WO2018036382A1 - 一种tmcp型桥梁用不锈钢复合板的制备方法 - Google Patents

一种tmcp型桥梁用不锈钢复合板的制备方法 Download PDF

Info

Publication number
WO2018036382A1
WO2018036382A1 PCT/CN2017/096606 CN2017096606W WO2018036382A1 WO 2018036382 A1 WO2018036382 A1 WO 2018036382A1 CN 2017096606 W CN2017096606 W CN 2017096606W WO 2018036382 A1 WO2018036382 A1 WO 2018036382A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite
rolling
stainless steel
blank
bridge
Prior art date
Application number
PCT/CN2017/096606
Other languages
English (en)
French (fr)
Inventor
曾周燏
党军
江姗
李东晖
Original Assignee
南京钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京钢铁股份有限公司 filed Critical 南京钢铁股份有限公司
Publication of WO2018036382A1 publication Critical patent/WO2018036382A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass

Definitions

  • the invention belongs to the technical field of bimetal composite manufacturing, and in particular relates to a method for preparing a stainless steel composite plate for a TMCP type bridge.
  • the design of the bridge deck of the high-speed railway and passenger dedicated railway steel bridges in China adopts the steel bridge deck of the orthotropic plate structure. Water is easily generated at the joint between the ballast and the bridge deck, which causes corrosion of the bridge deck. Ultimately affect the service life of railway steel bridges.
  • the stainless steel composite plate for bridges has the corrosion resistance of coated stainless steel and the toughness of the bridge steel.
  • the use of stainless steel composite plates on the railway bridge surface can solve the corrosion problem of the bridge deck. Therefore, stainless steel composite panels for bridges will gradually be applied to railway steel bridges.
  • stainless steel clad plates are produced by explosion and rolling methods.
  • the explosion method is not a sustainable composite board preparation technology because of its high noise, pollution to the environment, and greater weather impact.
  • the rolling method adopts the method of high-temperature rolling, and utilizes the diffusion between atoms to achieve good metallurgical bonding between the cladding material and the substrate.
  • the composite board produced by the board can be flexibly adjusted, and is a green and environmentally sustainable production process. . Therefore, the production of composite panels by rolling will be a trend in the future.
  • the composite board for the bridge industry generally adopts the stainless steel composite board which is prepared by the explosion method.
  • the base material of the composite board is mainly normalized steel plate, the carbon equivalent is high, and the welding is difficult, which is not conducive to on-site construction.
  • the vacuum rolling method is used to produce the composite board, and the conventional conventional process mainly performs the assembly by means of sealing and welding, and then drilling and vacuuming, such as the patent publication No. CN103639203A, the vacuum packaging method for manufacturing the stainless steel composite board by symmetric hot rolling.
  • the technical problem to be solved by the present invention is to overcome the shortcomings of the prior art and provide a method for preparing a TMCP type stainless steel composite plate for a bridge.
  • the substrate used is a low carbon design bridge steel, which is used in a vacuum environment by adding a seal.
  • the electron beam combines the seal with the substrate to form a blank, and then is rolled by TMCP process to prepare a stainless steel composite plate for bridges with good metallurgical combination, which effectively solves the problem that the composite plate substrate has high carbon equivalent and is not easy to be welded.
  • the blank process reduces the vacuum of the hole The process is simple, and the rolling success rate is high.
  • a method for preparing a TMCP type stainless steel composite board for a bridge comprises the following steps:
  • the release agent is applied to the non-composite surface of the cladding material to ensure that the release agent is uniformly applied on the surface of the cladding material, and then the release agent is dried;
  • Electron beam sealing welding the assembled composite blank is sent to the vacuum chamber, and then the vacuum chamber is evacuated. When the vacuum degree of the vacuum chamber reaches 10 ⁇ 10 -2 Pa or less, the composite blank is sealed with the vacuum electron beam. Welding between the gaps;
  • the composite blank is sent to a heating furnace for heating at a temperature of 1100-1250 ° C, and the total heating time is controlled according to the thickness of the blank at a time of 9-16 min/cm;
  • Rolling and cooling rolling is carried out by TMCP process, the thickness of the intermediate blank is 1.8-3.0 times of the total thickness of the rolling, the finishing rolling temperature is 900-970 °C, and the finishing rolling temperature is controlled by 800-900 °C; Rolling to ensure the last reduction of the rough rolling stage is more than 20%; after rolling, high-speed steel throwing, the composite board directly enters the ultra-quick cooling device for rapid cooling at 2-20 ° C / s, red temperature control At 550-700 ° C;
  • Cutting the board cutting the composite board by plasma or flame cutting. After cutting the head, tail and cutting, the upper and lower two single-sided composite boards are separated, and then the single-sided composite board is straightened and polished by the surface. After the performance test and packaging process, the stainless steel composite board product of the required specifications is finally obtained.
  • the carbon steel bridge steel has a chemical composition of C: 0.05% - 0.14%, Si: 0.1% - 0.5%, Mn: 1.0% - 1.6%, P ⁇ 0.02%, S ⁇ 0.01%, Nb: 0.010%-0.090%, V ⁇ 0.080%, Ti: 0.006%-0.030%, Alt: 0.015%-0.050%, Cr ⁇ 0.30%, Ni ⁇ 0.30%, Cu ⁇ 0.30%, the balance is Fe and a small amount is unavoidable Impurities.
  • the steel material of the cladding material is stainless steel, such as S30408, S31603 or 321 stainless steel, and the composition and performance thereof meet the requirements of the corresponding standard.
  • the foregoing method for preparing a stainless steel composite plate for a TMCP type bridge wherein the stainless steel composite plate product in the step (9) has a total thickness of 5 to 60 mm and a thickness of the cladding material of 0.5 to 10 mm.
  • the substrate of the invention adopts bridge steel with low carbon design, and the prepared stainless steel composite plate for bridge has low carbon equivalent of the substrate, and can be directly welded without preheating, which is convenient for on-site construction.
  • the invention directly seals the welding in the vacuum chamber environment, reduces the drilling and vacuuming processes of the conventional process, and the vacuum degree is more guaranteed.
  • the composite blank set by the welding of the seal and the substrate avoids the problem of cracking due to the inconsistent expansion amount of the stainless steel and the carbon steel during the heating process.
  • the present invention ensures good performance of the substrate bridge steel through the TMCP process, and at the same time, rapid cooling after rolling, controlling the intergranular precipitates of the coated stainless steel, ensuring good corrosion resistance of the cladding material, and the composite plate does not require heat treatment. You can get good overall performance.
  • FIG. 1 is a view showing the interface microstructure of a composite panel according to a second embodiment of the present invention.
  • the Q345qD steel grade with a substrate thickness of 96 mm is selected, the chemical composition is shown in Table 1, the 321 stainless steel having a thickness of the cladding material of 18 mm, and the 321+Q345qD composite plate having a thickness of 3+16 mm.
  • One of the two Q345qD substrate blanks and two 321 clad blanks are ground to remove the rust and oxide layers on the surface of the blank to completely expose the surface to fresh metal. Apply a release agent to the unpolished surface of the cladding and then dry the release agent.
  • a four-part peripheral spot welding fixed seal on a polished surface of one of the substrates the seal height is 36 mm, and the width is 45 mm; the non-composite surfaces of the two clad materials are superposed, placed in a groove surrounded by the seal, and then another A composite surface of the substrate faces downward, and is covered on the two cladding materials, and at the same time, the four sides of the upper and lower substrates are flush with the outer edges of the seals, so that a composite blank to be sealed is formed.
