータ2における回転軸と平行に配置された固定子7および回転子8を備えた、いわゆるアキシアルギャップ型である。固定子7は、ハウジング4に対して静的に保持される。回転子8は、直動機構3の回転入出力軸5に対して静的に保持され、間隔を隔てて配置された固定子7との鎖交磁束により回転トルクを発生する。回転子8は、この回転子8の軸方向の両面にそれぞれトルク発生面を有する界磁機構である。前記各「静的に」とは、すきま等の影響を除いて概ね運動が同期する(換言すれば、相対的に拘束された)関係を意味する。
 円筒形状のハウジング4内に、電動モータ2が設けられている。ハウジング4内には、直動機構3の大部分を収容する直動機構収容部4aと、電動モータ2を収容するモータ収容部4bと、これら直動機構収容部4a,モータ収容部4bを仕切る隔壁4cとが設けられている。モータ収容部4bは、ハウジング4内における軸方向一端側に設けられ、直動機構収容部4aは、ハウジング4内における軸方向他端側に設けられている。
 隔壁4cは、回転入出力軸5の軸方向に対して垂直に設けられ、直動機構収容部4aからモータ収容部4bへ回転入出力軸5が挿入される貫通孔が形成されている。ハウジング4のモータ収容部4bに電動モータ2が収容された状態で、ハウジング4における電動モータ2側(前記軸方向一端側)の開口端を塞ぐモータカバー45が設けられている。
 固定子7は、回転子8の軸方向の両側にそれぞれ対向して配置される一対の励磁機構7A,7Bを備えている。これら励磁機構7A,7Bのうち、隔壁4c側に在る一方を第1の励磁機構7A、モータカバー45側に在る他方を第2の励磁機構7Bとする。第1の励磁機構7Aは、磁性体コア10A、バックヨーク9A、および第1系統のコイル群11Aを有する。第2の励磁機構7Bは、磁性体コア10B、バックヨーク9B、および第2系統のコイル群11Bを有する。
 第1の励磁機構7Aについて説明すると、ハウジング4内のモータ収容部4bにおいて、隔壁4cに当接するようにバックヨーク9Aが設けられ、このバックヨーク9Aから軸方向に突出する磁性体コア10Aが設けられている。この磁性体コア10Aは、円周方向一定間隔おきに複数設けられている。磁性体コア10Aは、例えば、積層鋼板または圧粉磁心等から成る。各磁性体コア10Aに第1系統のコイル群11Aがそれぞれ巻回されている。
 第2の励磁機構7Bについて説明すると、ハウジング4内のモータ収容部4bにおいて、モータカバー45に当接するようにバックヨーク9Bが設けられ、このバックヨーク9Bから軸方向に突出する磁性体コア10Bが設けられている。この磁性体コア10Bも、磁性体コア10Aと同様に円周方向一定間隔おきに複数設けられている。各磁性体コア10Bに第2系統のコイル群11Bがそれぞれ巻回されている。磁性体コア10Bおよび第2系統のコイル群11Bのその他の構成は、前述の磁性体コア10Aおよび第1系統のコイル群11Aと同様の構成である。
 積層鋼板または圧粉磁心等から成る磁性体コア10A,磁性体コア10Bを用いると、単位銅損あたりのトルクが向上するため好適と考えられる。但し、磁性体コアを用いず、部品コストの低減およびトルク変動の低減に効果がある空芯コイルにすることもできる。
 第1,第2系統のコイル群11A,11Bの巻回方法は、部分巻きでも集中巻きでも良い。第1,第2系統のコイル群11A,11Bは、各コイル群に流れる電流を制御装置CUによりそれぞれ制御可能であるうえ、第1,第2系統のコイル群11A,11Bは構造上互いに軸方向に分離されている。このような第1,第2系統のコイル群11A,11Bを、互いに独立したコイル群と言う。
 回転子8は、例えば、永久磁石8aと、この永久磁石8aを保持する保持部8bとを有する円板状の部材である。保持部8bは、例えば、樹脂またはステンレス鋼等の非磁性材料から成る。前述のように、固定子7は、第1,第2系統のコイル群11A,11Bを含む励磁機構として構成し、回転子8は永久磁石8aを用いた界磁機構として構成し、電動モータ2を永久磁石同期電動機とすると、耐久性、トルク密度、等に優れ、電動式直動アクチュエータに好適と考えられる。
 回転子8は、直動機構3における回転入出力軸5の先端部分に固定されている。図1の例では、回転入出力軸5のうち、モータ収容部4bに侵入している先端部分の外周面に、回転子8が二つの止め輪24,24に挟み込まれて軸方向に位置決めされ固定されている。回転入出力軸5の先端部分の外周面には、これら二つの止め輪24,24を固定する環状溝がそれぞれ形成されている。
