WO2018037394A1 - 流体機械および発電装置 - Google Patents
流体機械および発電装置 Download PDFInfo
- Publication number
- WO2018037394A1 WO2018037394A1 PCT/IB2017/056494 IB2017056494W WO2018037394A1 WO 2018037394 A1 WO2018037394 A1 WO 2018037394A1 IB 2017056494 W IB2017056494 W IB 2017056494W WO 2018037394 A1 WO2018037394 A1 WO 2018037394A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power generation
- rotors
- pair
- shaft
- fluid machine
- Prior art date
Links
- 238000010248 power generation Methods 0.000 title claims abstract description 101
- 239000012530 fluid Substances 0.000 title claims abstract description 76
- 230000005540 biological transmission Effects 0.000 claims description 32
- 230000000052 comparative effect Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000012795 verification Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000009420 retrofitting Methods 0.000 description 2
- 230000004308 accommodation Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/02—Wind motors with rotation axis substantially parallel to the air flow entering the rotor having a plurality of rotors
- F03D1/025—Wind motors with rotation axis substantially parallel to the air flow entering the rotor having a plurality of rotors coaxially arranged
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B17/00—Other machines or engines
- F03B17/06—Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
- F03B17/061—Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially in flow direction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/02—Wind motors with rotation axis substantially parallel to the air flow entering the rotor having a plurality of rotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/06—Rotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/06—Rotors
- F03D1/065—Rotors characterised by their construction elements
- F03D1/0691—Rotors characterised by their construction elements of the hub
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D15/00—Transmission of mechanical power
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H48/00—Differential gearings
- F16H48/06—Differential gearings with gears having orbital motion
- F16H48/08—Differential gearings with gears having orbital motion comprising bevel gears
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2210/00—Working fluid
- F05B2210/16—Air or water being indistinctly used as working fluid, i.e. the machine can work equally with air or water without any modification
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/20—Rotors
- F05B2240/21—Rotors for wind turbines
- F05B2240/221—Rotors for wind turbines with horizontal axis
- F05B2240/2213—Rotors for wind turbines with horizontal axis and with the rotor downwind from the yaw pivot axis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/40—Transmission of power
- F05B2260/403—Transmission of power through the shape of the drive components
- F05B2260/4031—Transmission of power through the shape of the drive components as in toothed gearing
- F05B2260/40311—Transmission of power through the shape of the drive components as in toothed gearing of the epicyclic, planetary or differential type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Definitions
- the present invention relates to a fluid machine and a power generator. This application claims priority on August 22, 2016 based on Japanese Patent Application No. 16-162074 for which it applied to Japan, and uses the content here.
- the wind power generation unit includes a plurality of front wings that are positioned on the wind and rotated by wind power, a plurality of rear wings that are positioned on the lee and rotated by the remaining wind power, and rotational power and rear wings transmitted from the front wing. And a differential device that collects rotational power transmitted from the motor and rotates the generator.
- the wind power generation unit further includes a tower and a wind turbine base supported by the tower. The differential device and the generator are arranged on the wind turbine base.
- the differential device is disposed between the front wing and the rear wing and is located directly above the tower, and the generator is shifted horizontally from directly above the tower. positioned. Therefore, for example, it is difficult to apply to a so-called passive yaw type wind power generation unit that passively changes the direction of the wing according to the direction of the wind (moves the head).
- the present invention has been made in view of the above-described circumstances, and an object thereof is to provide a fluid machine that can be employed in various power generation apparatuses.
- a fluid machine includes a rotating shaft that extends along a power generation main shaft of a power generation unit, an end portion of which is connected to the power generation main shaft, the rotation shaft, and a circumferential direction of the rotation shaft.
- a plurality of rotors provided rotatably and arranged at intervals in a rotation axis direction along the axis of the rotation shaft, and a pair of rotors adjacent to each other in the rotation axis direction, each of the pair of rotors And a differential mechanism that collects and transmits the rotational force to the rotating shaft.
- the rotational force of each of the pair of rotors can be efficiently transmitted to the power generation main shaft via the differential mechanism and the rotation shaft, regardless of the rotation speed (number of rotations) of each rotor.
- the load (rotational resistance) from the power generation main shaft acting on each rotor can be suppressed to a low level.
- efficient power generation by the power generation unit can be realized.
- the differential mechanism is disposed between the pair of rotors, the rotation shaft extends along the power generation main shaft, and the end of the rotation shaft is coupled to the power generation main shaft.
- this fluid machine can be employed in a so-called passive yaw type power generation device in which a fluid machine that receives kinetic energy from a fluid passively swings according to the direction of the fluid.
- the fluid machine can be employed as a so-called attachment for retrofitting the entire fluid machine to a power generation main shaft in an existing power generation apparatus.
