WO2018034071A1 - 厚鋼板およびその製造方法 - Google Patents

厚鋼板およびその製造方法 Download PDF

Info

Publication number
WO2018034071A1
WO2018034071A1 PCT/JP2017/024522 JP2017024522W WO2018034071A1 WO 2018034071 A1 WO2018034071 A1 WO 2018034071A1 JP 2017024522 W JP2017024522 W JP 2017024522W WO 2018034071 A1 WO2018034071 A1 WO 2018034071A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
steel plate
thick steel
fatigue
Prior art date
Application number
PCT/JP2017/024522
Other languages
English (en)
French (fr)
Inventor
和哉 杉谷
悠介 三大寺
杵渕 雅男
徹雄 山口
智之 東南
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017105797A external-priority patent/JP2018031069A/ja
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to EP17841299.5A priority Critical patent/EP3502295A4/en
Priority to CN201780050172.1A priority patent/CN109563598A/zh
Priority to KR1020197004341A priority patent/KR20190028770A/ko
Publication of WO2018034071A1 publication Critical patent/WO2018034071A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present disclosure relates to a thick steel plate and a manufacturing method thereof.
  • Non-Patent Document 1 shows the effects of various influencing factors on fatigue strength, including solid solution strengthening, precipitation strengthening, grain refinement and Although the fatigue properties are improved by the second phase strengthening, the dislocation strengthening is accompanied by an increase in movable dislocations, so that it is difficult to improve the fatigue properties.
  • the process of fatigue failure can be divided into (1) a process until a repeated load is applied and a crack is generated, and (2) a process until the generated crack progresses and breaks.
  • it is effective to suppress the accumulation of dislocations in the process (1), and solid solution strengthening, precipitation strengthening, grain refinement, etc. are considered effective. It is done.
  • Non-Patent Document 2 examines the relationship between fatigue strength and the strengthening mechanism by strengthening a ferrite-pearlite hot-rolled steel sheet by dislocation or the like.
  • Patent Document 1 shows that the crack growth rate is lowered by making the metal structure a mixed structure of fine ferrite bainite by adding an alloy that enhances hardenability and accelerated cooling. Thereby, the fatigue life after crack generation is prolonged, and it is said that a steel plate having excellent fatigue characteristics as compared with the conventional one can be obtained.
  • Patent Document 2 proposes improving fatigue strength by precipitating carbides in the ferrite structure.
  • Patent Document 1 does not consider any fatigue life before crack initiation. Further, since Patent Document 2 is intended for thin steel sheets, it does not take into account any other characteristics required for large structures such as toughness, and the fatigue characteristics after cracks are generated. There is no description.
  • Patent Document 3 a steel material has been found that extends both the fatigue life before crack initiation and the fatigue life after crack initiation, but cooling after rolling in order to obtain a fine structure. Since it is realized by precisely controlling the cooling rate using accelerated cooling, it is difficult to strictly manage the length of the thick steel plate from the tip to the tail in the actual manufacturing process. There was a risk that the characteristics would vary and productivity could be reduced. On the other hand, if accelerated cooling is not used, it is difficult to ensure a fine metal structure, resulting in a coarse ferrite-pearlite structure, making it difficult to ensure static strength and at the same time reducing fatigue strength. It was.
  • a manufacturing method called two-phase rolling is known. This is a method in which dislocations are introduced into the ferrite phase by applying processing by rolling at an Ar 3 temperature or lower at which ferrite transformation occurs in the rolling process, and the static strength is improved by strengthening the dislocations.
  • this method it is not necessary to perform accelerated cooling after rolling, so that variations in characteristics due to differences in cooling rate can be reduced, and productivity can be improved.
  • Non-Patent Document 1 and Non-Patent Document 2 it has been reported that the contribution to the improvement of fatigue strength by dislocation strengthening is small, and the aforementioned fatigue limit ratio is reduced.
  • the embodiment of the present invention has been made in view of the above circumstances, and its main object is to provide a thick steel plate excellent in strength and fatigue characteristics and a method for producing the same.
  • the steel plate according to the embodiment of the present invention C: 0.02 to 0.10% by mass, Mn: 1.0 to 2.0% by mass, Nb: more than 0% by mass, 0.05% by mass or less, Ti: more than 0% by mass, 0.05% by mass or less, Al: 0.01 to 0.06% by mass, Si: 0.1 to 0.6% by mass, and Cu: 0.1 to 0.6% by mass
  • the processed ferrite fraction is 50% or more in area ratio
  • the effective grain size of the crystal grains is 30 ⁇ m or less
  • the martensite-austenite mixed phase is 5% or less in area ratio
  • the value of the dislocation density ⁇ measured by X-ray diffraction is 1.0 ⁇ 10 14 m ⁇ 2 or more and 2.5 ⁇ 10 15 m ⁇ 2 or less.
  • the surface residual stress in the rolling direction may be a compressive residual stress of 50 MPa or more.
  • the steel plate according to the embodiment of the present invention may include Ni: more than 0% by mass and 0.6% by mass or less, and may satisfy the following formula (1).
  • [Ni] is the Ni content (wt%)
  • [Cu] is the Cu content (wt%).
  • the thick steel plate according to the embodiment of the present invention may include B: more than 0 mass% and 0.005 mass% or less.
  • Thick steel plates according to embodiments of the present invention have V: more than 0% by mass, 0.5% by mass or less, Cr: more than 0% by mass, 1.0% by mass or less, and Mo: more than 0% by mass, 0.5% by mass.
  • V more than 0% by mass, 0.5% by mass or less
  • Cr more than 0% by mass, 1.0% by mass or less
  • Mo more than 0% by mass, 0.5% by mass.
  • One or more selected from the group consisting of% or less may be included.
  • the method for producing a thick steel plate according to the embodiment of the present invention is as follows.
  • C 0.02 to 0.10% by mass
  • Mn 1.0 to 2.0% by mass
  • Nb more than 0% by mass, 0.05% by mass or less
  • Ti more than 0% by mass, 0.05% by mass or less
  • Al 0.01 to 0.06% by mass
  • Si 0.1 to 0.6% by mass
  • Cu 0.1 to 0.6% by mass
  • a step of producing a steel slab in which the total of Si and Cu is 0.3% by mass or more, and the balance is iron and inevitable impurities The steel slab, Cumulative rolling reduction in the hot rolling process: 70% or more, 98% or less Unrecrystallized cumulative rolling reduction: 20% or more, 90% or less
  • Two-phase region rolling reduction In the temperature range of Ar 3 to 650 ° C., the rolling reduction is 0 More than 50% and 50% or less Finish rolling end temperature: including a step of hot rolling at 650 ° C. or more.
  • the reduction rate per pass when the two-phase region is reduced may be more than 0% and less than 30%.
  • the steel slab contains Ni: more than 0 mass% and 0.6 mass% or less, and may satisfy the following formula (1).
  • [Ni] is the Ni content (wt%)
  • [Cu] is the Cu content (wt%).
  • the steel slab may contain B: more than 0% by mass and 0.005% by mass or less.
  • the steel slab is selected from the group consisting of V: more than 0 mass%, 0.5 mass% or less, Cr: more than 0 mass%, 1.0 mass% or less, and Mo: more than 0 mass%, 0.5 mass% or less. One or more selected may be included.
  • a thick steel plate excellent in strength and fatigue characteristics and a method for producing the same are provided.
  • FIG. 1 is a schematic explanatory view showing a steel sheet according to an embodiment of the present invention.
  • FIG. 2 is a schematic explanatory view showing a test piece used for measurement of fatigue characteristics of a cut-out fatigue test piece.
  • FIG. 3 is a schematic explanatory view showing a test piece used for measurement of fatigue characteristics of a full thickness fatigue test piece.
  • the present inventors appropriately controlled the content of elements that suppress the cell formation of dislocations such as Si and Cu, and further set the two-phase region rolling conditions appropriately. By controlling to, the strength and fatigue characteristics of the thick steel plate were improved.
  • the pre-stage life accounted for about 50%, and it was found that the ratio of the pre-stage life to the occurrence of cracking increases as the stress level is lowered to increase the total life. For this reason, in order to increase the total life until fatigue failure, it is necessary to improve not only the fatigue characteristics after the occurrence of cracks but also the fatigue characteristics until the occurrence of cracks. In particular, in the vicinity of the fatigue limit, there is a tendency that the ratio of the previous stage life until the occurrence of cracking tends to increase, so it is considered effective to increase the previous stage life.
  • the chemical composition of the thick steel plate was appropriately controlled, and the processed ferrite fraction, the effective crystal grain size of the crystal grains, martensite-austenite Thick steel plates with appropriately controlled area ratio of the mixed phase and dislocation density ⁇ measured by X-ray diffraction can extend the life of the previous stage even if the structure is coarser than before, resulting in fatigue failure. It has been found that the total lifetime up to can be extended.
  • the inventors prevent deterioration of fatigue characteristics due to excessive introduction of movable dislocations, and control the compressive residual stress in the rolling direction of the steel sheet surface layer to a predetermined value or more (that is, surface residual in the rolling direction).
  • the rolling conditions were examined in order to further improve the fatigue characteristics by making the stress a compressive residual stress of a predetermined value or more.
  • the ferrite near the steel sheet surface can be plastically deformed by controlling the rolling reduction per pass to a predetermined value or less and performing two-phase rolling, resulting in excessive introduction of movable dislocations into the steel sheet.
  • the present inventors have found that residual stress effective for improving fatigue characteristics can be imparted while preventing this from occurring.
  • the surface residual stress in the rolling direction may be referred to as “compressive residual stress” or “residual stress”.
  • Thick steel plate> As a result of investigating the relationship between the additive element and the fatigue strength of various thick steel plates, it was found that the fatigue strength is remarkably improved by the addition of Si and Cu. In general, fatigue cracks are caused by the movement of movable dislocations that move due to repeated stress, resulting in irreversible motion due to cross-slip. At this time, it is known that dislocations form a cell structure, but the addition of Si and Cu so that the total amount is 0.3 mass% or more can suppress the formation of this cell structure. It became clear.
  • these elements do not form precipitates and are not significantly dissolved in carbides or the like present in the steel sheet. It is thought that. That is, if these elements are sufficiently present in a solid solution state in the matrix, it is considered that the irreversible motion of dislocations is suppressed, so that the fatigue life before crack generation is improved. It has been found that this dislocation celling suppression effect is not remarkably produced by other additive elements such as Mn and Cr.
  • the rolling reduction per pass to a predetermined value or less and performing two-phase region rolling, the ferrite in the vicinity of the steel sheet surface can be plastically deformed, and as a result, movable dislocations are excessively introduced into the steel sheet. It is possible to apply residual stress effective in improving fatigue characteristics while preventing the occurrence of the above-mentioned problem. That is, by controlling the reduction rate per pass when the two-phase region is reduced, compressive residual stress can be effectively applied, and fatigue characteristics can be improved.
  • FIG. 1 is a schematic explanatory view showing a steel sheet according to an embodiment of the present invention.
  • Fig.1 (a) is a schematic perspective view of the steel plate which concerns on embodiment of this invention
  • FIG.1 (b) is a schematic side view of the steel plate which concerns on embodiment of this invention.
  • L indicates the rolling direction
  • W indicates the width direction
  • D indicates the plate thickness direction
  • S1 indicates the surface of the steel plate
  • S2 indicates a cross section in the plate thickness direction D parallel to the rolling direction L.
  • the steel plate according to the embodiment of the present invention C: 0.02 to 0.10% by mass, Mn: 1.0 to 2.0% by mass, Nb: more than 0% by mass, 0.05% by mass or less, Ti: more than 0% by mass, 0.05% by mass or less, Al: 0.01 to 0.06% by mass, Si: 0.1 to 0.6% by mass, and Cu: 0.1 to 0.6% by mass
  • the processed ferrite fraction is 50% or more in area ratio
  • the effective grain size of the crystal grains is 30 ⁇ m or less
  • the martensite-austenite mixed phase is 5% or less in area ratio
  • the value of the dislocation density ⁇ measured by X-ray diffraction is 1.0 ⁇ 10 14 m ⁇ 2 or more and 2.5 ⁇ 10 15 m ⁇ 2 or less.
  • C (C: 0.02 to 0.10% by mass) C is an important element for securing the strength of the base material (steel plate). Therefore, the C amount is determined to be 0.02% by mass or more.
  • the amount of C is preferably 0.03% by mass or more, and more preferably 0.04% by mass or more.
  • the C amount is determined to be 0.10% by mass or less.
  • the amount of C is preferably 0.08% by mass or less, and more preferably 0.07% by mass or less.
  • Mn 1.0 to 2.0% by mass
  • Mn is an important element for ensuring hardenability in order to obtain a fine structure. In order to exhibit such an action effectively, the amount of Mn needs to be 1.0 mass% or more.
  • the amount of Mn is preferably 1.2% by mass or more, more preferably 1.4% by mass or more.
  • the amount of Mn needs to be 2.0 mass% or less.
  • the amount of Mn is preferably 1.8% by mass or less, and more preferably 1.7% by mass or less.
  • Nb is an effective element for improving the hardenability and making the structure finer.
  • the Nb amount is set to more than 0% by mass.
  • the Nb amount is preferably 0.01% by mass or more. More preferably, it is 0.02 mass% or more.