  • the assembled composite blank is sent to the vacuum chamber, and then the vacuum chamber is evacuated. When the vacuum chamber vacuum reaches 4 ⁇ 10 -2 Pa, the gap between the seal and the substrate is welded by an electron beam, that is, the total is obtained.
  • the composite body has a thickness of 228 mm.
  • the composite blank was sent to a step furnace for heating, the heating temperature was 1200 ° C, and the total heating time was 230 min.
  • the rolling is carried out by TMCP process, the thickness of the intermediate blank is 90mm, the finishing rolling temperature is ⁇ 930°C, and the finishing rolling temperature is controlled at 830°C.
  • the final reduction rate is about 27%, and the final rolling thickness is 38mm.
  • the red return temperature is about 650 °C.
  • the composite sheet is straightened and then cooled in an upper cooling bed until the surface temperature drops to 300 ° C.
  • the upper and lower single-layer composite panels are separated, and then the single-layer composite panel is straightened, and then the surface of the cladding is polished to obtain a 321+Q370qD composite panel with a finished thickness of 3+16 mm. product.
  • the Q370qD steel grade with a substrate thickness of 192 mm is selected, the chemical composition is shown in Table 1, the S31603 stainless steel having a thickness of the cladding material is 16 mm, and the S31603+Q370qD composite plate having a thickness of 3+36 mm is rolled.
  • One of the two Q370qD substrate blanks and two S31603 cladding blanks are ground to remove the rust and oxide layers on the surface of the blank to completely expose the surface to fresh metal. Apply a release agent to the unpolished surface of the cladding and then dry the release agent.
  • a four-peripheral spot welding seal on a polished surface of one of the substrates the height of the seal is 32 mm, and the width is 50 mm; the non-composite surfaces of the two cladding materials are superposed, placed in a groove surrounded by the seal, and another piece is placed
  • the composite surface of the substrate faces downward, and is covered on the two cladding materials and the groove to ensure that the four sides of the upper and lower substrates are flush with the outer edge of the seal, so that a composite blank to be sealed is formed.
  • the assembled composite blank is sent to a vacuum chamber, and then the vacuum chamber is evacuated. When the vacuum degree of the vacuum chamber reaches 5 ⁇ 10-2 Pa, the gap between the seal and the substrate is welded by an electron beam to obtain a total thickness. It is a 416mm composite billet.
  • the composite blank is sent to a trolley heating furnace for heating at a temperature of 1200 ° C and a total heating time of 500 min.
  • the rolling is carried out by TMCP process, the thickness of the intermediate blank is 160mm, the finishing rolling temperature is ⁇ 900°C, and the finishing rolling temperature is controlled at 830°C.
  • the final reduction rate is about 25%, and the final rolling thickness is 78mm.
  • the composite sheet is straightened and then cooled in an upper cooling bed until the surface temperature drops to 300 ° C.
  • the upper and lower single-layer composite panels are separated, and then the single-layer composite panel is straightened, and then the surface of the cladding is polished to obtain a S31603+Q370qD composite panel with a thickness of 3+36mm. .
  • the interface microstructure of the composite plate is shown in Figure 1. As can be seen, no unbonded areas are found between the stainless steel and the bridge steel, and the composite plate achieves a good metallurgical bond.
  • the Q370qE steel grade with a substrate thickness of 107 mm is selected, the chemical composition is shown in Table 1, the S31603 stainless steel having a thickness of the cladding material is 16 mm, and the S31603+Q370qE composite plate having a thickness of 3+20 mm is rolled.
  • One of the two Q370qE substrate blanks and two S31603 cladding blanks are ground to remove the rust and oxide layers on the surface of the blank to completely expose the surface to fresh metal. Apply a release agent to the unpolished surface of the cladding and then dry the release agent.
  • a four-peripheral spot welding seal on a polished surface of one of the substrates the height of the seal is 32 mm, and the width is 40 mm; the non-composite surfaces of the two cladding materials are superposed, placed in a groove surrounded by the seal, and another piece is placed
  • the composite surface of the substrate faces downward, and is covered on the two cladding materials and the groove to ensure that the four sides of the upper and lower substrates are flush with the outer edge of the seal, so that a composite blank to be sealed is formed.
  • the assembled composite blank is sent to a vacuum chamber, and then the vacuum chamber is evacuated. When the vacuum degree of the vacuum chamber reaches 5 ⁇ 10-2 Pa, the gap between the seal and the substrate is welded by an electron beam to obtain a total thickness. It is a 246mm composite billet.
  • the composite blank was sent to a step-type heating furnace for heating at a temperature of 1200 ° C and a total heating time of 250 min.
  • the rolling is carried out by TMCP process, the thickness of the intermediate blank is 96mm, the finishing rolling temperature is ⁇ 910°C, and the finishing rolling temperature is controlled at 820°C.
  • the final reduction rate is about 27%, and the final rolling thickness is 46mm.
  • the composite board is straightened and then cooled in an upper cooling bed until the surface temperature drops to 250 ° C.
  • the upper and lower single-layer composite panels are separated, and then the single-layer composite panel is straightened, and then the surface of the cladding is polished to obtain a S31603+Q370qE composite panel with a finished thickness of 3+20 mm. product.
  • the Q420qE steel grade with a substrate thickness of 60 mm is selected, the chemical composition is shown in Table 1, the S30403 stainless steel having a thickness of the cladding material of 12 mm, and the S30403+Q370qE composite plate having a thickness of 2+10 mm.
  • One of the two Q420qE substrate blanks and two S31603 cladding blanks are ground to remove the rust and oxide layers on the surface of the blank to completely expose the surface to fresh metal. Apply a release agent to the unpolished surface of the cladding and then dry the release agent.
  • a four-partial spot welding seal on a polished surface of one of the substrates the height of the seal is 24 mm, and the width is 35 mm; the non-composite surfaces of the two cladding materials are superposed, placed in a groove surrounded by the seal, and another piece is placed
  • the composite surface of the substrate faces downward, and is covered on the two cladding materials and the groove to ensure that the four sides of the upper and lower substrates are flush with the outer edge of the seal, so that a composite blank to be sealed is formed.
  • the assembled composite blank is sent to the vacuum chamber, and then the vacuum chamber is evacuated. When the vacuum degree of the vacuum chamber reaches 5 ⁇ 10 -2 Pa, the gap between the seal and the substrate is welded by an electron beam, that is, the total is obtained.
  • the composite body has a thickness of 144 mm.
  • the composite blank was sent to a step furnace for heating, the heating temperature was 1200 ° C, and the total heating time was 170 min.
  • the rolling is carried out by TMCP process, the thickness of the intermediate blank is 60mm, the finishing rolling temperature is ⁇ 900°C, and the finishing rolling temperature is controlled at 820°C.
  • the final reduction rate is about 28%, and the final rolling thickness is 24mm.
  • the composite board is straightened and then cooled in an upper cooling bed until the surface temperature drops to 250 ° C.
  • the upper and lower single-layer composite panels are separated, and then the single-layer composite panel is straightened, and then the surface of the cladding is polished to obtain a S30403+Q420qE composite panel with a finished thickness of 2+10 mm. product.
  • Example C Si Mn P S Nb V Ti Alt Cr Ni Cu
  • Example 1 0.13 0.20 1.45 0.014 0.0050 0.015 0.001 0.015 0.035 / / /
  • Example 2 0.10 0.24 1.46 0.012 0.0035 0.035 0.001 0.017 0.036 0.13 / 0.013
  • Example 3 0.095 0.25 1.48 0.012 0.0025 0.027 0.001 0.018 0.034 0.13 0.25 0.012
  • Example 4 0.075 0.28 1.52 0.012 0.0023 0.045 0.003 0.015 0.035 0.16 / 0.015

