WO2018035586A1 - Thermal engine with differentiated cycle composed of four isobaric processes and four isochoric processes, with regenerator and process for controlling the thermodynamic cycle of the thermal engine - Google Patents

Thermal engine with differentiated cycle composed of four isobaric processes and four isochoric processes, with regenerator and process for controlling the thermodynamic cycle of the thermal engine Download PDF

Info

Publication number
WO2018035586A1
WO2018035586A1 PCT/BR2017/000095 BR2017000095W WO2018035586A1 WO 2018035586 A1 WO2018035586 A1 WO 2018035586A1 BR 2017000095 W BR2017000095 W BR 2017000095W WO 2018035586 A1 WO2018035586 A1 WO 2018035586A1
Authority
WO
WIPO (PCT)
Prior art keywords
cycle
processes
thermodynamic
temperature
engine
Prior art date
Application number
PCT/BR2017/000095
Other languages
French (fr)
Portuguese (pt)
Inventor
Marno Iockheck
LUIS Mauro MOURA
Saulo Finco
Original Assignee
Associação Paranaense De Cultura - Apc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Associação Paranaense De Cultura - Apc filed Critical Associação Paranaense De Cultura - Apc
Publication of WO2018035586A1 publication Critical patent/WO2018035586A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/045Controlling
    • F02G1/047Controlling by varying the heating or cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/053Component parts or details
    • F02G1/055Heaters or coolers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a thermal motor and its eight-process thermodynamic cycle, more specifically a thermal machine characterized by two interconnected thermodynamic subsystems, each operating a four-process but interdependent thermodynamic cycle. If, forming a complex cycle of eight processes, operates with gas, the circuit of the binary system is closed in differential configuration, based on the concept of hybrid thermodynamic system or can also be called binary thermodynamic system, this system performs a thermodynamic cycle composed of eight processes so that it performs at any given moment of the cycle, two simultaneous and interdependent complementary processes, four of which are isobaric and four isochoric processes with variable mass transfer, which may be null or partial.
  • thermodynamics defines three concepts of thermodynamic systems, the open thermodynamic system, the closed thermodynamic system and the isolated thermodynamic system. These three concepts of thermodynamic systems were conceptualized in the nineteenth century in the early days of the creation of the laws of thermodynamics and underlie all motor cycles known to date.
  • thermodynamic system is defined as a system in which neither matter nor energy passes through it. Therefore, this concept of thermodynamic system does not offer properties that allow the development of motors.
  • the open thermodynamic system is defined as a system where energy and matter can enter and leave this system.
  • Examples of an open thermodynamic system are the Cycle Otto, Cycle Atk ⁇ nson, Otto-cycle, Diesel-cycle, Sabathe-cycle, Otto-cycle, Brayton-internal-combustion, Rankine-exhaust, exhaust-cycle, internal-combustion engines from steam to the environment.
  • the matter that enters these systems are fuels and working oxygen or working fluid or working gas.
  • the energy that enters these systems is heat.
  • the matter that comes out of these systems is the exhaust from combustion or working fluid, gases, waste, the energy that comes out of these systems is the mechanical working energy and part of the heat dissipated.
  • the closed thermodynamic system is defined as a thermodynamic system in which only energy can enter and leave this system.
  • Examples of a closed thermodynamic system are external combustion engines such as Stirltng cycle, Ericsson cycle, Rankine cycle with closed circuit working fluid, Giclo Brayton heat or external combustion, Carnot cycle.
  • the energy that enters this system is heat.
  • the energy that comes out of this system is the mechanical working energy and part of the heat dissipated, but no matter comes out of these systems, as they occur in the open system.
  • thermodynamic cycles composed of a series of sequential and independent processes, and a single process occurs at a time until the cycle completes, as can be seen from the pressure / volume graph in figure 2. So are the Otto, Atkinson T Diesel, Sabathe, Brayton, Rankine, Stirling, Ericsson cycle engines, and Carnot's ideal theoretical cycle.
  • Equation (a) (U) represents the internal energy in "Joule”, (n) represents the number of moi, (R) represents the universal constant of perfect gases, (7) represents the gas temperature in "Kelvin” and (y) represents the adiabatic coefficient of expansion,
  • the current state of the art comprises a series of motors of Internal combustion and external combustion, most of these engines require a second auxiliary engine to get them started, in operation.
  • Internal combustion engines require compression, mixing fuel with oxygen, and a spark or pressure combustion, so a normally electric auxiliary starter motor is used.
  • External combustion engines such as the Stirling or Ericsson cycle in turn also require high power auxiliary engines, as they must overcome the resting state under pressure to start operating.
  • One exception is the Rankine cycle engine, which can start via the camshaft to provide the steam pressure to the motive power elements.
  • the state of the art comprises a series of engines, most of them dependent on very specific and special conditions to operate, for example, internal combustion engines, each requiring its own specific fuel, fine control of fuel, oxygen and time of operation. combustion and in some cases require specific conditions including pressure, fuel flexibility is quite limited.
  • the most flexible engine is the Rankine cycle, external combustion or Stirling, also external combustion, these are more flexible in their source.
  • the current state of the art comprises a series of engine cycles, most of which require combustion, that is, the burning of some type of fuel, and therefore the need for oxygen.
  • the current state of the art comprises a series of cycle engines, most of which require high operating temperatures, especially internal combustion engines, usually operating with working gas at temperatures above 1500 ° C.
  • External combustion engines or engines operating from external heat sources such as Rankine and Stirling cycle engines, are typically designed to operate at working gas temperatures between 400 ° C and 800 ° C.
  • Rankine and Stirling cycle engines are typically designed to operate at working gas temperatures between 400 ° C and 800 ° C.
  • motors based on open and closed systems they often require high temperatures to operate, all of them have their efficiencies limited to Carnot's theorem, that is, their maximum efficiencies depend on temperatures as defined by equation (b).
  • the current state of the art based on open and closed systems, comprises basically six motor cycles and some versions thereof: the Atkinson cycle Otto cycle, similar to the Sabathe cycle Diesel cycle Otto cycle, similar to the cycle.
  • Brayton, Rankine, Stirling cycle, Ericsson cycle and Carnot cycle diesel ideal theoretical reference for open and closed engine based engines.
  • the latest innovations in the current state of the art are being presented through innovations by joining more than one old cycle forming combined cycles, ie: new engine systems composed of a Brayton cycle machine operating on fossil fuels, gas or ether. is a heat dependent Rankine cycling machine rejected by the Brayton cycling machine.
  • combining a diesel engine with a Rankine cycle engine or an Otto cycle engine also joining it with a Rankine cycle engine.
  • the Carnot Engine is not found in practical use because the actual materials do not possess the properties required to make the Carnot Engine a reality, the physical dimensions for the Carnot Cycle. If it were to be performed as in theory, it would be unfeasible in a practical case, so it is an ideal Engine in open system and closed system concepts, but in the theoretical concept.
  • thermodynamic formed by two isothermal processes of two adiabatic processes United States Patent "PCT / BR2014 / 000381" defined as "Differential Thermal Machine with Eight Thermodynamic Transformation Cycle and Control Process” which consists of two subsystems and operates a thermodynamic cycle formed by four isothermal processes. four adiabatic processes. These references differ from the present invention as to the thermodynamic processes that form their cycles, each cycle gives the engine its own characteristics.
  • the concept of hybrid or binary thermodynamic system provides the basis for the development of a new family of thermal motors. Each motor will have its own characteristics according to the processes and phases that constitute its respective thermodynamic cycles, such as the Otto motor and the motor.
  • Diesel engines are engines based on the open thermodynamic internal combustion system, but they constitute distinct engines and what distinguishes them are details of their thermodynamic cycles
  • the Otto engine cycle is basically constituted by an adiabatic compression process, an isocoric combustion process, a adiabatic expansion process and an isocoric exhaust process
  • the diesel engine cycle consists of an adiabatic compression process, an isobaric combustion process, an adiabatic expansion process and an isocoric exhaust process, so they differ in only one process that make up your loops, enough to check laugh at each, specific and different properties and uses.
  • the hybrid or binary system concept provides the basis for a new family of thermal motors consisting of two subsystems and these will operate with so-called differential cycles consisting of processes where two simultaneous processes will always occur, each having its own particularities which will characterize each of the cycles. -motors.
  • the aim of the invention is to eliminate some of the existing problems and minimize other problems, but the major objective was to develop new motor cycles based on a new thermodynamic system concept so that the efficiency of the motors would not be more dependent. temperatures only and whose energy sources could be diversified and which would allow the design of engines for environments even without air (oxygen).
  • the characteristic hybrid or binary system concept that underlies this invention eliminates the dependence of efficiency exclusively on temperature, the efficiency of any thermal machine depends on its potentials and their potential differentials, while open and closed systems generate potentials where the mass of the gas is constant and for this reason they cancel out in the equations, hybrid or binary systems the mass is not necessarily constant, so no they get tired and their efficiencies depend on the potentials from which the driving force originates, that is, the pressures.
  • the hybrid system concept provides dependent potentials, proportional to the product of the working gas mass at temperature, as in the hybrid system, unlike the open and closed systems, the mass is variable, its efficiency becomes a non-exclusive function of temperature. but dependent on mass and for a differential cycle motor composed of four isobaric processes, four regenerative isocoric processes, the efficiency is demonstrated as presented in equation (c) and figure 4.
  • thermodynamic cycles Otto, Atkinson, Diesel, Sabathe, Brayton, Stirling, Ericsson, Rankine and the Carnot cycle perform a single process at a time sequentially, as shown in Figure 2, referenced to the mechanical cycle of the force elements. driving, its control is a direct function of the power supply, in turn, the differential cycles of the hybrid or binary system, perform two processes at a time, figure 5, enabling the control of the thermodynamic cycle separated from the mechanical cycle, the cycle. can be modulated and thus the mechanical cycle becomes a consequence of the thermodynamic cycle and not the other way around.
  • Differential cycle motors are characterized by having two subsystems forming a hybrid or binary system, represented by (21 and 23) of Figure 4, each subsystem executes a cycle referenced to the other subsystem in order to always perform two simultaneous processes. and interdependent. Otherwise, considering a hybrid or binary system with properties of both open and closed systems simultaneously, it is said that the system performs a composite thermodynamic cycle, Figure 5, that is, it always performs two simultaneous processes (26 and 27). Figure 5, interdependent, including mass transfer. Therefore they are completely different motors and cycles from motors and cycles based on open or closed systems. Figure 6 shows the relationship between the hybrid or binary system and the differential thermodynamic cycle.
  • thermodynamic system The concept of hybrid thermodynamic system is new, characterized by a binary system, formed by two interdependent subsystems and between them there is exchange of matter and energy and both supply out of their limits, energy in the form of work and part of heat-dissipated energy.
  • This thermodynamic system was created in the 21st century and offers new possibilities for the development of thermal motors.
  • the present invention brings important developments for the conversion of thermal energy to mechanical either for use in power generation or other use as mechanical force for movement and traction.
  • the differential cycle engine based on the hybrid or binary system concept may be constructed from materials and techniques similar to conventional and Stirling cycle engines, as it is a closed-loop gas engine considering the system.
  • the complete system is formed by two thermodynamic subsystems 31 and 37, forming a binary or hybrid thermodynamic system, each subsystem is formed by a chamber 33 and 35 containing working gas and each of these are formed by three sub-chambers, one heated, 33 with 317 and 35 with 42, one cold, 33 with 41 and 35 with 318, and one isolated, 33 with 32 and 35 with 36, or in some cases, nonexistent, connected to these two chambers is a driving force element, 312, each subsystem having a regenerator, 310 and 314, can be either active or passive, between the subsystems there is a mass transfer element, 34 so the subsystems are open to each other, between the complete system and the external environment, these two subsystems are considered closed.
  • Conversion chambers items that characterize the hybrid or binary system, may be constructed of various materials, depending on design temperatures, working gas used, pressures involved, environment and operating conditions. These chambers each have three sub-chambers and these must be designed keeping in mind the requirement of thermal insulation with each other to minimize the flow of energy from hot to cold areas, this condition is important for the overall efficiency! of system. These chambers have internal elements that move the working gas between the hot, cold, and insulated sub chambers where they exist, these elements can be of various geometric shapes, depending on the requirement and design parameters, could for example be in shape. discs in cylindrical or other form allowing the working gas to be controlled in a controlled manner between the sub chambers.
  • the mass transfer element 34 interconnects the two chambers 33 and 35, this element is responsible for the transfer of part of the working gas mass between the chambers that occurs at a specific time during isochoric processes.
  • This element may be designed in various ways depending on the requirements of the project, may operate by simple pressure difference, this is valve shaped, or may operate in a forced manner, for example turbine, piston shaped or in another geometric shape allowing it to perform the mass transfer of part of the working gas.
  • active regenerators 310 and 314 operate with a specific working gas and this gas stores the energy of the engine gas during isocoric temperature lowering processes through internal expansion and regenerates, ie returns this energy to engine gas during isocoric processes of temperature rise through compression.
  • This regenerator is called an active regenerator because it performs its regeneration process dynamically through moving mechanical elements and its own working gas, unlike known passive regenerators, which operate by thermal exchange between the gas and a static element, operant by conduction of heat enters the gas your body. Where the use of a passive regenerator is considered in the project, it usually operates with conduction heat exchange between the working gas and the elements that form the regenerator. Passive regenerators do not use gas and moving elements.
  • the driving force element, 312 is responsible for performing the work. mechanical and make it available for use.