  • the Nb amount needs to be 0.05% by mass or less. Preferably it is 0.04 mass% or less, More preferably, it is 0.03 mass% or less.
  • Ti is an element that improves the hardenability and at the same time forms TiN to make the structure of the heat-affected zone during welding finer and suppress the reduction in toughness. Therefore, the amount of Ti is 0% by mass. It was super. Ti is preferably contained in an amount of 0.01% by mass or more. More preferably, it is 0.02 mass% or more. However, when the amount of Ti is excessive, coarse TiN is generated, and thus there is a risk that characteristics such as toughness are deteriorated. Therefore, the Ti amount needs to be 0.05% by mass or less. Preferably it is 0.04 mass% or less, More preferably, it is 0.03 mass% or less.
  • Al 0.01 to 0.06% by mass
  • Al is an element useful for deoxidation, and the Al content is set to 0.01% by mass or more. If the amount of Al is less than 0.01% by mass, the deoxidation effect is not exhibited. Preferably it is 0.02 mass% or more, More preferably, it is 0.03 mass% or more. However, if the amount of Al becomes excessive, the hardenability becomes excessive and the desired fatigue characteristics cannot be obtained because the dislocation density ⁇ increases. Therefore, the Al amount needs to be 0.06% by mass or less. Preferably it is 0.05 mass% or less, More preferably, it is 0.04 mass% or less.
  • Si 0.1-0.6% by mass
  • Si is an element that has a large amount of solid solution strengthening and is necessary for ensuring the strength of the base material, and at the same time, is an element that is effective in suppressing cell formation by suppressing the movement of dislocations.
  • the Si amount needs to be 0.1% by mass or more.
  • the amount of Si is preferably 0.2% by mass or more, more preferably 0.3% by mass or more.
  • the amount of Si needs to be 0.6% by mass or less. Preferably it is 0.55 mass% or less, More preferably, it is 0.5 mass% or less.
  • Cu 0.1-0.6% by mass
  • Cu is an element effective for suppressing cell formation by suppressing cross slip of dislocations, and in order to effectively exhibit this action, the amount of Cu needs to be 0.1% by mass or more.
  • the amount of Cu is preferably 0.2% by mass or more, more preferably 0.3% by mass or more.
  • the amount of Cu needs to be 0.6% by mass or less.
  • it is 0.55 mass% or less, More preferably, it is 0.5 mass% or less.
  • Si and Cu can exhibit a common action in terms of suppressing the formation of dislocation cells, and each may be added alone, but in order to obtain a desired fatigue limit ratio, both are included in combination. There is a need.
  • the effect of suppressing dislocation cell formation by Si and Cu can be effectively exhibited when the sum of Si and Cu becomes 0.3% by mass or more.
  • it is 0.4 mass% or more.
  • the upper limit of the total of Si and Cu is the sum of the upper limits of Si and Cu, that is, 1.2% by mass, and preferably 1.0% by mass.
  • the basic components in the thick steel plate according to the embodiment of the present invention are as described above, and the balance is substantially iron.
  • steel it is permissible for steel to contain unavoidable impurities such as P, S or N which are brought in depending on the situation of raw materials, materials or manufacturing equipment.
  • the thick steel plate which concerns on embodiment of this invention may contain the following element selectively, and the characteristic of a thick steel plate is further improved according to the kind of element contained.
  • Ni has the effect of improving hardenability and making the structure finer, and at the same time has the effect of suppressing cracks during hot working that are likely to occur due to the addition of Cu.
  • the amount of Ni is more than 0% by mass. More preferably, it is 0.1 mass% or more, More preferably, it is 0.2 mass% or more.
  • the amount of Ni is preferably 0.6% by mass or less. More preferably, it is 0.5 mass% or less, More preferably, it is 0.4 mass% or less.
  • the ratio of Ni amount [Ni] and Cu amount [Cu] is preferably less than 1.2, more preferably 1.1 or less.
  • the lower limit of this ratio ([Ni] / [Cu]) is approximately 0.5 or more, more preferably 0.6 or more.
  • B is an element that improves the hardenability, and particularly an element that suppresses the formation of a coarse ferrite structure and easily generates a fine upper bainite structure.
  • the B content is preferably set to 0.0005 mass% or more. More preferably, it is 0.001 mass% or more.
  • the amount of B is excessive, the hardenability becomes excessive and the dislocation density ⁇ is excessively high, so that the desired fatigue characteristics cannot be obtained. More preferably, it is 0.004 mass% or less.
  • V, Cr, and Mo are elements that have an effect of improving the hardenability of the steel sheet, and are effective in refining the structure.
  • V 0.01% by mass or more
  • Cr 0.1% by mass or more
  • Mo 0.01% by mass or more alone, or two or more types should be contained. Is preferred. However, if these elements are contained excessively, the hardenability becomes excessive and the desired tensile strength cannot be obtained.
  • the respective amounts be V: 0.5% by mass or less, Cr: 1.0% by mass or less, and Mo: 0.5% by mass or less. More preferably, they are V: 0.4 mass% or less, Cr: 0.8 mass% or less, Mo: 0.4 mass% or less.
  • the metal structure of the thick steel plate according to the embodiment of the present invention is
  • the processed ferrite fraction is 50% or more in area ratio
  • the effective grain size of the crystal grains is 30 ⁇ m or less
  • the martensite-austenite mixed phase is 5% or less in area ratio
  • the value of the dislocation density ⁇ measured by X-ray diffraction is 1.0 ⁇ 10 14 m ⁇ 2 or more and 2.5 ⁇ 10 15 m ⁇ 2 or less.
  • the ferrite in the temperature region of the two-phase region is subjected to dislocation by the two-phase region rolling at a relatively high temperature and further fixed by carbon.
  • a certain level of processed ferrite into which dislocations are introduced by two-phase rolling is required.
  • the processed ferrite fraction is quantified by a parameter GOS value (Grain Orientation Spread) measured by EBSD.
  • GOS value is a parameter indicating an average value of orientation differences between measurement points of a certain measurement point and other measurement points in the same crystal grain.
  • the GOS value is considered to increase because of the difference in crystal orientation due to the dislocations.
  • the processed ferrite means crystal grains having a GOS value exceeding 4 °
  • the processed ferrite fraction means the area ratio of processed ferrite in the metal structure.
  • the processed ferrite fraction needs to be 50% or more, preferably 55% or more. The method for measuring the processed ferrite fraction will be described in detail in Examples.
  • an equivalent circle diameter (hereinafter referred to as “effective crystal grain size”) is defined when a region surrounded by a large-angle grain boundary having a crystal grain orientation difference of 15 ° or more is used as the crystal grain. May be 30.0 ⁇ m or less.
  • the effective crystal grain size is preferably 28.0 ⁇ m or less, more preferably 25 ⁇ m or less.
  • the martensite-austenite mixed phase (MA) produced in the cooling process after rolling causes expansion transformation in the production process, thereby introducing mobile dislocations in the matrix phase and reducing the life until crack initiation.
  • MA fraction the area ratio of MA in the metal structure (hereinafter sometimes referred to as MA fraction) is set to 5% or less.
  • dislocation density ⁇ is 1.0 ⁇ 10 14 m ⁇ 2 or more
  • the static strength can be improved without reducing the fatigue limit ratio.
  • it is 2.0 ⁇ 10 14 m ⁇ 2 or more.
  • the upper limit of the dislocation density is 2.5 ⁇ 10 15 m ⁇ 2 or less, preferably 2.0 ⁇ 10 15 m ⁇ 1 or less, more preferably 1.5 ⁇ 10 15 m ⁇ 1 or less. .
  • the thick steel plate according to the embodiment of the present invention is preferably a compressive residual stress having a surface residual stress in the rolling direction of 50 MPa or more.
  • the compressive residual stress is more preferably 100 MPa or more.
  • the upper limit of the compressive residual stress is not particularly limited, but the compressive residual stress applied under normal reduction is 250 MPa or less.
  • the compressive residual stress can be determined by the sin 2 ⁇ method in accordance with “JSMS-SD-5-02 X-ray stress measurement method standard—steel edition— (2002 edition)” edited by the Japan Society of Materials X-ray Material Strength Committee. .
  • a specimen with the same thickness is taken from the steel sheet, and X-rays are irradiated to the rolling surface of the specimen (that is, the steel sheet surface) at a plurality of incident angles ⁇ in a direction parallel to the rolling direction using an X-ray stress measuring device. Then, the peak position 2 ⁇ of the diffraction line at each incident angle ⁇ (diffraction angle of the (211) plane) is measured.
  • the plate thickness of the thick steel plate according to the embodiment of the present invention is not particularly limited, but when the plate thickness is small, the contribution to the improvement of the crack propagation life is reduced. From such a viewpoint, the plate thickness is preferably 6 mm or more, and more preferably 10 mm or more. On the other hand, since the introduction of dislocation by two-phase rolling becomes insufficient when the plate thickness is increased, the plate thickness is preferably 60 mm or less, more preferably 50 mm or less.
  • the thick steel plate according to the embodiment of the present invention having such a configuration may be preferably used as a structural material for ships, buildings, bridges, construction machines and the like.
  • the thick steel plate according to the embodiment of the present invention is manufactured by the following method using a steel piece having the above-described chemical component composition, for example, a slab.
  • a steel piece having the above-described chemical component composition for example, a slab.
  • the cumulative reduction ratio in the hot rolling process, the unrecrystallized cumulative reduction ratio, and the two-phase region reduction ratio (ferrite transformation) are controlled as follows.
  • Cumulative rolling reduction in the hot rolling process 70% or more, 98% or less Unrecrystallized cumulative rolling reduction: 20% or more, 90% or less
  • Two-phase region rolling reduction In the temperature range of Ar 3 to 650 ° C., the rolling reduction is 0 Over%, 50% or less Finishing finish temperature: 650 ° C or more
  • the heating temperature before hot rolling the cumulative rolling reduction in the hot rolling process and / or the rolling reduction in the non-recrystallization temperature range as follows.
  • the steel slab It is preferable to heat the steel slab to a temperature range of 1000 to 1200 ° C. before hot rolling. More preferably, it is 1050 degreeC or more. However, if the heating temperature becomes too high and exceeds 1200 ° C., the tissue size cannot be reduced even if sufficient reduction is applied, so it is preferable that the heating temperature is 1200 ° C. or less. More preferably, it is 1150 degrees C or less.
  • the cumulative rolling reduction in the hot rolling process is 70% or more. Preferably it is 75% or more.
  • the upper limit of the cumulative rolling reduction is not particularly defined, but is 98% or less in consideration of the manufacturing load in the actual manufacturing process.
  • the reduction rate in the non-recrystallization temperature region is set to 20% or more. Preferably it is 25% or more, more preferably 30% or more.
  • the upper limit of the unrecrystallized zone reduction ratio is not particularly defined, but is 90% or less in consideration of the manufacturing load in the actual manufacturing process.
  • the Ar 3 transformation point employs a value obtained by the following formula.
  • Ar 3 transformation point 910-230 ⁇ [C] + 25 ⁇ [Si] ⁇ 74 ⁇ [Mn] ⁇ 56 ⁇ [Cu] ⁇ 16 ⁇ [Ni] ⁇ 9 ⁇ [Cr] ⁇ 5 ⁇ [Mo] ⁇ 1620 ⁇ [Nb] (3)
  • [C], [Si], [Mn], [Cu], [Ni], [Cr], [Mo] and [Nb] are C, Si, Mn, Cu, Ni, Cr, Mo and The content of Nb in mass% is shown.
  • the preferable lower limit of the two-phase region rolling reduction is 3%, the more preferable lower limit is 5%, and the preferable upper limit is The upper limit is 40%, more preferably 25%, and the preferable lower limit of the temperature when the two-phase region pressure is lowered is 670 ° C, and the more preferable lower limit is 680 ° C.
  • the reduction rate per pass during the two-phase region reduction is preferably more than 0%, more preferably 3% or more, and even more preferably 5% or more, preferably It is less than 30%, more preferably 20% or less, further preferably 18% or less, and most preferably 15% or less.
  • the temperature is made 20 ° C./s or less. Preferably it is 10 degrees C / s or less.
  • the structure of the steel plate, the processed ferrite fraction, the MA fraction, the effective crystal grain size, the dislocation density ⁇ , the compressive residual stress, the tensile strength, and the fatigue characteristics were measured.
  • the test piece was collected such that the position at the depth t / 4 from the steel sheet surface was the evaluation position.
  • the measurement of compressive residual stress was performed with the plate thickness of the steel plate unchanged.
  • Tensile strength and fatigue characteristics are measured on a test piece taken so that the position at the depth t / 4 from the steel sheet surface is the evaluation position.
  • test piece collected as it was thick was also performed.
  • test pieces taken so that the position of the depth t / 4 from the steel sheet surface becomes the evaluation position for measurement of tensile strength and fatigue characteristics are referred to as “cut tensile test piece” and “cut fatigue test piece”, respectively.
  • specimens collected as they are for measurement of tensile strength and fatigue properties are called “full thickness tensile specimens” and “full thickness fatigue specimens”, respectively.
  • the metal structure was fractionated by image analysis using an image analysis software “Image Pro Plus ver. The values of the three visual fields were averaged to obtain the area ratio of each metal structure. The observation area was photographed with a visual field of 166 ⁇ m in the plate thickness direction and 222.74 ⁇ m in the rolling direction centered at the position of depth t / 4 from the steel plate surface.
  • the effective crystal grain size is determined by SEM (Scanning Electron Microscope) -EBSP (Electron Backscatter Pattern). It was measured. Specifically, an EBSP apparatus (trade name: “OIM”) manufactured by TEX SEM Laboratories is used in combination with SEM, and a region surrounded by a large-angle grain boundary in which the orientation difference between adjacent crystal grains is 15 ° or more is defined as a crystal grain. As a result, the crystal grain size was measured.