Abstract

提供了一种TMCP型桥梁用不锈钢复合板的制备方法,通过坯料选取、表面处理、隔离剂涂刷、组坯、电子束封焊、加热、轧制、矫直及切割分板等步骤制备出良好冶金结合的桥梁用不锈钢复合板。所述方法在真空室环境下采用电子束直接封焊,减少了传统工艺的钻孔、抽真空等工序,真空度更有保障。通过TMCP工艺,保证基材桥梁钢良好的力学性能,轧后的快速冷却,控制覆材的晶间析出,保证了覆材良好耐蚀性;基材采用低碳设计坯料,所制备的复合板,基材碳当量低,焊接性能良好,便于现场施工;另外,复合板不需要热处理,即可获得良好的综合性能。

Description

一种TMCP型桥梁用不锈钢复合板的制备方法 技术领域
本发明属于双金属复合制造技术领域,具体地说涉及一种TMCP型桥梁用不锈钢复合板的制备方法。
背景技术
目前,我国的高速铁路及客运专线铁路钢桥的桥面系设计均采用正交异性板结构的钢桥面,在道碴槽与桥面连接处容易产生积水,进而引起桥面的腐蚀,最终影响铁路钢桥的使用寿命。桥梁用不锈钢复合板,兼具覆层不锈钢的耐腐蚀性和基材桥梁钢的强韧性,在铁路桥面上使用不锈钢复合板正好可以解决桥面的腐蚀问题。因此,桥梁用不锈钢复合板在铁路钢桥上将逐渐得到应用。
一般情况下,不锈钢复合板有爆炸法和轧制法生产。爆炸法由于噪音大,对环境存有污染,且受天气的影响较大,不是一种可持续的复合板制备技术。轧制法是采用高温轧制的方式,利用原子间的扩散使覆材和基材实现良好的冶金结合,其生产的复合板,板幅可灵活调整,是一种绿色环保可持续的生产工艺。因此,采用轧制法生产复合板将是未来发展的趋势。
目前,桥梁行业用复合板,一般采用爆炸法制备的正火态交货的不锈钢复合板,该复合板的基材主要正火钢板为主,碳当量较高,焊接难度大,不利于现场施工;而采用真空轧制法生产复合板,现有传统工艺主要通过封焊四周,然后钻孔再抽真空的方法进行组坯,如专利公开号CN103639203A《对称热轧制造不锈钢复合板的真空封装方法》及专利公开号CN104708276A《一种不锈钢复合板的制备方法》公开的正是利用该法进行组坯,因该法需要封焊后再钻孔抽真空,工艺较为繁琐,且主要靠人工操作完成。另外一种新颖的组坯方式是在真空环境下电子束直接焊接组坯,省去了封焊后钻孔抽真空过程,如专利公开号CN102069289A《一种不锈钢-碳钢复合板的制备方法》公开的正是采用电子束将不锈钢与碳钢直接在真空环境下进行焊接组坯,然后再加热轧制的方法制备复合板,然而该法由于不锈钢与碳钢的热膨胀系数存在很大差异,加热过程因膨胀量不一样很容易使不锈钢与碳钢的焊缝裂开,轧制成功率不太高。
发明内容
本发明所要解决的技术问题是,克服现有技术的缺点,提供一种TMCP型桥梁用不锈钢复合板的制备方法,所用基材为低碳设计的桥梁钢,通过添加封条,在真空环境下利用电子束将封条与基材焊接的方式组坯,再经TMCP工艺轧制,制备出良好冶金结合的桥梁用不锈钢复合板,有效地解决了复合板基材碳当量高不易焊接的问题,同时制坯过程减少了钻孔抽真空 等工序,工艺简单,且轧制成功率高。
本发明解决以上技术问题的技术方案是:
一种TMCP型桥梁用不锈钢复合板的制备方法,包括以下步骤:
㈠坯料准备:根据成品复合板的钢种及规格,确定基材和覆材坯料钢种及规格;
㈡表面处理:对基材和覆材坯料的待复合面进行打磨处理,清除坯料表面的锈层及氧化层,使表面完全露出新鲜金属;
㈢隔离剂涂刷:对覆材非复合面进行隔离剂涂刷,保证隔离剂均匀涂刷在覆材表面上,然后再将隔离剂烘干;
㈣组合坯料:在其中一块基材待复合面的四周边部将封条点焊固定,封条高度为两块覆材的厚度之和,宽度为30-60mm;然后将两块覆材非复合面叠合,并放置在封条围成的槽内,再将另一块基材复合面朝下,盖在两块覆材的上面,确保上下基材四侧边与封条外边平齐,组成一个待封焊的复合坯;
㈤电子束封焊:将组好的复合坯送至真空室,然后对真空室抽真空,待真空室真空度达到10×10-2Pa以下时,采用真空电子束将复合坯封条与基材之间的缝隙进行焊接;
㈥加热:将复合坯送至加热炉加热,加热温度在1100-1250℃,加热总时间按坯料厚度以9-16min/cm的时间控制;
㈦轧制与冷却:采用TMCP工艺进行轧制,中间坯厚度是轧制总厚度的1.8-3.0倍,精轧开轧温度900-970℃,终轧温度控制800-900℃;采用大压下方式轧制,保证粗轧阶段最后一道次压下率在20%以上;轧制后高速抛钢,复合板直接进入超快冷装置进行以2-20℃/s速度快速冷却,返红温度控制在550-700℃;
㈧矫直:对轧制后的钢板进行矫直处理,矫直后上冷床冷却,待表面温度降至300℃以下时即可下线;