 したがって、回転子8は、止め輪24,24により、回転入出力軸5に対し、第1の励磁機構7Aと第2の励磁機構7Bとの間に相当する軸方向位置に固定される。電動モータ2の回転軸は、直動機構3の回転入出力軸5に同軸に配置される。その他図示は省略するが、回転子8から回転入出力軸5へのトルク伝達を可能とする回転軸周方向の位置決め構造は、平面加工、スプライン、嵌め合い摩擦力、溶接等により実現し得る。
 直動機構3について説明する。ハウジング4内における直動機構収容部4aに、直動機構3の大部分が組み込まれている。直動機構3は、電動モータ2の出力により、後述するブレーキロータに対して制動力を負荷する。この直動機構3は、回転入出力軸5を介して電動モータ2の回転運動を直動部6の直進運動に変換する。
 直動機構3は、電動モータ2により回転駆動される回転入出力軸5と、この回転入出力軸5の回転運動を直進運動に変換する変換機構部31とを有する。変換機構部31は、直動部6と、軸受ケース32と、環状のスラスト板であるバックプレート33と、直動部6の直進運動に伴う軸方向の荷重に対する反作用力を保持するスラスト軸受34と、ラジアル軸受35と、キャリア36と、すべり軸受37,38と、遊星ローラ39とを有する。
 直動機構収容部4aの内周面に、円筒状の直動部6が、回り止めされ且つ軸方向に移動自在に支持されている。直動部6の内周面には、径方向内方に突出し螺旋状に形成された螺旋突起が設けられている。この螺旋突起に複数の遊星ローラ39が噛合している。
 直動機構収容部4aにおける直動部6の軸方向一端側に、軸受ケース32が設けられている。この軸受ケース32は、円筒状のボス部と、このボス部から径方向外方に延びるフランジ部とを有する。前記ボス部内に複数のラジアル軸受35が嵌合され、これらラジアル軸受35の内輪内径面に回転入出力軸5が嵌合されている。回転入出力軸5は、支持部材32に複数のラジアル軸受35を介して回転自在に支持される。
 直動部6の内周には、回転入出力軸5を中心に回転可能なキャリア36が設けられている。キャリア36は、回転入出力軸5との間に嵌合されたすべり軸受37,38により、回転入出力軸5に回転自在に支持されている。回転入出力軸5の軸方向先端部分には、軸受ケース32に対して回転入出力軸5およびキャリア36の軸方向位置を拘束する止め輪40が設けられている。
 キャリア36には、複数のローラ軸41が周方向に間隔を空けて設けられている。キャリア36の軸方向両端部には、それぞれ軸挿入孔が複数形成されている。各軸挿入孔は、径方向に所定距離延びる長孔から成る。各軸挿入孔に各ローラ軸41の軸方向両端部が挿入されて、これらローラ軸41が各軸挿入孔の範囲で径方向に移動自在に支持される。複数のローラ軸41における軸方向両端部には、これらローラ軸41を径方向内方に付勢する弾性リング42がそれぞれ掛け渡されている。
 各ローラ軸41に、遊星ローラ39が回転自在に支持される。各遊星ローラ39の外周面には、直動部6の螺旋突起に噛合する円周溝または螺旋溝が形成されている。各遊星ローラ39は、回転入出力軸5の外周面と、直動部6の内周面との間に介在される。弾性リング42の付勢力により、各遊星ローラ39が回転入出力軸5の外周面に押し付けられる。電動モータ2により回転入出力軸5が回転することで、この回転入出力軸5の外周面に接触する各遊星ローラ39が接触摩擦により回転する。これにより直動部6が軸方向に移動することで、この直動部6の軸方向先端に設けられた摩擦パッド43(図4)がブレーキロータ44(図4)に対して当接または離隔する。
 制御装置CU等について説明する。図2は、この電動式直動アクチュエータ1の制御システム構成例を示すブロック図である。図2に示すように、制御装置CUは、電動モータ2を制御する装置であり、アクチュエータ荷重制御器53、モータ電力異常判断部54、異常報告手段46、電流変換器55、電流制御器56、制御装置電源47、OR回路48、およびモータドライバ57を有する。制御装置CUはその他、電流推定器58、角度推定器59、および軸荷重推定機能部である軸荷重推定器60を有する。制御装置CUには、複数の電源装置(この例では第1,第2の電源装置49A,49B)が接続されている。
 アクチュエータ荷重制御器53は、荷重指令値に対して、直動機構3の推定軸荷重を追従するために必要なモータトルクを求め、モータトルク指令値として出力する。前記荷重指令値は、図示外のブレーキペダル等であるブレーキ操作手段の操作量に基づいて、例えば、この制御装置CUの上位制御手段61から与えられる。上位制御手段61として、例えば、車両全般を制御する電気制御ユニット(ECU)が適用される。前記推定軸荷重は、例えば、後述の軸荷重推定器60で推定される。