  • This driving force element operates by the working gas forces of the engine, this element may be designed in various ways, depending on the design requirements, may for example be turbine shaped, cylinder piston shaped, connecting rods, crankshafts, in the form of a diaphragm or otherwise permitting work to be performed from gas forces during thermodynamic conversions.
  • Figure 1 represents the concept of open thermodynamic system and the concept of closed thermodynamic system
  • Figure 2 represents the characteristic of all thermodynamic cycles based on open and closed systems
  • FIG 3 shows the original idea of the Camot thermal machine, conceptualized in 1824 by Nicolas Sadi Camot;
  • Figure 4 represents the concept of hybrid or binary thermodynamic system
  • Figure 5 represents the characteristic of differential thermodynamic cycles based on hybrid or binary system
  • Figure 6 shows the hybrid or binary thermodynamic system and a differential thermodynamic cycle and the detail of the two simultaneously occurring thermodynamic processes
  • Figure 7 shows the mechanical model consisting of the two thermodynamic subsystems that form a thermal motor under the concept of hybrid or binary system and its active regenerator;
  • Figure 8 shows the motor indicating the phase at which one of the regenerators, element 310, equalizes its temperature to the hot source temperature
  • Figure 9 shows the motor indicating the phase at which the second regenerator, element 314, equalizes its temperature with the temperature of the hot source
  • Figure 10 shows one of the subsystems, group 31, performing the high temperature isobaric process of the thermodynamic cycle and the second subsystem, group 37, performing the low temperature isobaric process of the thermodynamic cycle;
  • Figure 11 shows one of the subsystems, group 31, performing the isocoric temperature lowering process of the thermodynamic cycle and the second subsystem, group 37, performing the isocoric temperature raising process of the thermodynamic cycle;
  • Figure 12 shows in turn the first subsystem group 31 performing its low temperature isobaric thermodynamic cycle process and the second subsystem group 37 performing the isobaric process high temperature of the thermodynamic cycle;
  • Figure 13 shows the first subsystem, group 31, performing the isocoric temperature raising process of the thermodynamic cycle and the second subsystem, group 37, performing the isocoric process of temperature lowering of the thermodynamic cycle;
  • Figure 14 shows the ideal thermodynamic cycle of the active regenerator
  • FIG. 15 shows the detail of the thermodynamic cycle of one of the subsystems and the thermodynamic cycle in the heat transfer process for its respective active regenerator
  • FIG 16 shows the detail of the thermodynamic cycle of one of the subsystems and the thermodynamic cycle in the process of the regeneration of the chore by its respective active regenerator
  • Figure 17 shows the ideal differential thermodynamic cycle composed of two high temperature isobaric processes, two low temperature isobaric processes two isocoric temperature lowering processes, caior transfer, two isocoric temperature raising processes, heat regeneration, and the thermodynamic processes of the active regenerator;
  • Figure 18 shows an example of motor application for an electricity generating plant having geothermal energy as its primary source
  • Figure 19 shows an example of motor application for an electricity generating plant having thermosolar energy as its primary source
  • Figure 20 shows an example of differential cycle engine application for a combined system design, forming a combined cycle with an open system internal combustion engine.
  • thermodynamic system hybrid or it can also be called binary thermodynamic system because it has two interdependent thermodynamic subsystems which each perform a interacting thermodynamic cycle and can exchange heat, work and mass as depicted in figure 4.
  • thermodynamic system hybrid or it can also be called binary thermodynamic system because it has two interdependent thermodynamic subsystems which each perform a interacting thermodynamic cycle and can exchange heat, work and mass as depicted in figure 4.
  • Figure 4 shows the hybrid or binary system composed of two subsystems indicated by 21 and 23.
  • FIG. 6 shows again the hybrid or binary thermodynamic system and the differential thermodynamic cycle, detailing in this case the processes that when in one of the subsystems, at time (t1) the cycle operates with mass (m1), number mol (n1) and temperature (Tq), at the same time, simultaneously, in the other subsystem, the cycle operates with mass (m2), number of moi (n2), temperature (Tf).
  • Figure 7 shows the engine model based on the hybrid system. or binary, containing two subsystems indicated by 31 and 37.
  • Each subsystem has its thermomechanical conversion chamber, 33 and 35, a driving force element, 312, an active regenerator, 310 and 314, its transmission shafts, respectively, 38, 39, 311 and 313, 315, 316.
  • Linking the subsystems for mass transfer processes is a mass transfer element 34.
  • Figure 8 and Figure 9 show the process responsible for generating the initial operating state of the regenerators 310 and 314.
  • the regenerators are both equalized with the hot source temperature.
  • Tq In Figure 8, while one of the subsystems, 31, performs its alpha temperature isobaric process, its respective regenerator is mechanically pressurized through transmissions 38, 39 and 311, equalizing with the gas temperature of subsystem 31 in (Tq), shown in the graph of figure 14 in the path indicated in 71.
  • Figures 10, 11, 12 and 13 show how mechanically the eight processes, four isobaric and four isochoric with mass transfer and heat regeneration occur.
  • subsystem 31 exposes working gas to the hot source at the temperature (Tq) indicated at 317, this subsystem performs the high temperature isobaric process and simultaneously the subsystem indicated by 37 exposes working gas to the cold source. , at the temperature (Tf) indicated at 318, and at this time simultaneously, this subsystem performs the low temperature isobaric process.
  • Tq temperature
  • Tf temperature
  • FIG. 12 shows the temperature isobaric processes.
  • the gas is exposed to a thermally insulated region, indicated by 32, the gas, initially at the hot temperature (Tq), yields heat to the regenerator 310 which starts from the hot state, expands the internal gas until it withdraws heat from the working gas and its own, until it reaches a cold temperature (Tf) by expanding the gas, transferring the energy to its energy axis.
  • Tq hot temperature
  • Tf cold temperature
  • subsystem 37 receives part of the working gas mass of subsystem 31, and heat regeneration of regenerator 314 occurs simultaneously. moving the cold temperature gas (Tf) to a warmer temperature at which the high temperature isobaric process is initiated by pressurizing the regenerator internal gas by the mechanical energy in the axes obtained in the expansion process, ending the isochoric regeneration process. . And subsystem 37 has a larger mass than subsystem 31.
  • the graph in figure 14 clarifies how the active regenerator works, the curve indicated by 71 shows the initial process for conditioning regenerator operability, the curve indicated by 72 shows the regenerator process in operation with the motor cycle, occurs. alternately and sequentially the heat transfer from the engine gas to the regenerator, from the hot temperature (Tq) to the temperature (Tf) and regeneration when the process occurs in reverse, from the temperature (Tf) to the temperature (Tq). ). These processes always occur during the engine cycle isocoric.
  • Curve 71 of Fig. 14 is an adiabatic process and its unit energy (Joule) is represented by the following expression:
  • This energy (W 71 ) is the internal energy of the regenerator's own gas that remains internally for as long as the engine will be running.
  • Curve 72 of Figure 14 is also an adiabatic process and its unit energy (Joule) is represented by the following expression:
  • the first term of energy is the internal energy of the gas itself shown by and remains indefinitely in the regenerator
  • thermodynamic process of curve 72 of FIG. 14 takes place under the conditions shown in the mechanical drawings of FIGS. 11 and 13.
  • FIG. 15 shows in 73 the processes that form the cycle of one of the subsystems.
  • Process (bc) of the cycle shown at 73 is isochoric and starts at point (b) at constant volume at warm temperature (Tq) with (n1) mol of gas and proceeds to point (c), transferring part of the mass of gas, equivalent to (n1 -n2) mol of gas to the other subsystem and transferring its heat (energy) to the regenerator, reaching point (c) at a colder temperature of onset of the isobaric process (Tc) and with (n2) mol of gas.
  • Graph 75 shows the process in which the regenerator removes heat from the subsystem gas by expanding the internal gas from the active regenerator.
  • Fig. 16 shows at 77, simultaneously with the cycle shown in Fig. 15, the processes that form the cycle of the other subsystem comprising the motor concept formed by two interdependent subsystems.
  • the isochoric process (bc) shown in figure 15 in the first subsystem is of gas temperature lowering, its energy is transferred to the active regenerator, Simultaneously occurs in the second subsystem an isochoric process (4-1) of temperature growth, shown in Figure 16, the gas mass equivalent to (n1 - n2) mol of gas of the first subsystem is transferred from point (b), shown at 73 for the second subsystem, indicated in detail 78, figure 16, which initiates this isochoric process with (n2) mol of gas at (4) and arrives at (1) with (n1) moi of gas at a temperature warmer (11) received from the stored energy of the active regenerator, whose process curve is indicated at 76.
  • Figure 17 shows the complete eight-process ideal engine differential cycle based on the concept of hybrid or binary thermodynamic system, where two simultaneous engine processes always occur, exemplified by indications 86 and 88, until the cycle is formed. of eight processes and two process cycles in each of the two active regenerators.
  • the sequence (1-2-3-4-1) shows the processes of one of the subsystems that form the engine cycle
  • the sequence (abcda) shows the processes of the other subsystem
  • 83 shows the processes of the other active regenerator, all interdependent.
  • Process (bc) is isocoric of temperature lowering, occurs simultaneously with process (4-1), also isochoric, but of temperature increase, in process (bc) occurs the heat transfer (energy) of the engine gas to the regenerator shown at 83, in an adiabatic process indicated by curve 89, simultaneously in process (4-1), heat (energy) regeneration occurs for the engine gas received from the regenerator shown in 81, also in an adiabatic process indicated by curve 84 , simultaneously simultaneously, during the isochoric processes of the engine eid and adiabatic processes of the active regenerators, mass transfer occurs »leaving (n1 - n2) mol of gas in process (bc) to the other subsystem during the isochoric process (4-1), shown in detail 78 in the curve of graph 77 in figure 16.
  • Processes (2-3) and (da) are identical to processes (bc) and (4-1).
  • Process (cd) is low temperature isobaric and occurs concurrently with adiabatic, high temperature isobaric process (1-2).
  • the sum of the working gas mass of the two subsystems forming the engine is always constant,
  • isobaric processes of the engine cycle (1-2), (ab), (3-4) and (cd) are performed with the gas confined in a geometry characterized by a thermal inertia. wherein the gas has a rate of change of temperature such that it tends to equalize with hot or cold elements only at the end of these processes, making the pressure relatively stable, that is, isobaric.
  • This geometry shall be characterized by a depth not too small for the penetration of heat into the gas, or a gas displacement between the hot and cold elements not too fast to produce a rate of change in temperature throughout the isobaric process. that the pressure has a constant behavior.
  • the isochoric processes of the engine cycle (2-3) and (bc) are performed with the gas in a thermally insulated region or in the transition between the hot and cold areas of the engine, and in this process the regenerator in thermal contact with the gas. will perform rapid adiabatic expansion by transferring the energy of the gas to the mechanical elements of the regenerator, storing the energy in the form of kinetic energy, and in the isocoric processes of the motor cycle (4-1) and (da) are also performed with gas in a thermally insulated region or in the transition between hot and cold areas of the engine, and in this process the regenerator in thermal contact with the working gas will perform rapid adiabatic compression, transferring the kinetic energy of its elements back to the gas. engine raising its temperature, completing the regeneration.
  • Table 1 shows process-by-process forming the differential cycle of eight thermal motor processes shown step by step, with four isobaric processes, four isochoric processes, and the thermodynamic cycle with two active regenerator adiabatic processes and transfer steps. pasta.
  • This differentiated cycle of a motor composed of two subsystems based on the concept of hybrid or binary system, whose pressure and volume curve is shown in figure 17, has eight processes, two high temperature isobaric processes of energy input in the In the system, curves (1-2) and (ab) are represented by expressions (f) and ⁇ g ⁇ , two low temperature isobaric processes of discarding unused energy, curves (3-4) and (cd) represented by expressions. (h) and (i), two isochoric processes of transfer of caior (2-3) and (bc) by means of an active regenerator, represented by the expressions (j) and (k), two isocoric processes of heat regeneration ( 4-1) and (da), represented by the expressions (I) and (m). Expressions consider the direction signal of the flow of energies.
  • Hybrid or binary also have as a parameter of efficiency the number of moles or mass in the processes and therefore these cycles do not have their efficiencies solely dependent on temperatures.
  • Hybrid or torque based differential cycle motors operate on heat, do not require combustion, although they can be used, do not require fuel combustion, although they can be used, so they can operate in environments with or without atmosphere.
  • the thermodynamic cycle does not require physical phase change of the working gas. Due to their properties set forth in this description, differential cycling motors can be designed to operate over a wide temperature range, superior to most existing open or closed system based motor cycles. Differential cycle motors are fully flexible in terms of their energy source (heat).
  • Figure 18 shows an application for the use of differential cycle motors for power generation from geothermal sources.
  • Figure 18 shows a ground heat transfer system 96 for a manifold 94, formed basically by a pump 97 that injects a fluid, usually water, through the duct 93.
  • the heat in the collector 94 is transferred to the differential motor 91 , which discards part of the energy to the outside through the heat exchanger 95 and converts another part of the energy into work by operating a generator 92 or so. produces electricity,
  • FIG 19 shows another useful application for the differential cycling motor for producing heat from the sun's heat.
  • the sun's rays are cofected through the concentrator 103, the energy (heat) is transferred to the element 104 which directs the heat to the differential cycle motor 101, which converts part of the energy into useful work to operate an electricity generator. , part of the energy is discharged to the external environment through the exchanger 105.
  • Figure 20 shows another useful application for differential cycle motor. to improve the efficiency of internal combustion engines by forming combined cycles with these.
  • the exhaust-rejected heat 116 of internal combustion engines, indicated by 112, fuel-fed engines 117, Brayton cycle, Diesel cycle, Sabathe cycle, cicio Otto, Atk ⁇ nson cycle, is channeled to the input of energy (heat). of the differential cycle engine 111 via a heat exchanger 113 promoting a heat flow 1111 from the internal combustion engine 112 towards the differential cycling engine 111 and this converts part of this energy into useful mechanical force 1113 which can be integrated with the mechanical force of the internal combustion engine, 1112 generating a single mechanical force, 118, or directed to produce electrical energy.
  • Discarding energy not converted by the differential cycle engine goes to the external medium indicated by 1110. This application allows you to recover some of the energy that internal combustion engine cycles cannot use to perform useful work and thus improve overall efficiency. of the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