㈨切割分板:采用等离子或火焰切割方式对复合板进行切割,经切头、尾及切两边后,上下两张单面复合板分离,再对单面复合板进行矫直处理,经表面打磨、性能检测、打包处理后,最终获得所需规格的不锈钢复合板产品。
本发明进一步限定的技术方案是:
前述的TMCP型桥梁用不锈钢复合板的制备方法,其中步骤㈠中的基材坯料钢种为采用低 碳设计的桥梁钢,其化学成分按重量百分比为:C:0.05%-0.14%,Si:0.1%-0.5%,Mn:1.0%-1.6%,P≤0.02%,S≤0.01%,Nb:0.010%-0.090%,V≤0.080%,Ti:0.006%-0.030%,Alt:0.015%-0.050%,Cr≤0.30%,Ni≤0.30%,Cu≤0.30%,余量为Fe及少量不可避免的杂质。
前述的TMCP型桥梁用不锈钢复合板的制备方法,其中步骤㈠中,覆材坯料钢种为不锈钢,如S30408、S31603或321等不锈钢,其成分及性能满足对应标准要求。
前述的TMCP型桥梁用不锈钢复合板的制备方法,其中步骤㈤中的电子束封焊,封条与基材之间的焊缝深度为30-60mm,以提供足够的焊缝强度确保复合坯轧制过程不开裂。
前述的TMCP型桥梁用不锈钢复合板的制备方法,其中步骤㈦中轧制过程粗轧阶段的压缩比≥2.0,粗轧过程较大的压缩比,保证基材与覆材之间原子的充分扩散,最终实现复合板的良好冶金结合;
前述的TMCP型桥梁用不锈钢复合板的制备方法,其中步骤㈨中的不锈钢复合板产品,其总厚度为5-60mm,覆材厚度为0.5-10mm。
前述的TMCP型桥梁用不锈钢复合板的制备方法,其中步骤㈣中的封条是低合金钢材料,材质同基材的成分及强度相当即可。本发明与现有技术相比,具有以下优点:
⑴本发明基材采用低碳设计的桥梁钢,所制备的桥梁用不锈钢复合板,其基材碳当量低,不预热可直接焊接,便于现场施工。
⑵本发明在真空室环境下直接封焊,减少了传统工艺的钻孔、抽真空等工序,真空度更有保障。
⑶本发明通过封条与基材的焊接所组的复合坯,避免了因加热过程不锈钢与碳钢膨胀量不一致而开裂的问题。
⑷本发明通过TMCP工艺,保证基材桥梁钢良好的性能,同时轧后的快速冷却,控制覆材不锈钢的晶间析出物,保证了覆材的良好耐蚀性,另外复合板不需要热处理,即可获得良好的综合性能。
附图说明
图1为本发明实施例2的复合板界面显微组织图。
具体实施方式
实施例1
本实施例选择基材坯料厚度96mm的Q345qD钢种,化学成分见表1,覆材坯料厚度为18mm的321不锈钢,轧制成品厚度为3+16mm的321+Q345qD复合板。
对两块Q345qD基材坯料和两块321覆材坯料的其中一个表面进行打磨,清除坯料表面的锈层及氧化层,使表面完全露出新鲜金属。对覆材未打磨表面涂刷隔离剂,然后将隔离剂烘干。对其中一块基材已打磨表面的四周边部点焊固定封条,封条高度为36mm,宽度为45mm;将两块覆材的非复合面叠合,放置在封条围成的槽内,再将另一块基材复合面朝下,盖在两块覆材的上面,同时保证上下基材四侧边与封条外边平齐,这样即组成一个待封焊的复合坯。将组好的复合坯送至真空室,然后对真空室抽真空,待真空室真空度达到4×10-2Pa时,采用电子束将封条与基材之间的缝隙进行焊接,即得到总厚度为228mm复合坯。
将复合坯送至步进式加热炉加热,加热温度1200℃,加热总时间230min。采用TMCP工艺进行轧制,中间坯厚度为90mm,精轧开轧温度≤930℃,终轧温度控制830℃左右。粗轧阶段最后一道次压下率在27%左右,最终轧制厚度为38mm,轧后直接进入超快冷快速冷却,返红温度在650℃左右。轧后复合板经矫直后上冷床冷却,待表面温度降至300℃下线。经切头、尾及切两边后,上下两张单层复合板分离,再对单层复合板进行矫直处理,然后对覆材表面打磨,最终获得成品厚度3+16mm的321+Q370qD复合板产品。
实施例2
本实施例选择基材坯料厚度192mm的Q370qD钢种,化学成分见表1,覆材坯料厚度为16mm的S31603不锈钢,轧制成品厚度为3+36mm的S31603+Q370qD复合板。
对两块Q370qD基材坯料和两块S31603覆材坯料其中一个表面进行打磨,清除坯料表面的锈层及氧化层,使表面完全露出新鲜金属。对覆材未打磨表面涂刷隔离剂,然后将隔离剂烘干。对其中一块基材已打磨表面的四周边部点焊封条,封条高度为32mm,宽度为50mm;将两块覆材的非复合面叠合,放置在封条围成的槽内,再将另一块基材复合面朝下,盖在两块覆材及槽的上面,确保上下基材四侧边与封条外边平齐,这样即组成一个待封焊的复合坯。将组好的复合坯送至真空室,然后对真空室抽真空,待真空室真空度达到5×10-2Pa时,采用电子束将封条与基材之间的缝隙进行焊接,即得到总厚度为416mm复合坯。