- this fluid machine can be employed in various power generation devices.
- the differential mechanism rotates from the rotation shaft to a transmission shaft protruding in a radial direction of the rotation shaft, and to the transmission shaft in a circumferential direction of the transmission shaft.
- a first gear that is freely provided, and the transmission shaft that is disposed in the direction of the rotation axis, is fixed to each of the pair of rotors, and meshes with the first gear so that the rotational force of each of the pair of rotors is obtained.
- the transmission shaft transmits the rotational force to the rotation shaft while the first gear rotates in the circumferential direction of the transmission shaft. . Therefore, it is possible to suppress the pair of rotors from affecting each other on the rotation speed (the number of rotations). That is, the pair of rotors can be rotated with a small energy loss at different rotational speeds (number of rotations) according to the kinetic energy received by each rotor from the fluid. Thereby, a big rotational force can be transmitted to a rotating shaft.
- the plurality of rotors may adopt a configuration that rotates in the same direction when receiving kinetic energy from the fluid.
- each of the plurality of rotors includes a blade that receives kinetic energy from the fluid, and a hub to which the blade is fixed.
- the pair of rotors may adopt a configuration in which the blades sandwich the hub in the rotation axis direction.
- each of the plurality of rotors includes a blade and a hub. Therefore, in the whole fluid machine, it is possible to reduce the number of blades in each rotor while securing the total number of blades. Accordingly, in combination with the fact that the rotational force of each of the plurality of rotors is transmitted to the power generation main shaft via the differential mechanism, this fluid machine is provided with high startability (the blade of the fluid machine as a whole). Effect by securing the total number of Furthermore, it is possible to easily increase the rotation speed during rotation of the rotor at a high speed (an effect obtained by reducing the number of blades in each rotor). In the pair of rotors, the blades sandwich each other's hub in the rotation axis direction. Therefore, the blade can be largely separated in the rotation axis direction between the pair of rotors. Thereby, for example, it is possible to easily suppress contact between the blades.
- the fluid machine according to any one of (1) to (4) further includes a cover that is fixed to one of the pair of rotors and separated from the other, and covers the differential mechanism.
- the configuration may be adopted.
- the cover is fixed to one of the pair of rotors and separated from the other. Therefore, for example, the cover can protect the differential mechanism while suppressing unexpected interference between the cover and the rotor.
- a power generation apparatus includes a fluid machine according to any one of (1) to (5), and a power generation unit including a power generation main shaft to which an end of the rotating shaft is coupled. It is equipped with.
- the power generation device includes the fluid machine, power can be generated with high efficiency.
- the power generation unit further includes a support unit that rotatably supports the yaw axis extending in a direction intersecting the axis of the power generation main shaft, and the kinetic energy from the fluid is obtained.
- the received fluid machine may adopt a configuration in which the fluid machine passively swings according to the direction of the fluid.
- the power generation device since the power generation device has a so-called passive yaw type configuration including the support portion, the fluid machine is employed, and the advantages of cost, maintenance, and durability can be ensured compared to the so-called active yaw type configuration. it can.
- the power generation device 10 converts the kinetic energy of a fluid (gas or liquid) into electric energy.
- the power generation apparatus 10 is a so-called wind power generator, and converts kinetic energy of wind (air) into electric energy.
- the wind power generator for example, any of small, medium, and large configurations can be adopted.
- the power generation device 10 includes a support unit 11, a storage unit 12, a power generation unit 13, a fluid machine 14, and an adjustment unit 15.
- the support part 11 is a tower (post) in the wind power generator, is formed in a columnar shape, and stands up from the ground surface.
- the support part 11 supports the electric power generation part 13 rotatably around the yaw axis L0.
- the yaw axis L0 extends in a direction perpendicular to (intersects) a rotation axis L1 described later.
- the yaw axis L0 is located on the axis of the support portion 11 and extends in the vertical direction.
- the accommodating part 12 is a nacelle (casing, housing) in a wind power generator.
- the accommodating portion 12 is supported by the support portion 11 so as to be rotatable around the yaw axis L0.
- the power generation unit 13 is accommodated in the accommodation unit 12 and located on the yaw axis L0.
- the support unit 11 supports the power generation unit 13 through the storage unit 12 so as to be rotatable around the yaw axis L0.
- the power generation unit 13 includes a power generation main shaft 31.
- the power generation unit 13 converts kinetic energy that rotates the power generation main shaft 31 into electrical energy.
- the power generation unit 13 includes a power generator 32, and the power generation main shaft 31 is a part of the power generator 32.
- the power generation unit 13 may further include a speed increaser. In this case, a configuration in which the power generation main shaft 31 is a part of the speed increaser can be adopted.
