JP2019161840A - 再生可能エネルギ発電装置の急変動の予見検知方法 - Google Patents

再生可能エネルギ発電装置の急変動の予見検知方法 Download PDF

Info

Publication number
JP2019161840A
JP2019161840A JP2018045245A JP2018045245A JP2019161840A JP 2019161840 A JP2019161840 A JP 2019161840A JP 2018045245 A JP2018045245 A JP 2018045245A JP 2018045245 A JP2018045245 A JP 2018045245A JP 2019161840 A JP2019161840 A JP 2019161840A
Authority
JP
Japan
Prior art keywords
renewable energy
power
power generation
energy power
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018045245A
Other languages
English (en)
Other versions
JP7075788B2 (ja
Inventor
久幸 折田
Hisayuki Orita
久幸 折田
洋一 馬場
Yoichi Baba
洋一 馬場
筒井 宏
Hiroshi Tsutsui
宏 筒井
後藤田 龍介
Ryusuke Gotoda
龍介 後藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2018045245A priority Critical patent/JP7075788B2/ja
Publication of JP2019161840A publication Critical patent/JP2019161840A/ja
Application granted granted Critical
Publication of JP7075788B2 publication Critical patent/JP7075788B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

【課題】再生可能エネルギ装置の急停止と急再開が発生した場合でも、系統出力電力の変動を適切に緩和する。【解決手段】風速が所定値を超えると発電を急停止する風力発電装置1に発電させ、蓄電池3と、水電解槽装置4と、水素タンク5と、エンジン発電機6により発電電力の変動を緩和する。風力発電装置1による発電電力の計測値の経時変化、この風力発電装置1に設置された風速計の計測値の経時変化、または風力発電装置1に設置された翼の角度の経時変化から風力発電装置1の急停止を予見する。【選択図】図1