将复合坯送至台车加热炉加热,加热温度1200℃,加热总时间500min。采用TMCP工艺进行轧制,中间坯厚度为160mm,精轧开轧温度≤900℃,终轧温度控制830℃左右。粗轧阶段最后一道次压下率在25%左右,最终轧制厚度为78mm,轧后直接进入超快冷ACC模式冷却,返红温度在620℃左右。轧后复合板经矫直后上冷床冷却,待表面温度降至300℃下线。再经 切头、尾及切两边后,上下两张单层复合板分离,再对单层复合板进行矫直处理,然后对覆材表面打磨,最终获得成品厚度3+36mm的S31603+Q370qD复合板产品。
复合板的界面显微组织图如图1所示,如图可知,不锈钢与桥梁钢之间未发现未结合区域,复合板实现良好的冶金结合。
实施例3
本实施例选择基材坯料厚度107mm的Q370qE钢种,化学成分见表1,覆材坯料厚度为16mm的S31603不锈钢,轧制成品厚度为3+20mm的S31603+Q370qE复合板。
对两块Q370qE基材坯料和两块S31603覆材坯料其中一个表面进行打磨,清除坯料表面的锈层及氧化层,使表面完全露出新鲜金属。对覆材未打磨表面涂刷隔离剂,然后将隔离剂烘干。对其中一块基材已打磨表面的四周边部点焊封条,封条高度为32mm,宽度为40mm;将两块覆材的非复合面叠合,放置在封条围成的槽内,再将另一块基材复合面朝下,盖在两块覆材及槽的上面,确保上下基材四侧边与封条外边平齐,这样即组成一个待封焊的复合坯。将组好的复合坯送至真空室,然后对真空室抽真空,待真空室真空度达到5×10-2Pa时,采用电子束将封条与基材之间的缝隙进行焊接,即得到总厚度为246mm复合坯。
将复合坯送至步进式加热炉加热,加热温度1200℃,加热总时间250min。采用TMCP工艺进行轧制,中间坯厚度为96mm,精轧开轧温度≤910℃,终轧温度控制820℃左右。粗轧阶段最后一道次压下率在27%左右,最终轧制厚度为46mm,轧后直接进入超快冷快速冷却,返红温度在650℃左右。轧后复合板经矫直后上冷床冷却,待表面温度降至250℃下线。经切头、尾及切两边后,上下两张单层复合板分离,再对单层复合板进行矫直处理,然后对覆材表面打磨,最终获得成品厚度3+20mm的S31603+Q370qE复合板产品。
实施例4
本实施例选择基材坯料厚度60mm的Q420qE钢种,化学成分见表1,覆材坯料厚度为12mm的S30403不锈钢,轧制成品厚度为2+10mm的S30403+Q370qE复合板。
对两块Q420qE基材坯料和两块S31603覆材坯料其中一个表面进行打磨,清除坯料表面的锈层及氧化层,使表面完全露出新鲜金属。对覆材未打磨表面涂刷隔离剂,然后将隔离剂烘干。对其中一块基材已打磨表面的四周边部点焊封条,封条高度为24mm,宽度为35mm;将两块覆材的非复合面叠合,放置在封条围成的槽内,再将另一块基材复合面朝下,盖在两块覆材及槽的上面,确保上下基材四侧边与封条外边平齐,这样即组成一个待封焊的复合坯。将组好的复合坯送至真空室,然后对真空室抽真空,待真空室真空度达到5×10-2Pa时,采用 电子束将封条与基材之间的缝隙进行焊接,即得到总厚度为144mm复合坯。
将复合坯送至步进式加热炉加热,加热温度1200℃,加热总时间170min。采用TMCP工艺进行轧制,中间坯厚度为60mm,精轧开轧温度≤900℃,终轧温度控制820℃左右。粗轧阶段最后一道次压下率在28%左右,最终轧制厚度为24mm,轧后直接进入超快冷ACC模式冷却,返红温度在550℃左右。轧后复合板经矫直后上冷床冷却,待表面温度降至250℃下线。经切头、尾及切两边后,上下两张单层复合板分离,再对单层复合板进行矫直处理,然后对覆材表面打磨,最终获得成品厚度2+10mm的S30403+Q420qE复合板产品。
表1本发明实施例钢种的冶炼成分:
实施例 C Si Mn P S Nb V Ti Alt Cr Ni Cu
实施例1 0.13 0.20 1.45 0.014 0.0050 0.015 0.001 0.015 0.035 / / /
实施例2 0.10 0.24 1.46 0.012 0.0035 0.035 0.001 0.017 0.036 0.13 / 0.013
实施例3 0.095 0.25 1.48 0.012 0.0025 0.027 0.001 0.018 0.034 0.13 0.25 0.012
实施例4 0.075 0.28 1.52 0.012 0.0023 0.045 0.003 0.015 0.035 0.16 / 0.015
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

