WO2018034451A1 - 혈액 검사 항목의 뇌의 베타아밀로이드 축적 관련 질환 진단용 용도 - Google Patents

혈액 검사 항목의 뇌의 베타아밀로이드 축적 관련 질환 진단용 용도 Download PDF

Info

Publication number
WO2018034451A1
WO2018034451A1 PCT/KR2017/008387 KR2017008387W WO2018034451A1 WO 2018034451 A1 WO2018034451 A1 WO 2018034451A1 KR 2017008387 W KR2017008387 W KR 2017008387W WO 2018034451 A1 WO2018034451 A1 WO 2018034451A1
Authority
WO
WIPO (PCT)
Prior art keywords
amyloid beta
brain
phosphorus
accumulation
disease
Prior art date
Application number
PCT/KR2017/008387
Other languages
English (en)
French (fr)
Inventor
묵인희
한선호
박종찬
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170066623A external-priority patent/KR102028799B1/ko
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Publication of WO2018034451A1 publication Critical patent/WO2018034451A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/74Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving hormones or other non-cytokine intercellular protein regulatory factors such as growth factors, including receptors to hormones and growth factors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/92Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving lipids, e.g. cholesterol, lipoproteins, or their receptors

Definitions

  • the present application relates to the prediction of beta amyloid accumulation in the brain using a blood test item or diagnosis of a related disease.
  • Alzheimer's disease a representative disease caused by the accumulation of beta amyloid in the brain, is the most common form of dementia and is a representative neurodegenerative disease. It is estimated that more than 20% of elderly people over 80 years of age are affected by Alzheimer's disease, and the number is rapidly increasing in an aging society.
  • Alzheimer's disease includes senile plaque and microparticles in which amyloid precursor protein (APP) is sequentially cleaved by ⁇ and ⁇ -secretase to deposit ⁇ -amyloid (A ⁇ peptide) in brain tissue.
  • APP amyloid precursor protein
  • NTFs Neurofibrillary tangles due to hyperphosphorylation of the canal associated protein Tau protein are the main pathological features. Changes in the brain tissue of Alzheimer's disease patients are due to environmental and various etiological factors, and there are no clear diagnostic methods and treatment regimens yet.
  • AD diagnostic methods include imaging methods such as magnetic resonance imaging (MRI) and positron emission tomography (PET), and indirect methods such as mini mental state examination (MMSE) and questionnaire.
  • imaging methods such as magnetic resonance imaging (MRI) and positron emission tomography (PET)
  • MMSE mini mental state examination
  • the diagnosis through the MMSE is a result of the age, education, etc., the accuracy of the diagnosis is a problem.
  • senile plaques and neurofibrillary masses are identified in the brain tissue of AD patients, there are no known methods for diagnosing the disease or clarifying the progression.
  • Cerebrospinal fluid is a site of direct contact with extracellular parts of the brain and reflects changes in the protein of the brain and decreases A ⁇ 42 levels, total tau and autophosphorylation in CSF in patients with Alzheimer's disease, compared to the normal elderly. Tau increases have been reported. However, considering that most AD patients are older than 65 years of age, there is a significant risk of lumbar puncture for cerebrospinal fluid.
  • Pittsburgh compound B which is a causative agent of Alzheimer's dementia and which specifically binds to amyloid beta that accumulates in the brain as the disease progresses, is useful for the diagnosis of Alzheimer's dementia.
  • PET images can be used to measure the degree of amyloid beta accumulation in the brain and to effectively use it for the diagnosis of Alzheimer's dementia.
  • this diagnostic method is limited to the general diagnosis of Alzheimer's dementia.
  • Blood diagnostic marker In comparison with this, in consideration of the relative ease of collection, the economics of the test, and the time saving, the blood diagnostic marker has many advantages. Blood diagnostic markers should be able to reflect the functional pathological changes of the brain as the disease progresses, while various brain proteins are not always detected in the blood as Alzheimer's disease progresses. . In addition, it is a general phenomenon that brain proteins, which increase or decrease with the progression of Alzheimer's disease, show opposite trends in cerebrospinal fluid or blood.
  • brain amyloid beta42 (A ⁇ 42) increases while cerebrospinal fluid amyloid beta42 decreases, while trans-cyretin is known to increase in the brain but decrease in blood (Scheuner et al., Nature Medicine 2, 864-870 (1996); Galasko et al., Arch Neurol 55 (7): 937-45 (1998); Li et al., Journal of Neuroscience 31 (35): 12483-12490 (2011); And Han et al., Journal of Alzheimer disease 25 (1) 77-84 (2011)).
  • Korean Laid-Open Patent Publication No. 2012-0041823 relates to protein markers for early diagnosis of Alzheimer's disease, and discloses markers for early diagnosis of Alzheimer's disease using ATP synthase subunit beta and adenosine kinase (Isoform Long) and regucalcin.
  • Korean Unexamined Patent Publication No. 2010-0049363 relates to a diagnosis apparatus and diagnostic method for Alzheimer's disease using a vitamin D binding protein, and discloses a diagnosis method and apparatus using an antibody binding to a vitamin D binding protein.
  • Korean Patent Laid-Open Publication No. 2014-0042331 relates to multiple markers for diagnosing cognitive disorders and uses thereof.
  • a marker for diagnosing cognitive disorders transthyretin, ApoE, alpha-synuclein, vitamin D binding Proteins, neurorogranin, vimentin, stathmin, contactin, and HDL-cholesterol are disclosed.
  • Alzheimer's disease is a serious disease that is difficult to diagnose early and that it is difficult for normal life to be socially costly if the disease continues to progress, simple samples such as blood diagnose Alzheimer's severity, including early diagnosis of Alzheimer's disease.
  • simple samples such as blood diagnose Alzheimer's severity, including early diagnosis of Alzheimer's disease.
  • new markers that can be diagnosed even in the preclinical stage before they appear.
  • the present application seeks to develop a biomarker capable of predicting beta amyloid plaque accumulation in the brain or diagnosing related diseases using blood.
  • the present invention is a blood biomarker for diagnosing brain amyloid beta plaque accumulation disease, which is a basic item in blood tests such as HDL cholesterol, cortisol, alanine transaminase (ALT), free triiodothyronine (T3) or phosphorus (phosphorus). It relates to a composition for diagnosing brain amyloid beta accumulation disease, comprising a substance for detecting one or more markers.
  • the marker according to the present application is a non-basic item and further comprises one or more markers selected from the group consisting of MPP-treated plasma amyloid beta (MPP-A beta), TSP-1, ACHE, and APOE, which can also be detected in the blood. It may include.
  • MPP-A beta MPP-treated plasma amyloid beta
  • TSP-1 TSP-1
  • ACHE ACHE
  • APOE APOE
  • Brain amyloid beta accumulation disease of the present invention is Alzheimer's disease, Parkinson's disease dementia, Lewy body dementia, Huntington's disease dementia, or preclinical Alzheimer's disease, down syndrome, or cognitive impairment, composition for diagnosing brain amyloid beta accumulation disease.
  • Accumulation of brain amyloid beta is a phenomenon that occurs not only in Alzheimer's disease but also in various non-Alzheimer's diseases including Parkinson's, Down's syndrome, ALS, etc., and the marker according to the present invention can be used for the diagnosis / determination of various diseases including the same.
  • Amyloid beta plaque accumulation is often preceded before the onset of symptoms, which can be useful for early diagnosis.
  • the marker according to the present application can be used to determine the severity of cognitive impairment.
  • the present disclosure also provides a blood sample from a test subject in need of diagnosing brain amyloid beta accumulation disease in order to provide information necessary for diagnosis of brain amyloid beta accumulation related disease; Quantifying at least one marker of HDL cholesterol, cortisol alanine transaminase (ALT), free triiodothyronine (T3) or phosphorus (phosphorus) in the blood sample; And correlating the amount of the quantified marker with a diagnosis or prognosis of brain amyloid beta accumulation disease in the subject.
  • ALT cortisol alanine transaminase
  • T3 free triiodothyronine
  • phosphorus phosphorus
  • the associating step in the method according to the present invention is when the concentrations of phosphorus, Free T3 and ALT-S are lower, and the concentrations of HDL cholesterol and cortisol are significantly higher than those of the PiB-PET negative subjects.
  • the test subject is judged to diagnose brain amyloid beta accumulation disease.
  • the method according to the present invention can also be usefully used for early diagnosis, especially before the clinical symptoms of cognitive impairment, by judging whether amyloid beta plaques accumulate in the brain, ie positive or negative.
  • the method according to the invention can also be usefully used to determine whether such a test is necessary before the time-consuming and costly PiB-PET test, which has been previously performed uniformly.
  • the method according to the present disclosure may also provide information on determining whether the brain accumulates amyloid beta plaque compared to the threshold determined for each marker according to the present application.
  • the step of providing a blood sample from a test subject needing such a judgment; Quantifying one or more markers of alanine transaminase (ALT), free triiodothyronine (T3) or phosphorus (phosphorus) as biomarkers in the blood sample; And comparing the concentration of each marker with a threshold determined by each marker to determine whether amyloid beta plaque accumulates in the brain, wherein the threshold of each marker is about 3.9 mg / dL or less, and HDL cholesterol.
  • ALT alanine transaminase
  • T3 free triiodothyronine
  • phosphorus phosphorus
  • Silver is about 56mg / dL or more, cortisol is about 10.1mg / dL or more, Free T3 is about 3.14pg / ml or less, and ALT-S is about 28U / L or less, the subject is determined to be positive for the accumulation of brain amyloid beta It includes.
  • the method according to the present invention can be used to determine whether the amyloid beta plaque accumulation of the brain in the diagnosis of diseases related to amyloid beta plaque accumulation of the brain or whether the brain PIB-PET test is necessary, MPP-A beta (MPP-treated one or more markers selected from the group consisting of plasma amyloid beta), TSP-1, ACHE, and ApoE can be further quantified.
  • the present disclosure also provides the use of a marker for detecting or determining whether amyloid beta plaque accumulates in the brain by using one or more markers of alanine transaminase (ALT), free triiodothyronine (T3), or phosphorus.
  • ALT alanine transaminase
  • T3 free triiodothyronine
  • phosphorus a marker for detecting or determining whether amyloid beta plaque accumulates in the brain by using one or more markers of alanine transaminase (ALT), free triiodothyronine (T3), or phosphorus.
  • ALT alanine transaminase
  • T3 free triiodothyronine
  • Said one or more markers according to the invention include ALT and free T3; ALT and phosphorus; Free T3 and phosphorus; Or ATL and free T3 and phosphorus.
  • the one or more markers according to the present application are HDL cholesterol, cortisol, or non-base, consisting of MPP-treated plasma amyloid beta, TSP-1, ACHE, and APOE, which can also be detected in the blood. It may further comprise one or more markers selected from the group.
  • At least one marker selected from the group consisting of alanine transaminase (ALT), free triiodothyronine (T3), HDL cholesterol, cortisol, and phosphorus (phosphorus) according to the present invention is also included in the basic blood test item, using brain amyloid using blood. It is possible to predict the accumulation of beta, which can be conveniently and usefully used for diagnosis of a disease related thereto.
  • compositions and methods of the present disclosure are methods for predicting and diagnosing Alzheimer's dementia by using some of the blood test results performed by the general public at medical institutions such as hospitals and public health centers. As it is included in the blood test of the national health examination, it can be easily compared and analyzed annually without any extra expense or time, and the change can be monitored and analyzed, so its utilization is expected to be higher.
  • FIG. 1 is a table and a graph showing Alzheimer's dementia diagnosis efficiency AUC results using five markers ALT-S, HDL cholesterol, coltisol, free T3, and phosphorus (Phosphorus), and a combination thereof, according to an embodiment of the present disclosure. As shown, it compares the present biomarker and PiB PET negative and positive and shows a cut off value to determine this. Each blood factor showed a significant difference according to the positive and negative PIB PET. In addition, cut off values for dividing them were also determined. The cutoff value is a value based on the Youden index which is automatically assigned by ROC curve analysis based on the result according to the result of analyzing the result according to the Med Calculate program.
  • FIG. 2 is a table and a graph showing Alzheimer's dementia diagnosis efficiency AUC results using five markers ALT-S, HDL cholesterol, coltisol, free T3, and phosphorus (Phosphorus), and a combination thereof, according to an embodiment of the present disclosure. It is shown.
  • the p value for ROC curve of each blood factor is about 0.63, and all markers (all) have an AUC of 0.667, which is higher than that of a single marker, and diagnostic biomarkers have improved diagnostic accuracy even with a slight increase in AUC.
  • Alzheimer's dementia there is a significant meaning in the absence of a diagnostic biomarker using blood.
  • Figure 3 is a combination of five blood markers ALT-S, HDL cholesterol, coltisol, free T3, Phosphorus predicted probability (cerebral amyloid deposition, SUVR) of the brain amyloid beta This indicates that the correlation with.
  • the combined predictive probability which combines five blood indicators, ALT-S, HDL cholesterol, coltisol, free T3, and phosphorus, was significantly proportional to the accumulation of brain amyloid beta.
  • Correlated SUVR, quantitative value of PIB PET image.
  • FIG. 4A and 4B show the efficiency of diagnosis (4a) and AUC (4b) when the blood biomarkers according to the present application are used with the second group of markers (MPP-A ⁇ , TSP1, AChE, ApoE).