The present invention relates to a thermal engine and to its thermodynamic cycle with eight processes, more specifically to a thermal machine characterised by two interconnected but interdependent thermodynamic subsystems, each operating with a thermodynamic cycle comprising four processes, forming a complex cycle with eight processes, the engine operating with gas. The circuit of this binary system is closed, with a differentiated configuration, is based on the concept of hybrid thermodynamic system, or can also be regarded as a binary thermodynamic system. A thermodynamic cycle composed of eight processes is conducted in this system, such that in any moment of the cycle, two simultaneous, interdependent and complementary processes are being carried out, four of these processes being isobaric processes and four isochoric, with variable mass transfer which can be null or partial.

Description

"MOTOR TÉRMICO DE CICLO DIFERENCIAL COMPOSTO POR QUATRO PROCESSOS ISOBÁRICOS, QUATRO PROCESSOS ISOCÓRICOS COM REGENERADOR E PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR TÉRMICO"  "DIFFERENTIAL CYCLE THERMAL MOTOR COMPOSED OF FOUR ISOBARIC PROCESSES, FOUR ISOCORIC PROCESSES WITH REGENERATOR AND CONTROL PROCESS FOR THERMAL THERMAL CYCLE"
CAMPO TÉCNICO DA INVENÇÃO TECHNICAL FIELD OF THE INVENTION
[001] Refere-se a presente invenção a um motor térmico e seu ciclo termodinâmico de oito processos, mais especificamente trata-se de uma máquina térmica caracterizada por dois subsistemas termodinâmicos interligados, cada um opera um ciclo termodinâmico de quatro processos, porém interdependentes entre si, formando um ciclo complexo de oito processos, opera com gás, o circuito desíe sistema binário é fechado em configuração diferencial, baseado no conceito de sistema termodinâmico híbrido ou também pode ser chamado de sistema termodinâmico binário, este sistema realiza um ciclo termodinâmico composto por oito processos de forma que o mesmo executa em qualquer momenío do ciclo, dois processos simultâneos e interdependentes, complementares, sendo quatro destes processos isobáricos" e quatro "isocóricos" com transferência de massa variável, podendo esta ser nula ou parcial.  [001] The present invention relates to a thermal motor and its eight-process thermodynamic cycle, more specifically a thermal machine characterized by two interconnected thermodynamic subsystems, each operating a four-process but interdependent thermodynamic cycle. If, forming a complex cycle of eight processes, operates with gas, the circuit of the binary system is closed in differential configuration, based on the concept of hybrid thermodynamic system or can also be called binary thermodynamic system, this system performs a thermodynamic cycle composed of eight processes so that it performs at any given moment of the cycle, two simultaneous and interdependent complementary processes, four of which are isobaric and four isochoric processes with variable mass transfer, which may be null or partial.
ANTECEDENTES DA INVENÇÃO BACKGROUND OF THE INVENTION
[002] A termodinâmica clássica define três conceitos de sistemas termodinâmicos, o sistema termodinâmico aberto, o sistema termodinâmico fechado e o sistema termodinâmico isolado. Estes três conceitos de sistemas termodinâmicos foram conceituados no século XIX nos primórdios da criação das leis da termodinâmica e fundamentam todos os cicios motores conhecidos até o presente.  [002] Classical thermodynamics defines three concepts of thermodynamic systems, the open thermodynamic system, the closed thermodynamic system and the isolated thermodynamic system. These three concepts of thermodynamic systems were conceptualized in the nineteenth century in the early days of the creation of the laws of thermodynamics and underlie all motor cycles known to date.
[003] O sistema termodinâmico isolado é definido como um sistema no qual nem matéria, nem energia passa através dele. Portanto, este conceito de sistema termodinâmico não oferece propriedades que permitam o desenvolvimento de motores.  The isolated thermodynamic system is defined as a system in which neither matter nor energy passes through it. Therefore, this concept of thermodynamic system does not offer properties that allow the development of motors.
[004] O sistema termodinâmico aberto é definido como um sistema termodinâmico em que energia e matéria podem entrar e sair deste sistema. São exemplos de sistema termodinâmico aberto os motores de combustão interna, de cicio Otto, de cicio Atkínson, semelhante ao ciclo Otto, de ciclo Diesel, de cicio Sabathe, semelhante ao ciclo Diesel, de ciclo Brayton de combustão interna, de ciclo Rankine com exaustão do vapor ao ambiente. A matéria que entra nestes sistemas são os combustíveis e oxigénio ou fíuído de trabalho ou gás de trabalho. A energia que entra nestes sistemas é o calor. A matéria que saí destes sistemas são a exaustão da combustão ou do fluido de trabalho, gases, resíduos, a energia que saí destes sistemas são a energia mecânica de trabalho e parte do calor dissipado. [004] The open thermodynamic system is defined as a system where energy and matter can enter and leave this system. Examples of an open thermodynamic system are the Cycle Otto, Cycle Atkínson, Otto-cycle, Diesel-cycle, Sabathe-cycle, Otto-cycle, Brayton-internal-combustion, Rankine-exhaust, exhaust-cycle, internal-combustion engines from steam to the environment. The matter that enters these systems are fuels and working oxygen or working fluid or working gas. The energy that enters these systems is heat. The matter that comes out of these systems is the exhaust from combustion or working fluid, gases, waste, the energy that comes out of these systems is the mechanical working energy and part of the heat dissipated.
[005] O sistema termodinâmico fechado é definido como um sistema termodinâmico em que apenas a energia pode entrar e sair deste sistema. São exemplos de sistema termodinâmico fechado, motores de combustão externa como o de ciclo Stirltng, de ciclo Ericsson, de ciclo Rankine com fluido de trabalho em circuito fechado, de Giclo Brayton de calor ou de combustão externa, de cicio Carnot. A energia que entra neste sistema é o calor. A energia que saí deste sistema são a energia mecânica de trabalho e parte do calor dissipado, porém não sai matéria destes sistemas, como ocorrem no sistema aberto.  [005] The closed thermodynamic system is defined as a thermodynamic system in which only energy can enter and leave this system. Examples of a closed thermodynamic system are external combustion engines such as Stirltng cycle, Ericsson cycle, Rankine cycle with closed circuit working fluid, Giclo Brayton heat or external combustion, Carnot cycle. The energy that enters this system is heat. The energy that comes out of this system is the mechanical working energy and part of the heat dissipated, but no matter comes out of these systems, as they occur in the open system.
[006] Ambos os sistemas, aberto e fechado, como entrada eles possuem no tempo (t1) a temperatura (Tq), a massa (mi) e o número de mo! (n1) e na saída, no tempo (12), ambos possuem a temperatura (Tf), a massa (m1) e o número de mol (n1), a massa é constante, a diferença entre ambos é que no sistema aberto a massa (m1) atravessa o sistema e no sistema fechado, a massa (m1) permanece no sistema, conforme a figura 1.  [006] Both open and closed systems as input they have in time (t1) the temperature (Tq), the mass (mi) and the number of mo! (n1) and at the output, at time (12), both have the temperature (Tf), the mass (m1) and the number of mol (n1), the mass is constant, the difference between them is that in the open system the mass (m1) goes through the system and in the closed system, mass (m1) remains in the system as shown in figure 1.
O ESTADO ATUAL DA TÉCNICA THE CURRENT STATE OF TECHNIQUE
[007] Os motores conhecidos até o presente são fundamentados em sistemas termodinâmicos aberto ou sistemas termodinâmicos fechado, eles possuem seus cicios termodinâmicos compostos por uma série de processos sequenciais e independentes, e ocorre um único processo por vez até que o ciclo se complete, como pode ser observado no gráfico pressão/volume na figura 2. Assim são os motores de ciclo Otto, AtkínsonT Diesel, Sabathe, Brayton, Rankine, Stirling, Ericsson e o cicio teórico ideal de Carnot. Motors known to date are based on open thermodynamic systems or closed thermodynamic systems, they have their thermodynamic cycles composed of a series of sequential and independent processes, and a single process occurs at a time until the cycle completes, as can be seen from the pressure / volume graph in figure 2. So are the Otto, Atkinson T Diesel, Sabathe, Brayton, Rankine, Stirling, Ericsson cycle engines, and Carnot's ideal theoretical cycle.
[008] A energia interna do gás de trabalho dos motores baseados nos sistemas aberto e fechado não é constante durante o seu ciclo, a equação que representa a energia interna é indicada na equação (a)
Figure imgf000005_0001
[008] The internal working gas energy of motors based on open and closed systems is not constant during their cycle, the equation representing internal energy is given in equation (a)
Figure imgf000005_0001
[009] Na equação (a), (U) representa a energia interna em "Joule", (n) representa o número de moí, (R) representa a constante universal dos gases perfeitos, (7) representa a temperatura do gás em "Kelvin" e (y) representa o coeficiente de expansão adiabática,  In equation (a), (U) represents the internal energy in "Joule", (n) represents the number of moi, (R) represents the universal constant of perfect gases, (7) represents the gas temperature in "Kelvin" and (y) represents the adiabatic coefficient of expansion,
[010] Como ocorre sempre um único processo por vez nos motores projetados com o conceito de sistema aberto ou fechado, a energia interna varia com o tempo, uma vez que o produto: número de mol (n) peia temperatura (7), (n.7) não é constante durante o ciclo, pois a temperatura (7) é uma variável nos processos e o número de mol (n) é uma constante nos processos.  [010] Since only one process occurs at a time in motors designed with the concept of open or closed system, the internal energy varies over time, since the product: number of mol (n) per temperature (7), ( n.7) is not constant during the cycle, as temperature (7) is a process variable and the number of mol (n) is a process constant.
[01 1] O atual estado da técnica que caracteriza todos os motores, é caracterizado ainda pela propriedade onde a saída do processo, o trabalho, é uma consequência direta da entrada da energia, calor ou combustão, ou seja, quando é necessário mais trabalho, injeta-se mais calor ou se promove mais combustão, todos os processos que formam o cicio do motor são igualmente influenciados, em outras palavras, os motores são controlados pela alimentação direta. Por exemplo, nos motores de combustão interna, Otto, Diesel, Brayton, para se obter maior potência injeta-se mais combustível, mais oxigénio e assim se produz mais trabalho, mais rotação. Para se obter maior potência com rotação constante, normalmente utilizam-se caixas de redução ou transformação de rotação. Por analogia, tais tecnologias podem ser comparadas na eleíricidade a motores de corrente contínua, estes, para aumentar a potência, aumenta-se a tensão de alimentação do motor. [01 1] The current state of the art that characterizes all engines is further characterized by the property where the process output, the work, is a direct consequence of the input of energy, heat or combustion, ie when more work is required. more heat is injected or more combustion is promoted, all the processes that form the engine cycle are equally influenced, in other words, the engines are controlled by direct power. For example, in internal combustion engines, Otto, Diesel, Brayton, to get more power, more fuel, more oxygen is injected and thus more work is done, more rotation. For greater power with constant speed, gearboxes or speed transformation are usually used. By analogy, such technologies can be compared in terms of direct current motors, which, to increase horsepower, increase the motor supply voltage.
[012] O atual estado da técnica compreende uma série de motores de combustão interna e de combustão externa, a maioria destes motores exigem um segundo motor auxiliar para íeva-los a partir, ao funcionamento. Os motores de combustão interna exigem a compressão, mistura de combustível com o oxigénio e uma centelha ou combustão por pressão, desta forma um motor auxiliar de partida, normalmente elétrico, é utilizado. Os motores de combustão externa, como o de ciclo Stírling ou Ericsson por sua vez também exigem motores auxiliares e de alta potência, pois eles precisam vencer o estado de repouso sob pressão para entrar em operação. Uma exceção é o motor de ciclo Rankine, este pode partir através do comando de válvulas para fornecer a pressão do vapor aos elementos de força motriz. [012] The current state of the art comprises a series of motors of Internal combustion and external combustion, most of these engines require a second auxiliary engine to get them started, in operation. Internal combustion engines require compression, mixing fuel with oxygen, and a spark or pressure combustion, so a normally electric auxiliary starter motor is used. External combustion engines, such as the Stirling or Ericsson cycle in turn also require high power auxiliary engines, as they must overcome the resting state under pressure to start operating. One exception is the Rankine cycle engine, which can start via the camshaft to provide the steam pressure to the motive power elements.
[013] O atua! estado da técnica compreende uma série de motores, a maioria deles, dependentes de condições muito específicas e especiais para operar, por exemplo, os motores de combustão interna, cada um deles exige seu combustível específico, controle fino de combustível, oxigénio e o tempo da combustão e em alguns casos exigem condições específicas inclusive de pressão, a flexibilidade no combustível é bem limitada. Nesta categoria, dos motores fundamentados nos sistemas aberto e fechado, o motor mais flexível é o de ciclo Rankine, de combustão externa ou o Stirling, também de combustão externa, estes são mais flexíveis quanto a fonte.  [013] The acting! The state of the art comprises a series of engines, most of them dependent on very specific and special conditions to operate, for example, internal combustion engines, each requiring its own specific fuel, fine control of fuel, oxygen and time of operation. combustion and in some cases require specific conditions including pressure, fuel flexibility is quite limited. In this category, of the engines based on open and closed systems, the most flexible engine is the Rankine cycle, external combustion or Stirling, also external combustion, these are more flexible in their source.
[014] O atuai estado da técnica compreende uma série de ciclo motores, a maioria exige combustão, isto é, a queima de aigum tipo de combustível, e, portanto, a necessidade de oxigénio.  The current state of the art comprises a series of engine cycles, most of which require combustion, that is, the burning of some type of fuel, and therefore the need for oxygen.
[015] O estado atuai da técnica compreende uma série de ciclo motores, a maioria exige altas temperaturas para operação, os de combustão interna especialmente, costumam operar com o gás de trabalho em temperatura superiores a 1500 °C. Os motores de combustão externa ou operante por fontes de calor externas, como de cicio Rankine e Stirling, normalmente são projetados para operarem com temperaturas do gás de trabalho entre 400 °C e 800 °C. Além dos motores baseados nos sistemas aberto e fechado exigirem na maioria das vezes altas temperaturas para que possam operar, todos eles possuem suas eficiências limitadas ao teorema de Carnot, isto é, suas eficiências máximas dependem exciusivamente das temperaturas conforme definido peia equação (b).
Figure imgf000007_0001
[015] The current state of the art comprises a series of cycle engines, most of which require high operating temperatures, especially internal combustion engines, usually operating with working gas at temperatures above 1500 ° C. External combustion engines or engines operating from external heat sources, such as Rankine and Stirling cycle engines, are typically designed to operate at working gas temperatures between 400 ° C and 800 ° C. In addition to motors based on open and closed systems, they often require high temperatures to operate, all of them have their efficiencies limited to Carnot's theorem, that is, their maximum efficiencies depend on temperatures as defined by equation (b).
Figure imgf000007_0001
[016] Na equação (b), (η) é o rendimento, (Tf) é a temperatura da fonte fria e (Tq) é a temperatura da fonte quente, ambas em "Kelvin".  [016] In equation (b), (η) is the yield, (Tf) is the cold source temperature and (Tq) is the hot source temperature, both in "Kelvin".
[017] O estado atuai da técnica, baseado nos sistemas aberto e fechado, compreende basicamente seis ciclos motores e algumas versões destes: o cicio Otto, de ciclo Atkinson, semelhante ao ciclo Otto, de cicio Diesel, de ciclo Sabathe, semelhante ao ciclo Diesel, de cicio Brayton, de cicio Rankine, de ciclo Stirling, de ciclo Ericsson e o de ciclo Carnot, referência teórica ideal para os motores fundamentados nos sistema aberto e fechado. As últimas novidades do estado atuai da técnica vem sendo apresentadas através de inovações juntando-se mais de um ciclo antigo formando ciclos combinados, isto é: novos sistemas de motores compostos por uma máquina de ciclo Brayton operante com combustíveis de origem fóssil, gás ou óteo e uma máquina de cicio Rankine dependente do calor rejeitado pela máquina de cicio Brayton. Ou a mesma filosofia, unindo-se um motor de ciclo Diesel com um de ciclo Rankine ou ainda um motor de ciclo Otto, também unindo-o com um motor de ciclo Rankine. [017] The current state of the art, based on open and closed systems, comprises basically six motor cycles and some versions thereof: the Atkinson cycle Otto cycle, similar to the Sabathe cycle Diesel cycle Otto cycle, similar to the cycle. Brayton, Rankine, Stirling cycle, Ericsson cycle and Carnot cycle diesel, ideal theoretical reference for open and closed engine based engines. The latest innovations in the current state of the art are being presented through innovations by joining more than one old cycle forming combined cycles, ie: new engine systems composed of a Brayton cycle machine operating on fossil fuels, gas or ether. is a heat dependent Rankine cycling machine rejected by the Brayton cycling machine. Or the same philosophy, combining a diesel engine with a Rankine cycle engine or an Otto cycle engine, also joining it with a Rankine cycle engine.
[018] O estado atuai da técnica apresenta uma série de limitações e oferece também uma série de problemas. A maioria dos motores, como os de combustão interna, de ciclo Otto, Atkinson, Diesel, Sabathe e Brayton, exigem combustíveis específicos para cada conceito, por exemplo: gasolina, óleo diesel, gás, querosene, carvão, e de alto poder calorífico, precisam trabalhar sob altas temperaturas e por consequência, durante muitos anos, vem dependendo de combustíveis fósseis, trazendo danos graves ao clima e meio- ambiente, isto é, são caracterizados pela não sustentabilidade. O sistema termodinâmico sob os quais estes motores são projetados, trazem como limitação de eficiência o teorema de Carnot o qual, em função de seu princípio, impõe o limite da eficiência como função direta e exclusiva das temperaturas, conforme equação (b). [018] The current state of the art has a number of limitations and also offers a number of problems. Most engines, such as Otto, Atkinson, Diesel, Sabathe and Brayton internal combustion engines, require specific fuels for each concept, for example: gasoline, diesel, gas, kerosene, coal, and high calorific power, They have to work under high temperatures and consequently, for many years, have been relying on fossil fuels, bringing severe damage to the climate and the environment, that is, they are characterized by non-sustainability. The thermodynamic system under which these motors are designed brings as a limitation of efficiency the Carnot theorem which, due to its principle, imposes the efficiency limit as a direct and exclusive function of temperatures, according to equation (b).