  • the measurement conditions at this time are: measurement area: 200 ⁇ m ⁇ 200 ⁇ m, measurement step: 0.5 ⁇ m interval, and measurement points whose confidence index (Confidence Index) indicating the reliability of the measurement direction is smaller than 0.1 are analyzed. Excluded. With respect to the crystal grain boundaries thus obtained, the cutting lengths at 100 locations in the plate thickness direction were measured, and the average value was taken as the effective crystal grain size. However, an effective crystal grain size of 2.0 ⁇ m or less was judged as measurement noise and excluded. The observation region was a region having a spread of 100 ⁇ m on both sides in the plate thickness direction centered at the position of depth t / 4 from the steel plate surface.
  • the EBSD measurement is performed by the same procedure as the method for measuring the effective crystal grain size described above, the area fraction of crystal grains having a GOS value exceeding 4 ° is measured, and the obtained area fraction is defined as the processed ferrite fraction. .
  • MA Average ratio of martensite-austenite mixed phase [MA fraction]
  • MA applies liquid A (3 g picric acid + 100 ml ethanol solution), liquid B (1 g sodium disulfite + 100 ml distilled water), and ethanol (liquid A: liquid B) to the steel plate test pieces subjected to the mirror polishing finish described above.
  • Ethanol (5: 6: 1) Etched with a repeller corrosive solution mixed at a ratio of 5: 6: 1, observed at an observation area of 3.71 ⁇ 10 ⁇ 2 mm 2 and an observation magnification of 400 times, and corroded in white
  • the obtained phase was subjected to image analysis processing using the above-described image analysis software as MA, and after the metal structure was sorted, the values of these five fields of view were averaged to obtain the area ratio of MA.
  • the strain ⁇ is a value calculated by applying the Hall method and based on the following formula (5) and the following formula (6).
  • ⁇ cos ⁇ / ⁇ 0.9 / D + 2 ⁇ sin ⁇ / ⁇ (5)
  • ⁇ 2 ⁇ m 2 - ⁇ s 2 (6)
  • is the true half width (unit: rad)
  • is the Bragg angle (unit: °)
  • is the incident X-ray wavelength (unit: nm)
  • D is the crystal size (unit: nm)
  • ⁇ m is the actually measured half width
  • ⁇ s is the half width (device constant) of the unstrained sample.
  • is calculated from ⁇ m and ⁇ s according to the above equation, and this value is substituted into the above equation and ⁇ cos ⁇ / ⁇ sin ⁇ / ⁇ is plotted, and (110), (211) and (220) 3 The points were fitted by the method of least squares. Then, the strain ⁇ was calculated from the inclination (2 ⁇ ) of the fitting straight line, and the dislocation density ⁇ was calculated by substituting the strain ⁇ .
  • the compressive residual stress was determined by the sin 2 ⁇ method according to “JSMS-SD-5-02 X-ray stress measurement method standard—steel edition” (2002 edition) edited by the Japan Society of Materials X-ray Material Strength Committee. Details will be described below.
  • a specimen with the same thickness as that of the steel sheet was taken from the steel sheet, and a plurality of specimens on one side of the rolled surface of the specimen (that is, the steel sheet surface) were measured using a PSPC micro-part X-ray stress measuring device “MSF-3M” manufactured by Rigaku Corporation.
  • E and ⁇ are steel Young's modulus (210 GPa) and Poisson's ratio (0.3), 2 ⁇ 0 is the undistorted diffraction angle (156.4 °), and M is the slope of the regression line 2 ⁇ -sin 2 ⁇ .
  • K represents a stress constant, and is a value of ferritic steel materials described in “JSMS-SD-5-02 X-ray stress measurement method standard-steel edition— (2002 edition)” edited by the Japan Society of Materials X-ray Material Strength Committee. ( ⁇ 318 MPa / deg) was used.
  • the stress value ⁇ is negative, it is determined that there is compressive residual stress, and the absolute value is defined as compressive residual stress.
  • the compressive residual stress was also measured on the other surface of the rolled surface of the test piece in the same manner as described above, the average value of the compressive residual stress on both surfaces was determined, and the average value was taken as the compressive residual stress of the steel sheet.
  • TS b is more than 440 MPa, is determined that the practical level the following steel plate 620 MPa.
  • Fatigue characteristics of the cut-out fatigue test piece are those affected by the tensile strength TS a, seeking 500 million times fatigue limit ratio in order to remove the influence, what 5 million times fatigue limit ratio is higher than the 0.51 Passed.
  • 5 million times fatigue limit ratio is a value obtained by dividing the tensile strength TS a 500 million times fatigue limit, 5 million times fatigue limit ratio was determined as follows. Subjected to fatigue test at the stress amplitude test pieces obtained by dividing the stress amplitude .sigma.a tensile strength TS a in ( ⁇ a / TS a) is 0.51, was examined for fracture at 5,000,000 reached.
  • Fatigue characteristics of the overall thickness fatigue test piece are those affected by tensile strength TS b, it was determined million times fatigue ratio to eliminate the influence. When the fatigue limit ratio of 1 million times exceeded 0.70, it was determined that the fatigue characteristics were further improved by compressive residual stress.
  • a million times fatigue limit ratio is a value obtained by dividing the tensile strength TS b 100 million times fatigue limit, a million times fatigue limit ratio was determined as follows. Subjected to fatigue test at the stress amplitude test pieces obtained by dividing the stress range .DELTA..sigma tensile strength TS b in ( ⁇ / TS b) is 0.70, was examined for fracture at a million times reached.
  • the effective crystal grain size, deformed ferrite fraction, MA fraction, dislocation density [rho, compressive residual stress, cut tensile tensile strength TS a test piece, of the total thickness tensile specimen tensile strength TS b, cut fatigue test Table 3 shows the fatigue characteristics of the pieces and the fatigue characteristics of the full thickness fatigue test pieces.
  • test no. 1 to 14 and 32 satisfy the structure of the metal structure defined in the embodiment of the present invention because the chemical composition and production conditions of steel are appropriately controlled, and exhibit excellent fatigue characteristics.
  • Test No. No. 32 is a condition no. In this example, the residual compressive stress is small and the fatigue characteristics of the full thickness fatigue test piece are not sufficient, but the fatigue characteristics of the cut-out test piece are sufficient.
  • test no. Nos. 15 to 31 are examples in which any of the requirements defined in the embodiment of the present invention is deviated, and all of them resulted in poor fatigue characteristics.
  • Test No. 15 is an example using the steel plate of the C amount is small steel type I, in which a predetermined tensile strength TS a and TS b becomes achieved. Therefore, properties other than the organization are not evaluated.
  • Test No. 16 is an example where the amount of C using the steel plate of the excess steel type J, in which tensile strength TS a and TS b becomes too high. Therefore, properties other than the organization are not evaluated.
  • Test No. No. 17 is an example using a steel plate of steel type K that deviates from the requirement that “the total content of Si and Cu is 0.3 mass% or more”. The fatigue characteristics of the piece and the full thickness fatigue test piece deteriorated.
  • Test No. No. 18 is an example using a steel sheet of steel type L with an excessive amount of Si, the MA fraction was high, and the fatigue characteristics of the cut fatigue test piece and the full thickness fatigue test piece were deteriorated.
  • Test No. No. 19 is an example using a steel sheet of steel type M having an excessive amount of Mn, and the suppression of dislocation celling was not effectively exhibited, and the fatigue characteristics of the cut-out fatigue test piece and the full thickness fatigue test piece were deteriorated.
  • Test No. No. 20 is an example using a steel sheet of steel type N having a low Mn content, and the suppression of dislocation celling was not effectively exhibited, and the fatigue characteristics of the cut-out fatigue test piece and the full thickness fatigue test piece were deteriorated.
  • Test No. 21 is an example where the amount of Cu is used an excess of steel sheet steels O, since the hardenability becomes excessive, a predetermined tensile strength TS a and TS b was not achieved. Therefore, properties other than the structure and the processed ferrite fraction are not evaluated.
  • Test No. No. 22 is an example using a steel sheet P of steel type P with an excessive amount of Ni, and the requirement of [Ni] / [Cu] ⁇ 1.2 is also deviated, and dislocation cell formation is not effectively suppressed. The fatigue characteristics of the cut fatigue test piece and the full thickness fatigue test piece were deteriorated.
  • Test No. 23 is an example in which Cr content using steel excessive steels Q, since the hardenability becomes excessive, in which a predetermined tensile strength TS a and TS b was not achieved. Therefore, properties other than the organization are not evaluated.
  • Test No. 24 is an example in which the Mo content was used steel excessive steels R, since the hardenability becomes excessive, in which a predetermined tensile strength TS a and TS b was not achieved. Therefore, properties other than the organization are not evaluated.
  • Test No. 25 is an example where the amount of V was used steel excessive steels S, since the hardenability becomes excessive, in which a predetermined tensile strength TS a and TS b was not achieved. Therefore, properties other than the organization are not evaluated.
  • Test No. No. 26 is a rolling condition No. 26 with a low cumulative rolling reduction during hot rolling. In this example, the effective crystal grain size was too large, and the fatigue characteristics of the cut fatigue test piece and the full thickness fatigue test piece were deteriorated.
  • Test No. No. 27 is a rolling condition No. 27 with a low unrecrystallized cumulative reduction ratio. In this example, the effective crystal grain size was too large, and the fatigue characteristics of the cut fatigue test piece and the full thickness fatigue test piece were deteriorated.
  • Test No. No. 28 is a rolling condition no. In this example, the dislocation density ⁇ was excessive, and the fatigue characteristics of the cut fatigue test piece and the full thickness fatigue test piece were deteriorated.
  • Test No. No. 29 is a rolling condition No. having a low finish rolling end temperature. In this example, the introduction of excessive dislocations into the structure due to rolling could not be suppressed, and the fatigue characteristics of the cut fatigue test piece and the full thickness fatigue test piece were deteriorated.
  • Test No. 30 is a rolling condition No. 2 in which two-phase rolling is not performed.
  • the processed ferrite fraction was small, and the fatigue characteristics of the cut-out fatigue test piece and the full thickness fatigue test piece were deteriorated.
  • the compressive residual stress was also small.
  • Test No. No. 31 is a condition no. In this example, the MA fraction was increased, and the fatigue characteristics of the cut-out fatigue test piece and the full thickness fatigue test piece were deteriorated.
  • Aspect 1 C: 0.02 to 0.10% by mass, Mn: 1.0 to 2.0% by mass, Nb: more than 0% by mass, 0.05% by mass or less, Ti: more than 0% by mass, 0.05% by mass or less, Al: 0.01 to 0.06% by mass, Si: 0.1 to 0.6% by mass, and Cu: 0.1 to 0.6% by mass
  • the processed ferrite fraction is 50% or more in area ratio
  • the effective grain size of the crystal grains is 30 ⁇ m or less
  • the martensite-austenite mixed phase is 5% or less in area ratio
  • Aspect 2 The thick steel plate according to aspect 1, wherein the surface residual stress in the rolling direction is a compressive residual stress of 50 MPa or more.
  • Aspect 3 Ni: The thick steel plate according to the aspect 1 or 2, which includes more than 0% by mass and 0.6% by mass or less and satisfies the following formula (1). [Ni] / [Cu] ⁇ 1.2 (1) Here, [Ni] is the Ni content (wt%), and [Cu] is the Cu content (wt%).
  • Aspect 5 One selected from the group consisting of V: more than 0% by mass, 0.5% by mass or less, Cr: more than 0% by mass, 1.0% by mass or less and Mo: more than 0% by mass, 0.5% by mass or less.
  • Aspect 6 C: 0.02 to 0.10% by mass, Mn: 1.0 to 2.0% by mass, Nb: more than 0% by mass, 0.05% by mass or less, Ti: more than 0% by mass, 0.05% by mass or less, Al: 0.01 to 0.06% by mass, Si: 0.1 to 0.6% by mass, and Cu: 0.1 to 0.6% by mass
  • a step of producing a steel slab in which the total of Si and Cu is 0.3% by mass or more, and the balance is iron and inevitable impurities The steel slab, Cumulative rolling reduction in the hot rolling process: 70% or more, 98% or less Unrecrystallized cumulative rolling reduction: 20% or more, 90% or less
  • Two-phase region rolling reduction In the temperature range of Ar 3 to 650 ° C., the rolling reduction is 0 More than 50%, 50% or less Finishing rolling end temperature: A method of producing a thick steel plate including a step of hot rolling under conditions of 650 ° C or higher.
  • Aspect 7 The manufacturing method according to the aspect 6, wherein the rolling reduction per pass during the two-phase region rolling is more than 0% and less than 30%.
  • Aspect 8 The method for producing a thick steel plate according to aspect 6 or 7, wherein the steel slab includes Ni: more than 0% by mass and 0.6% by mass or less and satisfies the following formula (1). [Ni] / [Cu] ⁇ 1.2 (1) Here, [Ni] is the Ni content (wt%), and [Cu] is the Cu content (wt%).
  • Aspect 9 The method for producing a thick steel plate according to any one of aspects 6 to 8, wherein the steel slab contains B: more than 0% by mass and 0.005% by mass or less.
  • the steel slab is selected from the group consisting of V: more than 0% by mass, 0.5% by mass or less, Cr: more than 0% by mass, 1.0% by mass or less, and Mo: more than 0% by mass, 0.5% by mass or less.
  • the present application includes a Japanese patent application filed on August 19, 2016, Japanese Patent Application No. 2016-161212, and a Japanese patent application filed on May 29, 2017, Japanese Patent Application No. 2017- Accompanying priority claim with 105797 as the basic application.
  • Japanese Patent Application No. 2016-161212 and Japanese Patent Application No. 2017-105797 are incorporated herein by reference.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