  • MPP-A ⁇ , TSP1, AChE, ApoE markers used with the markers of the second group.
  • the efficiency of diagnosis was significantly increased (FIG. 4A).
  • the AUC was significantly increased when the FRBTs (ALT-S, HDL, cortisol, free T3, Phosphorus), which are the markers according to the present application, were used together with the marker of the second group.
  • AD 5 is a result of analyzing the ApoE allele specific polymerase chain reaction with agarose gel.
  • ApoE genes There are three types of ApoE genes, ApoE 2, ApoE 3 and ApoE 4, which are already widely known risk factors for people with ApoE 4 who are not likely to have AD. Therefore, it is known as a genetic risk factor of AD, and this genetic test can predict AD.
  • ALT alanine transaminase
  • T3 free triiodothyronine
  • HDL high density lipoprotein
  • cortisol cortisol
  • phosphorus phosphorus
  • the present application relates to a marker for diagnosing cognitive disorder disease selected from the group consisting of alanine transaminase (ALT), free triiodothyronine (T3), HDL cholesterol, cortisol, and phosphorus.
  • a marker for diagnosing cognitive disorder disease selected from the group consisting of alanine transaminase (ALT), free triiodothyronine (T3), HDL cholesterol, cortisol, and phosphorus.
  • the markers according to the present application are the five basic items of blood tests, and ALT (Alanine transaminase) is used as an indicator of liver function, and free Tiodothyronine (T3) is a kind of thyroid hormone that measures thyroid function, and HDL (high density) lipoprotein) A type of fat component, one of the indicators of cholesterol measurement, cortisol is a stress hormone secreted by the adrenal cortex, and phosphorus is an item used as an indicator of renal function.
  • ALT Alanine transaminase
  • T3 free Tiodothyronine
  • HDL high density lipoprotein
  • the present application uses at least one of ALT, free T3 or phosphorus in the marker as a diagnostic marker.
  • one or more of HDL cholesterol or cortisol can be further tested in addition to one or more of the ALT, free T3 or phosphorus.
  • diseases related to brain amyloid accumulation are known as diseases caused by accumulation of beta amyloid in the brain (Head, E., and Lott, IT (2004) Down syndrome and beta-amyloid deposition.Cur Opin Neurol 17 ; Primavera et al., (1999) Brain Accumulation of Amyloid-beta in Non-Alzheimer Neurodegeneration.J Alzheimers Dis; Masliah et al., (2001) beta-amyloid peptides enhance alpha-synuclein accumulation and neuronal deficits in a transgenic mouse model linking Alzheimer's disease and Parkinson's disease.Proc Natl Acad Sci). Therefore, the method according to the present application can be used for diagnosis, detection, etc.
  • brain amyloid beta accumulation disorders include, for example, Alzheimer's disease, Parkinson's dementia, Lewy body dementia, Huntington's disease dementia, or preclinical Alzheimer's disease, down syndrome, or cognitive impairment.
  • the term "cognitive disorder” refers to neurodegenerative diseases, for example, Alzheimer's (AD) dementia, Parkinson's dementia, Lewy body dementia or Huntington's dementia, or the stage before progressing to dementia. It includes weak cognitive impairment (MCI: Mild Cognitive Impairment). The severity of these diseases may be classified by methods such as Mini mental state examination, 2006_Benson et al., Journal of clinical Psychiatry, 2008_O'Bryant et al., Arch Neurol (Score) scores, and the markers herein indicate progression of these diseases. It can also be used for classification by stages.
  • AD Alzheimer's
  • Parkinson's dementia Parkinson's dementia
  • Lewy body dementia Lewy body dementia
  • Huntington's dementia Huntington's dementia
  • MCI Mild Cognitive Impairment
  • Alzheimer's dementia is a neurodegenerative brain disease that gradually progresses to weakening of cognitive function, including memory. It includes not only preclinical Alzheimer's disease before clinical symptoms, but also mild cognitive impairment, or mild cognitive impairment, which is a stage prior to dementia. Neurons (or senile plaques) or nerve fiber bundles are produced in the brains of Alzheimer's disease patients, which are characterized by the deposition of beta amyloid protein and the neurofibrous bundle by hyperphosphorylation of tau protein, inflammatory reactions, It is known to be due to oxidative damage.
  • the preclinical Alzheimer's disease refers to a stage in which amyloid plaque deposition in the brain appears, although there is no clinical finding.
  • Amyloid beta plaque herein is an insoluble fibrous protein aggregate comprising amyloid beta, with 40 or 42 predominantly.
  • the amyloid plaques may be present in cells, on the cell surface, and / or in spaces between cells. In particular, it exists in the spaces between the cells of neural tissues, and is used as a marker for diagnosing Alzheimer's dementia, and the diagnosis of dementia according to the degree of plaque accumulation may be referred to the disclosure (Mawuenyega et al., Science, 2010_Querfurth and LaFerla, The New England journal of medicine).
  • Amyloid beta plaques according to the context may be referred to as amyloid beta, which will be readily appreciated by those skilled in the art.
  • diagnosis refers to determining the susceptibility of an object, or test subject, to a particular disease or condition, determining whether an object currently has a particular disease or condition, Determining the prognosis of one object at hand or therametrics (eg, monitoring the condition of the object to provide information about treatment efficacy).
  • Early diagnosis herein includes diagnosing at the preclinical stage, before mild cognitive impairment, or clinical symptoms appear.
  • the marker of the present invention may be an indicator for the onset and progression of cognitive impairment, and may be used for onset, degree of disease progression, diagnosis or prognosis of disease.
  • the present invention relates to a composition for predicting amyloid beta plaque accumulation comprising a substance for detecting a marker according to the present application.
  • Accumulation of amyloid beta plaque is a causative agent of Alzheimer's dementia, and has been confirmed by post-mortem brain biopsy of Alzheimer's dementia patients and confirmed Alzheimer's dementia.
  • PIB-PET a technology such as PIB-PET has been developed to confirm the accumulation of brain amyloid beta in brain imaging, but this is a very expensive test, expensive equipment that can be performed only in some university hospitals, and also causes many inconveniences for patients. Therefore, the discovery of blood biomarkers that can confirm the accumulation of brain amyloid beta is very useful. Accumulation of brain amyloid beta begins 15-20 years before clinical symptoms such as dementia and forgetfulness. Therefore, blood amyloid beta accumulation can be confirmed by blood tests of patients with no clinical symptoms or mild clinical symptoms. If you have, you can diagnose Alzheimer's dementia early and slow or stop it.
  • the present application can be used to determine whether a composition according to the present disclosure or a marker or a combination of markers according to the disclosure, prediction of amyloid beta plaque accumulation, early diagnosis, or whether PiB-PET is required.
  • amyloid beta plaque accumulation which is known as a cause of Alzheimer's dementia
  • a high concentration of blood marker according to the present invention was correlated with brain imaging results of PiB-PET widely used for diagnosis of Alzheimer's dementia. That is, in the PiB-PET positive subjects, the concentrations of blood phosphorus, Free T3 and ALT-S were lowered, and the HDL cholesterol and cortisol concentrations were significantly higher than those of the PiB-PET negative subjects (FIG. 1). ).
  • markers designated herein as markers of the second group may be used together.
  • Thrombospondin-1 prevents amyloid beta-mediated synaptic pathology in Alzheimer'disease; 2013_J Neuropathol Exp Neurol_Rama al., Amyloid beta inhibits thrombospondin 1 release from cultured astrocytes; 1998_J Neurochem_Sberna et al., ACHE is increased in the brains of Tg mice expressing the C-Terminal fragment of APP of Alzheimer 'disease; 2003_J Neurochem_Hu et al., A beta increase ACHE expression in neuroblastoma cells by reducing enzyme degradation) may be further included.
  • the marker according to the present application may further include one or more markers selected from the group consisting of MPP-amyloid beta (MPP-treated plasma amyloid beta), TSP-1, ACEH, and ApoE.
  • MPP-amyloid beta MPP-treated plasma amyloid beta
  • TSP-1 TSP-1
  • ACEH ACEH
  • ApoE ApoE
  • Integrated analysis using additional blood biomarkers of the second group maximizes the efficiency of diagnosis, thereby increasing the sensitivity and accuracy of the diagnosis of amyloid beta accumulation in the brain and related diseases.
  • diagnosis marker or “diagnosis marker” is a substance capable of diagnosing amyloid beta accumulation and related diseases in the brain separately from normal, and having or suspecting a disease in comparison with an appropriate control group or a comparison group. Indicators that show an increase or decrease in blood from the subject.
  • the marker according to the present invention increases or decreases in the blood of a sample.
  • HDL-cholesterol and cortisol are increased in blood levels in patients compared to normal controls, and the rest are decreased in blood levels.
  • markers may be used as a marker for diagnosing cognitive impairment, but preferably, these markers are complex markers containing two, three, four, or five.
  • the markers may be used in one or more combinations and used as a method of improving discrimination to distinguish the progress of diagnosis and / or prognosis and cognitive impairment of a patient from a normal control group.
  • a combination showing an optimal effect for this use can be selected and used by those skilled in the art.
  • biological sample or sample includes, but is not limited to, all solid or liquid samples obtained from the human body or mammal, such as tissue, urine, saliva, whole blood, platelets, plasma or serum samples from a particular organ. Do not.
  • the markers herein use blood, in particular plasma, as a sample.
  • detection reagent refers to a reagent capable of detecting or quantifying a marker according to the present disclosure, for example, a substance capable of detecting the marker of the present disclosure at a nucleic acid level such as a protein and / or a gene or mRNA, or otherwise. In that case, reference may be made to what is described in the Examples herein.
  • Detection herein includes quantitative and / or qualitative analysis, including the detection of presence, absence, and expression level detection. Such methods are known in the art and are described in the context of the present disclosure, including the following examples. Those skilled in the art will be able to select the appropriate method for the practice herein. For example, each marker of ALT-S, HDL cholesterol, cortisol, free T3, and phosphorus may be referred to, for example, the methods described in the Examples herein.
  • methods and reagents for detecting protein levels include, for example, antigen-antibody reactions, substrates that specifically bind to the markers, receptors or ligands or cofactors that specifically interact with the markers. Can be detected via reaction.
  • Reagents or materials that specifically interact with or bind to the markers of the present disclosure may be used with chip or nanoparticles.
  • the antigen-antibody response is subjected to enzyme linked immunosorbent assay (ELISA), radioimmunoassay (RIA), sandwich ELISA, western blot on polyacrylamide gel, immune dot blot Immuno dot blotting assay, immunofluorescence assay (IFA), immunoluminescence assay (Immunochemiluminescence Assay), immunohistochemical staining or immunochromatography (Immunochromatography, Rapid), antigen antibodies using beads or discs Reaction (X-MAP technology) or the like.
  • ELISA enzyme linked immunosorbent assay
  • RIA radioimmunoassay
  • sandwich ELISA western blot on polyacrylamide gel
  • IFA immunofluorescence assay
  • IFA immunoluminescence assay
  • immunohistochemical staining or immunochromatography Immunochromatography, Rapid
  • antigen antibodies using beads or discs Reaction X-MAP technology
  • the composition according to the present disclosure comprises a reagent required for the detection of the marker at the protein level.
  • reagents detectable at the protein level may include monoclonal antibodies, polyclonal antibodies, substrates, aptamers, receptors, ligands, cofactors, and the like. Such reagents can be incorporated into nanoparticles or chips as needed.
  • the detection reagent comprises an antibody
  • the detection of the marker of the present application is performed by using an antibody molecule that specifically binds thereto.
  • Antibodies that can be used herein are polyclonal or monoclonal antibodies, preferably monoclonal antibodies.
  • Antibodies may be commonly used in the art, such as fusion methods (Kohler and Milstein, European Journal of Immunology, 6: 511-519 (1976)), recombinant DNA methods (US Pat. No. 4,816,56) Or phage antibody library methods (Clackson et al, Nature, 352: 624-628 (1991) and Marks et al, J. Mol. Biol., 222: 58, 1-597 (1991)).
  • fusion methods Kellow and Milstein, European Journal of Immunology, 6: 511-519 (1976)
  • recombinant DNA methods US Pat. No. 4,816,56
  • composition according to the invention can be used in conjunction with ApoE genotyping to be used for early diagnosis, diagnosis or prediction of amyloid beta plaque accumulation or formation of Alzheimer's dementia.
  • ApoE Polipoprotein E
  • E2 cys112, cys158
  • E3 cys112, arg158
  • E4 arg112, arg158
  • E4 alleles are found in about 20% of the population and are known to increase the risk of Alzheimer's dementia.
  • the ApoE genotype markers are integrated to improve specificity and sensitivity compared to the case where each is used alone.
  • Detection of the ApoE genotype can be performed using known methods, and in one embodiment according to the present application, a PCR method using allele specific primers is used, for example, reference may be made to those described in the Examples herein. .
  • the present invention provides a method of treating a marker according to the present invention; And associating the detected amount of marker with amyloid beta accumulation or other related disease diagnosis or prognosis in the brain of the subject, to provide information necessary for diagnosis or prognosis of the disease. It relates to a method for detecting.
  • the method herein may further use non-protein clinical information of the patient, ie, clinical information other than the marker, in addition to the marker analysis results, to provide information regarding the diagnosis or prognosis of the cognitive disorder.