 詳細には、軸荷重推定器60は、直動機構3の直動部6(図1)により摩擦パッド43(図4)がブレーキロータ44(図4)を押圧するときの押圧力を検出する荷重センサ62からのセンサ出力に基づいて、前記推定軸荷重を推定し得る。荷重センサ62は、例えば磁気式のセンサおよび磁気ターゲットを含む。摩擦パッド43がブレーキロータ44を押圧するとき、直動部6には図4に示すインボード側への反力が作用する。ここで、電動ブレーキ装置を車両に搭載した状態で、車両の車幅方向中央側を前記インボード側といい、車両の車幅方向外側をアウトボード側という。
 例えば前記磁気式のセンサおよび磁気ターゲットから成る図2に示す荷重センサ62は、前記反力を軸方向の変位量として磁気的に検出する。なお、荷重センサ62として、磁気式以外の光学式、渦電流式、または静電容量式のセンサ等を適用することも可能である。
 軸荷重推定器60は、荷重センサ62からのセンサ出力と、直動機構3の軸荷重(スラスト力)との関係を試験等で予め確認し、テーブル等に設定しておくことにより、前記推定軸荷重を推定し得る。なお推定軸荷重は、電流推定器58で推定されるモータ電流と、角度推定器59で推定されるモータ角度との関係等から推定することも可能である。
 アクチュエータ荷重制御器53は、与えられた荷重指令値に対して、推定軸荷重を追従するために必要なモータトルクを、フィードバック制御またはフィードフォワード制御等を適宜用いて求める。
 電流推定器58は、例えば、第1系統のコイル群11Aに流れるモータ電流を求める第1の電流センサ58aと、第2系統のコイル群11Bに流れるモータ電流を求める第2の電流センサ58bとを有する。各電流センサ58a,58bは、例えば、電流による磁界を検出する磁界検出式、またはシャント抵抗もしくはFET等の両端の電圧を測定する電圧測定式を用いることが可能である。角度推定器59は、角度センサ63からのセンサ出力から回転子8の固定子7に対する角度を推定し得る。角度センサ63として、例えば、レゾルバまたはエンコーダ等が適用される。
 モータ電力異常判断部54は、第1,第2の励磁機構7A,7Bにおける電流および電圧の定められた関係に基づいて、各励磁機構7A,7Bへの電力供給状態が正常か否かをそれぞれ判断する。第1,第2の電源装置49A,49Bからモータドライバ57に至る電力供給系統50に異常が発生したとき、前記電力供給状態が異常と判断される。例えば、第1,第2の電源装置49A,49Bとモータドライバ57との間の電力線69または図示外の電力供給ハーネスが断線、モータドライバ57内における短絡、または電源装置自体の異常等が生じたとき、前記電力供給状態が異常と判断される。
 モータ電力異常判断部54は、第1,第2系統のコイル群11A,11Bの通電状況について、例えば、コイルインダクタンス、コイル抵抗、回転子磁束による誘起電圧、および回転子角速度等に依存する電流と電圧との関係から、予め計測ないし解析された所定の結果との比較に基づいて、正常か異常かを診断し得る。その他、図示しないが、ハーネスまたはコネクタ等を用いる場合、断線検知構造を別途設けても良い。
 モータ電力異常判断部54による異常判断において、アキシアルギャップモータの回転子8の軸方向両側のギャップ(隙間)は、加工公差等の影響により不均一になる場合が多く、また鎖交磁束の発生状況によって前記ギャップが変動し易い。その場合、ギャップが小さい側の励磁機構は誘起電圧が高くなり、ギャップが大きい側の励磁機構は誘起電圧が低くなり、予め計測ないし解析された所定結果との誤差が大きくなる結果、異常と不所望に判断される場合がある。
 このため、前記異常判断は、複数の励磁機構(第1,第2の励磁機構7A,7B)における平均電流と平均電圧との定められた関係と、個々の励磁機構7A,(7B)における電流と電圧との定められた関係との両方において異常か否かの判断をする機能としても良い。この場合、前記ギャップが変動することによる影響は、平均電流と平均電圧(これらを総称して「平均値」という)における結果としては表れにくいため、異常の誤判断を防止することができる。
 異常報告手段46は、モータ電力異常判断部54により前記電力供給状態が異常と判断されると、上位制御手段61に異常発生情報を出力する。上位制御手段61は、異常報告手段46からの異常発生情報を受けて、例えば、車両のコンソールパネル等に設けられた表示装置70に電動モータ2の異常を知らせる表示を行わせる。
