WO2018037477A1 - 電力調整システムおよび電力調整方法 - Google Patents

電力調整システムおよび電力調整方法 Download PDF

Info

Publication number
WO2018037477A1
WO2018037477A1 PCT/JP2016/074508 JP2016074508W WO2018037477A1 WO 2018037477 A1 WO2018037477 A1 WO 2018037477A1 JP 2016074508 W JP2016074508 W JP 2016074508W WO 2018037477 A1 WO2018037477 A1 WO 2018037477A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power generation
value
generation facilities
facilities
Prior art date
Application number
PCT/JP2016/074508
Other languages
English (en)
French (fr)
Inventor
浩史 森田
大悟 橘高
新 加藤
門田 行生
Original Assignee
株式会社 東芝
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝エネルギーシステムズ株式会社 filed Critical 株式会社 東芝
Priority to PCT/JP2016/074508 priority Critical patent/WO2018037477A1/ja
Publication of WO2018037477A1 publication Critical patent/WO2018037477A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • Embodiments described herein relate generally to a power adjustment system and a power adjustment method.
  • re-energy power plant a power generation unit that generates power using renewable energy such as solar light and wind power
  • the operator having the renewable energy power station continuously supplies a certain amount of power to the power system in accordance with the contents previously contracted with the power company. It is obliged to do.
  • the electric power generated by using renewable energy varies depending on the weather, the region, and the time zone, so it is not easy to make the electric power supplied from the renewable energy power station constant.
  • the problem to be solved by the present invention is to provide an electric power adjustment system and an electric power adjustment method capable of continuously supplying constant electric power to an electric power system.
  • the power adjustment system of the embodiment is applied to a power supply system that supplies power from a plurality of power generation facilities having a power generation unit that generates power using renewable energy to a common power system.
  • the power adjustment system is provided corresponding to each of the plurality of power generation facilities, and each of the plurality of power generation facilities is controlled so that there is no deviation of the power generation value with respect to the power target value of each power generation facility.
  • the power generation value of any one of the plurality of power generation facilities is changed such that there is no deviation of the total value of the power generation values of the plurality of power generation facilities with respect to the total value of the power target values of the plurality of power generation facilities.
  • integrated energy management means for performing control is provided corresponding to each of the plurality of power generation facilities, and each of the plurality of power generation facilities is controlled so that there is no deviation of the power generation value with respect to the power target value of each power generation facility.
  • FIG. 1 is a diagram illustrating an example of a configuration of a power supply system including a power adjustment system according to an embodiment.
  • FIG. 2 is a diagram illustrating an example of a functional configuration of the hydrogen EMS 13 in FIG.
  • FIG. 3 is a diagram illustrating an example of a functional configuration of the integrated hydrogen EMS 50 in FIG.
  • FIG. 4 is a diagram illustrating an example of the operation of the integrated hydrogen EMS 50 in FIG.
  • FIG. 5 is a diagram showing details of processing common to steps S5 and S7 in FIG.
  • FIG. 6 is a diagram illustrating a processing procedure for changing the total value Y of the power target value yn.
  • FIG. 7 is a diagram illustrating a processing procedure for switching use / nonuse of the external power supply 30.
  • FIG. 1 is a diagram illustrating an example of a configuration of a power supply system including a power adjustment system according to an embodiment.
  • renewable energy power plants (hereinafter referred to as “renewable power plants 1, 2,..., N”) that supply power to a common power system as power generation facilities. .) 1, 2, ..., n are included.
  • the renewable energy power plants 1, 2,..., N are owned by, for example, one business, and the power system is owned by, for example, one power company.
  • the operators having the renewable energy power plants 1, 2,..., N continuously supply electric power of a constant supply electric power value [kWh] to the electric power system according to the contents previously contracted with the electric power company.
  • the constant supply power value that can be supplied to the power system is divided into a plurality of levels according to the purchase price of the power company, and the operator sets the supply power value level at regular intervals (for example, every 30 minutes). ) Can be switched.
  • the renewable energy power plants 1, 2,..., N include power generation units 11, 21,..., N1 and power supply units 12, 22,.
  • the power generation units 11, 21,..., N1 are devices that generate power using renewable energy such as sunlight, wind power, hydraulic power, or a combination thereof.
  • the power supply units 12, 22, ..., n2 are devices that supply power based on the power generated by the power generation units 11, 21, ..., n1, respectively.
  • the power supply unit 12 includes devices such as a water storage tank 101, a hydrogen production apparatus 102, a hydrogen tank 103, a fuel cell 104, and a storage battery 105, respectively.
  • the power supply units 22,..., N2 also include similar devices. Below, it demonstrates for the equipment in the electric power supply part 12. FIG.
  • the storage battery 105 constitutes an instantaneous power adjustment unit (or short-term power adjustment unit) that performs power adjustment that suppresses a power fluctuation component that fluctuates instantaneously (or in a short cycle) in the power output from the power generation unit 11.
  • the water storage tank 101, the hydrogen production apparatus 102, the hydrogen tank 103, and the fuel cell 104 are long-term power that performs power adjustment that suppresses a power fluctuation component that fluctuates over a long period of power output from the power generation unit 11.
  • the adjustment unit is configured.
  • the water storage tank 101 stores water and supplies the stored water to the hydrogen production apparatus 102 and the fuel cell 104.
  • the water storage tank 101 is disposed inside the power supply unit 12, but is not limited to this example.
  • the water storage tank 101 may be provided outside the power supply unit 12.
  • the hydrogen production apparatus 102 produces hydrogen by electrolyzing the water supplied from the water storage tank 101 using the electric power generated by the power generation unit 11 under the control of the hydrogen EMS 13.
  • the hydrogen production apparatus 102 includes measurement devices (not shown) such as a gas sensor, a pressure gauge, and a flow meter, and the measurement result measured by the measurement device is sent to the hydrogen EMS 13.
  • the hydrogen tank 103 stores and releases the hydrogen produced by the hydrogen production apparatus 102 under the control of the hydrogen EMS 13.
  • the hydrogen tank 103 includes measurement devices (not shown) such as a gas sensor, a pressure gauge, and a flow meter, and the measurement result measured by the measurement device is sent to the hydrogen EMS 13.
  • the fuel cell 104 generates electric power using the hydrogen stored in the hydrogen tank 103 under the control of the hydrogen EMS 13 and generates hot water using water and exhaust heat supplied from the water storage tank 101.
  • the electric power generated by the power generation of the fuel cell 104 is supplied to the power system.
  • the fuel cell 104 includes a measuring device (not shown) such as a gas sensor, a pressure gauge, and a flow meter, and a measuring device (not shown) that measures the amount of hydrogen storage, and the measurement result measured by the measuring device is It is sent to hydrogen EMS13.
  • the storage battery 105 stores the electric power generated by the power generation unit 11 under the control of the hydrogen EMS 13.
  • the electric power stored in the storage battery 105 can be supplied to the electric power system by being discharged under the control of the hydrogen EMS 13.
  • the storage battery 105 includes a measuring device (not shown) that measures the amount of stored electricity, and the measurement result measured by the measuring device is sent to the hydrogen EMS 13.
  • the power supply system is provided with an external power supply 30.
  • This external power supply 30 has a storage battery (secondary battery) that can be charged and discharged, for example, and is used as a constant voltage source that supplements the shortage when the power supplied to the power system is less than a certain value. .
  • the external power supply 30 is not necessarily required and can be omitted.
  • the power supply system is further provided with a power adjustment system that performs power adjustment to keep the power supplied to the power system constant.
  • This power adjustment system includes n hydrogen energy management systems (hereinafter “hydrogen EMS”) 13, 23,..., N3 and one integrated hydrogen energy management system (hereinafter “integrated hydrogen EMS”) 50. Including.
  • the hydrogen EMSs 13, 23,..., N3 are provided corresponding to the renewable energy power plants 1, 2,..., N, respectively, and target power values of the respective renewable energy power plants (target values of power output by the renewable energy power plants). [KWh]) so that there is no deviation of the generated power value (the value [kWh] of the power actually output by the renewable energy power plant, hereinafter referred to as “power generation value”). .., N have a function of controlling each of the devices, that is, a function of shaping and keeping the fluctuating power constant so that the power generation value approaches the power target value (performing power forming).
  • the power supplied to the power system may not be kept constant.
  • the facility of the renewable energy power plant breaks down or stops for maintenance, power cannot be supplied to the power system during that time.
  • the total power target value of each renewable energy power plant is set to match the supply power value contracted in advance by the operator with the power company.