  • nonprotein clinical information may include, for example, the age, sex, weight, diet, body mass, underlying disease, magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), or mini-mental status of a patient. examinations or positron emission tomography (PET), including but not limited to.
  • the method includes correlating the detection result of a marker with the diagnosis or prognosis of a disease associated with amyloid beta plaque accumulation in the brain, and according to one embodiment said associating comprises negatively determining the amount of each marker determined in the PIB PET result. It is compared with the detection result of each of the markers determined in the normal control group including the value determined in the blood sample of the person judged to be, for example, the increase and decrease thereof, and then diagnose based on this. For example, when one or more of the markers according to the present application are significantly increased or decreased in comparison with the value of the control group, information for diagnosing the disease as occurring in the subject may be provided. Subjects determined to be PiB-PET positive had lower concentrations of phosphorus, free T3 and ALT-S, and significantly higher concentrations of HDL cholesterol and cortisol compared to controls.
  • the step of associating a sample of the normal control group with the subject sets a threshold value for diagnosing the onset of each marker, and then detects the subject's detection result with the threshold value. Can be compared.
  • each blood factor that determines whether the brain amyloid beta plaques are accumulated may be referred to that shown in FIG. 1.
  • phosphorus is less than 3.9mg / dL
  • HDL cholesterol is more than 56mg / dL
  • cortisol is more than 10.1mg / dL
  • free T3 is less than 3.14pg / ml
  • ALT-S is less than 28U / L. This can be judged as high (FIG. 1).
  • These thresholds The results according to the present application were analyzed by the Med Calculate program and automatically assigned by the ROC curve analysis, based on the Youden index. The threshold value indicates positive amyloid beta plaque accumulation in the brain, and may be used for screening PiB-PET test subjects and diagnosing diseases related to brain amyloid beta plaque accumulation.
  • the PIB-PET test is not only inconvenient for the patient but also expensive and time-consuming. Therefore, the screening process for people with high possibility of amyloid plaque accumulation is urgently needed. Therefore, the method according to the present application is to provide information on whether a test subject requiring determination of amyloid beta plaque accumulation in the brain including Alzheimer's dementia requires blood test from the subject.
  • All of the methods according to the present application further comprise at least one of HDL cholesterol or cortisol in the quantifying step, and if the concentration of the HDL cholesterol and cortisol is high compared to the value of the control group, the subject is amyloid beta of the brain.
  • the method may further include a step of diagnosing a disease related to plaque accumulation or determining a subject for PIB-PET test. For each marker, reference may be made to the above.
  • all the methods according to the present application described above may include further quantifying one or more markers selected from the group consisting of MPP-A beta (MPP-treated plasma amyloid beta), TSP-1, ACHE, and ApoE.
  • MPP-A beta MPP-treated plasma amyloid beta
  • TSP-1 TSP-1
  • ACHE ACHE
  • ApoE ApoE
  • Example 1 Alzheimer's Dementia Diagnosis Using Five Markers of ALT-S, HDL Cholesterol, Cortisol, Free T3, and Phosphorus, and Combinations thereof
  • PIB PET scans were performed as follows. The collected blood was immediately tested by the SCL (Seoul Clinical Center) as follows.
  • the test equipment used was ADVIA 1800 Auto Analyzer (Siemens, USA) and the test reagent was HDL-Cholesterol (Siemens, UK).
  • the reference value is 40-60mg / dL.
  • the inspection principle is as follows.
  • the direct HDL cholesterol assay (D-HDL method) measured HDL cholesterol in serum and plasma without prior separation, based on procedures developed by Izawa, Okada, and Matsui. Cholesterol from non-HDL particles was liberated and removed at the first stage of the reaction. HDL particle-derived cholesterol was released in the second step by detergent of R2, and HDL cholesterol was measured by Trinder reaction.
  • the method consists of two steps:
  • step b Specific measurement of HDL-cholesterol after HDL-cholesterol free by the surfactant of Reagent 2.
  • the catalase of step a was inhibited by the soothed azide of R2.
  • the intensity of quinoneimine produced in the Trinder reaction, measured at 596 nm, is directly proportional to cholesterol concentration.
  • test equipment used was ADVIA Centaur XP (Siemens, USA) and the test reagent was Free T3 (Siemens, USA) .
  • the reference value was 3.3-5.2 pg / mL for 1-23 months and 3.3- for 2-12 years old.
  • the test principle was as follows: Two-step sandwich immunoassay using chemiluminescent.
  • FrT3 and FrT3 reagents in the serum were competitively combined to form paramagnetic particles in the solid phase, and relative light units (RLUs) generated by binding acridinium ester-labeled mouse anti-T3 antibodies of Lite reagent were measured.
  • RLUs relative light units
  • the test equipment used was ADVIA Centaur XP (Siemens, USA) and the test reagent Cortisol (Siemens, USA).
  • the reference values were 5.27-22.45 ug / dL and 3.44-16.76 ug / dL.
  • the inspection principle is as follows.
  • the ADVIA Centaur Cortisol assay is a competitive immunoassay using direct chemiluminescent. Cortisol labeled with acridinium ester in Lite Reagent combined with cortisol in patient sample and polyclonal rabbit anti-cortisol antibody in solid phase competed for 5 minutes at 37 ° C. Chemiluminescent reactions occur when acid reagents and base reagents are dispensed after removing unreacted materials through reagent water. Chemiluminescent reactions are measured on a photometer and calculated as sample concentration.
  • the test equipment used was ADVIA 1800 Auto Analyzer (Siemens, USA) and the test reagent ALT (Siemens, UK).
  • the reference value is 10-49 U / L.
  • the inspection principle is as follows. When the enzyme is used to decompose the substance to be analyzed and NAD + is used as a reagent, the sample is decomposed to generate NADH. The NADH was measured by colorimetry to determine the concentration of the target substance. The reaction was initiated by the addition of a second reagent, ⁇ -ketoglutarate, the concentration of NADH was measured by absorption at 340/410 nm, and the rate of absorption reduction was proportional to alanine aminotransferase activity.
  • test equipment used was ADVIA 1800 Auto Analyzer (Siemens, USA) and the test reagent Pi (Siemens, UK).
  • the reference value is 2.4-5.1 mg / dL.
  • the inspection principle is as follows. Inorganic phosphorus reacts with ammonium molybdate in the presence of sulfuric acid to produce a non-reducing phosphoromolybdate complex, which was measured at 340/658 nm as a terminating reaction.
  • the standardized uptake value ratio (SUVR) values were calculated by dividing the mean for all voxels in each ROI by the mean cerebellar eptake value in the same image. If at least one of the four ROIs (ie, frontal, lateral temporal, lateral parietal, and PC-PRC) has a SUVR level greater than 1.4, classify the subject as PiB positive (PiB +), or if the SUVR levels of all four ROIs are less than 1.4 The back side was classified as PiB negative (PiB-). PiB- means an individual with amyloid deposition negative, while PiB + means an individual with amyloid deposition positive.
  • Total brain amyloid deposition (SUVR) was calculated by dividing the mean value for all voxels of the total cortical ROI by the average cerebellar uptake value of the same image.
  • PIB PET scans were divided into 277 PET negative and 130 PET positive patients. Correlation and specificity through the analysis of PIB PET results (positive negative discrimination results, quantitative results of PIB PET) and ROC curve analysis of five blood indicators (ALT, HDL, cortisol, free T3, phosphorus) , Sensitivity, AUC and the like were analyzed (FIG. 1).
  • results are described in FIGS. 2 and 3 and include the results of all groups, including MCI and AD as well as the normal group.
  • the predicted probability (logistic regression) of five blood indicators ALT-S, HDL cholesterol, coltisol, free T3, and phosphorus was significantly proportional to the accumulation of brain amyloid beta. (SUVR, quantitative value of PIB PET image).
  • the second group of blood biomarkers MPP A BETA (X-MAP technology), TSP1 (blood ELISA experiment), AChE (blood ELISA experiment), ApoE (gene analysis), etc. More specificity and sensitivity were shown in determining whether brain amyloid beta was accumulated than when using only markers (FIGS. 4A and 4B).
  • ELISA Quantikine ELISA Human Acetylcholinesterase / ACHE immunoassay, catalog number DACHEO kits were analyzed using the manufacturer's method.
  • the frozen Plasma samples were thawed and 1 ⁇ 2 dilution was performed.
  • 50 ⁇ l assay diluent RD 1-63 50 ⁇ l was dispensed into each well.
  • 50 ⁇ l of blood sample or standard solution was added to each well and then covered with an adhesive strip and reacted in a horizontal orbital microplate shaker at room temperature for 2 hours.
  • 400 ⁇ l wash buffer was added and the washing step of aspirating again was repeated a total of four times.
  • 200 ⁇ l human ACHE Conjugate was added to each well and then covered with an adhesive strip and reacted at room temperature for 2 hours on a shaker. Repeat step aspiration / wash step 4.
  • Quantikine ELISA Human thrombospondin-1 immunoassay Catalog number DTSP10
  • the frozen plasma sample was thawed and subjected to 1/100 dilution.
  • 100 ⁇ l assay diluent RD 1-56 was dispensed into each well.
  • 50 ⁇ l of blood sample or standard solution was added to each well and then covered with an adhesive strip and reacted in a horizontal orbital microplate shaker at room temperature for 2 hours.
  • 400 ⁇ l wash buffer was added and the washing step of aspirating again was repeated a total of four times.
  • 200 ⁇ l human thrombospondin-1 Conjugate was added to each well, and then covered with an adhesive strip and reacted at room temperature for 2 hours on a shaker. Repeat step aspiration / wash step 4.
  • proteases consisting of protease inhibitor cocktail (PI), phenylmethanesulfonylfluoride (PMSF, a serine protease inhibitor; Sigma Aldrich, CA, USA) and phosphatase inhibitor cocktail I and II (PPI I and II; AG Scientific, Inc., CA, USA)
  • PI protease inhibitor cocktail
  • PMSF phenylmethanesulfonylfluoride
  • PPI I and II phosphatase inhibitor cocktail I and II
  • a ⁇ peptides are provided by American Peptide Company, Inc. (Sunnyvale, CA, USA) and human serum albumin was purchased from Sigma Aldrich.
  • venous blood was collected and collected on K2 EDTA tubes (BD Vacutainer Systems, Madison, UK) and centrifuged at 700 x g for 5 minutes at room temperature to separate plasma and obtain in 15 ml centrifuge tubes. To obtain a high purity sample, the plasma sample was centrifuged again under the same conditions, aliquoted and immediately frozen to -80 degrees.
  • K2 EDTA tubes BD Vacutainer Systems, Madison, UK
  • the INNO-BIA plasma A ⁇ forms kit (Innogenetics, Gent, Belgium) was used according to the manufacturer's method.
  • plasma was diluted three-fold with MPP treated plasma dilution buffer or MPP untreated plasma dilution buffer and left at room temperature for 30 minutes.
  • the filter plates were then washed and the diluted bed mix was transferred to each well of the plate. Plates were then carefully dried and washed and 25 ⁇ L of Conjugate 1 Working Solution A and 75 ⁇ L of standard, blank, control and plasma samples were added to each well.
  • the plates were then incubated overnight at 4 degrees Celsius and 100 ⁇ L detection solution was added to each well. After 1 hour the plates were flushed and reading solution was added to each well.
  • Plasma amyloid beta concentrations were measured using X-map technology (Bioplex 200 systems; Bio-rad, Hercules, CA, USA).
  • Test Principle Using a primer that can specifically amplify an allele with a specific gene mutation, a specific gene mutation can be identified with or without an amplification reaction.
  • the inspection process is as follows. DNA was extracted from the sample using the salting out method. 7.75 ⁇ l of ApoE PCR Master Mixture was dispensed into each PCR tube, and 2.7 ⁇ l of extracted ApoE DNA was added and pipeted and mixed well (see the composition of Table 1). (The best result can be obtained when DNA concentration is 25 ⁇ 50ng / ⁇ l. ). The reaction was carried out by spinning down into a PCR machine (see ApoE PCR condition). 5 ⁇ l PCR product was loaded on 2% agarose gel at 200V for 40 minutes and then U.V. The pictures were taken after viewing with a transilluminator.
  • E4 As a risk factor for Alzheimer's dementia, you are at greater risk for disease (ie, E4 / 4 is most at risk, and then E4 / 3 is at risk).
  • the main cause and symptom of Alzheimer's dementia is the accumulation of brain amyloid beta, suggesting that ApoE4 may eventually be a risk factor for the accumulation of brain amyloid beta and that people with E4 are more likely to develop brain amyloid beta. .
  • a new variable (predicted probability) value of 5 kinds of blood markers according to the present invention integrated after logistic regression was compared with a PIB PET positive and negative (FIG. 3).
  • a second group of biomarkers namely MPP A BETA (X-MAP technology), TSP1 (blood ELISA experiment), AChE (blood ELISA experiment), and ApoE (gene) Analysis
  • MPP A BETA X-MAP technology
  • TSP1 blood ELISA experiment
  • AChE blood ELISA experiment
  • ApoE gene
  • Acetylcholinesterase is increased in the brains of transgenic mice expressing the C-terminal fragment (CT100) of the beta-amyloid protein precursor of Alzheimer's disease. Journal of neurochemistry 71 , 723-731
  • Amyloid-beta increases acetylcholinesterase expression in neuroblastoma cells by reducing enzyme degradation. Journal of neurochemistry 86 , 470-478
  • Amyloid-beta inhibits thrombospondin 1 release from cultured astrocytes: effects on synaptic protein expression. Journal of neuropathology and experimental neurology 72 , 735-744
  • Thrombospondin-1 prevents amyloid beta-mediated synaptic pathology in Alzheimer's disease. Neurobiology of aging 36 , 3214-3227
  • beta-amyloid peptides enhance alpha-synuclein accumulation and neuronal deficits in a transgenic mouse model linking Alzheimer's disease and Parkinson's disease. Proc Natl Acad Sci USA 98 , 12245-12250