[019] A maioria dos motores da atualidade exigem combustíveis refinados e poluentes com efeitos nocivos ao cíima, ao ambiente e, portanto, comprometem a sustentabilidade. Uma das mais recentes tecnologias desenvolvidas para minimizar o impacto, foi a junção de dois antigos conceitos de motores, o motor de eido Brayton e o motor de ciclo Rankíne, formando um sistema composto por dois cicios combinados, de forma taí que o rejeito de calor da primeira máquina é utilizado pela segunda máquina para melhorar a eficiência do conjunto, porém o uso de combustíveis fósseis e seus efeitos permanecem. O ciclo combinado continua a ser caracterizado por um motor sob conceito de sistema aberto e um motor sob o conceito de sistema fechado, independentes, ou seja, é classificado como sistema combinado, dois cicios completamente independentes, não se caracteriza como sistema híbrido ou binário.  [019] Most engines today require refined fuels and pollutants that have harmful effects on the environment and thus compromise sustainability. One of the latest technologies developed to minimize the impact was the combination of two old engine concepts, the Brayton eido motor and the Rankine cycle motor, forming a system composed of two combined cycles, such that the heat rejection The first machine is used by the second machine to improve the efficiency of the set, but the use of fossil fuels and their effects remain. The combined cycle continues to be characterized by a stand-alone open engine concept and a stand-alone closed system engine concept, ie it is classified as a combined system, two completely independent cycles, not characterized as a hybrid or binary system.
[020] Os demais motores, de ciclo Stirlsng e Ericsson, são motores sob o conceito de sistema fechado, são de combustão externa ou fonte de calor externo. Em função de suas propriedades, embora tenham os conceitos mais simples de motores, são difíceis de serem construídos. Exigem parâmetros de projetos casados, isto é, funcionam bem, com boa eficiência, apenas em seu regime específico de operação, temperatura, pressão, carga, fora do ponto centrai de operação suas eficiências caem bruscamente, ou não operam. Portanto são máquinas muito pouco utilizadas para uso industrial ou popular.  [020] The other engines, Stirlsng and Ericsson cycle, are engines under the closed system concept, are of external combustion or external heat source. Because of their properties, although they have the simplest motor concepts, they are difficult to build. They require married design parameters, that is, they work well, with good efficiency, only in their specific operating regime, temperature, pressure, load, outside the center of operation their efficiencies drop sharply, or do not operate. Therefore they are machines very little used for industrial or popular use.
[021] O motor ideai de Carnot, figura 3, por sua vez, embora seja considerado o motor ideal, mais perfeito até o presente, ele o é na teoria e dentro dos conceitos de sistema aberto e fechado considerando todos os parâmetros ideais, por este motivo é a referência até hoje para todos os conceitos de motores existentes. O motor de Carnot não é encontrado no uso prático porque os materiais reais não possuem as propriedades exigidas para tornar o motor de Carnot uma realidade, as dimensões físicas para que o ciclo de Carnot possa ser executado como na teoria, seriam inviáveis em um caso prático, portanto eíe é um Motor ideal nos conceitos de sistema aberto e sistema fechado, porém no conceito teórico. [021] Carnot's ideai motor, figure 3, while considered the ideal motor, most perfect to date, it is in theory and within open and closed system concepts considering all ideal parameters, for example. This is the reference to date for all existing engine concepts. The Carnot Engine is not found in practical use because the actual materials do not possess the properties required to make the Carnot Engine a reality, the physical dimensions for the Carnot Cycle. If it were to be performed as in theory, it would be unfeasible in a practical case, so it is an ideal Engine in open system and closed system concepts, but in the theoretical concept.
[022] O controle de potência, rotação e torque, dos motores existentes, de cicio Otto, Atkinson, Diesel, Sabathe, Brayton, estes de combustão interna, são decorrentes diretamente da alimentação de combustíveis e oxigénio e como resultado oferecem maior rotação e torque simultaneamente. Para haver separação entre o torque e a rotação, eles exigem caixas de velocidade. Estas máquinas não permitem controlabilidade, ou no mínimo, oferecem dificuldades na controlabilidade através de seus ciclos termodinâmicos.  [022] The power, speed and torque control of existing Otto, Atkinson, Diesel, Sabathe, Brayton internal combustion engine engines is derived directly from the fuel and oxygen supply and as a result offers increased engine speed and torque. simultaneously. For separation between torque and rotation, they require gearboxes. These machines do not allow controllability, or at the very least, offer difficulties in controllability through their thermodynamic cycles.
[023] O controle de potência, rotação e torque, dos motores existentes de ciclo Rankine, este de combustão externa, são decorrentes da vazão e da pressão do vapor ou gás de trabalho, e como resultado oferecem variações interdependentes de rotação e torque simultaneamente, não há controlabilidade separada entre torque e rotação. [023] The power, speed and torque control of existing Rankine cycle engines, which are external combustion, are due to the flow and pressure of steam or working gas, and as a result offer interdependent variations in speed and torque simultaneously, There is no separate controllability between torque and rotation.
[024] O controle de potência, rotação e torque, dos motores existentes de ciclo Stirííng e Ericsson, estes de combustão externa, são decorrentes da massa ou pressão do gás de trabalho, das temperaturas, da geometria construtiva, e como resultado oferecem variações interdependentes de rotação e torque simultaneamente, não há controlabilidade separada entre torque e rotação. Estas máquinas possuem suas curvas de operação muito estreitas oferecendo baixa controlabilidade e uma faia estreita de operacionabilidade. Nestes casos são comuns projetos que não funcionam porque os parâmetros, nas suas interdependências podem não oferecer as condições que levam o motor a funcionar.  [024] The power, rotation and torque control of existing Stiring and Ericsson cycle engines, these with external combustion, are due to working gas mass or pressure, temperatures, construction geometry, and as a result offer interdependent variations. of rotation and torque simultaneously, there is no separate controllability between torque and rotation. These machines have very narrow operating curves offering low controllability and a narrow operability beech. In these cases, designs that do not work are common because the parameters in their interdependencies may not offer the conditions that make the engine run.
[025] O estado atual da técnica, recentemente revelou algumas referências que já se encontram com conceitos semelhantes do sistema híbrido ou binário, são motores que apresentam características de possuírem dois ciclos termodinâmicos interdependentes constituindo um ciclo complexo formado por oito processos, sempre com dois processos operando simultaneamente em um sistema formado por dois subsistemas integrados. A patente "PI 1000624-9" registrada no Brasif definida como "Conversor de energia termomecâníco" é constituído por dois subsistemas que opera por meio de um cicio termodinâmico formado por quatro processos isotérmicos e quatro processos isocóricos, sem regeneração. A patente "PCT/BR2013/000222" registrada nos Estados Unidos da América definida como "Máquina térmica que opera em conformidade com o ciclo termodinâmico de Carnot e processo de controle" a qual é constituída por dois subsistemas e opera em cada subsistema, um ciclo termodinâmico formado por dois processos isotérmicos de dois processos adiabáticos. A patente "PCT/BR2014/000381" registrada nos Estados Unidos da América definida como "Máquina térmica diferencial com ciclo de oito transformações termodinâmicas e processo de controle" a qual é constituída por dois subsistemas e opera um cicio termodinâmico formado por quatro processos isotérmicos de quatro processos adiabáticos. Estas referências diferem da presente invenção quanto aos processos termodinâmicos que formam seus ciclos, cada ciclo oferece ao motor características próprias. O conceito de sistema termodinâmico híbrido ou binário oferece a base para o desenvolvimento de uma nova família de motores térmicos, cada motor terá características próprias conforme os processos e fases que constituem os seus respectivos ciclos termodinâmicos, como por exemplo, o motor Otto e o motor Diesel são motores fundamentados no sistema termodinâmico aberto de combustão interna, porém constituem motores distintos e o que os distingue são detalhes de seus ciclos termodinâmicos, o ciclo do motor Otto é constituído basicamente por um processo adiabático de compressão, um processo isocórico de combustão, um processo adiabático de expansão e um isocórico de exaustão e o ciclo do motor Diesel é constituído por um processo adiabático de compressão, um processo isobárico de combustão, um processo adiabático de expansão e um processo isocórico de exaustão, portanto eles diferem em apenas um dos processos que formam seus cicios, o suficiente para conferir a cada um, propriedades e usos específicos e diferentes. Da mesma forma, o conceito de sistema híbrido ou binário oferece a base para uma nova família de motores térmicos constituídos por dois subsistemas e estes irão operar com ciclos ditos diferenciais formados por processos onde sempre ocorrerão dois processos simultâneos, cada um terá particularidades próprias as quais caracterizarão cada um dos cicios-motores. [025] The current state of the art has recently revealed some references that already have similar concepts of the hybrid or binary system, are engines that have characteristics of having two interdependent thermodynamic cycles constituting a complex cycle formed by eight processes, always with two processes. operating simultaneously on a system formed by two integrated subsystems. The patent "PI 1000624-9" registered in Brasif defined as "Thermomechanical Energy Converter" consists of two subsystems operating through a thermodynamic cycle formed by four isothermal processes and four isochoric processes without regeneration. The "PCT / BR2013 / 000222" patent registered in the United States of America defined as "Carnot thermodynamic cycle thermal control machine and control process" which consists of two subsystems and operates in each subsystem, one cycle. thermodynamic formed by two isothermal processes of two adiabatic processes. United States Patent "PCT / BR2014 / 000381" defined as "Differential Thermal Machine with Eight Thermodynamic Transformation Cycle and Control Process" which consists of two subsystems and operates a thermodynamic cycle formed by four isothermal processes. four adiabatic processes. These references differ from the present invention as to the thermodynamic processes that form their cycles, each cycle gives the engine its own characteristics. The concept of hybrid or binary thermodynamic system provides the basis for the development of a new family of thermal motors. Each motor will have its own characteristics according to the processes and phases that constitute its respective thermodynamic cycles, such as the Otto motor and the motor. Diesel engines are engines based on the open thermodynamic internal combustion system, but they constitute distinct engines and what distinguishes them are details of their thermodynamic cycles, the Otto engine cycle is basically constituted by an adiabatic compression process, an isocoric combustion process, a adiabatic expansion process and an isocoric exhaust process and the diesel engine cycle consists of an adiabatic compression process, an isobaric combustion process, an adiabatic expansion process and an isocoric exhaust process, so they differ in only one process that make up your loops, enough to check laugh at each, specific and different properties and uses. Similarly, the The hybrid or binary system concept provides the basis for a new family of thermal motors consisting of two subsystems and these will operate with so-called differential cycles consisting of processes where two simultaneous processes will always occur, each having its own particularities which will characterize each of the cycles. -motors.
OBJETIVOS DA .NVENÇÃO Objectives of the Convention
[026] Os grandes problemas do estado da técnica são, portanto, a dificuldade das tecnologias atuais a atender projetos sustentáveis, em função da dependência de combustíveis fósseis, poluentes, com impactos graves ao ambiente e ao clima, baixa eficiência, limitada exclusivamente às temperaturas, demonstrado pelo teorema de Carnot, baixo nível de controiabilídade em função das limitações na variabilidade dos parâmetros dos modelos fundamentados nos sistemas termodinâmicos aberto e fechado, falia de flexibilidade quanto às fontes de energia, muitos exigem combustíveis refinados e específicos, alta dependência do ar (oxigénio) para combustão e muitos deles dependem de um segundo motor para leva-los à operação (um motor de partida).  [026] The major problems of the state of the art are, therefore, the difficulty of current technologies to meet sustainable projects, due to dependence on fossil fuels, pollutants, with severe impacts on the environment and climate, low efficiency, limited exclusively to temperatures. , demonstrated by Carnot's theorem, low level of mismatch due to limitations in the variability of the parameters of models based on open and closed thermodynamic systems, lack of flexibility regarding energy sources, many require refined and specific fuels, high air dependence ( oxygen) for combustion and many of them rely on a second engine to drive them into operation (a starter).
[027] O objetivo da invenção se concentra em eliminar alguns dos problemas existentes e minimizar outros problemas, porém o maior objetivo foi em desenvolver novos ciclos-motores baseados em um novo conceito de sistema termodinâmico de forma que a eficiência dos motores não ficasse mais dependentes exclusivamente das temperaturas e cujas fontes de energia possam ser diversificadas e que permitisse projeto de motores para ambientes inclusive sem ar (oxigénio). O conceito de sistema híbrido ou binário, característica própria que fundamenta esta invenção, elimina a dependência da eficiência de forma exclusiva à temperatura, a eficiência de qualquer máquina térmica depende dos seus potenciais e de seus diferenciais de potenciais, enquanto que os sistemas aberto e fechado geram potenciais onde a massa do gás é constante e por este motivo elas se cancelam nas equações, os sistemas híbridos ou binários a massa não necessariamente é constante, portanto não se canceíam e as suas eficiências dependem dos potenciais dos quais se originam a força motriz, isto é, das pressões. O conceito de sistema híbrido proporciona potenciais dependentes, proporcionais ao produto da massa de gás de trabalho peia temperatura, como no sistema híbrido, diferente dos sistemas aberto e fechado, a massa é variável, a sua eficiência passa a ser uma função não exclusiva da temperatura, mas dependente da massa e para um motor de ciclo diferenciai composto por quatro processos isobáricos, quatro processos ísocóricos regenerativos, a eficiência é demonstrada conforme apresentado na equação (c) e figura 4.
Figure imgf000012_0001
[027] The aim of the invention is to eliminate some of the existing problems and minimize other problems, but the major objective was to develop new motor cycles based on a new thermodynamic system concept so that the efficiency of the motors would not be more dependent. temperatures only and whose energy sources could be diversified and which would allow the design of engines for environments even without air (oxygen). The characteristic hybrid or binary system concept that underlies this invention eliminates the dependence of efficiency exclusively on temperature, the efficiency of any thermal machine depends on its potentials and their potential differentials, while open and closed systems generate potentials where the mass of the gas is constant and for this reason they cancel out in the equations, hybrid or binary systems the mass is not necessarily constant, so no they get tired and their efficiencies depend on the potentials from which the driving force originates, that is, the pressures. The hybrid system concept provides dependent potentials, proportional to the product of the working gas mass at temperature, as in the hybrid system, unlike the open and closed systems, the mass is variable, its efficiency becomes a non-exclusive function of temperature. but dependent on mass and for a differential cycle motor composed of four isobaric processes, four regenerative isocoric processes, the efficiency is demonstrated as presented in equation (c) and figure 4.
Figure imgf000012_0001
[028] Na equação é o rendimento, (T1) é a temperatura inicial do
Figure imgf000012_0002
[028] In the equation is yield, (T1) is the initial temperature of the
Figure imgf000012_0002
processo isobárico de alta temperatura, (72) é a temperatura final do processo isobárico de aífa, esta temperatura tende a se equalizar com a temperatura da fonte quente (To), (73) é a temperatura inicia! do processo isobárico de baixa temperatura, (T4) é a temperatura final do processo isobárico de baixa temperatura, esta temperatura tende a se equalizar com a temperatura da fonte fria (77), todas as temperaturas em "Kelvin", (n1) é o número de moles do subsistema 1 , indicado pela região 21 da figura 4, (r?2) é o número de moles do subsistema 2, indicado pela região 23 da figura 4. high temperature isobaric process, (72) is the final temperature of the isobaric process of aifa, this temperature tends to equalize with the hot source temperature (To), (73) is the starting temperature! of the low temperature isobaric process, (T4) is the final temperature of the low temperature isobaric process, this temperature tends to equalize with the cold source temperature (77), all temperatures in "Kelvin", (n1) is the The number of moles in subsystem 1, indicated by region 21 in Figure 4, (r '2) is the number of moles in subsystem 2, indicated by region 23 in Figure 4.