C:0.02~0.10質量%、Mn:1.0~2.0質量%、Nb:0質量%超、0.05質量%以下、Ti:0質量%超、0.05質量%以下、Al:0.01~0.06質量%、Si:0.1~0.6質量%、およびCu:0.1~0.6質量%を含み、SiとCuとの合計が0.3質量%以上であり、残部が鉄および不可避的不純物である厚鋼板であって、加工フェライト分率が、面積率で50%以上であり、結晶粒の有効結晶粒径が30μm以下であり、マルテンサイト-オーステナイト混合相が、面積率で5%以下であり、X線回折で測定した転位密度ρの値が、1.0×1014-2以上、2.5×1015-2以下である、厚鋼板である。

Description

厚鋼板およびその製造方法
 本開示は、厚鋼板およびその製造方法に関する。
 船舶、建築物、橋梁および建築機械等の大型構造物では、構造物の大型化が進む一方で、破損が生じた場合の損害の大きさから、その構造部材にはより一層の信頼性が求められている。大型構造物における破損原因は、その多くが疲労破壊であることが従来から知られており、様々な耐疲労破壊技術が開発されてきたが、現在でも疲労破壊が原因で破損に至った事例は少なくない。
 一般に、大型構造物の疲労損傷が生じやすい部位では、応力集中が生じにくい形状に変更したり、高強度鋼板を使用したりする等の工夫を施すことによって疲労破壊を防止してきた。しかし、鋼板の強度が高すぎる場合、加工性が低下して製造コストが増加するといった問題がある。そのため、鋼板を高強度化するだけではなく、疲労特性自体を向上させる技術が必要とされている。通常鋼板の疲労強度、特に疲労限度は、引張強度に比例することが知られていることから、疲労限度を引張強度で除した疲労限度比が高い鋼板は疲労特性が優れる鋼板であるといえる。
 これまで疲労特性の向上には数多くの研究が行なわれ、例えば非特許文献1では、疲労強度に与える種々の影響因子の効果が示されており、固溶強化、析出強化、結晶粒微細化および第2相強化により疲労特性は向上するが、転位強化では可動転位の増加を伴うため疲労特性の向上は得られにくいとされている。疲労破壊の過程は、(1)繰返し負荷が加わり亀裂が発生するまでの過程と、(2)発生した亀裂が進展して破断に至るまでの過程に分けることができる。先に示した疲労特性の向上因子のうち、上記(1)の過程では転位の蓄積を抑制することが効果的であり、固溶強化や析出強化、結晶粒微細化等が有効であると考えられる。その一方で、上記(2)の過程では、亀裂の進展を妨げることが効果的であるため、結晶粒微細化や第2相強化が効果的であると考えられる。
 また、非特許文献2では、フェライト-パーライト熱延鋼板を、転位等により強化し、疲労強度と強化機構との関係が検討されている。
 特許文献1には焼入れ性を高める合金添加と加速冷却により金属組織を微細なフェライトベイナイトの混合組織とすることで、き裂進展速度を低下することが示されている。これにより、き裂発生後の疲労寿命が長寿命化し、従来に比べて疲労特性に優れる鋼板が得られるとされている。また、特許文献2には、フェライト組織中に炭化物を析出させることで疲労強度を向上させることが提案されている。
阿部ら、「鉄と鋼」 第70年(1984)第10号 1459-1466頁 栗田ら、「鉄と鋼」 第80巻(1994)第1号 66-71頁
特開2011-195944号公報 特開2009-084643号公報 特開2016-855号公報
 しかしながら、特許文献1では、き裂発生前の疲労寿命についてはなんら考慮されていない。また、特許文献2は、薄鋼板を対象にしたものであるため、靱性等の大型構造物に必要な他の特性を満たすことについては何ら考慮されておらず、亀裂発生後の疲労特性については記載がない。
 特許文献3に示されるように、き裂発生前の疲労寿命とき裂発生後の疲労寿命を共に長寿命化させる鋼材が見出されているが、微細な組織を得るために圧延後の冷却について加速冷却を利用して、冷却速度を精緻に制御することで実現しているため、実際の製造工程では長大な厚鋼板の先端から尾端までを厳密に管理することは難しく、鋼板の位置によって特性がばらつき、生産性を低下させる恐れがあった。その一方で、加速冷却を利用しないと微細な金属組織を確保することは困難であり、粗大なフェライト・パーライト組織となり、静的強度の確保が困難となると同時に、疲労強度も低下する恐れがあった。
 加速冷却を用いずに静的強度を確保する方法として、2相域圧延と呼ばれる製造方法が知られている。これは、圧延工程においてフェライト変態が生じるAr温度以下で圧延による加工を加えることで、フェライト相中に転位を導入し、転位強化により静的強度を向上させる方法である。本方法では圧延後に加速冷却を施す必要がないため冷却速度の違いによる特性のばらつきを低減でき、生産性を向上させることができる。しかしながら、非特許文献1や非特許文献2に記載されているように、転位強化による疲労強度向上への寄与は小さく、前述の疲労限度比を低下させることが報告されていた。
 本発明の実施形態は、上記のような事情に鑑みてなされたものであり、その主な目的は、強度および疲労特性に優れた厚鋼板およびその製造方法を提供することにある。
 本発明の実施形態に係る厚鋼板は、
 C:0.02~0.10質量%、
 Mn:1.0~2.0質量%、
 Nb:0質量%超、0.05質量%以下、
 Ti:0質量%超、0.05質量%以下、
 Al:0.01~0.06質量%、
 Si:0.1~0.6質量%、および
 Cu:0.1~0.6質量%
を含み、SiとCuとの合計が0.3質量%以上であり、残部が鉄および不可避的不純物である厚鋼板であって、
 加工フェライト分率が、面積率で50%以上であり、
 結晶粒の有効結晶粒径が30μm以下であり、
 マルテンサイト-オーステナイト混合相が、面積率で5%以下であり、
 X線回折で測定した転位密度ρの値が、1.0×1014-2以上、2.5×1015-2以下である。
 本発明の実施形態に係る厚鋼板において、圧延方向の表面残留応力が50MPa以上の圧縮残留応力であってよい。
 本発明の実施形態に係る厚鋼板は、Ni:0質量%超、0.6質量%以下を含み、下記(1)式を満足してよい。
  [Ni]/[Cu]<1.2   (1)
 ここで、[Ni]はNiの含有量(重量%)であり、[Cu]はCuの含有量(重量%)である。
 本発明の実施形態に係る厚鋼板は、B:0質量%超、0.005質量%以下を含んでよい。
 本発明の実施形態に係る厚鋼板は、V:0質量%超、0.5質量%以下、Cr:0質量%超、1.0質量%以下およびMo:0質量%超、0.5質量%以下からなる群から選択される1種以上を含んでよい。
 本発明の実施形態に係る厚鋼板の製造方法は、
C:0.02~0.10質量%、
 Mn:1.0~2.0質量%、
 Nb:0質量%超、0.05質量%以下、
 Ti:0質量%超、0.05質量%以下、
 Al:0.01~0.06質量%、
 Si:0.1~0.6質量%、および
 Cu:0.1~0.6質量%
を含み、SiとCuとの合計が0.3質量%以上であり、残部が鉄および不可避的不純物である鋼片を製造する工程と、
 前記鋼片を、
  熱間圧延工程での累積圧下率:70%以上、98%以下
  未再結晶累積圧下率:20%以上、90%以下
  2相域圧下率:Ar~650℃の温度域において、圧下率0%超、50%以下
  仕上げ圧延終了温度:650℃以上
の条件で熱間圧延する工程と
を含む。
 前記2相域圧下時の1パスあたりの圧下率が、0%超、30%未満であってよい。
 前記鋼片は、Ni:0質量%超、0.6質量%以下を含み、下記(1)式を満足してよい。
  [Ni]/[Cu]<1.2   (1)
 ここで、[Ni]はNiの含有量(重量%)であり、[Cu]はCuの含有量(重量%)である。
 前記鋼片は、B:0質量%超、0.005質量%以下を含んでよい。
 前記鋼片は、V:0質量%超、0.5質量%以下、Cr:0質量%超、1.0質量%以下およびMo:0質量%超、0.5質量%以下からなる群から選択される1種以上を含んでよい。
 本発明の実施形態により、強度および疲労特性に優れた厚鋼板およびその製造方法が提供される。
図1は、本発明の実施形態に係る鋼板を示す概略説明図である。 図2は、切出し疲労試験片の疲労特性の測定に用いた試験片を示す概略説明図である。 図3は、全厚疲労試験片の疲労特性の測定に用いた試験片を示す概略説明図である。
 本発明者らは、上記課題を解決するために鋭意検討を行った結果、SiおよびCu等の転位のセル化を抑制する元素の含有量を適切に制御し、さらに2相域圧延条件を適切に制御することにより、厚鋼板の強度および疲労特性の向上を実現させた。
 疲労破壊に至るまでの全寿命について、亀裂発生までの前段寿命と、亀裂発生後から破断に至るまでの後段寿命の比率について調査した結果、疲労破壊に至るまでの全寿命のうち亀裂発生までの前段寿命が約5割を占めており、応力水準を下げて全寿命が長くなるにつれ、亀裂発生までの前段寿命が占める割合が増加することが判明した。こうしたことから、疲労破壊に至るまでの全寿命を長くするには、亀裂発生後の疲労特性は勿論のこと、亀裂発生までの疲労特性を向上させる必要がある。特に、疲労限度付近では、亀裂発生までの前段寿命の割合が多くなる傾向があるので、前段寿命を長くすることが有効であると考えられる。
 そこで、前段寿命を長くするための要件について、様々な角度から検討した結果、厚鋼板の化学成分組成を適切に制御すると共に、加工フェライト分率、結晶粒の有効結晶粒径、マルテンサイト-オーステナイト混合相の面積率およびX線回折で測定した転位密度ρの値を適切に制御した厚鋼板は、従来に比べ粗大な組織であっても前段寿命を長くすることができ、その結果として疲労破壊に至るまでの全寿命を長くすることができることを見出した。
 また、本発明者らは、可動転位が過剰に導入されることによる疲労特性の劣化を防ぎ、且つ鋼板表層の圧延方向の圧縮残留応力を所定値以上に制御する(すなわち、圧延方向の表面残留応力を所定値以上の圧縮残留応力とする)ことにより、疲労特性をさらに向上させるべく圧延条件を検討した。その結果、1パスあたりの圧下率を所定値以下に制御して2相域圧延を行うことにより、鋼板表面近傍のフェライトを塑性変形させることができ、その結果、可動転位が鋼板に過剰に導入されることを防ぎつつ、疲労特性向上に有効な残留応力を付与できることを見出した。以下、圧延方向の表面残留応力を、「圧縮残留応力」または「残留応力」と呼ぶことがある。
 以下、本発明の実施形態に係る厚鋼板およびその製造方法について詳しく説明する。
<1.厚鋼板>
 種々の厚鋼板について、添加元素と疲労強度の関係を調査した結果、SiおよびCuの添加により疲労強度が顕著に向上することが明らかになった。一般的に疲労亀裂は繰り返し応力により運動する可動転位の動きが交差すべり等により非可逆的運動となることに起因して発生する。この際、転位はセル構造を形成することが知られているが、SiおよびCuを合計で0.3質量%以上となるように添加することで、このセル構造の形成が抑制されることが明らかとなった。
 当該鋼板を詳細に観察した結果、これらの元素は析出物を形成しておらず、また鋼板中に存在する炭化物等にも顕著に固溶していないため、マトリックス中に固溶して存在していると考えられる。即ち、これらの元素が十分にマトリックス中へ固溶状態で存在すると、転位の非可逆的運動が抑制されることで亀裂発生前の疲労寿命が改善されると考えられる。この転位セル化抑制効果は、MnおよびCr等の他の添加元素では顕著には生じさせないことが分かった。
 また、種々の厚鋼板について圧延条件を変えて製造し、その機械的特性と疲労限度比の関係を調査した結果、熱間圧延工程での累積圧下率、未再結晶累積圧下率、2相域圧下(Ar変態点以下での圧下)における2相域圧下率および温度、並びに仕上げ圧延終了温度を適切に制御することにより、疲労限度比の低下を抑制できることを見出した。これは、ある程度高温で2相域圧下を行うことで、フェライト中に導入された転位が鋼材中の炭素によって固着されて不動転位となり、疲労限度比を低下させる影響を抑制できるためである。また、1パスあたりの圧下率を所定値以下に制御して2相域圧延を行うことにより、鋼板表面近傍のフェライトを塑性変形させることができ、その結果、可動転位が鋼板に過剰に導入されることを防ぎつつ、疲労特性向上に有効な残留応力を付与できる。すなわち、2相域圧下時の1パスあたりの圧下率を制御することにより、圧縮残留応力を効果的に付与することができ、疲労特性を向上させることができる。
 図1は、本発明の実施形態に係る鋼板を示す概略説明図である。このうち図1(a)は、本発明の実施形態に係る鋼板の概略斜視図であり、図1(b)は、本発明の実施形態に係る鋼板の概略側面図である。図1中、Lは圧延方向、Wは幅方向、Dは板厚方向を示しており、S1は鋼板の表面を、S2は圧延方向Lに平行な板厚方向Dの断面を示している。