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Endocrinology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

본원은 혈액 검사의 기본 항목의 농도를 이용한 뇌 아밀로이드 베타 축적 및 이와 관련된 질환의 혈중 바이오 마커로의 용도를 개시한다. 본원에 따른 마커는 혈액을 이용하여 뇌 아밀로이드 베타 축적을 예측할 수 있어, 임상이 나타나기 전의 경도 인지장애 등을 포함하는 이와 관련된 질환의 진단 등에 편리하고 유용하게 사용될 수 있다.

Description

혈액 검사 항목의 뇌의 베타아밀로이드 축적 관련 질환 진단용 용도
본원은 혈액 검사 항목을 이용한 뇌의 베타아밀로이드 축적 예측 또는 이와 관련된 질환의 진단과 관련된 것이다.
뇌의 베타아밀로이드가 축적되어 발생하는 대표적 질환인 알츠하이머병(Alzheimer's disease: AD)은, 치매 중 가장 일반적인 형태로서, 대표적인 신경 퇴행성 질환이다. 80세 이상 노인의 20% 이상이 알츠하이머병의 영향을 받고 있을 것으로 추정되며, 고령화 사회가 될수록 그 수가 급격히 증가하고 있다. 알츠하이머병은, 아밀로이드 전구 단백질(amyloid precursor protein: APP)이 β, γ- 시크리테아제에 의해 순차적으로 절단되어 생성되는 β-아밀로이드(Aβ peptide)가 뇌조직에 침착되는 노인반(senile plaque)과 미세소관 연관단백질인 타우(Tau) 단백질의 과인산화로 인한 신경섬유 덩어리(neurofibrillary tangle: NTF)가 주된 병리학적 특징이다. 알츠하이머병 환자의 뇌조직에서 일어나는 변화는, 환경 및 다양한 병인학적인 요인들에 의한 것으로서, 아직까지 뚜렷한 진단 방법과 치료 요법이 없다.
현재, 가장 일반적인 AD 진단 방법으로는, MRI(Magnetic resonance Imaging), PET(positron emission tomography) 등의 이미지 방법이나, 미니-인지 상태 검사(Mini mental state examination: MMSE), 문진 등의 간접적인 방법이 사용되고 있으나, MMSE를 통한 진단은 나이, 학력 등에 의해 그 결과가 달라지므로, 진단의 정확성이 문제가 되고 있다. AD 환자의 뇌 조직에서 노인반 및 신경섬유 덩어리 두 가지 병변을 확인하는 방법도 사용되고 있으나, 병을 진단하거나 진행 정도를 확실하게 파악할 수 있는 방법은 알려져 있지 않다.
AD 진단을 위한 생화학적 진단 표지자를 찾기 위한 연구는 중요한 연구 분야로서 혈액, 뇌척수액 등의 체액을 포함한 다양한 조직에서 이루어지고 있다. 뇌척수액(cerebrospinal fluid: CSF)은, 뇌의 세포 외부 부분과 직접 접촉하는 부위로, 뇌의 단백질 변화를 반영하고 있으며, 정상 노인에 비해 알츠하이머병 환자의 CSF에서 Aβ42 농도의 감소, 전체 타우와 자가인산화 타우의 증가 등이 보고되고 있다. 그러나, 대부분의 AD 환자가 65세 이상의 고령임을 고려하면, 뇌척수액을 얻기 위한 요부천공(lumber puncture)의 경우, 상당한 위험을 동반한다.
알츠하이머성 치매의 원인물질이며 질병의 진행에 따라 뇌에 축적되는 아밀로이드 베타에 대해 특이적으로 결합하는 물질로 최근 개발된 Pittsburgh compound B (PIB)는 알츠하이머성 치매의 진단에 유용한 물질이다. PIB를 투여한 후 PET 영상을 찍음으로써 뇌의 아밀로이드 베타의 축적 정도를 측정하고 이를 알츠하이머성 치매의 진단에 효율적으로 이용할 수 있기 때문이다. 하지만 이 진단 방법은 고가의 비용과 장비의 제한성 때문에 보편적인 알츠하이머성 치매의 진단 방법으로 사용하기에 한계가 있다.
이와 비교하여 채취의 상대적인 용의성, 검사의 경제성, 시간절약 등을 고려하면, 혈액 진단 표지자는 많은 장점이 있다. 혈액 진단 표지자는 알츠하이머병 진행에 따른 뇌의 기능적 병리적 변화를 잘 반영할 수 있어야 하는 반면 알츠하이머병 진행에 따른 다양한 뇌 단백질들의 변화가 항상 혈액내에서 감지되지는 않아 진단 표지자 발굴의 어려움을 겪고 있다. 또한 대개의 알츠하이머병의 진행에 따라 증감되는 뇌 단백질이 뇌척수액이나 혈액 내에서는 반대의 증감 경향성을 보이고 있는 것이 일반화된 현상이다. 예를 들면, 알츠하이머병의 진행에 따라 뇌 아밀로이드베타42(Aβ42)는 증가하는 반면 뇌척수액 아밀로이드베타42는 감소하고, 트렌스 사이레틴은 뇌에서는 증가, 반면 혈액에서 감소함으로 알려져있다 (Scheuner et al., Nature Medicine 2, 864-870 (1996); Galasko et al., Arch Neurol 55(7):937-45 (1998); Li et al., Journal of Neuroscience 31(35):12483-12490 (2011); 및 Han et al., Journal of Alzheimer disease 25(1)77-84 (2011)).
대한민국 공개특허공보 제2012-0041823호는 알츠하이머병 조기진단용 단백질성 마커에 관한 것으로 ATP synthase subunit beta 및 adenosine kinase(Isoform Long) 및 regucalcin을 이용한 알츠하이머병 조기 진단용 마커를 개시한다.
대한민국 공개특허 제2010-0049363호는 비타민 D 결합 단백질을 이용한 알츠하이머병의 진단장치 및 진단방법에 관한 것으로 비타민 D 결합 단백질과 결합하는 항체를 이용한 진단방법 및 장치에 대하여 개시한다.
대한민국 공개특허 제2014-0042331호는 인지장애 질환 진단용 다중 마커 및 그 용도에 관한 것으로 인지장애 질환 진단 마커로서 트랜스싸이레틴(Transthyretin), ApoE, 알파-사이뉴클레인(α-synuclein), 비타민 D 결합 단백질, 뉴로그레닌(neurogranin), 비멘틴(vimentin), 스테쓰민(stathmin), 컨텍틴(contactin), 및 HDL-콜레스테롤을 개시하고 있다.
하지만 알츠하이머병이 조기 진단이 어렵고, 병증이 계속 진행되면 사회적 비용이 많이 요구되는 정상 생활이 어려운 심각한 질환임을 고려하면, 혈액과 같은 간편한 시료를 통해 알츠하이머병의 조기 진단을 포함한 알츠하이머 중증도 진단은 물론 증상이 나타나기 전인 전임상(preclinical)단계에서도 진단할 수 있는 새로운 마커 개발의 필요성이 있다.
최근 활발한 연구에 의해 다양한 알츠하이머성 치매 진단의 혈액 바이오 마커 후보물질들이 발굴되고 있으나 각각의 바이오 마커는 민감도와 정확성에 있어서 요구 기준을 충족시키지 못하고 있는 현실이다.
한 양태에서 본원은 혈액을 이용하여 뇌의 베타 아밀로이드 플라크 축적 예측 또는 이와 관련된 질환의 진단할 수 있는 바이오마커를 개발하고자 한다.
한 양태에서 본원은 뇌 아밀로이드 베타 플라크 축적 질환 진단용 혈액 바이오마커로서, 건강검진 등에서 행해지는 혈액검사에서 기본 항목인 HDL 콜레스테롤, 코티졸, ALT(alanine transaminase), 유리 T3(free triiodothyronine) 또는 인(phosphorus) 중 하나 이상의 마커의 검출용 물질을 포함하는, 뇌 아밀로이드 베타 축적 질환 진단용 조성물에 관한 것이다.
본원에 따른 마커는 비-기본항목으로서, 역시 혈액에서 검출될 수 있는 MPP-A 베타(MPP-treated plasma amyloid 베타), TSP-1, ACHE, 및 APOE로 이루어진 군에서 선택된 하나 이상의 마커를 추가로 포함할 수 있다.
본원 뇌 아밀로이드 베타 축적 질환은 알츠하이머병, 파킨슨병 치매, 루이소체치매, 헌팅톤병 치매, 또는 전임상 알츠하이머병, 다운 신드롬, 또는 인지장애를 포함하는 것인, 뇌 아밀로이드 베타 축적 질환 진단용 조성물.
뇌 아밀로이드 베타의 축적은 알츠하이머병 뿐만아니라 파킨슨, 다운신드롬, ALS 등을 포함하는 다양한 비-알츠하이머병에서도 나타나는 현상으로, 본원에 따른 마커는 이를 포함하는 다양한 질환의 진단/판별에 사용될 수 있으며, 임상적인 증상이 나타나기 전에 아밀로이드 베타 플라크 축적이 선행하는 경우가 많아, 조기 진단에도 유용하게 사용될 수 있다. 특히 본원에 따른 마커는 인지장애 중증도 판단에 사용될 수 있다.
다른 양태에서 본원은 또한 뇌 아밀로이드 베타 축적 관련 질환의 진단에 필요한 정보를 제공하기 위해, 뇌 아밀로이드 베타 축적 질환 진단이 필요한 검사 대상자 유래의 혈액 샘플을 제공하는 단계; 상기 혈액 샘플에서 HDL 콜레스테롤, 코티졸 ALT(alanine transaminase), 유리 T3(free triiodothyronine) 또는 인(phosphorus) 중 하나 이상의 마커를 정량하는 단계; 및 상기 정량된 마커의 양을 상기 대상자의 뇌 아밀로이드 베타 축적 질환 진단 또는 예후와 연관시키는 단계를 포함하는, 뇌 아밀로이드 베타 축적 질환의 진단 바이오마커 검출 방법을 제공한다.
본원에 따른 방법에서 상기 연관시키는 단계는 PiB-PET 음성 대상자의 결과와 비교하여, 인, Free T3, ALT-S의 농도는 낮아지고, HDL cholesterol과 코티졸의 농도는 유의적으로 높은 것은 경우, 상기 검사 대상자를 뇌 아밀로이드 베타 축적 질환 진단으로 판단한다.
본원에 따른 방법은 또한 뇌의 아밀로이드 베타 플라크 축적 여부 즉 양성 또는 음성인지의 판단을 통해, 특히 인지장애의 임상증상이 나타나기 전의 초기 진단에 유용하게 사용될 수 있다.
본원에 따른 방법은 또한 기존에 일률적으로 수행되던, 시간과 비용이 많이 소요되는 PiB-PET 검사 전에, 이러한 검사가 필요한지 여부의 판단에도 유용하게 사용될 수 있다. 본원에 따른 방법은 또한 본원에 따른 각 마커에 대하여 결정된 임계값과 비교하여 뇌의 아밀로이드 베타 플라크 축적 여부 판단에 대한 정보를 제공할 수 있다. 일 구현예에서는 이러한 판단이 필요한 검사 대상자 유래의 혈액시료를 제공하는 단계; 상기 혈액시료에서 바이오마커로서 ALT(alanine transaminase), 유리 T3(free triiodothyronine) 또는 인(phosphorus) 중 하나 이상의 마커를 정량하는 단계; 및 상기 각 마커의 농도를 상기 각 마커에서 결정된 임계값과 비교하여 뇌의 아밀로이드 베타 플라크 축적 여부를 판단하는 단계를 포함하며, 상기 각 마커의 임계값은 인은 약 3.9mg/dL이하, HDL cholesterol은 약 56mg/dL이상, cortisol은 약 10.1mg/dL이상, Free T3는 약 3.14pg/ml이하, ALT-S는 약 28U/L이하인 경우, 상기 대상자는 뇌 아밀로이드베타의 축적 양성인 것으로 판단하는 방법을 포함한다.
본원에 따른 상기 방법은 뇌의 아밀로이드 베타 플라크 축적 여부 판단은 뇌의 아밀로이드 베타 플라크 축적 관련 질환의 진단 또는 뇌의 PIB-PET 검사가 필요한지 여부의 결정에 사용될 수 있으며, MPP-A 베타(MPP-treated plasma amyloid 베타), TSP-1, ACHE, 및 ApoE로 이루어진 군에서 선택된 하나 이상의 마커를 추가로 정량할 수 있다.
다른 양태에서 본원은 또한 ALT(alanine transaminase), 유리 T3(free triiodothyronine) 또는 인(phosphorus) 중 하나 이상의 마커를 뇌의 아밀로이드 베타 플라크 축적 여부 검출 또는 판단용 용도를 제공한다.
본원에 따른 상기 하나 이상의 마커는 ALT 및 유리 T3; ALT 및 인; 유리 T3 및 인; 또는 ATL 및 유리 T3 및 인이다.
본원에 따른 상기 하나 이상의 마커는 HDL 콜레스테롤, 코티졸, 또는 비-기본항목으로서, 역시 혈액에서 검출될 수 있는 MPP-A 베타(MPP-treated plasma amyloid 베타), TSP-1, ACHE, 및 APOE로 이루어진 군에서 선택된 하나 이상의 마커를 추가로 포함할 수 있다.
본원에 따른 ALT(alanine transaminase), 유리 T3(free triiodothyronine), HDL 콜레스테롤, 코티졸 및 인(phosphorus)로 이루어진 군으로부터 선택되는 하나 이상의 마커는 기본적 혈액 검사 항목에도 포함되는 것으로, 혈액을 이용하여 뇌 아밀로이드 베타 축적을 예측할 수 있어, 이와 관련된 질환의 진단 등에 편리하고 유용하게 사용될 수 있다.
또한 혈액 기본 검사 항목이 아닌 다른 바이오 마커 후보 물질(MPP-A beta, TSP1, ACHE, ApoE)과 함께 사용하여 통합 분석할 경우 진단과 표지의 민감성과 정확성을 증가시켜 진단의 효율성을 극대화시킬 수 있다.
특히, 본원 조성물 및 방법은 일반인들이 병원이나 보건소 등 의료기관 방문 시 기본적으로 실행되고 있는 혈액검사 결과 중 일부를 이용하여 알츠하이머성 치매를 예측, 진단할 수 있는 방법으로, 별도의 상용화 기간이 필요치 않으며 해마다 실행하는 국민건강검진의 혈액검사에 포함되어있는 항목들이므로 별도의 비용지출이나 시간 소요 없이 손쉽게 매년 비교 분석하며 그 변화를 모니터링 및 분석할 수 있어, 그 활용도가 더욱 높아질 것으로 사료된다.
도 1은 본원의 일 실시예에 따른 다섯가지 마커인 ALT-S, HDL 콜레스테롤, 콜티솔, 유리 T3, 및 인(Phosphorus), 및 그 조합을 이용한 알츠하이머 치매진단 효율 AUC 결과를 각각 표 및 그래프로 나타낸 것으로, 본원 바이오마커와 PiB PET negative와 positive의 비교 및 이를 판별할 수 있는 cut off value를 나타낸다. 각각의 혈액인자들이 PIB PET의 양성과 음성에 따라 유의한 차이를 보임을 나타낸다. 또한 이들을 나눌 수 있는 컷오프 수치(cut off value)를 또한 결정하였다. 컷오프 수치는 본원에 따른 결과를 메드 칼큘레이트 프로그램으로 분석한 결과로 본원에 따른 결과에 기반한 ROC커브 분석에 의해 자동적으로 지정된 수치로서 Youden index에 근거한 수치이다.
도 2는 본원의 일 실시예에 따른 다섯가지 마커인 ALT-S, HDL 콜레스테롤, 콜티솔, 유리 T3, 및 인(Phosphorus), 및 그 조합을 이용한 알츠하이머 치매진단 효율 AUC 결과를 각각 표 및 그래프로 나타낸 것이다. 도 2에서 각각의 혈액인자들의 p value for ROC curve가 0.63 정도이고 모든 마커를 조합한 (all)의 경우 AUC가 0.667로서 단일 마커 보다 향상되며 진단 바이오마커의 경우 소폭의 AUC 증가라도 진단 정확성이 향상된 경우 큰 의미가 있고 특히 알츠하이머성 치매의 경우처럼 혈액을 이용한 진단 바이오마커가 없는 경우는 더욱 의미가 크다고 할 수 있다.
도 3은 본원에 따른 다섯가지 혈중 마커인 ALT-S, HDL 콜레스테롤, 콜티솔, 유리 T3, 인(Phosphorus)의 조합 분석 수치(predicted probability)가 뇌 아밀로이드 베타의 축적 정도(cerebral amyloid deposition, SUVR)와 상관관계가 있음을 나타내는 결과이다. 모든 그룹에서 다섯 가지 혈액 지표인 ALT-S, HDL 콜레스테롤, 콜티솔, 유리 T3, 인(Phosphorus)을 조합한 통합적 분석 수치인 predicted probability(로지스틱 회귀분석)가 뇌 아밀로이드 베타의 축적과 유의한 비례적 상관관계가 있는 것으로 나타났다 (PIB PET 이미지의 정량값인 SUVR). 이러한 결과는 본원에 따른 혈액 바이오마커는 뇌 아밀로이드 베타의 축적의 양성/음성 판별을 위한 바이오마커일 뿐 아니라 그 농도에 따라 뇌 아밀로이드 베타 축적의 정량적 지표로도 사용할 수 있음을 나타내는 것이다.
도 4a 및 4b는 본원에 따른 혈중 바이오마커를 제2 그룹의 마커(MPP-Aβ, TSP1, AChE, ApoE)와 함께 사용하였을 때 진단의 효율성(4a) 및 AUC(4b)를 나타낸 것이다. 5개의 혈액 지표를 제2 그룹의 마커와 함께 사용하였을 때 진단의 효율성 (뇌 아밀로이드 축적여부인 PIB - 와 + 를 구분하는 능력)이 현저히 증가된 것으로 나타났다 (도 4a). 아울러 제2 그룹의 마커에 본원에 따른 마커인 FRBTs(ALT-S, HDL, cortisol, free T3, Phosphorus)를 함께 사용하였을 때 AUC 값이 유의하게 증가된 것으로 나타났다.