- the fluid machine 14 converts the kinetic energy of the wind into the rotational force of the power generation main shaft 31 and transmits it to the power generation main shaft 31.
- the fluid machine 14 includes a rotating shaft 41, a pair of rotors 42, a differential mechanism 43, a cover 44, and a nose cone 45.
- the rotating shaft 41 extends along the power generation main shaft 31.
- the rotating shaft 41 is disposed coaxially with the power generation main shaft 31.
- the common axis on which the axis of the power generation main shaft 31 and the axis of the rotation shaft 41 are located is referred to as a rotation axis L1.
- the rotation axis L1 extends in the horizontal direction.
- the end of the rotating shaft 41 is connected to the power generation main shaft 31.
- An attachment portion 46 to which the end portion of the power generation main shaft 31 is attached is provided at the end portion of the rotating shaft 41.
- the attachment portion 46 is a female screw portion (concave portion) to which the power generation main shaft 31 is screwed.
- the fluid machine 14 mainly transmits a component of the wind kinetic energy along the rotation axis L ⁇ b> 1 to the power generation spindle 31 with respect to the fluid machine 14.
- the windward side (upstream side) at this time may be referred to as a front side
- the leeward side (downstream side) may be referred to as a rear side.
- This power generation device 10 is a so-called passive yaw type in which a fluid machine 14 that receives kinetic energy from wind passively swings according to the direction of the fluid.
- the power generator 10 is an upwind type in which the fluid machine 14 (rotor 42) is located on the windward side with respect to the yaw axis L0.
- the rotating shaft 41 is located on the leeward side with respect to the power generation main shaft 31, and the mounting portion 46 is located on the leeward end of the rotating shaft 41.
- the pair of rotors 42 are arranged at an interval in the direction of the rotation axis L1.
- Each rotor 42 is provided on the rotary shaft 41 so as to be rotatable in a circumferential direction of the rotary shaft 41 (a direction around the rotary axis L1).
- a first bearing 47 is provided between the rotating shaft 41 and each rotor 42. The first bearing 47 allows the rotor 42 to rotate with respect to the rotating shaft 41.
- Each of the pair of rotors 42 includes a blade 48 that receives kinetic energy from the fluid, and a hub 49 to which the blade 48 is fixed.
- the hub 49 is formed in an annular shape arranged coaxially with the rotation axis L1.
- a rotating shaft 41 is inserted into the hub 49, and the first bearing 47 is disposed between the rotating shaft 41 and the hub 49.
- a plurality of blades 48 are arranged at intervals in the circumferential direction of the rotating shaft 41.
- Three blades 48 are provided in each rotor 42, and six blades 48 are provided as a whole in the fluid machine 14. In FIG. 1 and FIG. 3 described later, the blade 48 is shown in a simplified manner.
- the blade 48 is disposed on the windward side with respect to the hub 49 in the front rotor 42a (first rotor) located on the windward side (one side in the direction of the rotation axis L1).
- the blades 48 are arranged on the leeward side with respect to the hub 49.
- the blades 48 sandwich each other's hub 49 in the direction of the rotation axis L1.
- the pair of rotors 42 rotate in the same direction when receiving kinetic energy from the wind.
- the pair of rotors 42 may employ a configuration in which, for example, the power generation device 10 rotates clockwise, for example, when viewed from the windward side.
- the pair of rotors 42 is configured to rotate in the same direction when receiving kinetic energy from the wind based on the shape of the blade 48 of each rotor 42.
- the pair of rotors 42 have the same shape and the same size.
- the differential mechanism 43 is disposed between the pair of rotors 42, and collects and transmits the rotational force of each of the pair of rotors 42 to the rotation shaft 41.
- the differential mechanism 43 includes a transmission shaft 50, a pair of first gears 51, and a pair of second gears 52.
- the transmission shaft 50 protrudes from the rotation shaft 41 in the radial direction of the rotation shaft 41 (the radial direction of the rotation axis L1).
- the transmission shaft 50 is disposed on a portion of the rotation shaft 41 that is positioned between the pair of rotors 42 along the direction of the rotation axis L1. In the present embodiment, the transmission shaft 50 penetrates the rotation shaft 41 in the radial direction.
- the pair of first gears 51 and the pair of second gears 52 are both bevel gears in the illustrated example, but other structures capable of converting the power by 90 degrees may be employed.
- the pair of first gears 51 are provided at both end portions of the transmission shaft 50 so as to be rotatable in the circumferential direction of the transmission shaft 50 (direction of turning around the axis L2 of the transmission shaft 50).
- the pair of second gears 52 is disposed with the transmission shaft 50 sandwiched in the direction of the rotation axis L ⁇ b> 1 and is fixed to each of the pair of rotors 42.
- the pair of second gears 52 mesh with the pair of first gears 51 to transmit the rotational force of the pair of rotors 42 to the transmission shaft 50.