  • the power target value of each renewable energy power plant is determined according to the specifications such as the power generation capacity of each renewable energy power plant.
  • the integrated hydrogen EMS 50 eliminates the deviation of the total value of the power generation values of the renewable energy power plants 1, 2,..., N from the total power target value of the renewable energy power plants 1, 2,. It has the function to perform control which changes the power generation value of any one or a plurality of renewable energy power plants among power plants 1, 2, ..., n. With this function, even if a power fluctuation larger than the power fluctuation assumed at the time of design occurs at a certain renewable energy power station, the power fluctuation can be supplemented by other renewable energy power stations. , 2,..., N can be maintained constant as contracted with the power company. The same applies when the facility of the renewable energy power plant breaks down or stops for maintenance.
  • FIG. 2 is a diagram illustrating an example of a functional configuration of the hydrogen EMS 13. Since the functional configuration of the hydrogen EMSs 23,..., N3 is the same as that of the hydrogen EMS 13, the description and illustration thereof are omitted.
  • the hydrogen EMS 13 includes an information acquisition unit 13a, a calculation unit 13b, and a control unit 13c.
  • the information acquisition unit 13a collects data measured by measurement devices of each part in the renewable energy power plant 1, data provided from each part, and the like at regular time intervals, and the collected data is stored in a predetermined storage area. This is a function to memorize.
  • the calculation unit 13b uses the information collected by the information acquisition unit 13a or information stored in a predetermined storage area to calculate various types of information necessary for control at regular time intervals, and calculates the calculated information. This is a function for storing in a predetermined storage area.
  • the control unit 13c is a function that performs various controls using the information acquired by the information acquisition unit 13a and the information calculated by the calculation unit 13b. For example, the control unit 13c transmits the following information among the information acquired by the information acquisition unit 13a and the information calculated by the calculation unit 13b to the integrated hydrogen EMS 50 at regular time intervals.
  • Power target value (2) Power generation value (or difference value between power generation value and power target value) (3) The remaining amount of hydrogen in the hydrogen tank 103 (4) The remaining amount of electricity stored in the storage battery 105 (5) The power generation value of the power generation unit 11 (6) The operating state of the hydrogen-related equipment ⁇ The power generation value of the fuel cell 104 ⁇ Amount of hydrogen produced ⁇ Operating status of auxiliary equipment such as cooling machines and water pumps (7) Operating status of storage battery 105 ⁇ Power value to be charged / discharged by storage battery 105
  • power generation adjustable amount, hydrogen usable amount There may be information such as.
  • the integrated hydrogen EMS 50 It is not always necessary to notify the integrated hydrogen EMS 50 of all the information (1) to (7). If at least the information of (2) to (4) and (6) is notified, the integrated hydrogen EMS 50 will control the above-described control. Can be executed.
  • control unit 13c controls equipment in the renewable energy power plant 1 in order to achieve power supply of a specified power generation value in accordance with a command sent from the integrated hydrogen EMS 50 to the hydrogen EMS 13. Also, a function of changing the power target value of the renewable energy power plant 1 is provided.
  • FIG. 3 is a diagram illustrating an example of a functional configuration of the integrated hydrogen EMS 50.
  • the integrated hydrogen EMS 50 includes an information acquisition unit 50a, a calculation unit 50b, and a control unit 50c.
  • the information acquisition unit 50 has a function of collecting data provided from each unit at regular time intervals and storing the collected data in a predetermined storage area.
  • the information acquisition unit 50a is configured to receive information transmitted from the hydrogen EMS 13, 23,..., N3 or weather prediction information provided from another system (predicted sunshine amount after a predetermined time, wind energy, hydraulic power, etc. Are collected at regular time intervals (for example, in units of one minute), and the collected information is stored in a predetermined storage area.
  • the calculation unit 50b calculates various types of information necessary for control at regular time intervals using the information collected by the information acquisition unit 50a or the information stored in a predetermined storage area. This is a function for storing in a predetermined storage area. For example, the calculation unit 50b sets the power target value of the renewable energy power plants 1, 2,..., N to the total value of the power generation values of the renewable energy power plants 1, 2,. A deviation from the total value is calculated at regular time intervals (for example, in units of one minute), and the calculated information is stored in a predetermined storage area.
  • the control unit 50c is a function that performs various controls using the information acquired by the information acquisition unit 50a and the information calculated by the calculation unit 50b.
  • the control unit 50c allows a renewable energy power plant 1, 2,..., N after a predetermined time (for example, 1 minute) so that the deviation calculated by the computing unit 50b is eliminated. Later, a process of sending a command to supply power of a higher power generation value or a lower power generation value than the present to the corresponding hydrogen EMS is performed at regular time intervals (for example, in units of one minute).
  • the total value of the power generation values of the renewable energy power plants 1, 2,..., N is less than the total power target value of the renewable energy power plants 1, 2,.
  • the power generation value is below the lower limit of the predetermined range including the total value
  • one or a plurality of renewable energy power stations that can afford to increase the power generation value are supplied with a power generation value higher than the present value after a predetermined time.
  • the control unit 50c determines whether or not the total value of the power generation values of the renewable energy power plants 1, 2,..., N exceeds the total power target value of the renewable energy power plants 1, 2,. When the value exceeds the upper limit of a predetermined range including the value, control is performed to supply power of a power generation value lower than the current power to one or a plurality of power generation facilities having a margin to reduce the power generation value after a predetermined time.
  • the control unit 50c changes the power generation value using information on deviation of power generation value with respect to the power target value of each renewable energy power plant. Selection of one or a plurality of renewable energy power plants and determination of a power generation value after a predetermined time of the renewable energy power plants may be performed. For example, if each renewable energy power plant is installed in the same area and uses the same type of renewable energy (for example, sunlight), the renewable energy power plant with the largest deviation of the generated power value from the target power It can be considered that the scale is large and the margin to change the power generation value is the largest compared to the renewable energy power plant.
  • the control unit 50c changes one or more of the power generation values according to the priority given in advance to each renewable energy power plant. You may make it perform selection of the renewable energy power station, and the determination of the electric power generation value after the predetermined time of the said power generation installation. For example, if the margin for changing the power generation value for each renewable energy power plant is known in advance, priorities are assigned in descending order of the margin, and the power generation value is increased as the priority is higher. The power generation value may be changed smaller as the renewable power plant has a lower priority.
  • (C) Refers to the operating state of the equipment of the renewable energy power plant, the remaining amount of electricity stored, and the remaining amount of hydrogen
  • the control unit 50c operates the operating state of the hydrogen-related equipment in the renewable energy power plants 1, 2,. 104, the amount of hydrogen produced by the hydrogen production apparatus 102, the operating state of auxiliary equipment such as a cooler and a water pump), the operating state of the storage battery 105, the remaining amount of electricity stored in the storage battery 105, and the remaining amount of hydrogen in the hydrogen tank 103
  • the selection of one or a plurality of renewable energy power plants whose power generation value is to be changed and the determination of the power generation value after a predetermined time of the renewable energy power plant may be performed.
  • the remaining amount of electricity stored in the storage battery 105 or the remaining amount of hydrogen in the hydrogen tank 103 is less than a certain amount, or auxiliary equipment such as a cooler or water pump, or hydrogen-related equipment such as the fuel cell 104 is stopped. If it is in a state, it is not possible to immediately increase the power generation value, and it takes a predetermined time or more until the desired power generation value is obtained after the devices are operated. Such a renewable energy power plant may be excluded from selection targets for increasing the power generation value.