Description

本発明は、外部要因によって発電電力が急変する再生可能エネルギ発電装置の急変動の予見検知方法に関する。
太陽光、水力、風力、バイオマス、地熱などの再生可能エネルギは、二酸化炭素を殆ど排出しないエネルギである。このような再生可能エネルギは、石油、石炭および天然ガスなどの化石燃料の枯渇化対策として、また、地球温暖化対策として、導入が推進されている。
再生可能エネルギで発電した電力は、電力会社の電力系統に導入され、有効利用される。これまでは、再生可能エネルギの導入割合が小さく、問題になっていなかったが、導入割合が大きくなれば、電力の需要と供給のバランスが変化するため、そのバランスを維持する運用が必要になる。
再生可能エネルギ発電装置が太陽光発電装置や風力発電装置であれば、発電電力が気象条件によって変動する。変動した電力を電力系統に大量に導入することになれば、電力系統の周波数が不安定になり、送電の際に不具合が生じることが懸念されている。
そこで、電力会社は、再生可能エネルギ発電装置の各サイトへ、電力系統に出力する電力の変動幅制限、増減可否制限、さらにはそれらの時間帯制限などを要求する電力の広域運用を検討している。それを受けて、再生可能エネルギ発電装置の各サイト側では、要求された制限に合わせて発電電力の変動を緩和し、電力系統に出力させる運用が検討されている。
以下、電力系統に出力させる電力を、系統出力電力と表記する。
太陽光発電装置は、昼間に発電し、日射光が最も強い時間に最大となる。太陽が沈んだ後は発電しない。そのため、発電電力は、1日の中で0から最大となる変動がある。また、発電電力は、晴れと曇りの天候変化により、数分間から数十分間で変動する。
風力発電装置は風があれば昼夜問わず発電できる。しかし、体感したことがあるように、風力には、数秒および数分で強弱する変動や、数時間で強弱する変動があり、これに伴って発電電力が変動する。
このように、再生可能エネルギ発電装置では、時間間隔の異なる発電電力の変動があり、これらすべての変動に対して変動緩和するシステムが必要になっている。
その方法として、蓄電池を設け、蓄電池の充放電で変動を緩和するシステムがある。しかしながら、変動幅や変動周期が大きい場合、蓄電池が大型化し、システムの導入費用が高騰する課題が生じている。
この課題に対し、特許文献1には、太陽光発電装置と風力発電装置において、蓄電池の他に水電解槽装置と燃料電池を設けることで蓄電池の大型化を防ぐことが記載されている。
変動する発電電力に対し、蓄電池の充放電制御で変動緩和するとともに、蓄電池の貯蔵割合(以下、SOCと記載)が大きい場合は、蓄電池に充電するよりはむしろ水電解槽装置に電力を供給し、水素を製造し、貯蔵する。一方、蓄電池のSOCが小さい場合は、蓄電池から放電するよりはむしろ貯蔵した水素を用いて燃料電池を駆動し、発電し、電力を補充する。このように、蓄電池に貯蔵するエネルギを水素に変換し、水素で貯蔵することにより蓄電池の大型化を抑制することが記載されている。
しかし、燃料電池は、自体の性能、耐久性およびコスト低減などの実用化に向けた課題があり、実用化に向けた継続した開発が進められている。
特許文献2には、再生可能エネルギ発電装置の発電電力を直接水電解槽装置に供給し、水酸素ガスを製造し、貯蔵し、貯蔵した水酸素ガスを用いて、燃料電池あるいはエンジン発電機を駆動し、変動緩和することが記載されている。
蓄電池を用いないため、システムの導入費用の高騰は防ぐことはできるが、水電解槽装置は蓄電池に比べて応答性が悪く、数秒間の変動を緩和することはできない。
したがって、蓄電池と、水電解槽装置と、水電解槽装置で製造した水素などの燃料ガスを貯蔵し、貯蔵した燃料ガスを用いて発電する発電装置で構成する変動緩和システムを用い、数秒間から数時間にかかる時間間隔の異なるすべて発電電力の変動を緩和する必要がある。
また、貯蔵した燃料ガスを用いて発電する発電装置として、実用性の高いエンジン発電機が必要になる。
特許第4775790号公報 特開2013−147735号公報
風力発電装置が単数、あるいは複数含まれる再生可能エネルギ発電装置の発電電力の変動を緩和するには、蓄電池と、水電解槽装置と、水電解槽装置で製造した水素などの燃料ガスを貯蔵し、貯蔵した燃料ガスを用いて発電する発電装置で構成する変動緩和システムが有効である。この変動緩和システムにおいて、制御装置は、蓄電池の貯蔵量レベルと、水素貯蔵体の貯蔵量レベルを設け、それらの貯蔵量レベルを用いて蓄電池の充放電と、水電解槽の起動、停止と、エンジン発電機の起動、停止を、それぞれ制御する。
変動緩和システムによれば、電力会社から要求される系統出力電力に対する変動幅制限、増減可否制限、時間帯制限の各制限を遵守しながら、再生可能エネルギを電力系統に導入することができる。
ここで発明者らは、再生可能エネルギ発電装置の試験実績データを用い、前記変動緩和システムの蓄電池と、水電電解装置と、エンジン発電機の各制御を、蓄電池貯蔵量レベルと、水電解槽装置で製造した水素の貯蔵量レベルと、系統出力電力の変動幅をそれぞれ制御パラメータとする制御方法を検証した。その結果、風力発電装置が急停止し、急再開すると、電力会社から要求される系統出力電力の変動幅制限、増減可否制限および時間帯制限によって制御できない時間帯が生じることが分かった。
そこで、本発明は、再生可能エネルギ発電装置の急停止と急再開が発生した場合でも、系統出力電力の変動を適切に緩和することを課題とする。
前記した課題を解決するため、本発明の再生可能エネルギ発電装置の急変動の予見検知方法は、流速が第1所定値を超えると発電を急停止する再生可能エネルギ発電装置の一台または複数台に発電させるステップと、蓄電池と、水電解槽装置と、前記水電解槽装置で発生した水素を貯蔵する貯蔵体と、貯蔵した前記水素を用いて発電する発電機により、前記再生可能エネルギ発電装置による発電電力の変動を緩和するステップと、前記蓄電池の貯蔵量と前記水素の貯蔵量を計測するステップと、前記再生可能エネルギ発電装置による発電電力の変動を緩和するため、前記蓄電池の貯蔵量に応じて、前記蓄電池の充放電を制御すると共に、前記水素の貯蔵量に応じて、前記水電解槽装置の稼動電力および前記発電機の発電電力を制御するステップと、前記再生可能エネルギ発電装置による発電電力の経時変化、前記再生可能エネルギ発電装置に設置された流速計の計測値の経時変化、または前記再生可能エネルギ発電装置に設置された翼の角度の経時変化から当該再生可能エネルギ発電装置の急停止を予見するステップと、を実行することを特徴とする。
その他の手段については、発明を実施するための形態のなかで説明する。
本発明によれば、再生可能エネルギ発電装置の急停止と急再開が発生した場合でも、系統出力電力の変動を適切に緩和することができる。
本実施形態の風力発電システムを示す図である。 風力発電システムの各貯蔵量の閾値と各部の動作の関係を示す図である。 電力系統の設定に基づく風力発電システムの出力電力の制御を示すフローチャートである。 風力発電システムの各風力における特性を示すグラフである。 風力発電装置の急停止の予見を検知して、蓄電池貯蔵量の閾値を変更するフローチャートである。 変更した蓄電池貯蔵量の閾値を元に戻すフローチャートである。 風力発電装置の急停止の予見を検知して、系統出力電力の変動幅を最大値にするフローチャートである。 風力発電システムの系統出力電力を0にするフローチャートである。 風力発電装置の急再開を検知して系統出力電力の変動幅を変更するフローチャートである。 風力発電システムの制御結果の一例を示すグラフである。
本発明は、気象条件によって発電電力が変動する風力発電装置を対象に説明するが、風力発電装置のように急停止、急再開がある再生可能エネルギ発電装置を含む再生可能エネルギ発電装置の発電電力の変動緩和に適用することができる。
図1は、本実施形態の風力発電システムSを示す図である。
風力発電システムSは、風力発電装置1a〜1cを備え、発電電力P_in(t)の変動緩和のため、蓄電池3、水電解槽装置4、水素タンク5、およびエンジン発電機6と、これらを統括制御する制御装置7を備えている。
本実施形態の風力発電システムSは、3台の風力発電装置(再生可能エネルギ発電装置)1a〜1cを備えている。しかし、これに限られず、風力発電システムSは、単一の風力発電装置を備えてもよく、任意台数の風力発電装置を備えてもよい。
風力発電装置(再生可能エネルギ発電装置の一例)1a〜1cは、変圧器11の入力側に接続され、この変圧器11を介して電力系統に接続されている。風力発電装置1a〜1cには翼が設置されている。
変圧器11の出力側の母線14には、風力発電装置1a〜1cの発電電力P_in(t)を計測する電力計12と、系統出力電力P_out(t)を計測する電力計13が設けられている。電力計12と電力計13は、計測した電力情報を制御装置7に出力する。これら風力発電装置1a〜1cは、風速計15a〜15c(流速計の一例)を備えており、翼の角度制御や急停止や急再開の予見診断などに用いられている。
なお、風力発電装置1a〜1cを特に区別しないときには、単に風力発電装置1と記載する。風速計15a〜15cを特に区別しないときには、単に風速計15と記載する。
風力発電装置1は、風力により翼(羽)を回転させ、その回転力で発電機を回転させて発電する。風力発電装置1によって得られる発電電力P_in(t)は、交流である。変圧器11は、風力発電装置1による発電電力P_in(t)を所定の電圧に調整して電力系統に導入する。この風力発電装置1は、風速が第1所定値を超えると発電を急停止し、発電が急停止しているときに風速が第1所定値以下になると、発電を急再開する。
風力発電装置1は、風力の変動で発電電力P_in(t)が変動する。発電電力P_in(t)の変動には、数秒間から数十秒間で変動する短期変動と、数分間から数十分間で変動する中期変動と、数時間に及ぶ長期変動が存在する。
風力発電のような再生可能エネルギ発電は、化石燃料の枯渇化防止、地球温暖化防止、および環境に優しいクリーンなエネルギの発電技術として導入が推進されている。再生可能エネルギ発電の導入量の増大により、出力変動が電力系統の周波数の維持に影響し、系統利用者に影響を及ぼす可能性がある。そのため、発電システムの運用者は、周波数調整に影響のないレベルまで発電電力P_in(t)の変動を緩和しなければならない。