Claims (6)

  1. 一种TMCP型桥梁用不锈钢复合板的制备方法,其特征在于:包括以下步骤:
    ㈠坯料准备:根据成品复合板的钢种及规格,确定基材和覆材坯料钢种及规格;
    ㈡表面处理:对基材和覆材坯料的待复合面进行打磨处理,清除坯料表面的锈层及氧化层,使表面完全露出新鲜金属;
    ㈢隔离剂涂刷:对覆材非复合面进行隔离剂涂刷,保证隔离剂均匀涂刷在覆材表面上,然后再将隔离剂烘干;
    ㈣组合坯料:在其中一块基材待复合面的四周边部将封条点焊固定,封条高度为两块覆材的厚度之和,宽度为30-60mm;然后将两块覆材非复合面叠合,并放置在封条围成的槽内,再将另一块基材复合面朝下,盖在两块覆材的上面,确保上下基材四侧边与封条外边平齐,组成一个待封焊的复合坯;
    ㈤电子束封焊:将组好的复合坯送至真空室,然后对真空室抽真空,待真空室真空度达到10×10-2Pa以下时,采用真空电子束将复合坯封条与基材之间的缝隙进行焊接;
    ㈥加热:将复合坯送至加热炉加热,加热温度在1100-1250℃,加热总时间按坯料厚度以9-16min/cm的时间控制;
    ㈦轧制与冷却:采用TMCP工艺进行轧制,中间坯厚度是轧制总厚度的1.8-3.0倍,精轧开轧温度900-970℃,终轧温度控制800-900℃;采用大压下方式轧制,保证粗轧阶段最后一道次压下率在20%以上;轧制后高速抛钢,复合板直接进入超快冷装置进行以2-20℃/s速度快速冷却,返红温度控制在550-700℃;
    ㈧矫直:对轧制后的钢板进行矫直处理,矫直后上冷床冷却,待表面温度降至300℃以下时即可下线;
    ㈨切割分板:采用等离子或火焰切割方式对复合板进行切割,经切头、尾及切两边后,上下两张单面复合板分离,再对单面复合板进行矫直处理,经表面打磨、性能检测、打包处理后,最终获得所需规格的不锈钢复合板产品。
  2. 如权利要求1所述的TMCP型桥梁用不锈钢复合板的制备方法,其特征在于:所述步骤㈠中的基材坯料钢种为采用低碳设计的桥梁钢,其化学成分按重量百分比为:C:0.05%-0.14%,Si:0.1%-0.5%,Mn:1.0%-1.6%,P≤0.02%,S≤0.01%,Nb:0.010%-0.090%,V≤0.080%,Ti:0.006%-0.030%,Alt:0.015%-0.050%,Cr≤0.30%,Ni≤0.30%,Cu≤0.30%,余量为Fe及少量不可避免的杂质。
  3. 如权利要求1所述的TMCP型桥梁用不锈钢复合板的制备方法,其特征在于:所述步骤㈠中,覆材坯料钢种为不锈钢。
  4. 如权利要求1所述的TMCP型桥梁用不锈钢复合板的制备方法,其特征在于:所述步骤㈤中的电子束封焊,封条与基材之间的焊缝深度为30-60mm,以提供足够的焊缝强度确保复合坯轧制过程不开裂。
  5. 如权利要求1所述的TMCP型桥梁用不锈钢复合板的制备方法,其特征在于:所述步骤㈦中轧制过程粗轧阶段的压缩比≥2.0。
  6. 如权利要求1所述的TMCP型桥梁用不锈钢复合板的制备方法,其特征在于:所述步骤㈨中的不锈钢复合板产品,其总厚度为5-60mm,覆材厚度为0.5-10mm。
PCT/CN2017/096606 2016-08-23 2017-08-09 一种tmcp型桥梁用不锈钢复合板的制备方法 WO2018036382A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610706997.1A CN106271414B (zh) 2016-08-23 2016-08-23 一种tmcp型桥梁用不锈钢复合板的制备方法
CN201610706997.1 2016-08-23

Publications (1)

Publication Number Publication Date
WO2018036382A1 true WO2018036382A1 (zh) 2018-03-01

Family

ID=57614740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/096606 WO2018036382A1 (zh) 2016-08-23 2017-08-09 一种tmcp型桥梁用不锈钢复合板的制备方法