[029] A dependência de altas temperaturas da maioria dos motores do atua! estado da técnica levam também à dependência de combustíveis com aíto poder calorífico, dificultando o uso de fontes limpas as quais normalmente oferecem menor temperatura, O conceito de ciclo diferencial sob o sistema híbrido, e fluido de trabalho cujos processos não obriguem a troca de fase física, elimina esta obrigatoriedade da dependência de altas temperaturas, O conceito diferenciai onde o ciclo opera sempre dois processos por vez, (26 e 27) da figura 5, simultaneamente e interdependentes, viabiliza máquinas que possam operar com baixas temperaturas e por consequência, as fontes iimpas renováveis, como a termossoiar, geotermal, passam a ser plenamente viáveis e suas eficiências passam a ter a massa, ou número de moles, como mostrado na equação (c), como parâmetro para a obtenção de eficiências melhores, mesmo com diferenciais de temperatura relativamente baixos. [029] The dependence on high temperatures of most engines of the act! The state of the art also leads to dependence on fuels with high calorific value, making it difficult to use clean sources which normally offer lower temperatures. The concept of differential cycle under the hybrid system, and working fluid whose processes do not require physical phase switching. , eliminates this obligation of dependence on high temperatures. The concept differentiates where the cycle always operates two processes at a time, (26 and 27) of figure 5, simultaneously and interdependent, enables machines that can operate at low temperatures and therefore the sources Renewable sparks such as thermoseal, geothermal become fully viable and their efficiencies have mass, or number of moles, as shown. in equation (c), as a parameter for obtaining better efficiencies, even with relatively low temperature differentials.
[030] Os principais ciclos termodinâmicos conhecidos, Otto, Atkinson, Diesel, Sabathe, Brayton, Stirling, Ericsson, Rankíne e o ciclo Carnot executam um único processo por vez sequencialmente, conforme mostrado na figura 2, referenciado ao cicio mecânico dos elementos de força motriz, seu controle é uma função direta da alimentação da fonte de energia, por sua vez, os cicios diferenciais do sistema híbrido ou binário, executam dois processos por vez, figura 5, viabilizando o controle do ciclo termodinâmico separado do ciclo mecânico, o ciclo pode ser modulado e desta forma o ciclo mecânico passa a ser uma consequência do ciclo termodinâmico e não mais o contrário. [030] The major known thermodynamic cycles, Otto, Atkinson, Diesel, Sabathe, Brayton, Stirling, Ericsson, Rankine and the Carnot cycle perform a single process at a time sequentially, as shown in Figure 2, referenced to the mechanical cycle of the force elements. driving, its control is a direct function of the power supply, in turn, the differential cycles of the hybrid or binary system, perform two processes at a time, figure 5, enabling the control of the thermodynamic cycle separated from the mechanical cycle, the cycle. can be modulated and thus the mechanical cycle becomes a consequence of the thermodynamic cycle and not the other way around.
DESCRIÇÃO DA INVENÇÃO DESCRIPTION OF THE INVENTION
[031] Os motores de cicios diferenciais são caracterizados por possuírem dois subsistemas, formando um sistema híbrido ou binário, representado por (21 e 23) da figura 4, cada subsistema executa um ciclo referenciado ao outro subsistema de modo a executarem sempre dois processos simultâneos e interdependentes. De outra forma, considerando um sistema híbrido ou binário com propriedades dos sistemas aberto e do fechado simultaneamente, diz-se que o sistema executa um ciclo termodinâmico composto, figura 5, isto é, executa sempre dois processos por vez simultâneos (26 e 27) da figura 5, interdependentes, inclusive com transferência de massa. Portanto trata-se de motores e ciclos completamente distintos dos motores e ciclos baseados nos sistemas aberto ou fechado. Na figura 6 pode ser observada a relação entre o sistema híbrido ou binário e o ciclo termodinâmico diferencial.  Differential cycle motors are characterized by having two subsystems forming a hybrid or binary system, represented by (21 and 23) of Figure 4, each subsystem executes a cycle referenced to the other subsystem in order to always perform two simultaneous processes. and interdependent. Otherwise, considering a hybrid or binary system with properties of both open and closed systems simultaneously, it is said that the system performs a composite thermodynamic cycle, Figure 5, that is, it always performs two simultaneous processes (26 and 27). Figure 5, interdependent, including mass transfer. Therefore they are completely different motors and cycles from motors and cycles based on open or closed systems. Figure 6 shows the relationship between the hybrid or binary system and the differential thermodynamic cycle.
[032] O conceito de sistema termodinâmico híbrido é novo, é caracterizado por um sistema binário, formado por dois subsistemas interdependentes e entre eles há troca de matéria e energia e ambos fornecem para fora de seus limites, energia em forma de trabalho e parte da energia em forma de calor dissipada. Este sistema termodinâmico foi criado no século XXI e oferece novas possibilidades para o desenvolvimento de motores térmicos. [033] A presente invenção trás evoluções importantes para a conversão de energia térmica em mecânica seja esta para uso em geração de energia ou outro uso, como força mecânica para movimentação e tração. Algumas das principais vantagens que podem ser constatadas são: a totaí flexibilidade quanto à fonte da energia (calor), a independência de atmosfera, não necessita de atmosfera para que um motor do ciclo diferencial possa operar, a flexibilidade quanto às temperaturas, o motor de ciclo diferenciai pode ser projetado para funcionar em uma faixa muito extensa de temperatura, bem superior à maioria dos motores fundamentados nos sistemas aberto e fechado, inclusive, um motor de ciclo diferencial pode ser projetado para funcionar com ambas as temperaturas abaixo de zero grau Celsius, basta que as condições de projeto promovam a expansão e contração do gás de trabalho e basta que os materiais escolhidos para a sua construção tenham as propriedades para executar as suas funções operacionais nas temperaturas de projeto. Outras vantagens importantes que distinguem o motor de ciclo diferencial fundamentado no sistema híbrido ou binário é a sua controlabilidade em função da facilidade na modulação dos processos termodinâmicos e em projetos de motores que dispensam o uso de motores de partida, ou no mínimo, estes seriam de pequeno porte, em função da facilidade de gerar um torque por meio do diferencial de forças propiciado pelo sistema formado por duas câmaras de conversão, isto é, dois subsistemas. Portanto as vantagens constatadas abrangem a flexibilidade das fontes, promovendo o uso de fontes limpas e renováveis como as vantagens operacionais, podendo operar teoricamente em quaisquer faixas de temperatura e sua propriedade de controle da rotação e torque. [032] The concept of hybrid thermodynamic system is new, characterized by a binary system, formed by two interdependent subsystems and between them there is exchange of matter and energy and both supply out of their limits, energy in the form of work and part of heat-dissipated energy. This thermodynamic system was created in the 21st century and offers new possibilities for the development of thermal motors. [033] The present invention brings important developments for the conversion of thermal energy to mechanical either for use in power generation or other use as mechanical force for movement and traction. Some of the main advantages that can be seen are: the full flexibility of the energy source (heat), the independence of the atmosphere, does not require atmosphere for a differential cycle motor to operate, the flexibility of the temperatures, the Differential cycle can be designed to operate over a very wide temperature range, well above most motors based on open and closed systems, including a differential cycle motor can be designed to operate at both temperatures below zero degrees Celsius, It is sufficient that the design conditions promote the expansion and contraction of the working gas and it is sufficient that the materials chosen for its construction have the properties to perform their operational functions at design temperatures. Other important advantages that distinguish the differential-cycle motor based on the hybrid or binary system is its controllability due to the ease of modulation of thermodynamic processes and engine designs that do not require the use of starters, or at least these would be small size, due to the ease of generating a torque through the force differential provided by the system formed by two conversion chambers, that is, two subsystems. Therefore, the advantages found include the flexibility of the sources, promoting the use of clean and renewable sources as the operational advantages, and can theoretically operate in any temperature range and its rotation and torque control property.
[034] O motor de ciclo diferenciai baseado no conceito de sistema híbrido ou binário poderá ser construído com materiais e técnicas semelhantes aos motores convencionais e motores de ciclo Stirling, como se trata de um motor que trabalha com gás em circuito fechado, considerando o sistema compieto, isto é, o sistema completo é formado por dois subsistemas termodinâmicos integrados, 31 e 37, configurando um sistema termodinâmico binário ou híbrido, cada subsistema é formado por uma câmara, 33 e 35, contendo gás de trabalho e cada uma destas, são formadas por três subcâmaras, uma aquecida, 33 com 317 e 35 com 42, uma resfriada, 33 com 41 e 35 com 318, e outra isolada, 33 com 32 e 35 com 36, ou em alguns casos, esta inexistente, conectado a estas duas câmaras há um elemento de força motriz, 312, cada subsistema possuí um regenerador, 310 e 314, podendo ser ativo ou passivo, entre os subsistemas há um elemento de transferência de massa, 34, portanto os subsistemas são abertos entre si, entre o sistema completo e o meio externo, é considerado fechado, estes dois subsistemas executam simultaneamente cada um deles, um ciclo de quatro processos interdependentes formando um cicio termodinâmico diferencial, 82, único, de oito processos, sendo quatro deles isobáricos, (a-b), (1-2), (c-d) e (3-4), quatro isocóricos, (b-c), (2-3), (d-a) e (4-1), com transferência de massa variável. Este conceito em circuito fechado de gás de trabalho com relação ao meio externo indica que o sistema deve ser vedado, ou em alguns casos, vazamentos podem ser admitidos, desde que compensados. Materiais adequados para esta tecnologia devem ser observados, são semelhantes, neste aspecto, às tecnologias de projetos de motores de ciclo Stirling. O gás de trabalho depende do projeto, de sua aplicação e dos parâmetros utilizados, o gás poderá ser vários, cada um proporcionará particularidades específicas, como exemplo pode ser sugerido os gases: hélio, hidrogénio, nitrogénio, ar seco, neon, entre outros. [034] The differential cycle engine based on the hybrid or binary system concept may be constructed from materials and techniques similar to conventional and Stirling cycle engines, as it is a closed-loop gas engine considering the system. the complete system is formed by two thermodynamic subsystems 31 and 37, forming a binary or hybrid thermodynamic system, each subsystem is formed by a chamber 33 and 35 containing working gas and each of these are formed by three sub-chambers, one heated, 33 with 317 and 35 with 42, one cold, 33 with 41 and 35 with 318, and one isolated, 33 with 32 and 35 with 36, or in some cases, nonexistent, connected to these two chambers is a driving force element, 312, each subsystem having a regenerator, 310 and 314, can be either active or passive, between the subsystems there is a mass transfer element, 34 so the subsystems are open to each other, between the complete system and the external environment, these two subsystems are considered closed. simultaneously execute each of them, a cycle of four interdependent processes forming a unique 82 differential thermodynamic cycle of eight processes, four of which are isobaric, (ab), (1-2), (cd) and (3-4) , four isochoric, (bc), (2-3), (da) and (4-1), c om variable mass transfer. This closed-circuit concept of working gas with respect to the external environment indicates that the system must be sealed, or in some cases leaks may be permitted provided they are compensated. Suitable materials for this technology should be noted and are similar in this respect to Stirling cycle engine design technologies. The working gas depends on the project, its application and the parameters used, the gas may be various, each will provide specific characteristics, as the gases may be suggested: helium, hydrogen, nitrogen, dry air, neon, among others.
[035] As câmaras de conversão, itens que caracterizam o sistema híbrido ou binário, poderão ser construídas com diversos materiais, dependendo das temperaturas de projeto, do gás de trabalho utilizado, das pressões envolvidas, do ambiente e condições de operação. Estas câmaras possuem cada uma, três subcâmaras e estas devem ser projetadas observando a exigência de isolamento térmico entre si para minimizar o fluxo de energia a partir das áreas quentes para as frias, esta condição é importante para a eficiência gera! do sistema. Estas câmaras possuem internamente elementos que movimentam o gás de trabalho entre as subcâmaras quente, fria, e isoladas quando esta existir, estes elementos podem ser de diversas formas geométricas, depende da exigência e dos parâmetros do projeto, poderá, por exemplo, ser em forma de discos, em forma cilíndrica ou outra que permita a movimentação do gás de trabalho de forma controlada entre as subcâmaras. [035] Conversion chambers, items that characterize the hybrid or binary system, may be constructed of various materials, depending on design temperatures, working gas used, pressures involved, environment and operating conditions. These chambers each have three sub-chambers and these must be designed keeping in mind the requirement of thermal insulation with each other to minimize the flow of energy from hot to cold areas, this condition is important for the overall efficiency! of system. These chambers have internal elements that move the working gas between the hot, cold, and insulated sub chambers where they exist, these elements can be of various geometric shapes, depending on the requirement and design parameters, could for example be in shape. discs in cylindrical or other form allowing the working gas to be controlled in a controlled manner between the sub chambers.
[036] O elemento de transferência de massa, 34, interliga as duas câmaras, 33 e 35, este elemento é o responsável pela transferência de parte da massa de gás de trabalho entre as câmaras que ocorre em momento específico durante os processos isocóricos. Este elemento poderá ser projetado de várias formas dependendo das exigências do projeto, poderá operar peia simples diferença de pressão, ísto é em forma de válvula, ou poderá operar de modo forçado, por exemplo, em forma de turbina, em forma de pistões ou em outra forma geométrica que lhe permita executar a transferência de massa de parte do gás de trabalho.  The mass transfer element 34 interconnects the two chambers 33 and 35, this element is responsible for the transfer of part of the working gas mass between the chambers that occurs at a specific time during isochoric processes. This element may be designed in various ways depending on the requirements of the project, may operate by simple pressure difference, this is valve shaped, or may operate in a forced manner, for example turbine, piston shaped or in another geometric shape allowing it to perform the mass transfer of part of the working gas.
[037] os regeneradores ativos, 310 e 314, operam com um gás de trabalho específico e este gás armazena a energia do gás do motor durante os processos isocóricos de abaixamento de temperatura através da expansão interna e regenera, isto é, devolve esta energia para o gás do motor durante os processos isocóricos de elevação da temperatura através da compressão. Este regenerador é chamado de regenerador ativo por realizar o seu processo de regeneração dinamicamente através de elementos mecânicos móveis e de um gás de trabalho próprio, diferentemente dos regeneradores conhecidos, passivos, os quais operam através de troca térmica entre o gás e um elemento estático, operante por condução de calor eníre o gás o seu corpo. No caso em que for considerado no projeto o uso de regenerador passivo, este geralmente opera com troca de calor por condução eníre o gás de trabalho e os elementos que formam o regenerador. Os regeneradores passivos não utilizam gás e elementos móveis.  [037] active regenerators 310 and 314 operate with a specific working gas and this gas stores the energy of the engine gas during isocoric temperature lowering processes through internal expansion and regenerates, ie returns this energy to engine gas during isocoric processes of temperature rise through compression. This regenerator is called an active regenerator because it performs its regeneration process dynamically through moving mechanical elements and its own working gas, unlike known passive regenerators, which operate by thermal exchange between the gas and a static element, operant by conduction of heat enters the gas your body. Where the use of a passive regenerator is considered in the project, it usually operates with conduction heat exchange between the working gas and the elements that form the regenerator. Passive regenerators do not use gas and moving elements.
[038] O elemento de força motriz, 312, é o responsável por executar o trabalho mecânico e disponibifizá-ϊο para usos. Este elemento de força motriz opera pelas forças do gás de trabalho do motor, este elemento poderá ser projetado de várias formas, dependendo das exigências de projeto, poderá, por exemplo, ser em forma de turbina, em forma de pistões com cilindro, bielas, virabrequins, em forma de diafragma ou em outra forma que permita a realização de trabalho a partir das forças do gás durante as conversões termodinâmicas. [038] The driving force element, 312, is responsible for performing the work. mechanical and make it available for use. This driving force element operates by the working gas forces of the engine, this element may be designed in various ways, depending on the design requirements, may for example be turbine shaped, cylinder piston shaped, connecting rods, crankshafts, in the form of a diaphragm or otherwise permitting work to be performed from gas forces during thermodynamic conversions.
DESCRIÇÃO DOS DESENHOS DESCRIPTION OF DRAWINGS
[039] As figuras anexas demonstram as principais características e propriedades dos conceitos antigos das máquinas térmicas e as inovações propostas baseadas no sistema híbrido ou binário, nas quais estão representadas:  [039] The attached figures show the main characteristics and properties of the old concepts of thermal machines and the proposed innovations based on the hybrid or binary system, in which they are represented:
A figura 1 representa o conceito de sistema termodinâmico aberto e o conceito de sistema termodinâmico fechado;  Figure 1 represents the concept of open thermodynamic system and the concept of closed thermodynamic system;
A figura 2 representa a característica de todos os ciclos termodinâmicos fundamentados nos sistemas aberto e fechado;  Figure 2 represents the characteristic of all thermodynamic cycles based on open and closed systems;
A figura 3 mostra a ideia original da máquina térmica de Camot, conceituada em 1824 por Nicolas Sadi Camot;  Figure 3 shows the original idea of the Camot thermal machine, conceptualized in 1824 by Nicolas Sadi Camot;
A figura 4 representa o conceito de sistema termodinâmico híbrido ou binário;  Figure 4 represents the concept of hybrid or binary thermodynamic system;
A figura 5 representa a característica dos ciclos termodinâmicos diferenciais fundamentados no sistema híbrido ou binário;  Figure 5 represents the characteristic of differential thermodynamic cycles based on hybrid or binary system;