  • the control unit 50c determines a deviation of the total value of the power generation values of the renewable energy power plants 1, 2,..., N with respect to the total power target value of the renewable energy power plants 1, 2,. , N, a function of performing control to lower the total power target value of the renewable energy power plants 1, 2,..., N is provided. For example, even if control is performed to supply a power generation value higher than the present power to a renewable energy power plant that can afford to increase the power generation value after a predetermined time, the power targets of the renewable energy power plants 1, 2,. When the deviation of the total value of the power generation values of the renewable energy power plants 1, 2,..., N with respect to the total value is predicted to be within the predetermined range, the renewable energy power plants 1, 2,. , N may be controlled to lower the total value of the power target values. In such a case, the control unit 50c notifies the power company of a change in the supplied power value.
  • control unit 50c determines the renewable energy power plants 1, 2 and 2 in accordance with weather prediction information (various amounts of natural energy such as predicted amount of sunshine, wind power and hydraulic power after a predetermined time) provided from another system. .., N, or a function of performing control to change the total value of the power target values of the renewable energy power plants 1, 2,..., N. For example, when the predicted amount of sunshine on the next day in the area of the renewable energy power plant having the photovoltaic power generation facility is below a predetermined amount, the target power value on the next day of the renewable energy power plant and the renewable energy power plants 1, 2,.
  • weather prediction information variable amounts of natural energy such as predicted amount of sunshine, wind power and hydraulic power after a predetermined time
  • the control unit 50c instructs the hydrogen EMS of the corresponding renewable energy power plant to change the power target value, and notifies the power company of the change of the supplied power value.
  • control unit 50c determines a deviation of the total value of the power generation values of the renewable energy power plants 1, 2,..., N with respect to the total power target value of the renewable energy power plants 1, 2,. If the power cannot be within the range, the power of the external power supply 30 is used to supplement the shortage of power supplied to the power system. For example, a value obtained by combining the total value of the power generation values of the renewable energy power plants 1, 2,..., N after a predetermined time and the power supplied from the external power supply 30 to the power system is a renewable energy power plant 1, 2,. ..., n may control the power supplied from the external power supply 30 so as to be the total value of the power target values of n.
  • control unit 50c detects that an arbitrary renewable energy power station has stopped due to a failure or the like based on various information (information such as the power generation value of each renewable energy power station) supplied from each renewable energy power station. And a function to control the remaining renewable energy power plants other than the renewable energy power plant when a certain renewable energy power plant stops. For example, if a facility of a certain renewable energy power station fails and stops, or is stopped for maintenance, power cannot be supplied from the renewable energy power station to the power system during that time. In such a case, control is performed to change the power generation value of each renewable energy power plant so that the remaining power plants can achieve the total power target value of the renewable energy power plants 1, 2,..., N. You may do it. Or you may make it perform control which lowers the total value of the electric power target value of renewable energy power plants 1, 2, ..., n. In such a case, the control unit 50c notifies the power company of a change in the supplied power value.
  • the integrated hydrogen EMS 50 repeats the processes of steps S1 to S7 shown below at regular time intervals (for example, in units of 1 minute).
  • the integrated hydrogen EMS 50 receives various types of information including n power generation values xn transmitted from n renewable energy power plants 1, 2,..., N, respectively, and stores the received information in a predetermined storage area. (Step S1).
  • the integrated hydrogen EMS 50 calculates the total value X of the power generation values xn of the received renewable energy power plants 1, 2,..., N, and stores the calculated information in a predetermined storage area (step S2).
  • the integrated hydrogen EMS 50 calculates the total value X of the power generation values xn of the renewable energy power plants 1, 2,..., N with respect to the total value Y of the power target values yn of the renewable energy power plants 1, 2,.
  • the deviation is confirmed (step S3).
  • step S4 when the total value X is higher than the total value Y (YES in step S4), the integrated hydrogen EMS 50 has a predetermined time with respect to the hydrogen EMS of one or more renewable energy power plants that can afford to reduce the power generation value. Later, a power supply command for supplying power with a power generation value lower than the current value is sent (step S5). Thereafter, the processing from step S1 is repeated.
  • step S4 when the total value X is lower than or equal to the total value Y (NO in step S4), the process proceeds to step S6.
  • step S6 when the deviation of the total value X from the total value Y is within P% (YES in step S6), the process from step S1 is repeated without doing anything.
  • the integrated hydrogen EMS 50 is compared with the hydrogen EMS of one or more renewable energy power plants that can afford to increase the power generation value. Then, after a predetermined time, a power supply command for supplying electric power with a higher power generation value than the present is sent (step S7). Thereafter, the processing from step S1 is repeated.
  • step S5 the integrated hydrogen EMS 50 uses information on the deviation of the total value X from the total value Y to reduce (or increase) the power generation value of one or more renewable energy power plants.
  • a selection is made (step S11).
  • the renewable energy power plant that maximizes the deviation of the power generation value xn from the power target value yn is selected. You may make it do. Or when the margin which can change an electric power generation value for every renewable energy power station is known beforehand, you may make it select the renewable energy power plant with the highest priority which shows the order with a high margin. Also, the remaining amount of electricity stored in the storage battery 105 or the remaining amount of hydrogen in the hydrogen tank 103 is less than a certain amount, or auxiliary equipment such as a cooler or water pump, or a hydrogen-related device such as the fuel cell 104 is stopped. The renewable energy power plant in (1) may be excluded from the selection targets for increasing the power generation value.
  • the margin which can change an electric power generation value for every renewable energy power station is known beforehand, you may make it select the renewable energy power plant with the highest priority which shows the order with a high margin.
  • the remaining amount of electricity stored in the storage battery 105 or the remaining amount of hydrogen in the hydrogen tank 103 is less than a certain amount, or auxiliary equipment such as a
  • the integrated hydrogen EMS 50 determines a power generation value instructed to the hydrogen EMS of one or more selected renewable energy power plants (step S12).
  • the power generation value in this case may be determined in accordance with, for example, the power generation capacity of the renewable energy power plant and the margin for changing the power generation value.
  • the integrated hydrogen EMS 50 sends a power supply command of the determined power generation value to the hydrogen EMS of the selected one or more renewable energy power plants (step S13).
  • the integrated hydrogen EMS 50 determines whether or not the total value Y needs to be changed (step S21).
  • the deviation of the total value X from the total value Y is still within a predetermined range even if control is performed to supply a power generation value higher than the present value to a renewable energy power plant that can afford to increase the power generation value after a predetermined time. If it is predicted that the total value Y cannot be accommodated, it may be determined that the total value Y needs to be lowered. Also, for example, when the amount of natural energy such as predicted amount of sunshine, wind power, hydraulic power, etc. after a predetermined time is below a predetermined amount, it is determined that the total value Y needs to be reduced. It may be determined that the total value Y needs to be increased.
  • step S21 When it is determined in step S21 that the total value Y needs to be reduced (YES in step S22), the integrated hydrogen EMS 50 notifies the power company that the supplied power value is to be reduced (step S23). On the other hand, when it is determined that the total value Y needs to be increased (NO in step S22, YES in step S24), the integrated hydrogen EMS 50 notifies the power company that the supplied power value is to be increased (step S23). If there is no need to change the total value Y (NO in step S24), nothing is done.
  • the integrated hydrogen EMS 50 determines whether or not the external power supply 30 is necessary (step S31).
  • step S31 If it is determined in step S31 that the total value Y needs to be reduced (YES in step S32), the integrated hydrogen EMS 50 combines the total value X and the power supplied from the external power source 30 to the power system after a predetermined time. The supplied power of the external power supply 30 is controlled so that the obtained value becomes the total value Y (step S33). On the other hand, if it is determined that there is no need to lower the total value Y (NO in step S32), the integrated hydrogen EMS 50 does nothing (step S34).
  • a power fluctuation larger than the power fluctuation assumed at the time of design occurs, a facility of a certain renewable energy power station fails or stops, or a certain renewable energy power station Even if it is stopped for maintenance, a certain amount of power can be continuously supplied to the power system.
  • constant power can be continuously supplied to the power system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