 化学成分組成および組織形態を変えた種々の鋼板について疲労特性を調査した結果、例えば、板厚をtとしたとき、鋼板表面からt/4となる位置における、圧延方向に平行な縦断面(即ち、図1の断面S2)での金属組織を制御することで、優れた疲労特性の厚鋼板が得られることを見出した。
 本発明の実施形態に係る厚鋼板は、
 C:0.02~0.10質量%、
 Mn:1.0~2.0質量%、
 Nb:0質量%超、0.05質量%以下、
 Ti:0質量%超、0.05質量%以下、
 Al:0.01~0.06質量%、
 Si:0.1~0.6質量%、および
 Cu:0.1~0.6質量%
を含み、SiとCuとの合計が0.3質量%以上であり、残部が鉄および不可避的不純物である厚鋼板であって、
 加工フェライト分率が、面積率で50%以上であり、
 結晶粒の有効結晶粒径が30μm以下であり、
 マルテンサイト-オーステナイト混合相が、面積率で5%以下であり、
 X線回折で測定した転位密度ρの値が、1.0×1014-2以上、2.5×1015-2以下である。
 C、MnおよびNb等の合金元素を適宜添加することで適切な結晶粒径のフェライト組織を確保し、同時にSiおよびCuの添加量を適宜調整することで疲労亀裂発生のもととなる転位のセル化を抑制し、優れた疲労特性を有する厚鋼板が実現できる。
 以下、各構成について詳述する。
(C:0.02~0.10質量%)
 Cは、母材(鋼板)の強度を確保するために重要な元素である。そのため、C量は0.02質量%以上と定めた。C量は、好ましくは0.03質量%以上であり、より好ましくは0.04質量%以上である。一方、C量が過剰になると、高強度となり過ぎて所望の引張強度が得られないだけでなく、溶接性等の厚鋼板に必要な他の特性を低下する。そこでC量は0.10質量%以下と定めた。C量は、好ましくは0.08質量%以下であり、より好ましくは0.07質量%以下である。
(Mn:1.0~2.0質量%)
 Mnは、微細な組織を得るために焼入れ性を確保するうえで重要な元素である。こうした作用を有効に発揮させるためには、Mn量は1.0質量%以上とする必要がある。Mn量は好ましくは1.2質量%以上であり、より好ましくは1.4質量%以上である。しかしMn量が過剰になると、MAを生成しやすくなり、十分な疲労特性が得られない。そのため、Mn量は2.0質量%以下とする必要がある。Mn量は好ましくは1.8質量%以下であり、より好ましくは1.7質量%以下である。
(Nb:0質量%超、0.05質量%以下)
 Nbは、焼入れ性を向上させ、組織を微細化させるために有効な元素である。こうした作用を有効に発揮させるため、Nb量を0質量%超とした。Nb量は0.01質量%以上とすることが好ましい。より好ましくは0.02質量%以上である。しかしながら、Nb量が過剰になるとMAが生成しやすくなり、所望の疲労特性が得られない。そのため、Nb量は0.05質量%以下とする必要がある。好ましくは0.04質量%以下、より好ましくは0.03質量%以下である。
 (Ti:0質量%超、0.05質量%以下)
 Tiは、焼入れ性を向上させると同時にTiNを形成することで溶接時の熱影響部の組織を微細とし、靱性の低下を抑制すること等に有用な元素であるため、Ti量を0質量%超とした。Tiは0.01質量%以上含有させることが好ましい。より好ましくは0.02質量%以上である。しかしながら、Ti量が過剰になると、粗大なTiNが生じることで靱性等の特性を低下させる恐れがある。そのため、Ti量は0.05質量%以下とする必要がある。好ましくは0.04質量%以下、より好ましくは0.03質量%以下である。
(Al:0.01~0.06質量%)
 Alは脱酸のために有用な元素であり、Al量を0.01質量%以上とした。Al量が0.01質量%に満たないと脱酸効果が発揮されない。好ましくは0.02質量%以上であり、より好ましくは0.03質量%以上である。しかしながら、Al量が過剰になると焼入れ性が過剰となり、転位密度ρが増加することで所望する疲労特性が得られない。そのため、Al量は0.06質量%以下とする必要がある。好ましくは0.05質量%以下、より好ましくは0.04質量%以下である。
(Si:0.1~0.6質量%)
 Siは、固溶強化量が大きく母材の強度を確保するために必要な元素であると同時に、転位の運動を抑制させることでセル化抑制に有効な元素である。この作用を有効に発揮させるためには、Si量は0.1質量%以上とする必要がある。Si量は好ましくは0.2質量%以上、より好ましくは0.3質量%以上である。しかし、Si量が過剰になるとMAが生成しやすくなるため、靱性等他の特性を低下させる恐れがある。そのため、Si量は0.6質量%以下とする必要がある。好ましくは0.55質量%以下、より好ましくは0.5質量%以下である。
(Cu:0.1~0.6質量%)
 Cuは、転位の交差すべりを抑制させることでセル化抑制に有効な元素であり、この作用を有効に発揮させるためにはCu量は0.1質量%以上とする必要がある。Cu量は好ましくは0.2質量%以上、より好ましくは0.3質量%以上である。しかし、Cu量が過剰となると焼入れ性が過剰となるだけでなく、熱間加工時に割れ等が生じやすくなるため、Cu量は0.6質量%以下とする必要がある。好ましくは0.55質量%以下、より好ましくは0.5質量%以下である。
(SiとCuとの合計:0.3質量%以上)
 SiおよびCuは、転位のセル化抑制という面で共通の作用を発揮できるものであり、夫々単独で添加してもよいが、所望の疲労限度比を得るためには両者を併用して含有させる必要がある。SiおよびCuによる転位セル化抑制効果は、SiとCuとの合計が、0.3質量%以上となったときに有効に発揮できる。好ましくは、0.4質量%以上である。MA増加抑制の観点から、SiとCuとの合計の上限は、SiおよびCuそれぞれの上限の合計、すなわち1.2質量%であり、好ましくは、1.0質量%である。
 本発明の実施形態に係る厚鋼板における基本成分は上記の通りであり、残部は実質的に鉄である。但し、原料、資材または製造設備等の状況によって持ち込まれる不可避的不純物、例えば、P、SまたはN等が鋼中に含まれることは当然に許容される。
 また本発明の実施形態に係る厚鋼板は、下記元素を選択的に含有してよく、含有される元素の種類に応じて厚鋼板の特性が更に改善される。
(Ni:0質量%超、0.6質量%以下)
 Niは、焼入れ性を向上させ、組織を微細にする効果があると同時に、Cu添加により生じやすくなる熱間加工時の割れを抑制する効果がある。このような効果を発揮させるため、Ni量を0質量%超とすることが好ましい。より好ましくは0.1質量%以上、更に好ましくは0.2質量%以上である。しかし、Niを過剰に含有させると焼入れ性が過剰となり、転位密度ρが過大となることで所望とする疲労特性が得られない。そのため、Ni量は0.6質量%以下とすることが好ましい。より好ましくは0.5質量%以下、更に好ましくは0.4質量%以下である。
 尚、Ni量[Ni]がCu量[Cu]に対してあまり多くなると、Cuによる転位のセル化抑制効果が得られ難くなるため、Ni量[Ni]とCu量[Cu]の比([Ni]/[Cu])は1.2未満とすることが好ましく、より好ましくは1.1以下である。この比([Ni]/[Cu])の下限は概ね0.5以上であり、より好ましくは0.6以上である。
(B:0質量%超、0.005質量%以下)
 Bは、焼入れ性を向上させる元素であり、特に粗大なフェライト組織の生成を抑制して、微細な上部ベイナイト組織を生じさせやすくする元素である。こうした効果を発揮させるためには、B量を0.0005質量%以上とすることが好ましい。より好ましくは0.001質量%以上である。しかし、B量が過剰になると焼入れ性が過剰となり、転位密度ρが過大となって所望の疲労特性が得られないため、0.005質量%以下とすることが好ましい。より好ましくは、0.004質量%以下である。
(V:0質量%超、0.5質量%以下、Cr:0質量%超、1.0質量%以下およびMo:0質量%超、0.5質量%以下よりなる群から選択される1種以上)
 V、CrおよびMoは、鋼板の焼入れ性を向上させる効果のある元素であり、組織を微細化させることに有効である。このような作用を発揮させるためには、V:0.01質量%以上、Cr:0.1質量%以上およびMo:0.01質量%以上のいずれか単独、または2種以上を含有させことが好ましい。しかしながら、これらの元素を過剰に含有させると焼入れ性が過剰となり、所望の引張強度が得られない。そこで、夫々の量をV:0.5質量%以下、Cr:1.0質量%以下、Mo:0.5質量%以下とすることが好ましい。より好ましくは、V:0.4質量%以下、Cr:0.8質量%以下、Mo:0.4質量%以下である。
 本発明の実施形態に係る厚鋼板の金属組織は、
 加工フェライト分率が、面積率で50%以上であり、
 結晶粒の有効結晶粒径が30μm以下であり、
 マルテンサイト-オーステナイト混合相が、面積率で5%以下であり、
 X線回折で測定した転位密度ρの値が、1.0×1014-2以上、2.5×1015-2以下である。
 以下、各特性について詳述する。
(加工フェライト分率)
 本発明の実施形態に係る厚鋼板の製造において、2相域の温度領域のフェライトに比較的高温で2相域圧延により転位を加えて、さらに炭素によって固着をさせる。このような効果を得るためには、2相域圧延により転位が導入された加工フェライトを一定以上必要とする。
 加工フェライト分率は、EBSDにて測定されるパラメータGOS値(Grain Orientation Spread)により定量化される。ここで、GOS値とは、同一結晶粒内における、ある測定点と粒内の他の測定点の測定点間の方位差の平均値を示すパラメータである。2相域圧延によって粒内に転位が導入されると、転位による結晶の方位差が生じるためGOS値が増加すると考えられる。
 本明細書において、加工フェライトとは、GOS値が4°を超える結晶粒を意味し、加工フェライト分率とは、金属組織中の加工フェライトの面積率を意味する。
 加工フェライト分率は、50%以上とする必要があり、好ましくは55%以上である。なお、加工フェライト分率の測定方法は実施例にて詳細に説明する。
(結晶粒の有効結晶粒径)
 疲労き裂の進展は結晶方位の影響を強く受けるため、疲労き裂が発生した後において異なる結晶方位の結晶粒を進展する際には、進展方向を変えて進展する必要があるため、結晶粒界はき裂進展の障害となる。そのため、結晶粒径は微細な方が疲労寿命は長寿命化すると考えられる。このような効果を得るためには、結晶粒の方位差が15°以上の大角粒界で囲まれた領域を結晶粒としたときに、円相当径(以下、「有効結晶粒径」と呼ぶことがある)を30.0μm以下とした。有効結晶粒径は好ましくは28.0μm以下であり、より好ましくは25μm以下である。
(マルテンサイト-オーステナイト混合相の面積率)
 圧延後の冷却過程等において生成されるマルテンサイト-オーステナイト混合相(MA)は、その生成過程において膨張変態を生じることで、母相中に可動転位を導入し、亀裂発生までの寿命を低下させる原因となる。そのため、厚鋼板の金属組織において、金属組織中のMAの面積率(以下、MA分率と呼ぶことがある)は、5%以下とする。MAの面積率は少ないほどよいが、好ましくは3%以下であり、より好ましくは1%以下である。最も好ましくは0%である。
(転位密度ρ)
 X線回折(XRD)により求められる転位密度ρの値が、1.0×1014-2以上とすることで疲労限度比を低下させずに静的強度の向上が得られる。好ましくは、2.0×1014-2以上である。しかし、2相域圧下を過剰に加えると転位の固着が十分でなくなるため、疲労限度比は低下する。そのため、転位密度の上限は2.5×1015-2以下であり、好ましくは2.0×1015-1以下であり、より好ましくは1.5×1015-1以下である。
(圧延方向の表面残留応力)
 本発明の実施形態に係る厚鋼板は、圧延方向の表面残留応力が50MPa以上の圧縮残留応力であることが好ましい。圧延方向の表面残留応力が50MPa以上の圧縮残留応力であることにより、疲労特性をさらに向上させることができる。圧縮残留応力は、より好ましくは100MPa以上である。圧縮残留応力の上限は特に限定されないが、通常の圧下で付与される圧縮残留応力は250MPa以下である。
 圧縮残留応力は、日本材料学会X線材料強度部門委員会編「JSMS-SD-5-02 X線応力測定法標準-鉄鋼編-(2002年版)」に従って、sinψ法により求めることができる。以下、測定方法の一例を説明する。
 鋼板から板厚ままの試験片を採取し、X線応力測定装置を用い、試験片の圧延面(すなわち、鋼板表面)に、複数の入射角ψで圧延方向と平行な方向にX線を照射し、各入射角ψにおける回折線のピーク位置2θ((211)面の回折角)を測定する。残留応力が存在する場合、X線の入射角ψを変えると回折線のピーク位置(2θ)が変化する。
 2θを縦軸、sinψを横軸にとってプロットし、最小二乗法により直線回帰してその傾きを得て、応力値σを下記(2)式により求めることができる。