 電流変換器55は、アクチュエータ荷重制御器53により演算されたモータトルク指令値等に応じて、第1,第2系統のコイル群11A,11Bに印加する電流指令値を導出する。電流変換器55は、第1のd軸,q軸電流決定部64,65と、第2のd軸,q軸電流決定部66,67とを有する。第1のd軸,q軸電流決定部64,65は、第1系統のコイル群11Aへのd軸電流指令値,q軸電流指令値をそれぞれ導出する。第2のd軸,q軸電流決定部66,67は、第2系統のコイル群11Bへのd軸電流指令値,q軸電流指令値をそれぞれ導出する。
 前述のモータ電力異常判断部54によりいずれか一方の励磁機構7A,(7B)への電力供給状態が異常と判断され、他方の励磁機構7B,(7A)への電力供給状態が正常と判断されとき、電流変換器55は、前記異常により不足するトルクを前記正常な他方の励磁機構7B,(7A)によって補完する補完機能部71を有する構成としても良い。
 補完機能部71によるトルク補完処理において、ダブルステータ型アキシアルギャップモータの1系統のみによる駆動では、スラスト方向の電磁力により回転子8の姿勢が不安定になる場合がある。例えば、図1の電動式直動アクチュエータ1では、軸方向荷重が弱い低負荷状態ほど回転子8に対する拘束力が弱いため、回転子8の姿勢が不安定化し易い。そこで、図2に示すように、電流変換器55は、荷重を発揮するために必要なトルクを除き、応答性の低下を許容してトルク(電力供給)を制限する電力供給制限等機能部72を設けても良い。
 すなわち電力供給制限等機能部72は、モータ電力異常判断部54により一方の励磁機構7A,(7B)への電力供給状態が異常と判断され、かつ軸荷重推定器60で推定された軸方向荷重が定められた大きさより小さいとき、電動モータ2に通電し得る電流が、電力供給の制限が実行されていない場合と比較して小さくなるようにモータ電流を制限する。具体的には、軸方向荷重が定められた大きさより小さいときに限定して、異常と判断された一方の励磁機構7A,(7B)への電力供給を制限するように、第1,(第2)系統のコイル群11A,(11B)へのd軸電流指令値,q軸電流指令値をそれぞれ導出する。
 このようにモータ電流を制限することで、回転子8の姿勢の不安定化を軽減できる。モータ電流の制限値を導出する際、前記軸方向荷重および電流推定器58で推定されるモータ電流を含むパラメータを適宜参照するルックアップテーブル(略称:LUT)などを予め解析や試験等の結果より作成しておくと、演算負荷が軽減できて好適と考えられる。
 電流制御器56は第1,第2の電流制御器56a,56bを含む。第1,第2の電流制御器56a,56bは、それぞれ対応する第1,第2系統のコイル群11A,11Bの電流推定結果に基づいて、電流指令値に対して追従制御するためのモータ電圧を出力する。このモータ電圧を出力する演算は、フィードバック制御またはフィードフォワード制御が適宜用いられて実行される。なお第1系統のコイル群11Aの電流は、第1の電流センサ58aにより推定される。第2系統のコイル群11Bの電流は、第2の電流センサ58bにより推定される。前記制御器をはじめとする各演算器は、例えば、マイクロコンピュータ、FPGA、ASIC、などの演算器により実装すると、安価で高性能な制御を実現できて好適と考えられる。
 モータドライバ57は、第1,第2のモータドライバ57a,57bを含む。これら第1,第2のモータドライバ57a,57bは、対応する第1,第2の電源装置49A,49Bの直流電流を電動モータ2の駆動に用いる三相の交流電力に変換する。電力供給系統50は、制御装置CUにおける第1,第2のモータドライバ57a,57bと、第1,第2の電源装置49A,49Bと、これらの間を繋ぐ電力線69とを少なくとも含む。電力供給系統50は、前述の独立した第1,第2系統のコイル群11A,11Bにそれぞれ独立して電力を供給する機能を有する。
 制御装置電源47は、いずれか一方の電源装置49A,(49B)が正常であれば、第1,第2の電源装置49A,49Bに対してOR回路48により電力供給可能な形式とすると、冗長化できて好適と考えられる。前記OR回路48として、例えば、ダイオードOR回路が適用される。
 前記第1のモータドライバ57aは、第1系統のコイル群11Aへ交流電力を出力し、前記第2のモータドライバ57bは、第2系統のコイル群11Bへ交流電力を出力する。これら第1,第2のモータドライバ57a,57bは、例えば、FETのようなスイッチ素子を用いたハーフブリッジ回路により構成し、第1,第2の電流制御器56a,56bよりハイサイド、ローサイド各スイッチのON-OFF信号を入力するPWM制御を用いると、安価で高精度な制御が実現できて好適と考えられる。