実施形態の電力調整システムは、再生可能エネルギーを利用して発電する発電部を有する複数の発電設備から共通の電力系統へ電力を供給する電力供給システムに適用される。この電力調整システムは、前記複数の発電設備にそれぞれ対応して設けられ、各発電設備の電力目標値に対する発電値の偏差が無くなるように、前記複数の発電設備の機器類をそれぞれ制御する複数のエネルギー管理手段と、前記複数の発電設備の電力目標値の合計値に対する前記複数の発電設備の発電値の合計値の偏差が無くなるように、前記複数の発電設備のいずれかの発電値を変更させる制御を行う統合エネルギー管理手段とを有する。

Description

電力調整システムおよび電力調整方法
 本発明の実施形態は、電力調整システムおよび電力調整方法に関する。
 近年、太陽光、風力等の再生可能エネルギーを利用して発電する発電部を備えた発電所(以下、「再エネ発電所」と略称する。)が増加している。
 再エネ発電所から電力会社の電力系統へ電力を供給する形態においては、再エネ発電所を有する事業者は、電力会社と予め契約した内容に従って電力系統に一定の電力を継続的に電力系統供給することが義務付けられる。
"電力小売託送サービス等の概要(平成28年4月1日以降)"、関西電力株式会社、[平成28年8月23日検索]、インターネット<URL:http://www.kepco.co.jp/corporate/takusou/about/>
 一般に、再生可能エネルギーを利用して生成される電力は、天候や地域、時間帯によって変動するため、再エネ発電所が電力系統に供給する電力を一定にすることは容易なことではない。
 再エネ発電所に蓄電池等を設置することにより、電力変動を吸収することが考えられるが、その吸収能力には限界がある。例えば、設計時に想定していた電力変動よりも大きな電力変動が生じた場合、電力系統に供給する電力を電力会社と契約した通りに一定に維持していくことができなくなる。また、再エネ発電所の設備が故障して停止したり、あるいはメンテナンスのために停止したりすると、その間、電力系統に電力を供給することができない。
 本発明が解決しようとする課題は、電力系統に一定の電力を継続的に供給することを可能にする電力調整システムおよび電力調整方法を提供することにある。
 実施形態の電力調整システムは、再生可能エネルギーを利用して発電する発電部を有する複数の発電設備から共通の電力系統へ電力を供給する電力供給システムに適用される。この電力調整システムは、前記複数の発電設備にそれぞれ対応して設けられ、各発電設備の電力目標値に対する発電値の偏差が無くなるように、前記複数の発電設備の機器類をそれぞれ制御する複数のエネルギー管理手段と、前記複数の発電設備の電力目標値の合計値に対する前記複数の発電設備の発電値の合計値の偏差が無くなるように、前記複数の発電設備のいずれかの発電値を変更させる制御を行う統合エネルギー管理手段とを有する。
図1は、一実施形態に係る電力調整システムを備えた電力供給システムの構成の一例を示す図である。 図2は、図1中の水素EMS13の機能構成の一例を示す図である。 図3は、図1中の統合水素EMS50の機能構成の一例を示す図である。 図4は、図1中の統合水素EMS50の動作の一例を示す図である。 図5は、図4中のステップS5とS7に共通する処理の詳細を示す図である。 図6は、電力目標値ynの合計値Yを変更する処理手順を示す図である。 図7は、外部電源30の使用/不使用を切り替える処理手順を示す図である。
 以下、実施の形態について、図面を参照して説明する。
 図1は、一実施形態に係る電力調整システムを備えた電力供給システムの構成の一例を示す図である。
 本実施形態の電力供給システムには、発電設備として、共通の電力系統へ電力を供給するn個の再生可能エネルギー発電所(以下、「再エネ発電所1,2,…,n」と略称する。)1,2,…,nが含まれる。
 再エネ発電所1,2,…,nは例えば1つの事業者が所有するものであり、電力系統は例えば1つの電力会社が所有するものである。再エネ発電所1,2,…,nを有する事業者は、電力会社と予め契約した内容に従って電力系統に一定の供給電力値[kWh]の電力を継続的に供給する。電力系統に供給可能な一定の供給電力値は、電力社側の買取り価格に応じて複数段のレベルに分かれており、事業者は供給電力値のレベルを一定期間毎に(例えば30分毎に)切り替えることができる。
 再エネ発電所1,2,…,nは、それぞれ、発電部11,21,…,n1と、電力供給部12,22,…,n2と、を備えている。
 発電部11,21,…,n1は、それぞれ、太陽光、風力、水力等の再生可能エネルギーもしくはそれらの組み合わせを利用して発電する装置である。
 電力供給部12,22,…,n2は、それぞれ、発電部11,21,…,n1により生成された電力に基づく電力を供給する装置である。
 電力供給部12は、それぞれ、貯水タンク101、水素製造装置102、水素タンク103、燃料電池104、蓄電池105等の機器類を備えている。電力供給部22,…,n2も、同様の機器類を備えている。以下では、電力供給部12内の機器類を対象に説明する。
 上記蓄電池105は、発電部11から出力される電力のうち、瞬時に(もしくは短周期で)変動する電力変動成分を抑制する電力調整を行う瞬時電力調整部(もしくは短期電力調整部)を構成する。一方、上記貯水タンク101、水素製造装置102、水素タンク103、および燃料電池104は、発電部11から出力される電力のうち、長周期で変動する電力変動成分を抑制する電力調整を行う長期電力調整部を構成する。
 貯水タンク101は、水を貯蔵し、その貯蔵した水を水素製造装置102や燃料電池104へ供給する。図1の例では貯水タンク101が電力供給部12の内側に配置されているが、この例に限定されるものではない。貯水タンク101は電力供給部12の外側に設けられてもよい。
 水素製造装置102は、水素EMS13の制御のもとで、発電部11により生成された電力を用いて、貯水タンク101から供給される水を電気分解することにより水素を製造する。また、水素製造装置102は、ガスセンサ、圧力計、流量計などの計測機器(図示省略)を含み、当該計測機器によって計測された計測結果は水素EMS13へ送られる。
 水素タンク103は、水素EMS13の制御のもとで、水素製造装置102により製造された水素を貯蔵・放出する。また、水素タンク103は、ガスセンサ、圧力計、流量計などの計測機器(図示省略)を含み、当該計測機器によって計測された計測結果は水素EMS13へ送られる。