- the second gear 52 is formed separately from the rotor 42 and may be fixed to the rotor 42 by, for example, being fixed to the rotor 42.
- the second gear 52 is integrally formed with the rotor 42.
- the two gears 52 may be fixed to the rotor 42 by engraving or the like.
- the cover 44 is fixed to one of the pair of rotors 42 and separated from the other to cover the differential mechanism 43.
- the cover 44 is formed in a cylindrical shape extending in the direction of the rotation axis L ⁇ b> 1, and covers the differential mechanism 43 from the outside in the radial direction of the rotation shaft 41.
- the cover 44 is fixed to the front rotor 42a and separated from the rear rotor 42b.
- the windward end of the cover 44 abuts against the blade 48 of the front rotor 42a from the leeward side, and is fitted to the hub 49 of the front rotor 42a from the outside in the radial direction.
- the end of the cover 44 on the leeward side is separated from the blade 48 of the rear rotor 42b to the windward side, and is separated from the hub 49 of the rear rotor 42b in the radial direction.
- the nose cone 45 covers the rotating shaft 41.
- the nose cone 45 covers the rotation shaft 41 from the windward side in the direction of the rotation axis L1.
- the nose cone 45 is fixed to the front rotor 42a and is formed in a conical shape that protrudes forward from the front rotor 42a.
- the adjustment unit 15 rotates the power generation unit 13 around the yaw axis L0 so that the direction of the fluid machine 14 corresponds to the direction of the wind when kinetic energy is received from the wind. At this time, the adjustment unit 15 rotates the power generation unit 13 so that the rotation axis L1 is along the direction in which the wind flows and the fluid machine 14 is located on the windward side of the yaw axis L0.
- the adjustment unit 15 converts kinetic energy from the wind into rotational energy about the yaw axis L0.
- the adjusting unit 15 is a tail blade in an upwind type wind power generator.
- the fluid machine 14 includes the differential mechanism 43. Therefore, the rotational force of each of the pair of rotors 42 can be efficiently transmitted to the power generation main shaft 31 via the differential mechanism 43 and the rotation shaft 41 regardless of the rotation speed (number of rotations) of each rotor 42. At this time, by transmitting the rotational force from each rotor 42 to the power generation main shaft 31 of the common power generation unit 13, the load (rotational resistance) from the power generation main shaft 31 acting on each rotor 42 can be suppressed to a low level. it can. Thereby, efficient power generation by the power generation unit 13 can be realized.
- the rotational force of the rotor 42 is transmitted to the rotation shaft 41 via the second gear 52, the first gear 51, and the transmission shaft 50.
- the transmission shaft 50 transmits the rotational force to the rotation shaft 41 without the first gear 51 rotating. Therefore, compared to the case where there is only one rotor 42 instead of a pair, a rotational force having a magnitude nearly doubled can be transmitted to the rotating shaft 41. Thereby, even when the kinetic energy of the wind received by the rotor 42 is low, the rotor 42 can be easily started to rotate, and the fluid machine 14 can be provided with high startability.
- the first gear 51 rotates in the circumferential direction of the transmission shaft 50, while the transmission shaft 50 moves to the rotation shaft 41. Transmits rotational force. Therefore, it is possible to suppress the pair of rotors 42 from affecting each other on the rotation speed (the number of rotations). That is, the pair of rotors 42 can be rotated with a small energy loss at different rotational speeds (rotational speeds) according to the kinetic energy received by each rotor 42 from the wind. Thereby, a large rotational force can be transmitted to the rotating shaft 41.
- the differential mechanism 43 is disposed between the pair of rotors 42, the rotation shaft 41 extends along the power generation main shaft 31, and the end of the rotation shaft 41 is connected to the power generation main shaft 31. Therefore, for example, the fluid machine 14 that has received the kinetic energy from the wind can be employed in a so-called passive yaw power generation apparatus 10 that passively swings according to the direction of the wind. . Further, for example, the fluid machine 14 may be employed as a so-called attachment for retrofitting the entire fluid machine 14 to the power generation main shaft 31 in the existing power generation apparatus 10. As described above, the fluid machine 14 can be used in various power generation apparatuses 10.
- the pair of rotors 42 rotate in the same direction when receiving kinetic energy from the wind. Therefore, compared with the case where the pair of rotors 42 are rotated in reverse, for example, it is not necessary to provide a further mechanism for reverse rotation, so that the structure can be simplified or the shape equivalent to that of the pair of rotors 42 can be achieved. In addition, it is possible to adopt a configuration having the same size (for example, a general clockwise rotor 42). Thereby, cost can be reduced and maintainability can be improved.