A figura 6 mostra o sistema termodinâmico híbrido ou binário e um cicio termodinâmico diferencial e o detalhe dos dois processos termodinâmicos que ocorrem simultaneamente;  Figure 6 shows the hybrid or binary thermodynamic system and a differential thermodynamic cycle and the detail of the two simultaneously occurring thermodynamic processes;
A figura 7 mostra o modelo mecânico constituído pelos dois subsistemas termodinâmicos que formam um motor térmico sob o conceito de sistema híbrido ou binário e seu regenerador ativo;  Figure 7 shows the mechanical model consisting of the two thermodynamic subsystems that form a thermal motor under the concept of hybrid or binary system and its active regenerator;
A figura 8 mostra o motor indicando a fase em que um dos regeneradores, elemento 310, equaliza a sua temperatura à temperatura da fonte quente; A figura 9 mostra o motor indicando a fase em que o segundo regenerador, elemento 314, equaiiza a sua temperatura a temperatura da fonte quente; Figure 8 shows the motor indicating the phase at which one of the regenerators, element 310, equalizes its temperature to the hot source temperature; Figure 9 shows the motor indicating the phase at which the second regenerator, element 314, equalizes its temperature with the temperature of the hot source;
A figura 10 mostra um dos subsistemas, grupo 31 , realizando o processo isobárico de alta temperatura do ciclo termodinâmico e o segundo subsistema, grupo 37, realizando o processo isobárico de baixa temperatura do cicio termodinâmico;  Figure 10 shows one of the subsystems, group 31, performing the high temperature isobaric process of the thermodynamic cycle and the second subsystem, group 37, performing the low temperature isobaric process of the thermodynamic cycle;
A figura 11 mostra um dos subsistemas, grupo 31 , realizando o processo isocórico de abaixamento da temperatura, do cicio termodinâmico e o segundo subsistema, grupo 37, realizando o processo isocórico de levantamento da temperatura do ciclo termodinâmico;  Figure 11 shows one of the subsystems, group 31, performing the isocoric temperature lowering process of the thermodynamic cycle and the second subsystem, group 37, performing the isocoric temperature raising process of the thermodynamic cycle;
A figura 12, mostra por sua vez, o primeiro subsistema, grupo 31 , realizando o seu processo isobárico de baixa temperatura do cicio termodinâmico e o segundo subsistema, grupo 37, realizando o processo isobárico de aita temperatura do cicio termodinâmico;  Figure 12 shows in turn the first subsystem group 31 performing its low temperature isobaric thermodynamic cycle process and the second subsystem group 37 performing the isobaric process high temperature of the thermodynamic cycle;
A figura 13 mostra primeiro subsistema, grupo 31 , realizando o processo isocórico de levantamento da temperatura, do ciclo termodinâmico e o segundo subsistema, grupo 37, realizando o processo isocórico de abaixamento da temperatura do ciclo termodinâmico;  Figure 13 shows the first subsystem, group 31, performing the isocoric temperature raising process of the thermodynamic cycle and the second subsystem, group 37, performing the isocoric process of temperature lowering of the thermodynamic cycle;
A figura 14 mostra o ciclo termodinâmico ideal do regenerador ativo; Figure 14 shows the ideal thermodynamic cycle of the active regenerator;
A figura 15 mostra o detalhe do ciclo termodinâmico de um dos subsistemas e o cicio termodinâmico no processo de transferência de calor para o seu respectivo regenerador ativo; Figure 15 shows the detail of the thermodynamic cycle of one of the subsystems and the thermodynamic cycle in the heat transfer process for its respective active regenerator;
A figura 16 mostra o detalhe do ciclo termodinâmico de um dos subsistemas e o ciclo termodinâmico no processo de regeneração do caíor por parte de seu respectivo regenerador ativo;  Figure 16 shows the detail of the thermodynamic cycle of one of the subsystems and the thermodynamic cycle in the process of the regeneration of the chore by its respective active regenerator;
A figura 17 mostra o ciclo termodinâmico diferencial ideal composto por dois processos isobáricos de aita temperatura, dois processos isobáricos de baixa temperatura dois processos isocóricos de abaixamento de temperatura, transferência de caior, dois processos isocóricos de elevação de temperatura, regeneração de calor, e os processos termodinâmicos do regenerador ativo;Figure 17 shows the ideal differential thermodynamic cycle composed of two high temperature isobaric processes, two low temperature isobaric processes two isocoric temperature lowering processes, caior transfer, two isocoric temperature raising processes, heat regeneration, and the thermodynamic processes of the active regenerator;
A figura 18 mostra um exemplo de aplicação do motor para uma planta geradora de eletricidade tendo como fonte primária a energia geotermai; Figure 18 shows an example of motor application for an electricity generating plant having geothermal energy as its primary source;
A figura 19 mostra um exemplo de aplicação do motor para uma planta geradora de eletricidade tendo como fonte primária a energia termossolar;  Figure 19 shows an example of motor application for an electricity generating plant having thermosolar energy as its primary source;
A figura 20 mostra um exemplo de aplicação do motor de ciclo diferencial para um projeto de um sistema combinado, formando um ciclo combinado com um motor de combustão interna do sistema aberto.  Figure 20 shows an example of differential cycle engine application for a combined system design, forming a combined cycle with an open system internal combustion engine.
DESCRIÇÃO DETALHADA DO INVENTO DETAILED DESCRIPTION OF THE INVENTION
[040] O motor de cicio diferencial constituído por dois processos isobáricos de aita temperatura, dois processos isobáricos de baixa temperatura, dois processos isocóricos de transferência de calor, dois processos tsocóricos de regeneração de calor com regenerador ativo ou passivo é fundamentado em um sistema termodinâmico híbrido, ou também pode ser denominado de sistema termodinâmico binário por possuir dois subsistemas termodinâmicos interdependentes os quais cada um realiza um ciclo termodinâmico que interagem-se entre si, podendo trocar calor, trabalho e massa conforme é representado na figura 4. Em 22, da figura 4, é mostrado o sistema híbrido ou binário, composto por dois subsistemas indicados por 21 e 23.  [040] The differential cycling motor consisting of two high temperature isobaric processes, two low temperature isobaric processes, two isocoric heat transfer processes, two tsocoric heat regeneration processes with active or passive regenerator is based on a thermodynamic system hybrid, or it can also be called binary thermodynamic system because it has two interdependent thermodynamic subsystems which each perform a interacting thermodynamic cycle and can exchange heat, work and mass as depicted in figure 4. In 22, of Figure 4 shows the hybrid or binary system composed of two subsystems indicated by 21 and 23.
[041] Na figura 6 é mostrado novamente o sistema termodinâmico híbrido ou binário e o ciclo termodinâmico diferencial, detalhando, neste caso os processos, que quando em um dos subsistemas, no tempo (t1) o ciclo opera com massa (m1), número de mol (n1) e temperatura (Tq), neste mesmo instante, simultaneamente, no outro subsistema, o ciclo opera com massa (m2), número de moi (n2), temperatura (Tf). Em uma máquina baseada em um sistema híbrido ou binário, composto por dois subsistemas, a soma da massa de gás de trabalho é sempre constante (m1 + m2 = cie), porém não necessariamente são constantes nos seus respectivos subsistemas, entre eles pode haver troca de massa. [041] Figure 6 shows again the hybrid or binary thermodynamic system and the differential thermodynamic cycle, detailing in this case the processes that when in one of the subsystems, at time (t1) the cycle operates with mass (m1), number mol (n1) and temperature (Tq), at the same time, simultaneously, in the other subsystem, the cycle operates with mass (m2), number of moi (n2), temperature (Tf). In a machine based on a hybrid or binary system composed of two subsystems, the sum of the working gas mass is always constant (m1 + m2 = cie), but not necessarily constant in their respective subsystems, there may be exchange between them. of mass.
[042] Na figura 7 é mostrado o modelo de motor baseado no sistema híbrido ou binário, contendo dois subsistemas indicado por 31 e 37. Cada subsistema possui sua câmara de conversão íermomecânica, 33 e 35, um elemento de força motriz, 312, um regenerador ativo, 310 e 314, seus eixos de transmissão, respectivamente, 38, 39, 311 e 313, 315, 316. Fazendo conexão entre os subsistemas para os processos de transferência de massa, há um elemento de transferência de massa 34. [042] Figure 7 shows the engine model based on the hybrid system. or binary, containing two subsystems indicated by 31 and 37. Each subsystem has its thermomechanical conversion chamber, 33 and 35, a driving force element, 312, an active regenerator, 310 and 314, its transmission shafts, respectively, 38, 39, 311 and 313, 315, 316. Linking the subsystems for mass transfer processes is a mass transfer element 34.
[043] Na figura 8 e figura 9 é mostrado o processo responsável por gerar o estado inicial de operação dos regeneradores, 310 e 314. No estado inicial de operação, os regeneradores são ambos, levados a equalizar-se com a temperatura da fonte quente (Tq), Na figura 8, enquanto um dos subsistemas, 31 , realiza seu processo isobárico de alfa temperatura, seu respectivo regenerador é pressurizado por força mecânica através das transmissões, 38, 39 e 311 , equalizando-se com a temperatura do gás de trabalho do subsistema 31 em (Tq), mostrado no gráfico da figura 14 no trajeto indicado em 71. Na figura 9T enquanto o segundo subsistema, 37, realiza seu processo isobárico de alta temperatura, seu respectivo regenerador é pressurizado por força mecânica através das transmissões, 316, 315 e 313, equaiizando-se com a temperatura do gás de trabalho do subsistema 37 em (Tq), mostrado também no gráfico da figura 14 no trajeto indicado em 71. [043] Figure 8 and Figure 9 show the process responsible for generating the initial operating state of the regenerators 310 and 314. In the initial operating state, the regenerators are both equalized with the hot source temperature. (Tq) In Figure 8, while one of the subsystems, 31, performs its alpha temperature isobaric process, its respective regenerator is mechanically pressurized through transmissions 38, 39 and 311, equalizing with the gas temperature of subsystem 31 in (Tq), shown in the graph of figure 14 in the path indicated in 71. In figure 9 T while the second subsystem, 37, performs its high temperature isobaric process, its regenerator is mechanically pressurized through the 316, 315 and 313, equalizing with the working gas temperature of subsystem 37 at (Tq), also shown in the graph of figure 14 on the path indicated at 71.
[044] As figuras 10, 11 , 12 e 13 mostram como ocorrem mecanicamente os oito processos, quatro isobáricos e quatro isocóricos com transferência de massa e com regeneração do calor. Na figura 10, o subsistema 31 expõe o gás de trabalho à fonte quente, na temperatura (Tq), indicado em 317, este subsistema executa o processo isobárico de alta temperatura e simultaneamente o subsistema indicado por 37 expõe o gás de trabalho à fonte fria, na temperatura (Tf), indicado em 318, e neste instante, simultaneamente, este subsistema executa o processo isobárico de baixa temperatura. Estes processos se alternam ente os subsistemas, conforme mostrado na figura 12. Após finalização dos processos isobáricos, na figura 11 e 13são mostrados como os subsistemas processam os seus respectivos processos isocóricos com ou sem transferência de massa e com regeneração, após o subsistema 31 finalizar seu processo isobárico de alta temperatura, o gás é exposto a uma região isolada termicamente, indicado por 32, o gás, inicialmente na temperatura quente (Tq), cede calor para o regenerador 310 o qual parte do estado quente, expande o gás interno até retirar o calor do gás de trabalho e seu próprio, até atingir uma temperatura fria (Tf) através da expansão do gás, transferindo a energia para seu eixo em forma de energia mecânica, simultaneamente, parte do gás de trabaího do subsistema 31 , com pressão maior, é transferido para o subsistema 37 em pressão menor através do elemento de transferência de massa indicado em 34, concíui-se assim o processo isocórico de abaixamento da temperatura do subsistema 31 simultaneamente, o subsistema 37 recebe parte da massa de gás de trabalho do subsistema 31 , e ocorre também, simuitaneamente a regeneração do calor do regenerador 314, levando o gás da temperatura fria (Tf) para uma temperatura mais quente na qual inicia-se o processo isobárico de alta temperatura através da pressurização do gás interno do regenerador peia energia mecânica nos eixos obtida no processo de expansão, finalizando o processo isocórico de regeneração. E o subsistema 37 passa a ter massa maior que o subsistema 31. [1044] Figures 10, 11, 12 and 13 show how mechanically the eight processes, four isobaric and four isochoric with mass transfer and heat regeneration occur. In Figure 10, subsystem 31 exposes working gas to the hot source at the temperature (Tq) indicated at 317, this subsystem performs the high temperature isobaric process and simultaneously the subsystem indicated by 37 exposes working gas to the cold source. , at the temperature (Tf) indicated at 318, and at this time simultaneously, this subsystem performs the low temperature isobaric process. These processes alternate between the subsystems as shown in figure 12. After completion of the isobaric processes, figures 11 and 13 are shown how the subsystems process their respective isochoric processes. with or without mass transfer and with regeneration, after subsystem 31 finishes its high temperature isobaric process, the gas is exposed to a thermally insulated region, indicated by 32, the gas, initially at the hot temperature (Tq), yields heat to the regenerator 310 which starts from the hot state, expands the internal gas until it withdraws heat from the working gas and its own, until it reaches a cold temperature (Tf) by expanding the gas, transferring the energy to its energy axis. At the same time, part of the working gas of subsystem 31 with higher pressure is transferred to subsystem 37 at lower pressure by means of the mass transfer element indicated in 34, thus giving rise to the isochroic process of subsystem temperature lowering. 31 simultaneously, subsystem 37 receives part of the working gas mass of subsystem 31, and heat regeneration of regenerator 314 occurs simultaneously. moving the cold temperature gas (Tf) to a warmer temperature at which the high temperature isobaric process is initiated by pressurizing the regenerator internal gas by the mechanical energy in the axes obtained in the expansion process, ending the isochoric regeneration process. . And subsystem 37 has a larger mass than subsystem 31.
[045] O gráfico da figura 14 esclarece como o regenerador ativo funciona, a curva indicada por 71 mostra o processo iniciai para condicionar a operacionabilidade do regenerador, a curva indicada por 72 mostra o processo do regenerador em operação com o ciclo do motor, ocorre alternadamente e sequencialmente a transferência de calor do gás do motor para o regenerador, este saindo da temperatura quente (Tq) para a temperatura (Tf) e a regeneração quando o processo ocorre ao contrário, partindo da temperatura (Tf) para a temperatura (Tq). Estes processos sempre ocorrem durante as isocóricas do cicio do motor.  [045] The graph in figure 14 clarifies how the active regenerator works, the curve indicated by 71 shows the initial process for conditioning regenerator operability, the curve indicated by 72 shows the regenerator process in operation with the motor cycle, occurs. alternately and sequentially the heat transfer from the engine gas to the regenerator, from the hot temperature (Tq) to the temperature (Tf) and regeneration when the process occurs in reverse, from the temperature (Tf) to the temperature (Tq). ). These processes always occur during the engine cycle isocoric.
[046] A curva 71 da figura 14 é um processo adiabático e sua energia na unidade (Joule) é representada peia seguinte expressão:
Figure imgf000022_0001
[046] Curve 71 of Fig. 14 is an adiabatic process and its unit energy (Joule) is represented by the following expression:
Figure imgf000022_0001
[047] Esta energia (W71) é a energia interna do gás do próprio regenerador que permanece internamente durante todo o tempo em que o motor estará funcionando. [047] This energy (W 71 ) is the internal energy of the regenerator's own gas that remains internally for as long as the engine will be running.
[048] A curva 72 da figura 14 também é um processo adiabáíico e sua energia na unidade (Joule) é representada peia seguinte expressão:
Figure imgf000022_0003
[048] Curve 72 of Figure 14 is also an adiabatic process and its unit energy (Joule) is represented by the following expression:
Figure imgf000022_0003
[049] O primeiro termo da energia
Figure imgf000022_0004
é a própria energia interna do gás mostrado por e permanece indefinidamente no regenerador, o segundo
Figure imgf000022_0002
[049] The first term of energy
Figure imgf000022_0004
is the internal energy of the gas itself shown by and remains indefinitely in the regenerator, the second
Figure imgf000022_0002
termo, é a energia das adiabáticas do eido do motor nos processo isocóricos, porém os parâmetros (Tq) e (77) são substituídos pelos parâmetros do respectivo intervalo em que ocorrem a transferência de calor para o regenerador e a regeneração, ambos são iguais. term, is the energy of the engine eia adiabatic in the isocoric processes, but the parameters (Tq) and (77) are replaced by the parameters of the respective range in which heat transfer to the regenerator and regeneration occur, both are equal.
[050] O processo termodinâmico da curva 72 da figura 14 ocorre nas condições mostradas nos desenhos mecânicos das figuras 11 e 13.  The thermodynamic process of curve 72 of FIG. 14 takes place under the conditions shown in the mechanical drawings of FIGS. 11 and 13.
[051] A figura 15 mostra em 73 os processos que formam o ciclo de um dos subsistemas. O processo (b-c) do ciclo mostrado em 73 é isocórico e inicia no ponto (b) a volume constante na temperatura quente (Tq), com (n1 ) mol de gás e segue para o ponto (c), transferindo parte da massa de gás, equivalente a (n1 -n2) mol de gás para o outro subsistema e transferindo seu calor (energia) para o regenerador, chegando ao ponto (c) numa temperatura mais fria de início do processo isobárico (Tc) e com (n2) mol de gás. O gráfico 75 mostra o processo em que o regenerador retira o calor do gás do subsistema, através da expansão do gás interno do regenerador ativo. [051] Figure 15 shows in 73 the processes that form the cycle of one of the subsystems. Process (bc) of the cycle shown at 73 is isochoric and starts at point (b) at constant volume at warm temperature (Tq) with (n1) mol of gas and proceeds to point (c), transferring part of the mass of gas, equivalent to (n1 -n2) mol of gas to the other subsystem and transferring its heat (energy) to the regenerator, reaching point (c) at a colder temperature of onset of the isobaric process (Tc) and with (n2) mol of gas. Graph 75 shows the process in which the regenerator removes heat from the subsystem gas by expanding the internal gas from the active regenerator.