 制御装置CU内の手段、制御器、変換器、および推定器は、具体的には、ソフトウエアやハードウエアで実現されたLUT(Look Up Table)、またはソフトウエアのライブラリ(Library)に収められた所定の変換関数やそれに等価のハードウエア等、また必要に応じて、ライブラリの比較関数や四則演算関数やそれらに等価のハードウエア等を用いて、演算を行って結果を出力しうるハードウエア回路またはプロセッサ(不図示)上のソフトウエア関数で構成されている。
 以上説明した電動式直動アクチュエータ1によれば、電動モータ2は、トルクに寄与する鎖交磁束を発生する磁極の向きが、前記電動モータ2における回転軸と平行となるように配置された固定子7および回転子8を備えるいわゆるアキシアルギャップモータである。さらに直動機構3と電動モータ2とが、直動機構3の回転入出力軸5の軸心となる同一の軸心上に並んで配置されている。このため、電動モータと直動アクチュエータとを平行に配置する構造等に比べて、無効なスペースが少なく省スペース化を図ることができ、且つ、慣性モーメントが小さく高応答な電動式直動アクチュエータを実現できる。
 この電動モータ2は、回転子8の軸方向の両面にそれぞれトルク発生面を有し、固定子7は回転子8の軸方向の両側にそれぞれ配置される複数の励磁機構7A,7Bを有する、いわゆるダブルステータ型アキシアルギャップモータである。このようなダブルステータ型アキシアルギャップモータを用いると、トルク密度の向上および慣性モーメントの低減を図ることが可能となり、好適と考えられる。
 第1,第2の励磁機構7A,7Bは、互いに独立した第1,第2系統のコイル群11A,11Bを備え、電力供給系統50は、前記独立した第1,第2系統のコイル群11A,11Bにそれぞれ独立して電力を供給するため、冗長性が向上できて好適と考えられる。例えば、一方のコイル群11A,(11B)に電力を供給不可能な状態となっても、他方のコイル群11B,(11A)へ電力を供給することで、直動部6に所望の軸方向荷重を付与することが可能となる。また第1,第2の励磁機構7A,7Bは、構造上予め軸方向に分離されているため、それぞれ第1,第2の励磁機構7A,7Bから配線を引き出せばよく、簡潔な構造で実現できる。
 なお、本実施形態では、第1の励磁機構7Aが第1系統のコイル群11Aを備え、第2の励磁機構7Bが第2系統のコイル群11Bを備える構成について示した。しかしながら、本発明は、上述した構成に限られるものではなく、回転子8の軸方向両側に設けられた複数の励磁機構のそれぞれが、1系統以上の独立したコイル群を備え、回転子8の軸方向両側の励磁機構で合計2系統以上の独立したコイル群を備えていればよい。すなわち、回転子8の軸方向一方に設けられた励磁機構が、複数系統の独立したコイル群を有し、回転子8軸方向他方に設けられた励磁機構が1系統の独立したコイル群を有していてもよい。また、回転子8の軸方向両側に設けられた複数の励磁機構のそれぞれが、複数系統の独立したコイル群を有していてもよい。
 他の実施形態について説明する。以下の説明においては、各実施の形態で先行して説明している事項に対応している部分には同一の参照符号を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している形態と同様とする。同一の構成から同一の作用効果を奏する。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。
 他の実施形態に含まれる図3に示すように、電力供給系統50として、一つの電源装置49が設けられ、この電源装置49と、第1,第2のモータドライバ57a,57bとの間の送電系統のみを多重化つまり冗長化しても良い。この場合、例えば、電源装置49とモータドライバ57との間の電力線69または図示外の電力供給ハーネスが断線、またはモータドライバ57内における短絡が生じたときの冗長化を図ることができる。また図2の構成よりも電源装置の数を低減できコスト低減を図れる。その他図1,2と同様の作用効果を奏する。
 図4は、上述のいずれかの電動式直動アクチュエータ1を備えた電動ブレーキ装置の一部破断した断面図である。この電動ブレーキ装置は、前記いずれかの電動式直動アクチュエータ1と、車輪と一体に回転する回転部材であるブレーキロータ44と、このブレーキロータ44と接触して制動力を発生する摩擦パッド(摩擦材)43とを基本的に備え、さらに電動式直動アクチュエータを制御する図示外の制御装置とを備える。車両には、ブレーキロータ44の外周側部分を囲むようにキャリパ51がそれぞれ設けられる。キャリパ51は、電動式直動アクチュエータ1のハウジング4に一体に設けられている。