도 5는 ApoE 대립유전자 특이적 중합효소 연쇄반응을 아가로스 젤로 분석한 결과이다. ApoE 유전자는 ApoE 2, ApoE 3, ApoE 4의 세가지 유전자 타입이 있는데 ApoE 4를 가지고 있는 사람이 AD에 걸릴 확률이 안 가지고 있는 사람에 비해서 매우 높음이 이미 널리 알려져 있는 리스크 인자이다. 따라서 AD의 유전적 위험요소라고 알려져 있고 이 유전자 검사를 함으로서 AD를 예측할 수 있다.
본원은 병원에서 하는 혈액 검사에 포함되는 기본 검사 항목 중 5가지 항목, ALT(Alanine transaminase), free T3(free triiodothyronine), HDL(high density lipoprotein) 콜레스테롤, 코티졸, 및 인(phosphorus)의 혈중농도가 뇌의 아밀로이드 베타 축적과 긴밀한 연관성이 있음을 밝히고 이를 이와 관련된 질환의 조기 진단 및 뇌 아밀로이드 베타 축적 여부 판단에 대한 혈중 바이오 마커로 이용할 수 있다는 발견에 근거한 것이다.
이에 한 양태에서 본원은 ALT(alanine transaminase), 유리 T3(free triiodothyronine), HDL 콜레스테롤, 코티졸 및 인(phosphorus)로 이루어진 군으로부터 선택되는 인지장애 질환 진단용 마커에 관한 것이다.
본원에 따른 마커는 혈액 검사의 기본 5가지 항목으로 ALT(Alanine transaminase)는 간 기능의 지표로 이용되고 있고, 유리 T3(free triiodothyronine)는 갑상샘 호르몬의 일종으로 갑상선 기능을 측정하며, HDL(high density lipoprotein) 지방성분의 일종으로 콜레스테롤 측정 지표 중의 하나이고, 코티졸은 부신 피질에서 분비되는 스트레스 호르몬이며, 및 인(phosphorus)은 신장 기능의 지표로 이용되고 있는 항목이다.
특히 일 구현예에서 본원은 상기 마커 중 ALT, 유리 T3 또는 인 중 하나 이상을 진단마커로 사용한다.
다른 구현예에서는 상기 ALT, 유리 T3 또는 인 중 하나 이상에 추가하여 HDL 콜레스테롤 또는 코티졸 중 하나 이상을 더 검사할 수 있다.
마커를 복합적으로 사용하여 이들 결과를 통합하여 분석하면 진단의 정확성을 높일 수 있다.
본원에서 뇌 아밀로이드 축적과 관련된 질환은 뇌에 베타 아밀로이드가 축적되어 발생되는 질환으로 다양한 질환이 알려져 있다 (Head, E., and Lott, I. T. (2004) Down syndrome and beta-amyloid deposition. Curr Opin Neurol 17; Primavera et al., (1999) Brain Accumulation of Amyloid-beta in Non-Alzheimer Neurodegeneration. J Alzheimers Dis; Masliah et al., (2001) beta-amyloid peptides enhance alpha-synuclein accumulation and neuronal deficits in a transgenic mouse model linking Alzheimer's disease and Parkinson's disease. Proc Natl Acad Sci). 따라서 본원에 따른 방법은 뇌아밀로이드 베타 축적과 관련된 다양한 질환의 진단, 검출 등에 사용될 수 있다. 일 구현예에서 이러한 뇌 아밀로이드 베타 축적 질환은 예를 들면 알츠하이머병, 파킨슨병 치매, 루이소체치매, 헌팅톤병 치매, 또는 전임상 알츠하이머병, 다운 신드롬, 또는 인지장애를 포함한다.
일 구현예에서는 “인지장애”를 포함하며, 이는 신경 퇴행성 질환을 일컫는 것으로 예를 들면 알츠하이머(AD : Alzheimer Disease)성 치매, 파킨슨병 치매, 루이소체치매 또는 헌팅톤병 치매, 또는 치매로 진행되기 전단계인 약한 인지기능 장애 즉 경도인지장애(MCI : Mild Cognitive Impairment)를 포함하는 것이다. 이러한 질환의 중증도는 MMSE (Mini mental state examination, 2006_Benson et al., Journal of clinical Psychiatry, 2008_O’Bryant et al., Arch Neurol) 스코어 등과 같은 방법으로 분류될 수 있으며, 본원의 마커는 이러한 질환의 진행단계에 따른 분류에 사용될 수도 있다.
다른 구현예에서는 특히 알츠하이머성 치매의 경과 또는 진단에 사용된다. “알츠하이머성 치매”는 신경 퇴행성 뇌질환으로 기억력을 포함한 인지기능의 약화가 점진적으로 진행되는 병이다. 임상증상이 나타나기 전인 전임상(preclinical) 알츠하이머병 뿐만 아니라, 치매로 진행되기 전단계인 약한 인지기능 장애 즉 경도 인지장애를 포함하는 것이다. 알츠하이머병 환자의 뇌에는 신경반(혹은 노인반) 또는 신경섬유다발이 생성되는데, 신경반(혹은 노인반)은 베타 아밀로이드 단백질의 침착과 신경섬유다발은 타우 단백질(tau protein)의 과인산화, 염증반응, 산화적 손상때문인 것으로 알려져 있다. 상기 전임상 알츠하이머병은 임상적 소견은 보이지 않지만 뇌의 아밀로이드 플라크 침착이 나타나는 단계를 말한다.
본원에서 “아밀로이드 베타 플라크”는 아밀로이드 베타를 포함하는 불용성 섬유성 단백질 응집체이며, 40 또는 42가 주를 이룬다. 상기 아밀로이드 플라크는 세포 내, 세포 표면에, 및/또는 세포 사이의 공간에 존재하는 것일 수 있다. 특히 신경조직의 세포 사이의 공간에 존재하는 것이며, 알츠하이머 치매 진단의 표지 물질로 사용되며, 플라크의 축적 정도에 따른 치매 진단은 개시된 바를 참고할 수 있다 (Mawuenyega et al., Science, 2010_Querfurth and LaFerla, The New England journal of medicine). 문맥에 따른 아밀로이드 베타 플라크를 아밀로이드 베타로 칭할 수 있으며, 이는 당업자가 용이하게 판단할 수 있을 것이다.
본원에서 용어 “진단”은 특정 질병 또는 질환에 대한 한 객체 즉 검사 대상자의 감수성(susceptibility)을 판정하는 것, 한 객체가 특정 질병 또는 질환을 현재 가지고 있는지 여부를 판정하는 것, 특정 질병 또는 질환에 걸린 한 객체의 예후(prognosis)를 판정하는 것 또는 테라메트릭스(therametrics)(예컨대, 치료 효능에 대한 정보를 제공하기 위하여 객체의 상태를 모니터링 하는 것)을 포함한다.
본원에서 조기 진단은 경도 인지장애, 또는 임상증상이 나타나기 전인 전임상(preclinical) 단계에서 진단하는 것을 포함한다.
본 발명의 마커는 인지장애의 발병 및 진행에 대한 지표가 될 수 있으며, 발병, 질환의 진행 정도, 질환의 진단 또는 예후에 이용될 수 있다.
다른 측면에서 본원은 본원에 따른 마커 검출용 물질을 포함하는 아밀로이드베타 플라크 축적 예측용 조성물에 관한 것이다. 아밀로이드 베타 플라크의 축적은 알츠하이머 치매의 원인물질로서 현재까지는 알츠하이머성 치매환자의 사후 뇌 조직검사에 의해 확인되었고 알츠하이머성 치매를 확진했다. 최근 뇌영상으로 뇌 아밀로이드베타의 축적을 확인할 수 있는 PIB-PET 등의 기술이 개발되었으나 이는 매우 고가의 검사이고 일부 대학병원에서만 시행할 수 있는 고가의 장비이며 환자에게도 여러 불편을 준다. 따라서 뇌 아밀로이드 베타의 축적을 확인할 수 있는 혈액 바이오마커의 발굴은 매우 유용하다. 또한 뇌 아밀로이드 베타의 축적은 치매나 건망증 등의 임상적 증상이 나타나기 15~20년 전부터 시작되므로 임상적 증상이 없거나 또는 경미한 임상적 증상을 나타내는 환자의 혈액검사를 통해 뇌 아밀로이드 베타 축적 여부를 확인할 수 있다면 알츠하이머 치매를 조기 진단할 수 있고 조기에 그 진행을 늦추거나 막을 수 있다.
따라서 다른 측면에서 본원은 상술한 바와 같은 본원에 따른 조성물 또는 본원에 따른 마커 또는 마커의 조합을 아밀로이드 베타 플라크 축적의 예측, 조기 진단, 또는 PiB-PET이 필요한지를 결정하는데 사용될 수 있다.
본원에 따르면 알츠하이머성 치매의 원인물질로 알려진 아밀로이드 베타 플라크 축적을 검출하여 알츠하이머성 치매의 진단에 널리 사용되는 PiB-PET의 뇌영상 결과와 본원에 따른 혈액 마커의 농도가 높은 연관성이 있는 것으로 나타났다. 즉 PiB-PET 양성 대상자에서는 PiB-PET 음성 대상자의 결과와 비교하여, 혈액의 인, Free T3, ALT-S의 농도는 낮아지고, HDL cholesterol과 코티졸의 농도는 유의적으로 높은 것으로 나타났다 (도 1).
또한 본원에 따른 마커에 추가하여, 본원에 따른 혈액 검사 기본 항목 이외의 바이오마커, 본원에서는 제2 군의 마커로 명명한 마커가 함께 사용될 수 있다.
이러한 제2 그룹의 마커는 본원 발명자가 출원한 대한민국 공개특허 제2016-0129444호(프로테아제 억제제 칵테일 (MPP)로 처리된 아밀로이드 beta 마커, MPP-아밀로이드 베타 마커)에 개시된 마커, 또는 대한민국 공개특허 제2014-0042331호 (ApoE 마커)에 개시된 마커, TSP1(Thrombospodin 1) 및 AchE (Acetylcholinesterase)(2015 Neurobiology of aging_ Son et al. Thrombospondin-1 prevents amyloid beta-mediated synaptic pathology in Alzheimer’disease; 2013_J Neuropathol Exp Neurol_Rama et al., Amyloid beta inhibits thrombospondin 1 release from cultured astrocytes; 1998_J Neurochem_Sberna et al., ACHE is increased in the brains of Tg mice expressing the C-Terminal fragment of APP of Alzheimer’ disease; 2003_J Neurochem_Hu et al., A beta increase ACHE expression in neuroblastoma cells by reducing enzyme degradation)를 추가로 포함할 수 있다.
이에 본원의 일 구현예에서 본원에 따른 마커는 MPP-아밀로이드 베타(MPP-treated plasma amyloid 베타), TSP-1, ACEH, 및 ApoE로 이루어진 군에서 선택된 하나 이상의 마커를 추가로 포함할 수 있다.
상기의 제2 군의 혈중 바이오 마커를 추가로 사용하여 통합 분석할 경우 진단의 효율성을 극대화시켜, 뇌의 아밀로이드베타 축적 및 이와 관련된 질환의 진단의 민감성과 정확성이 증가된다.
본원에서 “진단용 마커 또는 진단 마커(diagnosis marker)”란 뇌의 아밀로이드베타 축적 및 이와 관련된 질환을 정상과 구분하여 진단할 수 있는 물질로, 적절환 대조군 또는 비교군과 비교하여 질환을 가진 또는 의심되는 대상자 유래의 혈액에서 증가 또는 감소 양상을 보이는 지표를 포함한다.
본원에 따른 마커는 검체의 혈액에서 수치가 증감한다. 상기 마커 중 HDL-콜레스테롤과 cortisol은 정상 대조군과 비교하여 환자에서 혈중농도가 증가하며, 나머지는 혈중농도가 감소한다.
인지장애 진단용 마커로서 상기 마커 중 어느 하나를 이용할 수도 있으나, 바람직하게는 이들 마커들이 두 가지, 세 가지, 네 가지 또는 다섯 가지가 포함된 복합 마커인 것이 좋다. 상기 마커들은 하나 이상의 조합으로 사용되어 정상 대조군으로부터 환자의 진단 및/또는 예후, 인지장애의 진행 상태를 구분할 수 있는 변별력을 향상시키는 방법으로 활용될 수 있다. 본원에 따른 마커 중 이러한 용도에 최적의 효과를 나타내는 조합을 선별하여 사용할 수 있으며, 당업자라면 용도에 맞는 적절한 조합을 선택할 수 있을 것이다.
본원에서 용어 “생물학적 시료 또는 검체”는 인체나 포유동물로부터 얻어지는 모든 고형 또는 액상의 시료, 예컨대, 특정 장기 유래의 조직, 오줌, 타액, 전혈, 혈소판, 혈장 또는 혈청 시료를 포함하나, 이에 제한되지 않는다. 본원의 일 구현예에 따르면, 본원의 마커는 혈액, 특히 혈장을 검체로 사용한다.
본원에서 용어 “검출시약”은 본원에 따른 마커를 검출 또는 정량할 수 있는 시약으로, 예를 들면 본원의 마커를 단백질 및/또는 유전자 또는 mRNA와 같은 핵산수준에서 검출할 수 있는 물질이거나, 그 외의 경우, 본원 실시예에 기재된 것을 참조할 수 있다.
본원에서 검출이란, 정량 및/또는 정성 분석을 포함하는 것으로, 존재, 부존재의 검출 및 발현량 검출을 포함하는 것으로 이러한 방법은 당업계에 공지되어 있으며, 하기 실시예를 포함한 본원의 기재를 고려하여 당업자라면 본원의 실시를 위해 적절한 것 방법을 선택할 수 있을 것이다. 예를 들어 ALT-S, HDL 콜레스테롤, 코티솔, 유리 T3, 및 인의 각 마커는 예를 들면 본원 실시예에 기재된 방법을 참고할 수 있다.
예를 들면 단백질 수준의 검출 방법 및 시약은 공지된 것으로서, 예를 들면 항원-항체반응, 상기 마커에 특이적으로 결합하는 기질, 상기 마커와 특이적으로 상호작용하는 수용체 또는 리간드 또는 보조인자와의 반응을 통해 검출될 수 있다. 상기 본원의 마커와 특이적으로 상호작용 또는 결합하는 시약 또는 물질은 칩 방식 또는 나노입자(nanoparticle)와 함께 사용될 수 있다. 일 구현예에서 항원-항체 반응을 효소 면역흡착 분석법(enzyme linked immunosorbent assay; ELISA), 방사선 면역측정법(radioimmunoassay; RIA), 샌드위치 면역 측정법(sandwich ELISA), 폴리아크릴아미드 겔 상의 웨스턴블랏, 면역 점 블랏 분석법(Immuno dot blotting assay), 면역형광측정법(Immuno-fluorescence Assay, IFA), 면역발광측정법(Immunochemiluminescence Assay), 면역 조직 화학 염색법 또는 면역크로마토그래피측정법(Immunochromatography, Rapid), 비드나 디스크를 이용한 항원항체 반응(X-MAP technology) 등을 사용하여 수행될 수 있다.
본원의 일 구현예에 따르면 본원에 따른 조성물은 마커를 단백질 수준에서의 검출에 필요한 시약을 포함한다. 예를 들면 상기 단백질 수준에서 검출할 수 있는 시약은 모노클로날 항체, 폴리클로날 항체, 기질, 앱타머, 수용체, 리간드 또는 보조인자 등을 포함할 수 있다. 이러한 시약은 필요한 경우 나노입자 또는 칩에 통합하여 사용할 수 있다.
본원의 다른 구현예에 따르면 검출시약은 항체를 포함하며, 본원의 마커의 검출은 이에 특이적으로 결합하는 항체 분자를 이용하여 실시된다.
본원에 이용될 수 있는 항체는 폴리클로날 또는 모노클로날 항체이며, 바람직하게는 모노클로날 항체이다. 항체는 당업계에서 통상적으로 실시되는 방법들, 예를 들어, 융합 방법(Kohler and Milstein, European Journal of Immunology, 6:511-519(1976)), 재조합 DNA 방법(미국 특허 제4,816,56호) 또는 파아지 항체 라이브러리 방법(Clackson et al, Nature, 352:624-628(1991) 및 Marks et al, J. Mol. Biol., 222:58, 1-597(1991))에 의해 제조될 수 있다. 항체 제조에 대한 일반적인 과정은 Harlow, E. and Lane, D., Using Antibodies: A Laboratory Manual, Cold Spring Harbor Press, New York, 1999; Zola, H., Monoclonal Antibodies: A Manual of Techniques, CRC Press, Inc., Boca Raton, Florida, 1984; 및 Coligan, CURRENT PROTOCOLS IN IMMUNOLOGY, Wiley/Greene, NY, 1991에 상세하게 기재되어 있으며, 상기 문헌들은 본 명세서에 참조로 삽입된다.