Country Status (2)

Country Link
CN (1) CN106271414B (zh)
WO (1) WO2018036382A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113059317A (zh) * 2021-03-18 2021-07-02 安徽省公路桥梁工程有限公司 钢桁拱桥整体节点式箱型杆件的制作方法
CN113843284A (zh) * 2021-08-30 2021-12-28 湖南华菱湘潭钢铁有限公司 一种低屈强比型316L+Q500qE不锈钢复合板的生产方法
CN114393194A (zh) * 2021-12-31 2022-04-26 舞阳钢铁有限责任公司 一种不锈钢复合板钢板的生产方法
CN114561529A (zh) * 2022-03-09 2022-05-31 西部金属材料股份有限公司 一种Ti-Ni-Cr高硬度钛合金板材的制备方法
WO2022199075A1 (zh) * 2021-03-24 2022-09-29 江阴兴澄特种钢铁有限公司 一种薄规格nm450钢板及其制造方法
CN115323266A (zh) * 2022-07-14 2022-11-11 江苏沙钢集团有限公司 一种经济型屈强比≦0.85的Q370qE钢板及其制造方法与应用

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106271414B (zh) * 2016-08-23 2018-06-19 南京钢铁股份有限公司 一种tmcp型桥梁用不锈钢复合板的制备方法
CN107933013A (zh) * 2017-11-10 2018-04-20 东北大学 一种不锈钢/碳钢真空复合钢筋及其制造工艺
CN108246825A (zh) * 2017-12-25 2018-07-06 南京钢铁股份有限公司 一种tmcp型船用双相不锈钢复合板的制备方法
CN108034893A (zh) * 2017-12-26 2018-05-15 苏州贝尔纳德铁路设备有限公司 一种铁路设备用不锈钢复合板的制备方法
CN108165132A (zh) * 2017-12-26 2018-06-15 苏州贝尔纳德铁路设备有限公司 一种铁路设备用不锈钢复合板
CN108213873B (zh) * 2018-01-05 2020-02-18 鞍钢股份有限公司 一种桥梁用不锈钢复合钢板生产方法
CN108326516B (zh) * 2018-02-02 2020-08-18 南京钢铁股份有限公司 一种钛钢复合板的制备方法
CN108723712A (zh) * 2018-05-29 2018-11-02 南京钢铁股份有限公司 一种高耐蚀容器用超级奥氏体不锈钢复合板及制备方法
CN108943911A (zh) * 2018-05-29 2018-12-07 南京钢铁股份有限公司 一种tmcp型船用奥氏体不锈钢复合板及制备方法
CN109226293B (zh) * 2018-08-31 2020-06-19 南京钢铁股份有限公司 一种石油天然气管用镍基合金复合板及其制备方法
CN109624435A (zh) * 2018-12-13 2019-04-16 南京钢铁股份有限公司 一种石油天然气输送管线用不锈钢复合板及其制备方法
CN110539064A (zh) * 2019-09-06 2019-12-06 鞍钢股份有限公司 一种钛钢复合坯采用边条组坯的真空电子束焊接方法
CN110834202A (zh) * 2019-11-20 2020-02-25 南京钢铁股份有限公司 一种大型vlgc船用碳锰低温钢板的生产方法
CN111331965A (zh) * 2020-04-13 2020-06-26 绿华投资有限公司 一种三层金属复合钢板的制造方法
CN112721349A (zh) * 2020-11-27 2021-04-30 南京钢铁股份有限公司 一种高耐蚀容器用n08825复合钢板及其制备方法
CN112880738B (zh) * 2021-01-15 2022-11-18 南京钢铁股份有限公司 一种复合钢板中试试验方法
CN113770480B (zh) * 2021-09-28 2023-05-30 苏州热工研究院有限公司 碳钢和不锈钢复合材料的切割方法
CN113957342B (zh) * 2021-10-18 2022-07-08 南京钢铁股份有限公司 一种低屈强比耐候钢桥用不锈钢复合板
CN114618884A (zh) * 2022-03-30 2022-06-14 鞍钢股份有限公司 一种碳钢、不锈钢热轧复合卷板的生产方法
CN115287537A (zh) * 2022-07-29 2022-11-04 南京钢铁股份有限公司 一种500MPa级低屈强比的不锈钢复合板以及其制备方法
CN115958387B (zh) * 2022-11-28 2023-11-07 南京首勤特种材料有限公司 一种不锈钢复合板的制备方法及其产品和应用
CN116099875B (zh) * 2023-04-12 2023-07-04 江苏省沙钢钢铁研究院有限公司 板形优异的不锈钢复合板及其制备方法
CN116159861B (zh) * 2023-04-25 2023-07-04 江苏省沙钢钢铁研究院有限公司 界面结合优异的不锈钢复合板及其制备方法
CN116160752B (zh) * 2023-04-25 2023-07-04 江苏省沙钢钢铁研究院有限公司 桥梁结构用不锈钢复合板及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0577069A1 (en) * 1992-06-29 1994-01-05 Sumitomo Electric Industries, Ltd. Composite material, process for producing composite material, and for producing composite material molding
CN102873091A (zh) * 2012-10-23 2013-01-16 武汉钢铁(集团)公司 耐磨钢与碳素结构钢复合板的制备方法
CN104492810A (zh) * 2014-10-27 2015-04-08 南京钢铁股份有限公司 一种宽厚比≥500的宽薄规格热轧钢板的制备方法
CN104550234A (zh) * 2014-12-26 2015-04-29 南阳汉冶特钢有限公司 一种管线钢和不锈钢复合板材的轧制方法
CN104988414A (zh) * 2015-06-20 2015-10-21 秦皇岛首秦金属材料有限公司 一种强韧性能的碳钢与不锈钢复合钢板及生产方法
CN105458005A (zh) * 2015-12-28 2016-04-06 中国第一重型机械股份公司 一种非对称式宽幅热轧金属复合板的制备方法
CN106271414A (zh) * 2016-08-23 2017-01-04 南京钢铁股份有限公司 一种tmcp型桥梁用不锈钢复合板的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5413645A (en) * 1986-04-25 1995-05-09 Weirton Steel Corporation Light-cage composite-coated flat-rolled steel manufacture and product
CN101362148B (zh) * 2008-09-16 2011-04-20 哈尔滨工业大学 一种用于异质难熔金属钼与不锈钢复合板的轧制连接方法
CN102069289B (zh) * 2011-01-27 2012-11-14 东北大学 一种不锈钢-碳钢复合板的制备方法
CN102179405B (zh) * 2011-01-27 2013-01-02 东北大学 防止真空复合轧制不锈钢复合板的界面氧化的方法
CN102319732A (zh) * 2011-09-07 2012-01-18 三明天尊不锈钢复合科技有限公司 金属复合板的真空轧制方法
CN103212596B (zh) * 2013-05-10 2015-03-18 山东亚盛重工股份有限公司 复合板轧制前处理工艺
CN104624702B (zh) * 2015-01-07 2016-08-17 李向民 一种不锈钢双面复合板的制作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0577069A1 (en) * 1992-06-29 1994-01-05 Sumitomo Electric Industries, Ltd. Composite material, process for producing composite material, and for producing composite material molding
CN102873091A (zh) * 2012-10-23 2013-01-16 武汉钢铁(集团)公司 耐磨钢与碳素结构钢复合板的制备方法
CN104492810A (zh) * 2014-10-27 2015-04-08 南京钢铁股份有限公司 一种宽厚比≥500的宽薄规格热轧钢板的制备方法
CN104550234A (zh) * 2014-12-26 2015-04-29 南阳汉冶特钢有限公司 一种管线钢和不锈钢复合板材的轧制方法
CN104988414A (zh) * 2015-06-20 2015-10-21 秦皇岛首秦金属材料有限公司 一种强韧性能的碳钢与不锈钢复合钢板及生产方法
CN105458005A (zh) * 2015-12-28 2016-04-06 中国第一重型机械股份公司 一种非对称式宽幅热轧金属复合板的制备方法
CN106271414A (zh) * 2016-08-23 2017-01-04 南京钢铁股份有限公司 一种tmcp型桥梁用不锈钢复合板的制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113059317A (zh) * 2021-03-18 2021-07-02 安徽省公路桥梁工程有限公司 钢桁拱桥整体节点式箱型杆件的制作方法
WO2022199075A1 (zh) * 2021-03-24 2022-09-29 江阴兴澄特种钢铁有限公司 一种薄规格nm450钢板及其制造方法
CN113843284A (zh) * 2021-08-30 2021-12-28 湖南华菱湘潭钢铁有限公司 一种低屈强比型316L+Q500qE不锈钢复合板的生产方法
CN113843284B (zh) * 2021-08-30 2024-04-05 湖南华菱湘潭钢铁有限公司 一种低屈强比型316L+Q500qE不锈钢复合板的生产方法
CN114393194A (zh) * 2021-12-31 2022-04-26 舞阳钢铁有限责任公司 一种不锈钢复合板钢板的生产方法
CN114393194B (zh) * 2021-12-31 2023-08-22 舞阳钢铁有限责任公司 一种不锈钢复合板钢板的生产方法
CN114561529A (zh) * 2022-03-09 2022-05-31 西部金属材料股份有限公司 一种Ti-Ni-Cr高硬度钛合金板材的制备方法
CN115323266A (zh) * 2022-07-14 2022-11-11 江苏沙钢集团有限公司 一种经济型屈强比≦0.85的Q370qE钢板及其制造方法与应用