- each of the pair of rotors 42 includes a blade 48 and a hub 49. Therefore, in the whole fluid machine 14, the number of blades 48 can be reduced in each rotor 42 while ensuring the total number of blades 48. Therefore, in combination with the rotational force of each of the pair of rotors 42 being transmitted to the power generation main shaft 31 via the differential mechanism 43, the fluid machine 14 is provided with high startability (the fluid machine 14). As a result, the effect of securing the total number of blades 48 can be achieved. Furthermore, it is possible to easily increase the rotation speed during rotation of the rotor 42 at a high speed (an effect obtained by reducing the number of blades 48 in each rotor 42).
- the blades 48 sandwich the hub 49 in the direction of the rotation axis L1. Therefore, the blade 48 can be largely separated in the direction of the rotation axis L1 between the pair of rotors 42. Thereby, for example, the contact between the blades 48 can be easily suppressed.
- the cover 44 is fixed to one of the pair of rotors 42 and separated from the other. Therefore, for example, the cover 44 can protect the differential mechanism 43 while suppressing unexpected interference between the cover 44 and the rotor 42.
- the electric power generating apparatus 10 since the said fluid machine 14 is provided, it can generate electric power with high efficiency. Furthermore, since the power generation device 10 is a so-called passive yaw type configuration including the support portion 11, the fluid machine 14 is employed, and the advantages of cost, maintainability, and durability are ensured as compared to the so-called active yaw type configuration. be able to.
- the nose cone 45 and the cover 44 may be omitted.
- the blade 48 is disposed on the leeward side with respect to the hub 49 in the front rotor 42a, and the blade 48 is disposed on the leeward side with respect to the hub 49 in the rear rotor 42b.
- the pair of rotors 42 may rotate in the opposite direction when receiving kinetic energy from the fluid.
- Three or more rotors 42 may be provided, and the differential mechanism 43 may be provided between a pair of rotors 42 adjacent in the direction of the rotation axis L1.
- the transmission shaft 50 may be formed integrally with the rotation shaft 41 or may be formed as a member separate from the rotation shaft 41.
- this invention is not limited to this.
- a plurality of transmission shafts 50 may be provided at intervals in the circumferential direction of the rotation shaft 41, and the first gear 51 may be provided on each of the plurality of transmission shafts 50.
- the attachment portion 46 is provided at the end of the rotating shaft 41.
- the present invention is not limited to this, and other forms in which the end of the rotating shaft 41 is connected to the power generation main shaft 31 are appropriately used. Can be adopted.
- the rotating shaft 41 and the power generation main shaft 31 may be integrally formed.
- the power generation apparatus 10 is not limited to the upwind type, and may be a downwind type as shown in FIG.
- the fluid machine 14 is located on the leeward side with respect to the yaw axis L0, and the fluid machine 14 also serves as the adjusting unit 15. That is, when the rotor 42 (blade 48) receives kinetic energy from the wind, the kinetic energy from the wind is converted into rotational energy about the yaw axis L0 so that the direction of the fluid machine 14 corresponds to the direction of the wind.
- the power generation unit 13 is rotated around the yaw axis L0.
- the power generation device 10 is not limited to the passive yaw type, and may be a so-called active yaw type including a control unit that controls the direction of the fluid machine 14 based on electric power.
- the power generation apparatus 10 converts wind kinetic energy into electrical energy, but the present invention is not limited to this.
- the kinetic energy of the water stream (liquid) may be converted into electric energy.
- the verification test of the said effect was implemented.
- two power generation devices of the example and the comparative example were prepared.
- the power generation apparatus 10 shown in FIGS. 1 and 2 was employed.
- the comparative example instead of the fluid machine 14 in the power generation apparatus 10 shown in FIGS. 1 and 2, a configuration including a rotor that rotates the power generation main shaft when receiving wind kinetic energy was adopted.