 燃料電池104は、水素EMS13の制御のもとで、水素タンク103に貯蔵された水素を用いて発電を行うと共に、貯水タンク101から供給される水と排熱とを用いて温水を生成する。燃料電池104の発電により生じた電力は、電力系統に供給される。また、燃料電池104は、ガスセンサ、圧力計、流量計などの計測機器(図示省略)や水素の貯蓄量の計測を行う計測機器(図示省略)を含み、当該計測機器によって計測された計測結果は水素EMS13へ送られる。
 蓄電池105は、水素EMS13の制御のもとで、発電部11により生成された電力を蓄電する。蓄電池105に蓄電された電力は、水素EMS13の制御のもとで放電されることにより電力系統に供給することができる。また、蓄電池105は、蓄電量の計測を行う計測機器(図示省略)を含み、当該計測機器によって計測された計測結果は水素EMS13へ送られる。
 また、上記電力供給システムには、外部電源30が備えられる。この外部電源30は、例えば充放電が可能な蓄電池(二次電池)を有し、電力系統に供給される電力が一定値に満たない場合にその不足分を補完する定電圧源として使用される。但し、外部電源30は、必ずしも必要とされるものではなく、設置を省略することができる。
 上記電力供給システムには、さらに、電力系統に供給される電力を一定に維持し続けていくための電力調整を行う電力調整システムが備えられる。この電力調整システムは、n個の水素エネルギー管理システム(以下、「水素EMS」)13,23,…,n3と、1つの統合水素エネルギー管理システム(以下、「統合水素EMS」)50と、を含む。
 水素EMS13,23,…,n3は、再エネ発電所1,2,…,nにそれぞれ対応して設けられ、各再エネ発電所の電力目標値(再エネ発電所が出力する電力の目標値[kWh])に対する発電電力値(再エネ発電所が実際に出力する電力の値[kWh]。以下、「発電値」と称する。)の偏差が無くなるように、再エネ発電所1,2,…,nの機器類をそれぞれ制御する機能、すなわち、発電値が電力目標値に近づくように、変動する電力を整形して一定にする(パワーフォーミングを行う)機能を有する。但し、個々の再エネ発電所においては、設計時に想定していた電力変動よりも大きな電力変動が生じた場合、電力系統に供給する電力を一定に維持していくことができなくなる場合がある。また、再エネ発電所の設備が故障して停止したり、あるいはメンテナンスのために停止したりすると、その間、電力系統に電力を供給することができない。
 なお、各再エネ発電所の電力目標値の合計値は、事業者が電力会社と予め契約した供給電力値と一致するようにする。また、各再エネ発電所の電力目標値は、それぞれ、各再エネ発電所の発電能力等の仕様に応じて決定する。
 統合水素EMS50は、再エネ発電所1,2,…,nの電力目標値の合計値に対する再エネ発電所1,2,…,nの発電値の合計値の偏差が無くなるように、再エネ発電所1,2,…,nのうちのいずれか1つ又は複数の再エネ発電所の発電値を変更させる制御を行う機能を有する。当該機能により、ある再エネ発電所において設計時に想定していた電力変動よりも大きな電力変動が生じても、他の再エネ発電所でその電力変動を補完させることができ、再エネ発電所1,2,…,nから電力系統に供給する総電力を電力会社と契約した通りに一定に維持していくことが可能になる。再エネ発電所の設備が故障して停止したり、あるいはメンテナンスのために停止したりした場合も、同様である。
 図2は、水素EMS13の機能構成の一例を示す図である。なお、水素EMS23,…,n3の機能構成は、水素EMS13と同様となるため、その説明および図示を省略する。
 水素EMS13は、情報取得部13a、演算部13b、制御部13cを備えている。
 情報取得部13aは、再エネ発電所1の内の各部の計測機器により計測されるデータや各部から提供されるデータなどを一定の時間間隔で収集するとともに、収集したデータを所定の記憶領域に記憶させる機能である。
 演算部13bは、情報取得部13aにより収集された情報もしくは所定の記憶領域に記憶されている情報を用いて、制御に必要な各種の情報を一定の時間間隔で算出するとともに、算出した情報を所定の記憶領域に記憶させる機能である。
 制御部13cは、情報取得部13aにより取得された情報や演算部13bにより算出された情報を用いて、各種の制御を行う機能である。例えば、制御部13cは、情報取得部13aにより取得された情報や演算部13bにより算出された情報のうち、以下に示す情報を一定の時間間隔で統合水素EMS50に送信する。
 (1)電力目標値
 (2)発電値(もしくは発電値と電力目標値との差分値)
 (3)水素タンク103の水素残量
 (4)蓄電池105の蓄電残量
 (5)発電部11の発電値
 (6)水素関連機器の稼働状態
     ・燃料電池104の発電値
     ・水素製造装置102の水素製造量
     ・冷却機や水ポンプ等の補機類の稼働状態
 (7)蓄電池105の稼働状態
     ・蓄電池105で充放電する電力値
 上述した各種情報のほか、発電調整可能量、水素使用可能量などの情報があってもよい。
 なお、(1)~(7)の情報の全てを統合水素EMS50に通知する必要は必ずしもなく、少なくとも(2)~(4)および(6)の情報を通知すれば統合水素EMS50は上述した制御を実行することができる。
 また、制御部13cは、統合水素EMS50から水素EMS13に対して送られてきた指令に従い、指定された発電値の電力供給を達成するために当該再エネ発電所1内の機器類を制御したり、当該再エネ発電所1の電力目標値を変更したりする機能も備えている。
 図3は、統合水素EMS50の機能構成の一例を示す図である。
 統合水素EMS50は、情報取得部50a、演算部50b、制御部50cを備えている。
 情報取得部50は、各部から提供されるデータなどを一定の時間間隔で収集するとともに、収集したデータを所定の記憶領域に記憶させる機能である。例えば、情報取得部50aは、水素EMS13,23,…,n3から送信されてくる情報や別のシステムから提供される天候予測の情報(所定時間後の予測日照量、風力、水力等の自然エネルギーの諸量)を一定の時間間隔で(例えば、1分単位で)収集するとともに、収集した情報を所定の記憶領域に記憶させる。
 演算部50bは、情報取得部50aにより収集された情報もしくは所定の記憶領域に記憶されている情報を用いて、制御に必要な各種の情報を一定の時間間隔で算出するとともに、算出した情報を所定の記憶領域に記憶させる機能である。例えば、演算部50bは、情報取得部50aにより取得された再エネ発電所1,2,…,nの発電値の合計値の、再エネ発電所1,2,…,nの電力目標値の合計値に対する偏差を一定の時間間隔で(例えば、1分単位で)算出するとともに、算出した情報を所定の記憶領域に記憶させる。