蓄電池3は、発電電力P_in(t)の変動緩和手段のひとつである。蓄電池3は、蓄電池用PCS(パワーコントロールシステム)31を介して変圧器11の出力側の母線14に接続されている。蓄電池貯蔵量計32は、この蓄電池3の貯蔵量C_bat(t)を計測するセンサである。蓄電池貯蔵量計32は、計測した蓄電池3の貯蔵量C_bat(t)を制御装置7に出力する。
蓄電池用PCS31は、交流と直流の変換と、電圧の変換を行う装置である。制御装置7は、風力発電装置1による発電電力P_in(t)の秒単位の変動を緩和するため、蓄電池用PCS31によって数秒間隔で蓄電池3への充放電を制御する。風力発電装置1による発電電力P_in(t)の分単位と時単位の変動を緩和するためには、蓄電池3を大容量にすればよい。しかしながら、大容量の蓄電池3を導入すると、システムを構築する費用が高騰するという問題が生じる。
水電解槽装置4は、発電電力P_in(t)の変動緩和手段のひとつである。水電解槽装置4は、変圧器41とAC/DC変換器42を介して、母線14に接続されている。変圧器41は、母線14に印加された交流の電圧を変換するものである。AC/DC変換器42は、変圧器41が出力した交流を直流に変換するものである。水電解槽装置4は、AC/DC変換器42が出力した直流電力により、水を電気分解して水素と酸素を製造する。電力計43は、水電解槽装置4の稼動電力P_ele(t)を計測する。
蓄電池3の貯蔵量C_bat(t)が多い時、制御装置7は、水電解槽装置4に電力を導入して水素と酸素を製造させる。水電解槽装置4が製造した水素は、水素タンク5に貯蔵される。また、図示していないが、水電解槽装置4が製造した酸素は大気に放出してもよく、不図示の酸素タンクに貯蔵して活用してもよい。
水素タンク5は、製造した水素を貯蔵し、水素を使用するときに放出させる水素貯蔵体である。水素貯蔵量計51は、水素タンク5の貯蔵量C_H2(t)を計測するセンサである。水素タンク5に貯蔵された水素は売買してもよいが、本発明ではエンジン発電機6の燃料として用いている。
なお、水素貯蔵体は、水素ガスを高圧貯蔵するタンクに限定されず、水素貯蔵合金やメチルシクロヘキサン(MCH)貯蔵体を用いて貯蔵、放出させるシステムであってもよい。
エンジン発電機6は、交流電力を発電して母線14に導入するものである。電力計62は、エンジン発電機6による発電電力P_eng(t)を計測する。エンジン発電機6が発電した発電電力P_eng(t)は、風力発電装置1が発電した発電電力P_in(t)と合流される。これにより蓄電池3を充電したり、系統出力電力P_out(t)を補填することができる。
エンジン発電機6は、ガソリンや軽油に水素を混合させる水素混焼エンジン発電機であり、排気61を出しつつ交流電力を発電する。このようなガソリンを燃料とする点火式のレシプロエンジンや、軽油やLPG(Liquefied Petroleum Gas)を燃料とする自着火式のディーゼルエンジンは実用化され、かつ広く普及している。それら燃料に水素を添加して稼動する水素混焼エンジンは、早々に実用化される予定である。
なお、これに限られず、エンジン発電機6は、水素専焼のエンジン発電機、水素専焼のガスタービン発電機、LNG(Liquefied Natural Gas)に水素を混合させる水素混焼のガスタービン発電機であってもよく、さらに水素を用いて発電する燃料電池であってもよい。
水素専焼エンジンは、古くから開発されており、実証例もある。しかし、水素専焼エンジンは、エンジンを構成する金属の脆化の課題を有している。水素専焼エンジンは、燃焼速度が高いことによって起こるインナーファイヤーを回避するため、希薄燃焼が必要であり、出力が小さいという課題も有しており、現在も実用化に向けた更なる開発が進められている。
水素を用いるガスタービンは、燃焼温度の高温化によって効率は上がるが、窒素酸化物(NOx)が発生しやすくなるという課題がある。そこで、低NOx燃焼の技術開発が進められており、現在も実用化に向けた更なる開発が進められている。
燃料電池には高純度の水素が必要になるため、水素を精製するシステムが必要になるという課題がある。また、燃料電池は、耐久性やコスト低減の課題があり、現在も実用化に向けた更なる開発が進められている。
本発明では風力発電装置1の365日間の試験実績データを用い、年間を通じて適用できるシステムの制御方法を構築した。
制御装置7は、電力計12,13と、蓄電池貯蔵量計32と、電力計43と、水素貯蔵量計51と、電力計62の各計測値を取り込む。制御装置7はさらに、蓄電池3、水電解槽装置4およびエンジン発電機6の各装置に付設されている制御ユニットに指令を送る。制御装置7は、蓄電池3に充放電を行わせ、水電解槽装置4およびエンジン発電機6に対して起動制御と停止制御を行う。モニタ71は、制御装置7が取り込んだ各計測値や制御パラメータを表示する。
図2は、風力発電システムSの各貯蔵量の閾値と各部の動作の関係を示す図である。
本実施形態では、水素タンク5の貯蔵量C_H2(t)のレベル条件として、閾値C_H2_H1を設けている。この閾値C_H2_H1は、エンジン発電機6を任意の時間稼動できるだけの水素貯蔵量C_H2(t)を確保するためのものである。制御装置7は、水素タンク5の貯蔵量C_H2(t)が閾値C_H2_H1以下であれば、系統出力電力P_out(t)を抑えて発電電力P_in(t)を蓄電池3に充電した後、水電解槽装置4を起動させて水素を発生させるように制御する。
風力発電システムSは、蓄電池3の貯蔵量C_bat(t)のレベル条件として、4種類の閾値C_bat_H2,C_bat_H1,C_bat_L2,C_bat_L1を設けている。蓄電池3の貯蔵量C_bat(t)が閾値C_bat_H2を超えると、水電解槽装置4を起動する。水電解槽装置4が動作しているときに蓄電池3の貯蔵量C_bat(t)が閾値C_bat_L2を下回ると、水電解槽装置4を停止する。水電解槽装置4は、蓄電池3の貯蔵量C_bat(t)が閾値C_bat_H2から閾値C_bat_L2までの間で稼動することから、起動後すぐさま停止するという間欠運転を避けて、任意の時間に亘って連続運転させることができる。
蓄電池3の貯蔵量C_bat(t)が減少して閾値C_bat_L1を下回ると、エンジン発電機6を起動する。エンジン発電機6が動作しているときに蓄電池3の貯蔵量C_bat(t)が閾値C_bat_L2を超えると、エンジン発電機6を停止する。エンジン発電機6は、蓄電池3の貯蔵量C_bat(t)が閾値C_bat_L1から閾値C_bat_L2までの間で稼動することから、起動後すぐさま停止するという間欠稼動を避け、任意の時間に亘って連続運転させることができる。
蓄電池3の貯蔵量C_bat(t)の中間的範囲の閾値C_bat_L2から閾値C_bat_H1では、エンジン発電機6を稼動することなく、蓄電池3だけで発電電力P_in(t)の変動を緩和して、緩和した電力を出力させる制御をする。
電力会社からの要望により、系統出力電力P_out(t)の変動幅ΔP_cに制限が課せられる場合がある。この場合、制御装置7は、蓄電池3の貯蔵量C_bat(t)が中間的な閾値C_bat_L2から閾値C_bat_H1の範囲であれば、発電電力P_in(t)の増減に合わせて、変動幅ΔP_cの制限内で系統出力電力P_out(t)を増減させる制御をする。
制御装置7は、蓄電池3の貯蔵量C_bat(t)が閾値C_bat_H1以上では、蓄電池3への充電を抑えるため、変動幅ΔP_cの制限内で系統出力電力P_out(t)を増加させる制御をする。一方、制御装置7は、閾値C_bat_L1以下では、蓄電池3への充電を促すため、変動幅ΔP_cの制限内で系統出力電力P_out(t)を減少させる制御をする。
ここまでは変動幅ΔP_cの増減を許容する場合について説明した。設定01は、このような場合である。
電力会社からのさらなる要望として、以下の設定02,03,04の各要求が時間帯で課せられる場合がある。設定02は、系統出力電力P_out(t)の増加は許容するが、減少は禁止する場合である。設定02のような制御は、例えば午前中などの電力系統の需要が増大している時間帯に有用である。設定03は、系統出力電力P_out(t)の増減を禁止し、一定とする場合である。設定03のような制御は、例えば昼間の電力系統の需要が多い状態が継続する時間帯に必要である。設定04は、系統出力電力P_out(t)の減少は許容するが、増加は禁止する場合である。設定04のような制御は、例えば夜間などの電力系統の需要が少ない時間帯に必要である。
図3は、電力会社の設定に基づく風力発電システムSの系統出力電力P_out(t)の制御を示すフローチャートである。
ここでは、蓄電池3の貯蔵量C_bat(t)の中間的範囲の閾値C_bat_L2から閾値C_bat_H1における系統出力電力P_out(t)の設定方法を示す。
制御装置7は、発電電力P_in(t)を計測し(ステップS10)、系統出力電力P_out(t)の変動幅ΔP_cを取得し(ステップS11)、系統出力電力P_out(t-Δt)を計測すると(ステップS12)、ステップS13に進んで設定モードに応じて多重分岐する。
ステップS13において、制御装置7は、設定01ならばステップS14の処理に進み、設定02ならばステップS15の処理に進み、設定03ならばステップS16の処理に進み、設定04ならばステップS17の処理に進む。
設定01は、電力会社から系統出力電力P_out(t)の増減が許容されている時間帯のモードである。ステップS14において、制御装置7は、今回の時刻tにおける発電電力P_in(t)と、前回の時刻(t-Δt)における系統出力電力P_out(t-Δt)との差がゼロまたはマイナスの場合、時刻tにおける系統出力電力P_out(t)を、系統出力電力P_out(t-Δt)から変動幅ΔP_cを差し引いて設定する。