Figure JPOXMLDOC01-appb-I000001

 ここで、Eおよびνはそれぞれ鋼材のヤング率およびポアソン比、2θ0は無歪みの回折角、Mは回帰直線2θ-sinψの傾き、およびKは応力定数を表す。
 上記応力値σが負となる場合に圧縮残留応力が存在すると判定し、その絶対値を圧縮残留応力とする。
 本発明の実施形態に係る厚鋼板の板厚は特に限定されないが、板厚が小さい場合は亀裂進展寿命の向上への寄与が少なくなる。こうした観点から、板厚は6mm以上であることが好ましく、より好ましくは10mm以上である。一方、板厚が厚くなると2相域圧延による転位導入が不十分となるため、板厚は60mm以下であることが好ましく、より好ましくは50mm以下である。
 このような構成を有する本発明の実施形態に係る厚鋼板は、船舶、建築物、橋梁、建設機械等の構造用材料として好ましく用いられてよい。
<2.厚鋼板の製造方法>
 本発明の実施形態に係る厚鋼板は、所望の効果を得るためには、上記の化学成分組成を有する鋼片、例えばスラブを用い、以下の方法にて製造される。
 鋼を溶製して鋳造した後、熱間圧延を施すという厚鋼板の一連の製造工程において、熱間圧延工程での累積圧下率、未再結晶累積圧下率、2相域圧下率(フェライト変態開始後の圧下率)および仕上げ圧延終了温度を以下のように制御する。
 熱間圧延工程での累積圧下率:70%以上、98%以下
 未再結晶累積圧下率:20%以上、90%以下
 2相域圧下率:Ar~650℃の温度域において、圧下率0%超、50%以下
 仕上げ圧延終了温度:650℃以上
 さらに熱間圧延前の加熱温度、熱間圧延工程の累積圧下率および/または未再結晶温度域の圧下率を次のように制御することが好ましい。
 熱間圧延前には、鋼片を1000~1200℃の温度範囲に加熱することが好ましい。より好ましくは1050℃以上である。しかしながら、加熱温度が高くなり過ぎて1200℃を超えると、十分な圧下を加えても組織サイズを小さくできないので、1200℃以下とすることが好ましい。より好ましくは1150℃以下である。
 結晶粒径の微細化の観点から、熱間圧延工程での累積圧下率は70%以上とする。好ましくは75%以上である。累積圧下率の上限は特に定めないが、実際の製造工程における製造負荷を考慮すると98%以下である。
 組織サイズ、特に有効結晶粒径を小さくするためには、未再結晶温度域で十分な圧下を加える必要がある。そのため、未再結晶温度域の圧下率は20%以上とする。好ましくは25%以上、より好ましくは30%以上である。未再結晶域圧下率の上限は特に定めないが、実際の製造工程における製造負荷を考慮すると90%以下である。
 尚、「累積圧下率」は、次の式から計算される値である。
 累積圧下率=(t-t)/t×100
 式中、tは鋼片表面の温度が圧延温度範囲にあるときの鋼片の圧延開始厚み(単位:mm)、tは鋼片表面の温度が圧延温度範囲にあるときの鋼片の圧延終了厚み(単位:mm)、tは圧延前の鋼片、例えばスラブの厚みを、夫々示す。
 上記Ar変態点は、次の式によって求められる値を採用したものである。

 Ar変態点=910-230×[C]+25×[Si]-74×[Mn]-56×[Cu]-16×[Ni]-9×[Cr]-5×[Mo]-1620×[Nb]  (3)
 但し、[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]および[Nb]は、夫々C、Si、Mn、Cu、Ni、Cr、MoおよびNbの質量%での含有量を示す。
 より効果的に、2相域の温度領域のフェライトに転位を加え、炭素によって固着をさせる観点から、2相域圧下率の好ましい下限は3%、より好ましい下限は5%であり、好ましい上限は40%、より好ましい上限は25%であり、2相域圧下時の温度の好ましい下限は670℃、より好ましい下限は680℃である。
 圧縮残留応力を効果的に付与する観点から、2相域圧下時の1パスあたりの圧下率は、好ましくは0%超、より好ましくは3%以上、さらに好ましくは5%以上であり、好ましくは30%未満、より好ましくは20%以下、さらに好ましくは18%以下、最も好ましくは15%以下である。
 所望とする微細な組織を得るためには、冷却速度を0.1℃/s以上の冷却速度で冷却することが好ましい。より好ましくは0.3℃/sである。しかし、冷却速度を早くしすぎると、MAが増加し、疲労特性を低下させるため、20℃/s以下とする。好ましくは10℃/s以下である。
 以上のように本発明の実施形態に係る厚鋼板の製造方法を説明したが、本発明の実施形態に係る厚鋼板の所望の特性を理解した当業者が試行錯誤を行い、本発明の実施形態に係る所望の特性を有する厚鋼板を製造する方法であって、上記の製造方法以外の方法を見出す可能性がある。
 以下、実施例を挙げて本発明の実施形態をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前記または後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に含まれる。
 表1に示す鋼種A~Sの化学成分組成の鋼を、通常の溶製法に従って溶製し鋳造した後、表2に示す圧延条件No.a~nの各種条件にて熱間圧延を行ない、厚さ10~50mmの鋼板を得た。尚、表1において、「-」で示した欄は無添加であることを示し、[Si]+[Cu]はSiとCuとの合計の含有量を示す。また表1に示したAr変態点は、前記の式によって求められた値である。表2において、「熱間圧延工程累積圧下率」とは、熱間圧延工程全体での累積圧下率である。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 各鋼板について、以下の要領にしたがって、鋼板の組織、加工フェライト分率、MA分率、有効結晶粒径、転位密度ρ、圧縮残留応力、引張強度および疲労特性を測定した。
 鋼板の組織、MA分率、加工フェライト分率、有効結晶粒径および転位密度ρの測定においては、試験片は鋼板表面から深さt/4の位置が評価位置となるように採取した。
 圧縮残留応力の測定は、鋼板の板厚ままで行った。
 引張強度および疲労特性の測定は、鋼板表面から深さt/4の位置が評価位置となるように採取した試験片について行い、さらに、圧縮残留応力による疲労特性向上の効果を確認するため、板厚ままで採取した試験片についても行った。以下、引張強度および疲労特性の測定用に、鋼板表面から深さt/4の位置が評価位置となるように採取した試験片を、それぞれ「切出し引張試験片」および「切出し疲労試験片」と呼ぶことがあり、引張強度および疲労特性の測定用に板厚ままで採取した試験片を、それぞれ「全厚引張試験片」および「全厚疲労試験片」と呼ぶことがある。
(鋼板の組織)
 鋼板表面から深さt/4位置の鋼板の圧延方向に平行で且つ鋼板の表面に対して垂直な面が露出するようにサンプルを切り出し、これを#150~#1000までの湿式エメリー紙を用いて研磨し、その後に研磨剤としてダイヤモンド研磨剤を用いて鏡面研磨仕上げした。この鏡面試験片を、2%硝酸-エタノール溶液、即ちナイタール溶液でエッチングした後、観察倍率400倍(観察面積:3.71×10-2mm)で3視野観察し、その画像をMedia Cybernetics社製の画像解析ソフト”Image Pro Plus ver.4.0”を使用した画像解析処理により、金属組織の分別を行った。この3視野の値を平均してそれぞれの金属組織の面積率とした。尚、観察領域は、鋼板表面から深さt/4位置を中心とし、板厚方向に166μm、圧延方向に222.74μmの視野で撮影した。
(有効結晶粒径)
 鋼板表面からt/4位置の鋼板の圧延方向に平行な縦断面において、SEM(Scanning Electron Microscope:走査型電子顕微鏡)-EBSP(Electron Backscatter Pattern:電子後方散乱解析像法)によって有効結晶粒径を測定した。具体的には、TEX SEM Laboratries社のEBSP装置(商品名:「OIM」)をSEMと組み合わせて用い、隣り合う結晶粒の方位差が15°以上の大角粒界で囲まれた領域を結晶粒として結晶粒径を測定した。このときの測定条件は、測定領域:200μm×200μm、測定ステップ:0.5μm間隔とし、測定方位の信頼性を示すコンフィデンス・インデックス(Confidence Index)が0.1よりも小さい測定点は解析対象から除外した。このようにして求められる結晶粒界について、板厚方向に100箇所の切断長さを測定し、その平均値を有効結晶粒径とした。但し、有効結晶粒径が2.0μm以下は測定ノイズとして判断し、除外した。観察領域は、鋼板表面から深さt/4位置を中心とし、板厚方向両側に100μmの広がりのある領域とした。
(加工フェライト分率)
 前述の有効結晶粒径の測定方法と同様の手順によってEBSDによる測定を行い、GOS値が4°を超える結晶粒の面積分率を測定し、得られた面積分率を加工フェライト分率とした。
(マルテンサイト-オーステナイト混合相の面積率[MA分率])
 MAは、上記の鏡面研磨仕上げを行った鋼板試験片に対して、A液(ピクリン酸3g+エタノール100ml溶液)とB液(二亜硫酸ナトリウム1g+蒸留水100ml溶液)とエタノールを(A液:B液:エタノール)=(5:6:1)の比率で混合したレペラー腐食液を用いてエッチングした後、観察面積:3.71×10-2mm、観察倍率400倍で観察し、白色に腐食された相をMAとして上記の画像解析ソフトを用いて画像解析処理し、金属組織の分別を行ったうえで、この5視野の値を平均してMAの面積率を求めた。
(転位密度ρ)
 転位密度ρはX回折測定を行ない、得られたα-Feの半価幅より算出した。以下に、測定条件および測定原理を説明する。分析装置はX線回折装置「RAD-RU300」(商品名:理学電機株式会社製)を用い、ターゲットにはCo乾球を用いた。得られたX線回折測定結果より、ピークフィッティングによりピーク半価幅を算出し、転位密度ρを計算した。転位密度ρは下記(4)式より求めた。