본원에 따른 조성물은 ApoE 유전자형 분석과 함께 사용되어, 알츠하이머 치매의 조기진단, 진단 또는 아밀로이드 베타 플라크 축적 또는 형성 예측에 사용될 수 있다.
ApoE(Apolipoprotein E)는 E2(cys112, cys158), E3(cys112, arg158), 및 E4(arg112, arg158)라고 불리는 세 종류의 대립형질이 존재하여 한 개체의 유전체형은 E2/E2, E2/E3, E2/E4, E3/E3, E3/E4, 또는 E4/E4 형으로 존재한다. 이중 E4 대립형질은 인구의 약 20% 정도에서 발견되며, 알츠하이머 치매 발병 위험도를 증가시키는 것으로 알려졌다. 본원에 따르면 ApoE 유전자 형 마커를 통합적으로 사용하여 각각을 단독으로 사용하는 경우와 비교하여 특이성과 민감도가 향상된다.
ApoE 유전자형의 검출은 공지된 방법을 이용하여 수행될 수 있으며, 본원에 따른 일 구현예에서는 대립유전자 특이적 프라이머를 이용한 PCR 방법이 사용되며, 예를 들면 본원의 실시예에 기재된 것을 참조할 수 있다.
다른 양태에서 본원은 본원에 따른 마커를 정량하는 단계; 및 상기 검출된 마커의 양을 검사 대상자의 뇌의 아밀로이드 베타 축적 또는 이외 관련된 질환 진단 또는 예후와 연관시키는 단계를 포함하는, 상기 질환의 진단 또는 예후에 필요한 정보를 제공하기 위하여 검사 대상자의 검체로부터 마커를 검출하는 방법에 관한 것이다.
본원의 방법은 인지장애의 진단 또는 예후에 관한 정보를 제공하기 위해, 마커 분석 결과에 추가하여, 환자의 비단백질 임상정보 즉, 마커 이외의 임상정보를 추가로 사용할 수 있다. 이러한 비단백질 임상정보란, 예를 들면 환자의 나이, 성별, 체중, 식습관, 체질량, 기저질환, 자기공명영상법(MRI), SPECT(single-photon emission computed tomography), 또는 MMSE(mini-mental status examination) 또는 양전자 방사 단층촬영(positron emission tomography; PET) 중 하나 이상을 포함하나, 이로 제한하는 것은 아니다.
본원 방법은 마커의 검출 결과를 뇌의 아밀로이드 베타 플라크 축적과 관련된 질환의 진단 또는 예후와 연관시키는 단계를 포함하며, 일 구현예에 따르면 상기 연관시키는 단계는 결정된 각 마커의 양을 PIB PET 결과에서 음성으로 판단된 사람의 혈액시료에서 결정된 수치를 포함하는 정상 대조군에서 결정된 상기 각 마커의 검출결과와 비교, 예를 들면 그 증감을 비교한 후, 이를 근거로 진단하는 것이다. 예를 들면 대조군의 값과 비교하여 본원에 따른 마커 중 하나 이상이 유의하게 증가 또는 감소된 경우, 대상자에서 상기 질환이 발생한 것으로 진단하는 정보를 제공할 수 있다. PiB-PET 양성으로 판단된 대상자는 대조군과 비교하여 인, Free T3, ALT-S의 농도는 낮아지고, HDL cholesterol과 코티졸의 농도는 유의적으로 높아진다.
본원 일 구현예에 따르면 상기 연관시키는 단계는 정상 대조군과 대상자의 시료를 비교한 후, 상기 각 마커에 대하여 발병 여부를 진단할 수 있는 임계값을 설정한 후, 대상자의 검출 결과를 상기 임계값과 비교할 수 있다.
뇌 아밀로이드 베타 플라크의 축적 여부 즉 음성과 양성을 판별하는, 즉 PiB-PET 음성과 양성을 판별하는 각 혈액인자의 cut off value는 도 1에 표시된 것을 참조할 수 있다. 즉 인은 3.9mg/dL이하, HDL cholesterol은 56mg/dL이상, cortisol은 10.1mg/dL이상, Free T3는 3.14pg/ml이하, ALT-S는 28U/L이하일 때 뇌 아밀로이드베타의 축적 양성 가능성이 높은 것으로 판단할 수 있다 (도 1). 이들 임계값은 본원에 따른 결과를 메드 칼큘레이트 프로그램으로 분석했으며 ROC커브 분석에 의해 자동적으로 지정된 수치로서 Youden index에 근거한 수치이다. 상기 임계값은 뇌에 아밀로이드 베타 플라크 축적 양성을 나타내는 것으로, PiB-PET 검사 대상자 선별, 뇌 아밀로이드 베타 플라크 축적과 관련된 질환의 진단 등에 사용될 수 있다.
PIB-PET 검사는 환자에게 불편함을 물론 많은 비용과 시간이 소요되기 때문에, 아밀로이드 플라크 축적의 가능성이 높은 사람을 대상으로 하는 선별과정이 절실한 실정이다. 이에 본원에 따른 방법은 알츠하이머성 치매를 포함하는 뇌의 아밀로이드 베타 플라크 축적의 판단이 필요한 검사 대상자가 뇌의 PIB-PET 검사가 필요한 지 여부에 대한 정보를 제공하기 위해, 상기 대상자 유래의 혈액시료를 제공하는 단계; 상기 혈액시료에서 바이오마커로서 ALT(alanine transaminase), 유리 T3(free triiodothyronine) 또는 인(phosphorus) 중 하나 이상의 마커를 정량하는 단계; 및 상기 마커의 농도가 대조군으로서 PIB-PET 검사 음성으로 판단된 대조군의 수치와 비교하여 상기 인, Free T3, ALT-S의 농도가 낮은 경우 상기 대상자를 PIB-PET 검사 대상자로 결정하는 단계를 포함하는, PIB-PET 검사가 필요한 대상자 선별을 위한 마커의 검출 방법을 제공한다.
상술한 본원에 따른 모든 방법은 정량하는 단계에서 HDL 콜레스테롤 또는 코티졸 중 하나 이상을 추가로 포함하며, 상기 HDL 콜레스테롤 및 코티졸의 농도가 상기 대조군의 수치와 비교하여 높은 경우, 상기 대상자를 뇌의 아밀로이드 베타 플라크 축적과 관련된 질환의 진단 또는 PIB-PET 검사 대상자로 결정하는 단계를 추가로 포함할 수 있으며, 상기 각 마커에 대하여는 상술한 바를 참고할 수 있다.
아울러 상술한 본원에 따른 모든 방법은 MPP-A 베타(MPP-treated plasma amyloid 베타), TSP-1, ACHE, 및 ApoE로 이루어진 군에서 선택된 하나 이상의 마커를 추가로 정량하는 포함할 수 있으며, 상기 각 마커에 대하여는 상술한 바를 참고할 수 있다.
이하, 본 발명의 이해를 돕기 위해서 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 본 발명이 하기의 실시예에 한정되는 것은 아니다.
실시예
실시예 1. ALT-S, HDL 콜레스테롤, 코티솔, 유리 T3, 및 인의 다섯가지 마커, 및 그 조합을 이용한 알츠하이머 치매진단
총 407명의 정상군 및 알츠하이머성 치매 환자에 대하여 12시간 금식을 한 후 아침에 병원내원하여 채혈을 하고 하기와 같이 PIB PET 스캔을 실시하였다. 채혈한 혈액은 바로 SCL(서울임상센터)에서 하기와 같이 혈액 검사를 실시하였다.
1-1. 혈액검사
(1) 콜레스테롤 : 비색법(Colorimetric method)
검사장비로는 ADVIA 1800 Auto Analyzer(Siemens, USA), 검사시약은 HDL-Cholesterol(Siemens,UK)를 사용하였으며, 참조 수치(reference)는 40-60mg/dL이다. 검사원리는 다음과 같다. HDL 콜레스테롤 직접 측정법(D-HDL method)은 Izawa, Okada, 및 Matsui가 개발한 절차에 근거하여, 전 분리(prior separation) 없이 혈청 및 혈장 내 HDL 콜레스테롤을 측정하였다. 비-HDL 입자 유래의 콜레스테롤은 반응의 첫 단계에서 유리되어 제거되었다. HDL 입자 유래 콜레스테롤은 R2의 detergent에 의해 두 번째 단계에서 유리되었고, HDL 콜레스테롤은 Trinder reaction으로 측정하였다.
상기 방법은 하기 두 단계로 이루어져 있다:
a.콜레스테롤 에스터라아제 및 콜레스테롤 옥시다아제에 의한 킬로미크론, VLDL-콜레스테롤, 및 LDL-콜레스테롤의 제거. 상기 옥시다아제에 의해 생성된 과산화물을 카탈라아제로 제거하였다.
b. 시약 2의 계면활성제에 의한 HDL-콜레스테롤 유리 후의 HDL-콜레스테롤의 specific measurement. 상기 단계 ㄱ의 카탈라아제는 R2의 소디운 아자이드로 저해하였다. 596nm에서 측정한, Trinder 반응에서 생성되는 퀴논이민의 강도는 콜레스테롤 농도에 정비례한다.
(2) 유리 T3 : 화학발광면역측정법(Chemiluminescence immunoassay, CIA)
검사장비로는 ADVIA Centaur XP(Siemens,USA), 검사시약은 Free T3(Siemens,USA)를 사용하였으며, 참조 수치(reference)는 1-23개월 3.3-5.2 pg/mL, 2-12세 3.3-4.8 pg/mL, 13-21세 3.0-4.7 pg/mL, >21세 2.30-4.2 pg/mL이다. 검사원리는 다음과 같다: chemiluminescent를 이용한 Two-step sandwich immunoassay. 혈청 중의 FrT3와 FrT3 reagent가 경쟁적으로 결합하여 solid phase의 paramagnetic particle을 형성하고, 여기에 Lite reagent의 acridinium ester-labeled mouse anti-T3 antibody가 결합하여 나타나는 RLU(relative light units)를 측정하였다.
(3) 코티졸 : 화학발광면역측정법(Chemiluminescence immunoassay, CIA)
검사장비로는 ADVIA Centaur XP(Siemens,USA), 검사시약은 Cortisol(Siemens,USA)를 사용하였으며, 참조 수치(reference)는 오전 5.27-22.45 ug/dL, 오후 3.44-16.76 ug/dL이다. 검사원리는 다음과 같다. ADVIA Centaur Cortisol 분석은 direct chemiluminescent를 이용한 경쟁적인 면역분석법이다. 환자 검체 내의 cortisol과 solid phase내 polyclonal rabbit anti-cortisol 항체와 결합된 Lite Reagent내의 acridinium ester가 표지된 cortisol이 37℃에서 5분간 경쟁 반응한다. 비 반응 물질을 reagent water를 통해 제거한 후 acid reagent 및 base reagent를 분주하면 Chemiluminescent 반응이 일어난다. 화학발광 반응은 photometer에서 측정되어 검체 농도로 계산된다.
(4) ALT : 비색법(Colorimetric method)
검사장비로는 ADVIA 1800 Auto Analyzer(Siemens,USA), 검사시약은 ALT(Siemens,UK)를 사용하였으며, 참조 수치(reference)는 10-49 U/L이다. 검사원리는 다음과 같다. 측정 대상물질을 분해하는 효소와 NAD+를 시약으로 사용하여 검체에 작용시키면 물질이 분해되면서 NADH가 생성된다. 이 NADH를 colorimetry로 측정하여 대상물질의 농도를 측정하였다. 두 번째 시약인 α-케토글루타레이트를 추가하면 반응이 개시된다, NADH의 농도는 340/410nm에서의 흡수율로 측정하였으며, 흡수 감소 비율은 알라닌 아미노트랜스퍼라아제 활성에 비례하였다.
(5) 인 : 비색법(Colorimetric method)
검사장비로는 ADVIA 1800 Auto Analyzer(Siemens,USA), 검사시약은 Pi(Siemens,UK)를 사용하였으며, 참조 수치(reference)는 2.4-5.1 mg/dL이다. 검사원리는 다음과 같다. 무기 인은 황산 존재시에 암모늄 몰리브데이트와 반응하여 비환원 포스포몰리브데이트 복합체를 생성하는데, 종결반응으로서의 상기 복합체를 340/658 nm에서 측정하였다.
1-2. PiB-PET영상 스캔 촬영 방법 및 결과
참가자는 Biograph mMR scanner (Siemens, Washington DC, USA)를 이용하여 T1-강조 MR 및 3차원 PiB-PET 영상을 측정하였다. 555 MBq의 11C-PiB를 정맥 주입한지 40분 후에, 30분 송출 스캔을 얻었다. 데이터는 반복 방법(21서브세트의 6 반복)을 사용하여 256 X 256 영상 매트리스로 변환하여, 균일성, 초단파 에코타임9UTE)-기초 감쇠(attenuation), 및 붕괴 감소(decay reduction)에 대해 교정하였다. Sagittal T1-강조(반복 타임 1370ms; 에코 타임 = 1.89ms; 관측 시야, 250nm; 256 x 256 1.0 mm 슬라이스 두께의 매트릭스)를 얻었다. MATLAB 2014a (MathWorks, Natick, MA)에 있는 Statistical Parametric Mapping 8 (SPM8)을 사용하여 영상을 전-처리하였다. PiB-PET 데이터를 개인 T1 영상으로 공동-등록하여 표준 Montreal Neurological Institute (MNI) 템플레이트에 대한 변형 파라미터를 계산하였다. Individual Brain Atlases using Statistical Parametric Mapping 소프트웨어 (IBASPM)를 사용하여 AAL(automatic anatomic labeling) 116 atlas (Weiss, 1989)로부터의 좌표를 각 개체에 대한 개별 공간으로 변형시키는 역 변형 파라미터를 계산하였다(resampling voxel size = 1 × 0.98 × 0.98 mm). T1-coregistered PiB-PET 영상에서 얻은 individual AAL116 atlas를 사용하여 국소 뇌 평균 11C-PiB 업테이크를 계산하였고 정량적 표준화(normalization)를 위하여 소뇌 회백질 11C-PiB 업테이크 수치를 사용하였다. ROI(region of interest)을 결정하기 위하여, AAL 알고리듬 및 영역-병합 방식region-combining method (Yaffe et al., 2011)을 적용하여, 뇌 영역을 정면, 외측 두정엽, 대상-설전부(posterior cingulate-precuneus, PC-PRC), 및 현저한 11C-PiB 리텐션(retention)이 있는 것으로 보고된(Klunk et al., 2004) 측변 측두부(lateral temporal region)로 나누었다. 각 ROI 내의 모든 복셀(voxel)에 대한 평균치를 동일 영상에서의 평균 소뇌 엡테이크 수치로 나누어 SUVR(standardized uptake value ratio) 수치를 계산하였다. 4개의 ROI(i.e., frontal, lateral temporal, lateral parietal, and PC-PRC) 중 최소 하나에서 SUVR 수치가 1.4가 넘으면 PiB 양성(PiB+)로 개체를 분류하거나, 4개 ROI 모두의 SUVR 수치가 1.4 이하이면 PiB 음성(PiB-)으로 분류하였다. PiB-는 아밀로이드 침착이 음성인 개체를 의미하는 반면 PiB+는 아밀로이드 침착이 양성인 개체를 의미한다. 뇌 전체 아밀로이드 침착 수치(SUVR)는 피질 전체 ROI의 모든 복셀에 대한 평균치를 동일 영상의 평균 소뇌 업테이크 수치로 나누어 계산하였다.
PIB PET 스캔 영상 촬영 결과 총 407명 중에 277 PET 음성과 130 PET 양성 환자로 나누었다. 이들의 PIB PET결과(양성 음성 판별 결과, PIB PET의 정량적 결과인 SUVR값)와 혈액 지표 5가지(ALT, HDL, cortisol, free T3, phosphorus)의 ROC커브 분석을 통해 상관관계, 특이성(specificity), 민감성(sensitivity), AUC 등을 분석하였다 (도 1).
결과를 해석하면, 뇌 아밀로이드 베타의 축적의 음성과 양성을 판별하는, 즉 PiB-PET 음성과 양성을 판별하는 각 혈액인자의 cut off value는 도 1에 표시하였다. 즉 인은 3.9mg/dL이하, HDL cholesterol은 56mg/dL이상, cortisol은 10.1mg/dL이상, Free T3는 3.14pg/ml이하, ALT-S는 28U/L이하일 때 뇌 아밀로이드베타의 축적 양성 가능성이 높은 것으로 판단된다 (도 1).