 キャリパ51のアウトボード側の端部に、爪部52が設けられる。爪部52は、ブレーキロータ44のアウトボード側の側面と軸方向で対向する。この爪部52にアウトボード側の摩擦パッド43が支持されている。キャリパ51のうち、直動機構3の直動部6のアウトボード側端に、インボード側の摩擦パッド43が支持されている。この摩擦パッド43は、ブレーキロータ44のインボード側の側面と軸方向で対向する。電動式直動アクチュエータ1は、摩擦パッド43をブレーキロータ44に対して当接または離隔させる駆動を行う。
 車両における図示外のナックルに、マウント(図示せず)が支持される。このマウントの長手方向両端部には、一対のピン支持片(図示せず)が設けられる。これらピン支持片のそれぞれ端部に、軸方向に平行に延びる図示外のスライドピンが設けられる。これらスライドピンに、キャリパ51が軸方向にスライド自在に支持されている。
 前記制御装置は、図示外のブレーキペダルの操作量に応じて、電動式直動アクチュエータ1の電動モータの回転を制御する。制動時、電動式直動アクチュエータ1の駆動によりインボード側の摩擦パッド43がブレーキロータ44に当接して、ブレーキロータ44を軸方向に押圧する。その押圧力の反力によりキャリパ51がインボード側にスライドする。これにより、キャリパ51の爪部52に支持されたアウトボード側の摩擦パッド43がブレーキロータ44に当接する。これらアウトボード側およびインボード側の摩擦パッド43,43で、ブレーキロータ44を軸方向両側から強く挟持することで、ブレーキロータ44に制動力が負荷される。
 この構成によると、電動式直動アクチュエータ1が省スペース化を図れるため、電動式直動アクチュエータ1の搭載スペースが極めて限られた車両にも、この電動ブレーキ装置を搭載することが可能となる。したがって、電動ブレーキ装置の汎用性を高めることができ、種々な車両にこの電動ブレーキ装置を搭載することができる。
 回転子は、非磁性材料から成る保持部で永久磁石を保持すると、損失が少なく好適と考えられるが、磁性材から成る保持部で永久磁石を保持することもできる。回転子は、保持部を用いずに、複数の軸方向磁極に着磁された単一の磁石を、直接、回転入出力軸に固定する構造とすることもできる。その他、例えば回転子が回転することによって固定子インダクタンスが変化する形状の鉄心を用いたリラクタンスモータの構成を採ることもできる。
 回転子の永久磁石は、軸方向に貫通する磁石を適用し、磁極両面を鎖交磁束として用いると、磁石体積、モータ寸法、および部品点数を低減でき、低コスト化と省スペース化を図るうえで好適と考えられるが、磁性体の両面に磁石を貼り合わせ、耐熱性を向上させる構造を用いても良い。
 直動機構の変換機構部として、遊星ローラ以外にボールねじ等の各種ねじ機構、ボールランプ等の傾斜を利用した機構等を用いることができる。図1のスラスト軸受は、電動式直動アクチュエータにより対象物を押圧する動作を想定した配置としているが、図1と軸方向逆側に対して荷重を保持するように配置し、対象物に引張荷重を印加するアクチュエータを構成することもできる。
 モータ角度や直動機構の軸荷重を検出するセンサを設けているが、例えば、モータ電圧よりモータ角度を推定するセンサレス角度推定手段、アクチュエータ効率およびモータ電流などから軸荷重を推定する手段を用いても良い。サーミスタ、各電装系の配線部品など、電動式直動アクチュエータの適用に必要な構成は適宜設けられるものとする。
 電力供給制限等機能部は、一方の励磁機構への電力供給状態が異常と判断されたとき、前記一方の励磁機構への電力供給を遮断するようにしても良い。電動ブレーキ装置において、冗長機構および電源系統、センサ等、電動ブレーキとして必要な構成は適宜設けられるものとする。また、制御演算として、複数のフィードバックループを構成する例を示しているが、例えば、電動モータの電磁気特性と運動特性を全て一括処理する単一のフィードバック系とするなど、制御系の構成は必要に応じて適宜定められるものとする。各実施形態の電動式直動アクチュエータを、電動ブレーキ装置以外の、例えば、プレス装置に適用することも可能である。
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更、削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。
1…電動式直動アクチュエータ
2…電動モータ
3…直動機構
5…回転入出力軸
7…固定子
7A…第1の励磁機構
7B…第2の励磁機構
8…回転子
11A…第1系統のコイル群
11B…第2系統のコイル群
50…電力供給系統
54…モータ電力異常判断部
60…軸荷重推定器(軸荷重推定機能部)
71…補完機能部
72…電力供給制限等機能部
CU…制御装置