- the rotor diameter was 1.8 m and the rated output was 600 W.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Power Engineering (AREA)
- Wind Motors (AREA)
Abstract
Description
本願は、2016年8月22日に、日本に出願された特願2016−162074号に基づき優先権を主張し、その内容をここに援用する。
(1)本発明の一態様に係る流体機械は、発電部の発電主軸に沿って延び、端部が前記発電主軸に連結される回転軸と、前記回転軸に、前記回転軸の周方向に回転自在に設けられ、前記回転軸の軸線に沿う回転軸線方向に間隔をあけて配置された複数のローターと、前記回転軸線方向に隣り合う一対のローターの間に配置され、前記一対のローターそれぞれの回転力を集約して前記回転軸に伝達する差動機構と、を備えている。
また、差動機構が一対のローターの間に配置され、回転軸が発電主軸に沿って延び、回転軸の端部が発電主軸に連結される。したがって、例えば、流体からの運動エネルギーを受けた流体機械が、流体の向きに応じて受動的に首ふり運動するいわゆるパッシブヨー型の発電装置に、この流体機械を採用すること等ができる。さらに例えば、既存の発電装置における発電主軸に、流体機械の全体を後付けするいわゆるアタッチメントとして、この流体機械を採用すること等もできる。このように、この流体機械を多様な発電装置に採用することができる。
ここで、例えば起動時など、一対のローターの回転速度(回転数)が同等である場合、第1歯車が回転することなく、伝達軸が回転軸に回転力を伝達する。したがって、ローターが一対ではなく1つのみである場合に比べて、回転軸に倍近くの大きさの回転力を伝達させることができる。これにより、ローターが受ける流体の運動エネルギーが低いときにも、ローターを回転し始め易くし、この流体機械に高い起動性を具備させことができる。
一方、例えば、高速回転時など、一対のローターの回転速度(回転数)が異なっている場合、第1歯車が伝達軸の周方向に回転しながら、伝達軸が回転軸に回転力を伝達する。したがって、一対のローターが、互いに回転速度(回転数)に影響を及ぼし合うことを抑えることができる。つまり一対のローターを、各ローターが流体から受けた運動エネルギーに応じた異なる回転速度(回転数)で、エネルギーロス少なく回転させることができる。これにより、回転軸に大きな回転力を伝達させることができる。
また、一対のローターでは、互いのブレード同士が、互いのハブを回転軸線方向に挟んでいる。したがって、一対のローター間で、ブレードを回転軸線方向に大きく離間させることができる。これにより、例えば、ブレード同士の接触を抑制し易くすること等ができる。
図1および図2に示すように、発電装置10は、流体(気体や液体)の運動エネルギーを電気エネルギーに変換する。本実施形態では、発電装置10は、いわゆる風力発電機であり、風(空気)の運動エネルギーを電気エネルギーに変換する。前記風力発電機としては、例えば、小型、中型、大型のいずれの構成にも採用することができる。
収容部12は、風力発電機におけるナセル(ケーシング、ハウジング)である。収容部12は、支持部11に、ヨー軸L0回りに回転自在に支持されている。
回転軸41の端部は、発電主軸31に連結されている。回転軸41の端部には、発電主軸31の端部が取り付けられる取付け部46が設けられている。本実施形態では、取付け部46は、発電主軸31が螺合される雌ねじ部(凹部)である。
ハブ49は、回転軸線L1と同軸に配置された環状に形成されている。ハブ49内には回転軸41が挿通されていて、回転軸41とハブ49との間に前記第1軸受47が配置されている。ブレード48は、回転軸41の周方向に間隔をあけて複数配置されている。ブレード48は、1つのローター42に3つずつ設けられていて、流体機械14の全体では6つ設けられている。なお、図1および後述する図3では、ブレード48を簡略化して示している。
伝達軸50は、回転軸41から、回転軸41の径方向(回転軸線L1の径方向)に突出する。伝達軸50は、回転軸41において、回転軸線L1方向に沿って一対のローター42の間に位置する部分に配置されている。本実施形態では、伝達軸50が、回転軸41を前記径方向に貫通している。
ここで、例えば起動時など、一対のローター42の回転速度(回転数)が同等である場合、第1歯車51が回転することなく、伝達軸50が回転軸41に回転力を伝達する。したがって、ローター42が一対ではなく1つのみである場合に比べて、回転軸41に倍近くの大きさの回転力を伝達させることができる。これにより、ローター42が受ける風の運動エネルギーが低いときにも、ローター42を回転し始め易くし、この流体機械14に高い起動性を具備させことができる。
一方、例えば、高速回転時など、一対のローター42の回転速度(回転数)が異なっている場合、第1歯車51が伝達軸50の周方向に回転しながら、伝達軸50が回転軸41に回転力を伝達する。したがって、一対のローター42が、互いに回転速度(回転数)に影響を及ぼし合うことを抑えることができる。つまり一対のローター42を、各ローター42が風から受けた運動エネルギーに応じた異なる回転速度(回転数)で、エネルギーロス少なく回転させることができる。これにより、回転軸41に大きな回転力を伝達させることができる。
さらに、発電装置10が、前記支持部11を備えるいわゆるパッシブヨー型の構成なので、前記流体機械14を採用し、いわゆるアクティブヨー型の構成に比べて、コストやメンテナンス性、耐久性の利点を確保することができる。
前記実施形態では、前段ローター42aで、ブレード48が、ハブ49に対して風上側に配置され、後段ローター42bで、ブレード48が、ハブ49に対して風下側に配置されているが、本発明はこれに限られない。
一対のローター42が、流体から運動エネルギーを受けたときに逆方向に回転してもよい。
ローター42を、3つ以上設け、回転軸線L1方向に隣り合う一対のローター42の間に、差動機構43を設けてもよい。
前記実施形態では、伝達軸50が、回転軸41を、回転軸41の径方向に貫通しているが、本発明はこれに限られない。例えば、伝達軸50を、回転軸41の周方向に間隔をあけて複数設け、第1歯車51を、複数の伝達軸50それぞれに設けてもよい。
前記実施形態では、回転軸41の端部に取付け部46が設けられているが、本発明はこれに限られず、回転軸41の端部が、発電主軸31に連結された他の形態を適宜採用することができる。例えば、回転軸41と発電主軸31とが一体に形成されていてもよい。