 ρ(m-1)=-14.4ε/b   (4)
 但し、εは歪みを、bはバーガースべクトル(=0.25×10-9m)を夫々示す。
 上記歪みεは、Hall法を適用し、下記(5)式および下記(6)式に基づいて計算された値である。

 βcosθ/λ=0.9/D+2εsinθ/λ   (5)

 β=β -β    (6)

 尚、βは真の半価幅(単位:rad)、θはブラッグ角(単位:°)、λは入射X線波長(単位:nm)、Dは結晶の大きさ(単位:nm)、βは実測した半価幅、βは無歪試料における半価幅(装置定数)である。また、上記式により、βとβからβを計算し、この値を上記式に代入してβcosθ/λ-sinθ/λをプロットし、(110)、(211)および(220)の3点を最小自乗法でフィッティングした。そして、フィッティング直線の傾き(2ε)から歪みεを算出し、前述の式に代入して転位密度ρを計算した。
(圧縮残留応力)
 圧縮残留応力は、日本材料学会X線材料強度部門委員会編「JSMS-SD-5-02 X線応力測定法標準-鉄鋼編-(2002年版)」に従って、sinψ法により求めた。以下、詳細に説明する。
 鋼板から板厚ままの試験片を採取し、株式会社リガク製PSPC微小部X線応力測定装置「MSF-3M」を用い、試験片の圧延面(すなわち、鋼板表面)の一方の面に、複数の入射角ψ(0.00°、21.00°、30.00°、38.00°、45.00°)で圧延方向と平行な方向にX線を照射し、各入射角ψにおける回折線のピーク位置2θ((211)面の回折角)を測定した。測定の際、線源としてCr-Kαを用いた。
 2θを縦軸、sinψを横軸にとってプロットし、最小二乗法により直線回帰してその傾きを得て、応力値σを下記(2)式により求めた。

Figure JPOXMLDOC01-appb-I000004

 ここで、Eおよびνはそれぞれ鋼材のヤング率(210GPa)およびポアソン比(0.3)、2θ0は無歪みの回折角(156.4°)、Mは回帰直線2θ-sinψの傾きを表す。Kは応力定数を表し、日本材料学会X線材料強度部門委員会編「JSMS-SD-5-02 X線応力測定法標準-鉄鋼編-(2002年版)」に記載のフェライト系鉄鋼材料の値(-318MPa/deg)を使用した。
 上記応力値σが負となる場合に圧縮残留応力が存在すると判定し、その絶対値を圧縮残留応力とした。
 試験片の圧延面の他方の面についても上記と同様に圧縮残留応力を測定し、両面の圧縮残留応力の平均値を求め、当該平均値を鋼板の圧縮残留応力とした。
 (切出し引張試験片の引張強度)
 各鋼板の表面からの深さが2~6mmとなる位置から、板厚4mm、標点距離35mmの引張試験片を採取し、JIS Z2241:2011にしたがって引張試験を行なうことによって、引張強度TSを測定した。TSが440MPa以上、620MPa以下の厚鋼板を実用可能な水準であると判定した。
 (全厚引張試験片の引張強度)
 日本海事協会「鋼船規則 K編 材料 第2章(2013年)」に準拠して、長手方向が圧延方向となるように各鋼板から引張試験片を採取し、引張強度TSを測定した。TSが440MPa以上、620MPa以下の厚鋼板を実用可能な水準であると判定した。
 (切出し疲労試験片の疲労特性)
 切出し疲労試験片の疲労特性は、各鋼板の表面からの深さが2~6mmとなる位置から、4mm厚の鋼板を切り出し、図2に示すような試験片を作製して行なった。尚、試験片表面はエメリー紙にて#1200まで研磨を行なって、表面状態の影響を除去した。得られた試験片について、インストロン社製電気油圧サーボ式疲労試験機を用いて、以下の条件で疲労試験を行なった。
 試験環境:室温、大気中
 制御方法:荷重制御
 制御波形:正弦波
 応力比:R=-1
 試験速度:20Hz
 試験終了サイクル数:5000000回
 切出し疲労試験片の疲労特性は引張強度TSの影響を受けるものであり、その影響を除くために500万回疲労限度比を求め、500万回疲労限度比が0.51を上回ったものを合格とした。500万回疲労限度比は500万回疲労限度を引張強度TSで除した値であり、500万回疲労限度比は次のように決定した。各試験片において応力振幅σaを引張強度TSで除した値(σa/TS)が0.51となる応力振幅で疲労試験を行ない、500万回到達時における破断の有無を調べた。
 (全厚疲労試験片の疲労特性)
 全厚疲労試験片の疲労特性は、図3に示すような試験片を作製し、以下の条件で行った。
 試験環境:室温、大気中
 制御方法:荷重制御
 制御波形:正弦波
 応力比:0.05
 試験速度:1~10Hz
 試験終了サイクル数:2000000回
 全厚疲労試験片の疲労特性は引張強度TSの影響を受けるものであり、その影響を除くために100万回疲労限度比を求めた。100万回疲労限度比が0.70を上回ったものを、圧縮残留応力により疲労特性がさらに向上したと判定した。100万回疲労限度比は100万回疲労限度を引張強度TSで除した値であり、100万回疲労限度比は次のように決定した。各試験片において応力範囲Δσを引張強度TSで除した値(Δσ/TS)が0.70となる応力振幅で疲労試験を行ない、100万回到達時における破断の有無を調べた。
 鋼板の組織、有効結晶粒径、加工フェライト分率、MA分率、転位密度ρ、圧縮残留応力、切出し引張試験片の引張強度TSa、全厚引張試験片の引張強度TS、切出し疲労試験片の疲労特性および全厚疲労試験片の疲労特性を表3に示す。
Figure JPOXMLDOC01-appb-T000005
 これらの結果から、次のように考察できる。即ち、試験No.1~14および32は、鋼の化学成分組成および製造条件が適切に制御されているため、本発明の実施形態で規定する金属組織の構成を満足しており、優れた疲労特性を発揮している。
 試験No.32は2相域圧下時の1パスあたりの圧下率が大きい条件No.nで得られた例であり、圧縮残留応力が小さく、全厚疲労試験片の疲労特性は十分でないものの、切り出し試験片の疲労特性については十分な疲労特性が得られている。
 一方、試験No.15~31は、本発明の実施形態で規定する要件のいずれかが外れる例であり、いずれも疲労特性が劣る結果となった。
 試験No.15は、C量が少ない鋼種Iの鋼板を用いた例であり、所定の引張強度TSaおよびTSが達成されなったものである。従って、組織以外の特性は評価していない。
 試験No.16は、C量が過剰な鋼種Jの鋼板を用いた例であり、引張強度TSaおよびTSが高くなり過ぎたものである。従って、組織以外の特性は評価していない。
 試験No.17は、「SiとCuとの合計含有量が0.3質量%以上」という要件を外れる鋼種Kの鋼板を用いた例であり、転位のセル化抑制が有効に発揮されず、切出し疲労試験片および全厚疲労試験片の疲労特性が劣化した。
 試験No.18は、Si量が過剰な鋼種Lの鋼板を用いた例であり、MA分率が高くなり、切出し疲労試験片および全厚疲労試験片の疲労特性が劣化した。
 試験No.19は、Mn量が過剰な鋼種Mの鋼板を用いた例であり、転位のセル化抑制が有効に発揮されず、切出し疲労試験片および全厚疲労試験片の疲労特性が劣化した。
 試験No.20は、Mn含有量が少ない鋼種Nの鋼板を用いた例であり、転位のセル化抑制が有効に発揮されず、切出し疲労試験片および全厚疲労試験片の疲労特性が劣化した。
 試験No.21は、Cu量が過剰な鋼種Oの鋼板を用いた例であり、焼入れ性が過剰となったため、所定の引張強度TSaおよびTSが達成されなかった。従って、組織および加工フェライト分率以外の特性は評価していない。
 試験No.22は、Ni量が過剰な鋼種Pの鋼板を用いた例であり、また[Ni]/[Cu]<1.2の要件も外れるものであり、転位のセル化抑制が有効に発揮されず、切出し疲労試験片および全厚疲労試験片の疲労特性が劣化した。
 試験No.23は、Cr量が過剰な鋼種Qの鋼板を用いた例であり、焼入れ性が過剰となったため、所定の引張強度TSaおよびTSが達成されなかったものである。従って、組織以外の特性は評価していない。
 試験No.24は、Mo量が過剰な鋼種Rの鋼板を用いた例であり、焼入れ性が過剰となったため、所定の引張強度TSaおよびTSが達成されなかったものである。従って、組織以外の特性は評価していない。
 試験No.25は、V量が過剰な鋼種Sの鋼板を用いた例であり、焼入れ性が過剰となったため、所定の引張強度TSaおよびTSが達成されなかったものである。従って、組織以外の特性は評価していない。
 試験No.26は、熱間圧延時の累積圧下率が低い圧延条件No.hで得られた例であり、有効結晶粒径が大きくなり過ぎ、切出し疲労試験片および全厚疲労試験片の疲労特性が劣化した。
 試験No.27は、未再結晶累積圧下率が低い圧延条件No.iで得られた例であり、有効結晶粒径が大きくなり過ぎ、切出し疲労試験片および全厚疲労試験片の疲労特性が劣化した。
 試験No.28は、2相域圧下率が高い圧延条件No.jで得られた例であり、転位密度ρが過大となり、切出し疲労試験片および全厚疲労試験片の疲労特性が劣化した。
 試験No.29は、仕上げ圧延終了温度が低い圧延条件No.kで得られた例であり、圧延による組織中への過剰な転位の導入を抑制することができず、切出し疲労試験片および全厚疲労試験片の疲労特性が劣化した。
 試験No.30は、2相域圧延を行わない圧延条件No.lで得られた例であり、加工フェライト分率が小さく、切出し疲労試験片および全厚疲労試験片の疲労特性が劣化した。なお、圧縮残留応力も小さかった。
 試験No.31は冷却速度が速い条件No.mで得られた例であり、MA分率が高くなり、切出し疲労試験片および全厚疲労試験片の疲労特性が劣化した。
 本明細書の開示内容は、以下の態様を含む。