[052] A figura 16 mostra em 77, simultaneamente ao ciclo mostrado na figura 15, os processos que formam o ciclo do outro subsistema que compreende o conceito do motor formado por dois subsistemas interdependentes. O processo isocórico (b-c) mostrado na figura 15 no primeiro subsistema é de abaixamento da temperatura do gás, a sua energia é transferida ao regenerador ativo, simultaneamente ocorre no segundo subsistema um processo isocórico (4-1) de crescimento da temperatura, mostrado na figura 16, a massa de gás equivalente a (n1 - n2) mol de gás do primeiro subsistema é transferido a partir do ponto (b), mostrado em 73, para o segundo subsistema, indicado no detalhe 78, figura 16, o qual inicia este processo isocórico com (n2) mol de gás em (4) e chega em (1) com (n1) moi de gás em uma temperatura mais quente (11) recebida da energia armazenada do regenerador ativo, cuja curva de seu processo está indicada em 76. Fig. 16 shows at 77, simultaneously with the cycle shown in Fig. 15, the processes that form the cycle of the other subsystem comprising the motor concept formed by two interdependent subsystems. The isochoric process (bc) shown in figure 15 in the first subsystem is of gas temperature lowering, its energy is transferred to the active regenerator, Simultaneously occurs in the second subsystem an isochoric process (4-1) of temperature growth, shown in Figure 16, the gas mass equivalent to (n1 - n2) mol of gas of the first subsystem is transferred from point (b), shown at 73 for the second subsystem, indicated in detail 78, figure 16, which initiates this isochoric process with (n2) mol of gas at (4) and arrives at (1) with (n1) moi of gas at a temperature warmer (11) received from the stored energy of the active regenerator, whose process curve is indicated at 76.
[053] A figura 17 mostra o ciclo diferencial ideal do motor, de oito processos, completo, baseado no conceito de sistema termodinâmico híbrido ou binário, onde sempre ocorrem dois processos simultâneos no motor, exemplificado pelas indicações 86 e 88, até formar o ciclo completo de oito processos e cicios de dois processos em cada um dos dois regeneradores ativos. Em 82, a sequência (1-2-3-4-1) mostra os processos de um dos subsistemas que formam o cicio do motor, a sequencia (a-b-c-d-a) mostra os processos do outro subsistema, em 81 são mostrados os processos de um dos regeneradores ativos, em 83 são mostrados os processos do outro regenerador ativo, todos interdependentes.  [053] Figure 17 shows the complete eight-process ideal engine differential cycle based on the concept of hybrid or binary thermodynamic system, where two simultaneous engine processes always occur, exemplified by indications 86 and 88, until the cycle is formed. of eight processes and two process cycles in each of the two active regenerators. At 82, the sequence (1-2-3-4-1) shows the processes of one of the subsystems that form the engine cycle, the sequence (abcda) shows the processes of the other subsystem, at 81 the processes of a of the active regenerators, 83 shows the processes of the other active regenerator, all interdependent.
[054] Na figura 17, em 82. A curva indicada por 87 mostra os processos (a-b- c-d-a) de um dos subsistemas, o processo (a-b) é isobárico de alta temperatura onde ocorre a entrada de energia no sistema, ocorre simultaneamente com o processo isobárico de baixa temperatura (3-4) por onde ocorre o descarte da energia não utilizada, da curva indicada por 85 do outro subsistema. O processo (b-c) é isocórico de abaixamento de temperatura, ocorre simultaneamente com o processo (4-1), também isocórico, porém de aumento da temperatura, no processo (b-c) ocorre a transferência de calor (energia) do gás do motor para o regenerador mostrado em 83, num processo adiabáíico indicado peia curva 89, simultaneamente no processo (4-1) ocorre a regeneração do calor (energia) para o gás do motor recebida do regenerador mostrado em 81 , também num processo adiabático indicado peta curva 84, simultaneamente ainda, durante os processo isocóricos do eido do motor e durante os processo adiabáticos dos regeneradores ativos, ocorre a transferência de massa» saindo (n1 - n2) mol de gás no processo (b-c), para o outro subsistema, durante o processo isocórico (4-1), mostrado no detalhe 78 na curva do gráfico 77 na figura 16. Os processos (2-3) e (d-a) são idênticos aos processos (b-c) e (4-1 ). O processo (c-d) é isobárico de baixa temperatura e ocorre simultaneamente ao processo (1-2), isobárico de aita temperatura, adiabáticos. A soma da massa de gás de trabaího dos dois subsistemas que formam o motor é sempre constante, [054] In Figure 17, at 82. The curve indicated by 87 shows the processes (abcda) of one of the subsystems, process (ab) is high temperature isobaric where energy enters the system, occurs simultaneously with the low temperature isobaric process (3-4) whereby unused energy is disposed of from the curve indicated by 85 from the other subsystem. Process (bc) is isocoric of temperature lowering, occurs simultaneously with process (4-1), also isochoric, but of temperature increase, in process (bc) occurs the heat transfer (energy) of the engine gas to the regenerator shown at 83, in an adiabatic process indicated by curve 89, simultaneously in process (4-1), heat (energy) regeneration occurs for the engine gas received from the regenerator shown in 81, also in an adiabatic process indicated by curve 84 , simultaneously simultaneously, during the isochoric processes of the engine eid and adiabatic processes of the active regenerators, mass transfer occurs »leaving (n1 - n2) mol of gas in process (bc) to the other subsystem during the isochoric process (4-1), shown in detail 78 in the curve of graph 77 in figure 16. Processes (2-3) and (da) are identical to processes (bc) and (4-1). Process (cd) is low temperature isobaric and occurs concurrently with adiabatic, high temperature isobaric process (1-2). The sum of the working gas mass of the two subsystems forming the engine is always constant,
[055] Nas câmaras de conversão do motor, os processos isobáricos do cicio do motor (1-2), (a-b), (3-4) e (c-d) são realizados com o gás confinado em uma geometria caracterizada por uma inércia térmica em que o gás tenha uma taxa de variação da temperatura tai que o mesmo tende a equalizar com os elementos quentes ou frios apenas no finai destes processos, fazendo que a pressão fique relativamente estável, isto é, isobárica. Esta geometria deve ser caracterizada por uma profundidade não muito pequena para a penetração do calor no gás, ou por um deslocamento do gás entre os elementos quentes e frios não muito rápido de forma a produzir uma taxa de variação da temperatura em todo o processo isobárico fazendo com que a pressão tenha um comportamento constante. Os processos isocóricos do cicio do motor (2-3) e (b-c) são realizados com o gás em uma região isolada termicamente ou na transição entre as áreas quentes e frias do motor, e neste processo o regenerador em contato térmico com o gás de trabaího realizará uma expansão rápida, adiabática, transferindo a energia do gás para os elementos mecânicos do regenerador, armazenando a energia em forma de energia cinética e nos processos isocóricos do ciclo do motor (4-1) e (d-a) são realizados também com o gás em uma região isolada termicamente ou na transição entre as áreas quentes e frias do motor, e neste processo o regenerador em contato térmico com o gás de trabalho realizará uma compressão rápida, adiabática, transferindo a energia cinética de seus elementos de volta para o gás do motor, elevando sua temperatura, concluindo a regeneração. In engine conversion chambers, isobaric processes of the engine cycle (1-2), (ab), (3-4) and (cd) are performed with the gas confined in a geometry characterized by a thermal inertia. wherein the gas has a rate of change of temperature such that it tends to equalize with hot or cold elements only at the end of these processes, making the pressure relatively stable, that is, isobaric. This geometry shall be characterized by a depth not too small for the penetration of heat into the gas, or a gas displacement between the hot and cold elements not too fast to produce a rate of change in temperature throughout the isobaric process. that the pressure has a constant behavior. The isochoric processes of the engine cycle (2-3) and (bc) are performed with the gas in a thermally insulated region or in the transition between the hot and cold areas of the engine, and in this process the regenerator in thermal contact with the gas. will perform rapid adiabatic expansion by transferring the energy of the gas to the mechanical elements of the regenerator, storing the energy in the form of kinetic energy, and in the isocoric processes of the motor cycle (4-1) and (da) are also performed with gas in a thermally insulated region or in the transition between hot and cold areas of the engine, and in this process the regenerator in thermal contact with the working gas will perform rapid adiabatic compression, transferring the kinetic energy of its elements back to the gas. engine raising its temperature, completing the regeneration.
[056] A tabela 1 mostra processo por processo que formam o cicio diferencial de oito processos do motor térmico mostrados passo a passo, com quatro processos isobáricos, quatro processos isocóricos e o ciclo termodinâmico com dois processos adiabáticos do regenerador ativo e etapas de transferência de massa.  [056] Table 1 shows process-by-process forming the differential cycle of eight thermal motor processes shown step by step, with four isobaric processes, four isochoric processes, and the thermodynamic cycle with two active regenerator adiabatic processes and transfer steps. pasta.
Tabela 1  Table 1
Figure imgf000025_0002
Figure imgf000025_0002
[057] Este ciclo diferenciai de um motor composto por dois subsistemas baseado no conceito de sistema híbrido ou binário, cuja curva da pressão e do volume é indicado na figura 17, possuí oito processos, dois processos isobáricos de alta temperatura de entrada de energia no sistema, curvas (1-2) e (a-b) são representadas pelas expressões (f) e {g}, dois processos isobáricos de baixa temperatura de descarte da energia não utilizada, curvas (3-4) e (c-d) representados peias expressões (h) e (i), dois processos isocóricos de transferência de caior (2-3) e (b-c) por meio de um regenerador ativo, representados peias expressões (j) e (k), dois processos isocóricos de regeneração de calor (4-1) e (d-a), representados peias expressões (I) e (m). As expressões consideram o sinal do sentido do fluxo das energias.
Figure imgf000025_0001
[057] This differentiated cycle of a motor composed of two subsystems based on the concept of hybrid or binary system, whose pressure and volume curve is shown in figure 17, has eight processes, two high temperature isobaric processes of energy input in the In the system, curves (1-2) and (ab) are represented by expressions (f) and {g}, two low temperature isobaric processes of discarding unused energy, curves (3-4) and (cd) represented by expressions. (h) and (i), two isochoric processes of transfer of caior (2-3) and (bc) by means of an active regenerator, represented by the expressions (j) and (k), two isocoric processes of heat regeneration ( 4-1) and (da), represented by the expressions (I) and (m). Expressions consider the direction signal of the flow of energies.
Figure imgf000025_0001
Figure imgf000026_0001
Figure imgf000026_0001
Í058] Considerando que
Figure imgf000026_0005
o total de energia de entrada no motor é a soma das energias
Figure imgf000026_0006
é representada peia expressão (n) abaixo.
Figure imgf000026_0002
Whereas
Figure imgf000026_0005
the total input energy in the motor is the sum of the energies
Figure imgf000026_0006
is represented by the expression (n) below.
Figure imgf000026_0002
[059] Considerando que (73 = Tc) e (74 = 7c/), o totai de energia descartada para o meio exterior é a soma das energias
Figure imgf000026_0007
e na sua forma positiva, é representada pela expressão (o) abaixo.
Figure imgf000026_0003
Whereas (73 = Tc) and (74 = 7c /), the total amount of energy discarded to the outside is the sum of the energies
Figure imgf000026_0007
and in its positive form, is represented by the expression (o) below.
Figure imgf000026_0003
[060] O trabalho útii totaí do motor, considerando um modelo ideai sem perdas, é a diferença entre a entrada e a saída da energia e é representado pela expressão (p) abaixo.
Figure imgf000026_0004
[060] The useful work of the motor, considering a lossless ideal model, is the difference between the input and output of the energy and is represented by the expression (p) below.
Figure imgf000026_0004
[061] Os processos isocóricos, mostrados pelas expressões (j), (k), (I) e (m) são iguais e regenerativos, a energia é transferida no processo de abaixamento de temperatura e regenerada nos processos de aumento da temperatura, isto é, a energia se conserva nos subsistemas.  [061] The isochoric processes, shown by the expressions (j), (k), (I) and (m) are equal and regenerative, energy is transferred in the temperature lowering process and regenerated in the temperature raising processes, ie that is, energy is conserved in the subsystems.
[062] A demonstração final teórica da eficiência do ciclo diferenciai de oito processos, quatro processos isobáricos, quatro processos tsocóricos com transferência de massa e regenerador ativo é dada pela expressão (q), caracterizando que os ciclos diferenciais baseados no sistema termodinâmico 095 [062] The theoretical final demonstration of the differential cycle efficiency of eight processes, four isobaric processes, four mass transfer tsocoric processes and active regenerator is given by the expression (q), characterizing that differential cycles based on the thermodynamic system 095
25  25
híbrido ou binário possuem como parâmetro da eficiência, também o número de moles ou massa nos processos e portanto estes cicios não possuem suas eficiências dependentes exclusivamente das temperaturas.
Figure imgf000027_0001
Hybrid or binary also have as a parameter of efficiency the number of moles or mass in the processes and therefore these cycles do not have their efficiencies solely dependent on temperatures.
Figure imgf000027_0001
EXEMPLOS DE APLICAÇÕES  APPLICATION EXAMPLES
[063] Os motores de ciclo diferenciais baseados no sistema híbrido ou binário operam com caíor, não exigem combustão, embora possa ser utilizada, não exige queima de combustíveis, embora possa ser utilizada, portanto podem operar em ambientes com ou sem atmosfera. O ciclo termodinâmico não exige troca de fase física do gás de trabalho. Petas suas propriedades expostas nesta descrição, os motores de cicio diferenciais podem ser projetados para operar em uma larga faixa de temperatura, superiores à maioria dos ciclos motores existentes baseados nos sistema aberto ou fechado. Os motores de ciclo diferenciais são totalmente flexíveis quanto à fonte da energia (calor), na figura 18 é mostrado uma aplicação para o emprego do motor de ciclo diferencial para a geração de energia a partir de fontes geotermais. A figura 18 mostra um sistema de transferência de calor do solo 96 para um coletor 94, formado basicamente por uma bomba 97 que injeta um fluido, normalmente água, pelo duto 93. O calor no coleíor 94 é transferido para o motor de cicio diferencial 91, o qual descarta parte da energia para o meio externo através do trocador de calor 95 e converte outra parte da energia em trabalho, operando um gerador 92 o qua! produz eletrtcidade,  [063] Hybrid or torque based differential cycle motors operate on heat, do not require combustion, although they can be used, do not require fuel combustion, although they can be used, so they can operate in environments with or without atmosphere. The thermodynamic cycle does not require physical phase change of the working gas. Due to their properties set forth in this description, differential cycling motors can be designed to operate over a wide temperature range, superior to most existing open or closed system based motor cycles. Differential cycle motors are fully flexible in terms of their energy source (heat). Figure 18 shows an application for the use of differential cycle motors for power generation from geothermal sources. Figure 18 shows a ground heat transfer system 96 for a manifold 94, formed basically by a pump 97 that injects a fluid, usually water, through the duct 93. The heat in the collector 94 is transferred to the differential motor 91 , which discards part of the energy to the outside through the heat exchanger 95 and converts another part of the energy into work by operating a generator 92 or so. produces electricity,
[064] A figura 19 mostra outra aplicação útil para o motor de cicio diferencial para a produção de energia a partir do calor do sol. Os raios solares são cofetados através do concentrador 103, a energia (calor) é transferida para o elemento 104 o qual direciona o calor para o motor de ciclo diferencial 101 , este converte parte da energia em trabalho útil para operar um gerador de eletrtcidade, 102, parte da energia é descartada ao meio externo através do trocador 105.  [064] Figure 19 shows another useful application for the differential cycling motor for producing heat from the sun's heat. The sun's rays are cofected through the concentrator 103, the energy (heat) is transferred to the element 104 which directs the heat to the differential cycle motor 101, which converts part of the energy into useful work to operate an electricity generator. , part of the energy is discharged to the external environment through the exchanger 105.
[085] A figura 20 mostra outra aplicação útil para o motor de ciclo diferencial para melhorar a eficiência de motores de combustão interna, formando cicios combinados com estes. O caíor rejeitado pelas exaustões, 116, dos motores de combustão interna, indicado por 112, alimentados por combustíveis, 117, de ciclo Brayton, ciclo Diesel, ciclo Sabathe, cicio Otto, ciclo Atkínson, são canalizados para a entrada de energia (calor) do motor de ciclo diferencial, 111, através de um trocador 113, promovendo um fluxo de calor, 1111 , do motor de combustão interna, 112, em direção ao motor de cicio diferencial 111 e este converte parte desta energia em força mecânica útil, 1113 que pode ser integrada à força mecânica do motor de combustão interna, 1112 gerando uma força mecânica única, 118, ou direcionada a produzir energia elétrica. O descarte da energia não convertida pelo motor de cicio diferenciai segue para o meio externo indicado por 1110. Esta aplicação permite recuperar parte da energia que os ciclos dos motores de combustão interna não podem utilizar para a realização de trabalho útil e assim melhorar a eficiência geral do sistema. [085] Figure 20 shows another useful application for differential cycle motor. to improve the efficiency of internal combustion engines by forming combined cycles with these. The exhaust-rejected heat 116 of internal combustion engines, indicated by 112, fuel-fed engines 117, Brayton cycle, Diesel cycle, Sabathe cycle, cicio Otto, Atkínson cycle, is channeled to the input of energy (heat). of the differential cycle engine 111 via a heat exchanger 113 promoting a heat flow 1111 from the internal combustion engine 112 towards the differential cycling engine 111 and this converts part of this energy into useful mechanical force 1113 which can be integrated with the mechanical force of the internal combustion engine, 1112 generating a single mechanical force, 118, or directed to produce electrical energy. Discarding energy not converted by the differential cycle engine goes to the external medium indicated by 1110. This application allows you to recover some of the energy that internal combustion engine cycles cannot use to perform useful work and thus improve overall efficiency. of the system.