またステップS14において、制御装置7は、今回の時刻tにおける発電電力P_in(t)と、前回の時刻(t-Δt)における系統出力電力P_out(t-Δt)との差がプラスの場合、時刻tにおける系統出力電力P_out(t)を、系統出力電力P_out(t-Δt)に変動幅ΔP_cを加算して設定する。ステップS14の処理の後、制御装置7は、ステップS18の処理に進む。
すなわち、制御装置7は、発電電力P_in(t)よりも系統出力電力P_out(t-Δt)が小さいならば系統出力電力P_out(t)を減少させ、発電電力P_in(t)よりも系統出力電力P_out(t-Δt)が大きいならば系統出力電力P_out(t)を増加させる制御をする。ここで変動幅ΔP_cは、電力会社から要求される系統出力電力P_out(t)に対する許容変動幅以下の定数とした。
設定02は、電力会社から系統出力電力P_out(t)の増加方向の変動が許容されているが、減少方向の変動が禁止されている時間帯のモードである。ステップS15において、制御装置7は、今回の時刻tにおける発電電力P_in(t)と、前回の時刻(t-Δt)における系統出力電力P_out(t-Δt)との差がゼロまたはマイナスの場合、時刻tにおける系統出力電力P_out(t)を、系統出力電力P_out(t-Δt)と同一に設定する。
またステップS15において、制御装置7は、今回の時刻tにおける発電電力P_in(t)と、前回の時刻(t-Δt)における系統出力電力P_out(t-Δt)との差がプラスの場合、時刻tにおける系統出力電力P_out(t)を、系統出力電力P_out(t-Δt)に変動幅ΔP_cを加算して設定する。ステップS15の処理の後、制御装置7は、ステップS18の処理に進む。
すなわち、制御装置7は、発電電力P_in(t)よりも系統出力電力P_out(t-Δt)が小さいならば系統出力電力P_out(t)を変化させず、発電電力P_in(t)よりも系統出力電力P_out(t-Δt)が大きいならば、系統出力電力P_out(t)を増加させる制御をする。
設定03は、電力会社から系統出力電力P_out(t)の増減が禁止され、一定とするように定められた時間帯のモードである。ステップS16において、制御装置7は、今回の時刻tにおける発電電力P_in(t)と、前回の時刻(t-Δt)における系統出力電力P_out(t-Δt)との差がゼロまたはマイナスの場合、時刻tにおける系統出力電力P_out(t)を、系統出力電力P_out(t-Δt)と同一に設定する。
またステップS16において、制御装置7は、今回の時刻tにおける発電電力P_in(t)と、前回の時刻(t-Δt)における系統出力電力P_out(t-Δt)との差がプラスの場合、時刻tにおける系統出力電力P_out(t)を、系統出力電力P_out(t-Δt)と同一に設定する。ステップS16の処理の後、制御装置7は、ステップS18の処理に進む。
すなわち、制御装置7は、発電電力P_in(t)と系統出力電力P_out(t-Δt)との大小関係によらず、系統出力電力P_out(t)を変化させない。
設定04は、電力会社から系統出力電力P_out(t)の増加方向の変動が禁止されているが、減少方向の変動が許容されている時間帯のモードである。ステップS17において、制御装置7は、今回の時刻tにおける発電電力P_in(t)と、前回の時刻(t-Δt)における系統出力電力P_out(t-Δt)との差がゼロまたはマイナスの場合、時刻tにおける系統出力電力P_out(t)を、系統出力電力P_out(t-Δt)から変動幅ΔP_cを差し引いて設定する。
またステップS17において、制御装置7は、今回の時刻tにおける発電電力P_in(t)と、前回の時刻(t-Δt)における系統出力電力P_out(t-Δt)との差がプラスの場合、時刻tにおける系統出力電力P_out(t)を、系統出力電力P_out(t-Δt)と同一に設定する。ステップS17の処理の後、制御装置7は、ステップS18の処理に進む。
すなわち、制御装置7は、発電電力P_in(t)よりも系統出力電力P_out(t-Δt)が小さいならば系統出力電力P_out(t)を減少させ、発電電力P_in(t)よりも系統出力電力P_out(t-Δt)が大きいならば系統出力電力P_out(t)を増加させる制御をする。ここに、変動幅ΔP_cは、電力会社から要求される系統出力電力P_out(t)に対する許容変動幅以下の定数とした。
ステップS18において、制御装置7は、時刻tを時間間隔Δtだけ更新し、ノードSを介してステップS10に回帰させることで連続制御する。
図4は、風力発電装置1の各風速における特性を示すグラフである。
上段は、風速と発電電力P_in(t)との関係を示すグラフである。下段は、風速と翼角度Wとの関係である。ここでいう翼は、風力発電装置1の回転子などに設置されて、風力を回転力に変換する翼(羽)である。風力発電装置1の不図示の制御部は、風力計15で得られた風速Sの情報に基づき、翼角度Wを制御する。
風速S0未満は、領域M1である。領域M1では風速が小さすぎるため、風車は回らず、発電電力P_in(t)は、0である。領域M1において、翼角度Wは風力を受けやすい所定値θである。
風速S0以上かつ風速S1未満は、領域M2である。領域M2では風車が回り始め、風速が上がるにつれて発電電力P_in(t)は、指数関数的に増加する。領域M2において、翼角度Wは風力を受けやすい所定値θになっている。
風速S1以上かつ風速S2未満は、領域M3である。領域M3では風速が上がるごとに翼角度Wを変えて風力の一部を逃がし、発電電力P_in(t)を一定とする。
風速S2以上は、領域M4である。領域M4では翼角度Wを0°として風力の全てを逃がして発電を急停止する。その後、風が弱まれば、風力発電装置1は発電を急再開する。
風力発電装置1の365日間の試験実績データを用いて、発電電力の変動緩和システムを制御した結果、制御できない時間帯があり、その時間帯の前後で風力発電装置1の急停止と急再開があることが分かった。
そこで、発明者らは、風力発電装置1あるいは風力発電装置1を含む再生可能エネルギ発電装置を含んだ発電システムに、風力発電装置1の急停止の予見、停止の検知および急再開の検知を加味した制御を導入した。
図5は、風力発電装置1の急停止の予見を検知して、蓄電池3の貯蔵量C_bat(t)の閾値を変更するフローチャートである。
風力発電装置1が急停止する直前は図4の領域M3の状態であり、急停止の予見診断は領域M3の状態で検知するようにした。
制御装置7には、通常状態における4種類の蓄電池3の貯蔵量C_bat(t)の閾値C_bat_H2,C_bat_H1,C_bat_L2,C_bat_L1が予め設定されている(ステップS20)。また、風力発電装置1の急停止を予見診断するために、制御装置7には、事前に基準電力P_sと、その値以上になる最低限の継続時間である継続時間基準S_c_timeが設定される(ステップS21)。さらに制御装置7は、予見判断時間S_timeに初期値0を設定し(ステップS22)、発電電力P_in(t)を計測する(ステップS23)。
ステップS24において、制御装置7は、発電電力P_in(t)が基準電力P_sより大きいか否かを判定する。制御装置7は、発電電力P_in(t)が基準電力P_sより大きいならば(Yes)、予見判断時間S_timeを時間間隔Δtだけ更新し(ステップS25)、予見判断時間S_timeが継続時間基準S_c_timeより大きくなったか否かを判定する(ステップS26)。ステップS24の判定が成立するとき(Yes)、風速Sは図4の領域M3のいずれかである。風力発電装置1の発電電力P_in(t)は、風力の変化に応じて上下に大きく変動する。そのため、ステップS24の判定により、変動の下限値が基準電力P_sよりも大きいことを判定し、よって予見を判断している。
制御装置7は、予見判断時間S_timeが継続時間基準S_c_timeより大きくなったならば(Yes)、急停止を予見診断してステップS27に進む。ステップS27において制御装置7は、4種類の蓄電池3の貯蔵量C_bat(t)のレベル条件を高めて閾値C_bat_H2a,C_bat_H1a,C_bat_L2a,C_bat_L1aに変更し、図6のステップS30に進む。これにより、制御装置7は、風力発電装置1の急停止に備えるため、蓄電池3の貯蔵量C_bat(t)を多めに確保することができる。
一方、ステップS26において、制御装置7は、予見判断時間S_timeが継続時間基準S_c_time以下ならば(No)、時刻tを時間間隔Δtだけ更新すると(ステップS29)、ステップS23の処理に回帰する。
なお、ステップS24において、制御装置7は、発電電力P_in(t)が基準電力P_s以下ならば(No)、風力が弱まって図4の領域M2または領域M1に移行したことを示している。このとき、制御装置7は、予見判断時間S_timeを0で初期化して(ステップS28)、時刻tを時間間隔Δtだけ更新すると(ステップS29)、ステップS23の処理に回帰する。
ステップS27において制御装置7が変更した蓄電池3の貯蔵量C_bat(t)の各閾値は、通常状態の各閾値よりも大きくなるように設定した。これは、変動緩和した後の系統出力電力P_out(t)に、増減可否の制限と、時間帯制限が課せられる場合に対処するためである。例えば、系統出力電力P_out(t)を減少できない時間帯に風力発電装置1が急停止すれば、蓄電池3を放電させ、系統出力電力P_out(t)を補填しなければならない。蓄電池3の貯蔵量C_bat(t)が少なくなるとエンジン発電機6が起動するが、エンジン発電機6による発電電力P_eng(t)が系統出力電力P_out(t)よりも小さい場合、エンジン発電機6の稼動と同時に蓄電池3も放電させることになる。したがって、蓄電池3の貯蔵量C_bat(t)が空(0)にならないように、急停止の前に蓄電池3の貯蔵量C_bat(t)を増やす制御をした。
本実施形態では、風力発電装置1の試験実績データとして発電電力P_in(t)を用いたため、基準電力P_sと継続時間基準S_c_timeの二つの設定値を用いて急停止を予見している。