態様1:
 C:0.02~0.10質量%、
 Mn:1.0~2.0質量%、
 Nb:0質量%超、0.05質量%以下、
 Ti:0質量%超、0.05質量%以下、
 Al:0.01~0.06質量%、
 Si:0.1~0.6質量%、および
 Cu:0.1~0.6質量%
を含み、SiとCuとの合計が0.3質量%以上であり、残部が鉄および不可避的不純物である厚鋼板であって、
 加工フェライト分率が、面積率で50%以上であり、
 結晶粒の有効結晶粒径が30μm以下であり、
 マルテンサイト-オーステナイト混合相が、面積率で5%以下であり、
 X線回折で測定した転位密度ρの値が、1.0×1014-2以上、2.5×1015-2以下である、厚鋼板。

態様2:
 圧延方向の表面残留応力が50MPa以上の圧縮残留応力である、態様1に記載の厚鋼板。

態様3:
 Ni:0質量%超、0.6質量%以下を含み、下記(1)式を満足する態様1または2に記載の厚鋼板。
  [Ni]/[Cu]<1.2   (1)
 ここで、[Ni]はNiの含有量(重量%)であり、[Cu]はCuの含有量(重量%)である。

態様4:
 B:0質量%超、0.005質量%以下を含む、態様1~3のいずれかに記載の厚鋼板。

態様5:
 V:0質量%超、0.5質量%以下、Cr:0質量%超、1.0質量%以下およびMo:0質量%超、0.5質量%以下からなる群から選択される1種以上を含む、態様1~4のいずれかに記載の厚鋼板。

態様6:
 C:0.02~0.10質量%、
 Mn:1.0~2.0質量%、
 Nb:0質量%超、0.05質量%以下、
 Ti:0質量%超、0.05質量%以下、
 Al:0.01~0.06質量%、
 Si:0.1~0.6質量%、および
 Cu:0.1~0.6質量%
を含み、SiとCuとの合計が0.3質量%以上であり、残部が鉄および不可避的不純物である鋼片を製造する工程と、
 前記鋼片を、
  熱間圧延工程での累積圧下率:70%以上、98%以下
  未再結晶累積圧下率:20%以上、90%以下
  2相域圧下率:Ar~650℃の温度域において、圧下率0%超、50%以下
  仕上げ圧延終了温度:650℃以上
の条件で熱間圧延する工程と
を含む厚鋼板の製造方法。

態様7:
 2相域圧下時の1パスあたりの圧下率が、0%超、30%未満である、態様6に記載の製造方法。

態様8:
 前記鋼片が、Ni:0質量%超、0.6質量%以下を含み、下記(1)式を満足する態様6または7に記載の厚鋼板の製造方法。
  [Ni]/[Cu]<1.2   (1)
 ここで、[Ni]はNiの含有量(重量%)であり、[Cu]はCuの含有量(重量%)である。

態様9:
 前記鋼片が、B:0質量%超、0.005質量%以下を含む、態様6~8のいずれかに記載の厚鋼板の製造方法。

態様10:
 前記鋼片が、V:0質量%超、0.5質量%以下、Cr:0質量%超、1.0質量%以下およびMo:0質量%超、0.5質量%以下からなる群から選択される1種以上を含む、態様6~9のいずれかに記載の厚鋼板の製造方法。
 本出願は、出願日が2016年8月19日である日本国特許出願、特願第2016-161412号、及び出願日が2017年5月29日である日本国特許出願、特願第2017-105797号を基礎出願とする優先権主張を伴う。特願第2016-161412号及び特願第2017-105797号は参照することにより本明細書に取り込まれる。

Claims (10)

  1.  C:0.02~0.10質量%、
     Mn:1.0~2.0質量%、
     Nb:0質量%超、0.05質量%以下、
     Ti:0質量%超、0.05質量%以下、
     Al:0.01~0.06質量%、
     Si:0.1~0.6質量%、および
     Cu:0.1~0.6質量%
    を含み、SiとCuとの合計が0.3質量%以上であり、残部が鉄および不可避的不純物である厚鋼板であって、
     加工フェライト分率が、面積率で50%以上であり、
     結晶粒の有効結晶粒径が30μm以下であり、
     マルテンサイト-オーステナイト混合相が、面積率で5%以下であり、
     X線回折で測定した転位密度ρの値が、1.0×1014-2以上、2.5×1015-2以下である、厚鋼板。
  2.  圧延方向の表面残留応力が50MPa以上の圧縮残留応力である、請求項1に記載の厚鋼板。
  3.  Ni:0質量%超、0.6質量%以下を含み、下記(1)式を満足する請求項1に記載の厚鋼板。
      [Ni]/[Cu]<1.2   (1)
     ここで、[Ni]はNiの含有量(重量%)であり、[Cu]はCuの含有量(重量%)である。
  4.  Ni:0質量%超、0.6質量%以下を含み、下記(1)式を満足する請求項2に記載の厚鋼板。
      [Ni]/[Cu]<1.2   (1)
     ここで、[Ni]はNiの含有量(重量%)であり、[Cu]はCuの含有量(重量%)である。
  5.  以下の(a)および(b)のいずれか1つ以上を含む請求項1~4のいずれか1項に記載の厚鋼板。
    (a)B:0質量%超、0.005質量%以下
    (b)V:0質量%超、0.5質量%以下、Cr:0質量%超、1.0質量%以下およびMo:0質量%超、0.5質量%以下からなる群から選択される1種以上
  6.  C:0.02~0.10質量%、
     Mn:1.0~2.0質量%、
     Nb:0質量%超、0.05質量%以下、
     Ti:0質量%超、0.05質量%以下、
     Al:0.01~0.06質量%、
     Si:0.1~0.6質量%、および
     Cu:0.1~0.6質量%
    を含み、SiとCuとの合計が0.3質量%以上であり、残部が鉄および不可避的不純物である鋼片を製造する工程と、
     前記鋼片を、
      熱間圧延工程での累積圧下率:70%以上、98%以下
      未再結晶累積圧下率:20%以上、90%以下
      2相域圧下率:Ar~650℃の温度域において、圧下率0%超、50%以下
      仕上げ圧延終了温度:650℃以上
    の条件で熱間圧延する工程と
    を含む厚鋼板の製造方法。
  7.  2相域圧下時の1パスあたりの圧下率が、0%超、30%未満である、請求項6に記載の製造方法。
  8.  前記鋼片が、Ni:0質量%超、0.6質量%以下を含み、下記(1)式を満足する請求項6に記載の厚鋼板の製造方法。
      [Ni]/[Cu]<1.2   (1)
     ここで、[Ni]はNiの含有量(重量%)であり、[Cu]はCuの含有量(重量%)である。
  9.  前記鋼片が、Ni:0質量%超、0.6質量%以下を含み、下記(1)式を満足する請求項7に記載の厚鋼板の製造方法。
      [Ni]/[Cu]<1.2   (1)
     ここで、[Ni]はNiの含有量(重量%)であり、[Cu]はCuの含有量(重量%)である。
  10. 以下の(a)および(b)のいずれか1つ以上を含む請求項6~9のいずれか1項に記載の厚鋼板の製造方法。
    (a)B:0質量%超、0.005質量%以下
    (b)V:0質量%超、0.5質量%以下、Cr:0質量%超、1.0質量%以下およびMo:0質量%超、0.5質量%以下からなる群から選択される1種以上
PCT/JP2017/024522 2016-08-19 2017-07-04 厚鋼板およびその製造方法 WO2018034071A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17841299.5A EP3502295A4 (en) 2016-08-19 2017-07-04 THICK STEEL SHEET AND PROCESS FOR PRODUCING THE SAME
CN201780050172.1A CN109563598A (zh) 2016-08-19 2017-07-04 厚钢板及其制造方法
KR1020197004341A KR20190028770A (ko) 2016-08-19 2017-07-04 후강판 및 그의 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-161412 2016-08-19
JP2016161412 2016-08-19
JP2017105797A JP2018031069A (ja) 2016-08-19 2017-05-29 厚鋼板およびその製造方法
JP2017-105797 2017-05-29

Publications (1)

Publication Number Publication Date
WO2018034071A1 true WO2018034071A1 (ja) 2018-02-22

Family

ID=61197312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024522 WO2018034071A1 (ja) 2016-08-19 2017-07-04 厚鋼板およびその製造方法

Country Status (1)

Country Link
WO (1) WO2018034071A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH111742A (ja) * 1997-06-10 1999-01-06 Nippon Steel Corp 疲労き裂伝播特性の優れた鋼材及びその製造方法
JP2003239036A (ja) * 2002-02-19 2003-08-27 Nippon Steel Corp 疲労強度に優れた厚鋼板とその製造方法
WO2015178320A1 (ja) * 2014-05-22 2015-11-26 株式会社神戸製鋼所 厚鋼板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH111742A (ja) * 1997-06-10 1999-01-06 Nippon Steel Corp 疲労き裂伝播特性の優れた鋼材及びその製造方法
JP2003239036A (ja) * 2002-02-19 2003-08-27 Nippon Steel Corp 疲労強度に優れた厚鋼板とその製造方法
WO2015178320A1 (ja) * 2014-05-22 2015-11-26 株式会社神戸製鋼所 厚鋼板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3502295A4 *

Similar Documents

Publication Publication Date Title
JP2018031069A (ja) 厚鋼板およびその製造方法
JP6472315B2 (ja) 厚鋼板
US11326237B2 (en) Austenitic wear-resistant steel plate
JP5553081B2 (ja) 耐応力腐食割れ性に優れた耐磨耗鋼板およびその製造方法
JP7248885B2 (ja) 鋼板及び鋼板の製造方法
EP3604584B1 (en) High-strength steel plate for sour resistant line pipe, method for manufacturing same, and high-strength steel pipe using high-strength steel plate for sour resistant line pipe
JP5096088B2 (ja) 靭性および疲労亀裂発生抑制特性に優れた溶接継手
EP3778950A1 (en) Austenitic wear-resistant steel sheet
EP3859027B1 (en) High strength steel plate for sour-resistant line pipe and method for manufacturing same, and high strength steel pipe using high strength steel plate for sour-resistant line pipe
JPWO2014002941A1 (ja) 高強度熱延鋼板及びその製造方法
US20220145435A1 (en) Weathering steel for solid-state welding, weathering steel material for solid-state welding, solid-state welded structure and solid-state welding method
KR20130051518A (ko) 고강도 강판 및 그 제조 방법
JP4934505B2 (ja) 疲労亀裂進展抑制特性および脆性破壊抑制特性に優れた鋼板
KR101838462B1 (ko) 피로 특성이 우수한 후강판 및 그 제조 방법
BR112021005556A2 (pt) produto de aço laminado a quente e método de produção de um produto de aço laminado a quente
JP6228491B2 (ja) 疲労特性に優れた厚鋼板およびその製造方法
WO2018034071A1 (ja) 厚鋼板およびその製造方法
JP5833966B2 (ja) 疲労特性に優れた溶接継手
JP5457938B2 (ja) 疲労亀裂進展抑制特性および靭性に優れた鋼板
JP4659593B2 (ja) 音響異方性が小さく母材靭性に優れた高張力鋼板の製造方法
ZAVDOVEEV et al. Study of the welding thermal cycle for HSLA steel grade alform plate 620M: structure and mechanical properties
KR101763483B1 (ko) 고강도 주조 고속도 공구강의 제조방법
WO2024111527A1 (ja) 高強度熱延鋼板及びその製造方法
KR20240099378A (ko) 열연 강판
Abdul Rashid Variation of High Temperature Gas Nitriding Time on Duplex Stainless Steels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17841299

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197004341

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017841299

Country of ref document: EP

Effective date: 20190319