Claims

REIVINDICAÇÕES
1) "MOTOR TÉRMICO", caracterizado por ser composto por dois subsistemas termodinâmicos, (31) e (37), configurando um sistema termodinâmico binário ou híbrido, sendo cada subsistema formado por uma câmara, (33) e (35), contendo gás de trabalho e cada uma destas duas câmaras são formadas por três subcâmaras, uma aquecida:(33 com 317) e {35 com 42), uma resfriada, (33 com 41) e (35 com 318), e outra isolada, (33 com 32) e (35 com 36), conectado a estas duas câmaras há um elemento de força motriz, (312), cada subsistema possui um regenerador ativo ou passivo, (310) e (314), entre os subsistemas há um elemento de transferência de massa, (34), estes dois subsistemas executam simultaneamente cada um deles, um ciclo de quatro processos interdependentes formando um cicio termodinâmico diferencial, (82), único, de oito processos, sendo quatro deles isobáricos, (a-b), (1-2), (c-d) e (3- 4), quatro isocóricos, (b-c), (2-3), (d-a) e (4-1), com transferência de massa variável. 1) "THERMAL ENGINE", characterized by being composed of two thermodynamic subsystems, (31) and (37), configuring a binary or hybrid thermodynamic system, each subsystem consisting of a chamber, (33) and (35), containing gas each of these two chambers are formed by three sub-chambers, one heated : (33 with 317) and (35 with 42), one cold, (33 with 41) and (35 with 318), and one isolated, (33 with 32) and (35 with 36), connected to these two chambers is a driving force element, (312) each subsystem has an active or passive regenerator, (310) and (314), between the subsystems there is an element of mass transfer, (34) these two subsystems simultaneously execute each other, a cycle of four interdependent processes forming a unique differential thermodynamic cycle, (82) of eight processes, four of which is isobaric, (ab), (1 -2), (cd) and (3-4), four isochoric, (bc), (2-3), (da) and (4-1), with variable mass transfer.
2) "MOTOR TÉRMICO", de acordo com a reivindicação 1 , caracterizado por ser composto por duas câmaras, (33) e (35), cada câmara é dividida em três subcâmaras, uma subcâmara aquecida, (33 com 317) e (35 com 42), uma subcâmara resfriada, (33 com 41) e (35 com 318), e uma subcâmara isolada termicamente, (33 com 32) e (35 com 36), formando cada câmara, um subsistema, (31) e (37), e a junção destes dois subsistemas formam um sistema termodinâmico binário ou híbrido.  2. "THERMAL MOTOR" according to claim 1, characterized in that it comprises two chambers, (33) and (35), each chamber is divided into three sub-chambers, one heated sub-chamber, (33 with 317) and (35). 42), a cooled sub-chamber, (33 with 41) and (35 with 318), and a thermally insulated sub-camera, (33 with 32) and (35 with 36), each chamber forming a subsystem, (31) and ( 37), and the junction of these two subsystems form a binary or hybrid thermodynamic system.
3) "MOTOR TÉRMICO", de acordo com a reivindicação 1 , caracterizado por possuir um elemento de força motriz, (312), conectado às duas câmaras de conversão termodinâmicas, (33) e (35).  3) "THERMAL ENGINE" according to claim 1, characterized in that it has a driving force element, (312), connected to the two thermodynamic conversion chambers, (33) and (35).
4) "MOTOR TÉRMICO", de acordo com a reivindicação 1, caracterizado por possuir um regenerador ativo ou passivo, (310) e (314), em cada uma das câmaras.  "Thermal motor" according to claim 1, characterized in that it has an active or passive regenerator, (310) and (314), in each of the chambers.
5) "MOTOR TÉRMICO", de acordo com a reivindicação 1 , caracterizado por possuir um elemento de transferência de massa do gás de trabalho, (34), entre as câmaras. 5. "THERMAL ENGINE" according to claim 1, characterized in that it has a working gas mass transfer element (34) between the chambers.
6) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR TÉRMICO", para desenvolver o ciclo termodinâmico do motor das reivindicações 1 a 5, caracterizado por um processo executado pelo sistema binário ou híbrido formando um ciclo termodinâmico diferencial de oito processos termodinâmicos do motor, (82), sendo dois isobáricos de aita temperatura, (a-b) e (1-2), dois isobáricos de baixa temperatura, (c-d) e (3-4), dois isocóricos de abaixamento de temperatura com transferência de massa, (b-c) e (2-3), dois isocóricos de elevação da temperatura com recebimento de massa, (d-a) e (4-1), e dois processos adiabáticos, (84) e (89), do regenerador. 6. "THERMAL MOTOR THERMODYNAMIC CYCLE CONTROL PROCESS" for developing the engine thermodynamic cycle of claims 1 to 5, characterized by a process performed by the binary or hybrid system forming a differential thermodynamic cycle of eight engine thermodynamic processes, (82), being two high temperature isobarics, (ab) and (1-2), two low temperature isobarics, (cd) and (3-4), two mass transfer temperature lowering isocorics, (bc ) and (2-3), two mass-receiving isocoric temperature elevations, (da) and (4-1), and two adiabatic processes, (84) and (89), of the regenerator.
7) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR TÉRMICO", de acordo com a reivindicação 6, caracterizado por possuir um processo isobárico de alta temperatura, (a-b), em um dos subsistemas o qual é executado simultaneamente a outro processo isobárico de baixa temperatura, (3-4), no outro subsistema e um processo isobárico de baixa temperatura, (c-d) no primeiro subsistema que é executado simultaneamente a outro processo isobárico de alta temperatura, (1-2), no segundo subsistema, compondo os quatro processos isobáricos do ciclo,7) "CONTROL PROCESS FOR THE THERMAL DYNAMIC CYCLE OF THE THERMAL ENGINE" according to claim 6, characterized in that it has a high temperature isobaric process, (ab), in one of the subsystems which is performed simultaneously with another isobaric process of low temperature (3-4) in the other subsystem and a low temperature isobaric process (cd) in the first subsystem running simultaneously with another high temperature isobaric process (1-2) in the second subsystem, composing the four isobaric processes of the cycle,
8) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR TÉRMICO", de acordo com a reivindicação 6, caracterizado por possuir um processo isocórico de abaixamento de temperatura e transferência de massa, (b-c)r em um dos subsistemas o qual é executado simultaneamente a outro processo isocórico, (4-1), no segundo subsistema, sendo este segundo processo, de aumento da temperatura por meio da regeneração e este processo recebe a massa do processo de abaixamento da temperatura e um processo isocórico de elevação de temperatura, regenerativo com aumento de massa, (d-a), no primeiro subsistema, simultaneamente a um processo isocórico de abaixamento de temperatura, e transferência de massa, (2-3), do segundo subsistema, compondo os quatro processos isocóricos do ciclo. 8. "CONTROL PROCESS FOR THE THERMAL DYNAMIC CYCLE OF THE THERMAL ENGINE" according to claim 6, characterized in that it has an isochoric process of lowering temperature and mass transfer, (bc) r in one of the subsystems which is executed simultaneously. to another isochoric process, (4-1), in the second subsystem, which is the second process of temperature rise by regeneration and this process receives the mass of the temperature lowering process and an isochoric process of temperature elevation, regenerative. with mass increase (da) in the first subsystem, simultaneously to an isocoric temperature lowering process, and mass transfer, (2-3), of the second subsystem, composing the four isocoric processes of the cycle.
9) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR TÉRMICO", de acordo com as reivindicações 6 e 8, caracterizado por possuir no ciclo termodinâmico, dois processos de regeneração da energia - calor ~, (84) e (89), os quais são executados pelos regeneradores, (310) e (314), onde a energia - calor - é cedida durante os processos isocóricos de abaixamento de temperatura, (b-c) e (2-3), sendo armazenada no regenerador, e recebido, regenerado peíos processos isocóricos de aumento da temperatura, (d-a) e (4-1). 9) "CONTROL PROCESS FOR THE THERMODYNAMIC CYCLE OF THERMAL ENGINE "according to claims 6 and 8, characterized in that it has in the thermodynamic cycle two energy regeneration processes - heat, (84) and (89), which are performed by the regenerators, (310) and ( 314), where the energy - heat - is imparted during the isocoric temperature lowering processes, (bc) and (2-3), being stored in the regenerator, and received, regenerated by the isocoric temperature raising processes, (da) and (4-1).
10) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR TÉRMICO", de acordo com as reivindicações 6, 8 e 9, caracterizado por possuir no cicb termodinâmico dois processos de armazenamento da energia, (89), executados pelos regeneradores, (310) e (314), para posterior regeneração, (84), através dos regeneradores, os quais absorvem a energia durante os processos isocóricos de abaixamento da temperatura, (b-c) e (2-3). 10. "CONTROL PROCESS FOR THE THERMAL DYNAMIC CYCLE OF THE THERMAL ENGINE" according to claims 6, 8 and 9, characterized in that the thermodynamic cicb has two energy storage processes, (89), performed by the regenerators, (310) and (314) for further regeneration (84) through the regenerators which absorb energy during isochoric temperature lowering processes, (bc) and (2-3).
11) "PROCESSO DE CONTROLE PARA O CICLO TERMODINÂMICO DO MOTOR TÉRMICO", de acordo com as reivindicações 6, 8 e 9, caracterizado por possuir no ciclo termodinâmico dois processos de regeneração da energia, (84), executados pelos regeneradores, (310) e (314), os quais devolvem a energia ao gás do motor durante os processos isocóricos de elevação da temperatura, (d-a) e (4-1). 11. "CONTROL PROCESS FOR THE THERMAL DYNAMIC CYCLE OF THE THERMAL ENGINE" according to claims 6, 8 and 9, characterized in that the thermodynamic cycle has two energy regeneration processes, (84), performed by the regenerators, (310) and (314) which return energy to the engine gas during isocoric temperature elevation processes, (da) and (4-1).
PCT/BR2017/000095 2016-08-26 2017-08-18 Thermal engine with differentiated cycle composed of four isobaric processes and four isochoric processes, with regenerator and process for controlling the thermodynamic cycle of the thermal engine WO2018035586A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102016019870-4A BR102016019870B1 (en) 2016-08-26 2016-08-26 DIFFERENTIAL CYCLE THERMAL ENGINE COMPOSED OF FOUR ISOBARIC PROCESSES, FOUR ISOCORIC PROCESSES WITH REGENERATOR AND CONTROL PROCESS FOR THE THERMODYNAMIC CYCLE OF THE THERMAL ENGINE
BRBR102016019870-4 2016-08-26

Publications (1)

Publication Number Publication Date
WO2018035586A1 true WO2018035586A1 (en) 2018-03-01

Family

ID=61245975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2017/000095 WO2018035586A1 (en) 2016-08-26 2017-08-18 Thermal engine with differentiated cycle composed of four isobaric processes and four isochoric processes, with regenerator and process for controlling the thermodynamic cycle of the thermal engine

Country Status (2)

Country Link
BR (1) BR102016019870B1 (en)
WO (1) WO2018035586A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3591958A (en) * 1970-06-24 1971-07-13 Treadwell Corp Internal combustion engine cycle
FR1605396A (en) * 1967-11-02 1975-02-28 Engine fuel combustion process - fuel compressed isothermally by piston releasing thermal impulses to start combustion
DE2342103A1 (en) * 1973-08-21 1975-03-20 Hans Alexander Frhr Von Seld Hot gas engine - has cycle involving isothermal, isochoric and isobaric phases and incorporates regenerative heat exchanger
RU2097581C1 (en) * 1992-03-04 1997-11-27 Анатолий Макарович Макаров Four-stroke internal combustion engine operation
US20110061379A1 (en) * 2008-05-15 2011-03-17 Misselhorn Juergen Heat engine
WO2011131373A1 (en) * 2010-04-22 2011-10-27 Jobb Gangolf Heat engine with an isochoric-isobaric cyclic process
WO2014109667A1 (en) * 2013-01-09 2014-07-17 Pospelov Sergey Vyacheslavovich Rayleigh cycle thermal machine
WO2014209247A1 (en) * 2013-06-25 2014-12-31 Mehmet Terziakin A method and system for a thermodynamic power cycle
WO2016048184A1 (en) * 2014-09-25 2016-03-31 Борис Львович ЕГОРОВ Internal combustion engine and operating method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1605396A (en) * 1967-11-02 1975-02-28 Engine fuel combustion process - fuel compressed isothermally by piston releasing thermal impulses to start combustion
US3591958A (en) * 1970-06-24 1971-07-13 Treadwell Corp Internal combustion engine cycle
DE2342103A1 (en) * 1973-08-21 1975-03-20 Hans Alexander Frhr Von Seld Hot gas engine - has cycle involving isothermal, isochoric and isobaric phases and incorporates regenerative heat exchanger
RU2097581C1 (en) * 1992-03-04 1997-11-27 Анатолий Макарович Макаров Four-stroke internal combustion engine operation
US20110061379A1 (en) * 2008-05-15 2011-03-17 Misselhorn Juergen Heat engine
WO2011131373A1 (en) * 2010-04-22 2011-10-27 Jobb Gangolf Heat engine with an isochoric-isobaric cyclic process
WO2014109667A1 (en) * 2013-01-09 2014-07-17 Pospelov Sergey Vyacheslavovich Rayleigh cycle thermal machine
WO2014209247A1 (en) * 2013-06-25 2014-12-31 Mehmet Terziakin A method and system for a thermodynamic power cycle
WO2016048184A1 (en) * 2014-09-25 2016-03-31 Борис Львович ЕГОРОВ Internal combustion engine and operating method

Also Published As

Publication number Publication date
BR102016019870A8 (en) 2022-12-13
BR102016019870A2 (en) 2018-03-13
BR102016019870B1 (en) 2023-12-26

Similar Documents

Publication Publication Date Title
US20090000294A1 (en) Power Plant with Heat Transformation
WO2018195622A1 (en) Binary-cycle turbine engine comprising three isothermal processes and four adiabatic processes and a method for controlling the thermodynamic cycle of the turbine engine
WO2018195619A1 (en) Differential-cycle heat engine comprising four isobaric processes and four polytropic processes with regenerator and method for controlling the thermodynamic cycle of the heat engine
WO2018035588A1 (en) Differential-cycle heat engine with four isothermal processes, four isochoric processes with active regenerator and control method for the thermodynamic cycle of the heat engine
WO2018035585A1 (en) Differential-cycle heat engine with four isobaric processes, four adiabatic processes and a method for controlling the thermodynamic cycle of the heat engine
WO2018035586A1 (en) Thermal engine with differentiated cycle composed of four isobaric processes and four isochoric processes, with regenerator and process for controlling the thermodynamic cycle of the thermal engine
WO2018195620A1 (en) Differential-cycle heat engine with four isothermal processes and four polytropic processes with regenerator and method for controlling the thermodynamic cycle of the heat engine
WO2015054767A1 (en) Differential thermodynamic machine with a cycle of eight thermodynamic transformations, and control method
WO2018195618A1 (en) Differential-cycle heat engine comprising four isobaric processes and four isothermal processes and a method for controlling the thermodynamic cycle of the heat engine
BR102017008545B1 (en) DIFFERENTIAL CYCLE THERMAL ENGINE COMPOSED OF FOUR ISOBARIC PROCESSES, FOUR POLYTROPIC PROCESSES WITH REGENERATOR AND CONTROL PROCESS FOR THE THERMODYNAMIC CYCLE OF THE THERMAL ENGINE
BR102017008544B1 (en) DIFFERENTIAL CYCLE HEAT ENGINE COMPRISING FOUR ISOBARIC PROCESSES, FOUR ISOTHERMAL PROCESSES AND CONTROL PROCESS FOR THE THERMODYNAMIC CYCLE OF THE HEAT ENGINE
WO2018152603A1 (en) Thermal engine with differentiated cycle composed of two isochoric processes, four isothermal process and two adiabatic processes, and process for controlling the thermodynamic cycle of the thermal engine
WO2018195626A1 (en) Binary-cycle turbine engine comprising three polytropic processes and four adiabatic processes and a method for controlling the thermodynamic cycle of the turbine engine
WO2018195621A1 (en) Binary-cycle turbine engine comprising three isobaric processes and four adiabatic processes and a method for controlling the thermodynamic cycle of the turbine engine
BR102018004172A2 (en) CYCLE EXTERNAL COMBUSTION THERMAL ENGINE COMPOSED BY AN ISOCORIC PROCESS, TWO ISOTHERMIC PROCESSES AND AN ADIABATHIC PROCESS AND CONTROL PROCESS FOR THE THERMAL THERMAL CYCLE
BR102017003822B1 (en) DIFFERENTIAL CYCLE HEAT ENGINE COMPRISING TWO ISOCHORIC PROCESSES, FOUR ISOTHERMAL PROCESSES AND TWO ADIABATIC PROCESSES AND CONTROL PROCESS FOR THE THERMODYNAMIC CYCLE OF THE HEAT ENGINE
BR102018068525A2 (en) BRAYTON INTEGRATED CYCLE TURBINE ENGINE WITH REGENERATIVE CLOSED CIRCUIT FOR GENERATION FROM HELIOTHERMAL OR THERMONUCLEAR SOURCE AND CONTROL PROCESS FOR THE ENGINE THERMODYNAMIC CYCLE
BR102018015325A2 (en) integrated internal combustion engine consisting of a main turbine unit and a secondary piston unit and control process for the engine's thermodynamic cycle.
WO2014000072A1 (en) Heat engine operating in accordance with carnot's thermodynamic cycle and control process
WO2018195634A1 (en) Combined atkinson or miller and binary isothermal-adiabatic cycle engine and process for controlling the thermodynamic cycle of the combined cycle engine
BR102018004165A2 (en) MODULATED CYCLE EXTERNAL COMBUSTION THERMAL ENGINE COMPOSED OF AN ISOCORIC PROCESS, TWO ISOTHERMIC PROCESSES AND AN ADIABATHIC PROCESS AND CONTROL PROCESS FOR THE THERMOMYNAMIC THERMAL CYCLE
BR102017008582A2 (en) atkinson or miller and torque-isobaric-adiabatic combined-cycle engine and control process for the thermodynamic cycle of the combined-cycle engine
BR102018004170A2 (en) CYCLE EXTERNAL COMBUSTION THERMAL ENGINE COMPOSED BY AN ISOCORIC PROCESS, AN ADIABATIC PROCESS AND AN ISOTHERMIC PROCESS AND CONTROL PROCESS FOR THE THERMODYNAMIC CYCLE OF THE THERMAL ENGINE
BR102018015950A2 (en) INTEGRATED INTERNAL COMBUSTION ENGINE FORMED BY A MAIN UNIT OF CYCLE OTTO AND A SECONDARY UNIT TO PISTONS AND CONTROL PROCESS FOR THE THERMODYNAMIC CYCLE OF THE ENGINE.
BR102016019880A2 (en) ACTIVE REGENERATOR FOR THERMAL ENGINES AND CONTROL PROCESS FOR THERMODYNAMIC CYCLE OF ACTIVE REGENERATOR

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17842469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17842469

Country of ref document: EP

Kind code of ref document: A1