風力発電装置1は、図4のグラフに示す特性を備えている。ここで風速データがあれば基準電力P_sを基準風速S_sに変えて同様な制御をすることができる。また、図4の領域M3では、翼角度を変えて発電電力P_in(t)を一定にする運用をするため、翼角度Wのデータがあれば基準電力P_sを翼角度Wに変えても同様な制御をすることができる。
蓄電池3の貯蔵量C_bat(t)のレベル条件の変更は、風力発電装置1が急停止する場合の一時的な変更であり、通常は元のレベル条件で制御させるのがよい。そこで、元のレベル条件に戻す操作が必要になる。
図6は、変更した蓄電池3の貯蔵量C_bat(t)の閾値を元に戻すフローチャートである。
図5のノードAを受け、制御装置7には、解除診断の条件として基準電力P_uが設定される(ステップS30)。この基準電力P_uは、急停止を予見診断する条件の基準電力P_sよりも小さい。制御装置7は、発電電力P_in(t)を計測し(ステップS31)、この発電電力P_in(t)が基準電力P_uより小さくなったか否かを判定する(ステップS32)。
ステップS32において、制御装置7は、発電電力P_in(t)が基準電力P_uより小さくなったならば(Yes)、ノードBを介して図5のステップS20に回帰して、蓄電池3の貯蔵量C_bat(t)の閾値を元に戻す。
一方、ステップS32において、制御装置7は、発電電力P_in(t)が基準電力P_u以上ならば(No)、時刻tを時間間隔Δtだけ更新し(ステップS33)、ステップS31に回帰させる。
図7は、風力発電装置1の急停止の予見を検知して、系統出力電力P_out(t)の変動幅ΔP_cを最大値にするフローチャートである。
本実施形態は、風速Sが大きく、装置の安全保護のために急停止させる挙動を検知することが目的である。したがって、制御装置7は、風速Sのデータあるいは翼角度Wのデータと、発電電力P_in(t)のデータを組み合わせて急停止を検知すればよい。しかしながら、風速Sのデータも翼角度Wのデータも無い場合は、発電電力P_in(t)のデータだけで検知しなければならない。
制御装置7には、系統出力電力P_out(t)の変動幅ΔP_cとして、標準の変動幅ΔP_c_uが設定され(ステップS40)、急停止の検知条件である継続時間基準Z_c_timeが設定される(ステップS41)。制御装置7は、急停止判断時間Z_timeを0で初期化し(ステップS42)、発電電力P_in(t)を計測する(ステップS43)。
ステップS44において、制御装置7は、計測した発電電力P_in(t)が基準電力P_eps以下であるか否かを判定する。風力発電装置1の台数が少ない場合、制御装置7は、発電電力P_in(t)が0であるか否かを判定してもよい。しかし、風力発電装置1の台数が数十台の場合、大多数の風力発電装置1が急停止しても、一部の風力発電装置1が発電し続ける場合がある。このような場合を急停止と判断するため、制御装置7は、発電電力P_in(t)を、基準電力P_epsと比較している。ここで基準電力P_epsは、一部の風力発電装置1が発電し続けているが、風力の増大に伴い、これら一部の風力発電装置1も急停止してしまうと見込まれる電力である。
ステップS44において、制御装置7は、発電電力P_in(t)が基準電力P_eps以下ならば(Yes)、急停止判断時間Z_timeを時間間隔Δtだけ更新し(ステップS45)、急停止判断時間Z_timeが継続時間基準Z_c_timeより大きくなったか否かを判定する(ステップS46)。制御装置7は、急停止判断時間Z_timeが継続時間基準Z_c_timeより大きくなったならば(Yes)、急停止であると判断して、変動幅ΔP_cに最大の変動幅ΔP_c_maxを設定する(ステップS47)。ステップS47の後、制御装置7は、図8のステップS50の処理に進む。
一方、ステップS46において、制御装置7は、急停止判断時間Z_timeが継続時間基準Z_c_time以下ならば(No)、時刻tを時間間隔Δtだけ更新すると(ステップS49)、ステップS43の処理に回帰する。
なお、ステップS44において、制御装置7は、発電電力P_in(t)が基準電力P_epsを超えていたならば(No)、急停止判断時間Z_timeを0で初期化して(ステップS48)、時刻tを時間間隔Δtだけ更新すると(ステップS49)、ステップS43の処理に回帰する。
風力発電装置1は、一時的に風が止むことにより、一時的に発電電力P_in(t)が0になることがある。制御装置7は、そのような場合を急停止から除外するため、発電電力P_in(t)が基準電力P_eps以下の状態が継続時間基準Z_c_timeよりも長く継続した場合に、急停止を検知するようにした。
風力発電装置1の台数が多いと、殆どの風力発電装置1が急停止しており、かつ一部の風力発電装置1が動作している場合がある。このような場合、合計の発電電力P_in(t)は急減するが、0にはならない。本実施形態の制御装置7は、発電電力P_in(t)が基準電力P_epsとを比較することで、殆どの風力発電装置1が急停止したことを検知することができる。
制御装置7は、計測した発電電力P_in(t)が、急減を表す基準電力P_eps以下であることを検知し、検知し続けた時間が継続時間基準Z_c_timeより大きくなったら、系統出力電力P_out(t)に対して制限範囲内の最大の変動幅ΔP_c_maxで減少させ、早急に系統出力電力P_out(t)を、急減を表す発電電力P_in(t)にする制御をする。この制御により、蓄電池3の貯蔵量C_bat(t)の減少を抑制することができる。
なお、系統出力電力P_out(t)の増加は、制限範囲内の最大の変動幅ΔP_c_maxに限定されず、制限範囲内の最大の変動幅ΔP_c_maxから既定の変動幅ΔP_c_uの間の任意の値であってもよい。
図8は、風力発電システムSの系統出力電力P_out(t)を0にするフローチャートである。
図7のノードDを受け、制御装置7は、時刻(t-Δt)における系統出力電力P_out(t-Δt)を計測する(ステップS50)。制御装置7は、系統出力電力P_out(t-Δt)が基準電力P_epsを超えているか否かを判定する(ステップS51)。制御装置7は、系統出力電力P_out(t-Δt)が基準電力P_epsを超えていたならば(Yes)、変動幅ΔP_cの減少が許容される設定01または設定04であるか否かを判定する(ステップS52)。
ステップS52において、制御装置7は、設定01または設定04ならば(Yes)、時刻tにおける系統出力電力P_out(t)を、前回の系統出力電力P_out(t-Δt)から変動幅ΔP_cを差し引いた値として(ステップS53)、時刻tを時間間隔Δtだけ更新し(ステップS54)、ステップS50に回帰させる。
一方、ステップS52において、制御装置7は、設定01でなく、かつ設定04でないならば(No)、時刻tを時間間隔Δtだけ更新し(ステップS54)、ステップS50に回帰させる。
ステップS51において、制御装置7は、系統出力電力P_out(t-Δt)が基準電力P_eps以下ならば(No)、時刻tにおける系統出力電力P_out(t)を0として(ステップS55)、図9のステップS56の処理に進む。
風力発電装置1が急再開すると発電電力P_in(t)が急激に立ち上がり、蓄電池3の貯蔵量C_bat(t)が急激に増える。蓄電池3の貯蔵量C_bat(t)が増えると水電解槽装置4が起動し、水電解槽装置4が電力を消費することで蓄電池3の貯蔵量C_bat(t)の増加は抑えられる。しかしながら、系統出力電力P_out(t)の増加が緩やかで、急再開による発電電力P_in(t)の増加が急激であれば、蓄電池3の貯蔵量C_bat(t)が蓄電池3の最大容量CMAXを超えてしまう。このような場合、系統出力電力P_out(t)の増加を促進し、蓄電池3の貯蔵量C_bat(t)が最大容量CMAXを超えることを回避する必要がある。
図9は、風力発電装置1の急再開を検知して系統出力電力P_out(t)の変動幅ΔP_cを変更するフローチャートである。
図8のノードEを受け、制御装置7は、発電電力P_in(t)を計測し(ステップS56)、発電電力P_in(t)が基準電力P_epsを超えているか否かを判定する(ステップS57)。制御装置7は、発電電力P_in(t)が基準電力P_eps以下ならば(No)、図8のステップS50に回帰する。
一方、ステップS57において、制御装置7は、発電電力P_in(t)が基準電力P_epsを超えていたならば(Yes)、変動幅ΔP_cの増加が許容される設定01または設定02であるか否かを判定する(ステップS58)。ステップS58において、制御装置7は、設定01または設定02ならば(Yes)、時刻(t-Δt)の系統出力電力P_out(t-Δt)を取得し(ステップS59)、急再開を検知する電力差基準ΔP_difを取得する(ステップS60)。
一方、ステップS58において、制御装置7は、設定01でなく、かつ設定02でないならば(No)、時刻tを時間間隔Δtだけ更新すると(ステップS66)、ステップS56の処理に回帰する。
また、ステップS60の後、制御装置7は、風力発電装置1の急再開を、時刻tにおける発電電力P_in(t)と時刻(t-Δt)における系統出力電力P_out(t-Δt)との差で検知する(ステップS61)。つまり制御装置7は、発電電力P_in(t)と系統出力電力P_out(t-Δt)の差が電力差基準ΔP_difを超えたならば(Yes)、急再開と判断してステップS62の処理に進む。制御装置7は、変動幅ΔP_cに制限範囲内の最大の変動幅ΔP_c_maxを設定し(ステップS62)、系統出力電力P_out(t)に、系統出力電力P_out(t-Δt)を変動幅ΔP_cで更新すると(ステップS64)、ステップS65に進む。
一方、ステップS61において、制御装置7は、発電電力P_in(t)と時刻(t-Δt)の系統出力電力P_out(t-Δt)の差が、電力差基準ΔP_dif以下であれば(No)、急再開では無いと判断してステップS63の処理に進む。制御装置7は、変動幅ΔP_cに通常の変動幅ΔP_c_uを設定し(ステップS63)、系統出力電力P_out(t)に、系統出力電力P_out(t-Δt)を変動幅ΔP_cで更新すると(ステップS64)、ステップS65に進む。