発電装置10はパッシブヨー型に限られず、電力に基づいて流体機械14の向きを制御する制御部を備えるいわゆるアクティブヨー型であってもよい。
検証試験では、実施例および比較例の2つの発電装置を準備した。実施例には、図1および図2に示す発電装置10を採用した。比較例には、図1および図2に示す発電装置10における流体機械14に代えて、風の運動エネルギーを受けたときに発電主軸を回転させるローターを備える構成を採用した。実施例および比較例のいずれにおいても、ローターの直径は1.8m、定格出力は600Wとした。
結果を表1および図5から図7に示す。表1および図5から図7それぞれにおいて、「Double−rotor system」が実施例を示し、「Original」が比較例を示す。
11 支持部
13 発電部
14 流体機械
31 発電主軸
32 発電機
41 回転軸
42 ローター
43 差動機構
44 カバー
48 ブレード
49 ハブ
50 伝達軸
51 第1歯車
52 第2歯車
L0 ヨー軸
L1 回転軸線
Claims (7)
- 発電部の発電主軸に沿って延び、端部が前記発電主軸に連結される回転軸と、
前記回転軸に、前記回転軸の周方向に回転自在に設けられ、前記回転軸の軸線に沿う回転軸線方向に間隔をあけて配置された複数のローターと、
前記回転軸線方向に隣り合う一対のローターの間に配置され、前記一対のローターそれぞれの回転力を集約して前記回転軸に伝達する差動機構と、を備えている流体機械。 - 前記差動機構は、
前記回転軸から、前記回転軸の径方向に突出する伝達軸と、
前記伝達軸に、前記伝達軸の周方向に回転自在に設けられた第1歯車と、
前記伝達軸を前記回転軸線方向に挟んで配置されて前記一対のローターそれぞれに固定され、前記第1歯車に噛み合うことで前記一対のローターそれぞれの回転力を前記伝達軸に伝達する一対の第2歯車と、を備えている請求項1に記載の流体機械。 - 前記複数のローターは、流体から運動エネルギーを受けたときに同一方向に回転する請求項1または2に記載の流体機械。
- 前記複数のローターはそれぞれ、流体からの運動エネルギーを受けるブレードと、前記ブレードが固定されたハブと、を備え、
前記一対のローターでは、互いの前記ブレード同士が、互いの前記ハブを前記回転軸線方向に挟んでいる請求項1から3のいずれか1項に記載の流体機械。 - 前記一対のローターのうちの一方に固定されて他方からは分離され、前記差動機構を覆うカバーを更に備えている請求項1から4のいずれか1項に記載の流体機械。
- 請求項1から5のいずれか1項に記載の流体機械と、
前記回転軸の端部が連結された発電主軸を備える発電部と、を備えている発電装置。 - 前記発電部を、前記発電主軸の軸線に交差する方向に延びるヨー軸回りに回転自在に支持する支持部を更に備え、
流体からの運動エネルギーを受けた前記流体機械が、流体の向きに応じて受動的に首ふり運動する請求項6に記載の発電装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1820335.6A GB2567969B (en) | 2016-08-22 | 2017-10-19 | Fluid machine and power generation device |
CA3028133A CA3028133A1 (en) | 2016-08-22 | 2017-10-19 | Fluid machine and power generation device |
US16/307,229 US10876516B2 (en) | 2016-08-22 | 2017-10-19 | Fluid machine and power generation device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016162074A JP6836769B2 (ja) | 2016-08-22 | 2016-08-22 | 流体機械および発電装置 |
JP2016-162074 | 2016-08-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018037394A1 true WO2018037394A1 (ja) | 2018-03-01 |
Family
ID=61245639
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2017/056494 WO2018037394A1 (ja) | 2016-08-22 | 2017-10-19 | 流体機械および発電装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10876516B2 (ja) |
JP (1) | JP6836769B2 (ja) |
CA (1) | CA3028133A1 (ja) |
GB (1) | GB2567969B (ja) |
WO (1) | WO2018037394A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO345863B1 (no) * | 2020-02-19 | 2021-09-13 | Wind Spider As | Anordning ved gir til bruk i vindturbiner |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05231297A (ja) * | 1992-02-19 | 1993-09-07 | Mitsubishi Heavy Ind Ltd | 風力発電装置 |
JP2007321659A (ja) * | 2006-06-01 | 2007-12-13 | Kubota Denki:Kk | 風力発電装置 |
US20120074712A1 (en) * | 2009-06-01 | 2012-03-29 | Synkinetics,Inc. | Multi-rotor fluid turbine drive with speed converter |
JP2013002354A (ja) * | 2011-06-16 | 2013-01-07 | Univance Corp | 流体力発電装置 |
CN103216387A (zh) * | 2012-01-18 | 2013-07-24 | 苏卫星 | 两向旋转发电设备 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060153672A1 (en) * | 2003-04-24 | 2006-07-13 | Davis Dean A | Furling wind turbine |
US20080056897A1 (en) * | 2006-09-06 | 2008-03-06 | Thomas Anderson | Counter rotating rotor head |
US8742608B2 (en) | 2009-03-05 | 2014-06-03 | Tarfin Micu | Drive system for use with flowing fluids |
KR101205329B1 (ko) | 2010-06-11 | 2012-11-28 | 신익 | 삼중 로터 통합 구동 풍력 발전기 장치 |
-
2016
- 2016-08-22 JP JP2016162074A patent/JP6836769B2/ja active Active
-
2017
- 2017-10-19 WO PCT/IB2017/056494 patent/WO2018037394A1/ja active Application Filing
- 2017-10-19 US US16/307,229 patent/US10876516B2/en active Active
- 2017-10-19 CA CA3028133A patent/CA3028133A1/en not_active Abandoned
- 2017-10-19 GB GB1820335.6A patent/GB2567969B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05231297A (ja) * | 1992-02-19 | 1993-09-07 | Mitsubishi Heavy Ind Ltd | 風力発電装置 |
JP2007321659A (ja) * | 2006-06-01 | 2007-12-13 | Kubota Denki:Kk | 風力発電装置 |
US20120074712A1 (en) * | 2009-06-01 | 2012-03-29 | Synkinetics,Inc. | Multi-rotor fluid turbine drive with speed converter |
JP2013002354A (ja) * | 2011-06-16 | 2013-01-07 | Univance Corp | 流体力発電装置 |
CN103216387A (zh) * | 2012-01-18 | 2013-07-24 | 苏卫星 | 两向旋转发电设备 |
Also Published As
Publication number | Publication date |
---|---|
CA3028133A1 (en) | 2018-03-01 |
US10876516B2 (en) | 2020-12-29 |
GB201820335D0 (en) | 2019-01-30 |
JP2018031266A (ja) | 2018-03-01 |
GB2567969B (en) | 2021-12-15 |
GB2567969A (en) | 2019-05-01 |
JP6836769B2 (ja) | 2021-03-03 |
US20190293047A1 (en) | 2019-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2740120C (en) | Wind powered apparatus having counter rotating blades | |
WO2010053961A2 (en) | Wind energy generation device | |
US9243614B2 (en) | Wind powered apparatus having counter rotating blades | |
JP2005517123A (ja) | 風力発電装置 | |
CN106894951A (zh) | 具有模块化传动系的风力涡轮机 | |
JP2003129935A (ja) | 風力発電装置 | |
JPH0579450A (ja) | 風 車 | |
WO2018037394A1 (ja) | 流体機械および発電装置 | |
CN103470450B (zh) | 风力发电的风能复用装置 | |
JP2002339852A (ja) | 風力発電装置 | |
CN110345000B (zh) | 双叶轮对转水平轴风力机 | |
JP4461078B2 (ja) | 風力発電装置 | |
JP2010223207A (ja) | 垂直型反動風車発電機 | |
JP2007321659A (ja) | 風力発電装置 | |
JP6138633B2 (ja) | 風力発電システム | |
JP2008150963A (ja) | 垂直軸揚力活用型二重反転風車発電装置 | |
JP4546097B2 (ja) | 風力発電装置 | |
JP2014218975A (ja) | 風力発電装置 | |
KR20090036789A (ko) | 풍력발전기용 블레이드 각도조절장치 | |
JPH05231297A (ja) | 風力発電装置 | |
JP2006144598A (ja) | ウインドタービン装置増速装置 | |
KR101505435B1 (ko) | 풍력발전기 | |
TW201544686A (zh) | 風力發電裝置 | |
WO2013111852A1 (ja) | 垂直軸型風力発電装置 | |
KR101059635B1 (ko) | 공중부양체를 이용한 풍력 발전 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17843049 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 201820335 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20171019 |
|
ENP | Entry into the national phase |
Ref document number: 3028133 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17843049 Country of ref document: EP Kind code of ref document: A1 |