실시예 2. 알츠하이머성 치매 바이오마커인 5 종류의 혈중 바이오마커를 조합으로 사용한 경우 진단 효율성 향상 분석
도 1의 각각 효과가 있는 혈액인자를 모두 함께 고려하여 뇌 아밀로이드베타의 축적여부를 판단할 때 진단 효율이 높아진다는 내용과(도 2) 이들을 함께 분석할 때 그 통계학적 분석수치, 즉 다섯종류 바이오마커를 함께 통계 처리하여 로지스틱 회귀분석을 통한 Predicted probability 값을 뇌 아밀로이드 베타의 축적 정도(정량적, SUVR값으로 표시되는 뇌 아밀로이드 베타의 정량적 측정 수치) 관련성을 분석하였다.
결과는 도 2 및 3에 기재되어 있으며, MCI와 AD뿐 아니라 정상군까지 포함하여 모든 그룹의 결과를 포함한다. 모든 그룹에서 다섯가지 혈액 지표인 ALT-S, HDL 콜레스테롤, 콜티솔, 유리 T3, 인(Phosphorus)의 통합적 분석 수치인 predicted probability(로지스틱 회귀분석)가 뇌 아밀로이드 베타의 축적과 유의한 비례적 상관관계가 있는 것으로 나타났다 (PIB PET 이미지의 정량값인 SUVR).
실시예 3. 본원의 혈액 검사 기본 항목 바이오마커를 제2 군의 혈액 바이오마커와 조합으로 사용한 경우 알츠하이머 진단의 효율성
제2 그룹의 혈중 바이오마커로서 MPP A BETA(X-MAP technology), TSP1(혈액 ELISA 실험), AChE(혈액 ELISA 실험), ApoE(유전자 분석) 등과 다섯가지 혈액인자를 함께 사용하여 분석할 경우 기존 마커만 사용했을때보다 뇌 아밀로이드 베타의 축적 여부를 판별하는데 더욱 향상된 특이성과 민감성이 나타났다(도 4a 및 도 4b).
실험은 하기와 같이 수행하였다.
3-1. AchE(Acetylcholinesterase) ELISA
ELISA는 Quantikine ELISA (Human Acetylcholinesterase/ACHE immunoassay, catalog number DACHEO) 키트를 제조자의 방법대로 사용하여 분석하였다.
요약하면, 얼려두었던 Plasma 샘플을 해동한 뒤 1/2 dilution 하였다. 50μl assay diluent RD 1-63 50μl씩 각 well에 분주하였다. 50μl의 혈액 샘플 또는 standard 용액을 각 well에 첨가한 후 adhesive strip으로 덮어 상온에서 2시간 동안 horizontal orbital microplate shaker에서 반응시켰다. 각 well의 용액을 aspirate한 후 wash buffer 400μl를 넣어 다시 aspirate 하는 washing step을 총 4회 반복하였다. 200μl human ACHE Conjugate를 각 well에 첨가한 후 adhesive strip으로 덮어 shaker 위에서 2시간 동안 상온에서 반응시켰다. Step 4의 aspiration/wash 스텝을 반복하였다. 200μl substrate solution을 각 well에 넣고 30분간 상온에서 차광하여 반응시켰다. 50μl stop solution을 각 well에 넣고 파란색에서 노란색으로의 색깔 변화를 보고 30분 이내에 optical density (O.D)를 측정하였다 (450nm).
3-2. TSP-1 ELISA
ELISA는 Quantikine ELISA (Human thrombospondin-1 immunoassay Catalog number DTSP10) 키트를 제조자의 방법대로 사용하여 분석하였다.
요악하면, 얼려두었던 Plasma 샘플을 해동한 뒤 1/100 dilution 하였다. 100μl assay diluent RD 1-56씩 각 well에 분주하였다. 50μl의 혈액 샘플 또는 standard 용액을 각 well에 첨가한 후 adhesive strip으로 덮어 상온에서 2시간 동안 horizontal orbital microplate shaker에서 반응시켰다. 각 well의 용액을 aspirate한 후 wash buffer 400μl를 넣어 다시 aspirate 하는 washing step을 총 4회 반복하였다. 200μl human thrombospondin-1 Conjugate를 각 well에 첨가한 후 adhesive strip으로 덮어 shaker 위에서 2시간 동안 상온에서 반응시켰다. Step 4의 aspiration/wash 스텝을 반복하였다. 200μl substrate solution을 각 well에 넣고 30분간 상온에서 차광하여 반응시켰다. 50μl stop solution을 각 well에 넣고 파란색에서 노란색으로의 색깔 변화를 보고 30분 이내에 optical density (O.D)를 측정하였다 (450nm).
3-3. MPP-처리된 아밀로이드 베타
대한민국 공개특허 2016-0129444 “혈장내 아밀로이드베타의 농도를 통해 알츠하이머병을 임상학적 및 병리학적으로 모니터링하는 방법”에 기재된 방법을 참조하였다.
사용된 시약은 다음과 같다. protease inhibitor cocktail (PI), phenylmethanesulfonylfluoride (PMSF, a serine protease inhibitor; Sigma Aldrich, CA, USA) and phosphatase inhibitor cocktail I and II (PPI I and II; A. G. Scientific, Inc., CA, USA)로 구성된 프로테아제 및 포스파타제 억제제 (MPP)가 동일한 비율로 혼합된 혼합물을 사용하였다. Aβ 펩타이드는 American Peptide Company, Inc. (Sunnyvale, CA, USA)에서 구입하고 인간 혈청 알부민은 Sigma Aldrich에서 구입하였다.
혈액시료
하룻밤 금식 후에 정맥혈을 채취하여 K2 EDTA tubes (BD Vacutainer Systems, Plymouth, UK)로 수집하고, 700 ×g 에서 5분 동안 실온에서 원심분리를 수행하여 혈장을 분리하여 15 ml 원심분리 튜브에 수득하였다. 고순도 시료를 얻기 위해, 혈장 시료는 동일한 조건에서 다시 원심분리를 한 후 분주하여 즉시 -80도에 얼렸다.
Aβ 측정
Aβ42 및 Aβ40의 혈중 농도를 동시에 측정하기 위하여, INNO-BIA plasma Aβ forms kit (Innogenetics, Gent, Belgium)를 제조자의 방법대로 사용하였다. 요약하면, 혈장을 MPP 처리된 혈장 희석 완충액 또는 MPP 비처리된 혈장 희석 완충액으로 3배 희석하고 실온에서 30분간 두었다. 이어 필터 플레이트를 세척하고, 희석된 베드 믹스를 플레이트의 각 웰에 옮겼다. 이어 플레이트를 조심스럽게 말린 후 세척하고, 25μL의 컨쥬게이트 1 워킹 용액 A 및 75μL의 표준물질, 블랭크, 대조군 및 혈장 시료를 각 웰에 추가하였다. 이어 플레이트를 섭씨 4도에서 하룻밤 배양하고, 각 웰에 100μL 검출용액을 추가하였다. 1시간 후에 플레이트를 세적하고 각 웰에 판독 용액을 추가하였다. 혈장 아밀로이드 베타 농도는 X-map technology (Bioplex 200 systems; Bio-rad, Hercules, CA, USA)을 이용하여 측정하였다.
3-4. ApoE: 대립유전자특이적 중합효소연쇄반응법 (ASP-PCR : Allele specific primer-polymerase chain reaction)
검사원리 : 특정 유전자 변이가 있는 대립유전자를 특이적으로 증폭할 수 있는 시발체를 이용하여 증폭반응의 유무로 특정 유전자 변이를 확인할 수 있는 방법이다.
검사과정은 다음과 같다. Salting out method 이용하여 검체로부터 DNA를 추출하였다. ApoE PCR Master Mixture 7.75㎕를 각각 PCR tube에 분주하고 추출한 ApoE DNA 2.7㎕를 넣어 pipetting 하여 잘 섞어주었다 (표 1의 조성 참조) (DNA 농도 25~50ng/㎕일 때 가장 좋은 결과를 얻을 수 있다.). Spin-down 하여 PCR machine에 넣어 반응시켰다 (ApoE PCR condition 참조). PCR product 5μl를 2% agarose gel에 200V에서 40분간 loading 한 후 U.V. transilluminator로 본 뒤 사진을 찍었다.
[표 1]
Figure PCTKR2017008387-appb-I000001
결과는 도 5에, 타입은 표 2에 기재되어 있다.
알츠하이머성 치매의 위험요소로서 E4를 가지고 있는 경우 병에 걸릴 위험이 크다(즉 E4/4가 가장 병에 걸릴 위험이 크고 그 다음 E4/3이 위험). 알츠하이머성 치매의 대표 원인 및 증상이 뇌 아밀로이드 베타의 축적이므로 이는 ApoE4가 결국 뇌 아밀로이드 베타의 축적의 위험인자로도 볼 수 있으며 E4를 가지고 있는 사람이 뇌 아밀로이드 베타의 축적이 생길 가능성이 높은 것을 나타낸다.
ApoE 유전자 분석 결과는 현재까지 밝혀진 알츠하이머의 유전자 진단중 가장 강력한 유전자로서 그 민감도는 82.5%, 특이도는 44%이다 (Sun et al., (2012) APOE genotype in the diagnosis of Alzheimer's disease in patients with cognitive impairment. Am J Alzheimers Dis Other Demen).
[표 2]
Figure PCTKR2017008387-appb-I000002
3-5. 본원에 따른 신규 혈액 바이오마커를 이용한 진단
본원에 따른 5 종류의 혈액 마커를 로지스틱 회귀분석 후 통합한 새로운 변수의 (predicted probability) 값이 PIB PET positive와 negative를 비교하였다 (도 3). 상기 5 종류의 혈액 지표들을 이용하여 ROC커브 분석을 하였을 때 제2 그룹의 바이오마커, 즉 MPP A BETA(X-MAP technology), TSP1(혈액 ELISA실험), AChE(혈액 ELISA실험), ApoE(유전자 분석)만으로 분석한 결과보다 더욱 향상된 특이성(specificity)과 민감성(sensitivity)을 보였다.
또한 도 4b에 나타난 바와 같이 제2 그룹의 마커(MPP-Aβ, TSP1, AChE, ApoE)에 본원에 따른 마커를 FRBTs(ALT-S, HDL, cortisol, free T3, Phosphorus)를 함께 사용하였을 때 AUC 값 또한 유의하게 증가된 것으로 나타났다.
참고문헌
1. Mawuenyega, K. G., Sigurdson, W., Ovod, V., Munsell, L., Kasten, T., Morris, J. C., Yarasheski, K. E., and Bateman, R. J. (2010) Decreased clearance of CNS beta-amyloid in Alzheimer's disease. Science 330, 1774
2. Querfurth, H. W., and LaFerla, F. M. (2010) Alzheimer's disease. The New England journal of medicine 362, 329-344
3. Sberna, G., Saez-Valero, J., Li, Q. X., Czech, C., Beyreuther, K., Masters, C. L., McLean, C. A., and Small, D. H. (1998) Acetylcholinesterase is increased in the brains of transgenic mice expressing the C-terminal fragment (CT100) of the beta-amyloid protein precursor of Alzheimer's disease. Journal of neurochemistry 71, 723-731
4. Hu, W., Gray, N. W., and Brimijoin, S. (2003) Amyloid-beta increases acetylcholinesterase expression in neuroblastoma cells by reducing enzyme degradation. Journal of neurochemistry 86, 470-478
5. Benson, A. D., Slavin, M. J., Tran, T. T., Petrella, J. R., and Doraiswamy, P. M. (2005) Screening for Early Alzheimer's Disease: Is There Still a Role for the Mini-Mental State Examination Prim Care Companion J Clin Psychiatry 7, 62-69
6. O'Bryant, S. E., Humphreys, J. D., Smith, G. E., Ivnik, R. J., Graff-Radford, N. R., Petersen, R. C., and Lucas, J. A. (2008) Detecting dementia with the mini-mental state examination in highly educated individuals. Arch Neurol 65, 963-967
7. Rama Rao, K. V., Curtis, K. M., Johnstone, J. T., and Norenberg, M. D. (2013) Amyloid-beta inhibits thrombospondin 1 release from cultured astrocytes: effects on synaptic protein expression. Journal of neuropathology and experimental neurology 72, 735-744
8. Son, S. M., Nam, D. W., Cha, M. Y., Kim, K. H., Byun, J., Ryu, H., and Mook-Jung, I. (2015) Thrombospondin-1 prevents amyloid beta-mediated synaptic pathology in Alzheimer's disease. Neurobiology of aging 36, 3214-3227
9. Masliah, E., Rockenstein, E., Veinbergs, I., Sagara, Y., Mallory, M., Hashimoto, M., and Mucke, L. (2001) beta-amyloid peptides enhance alpha-synuclein accumulation and neuronal deficits in a transgenic mouse model linking Alzheimer's disease and Parkinson's disease. Proc Natl Acad Sci U S A 98, 12245-12250
10. Head, E., and Lott, I. T. (2004) Down syndrome and beta-amyloid deposition. Curr Opin Neurol 17, 95-100
11. Primavera, J., Lu, B. X., Riskind, P. J., Iulian, M., and De La Monte, S. M. (1999) Brain Accumulation of Amyloid-beta in Non-Alzheimer Neurodegeneration. J Alzheimers Dis 1, 183-193
12. Sun, X., Nicholas, J., Walker, A., Wagner, M. T., and Bachman, D. (2012) APOE genotype in the diagnosis of Alzheimer's disease in patients with cognitive impairment. Am J Alzheimers Dis Other Demen 27, 315-320
본 발명에서 사용되는 모든 기술용어는, 달리 정의되지 않는 이상, 본 발명의 관련 분야에서 통상의 당업자가 일반적으로 이해하는 바와 같은 의미로 사용된다. 본 명세서에 참고문헌으로 기재되는 모든 간행물의 내용은 본 발명에 도입된다.