ステップS65において、制御装置7は、系統出力電力P_out(t)が発電電力P_in(t)よりも小さいか否かを判定する。制御装置7は、系統出力電力P_out(t)が発電電力P_in(t)よりも小さいならば(Yes)、時刻tを時間間隔Δtだけ更新すると(ステップS66)、ステップS56の処理に回帰する。
一方、ステップS65において、制御装置7は、系統出力電力P_out(t)が発電電力P_in(t)以上ならば(No)、一連の急再開処理を終了し、例えば図5のステップS20に回帰して予見診断を繰り返す。
制御装置7は、風力発電装置1の急再開を検知すると、系統出力電力P_out(t)を制限範囲内の最大の変動幅ΔP_c_maxで増加させる。発電電力P_in(t)と系統出力電力P_out(t-Δt)の差が電力差基準ΔP_difより小さければ、系統出力電力P_out(t)に対して通常の変動幅ΔP_c_uで増加させる。この制御により、制御装置7は、蓄電池3の貯蔵量C_bat(t)が最大容量CMAX以上になることを抑制する。
なお、系統出力電力P_out(t)の増加は、制限範囲内の最大の変動幅ΔP_c_maxに限定されず、制限範囲内の最大の変動幅ΔP_c_maxから既定の変動幅ΔP_c_uの間の任意の値であってもよい。
制御装置7は、系統出力電力P_out(t)の変動幅、水素タンク5の貯蔵量C_H2(t)に係る1種類の閾値、蓄電池3の貯蔵量C_bat(t)に係る4種類の閾値の計6種類を制御パラメータとした。さらに制御装置7は、水素タンク5への水素貯蔵量の確保と、蓄電池3の充放電量と、水電解槽装置4の起動および停止と、エンジン発電機6の起動および停止の制御に、図3と図5から図9に記載の制御を用いている。
発明者らは、この制御装置7による365日の風力発電装置1の試験実績データを用いて、年間を通じて制御方法を検証した。
図10は、風力発電システムSの制御結果の一例を示すグラフである。風力発電装置1による発電電力P_in(t)が急停止したのち、急再開した日の制御結果を示している。
上から1段目のグラフは、発電電力P_in(t)と系統出力電力P_out(t)のグラフである。発電電力P_in(t)は、薄いハッチングの実線で示されている。系統出力電力P_out(t)は、濃い黒色の破線で示されている。なお、1〜5段目のグラフの横軸は、共通する時刻を示している。
1段目のグラフ中の設定01は、系統出力電力P_out(t)が一定、あるいは増加させてもいいが、減少させてはいけない時間帯である。同グラフ中の設定02は、系統出力電力P_out(t)が一定であり、増加させても減少させてもいけない時間帯である。同グラフ中の設定03は、系統出力電力P_out(t)が一定、あるいは増加させてもいいが、減少させてはいけない時間帯である。同グラフ中の設定04は、系統出力電力P_out(t)が一定、あるいは減少させてもいいが、増加させてはいけない時間帯である。
上から2段目のグラフは、蓄電池3の貯蔵量C_bat(t)のグラフである。グラフには、蓄電池3の最大容量CMAXと、貯蔵量C_bat(t)の閾値H2、H1、L2、L1と、閾値H2a、H1a、L2a、L1aを表記している。
上から3段目のグラフは、水電解槽装置4の稼動電力P_ele(t)のグラフである。水電解槽装置4は、蓄電池3の貯蔵量C_bat(t)が閾値H1aまたは閾値H1以上のとき(時刻t1,t8)に起動する。動作中の水電解槽装置4は、蓄電池3の貯蔵量C_bat(t)が閾値L2aまたは閾値L2以下のとき(時刻t2,t9)に停止する。
上から4段目のグラフは、水素貯蔵量C_H2(t)のグラフである。水素貯蔵量C_H2(t)は、水電解槽装置4の稼動によって増加し、エンジン発電機6の稼働によって減少する。
上から5段目のグラフは、エンジン発電機6の発電電力P_eng(t)のグラフである。エンジン発電機6は、蓄電池3の貯蔵量C_bat(t)が閾値L1aまたは閾値L1以下のとき(時刻t4,t10,t12)に起動する。動作中のエンジン発電機6は、蓄電池3の貯蔵量C_bat(t)が閾値L2aまたは閾値L2を超えたとき(時刻t5,t11,t13)に停止する。
時刻t3において、2段目のグラフに示すように、蓄電池3の貯蔵量C_bat(t)に係る閾値H2、H1、L2、L1は、閾値H2a、H1a、L2a、L1aへ変更されている。これが図5に示した蓄電池3の貯蔵量の閾値の変更制御である。
1段目と2段目のグラフに示すように、制御装置7は、発電電力P_in(t)が最大付近にある時刻t3で急停止を予見し、蓄電池3の貯蔵量C_bat(t)の閾値を変更していることが分かる。蓄電池3の貯蔵量C_bat(t)の閾値を変更することにより、蓄電池3の貯蔵量C_bat(t)は、変更された後の閾値C_bat_L2aになるように維持されている。
1段目のグラフに示すように、風力発電装置1は、時刻t4で急停止している。時刻t4は、系統出力電力P_out(t)を減少させてはいけない設定02の時間帯に含まれている。
2段目のグラフに示すように、風力発電システムSは、蓄電池3からの放電により系統出力電力P_out(t)を補填し、維持している。そのため蓄電池3の貯蔵量C_bat(t)が減少する。
2段目のグラフに示すように、時刻t4において、蓄電池3の貯蔵量C_bat(t)の閾値の変更により、蓄電池3の貯蔵量C_bat(t)が閾値L1aを下回る。このとき、5段目のグラフに示すように、通常の閾値L2よりも高いにも関わらずエンジン発電機6が起動して、発電電力P_eng(t)が立ち上がっている。これにより蓄電池3の貯蔵量C_bat(t)の減少が抑制可能である。
1段目のグラフに示すように、系統出力電力P_out(t)を減少させることができない最初の設定02の時間帯の後、系統出力電力P_out(t)が減少している。減少の傾きは他の時間帯より大きい。これは、図7と図8に示した制御の結果である。
また、系統出力電力P_out(t)が急減する過程の時刻t5において、2段目のグラフに示すように、蓄電池3の貯蔵量C_bat(t)の変更が解除され、通常のレベルに戻っている。これが図6に示した制御である。その後、時刻t6において、2段目のグラフに示すように、蓄電池3の貯蔵量C_bat(t)が閾値L2に達するので、エンジン発電機6が停止して、発電電力P_eng(t)が0になる。
1段目のグラフに示すように、系統出力電力P_out(t)を増減できない設定03の時間帯直後の時刻t7において、風力発電装置1が急再開して系統出力電力P_out(t)が増加する。系統出力電力P_out(t)の増加の傾きは急再開の直後が最も大きい。これが図9のステップS60,S62に示した制御である。ここに、急再開直後に傾きが大きい系統出力電力P_out(t)の増加がなければ、蓄電池3の貯蔵量C_bat(t)が最大容量CMAXを超える結果となった。
これにより、蓄電池3の貯蔵量C_bat(t)を示す2段目のグラフにおいて、貯蔵量C_bat(t)が最大容量CMAXを超えることなく、かつ0になることがないと検証できた。また、水素タンク5の貯蔵量C_H2(t)を示す4段目のグラフにおいても、貯蔵量C_H2(t)が最大容量HMAXを超えることなく、かつ0になることがないと検証できた。
図10のグラフのように、風力発電装置1による発電電力P_in(t)と、系統出力電力P_out(t)と、蓄電池3の貯蔵量C_bat(t)と、水電解槽装置4の稼動電力P_ele(t)と、水素タンク5の貯蔵量C_H2(t)と、エンジン発電機6の発電電力P_eng(t)の各計測値を制御装置7のモニタ71に表記するとともに、蓄電池3の貯蔵量C_bat(t)の閾値や、水素タンク5の貯蔵量C_H2(t)の閾値を併記させることが望ましい。これにより、オペレータは、制御装置7による風力発電システムSの制御状態が把握しやすくなる。
(変形例)
本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば上記した実施形態は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることも可能である。
上記の各構成、機能、処理部、処理手段などは、それらの一部または全部を、例えば集積回路などのハードウェアで実現してもよい。上記の各構成、機能などは、プロセッサがそれぞれの機能を実現するプログラムを解釈して実行することにより、ソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイルなどの情報は、メモリ、ハードディスク、SSD(Solid State Drive)などの記録装置、または、フラッシュメモリカード、DVD(Digital Versatile Disk)などの記録媒体に置くことができる。
各実施形態に於いて、制御線や情報線は、説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には、殆ど全ての構成が相互に接続されていると考えてもよい。
本発明の変形例として、例えば、次の(a)〜(c)のようなものがある。
(a) 風力発電装置に限られず、水力発電装置、地熱発電装置、波力発電装置などの流体による発電を行う再生可能エネルギ発電装置に対して、本発明の制御方法を適用しててもよい。
(b) エンジン発電機6は、水素専焼のエンジン発電機、水素専焼のガスタービン発電機、LNGに水素を混合させる水素混焼のガスタービン発電機であってもよく、さらに水素を用いて発電する燃料電池であってもよい。
(c) 風力発電装置1の台数は3台に限られず、1台または複数台であってもよい。
S 風力発電システム
1,1a〜1c 風力発電装置 (再生可能エネルギ発電装置の一例)
11 変圧器
12,13 電力計
14 母線
3 蓄電池
31 蓄電池用PCS
32 蓄電池貯蔵量計
4 水電解槽装置
41 変圧器
42 AC/DC変換器
43 電力計
5 水素タンク (水素貯蔵体)
51 水素貯蔵量計
6 エンジン発電機 (発電機)
61 排気
62 電力計
7 制御装置
71 モニタ