Claims (5)

  1.  電動モータと、回転入出力軸を有し該回転入出力軸を介してこの電動モータの回転運動を直動部の直進運動に変換する直動機構と、前記電動モータを制御する制御装置と、を備える電動式直動アクチュエータであって、
     前記直動機構と前記電動モータとが、前記直動機構の前記回転入出力軸の軸心となる同一の軸心上に並んで配置され、
     前記電動モータは、トルクに寄与する鎖交磁束を発生する磁極の向きが、前記電動モータにおける回転軸と平行となるように配置された固定子および回転子を備え、
     前記回転子は、この回転子の軸方向の両面にそれぞれトルク発生面を有し、
     前記固定子は、前記回転子の前記軸方向の両側にそれぞれ配置される複数の励磁機構を有し、これら複数の励磁機構は、軸方向一方の励磁機構につき1系統以上で、且つ、軸方向両側の励磁機構で合計2系統以上の独立したコイル群を備え、
     前記独立したコイル群にそれぞれ独立して電力を供給する電力供給系統が設けられた電動式直動アクチュエータ。
  2.  請求項1に記載の電動式直動アクチュエータにおいて、前記制御装置は、前記励磁機構における電流および電圧の定められた関係に基づいて、前記各励磁機構への電力供給状態が正常か否かをそれぞれ判断するモータ電力異常判断部を有する電動式直動アクチュエータ。
  3.  請求項2に記載の電動式直動アクチュエータにおいて、前記モータ電力異常判断部は、前記複数の励磁機構における平均電流と平均電圧との定められた関係と、個々の励磁機構における電流と電圧との定められた関係との比較を含む情報に基づいて、前記各励磁機構への電力供給状態が正常か否かをそれぞれ判断する電動式直動アクチュエータ。
  4.  請求項2または請求項3に記載の電動式直動アクチュエータにおいて、
     前記制御装置は、
     前記モータ電力異常判断部によりいずれか一方の励磁機構への電力供給状態が異常と判断されたとき、前記一方の励磁機構への電力供給を制限または遮断する電力供給制限等機能部と、
     前記モータ電力異常判断部により電力供給状態が正常と判断された他方の励磁機構について、電力供給が制限または遮断された前記一方の励磁機構により減少したトルクを、前記正常と判断された他方の励磁機構によって補完する補完機能部と、
    を有する電動式直動アクチュエータ。
  5.  請求項4に記載の電動式直動アクチュエータにおいて、前記制御装置は、前記直動機構の前記直動部の直進運動に伴い発生する軸方向荷重の大きさを推定する軸荷重推定機能部を有し、
     前記電力供給制限等機能部は、前記一方の励磁機構への電力供給状態が異常と判断され、かつ前記軸荷重推定機能部で推定された軸方向荷重が定められた大きさより小さいとき、前記電動モータに通電し得る電流が、前記電力供給の制限または遮断が実行されていない場合と比較して小さくなるようにモータ電流を制限する電動式直動アクチュエータ。
PCT/JP2017/029680 2016-08-24 2017-08-18 電動式直動アクチュエータ WO2018038020A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17843500.4A EP3505406A4 (en) 2016-08-24 2017-08-18 ELECTRIC LINEAR MOTION ACTUATOR
CN201780051524.5A CN109641575A (zh) 2016-08-24 2017-08-18 电动式直线移动促动器
US16/281,529 US10651779B2 (en) 2016-08-24 2019-02-21 Electric linear motion actuator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-163589 2016-08-24
JP2016163589A JP6799968B2 (ja) 2016-08-24 2016-08-24 電動式直動アクチュエータ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/281,529 Continuation US10651779B2 (en) 2016-08-24 2019-02-21 Electric linear motion actuator