 制御部50cは、情報取得部50aにより取得された情報や演算部50bにより算出された情報を用いて、各種の制御を行う機能である。例えば、制御部50cは、演算部50bにより算出された偏差が無くなるように、再エネ発電所1,2,…,nのいずれかの再エネ発電所に対し、所定時間後に(例えば、1分後に)現在よりも高い発電値の電力または低い発電値の電力を供給させる指令を該当する水素EMSへ送る処理を一定の時間間隔で(例えば、1分単位で)行う。
 より具体的には、制御部50cは、再エネ発電所1,2,…,nの発電値の合計値が、再エネ発電所1,2,…,nの電力目標値の合計値を下回る場合もしくは該合計値を含む所定の範囲の下限を下回る場合、発電値を上げる余裕のある1つまたは複数の再エネ発電所に対して、所定時間後に現在よりも高い発電値の電力を供給させる制御を行う。また、制御部50cは、再エネ発電所1,2,…,nの発電値の合計値が、再エネ発電所1,2,…,nの電力目標値の合計値を上回る場合もしくは該合計値を含む所定の範囲の上限を上回る場合、発電値を下げる余裕のある1つ又は複数の発電設備に対して、所定時間後に現在よりも低い発電値の電力を供給させる制御を行う。
 以下に、発電値を変更する余裕のある再エネ発電所を選択する方法をいくつか挙げる。
 (a)各再エネ発電所の電力目標値に対する発電値の偏差を参照する
 制御部50cは、各再エネ発電所の電力目標値に対する発電値の偏差の情報を用いて、発電値を変更する1つまたは複数の再エネ発電所の選択および当該再エネ発電所の所定時間後の発電値の決定を行うようにしてもよい。例えば、各再エネ発電所が同じ地域に設置され同種の再生可能エネルギー(例えば太陽光)を使用している場合は、電力目標値に対する発電値の偏差が最大となる再エネ発電所は、他の再エネ発電所に比べて規模が大きく発電値を変更できる余裕度が最も大きいとみなすことができる。
 (b)各再エネ発電所に付されている優先順位を参照する
 制御部50cは、各再エネ発電所に対して予め付されている優先順位に従って、発電値を変更する1つまたは複数の再エネ発電所の選択および当該発電設備の所定時間後の発電値の決定を行うようにしてもよい。例えば、再エネ発電所毎に発電値を変更できる余裕度が予め判っている場合には、余裕度の高い順に優先順位を付与しておき、優先順位が高い再エネ発電所ほど発電値を大きく変更させ、優先順位が低い再エネ発電所ほど発電値を小さく変更させるようにしてもよい。
 (c)再エネ発電所の機器類の稼働状態、蓄電残量、水素残量を参照する
 制御部50cは、再エネ発電所1,2,…,nにおける水素関連機器の稼働状態(燃料電池104の発電値、水素製造装置102の水素製造量、冷却機や水ポンプ等の補機類の稼働状態)や蓄電池105の稼働状態、蓄電池105の蓄電残量、及び水素タンク103の水素残量の情報を参照して、発電値を変更する1つまたは複数の再エネ発電所の選択および当該再エネ発電所の所定時間後の発電値の決定を行うようにしてもよい。例えば、蓄電池105の蓄電残量や水素タンク103の水素残量が一定量に満たない状態であったり、冷却機や水ポンプ等の補機類や燃料電池104などの水素関連機器が停止している状態であったりすると、発電値をすぐに上げることができず、機器類を稼働してから所望の発電値が得られるまでに所定時間以上の時間がかかる。そのような再エネ発電所は、発電値を上げる選択対象から外すようにしてもよい。
 また、制御部50cは、所定時間後に再エネ発電所1,2,…,nの電力目標値の合計値に対する再エネ発電所1,2,…,nの発電値の合計値の偏差を所定の範囲内に収めることができない場合、再エネ発電所1,2,…,nの電力目標値の合計値を下げる制御を行う機能も備えている。例えば、発電値を上げる余裕のある再エネ発電所に対して所定時間後に現在よりも高い発電値の電力を供給させる制御を行ってもなお再エネ発電所1,2,…,nの電力目標値の合計値に対する再エネ発電所1,2,…,nの発電値の合計値の偏差を所定の範囲内に収めることができないと予測される場合に、再エネ発電所1,2,…,nの電力目標値の合計値を下げる制御を行うようにしてもよい。そのような場合、制御部50cは、電力会社に対して供給電力値の変更を通知する。
 また、制御部50cは、別のシステムから提供される天候予測の情報(所定時間後の予測日照量、風力、水力等の自然エネルギーの諸量)に応じて、再エネ発電所1,2,…,nのいずれかの電力目標値もしくは再エネ発電所1,2,…,nの電力目標値の合計値を変更させる制御を行う機能も備えている。例えば、太陽光発電設備を有する再エネ発電所の地域における翌日の予測日照量が所定量を下回る場合に、当該再エネ発電所の翌日の電力目標値および再エネ発電所1,2,…,nの電力目標値の合計値を低めに設定し、一方、所定量を上回る場合に、当該再エネ発電所の翌日の電力目標値および再エネ発電所1,2,…,nの電力目標値の合計値を高めに設定するようにしてもよい。そのような場合、制御部50cは、該当する再エネ発電所の水素EMSに対して電力目標値の変更を指示するとともに、電力会社に対して供給電力値の変更を通知する。
 また、制御部50cは、所定時間後に再エネ発電所1,2,…,nの電力目標値の合計値に対する再エネ発電所1,2,…,nの発電値の合計値の偏差を所定の範囲内に収めることができない場合、外部電源30の電力を用いて、電力系統に供給する電力の不足分を補完する機能も備えている。例えば、所定時間後に再エネ発電所1,2,…,nの発電値の合計値と、外部電源30から電力系統に供給される電力とを合わせた値が、再エネ発電所1,2,…,nの電力目標値の合計値となるように、外部電源30の供給電力を制御するようにしてもよい。
 また、制御部50cは、各再エネ発電所から供給される各種の情報(各再エネ発電所の発電値などの情報)に基づいて任意の再エネ発電所が故障等により停止したことを検出する機能や、ある再エネ発電所が停止した場合に、当該再エネ発電所を除く残りの再エネ発電所を対象に制御を行う機能も備えている。例えば、ある再エネ発電所の設備が故障して停止したり、あるいはメンテナンスのために停止したりすると、その間、その再エネ発電所から電力系統に電力を供給することができない。そのような場合、残りの再エネ発電所で再エネ発電所1,2,…,nの電力目標値の合計値を達成できるように、各再エネ発電所の発電値を変更させる制御を行うようにしてもよい。あるいは、再エネ発電所1,2,…,nの電力目標値の合計値を下げる制御を行うようにしてもよい。そのような場合、制御部50cは、電力会社に対して供給電力値の変更を通知する。