Claims (8)

  1. 流速が第1所定値を超えると発電を急停止する再生可能エネルギ発電装置の一台または複数台に発電させるステップと、
    蓄電池と、水電解槽装置と、前記水電解槽装置で発生した水素を貯蔵する貯蔵体と、貯蔵した前記水素を用いて発電する発電機により、前記再生可能エネルギ発電装置による発電電力の変動を緩和するステップと、
    前記蓄電池の貯蔵量と前記水素の貯蔵量を計測するステップと、
    前記再生可能エネルギ発電装置による発電電力の変動を緩和するため、前記蓄電池の貯蔵量に応じて、前記蓄電池の充放電を制御すると共に、前記水素の貯蔵量に応じて、前記水電解槽装置の稼動電力および前記発電機の発電電力を制御するステップと、
    前記再生可能エネルギ発電装置による発電電力の経時変化、前記再生可能エネルギ発電装置に設置された流速計の計測値の経時変化、または前記再生可能エネルギ発電装置に設置された翼の角度の経時変化から当該再生可能エネルギ発電装置の急停止を予見するステップと、
    を実行することを特徴とする再生可能エネルギ発電装置の急変動の予見検知方法。
  2. 前記再生可能エネルギ発電装置の急停止を予見したならば、前記蓄電池の貯蔵量を判断する閾値を高めるステップ、
    を実行することを特徴とする請求項1に記載の再生可能エネルギ発電装置の急変動の予見検知方法。
  3. 前記再生可能エネルギ発電装置の発電電力の経時変化、前記再生可能エネルギ発電装置に設置された流速計の計測値の経時変化、または前記再生可能エネルギ発電装置に設置された翼の角度の経時変化から、前記蓄電池の貯蔵量を判断する閾値を元に戻すステップ、
    を実行することを特徴とする請求項2に記載の再生可能エネルギ発電装置の急変動の予見検知方法。
  4. 制御を監視するモニタに、前記蓄電池の貯蔵量、前記水素の貯蔵量の計測値および前記蓄電池の貯蔵量の閾値、および前記再生可能エネルギ発電装置の発電電力の経時変化、前記再生可能エネルギ発電装置に設置された流速計の計測値の経時変化、および前記再生可能エネルギ発電装置に設置された翼の角度の経時変化を表示するステップ、
    を実行することを特徴とする請求項2に記載の再生可能エネルギ発電装置の急変動の予見検知方法。
  5. 前記再生可能エネルギ発電装置の発電電力の経時変化、前記再生可能エネルギ発電装置に設置された流速計の計測値の経時変化、または前記再生可能エネルギ発電装置に設置された翼の角度の経時変化から、前記再生可能エネルギ発電装置の急停止を診断するステップ、
    を実行することを特徴とする請求項1から4のうちいずれか1項に記載の再生可能エネルギ発電装置の急変動の予見検知方法。
  6. 前記再生可能エネルギ発電装置の急停止を診断したならば、電力系統に出力する電力を規定値よりも大きく制約値よりも小さな値で減少させるステップ、
    を実行することを特徴とする請求項5に記載の再生可能エネルギ発電装置の急変動の予見検知方法。
  7. 前記再生可能エネルギ発電装置は、発電を急停止したのち、流速が第2所定値よりも弱まると発電を急再開するものであって、
    前記再生可能エネルギ発電装置の発電電力の計測値と、前記電力系統に出力する電力の計測値から前記再生可能エネルギ発電装置が急再開したことを診断するステップ、
    を実行することを特徴とする請求項6に記載の再生可能エネルギ発電装置の急変動の予見検知方法。
  8. 前記再生可能エネルギ発電装置が急再開したことを診断したならば、前記電力系統に出力する電力を規定値よりも大きく制約値よりも小さな値で増加させるステップ、
    を実行することを特徴とする請求項7に記載の再生可能エネルギ発電装置の急変動の予見検知方法。
JP2018045245A 2018-03-13 2018-03-13 再生可能エネルギ発電装置の急変動の予見検知方法、および、再生可能エネルギ発電システム Active JP7075788B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018045245A JP7075788B2 (ja) 2018-03-13 2018-03-13 再生可能エネルギ発電装置の急変動の予見検知方法、および、再生可能エネルギ発電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018045245A JP7075788B2 (ja) 2018-03-13 2018-03-13 再生可能エネルギ発電装置の急変動の予見検知方法、および、再生可能エネルギ発電システム

Publications (2)

Publication Number Publication Date
JP2019161840A true JP2019161840A (ja) 2019-09-19
JP7075788B2 JP7075788B2 (ja) 2022-05-26

Family

ID=67996497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018045245A Active JP7075788B2 (ja) 2018-03-13 2018-03-13 再生可能エネルギ発電装置の急変動の予見検知方法、および、再生可能エネルギ発電システム

Country Status (1)

Country Link
JP (1) JP7075788B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021116442A (ja) * 2020-01-23 2021-08-10 東芝エネルギーシステムズ株式会社 水素システムの制御装置、水素生成システム、及び水素システムの制御方法
JP2021181816A (ja) * 2020-05-20 2021-11-25 大陽日酸株式会社 液化ガス供給装置、及び液化ガス供給方法
JP2022543836A (ja) * 2020-08-25 2022-10-14 同▲済▼大学 Mpcに基づく風力水素結合システムの階層協調制御方法および装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170208A (ja) * 2004-12-17 2006-06-29 General Electric Co <Ge> ウィンドファームならびにその制御方法
JP2012005310A (ja) * 2010-06-21 2012-01-05 Hitachi Ltd 新エネルギー発電所群の制御システム、およびその制御方法
JP2016073152A (ja) * 2014-10-01 2016-05-09 中国電力株式会社 予測装置
WO2018037477A1 (ja) * 2016-08-23 2018-03-01 株式会社 東芝 電力調整システムおよび電力調整方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170208A (ja) * 2004-12-17 2006-06-29 General Electric Co <Ge> ウィンドファームならびにその制御方法
JP2012005310A (ja) * 2010-06-21 2012-01-05 Hitachi Ltd 新エネルギー発電所群の制御システム、およびその制御方法
JP2016073152A (ja) * 2014-10-01 2016-05-09 中国電力株式会社 予測装置
WO2018037477A1 (ja) * 2016-08-23 2018-03-01 株式会社 東芝 電力調整システムおよび電力調整方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021116442A (ja) * 2020-01-23 2021-08-10 東芝エネルギーシステムズ株式会社 水素システムの制御装置、水素生成システム、及び水素システムの制御方法
JP7336172B2 (ja) 2020-01-23 2023-08-31 東芝エネルギーシステムズ株式会社 水素システムの制御装置、水素生成システム、及び水素システムの制御方法
JP2021181816A (ja) * 2020-05-20 2021-11-25 大陽日酸株式会社 液化ガス供給装置、及び液化ガス供給方法
JP2022543836A (ja) * 2020-08-25 2022-10-14 同▲済▼大学 Mpcに基づく風力水素結合システムの階層協調制御方法および装置
JP7224608B2 (ja) 2020-08-25 2023-02-20 同▲済▼大学 Mpcに基づく風力水素結合システムの階層協調制御方法および装置

Also Published As

Publication number Publication date
JP7075788B2 (ja) 2022-05-26

Similar Documents

Publication Publication Date Title
JP5167106B2 (ja) 風力発電所とその発電制御方法
JP4155674B2 (ja) 二次電池を含む電力系統の周波数制御装置
JP7153457B2 (ja) 再生可能エネルギ発電システムの電力変動緩和方法、および、再生可能エネルギ発電システム
JP7075788B2 (ja) 再生可能エネルギ発電装置の急変動の予見検知方法、および、再生可能エネルギ発電システム
US11277052B2 (en) Energy storage management system
US9513650B2 (en) Method in an electric power system, controller, computer programs, computer program products and electric power system
Simla et al. Reducing the impact of wind farms on the electric power system by the use of energy storage
US11728646B2 (en) Control of energy storage to reduce electric power system off-nominal frequency deviations
US8242630B2 (en) Multiple power supply integration apparatus, multiple power supply integration system, and multiple power supply integration program
CN109212321A (zh) 超级电容容值检测方法和装置
KR101926800B1 (ko) 운영시간이 향상된 에너지저장시스템 및 그것의 운전 방법
Budiman et al. Stochastic optimization for the scheduling of a grid-connected microgrid with a hybrid energy storage system considering multiple uncertainties
JP2013013176A (ja) 自立電源装置
WO2014112454A1 (ja) 制御装置及び方法並びにプログラム、それを備えた自然エネルギー発電装置
US11909213B1 (en) Energy storage system and method of operation thereof
Al‐Sagheer et al. Novel control approach for integrating water electrolyzers to renewable energy sources
KR20120110478A (ko) 신재생에너지 발전용 에너지 저장 시스템 및 그 제어방법
WO2005101610A2 (en) An electrical power supply system
JP4835453B2 (ja) 単独運転検出方法、分散型電源の単独運転検出用制御装置、単独運転検出装置および分散型電源
CN113489066A (zh) 计及供需不确定性的含储能电网区间供电可靠性评估方法
WO2023123683A1 (zh) 储能装置的控制方法、装置及风力发电机组
DK181090B1 (en) Method and system for operating an electrical grid
JP7268549B2 (ja) 電力需給制御システム及び電力需給制御方法
DK180925B1 (en) Method and system for operating an electrical grid
KR101301437B1 (ko) 풍력발전 시스템의 전력보상 제어방법 및 장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220516

R150 Certificate of patent or registration of utility model

Ref document number: 7075788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150