Also Published As

Publication number Publication date
CN106271414B (zh) 2018-06-19
CN106271414A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
WO2018036382A1 (zh) 一种tmcp型桥梁用不锈钢复合板的制备方法
WO2019128363A1 (zh) 一种tmcp型船用双相不锈钢复合板的制备方法
KR102225672B1 (ko) 티타늄-스틸 복합판의 제조방법
JP5086806B2 (ja) クラッド合金基板及びその製造方法
CN105127199B (zh) 一种对称式外包覆控轧控冷热轧复合钢板的工艺技术方法
CN105107841B (zh) 钛钢复合板的制备方法
CN111941003B (zh) 一种温轧不锈钢/碳钢复合板的制备方法
CN101992344A (zh) 一种钛-钢复合板的制备方法
WO2022110708A1 (zh) 一种高耐蚀容器用n08825复合钢板及其制备方法
CN108995323B (zh) 一种三代核电站高剪切强度特厚复合钢板及其制造方法
WO2023065805A1 (zh) 一种低屈强比耐候钢桥用不锈钢复合板
CN105880946A (zh) 两复两轧复合板工艺
CN107185961A (zh) 一种大规格、薄复层镍基合金/管线钢复合板的制备方法
WO2020143310A1 (zh) 一种石油天然气输送管线用不锈钢复合板及其制备方法
RU178157U1 (ru) Многослойная заготовка для горячей прокатки
CN113733687A (zh) 一种高强度蜂窝复合板的制作方法
CN107790865B (zh) 一种不锈钢复合板的组坯焊接方法
CN110835715B (zh) 一种大厚度加氢反应器壳体用复合钢板及其制造方法
KR102164307B1 (ko) 클래드강의 제조방법
CN109692884A (zh) 一种以if钢为过渡层的钛钢复合板及其高温制备方法
CN105080998A (zh) 制备无中间层钛钢复合板的方法
CN108453510A (zh) 一种复合板的低成本高效组坯生产方法
CN102000960A (zh) 基于冷变形再结晶过程生产金属复合材料的工艺方法
CN105080997A (zh) 一种无中间层钛钢复合板的制备方法
CN109693075A (zh) 以if钢为过渡层高性能双面钛钢复合板及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17842805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17842805

Country of ref document: EP

Kind code of ref document: A1