Publications (1)

Publication Number Publication Date
WO2018038020A1 true WO2018038020A1 (ja) 2018-03-01

Family

ID=61244911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029680 WO2018038020A1 (ja) 2016-08-24 2017-08-18 電動式直動アクチュエータ

Country Status (5)

Country Link
US (1) US10651779B2 (ja)
EP (1) EP3505406A4 (ja)
JP (1) JP6799968B2 (ja)
CN (1) CN109641575A (ja)
WO (1) WO2018038020A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022511830A (ja) * 2018-12-03 2022-02-01 クノル-ブレムゼ ジステーメ フューア ヌッツファールツォイゲ ゲゼルシャフト ミット ベシュレンクテル ハフツング 車両用の制動システムのための電磁装置、車両用の制動システムのための電磁装置を動作させるための方法および制御機器、ならびに車両用の制動システム
WO2024084559A1 (ja) * 2022-10-18 2024-04-25 三菱電機株式会社 推論装置、推論方法、推論プログラム、および学習装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7206065B2 (ja) * 2018-07-26 2023-01-17 株式会社ディスコ 切削装置
KR20210083598A (ko) * 2019-12-27 2021-07-07 주식회사 만도 전자식 브레이크 시스템 및 그 제어방법
DE112021002469T5 (de) * 2020-04-22 2023-02-23 Hitachi Astemo, Ltd. Elektrische Bremsvorrichtung
JP7080280B2 (ja) * 2020-07-27 2022-06-03 三菱電機株式会社 電動制動装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000025592A (ja) * 1998-07-09 2000-01-25 Toyota Motor Corp 車両用電動ブレーキ装置
JP2000507333A (ja) * 1996-03-26 2000-06-13 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング ブレーキ装置
JP2009038934A (ja) * 2007-08-03 2009-02-19 Honda Motor Co Ltd 電動機の制御装置
JP2013212814A (ja) * 2012-04-04 2013-10-17 Ntn Corp 電動ブレーキ装置
JP2013221531A (ja) * 2012-04-13 2013-10-28 Jtekt Corp 直動アクチュエータおよびこれを備えた電動ブレーキ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3593092A (en) * 1970-02-02 1971-07-13 Ltv Electrosystems Inc Multiple output multiplex actuator
US5086900A (en) * 1987-03-31 1992-02-11 Asmo Co., Ltd. Power converting mechanism
US7218017B1 (en) * 1996-06-24 2007-05-15 Anorad Corporation System and method to control a rotary-linear actuator
US6211591B1 (en) * 1997-08-27 2001-04-03 Tri-Tech, Inc. Linear/rotary electromagnetic device
DE19823611B4 (de) 1998-05-27 2005-06-09 Eads Deutschland Gmbh Vorrichtung zur Reinigung eines dem Personeninnenraum eines Fahrzeuges zuzuführenden Luftstroms
JP3750933B2 (ja) 2002-02-22 2006-03-01 日信工業株式会社 電気式ディスクブレーキの配置構造
JP3875188B2 (ja) 2002-12-16 2007-01-31 株式会社ジェイテクト 電動モータ装置
WO2007131509A1 (en) * 2006-05-13 2007-11-22 Linak A/S Linear actuator
JP5111863B2 (ja) * 2007-01-10 2013-01-09 本田技研工業株式会社 アキシャルギャップ型モータおよび電動パワーステアリング装置
JP4533928B2 (ja) * 2007-12-28 2010-09-01 シーケーディ株式会社 電動アクチュエータ
JP2010270788A (ja) 2009-05-19 2010-12-02 Akebono Brake Ind Co Ltd ディスクブレーキ
JP6266381B2 (ja) * 2014-02-28 2018-01-24 Ntn株式会社 電動ブレーキ装置
FR3038679B1 (fr) * 2015-12-31 2019-05-31 Chassis Brakes International B.V. Actionneur compact pour etrier motorise de frein a disque

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000507333A (ja) * 1996-03-26 2000-06-13 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング ブレーキ装置
JP2000025592A (ja) * 1998-07-09 2000-01-25 Toyota Motor Corp 車両用電動ブレーキ装置
JP2009038934A (ja) * 2007-08-03 2009-02-19 Honda Motor Co Ltd 電動機の制御装置
JP2013212814A (ja) * 2012-04-04 2013-10-17 Ntn Corp 電動ブレーキ装置
JP2013221531A (ja) * 2012-04-13 2013-10-28 Jtekt Corp 直動アクチュエータおよびこれを備えた電動ブレーキ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3505406A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022511830A (ja) * 2018-12-03 2022-02-01 クノル-ブレムゼ ジステーメ フューア ヌッツファールツォイゲ ゲゼルシャフト ミット ベシュレンクテル ハフツング 車両用の制動システムのための電磁装置、車両用の制動システムのための電磁装置を動作させるための方法および制御機器、ならびに車両用の制動システム
WO2024084559A1 (ja) * 2022-10-18 2024-04-25 三菱電機株式会社 推論装置、推論方法、推論プログラム、および学習装置

Also Published As

Publication number Publication date
CN109641575A (zh) 2019-04-16
EP3505406A1 (en) 2019-07-03
JP2018030434A (ja) 2018-03-01
US20190181789A1 (en) 2019-06-13
JP6799968B2 (ja) 2020-12-16
EP3505406A4 (en) 2020-06-10
US10651779B2 (en) 2020-05-12

Similar Documents

Publication Publication Date Title
WO2018038020A1 (ja) 電動式直動アクチュエータ
US11060576B2 (en) Electric linear motion actuator
US10886808B2 (en) Electric linear actuator
EP2030304B1 (en) Steering system motor
JP5624810B2 (ja) 電動機の駆動制御方法
JP2007049862A (ja) 磁極位置センサ内蔵電気機械及び電気機械装置並びに車載電機システム
US11190081B2 (en) Electric linear motion actuator
WO2018084233A1 (ja) 電動ブレーキ装置
JP5338031B2 (ja) 電動駆動装置
JP6732621B2 (ja) 電動モータ装置および電動ブレーキ装置
US10944309B2 (en) Electric motor device
CN109417331B (zh) 电动式直线移动促动器
JP2018170842A (ja) 電動機の制御装置
WO2006051590A1 (ja) 回転検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017843500

Country of ref document: EP

Effective date: 20190325