Claims (16)

  1. 인비트로에서 뇌 아밀로이드 베타 축적을 검출하는 방법으로, 상기 방법은 뇌 아밀로이드 베타 축적 검출이 필요한 검사 대상자 유래의 혈액 샘플을 제공하는 단계;
    상기 혈액 샘플에서 ALT(alanine transaminase), 유리 T3(free triiodothyronine) 또는 인(phosphorus) 중 하나 이상의 마커를 정량하는 단계; 및
    상기 정량된 마커의 양을 상기 대상자의 뇌 아밀로이드 베타 축적여부와 연관시키는 단계를 포함하는, 뇌 아밀로이드 베타 축적 검출방법.
  2. 제 1 항에 있어서,
    상기 마커는 HDL 콜레스테롤 또는 코티졸 중 하나 이상을 추가로 포함하는 것인, 뇌 아밀로이드 베타 축적 검출방법.
  3. 제 1 항에 있어서,
    상기 마커는 MPP-A 베타(MPP-treated plasma amyloid 베타), TSP-1, ACHE, 및 APOE로 이루어진 군에서 선택된 하나 이상의 마커를 추가로 포함하는 것인, 뇌 아밀로이드 베타 축적 검출방법.
  4. 제 1 항 또는 제 2 항에 있어서,
    상기 연관시키는 단계는 PiB-PET 음성 대상자의 결과와 비교하여, 인, Free T3, ALT-S의 농도는 낮아지고, HDL cholesterol과 코티졸의 농도는 유의적으로 높은 것은 경우, 상기 검사 대상자를 뇌 아밀로이드 베타가 축적된 것으로 판단하는 것인, 뇌 아밀로이드 베타 축적 검출방법.
  5. 뇌 아밀로이드 베타 축적 관련 질환을 진단하기 위해,
    뇌 아밀로이드 베타 축적 질환 진단이 필요한 검사 대상자 유래의 혈액 샘플을 제공하는 단계;
    상기 혈액 샘플에서 ALT(alanine transaminase), 유리 T3(free triiodothyronine) 또는 인(phosphorus) 중 하나 이상의 마커를 정량하는 단계; 및
    상기 정량된 마커의 양을 상기 대상자의 뇌 아밀로이드 베타 축적 질환 진단 또는 예후와 연관시키는 단계를 포함하는, 뇌 아밀로이드 베타 축적 질환의 진단 방법.
  6. 제 5 항에 있어서,
    상기 정량하는 단계는 HDL 콜레스테롤 또는 코티졸 중 하나 이상을 추가로 포함하는 것인, 뇌 아밀로이드 베타 축적 질환의 진단 방법.
  7. 제 5 항 또는 제 6 항에 있어서,
    상기 연관시키는 단계는 PiB-PET 음성 대상자의 결과와 비교하여, 인, Free T3, ALT-S의 농도는 낮아지고, HDL cholesterol과 코티졸의 농도는 유의적으로 높은 것은 경우, 상기 검사 대상자를 뇌 아밀로이드 베타 축적 질환 진단으로 판단하는 것인, 뇌 아밀로이드 베타 축적 질환의 진단 방법.
  8. 제 5 항에 있어서,
    상기 마커는 MPP-A 베타(MPP-treated plasma amyloid 베타), TSP-1, ACHE, 및 APOE로 이루어진 군에서 선택된 하나 이상의 마커를 추가로 포함하는 것인, 뇌 아밀로이드 베타 축적 질환의 진단 방법.
  9. 제 5 항에 있어서,
    상기 뇌 아밀로이드 베타 플라크 축적 관련 질환은 알츠하이머 치매, 파킨슨병 치매, 루이소체 치매, 헌팅톤병 치매, 또는 전임상 알츠하이머병, 다운 신드롬, 또는 인지장애를 포함하는 것인, 방법.
  10. 뇌의 아밀로이드 베타 플라크 축적 질환의 진단이 필요한 검사 대상자가 뇌의 PIB-PET 검사가 필요한 지 여부를 판단하기 위해,
    상기 대상자 유래의 혈액시료를 제공하는 단계;
    상기 혈액시료에서 바이오마커로서 ALT(alanine transaminase), 유리 T3(free triiodothyronine) 또는 인(phosphorus) 중 하나 이상의 마커를 정량하는 단계; 및
    상기 각 마커의 농도가 대조군으로서 PIB-PET 검사 음성으로 판단된 대조군의 수치와 비교하여 상기 인, Free T3, ALT-S의 농도가 낮은 경우 상기 대상자를 PIB-PET 검사 대상자로 결정하는 단계를 포함하는, PIB-PET 검사가 필요한 대상자 선별을 위한 마커의 검출 방법.
  11. 제 10 항에 있어서,
    상기 정량하는 단계는 HDL 콜레스테롤 또는 코티졸 중 하나 이상을 추가로 포함하며, 상기 HDL 콜레스테롤 및 코티졸의 각 농도가 상기 대조군의 수치와 비교하여 높은 경우, 상기 대상자를 PIB-PET 검사 대상자로 결정하는 단계를 추가로 포함하는, 방법.
  12. 제 10 항 또는 제 11 항에 있어서,
    상기 정량하는 단계는 MPP-A 베타(MPP-treated plasma amyloid 베타), TSP-1, ACHE, 및 ApoE로 이루어진 군에서 선택된 하나 이상의 마커를 추가로 정량하는 것을 포함하는 것인, 방법.
  13. 뇌의 아밀로이드 베타 플라크 축적 여부 판단방법으로 상기 방법은,
    이의 판단이 필요한 검사 대상자 유래의 혈액시료를 제공하는 단계;
    상기 혈액시료에서 바이오마커로서 ALT(alanine transaminase), 유리 T3(free triiodothyronine) 또는 인(phosphorus) 중 하나 이상의 마커를 정량하는 단계; 및
    상기 각 마커의 농도를 상기 각 마커에서 결정된 임계값과 비교하여 뇌의 아밀로이드 베타 플라크 축적 여부를 판단하는 단계를 포함하며, 상기 각 마커의 임계값은 인은 3.9mg/dL이하, HDL cholesterol은 56mg/dL이상, cortisol은 10.1mg/dL이상, Free T3는 3.14pg/ml이하, ALT-S는 28U/L이하인 경우, 상기 대상자는 뇌 아밀로이드베타의 축적 양성인 것으로 판단하는 것인, 방법.
  14. 제 13 항에 있어서,
    상기 뇌의 아밀로이드 베타 플라크 축적 여부 판단은 뇌의 아밀로이드 베타 플라크 축적 관련 질환의 진단 또는 뇌의 PIB-PET 검사가 필요한 지 여부의 결정에 사용되는 것인, 방법.
  15. ALT(alanine transaminase), 유리 T3(free triiodothyronine) 또는 인(phosphorus) 중 하나 이상의 마커를 뇌의 아밀로이드 베타 플라크 축적 여부 검출 또는 판단용 용도.
  16. 제 15 항에 있어서, 상기 하나 이상의 마커는 ALT 및 유리 T3; ALT 및 인; 유리 T3 및 인; 또는 ATL 및 유리 T3 및 인, 용도.
PCT/KR2017/008387 2016-08-19 2017-08-03 혈액 검사 항목의 뇌의 베타아밀로이드 축적 관련 질환 진단용 용도 WO2018034451A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0105617 2016-08-19
KR20160105617 2016-08-19
KR1020170066623A KR102028799B1 (ko) 2016-08-19 2017-05-30 혈액 검사 항목의 뇌의 아밀로이드 베타 축적 관련 질환 진단용 조성물 및 방법
KR10-2017-0066623 2017-05-30

Publications (1)

Publication Number Publication Date
WO2018034451A1 true WO2018034451A1 (ko) 2018-02-22

Family

ID=61196906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/008387 WO2018034451A1 (ko) 2016-08-19 2017-08-03 혈액 검사 항목의 뇌의 베타아밀로이드 축적 관련 질환 진단용 용도

Country Status (1)

Country Link
WO (1) WO2018034451A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110263450A1 (en) * 2008-09-26 2011-10-27 The University Of Melbourne Alzheimer's disease biomarkers
KR20140042331A (ko) * 2012-09-28 2014-04-07 서울대학교산학협력단 인지장애 질환 진단용 다중 마커 및 그 용도
US20150241454A1 (en) * 2003-11-19 2015-08-27 Satoris, Inc. Methods and compositions for diagnosis, stratification, and monitoring of alzheimer's disease and other neurological disorders in body fluids

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150241454A1 (en) * 2003-11-19 2015-08-27 Satoris, Inc. Methods and compositions for diagnosis, stratification, and monitoring of alzheimer's disease and other neurological disorders in body fluids
US20110263450A1 (en) * 2008-09-26 2011-10-27 The University Of Melbourne Alzheimer's disease biomarkers
KR20140042331A (ko) * 2012-09-28 2014-04-07 서울대학교산학협력단 인지장애 질환 진단용 다중 마커 및 그 용도

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BAIRD, ALISON L. ET AL.: "Blood-based Proteomic Biomarkers of Alzheimer's Disease Pathology", FRONTIERS IN NEUROLOGY, vol. 6, no. 236, 2015, pages 1 - 16, XP055465994 *
FRANCOIS, MAXIME ET AL.: "High Content, Multi-parameter Analyses in Buccal Cells to Identify Alzheimer's Disease", CURRENT ALZHEIMER RESEARCH, vol. 13, no. 7, July 2016 (2016-07-01), pages 1 - 13, XP055465990 *

Similar Documents

Publication Publication Date Title
WO2018174585A2 (ko) 뇌의 베타 아밀로이드 축적 감별용 혈중 바이오마커
US20230393133A1 (en) Blood biomarker that predicts persistent cognitive dysfunction after concussion
US20210011032A1 (en) Methods and reagents for improved detection of amyloid beta peptides
JP7457337B2 (ja) アルツハイマー病バイオマーカー
KR102028799B1 (ko) 혈액 검사 항목의 뇌의 아밀로이드 베타 축적 관련 질환 진단용 조성물 및 방법
WO2016175625A1 (ko) 혈장 내 아밀로이드베타의 농도를 통해 알츠하이머병을 임상학적 및 병리학적으로 모니터링하는 방법
CN115461474A (zh) 用于评估阿尔茨海默病的蛋白标志物
WO2018034451A1 (ko) 혈액 검사 항목의 뇌의 베타아밀로이드 축적 관련 질환 진단용 용도
US10473672B2 (en) Methods for diagnosing and treating Alzheimers disease using G72 protein and SLC7A11 mRNA as biomarkers
WO2020085803A1 (ko) 인지기능 정상군 또는 경도 인지장애에서 아밀로이드 베타의 뇌 침착 검출용 혈액 바이오 마커
US20150111777A1 (en) Biomarker for early neurodegeneration detection
WO2024005591A1 (ko) 타우 단백질 유래 인산화 펩타이드를 이용한 알츠하이머병 조기 진단, 단계 구분 및 뇌의 아밀로이드 베타 축적 판별 방법
WO2021210897A1 (ko) 신경퇴행성질환 치료제에 대한 반응을 평가하기 위한 방법 및 조성물
WO2011139106A2 (ko) 혈장 내 pgcp 농도 측정을 통한 치매 진단 방법
KR20230148764A (ko) 알츠하이머병 또는 경도 인지장애 진단을 위한 비응집성 용해조성물 및 이를 이용한 진단 방법
JP4388886B2 (ja) アルツハイマー病の検出方法
JP2013152088A (ja) 神経変性疾患の検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17841634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17841634

Country of ref document: EP

Kind code of ref document: A1