 次に、図4を参照して、統合水素EMS50の動作の一例を説明する。
 統合水素EMS50は、一定の時間間隔で(例えば、1分単位で)以下に示すステップS1~S7の処理を繰り返す。
 まず、統合水素EMS50は、n個の再エネ発電所1,2,…,nからそれぞれ送信されてくるn個の発電値xnを含む各種の情報を受信し、受信した情報を所定の記憶領域に記憶させる(ステップS1)。
 次に、統合水素EMS50は、受信した再エネ発電所1,2,…,nの発電値xnの合計値Xを算出し、算出した情報を所定の記憶領域に記憶させる(ステップS2)。
 次に、統合水素EMS50は、再エネ発電所1,2,…,nの電力目標値ynの合計値Yに対する、再エネ発電所1,2,…,nの発電値xnの合計値Xの偏差を確認する(ステップS3)。
 ここで、合計値Xが合計値Yよりも高い場合(ステップS4のYES)、統合水素EMS50は、発電値を下げる余裕のある1つまたは複数の再エネ発電所の水素EMSに対し、所定時間後に現在よりも低い発電値の電力を供給させる電力供給指令を送る(ステップS5)。以降は、ステップS1からの処理を繰り返す。
 一方、合計値Xが合計値Yよりも低いかあるいは同じである場合(ステップS4のNO)、ステップS6へと進む。
 ステップS6において、合計値Yに対する合計値Xの偏差がP%以内である場合(ステップS6のYES)、何もせずにステップS1からの処理を繰り返す。一方、合計値Yに対する合計値Xの偏差がP%を超える場合(ステップS6のNO)、統合水素EMS50は、発電値を上げる余裕のある1つまたは複数の再エネ発電所の水素EMSに対し、所定時間後に現在よりも高い発電値の電力を供給させる電力供給指令を送る(ステップS7)。以降は、ステップS1からの処理を繰り返す。
 次に、図5を参照して、図4中のステップS5とS7に共通する処理の詳細を説明する。
 ステップS5(またはS7)の処理の中において、統合水素EMS50は、合計値Yに対する合計値Xの偏差の情報を用いて、発電値を下げる(または上げる)1つまたは複数の再エネ発電所の選択を行う(ステップS11)。
 例えば、各再エネ発電所が同じ地域に設置され同種の再生可能エネルギー(例えば太陽光)を使用している場合、電力目標値ynに対する発電値xnの偏差が最大となる再エネ発電所を選択するようにしてもよい。あるいは、再エネ発電所毎に発電値を変更できる余裕度が予め判っている場合には、余裕度の高い順を示す優先順位の最も高い再エネ発電所を選択するようにしてもよい。また、蓄電池105の蓄電残量や水素タンク103の水素残量が一定量に満たない状態や、冷却機や水ポンプ等の補機類や燃料電池104などの水素関連機器が停止している状態にある再エネ発電所は、発電値を上げる選択対象から外すようにしてもよい。
 次に、統合水素EMS50は、選択した1つまたは複数の再エネ発電所の水素EMSに指示する発電値の決定を行う(ステップS12)。この場合の発電値は、例えば、その再エネ発電所の発電能力や発電値を変更できる余裕度に応じて決定するようにしてもよい。
 最後に、統合水素EMS50は、選択した1つまたは複数の再エネ発電所の水素EMSに対し、決定した発電値の電力供給指令を送る(ステップS13)。
 なお、図4のフローチャートに示される処理手順には、さらに次の処理手順を加えるようにしてもよい。
 (i)電力目標値ynの合計値Yを変更する処理手順(図6)
 図6に示す処理手順は、例えば、図4中のステップS5の前、およびステップS7の前にそれぞれ挿入される。
 統合水素EMS50は、合計値Yを変更する必要があるか否かを判定する(ステップS21)。
 例えば、発電値を上げる余裕のある再エネ発電所に対して所定時間後に現在よりも高い発電値の電力を供給させる制御を行ってもなお合計値Yに対する合計値Xの偏差を所定の範囲内に収めることができないと予測される場合に、合計値Yを下げる必要があると判定してもよい。また、例えば、所定時間後の予測日照量、風力、水力等の自然エネルギーの諸量が所定量を下回る場合に、合計値Yを下げる必要があると判定し、一方、所定量を上回る場合に、合計値Yを上げる必要があると判定してもよい。
 ステップS21において、合計値Yを下げる必要があると判定した場合(ステップS22のYES)、統合水素EMS50は、電力会社に対して供給電力値を下げることを通知する(ステップS23)。一方、合計値Yを上げる必要があると判定した場合(ステップS22のNO、ステップS24のYES)、統合水素EMS50は、電力会社に対して供給電力値を上げることを通知する(ステップS23)。合計値Yを変更する必要が無ければ(ステップS24のNO)、何もしない。
 (ii)外部電源30の使用/不使用を切り替える処理手順(図7)
 図7に示す処理手順は、例えば、図4中のステップS5の前、およびステップS7の前にそれぞれ挿入される。
 統合水素EMS50は、外部電源30が必要であるか否かを判定する(ステップS31)。
 例えば、所定時間後に合計値Yに対する合計値Xの偏差を所定の範囲内に収めることができない場合に、電力系統に供給する電力の不足分を外部電源30の電力を用いて補完する必要があると判定するようにしてもよい。
 ステップS31において、合計値Yを下げる必要があると判定した場合(ステップS32のYES)、統合水素EMS50は、所定時間後に合計値Xと、外部電源30から電力系統に供給される電力とを合わせた値が、合計値Yとなるように、外部電源30の供給電力を制御する(ステップS33)。一方、合計値Yを下げる必要がないと判定した場合(ステップS32のNO)、統合水素EMS50は、何もしない(ステップS34)。
 このように本実施形態によれば、例えば、設計時に想定していた電力変動よりも大きな電力変動が生じたり、ある再エネ発電所の設備が故障して停止したり、あるいはある再エネ発電所がメンテナンスのために停止したりしても、電力系統に一定の電力を継続的に供給することができる。
 以上詳述したように、実施形態によれば、電力系統に一定の電力を継続的に供給することができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 1~n…再生可能エネルギー発電所(再エネ発電所)、11~n1…発電部、12~n2…電力供給部、13~n3…水素EMS、30…外部電源、50…統合水素EMS、101…貯水タンク、102…水素製造装置、103…水素タンク、104…燃料電池、105…蓄電池。

Claims (11)

  1.  再生可能エネルギーを利用して発電する発電部を有する複数の発電設備から共通の電力系統へ電力を供給する電力供給システムに適用される電力調整システムであって、
     前記複数の発電設備にそれぞれ対応して設けられ、各発電設備の電力目標値に対する発電値の偏差が無くなるように、前記複数の発電設備の機器類をそれぞれ制御する複数のエネルギー管理手段と、
     前記複数の発電設備の電力目標値の合計値に対する前記複数の発電設備の発電値の合計値の偏差が無くなるように、前記複数の発電設備のいずれかの発電値を変更させる制御を行う統合エネルギー管理手段と
     を具備する電力調整システム。
  2.  前記統合エネルギー管理手段は、
     前記複数のエネルギー管理手段から少なくとも前記複数の発電設備の発電値を示す情報をそれぞれ取得する処理を行う情報取得手段と、
     前記情報取得手段により取得される前記複数の発電設備の発電値の合計値の、前記複数の発電設備の電力目標値の合計値に対する偏差を算出する処理を行う演算手段と、
     前記演算手段により算出された偏差が無くなるように、前記複数の発電設備のいずれかの発電設備に対し、現在よりも高い発電値の電力または低い発電値の電力を供給させる指令を該当するエネルギー管理手段へ送る処理を行う制御手段と
     を有する、請求項1に記載の電力調整システム。
  3.  前記統合エネルギー管理手段は、
     前記複数の発電設備の発電値の合計値が、前記複数の発電設備の電力目標値の合計値を下回る場合もしくは該合計値を含む所定の範囲の下限を下回る場合、発電値を上げる余裕のある発電設備に対して、所定時間後に現在よりも高い発電値の電力を供給させる制御を行い、
     前記複数の発電設備の発電値の合計値が、前記複数の発電設備の電力目標値の合計値を上回る場合もしくは該合計値を含む所定の範囲の上限を上回る場合、発電値を下げる余裕のある発電設備に対して、所定時間後に現在よりも低い発電値の電力を供給させる制御を行う、
     請求項1又は2に記載の電力調整システム。
  4.  前記統合エネルギー管理手段は、
     各発電設備の電力目標値に対する発電値の偏差の情報を用いて、発電値を変更する1つまたは2つ以上の発電設備の選択および当該発電設備の所定時間後の発電値の決定を行う、
     請求項1乃至3のいずれか1項に記載の電力調整システム。
  5.  前記統合エネルギー管理手段は、
     各発電設備に対して予め付されている優先順位に従って、発電値を変更する1つまたは2つ以上の発電設備の選択および当該発電設備の所定時間後の発電値の決定を行う、
     請求項1乃至3のいずれか1項に記載の電力調整システム。
  6.  前記統合エネルギー管理手段は、
     少なくとも前記複数の発電設備における機器類の稼働状態、蓄電残量、及び燃料残量の情報を用いて、発電値を変更する1つまたは2つ以上の発電設備の選択および当該発電設備の所定時間後の発電値の決定を行う、
     請求項1乃至3のいずれか1項に記載の電力調整システム。
  7.  前記統合エネルギー管理手段は、
     所定時間後に前記複数の発電設備の電力目標値の合計値に対する前記複数の発電設備の発電値の合計値の偏差を所定の範囲内に収めることができない場合、前記複数の発電設備の電力目標値の合計値を下げる制御を行う、請求項1乃至6のいずれか1項に記載の電力調整システム。
  8.  前記統合エネルギー管理手段は、外部から得られる天候予測の情報に応じて、前記複数の発電設備のいずれかの電力目標値もしくは前記複数の発電設備の電力目標値の合計値を変更させる制御を行う、請求項1乃至7のいずれか1項に記載の電力調整システム。
  9.  前記統合エネルギー管理手段は、
     所定時間後に前記複数の発電設備の電力目標値の合計値に対する前記複数の発電設備の発電値の合計値の偏差を所定の範囲内に収めることができない場合、外部電源の電力を用いて、前記電力系統に供給する電力の不足分を補完する、請求項1乃至8のいずれか1項に記載の電力調整システム。
  10.  前記統合エネルギー管理手段は、ある発電設備が停止する場合、当該発電設備を除く残りの発電設備を対象に制御を行う、請求項1乃至9のいずれか1項に記載の電力調整システム。
  11.  再生可能エネルギーを利用して発電する発電部を有する複数の発電設備から共通の電力系統へ電力を供給する電力供給システムに適用される電力調整方法であって、
     複数のエネルギー管理手段により、各発電設備の電力目標値に対する発電値の偏差が無くなるように、前記複数の発電設備の機器類をそれぞれ制御し、
     統合エネルギー管理手段により、前記複数の発電設備の電力目標値の合計値に対する前記複数の発電設備の発電値の合計値の偏差が無くなるように、前記複数の発電設備のいずれかの発電値を変更させる制御を行う
     ことを含む電力調整方法。
PCT/JP2016/074508 2016-08-23 2016-08-23 電力調整システムおよび電力調整方法 WO2018037477A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/074508 WO2018037477A1 (ja) 2016-08-23 2016-08-23 電力調整システムおよび電力調整方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/074508 WO2018037477A1 (ja) 2016-08-23 2016-08-23 電力調整システムおよび電力調整方法

Publications (1)

Publication Number Publication Date
WO2018037477A1 true WO2018037477A1 (ja) 2018-03-01

Family

ID=61245564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074508 WO2018037477A1 (ja) 2016-08-23 2016-08-23 電力調整システムおよび電力調整方法

Country Status (1)

Country Link
WO (1) WO2018037477A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109300289A (zh) * 2018-10-16 2019-02-01 成都大熊猫繁育研究基地 一种可再生能源发供电的脉冲电网周界报警系统及方法
JP2019161840A (ja) * 2018-03-13 2019-09-19 株式会社日立製作所 再生可能エネルギ発電装置の急変動の予見検知方法
WO2022044373A1 (ja) 2020-08-25 2022-03-03 株式会社日立製作所 発電プラント運用支援システムおよび発電プラント制御システム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156171A (ja) * 2007-12-27 2009-07-16 Hitachi Ltd ウィンドファーム群,ウィンドファームおよびその制御方法
JP2013198197A (ja) * 2012-03-16 2013-09-30 Chugoku Electric Power Co Inc:The 出力安定化システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156171A (ja) * 2007-12-27 2009-07-16 Hitachi Ltd ウィンドファーム群,ウィンドファームおよびその制御方法
JP2013198197A (ja) * 2012-03-16 2013-09-30 Chugoku Electric Power Co Inc:The 出力安定化システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019161840A (ja) * 2018-03-13 2019-09-19 株式会社日立製作所 再生可能エネルギ発電装置の急変動の予見検知方法
JP7075788B2 (ja) 2018-03-13 2022-05-26 株式会社日立製作所 再生可能エネルギ発電装置の急変動の予見検知方法、および、再生可能エネルギ発電システム
CN109300289A (zh) * 2018-10-16 2019-02-01 成都大熊猫繁育研究基地 一种可再生能源发供电的脉冲电网周界报警系统及方法
WO2022044373A1 (ja) 2020-08-25 2022-03-03 株式会社日立製作所 発電プラント運用支援システムおよび発電プラント制御システム

Similar Documents

Publication Publication Date Title
JP5076157B2 (ja) 分散型電源システム及びこのシステムを用いた系統電圧安定化方法
JP5721915B1 (ja) 電圧監視制御システム、電圧監視制御装置、計測装置および電圧監視制御方法
JP5647329B2 (ja) 新エネルギー発電所群の制御システム、およびその制御方法
JP4546389B2 (ja) 系統協調型変動抑制システムおよび出力変動抑制方法
WO2016170700A1 (ja) エネルギー貯蔵システム、及びエネルギー貯蔵方法
JP5766364B1 (ja) 電圧監視制御装置および電圧制御装置
JP2014082861A (ja) ウィンドファームの出力制御装置、方法、及びプログラム
CN105470987A (zh) 荷-源协调控制的可再生能源日前计划修正方法
WO2018037477A1 (ja) 電力調整システムおよび電力調整方法
JP6082811B2 (ja) 再生可能エネルギー発電設備の制御システム及びその制御方法並びに再生可能エネルギー発電システム
Chen et al. Robust unit commitment for large-scale wind generation and run-off-river hydropower
Chang et al. Coordinated frequency regulation using solar forecasting based virtual inertia control for islanded microgrids
JP6225553B2 (ja) 需給制御装置
CN107785929A (zh) 一种太阳能热发电站功率预测系统及运行方法
JP2014128137A (ja) 電力系統の監視制御装置
JP6375161B2 (ja) 再生可能エネルギー発電施設の制御システム
CN107785932B (zh) 一种基于相变储热的能量实时平衡控制系统及其控制方法
JP2020043757A (ja) 電力供給システム
JP7336172B2 (ja) 水素システムの制御装置、水素生成システム、及び水素システムの制御方法
JP2006042458A (ja) 周波数制御装置及び系統周波数制御方法
JP6584657B2 (ja) 電流電圧制御装置
JP2018023262A (ja) 電力供給システム
JP2018107919A (ja) 電力需給制御システム、電力需給制御用コンピュータプログラムおよび電力需給制御方法
JP2013198201A (ja) 自然エネルギー発電システム
JP6422682B2 (ja) 電力制御装置および電力制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16914151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16914151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP