WO2018034062A1 - 管理方法及び管理装置 - Google Patents

管理方法及び管理装置 Download PDF

Info

Publication number
WO2018034062A1
WO2018034062A1 PCT/JP2017/023219 JP2017023219W WO2018034062A1 WO 2018034062 A1 WO2018034062 A1 WO 2018034062A1 JP 2017023219 W JP2017023219 W JP 2017023219W WO 2018034062 A1 WO2018034062 A1 WO 2018034062A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
stranded wire
steel stranded
transmission loss
steel
Prior art date
Application number
PCT/JP2017/023219
Other languages
English (en)
French (fr)
Inventor
道男 今井
山本 徹
山野辺 慎一
直樹 曽我部
一正 大窪
晋志 中上
及川 雅司
山田 眞人
松原 喜之
一芳 千桐
小林 俊之
Original Assignee
住友電工スチールワイヤー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工スチールワイヤー株式会社 filed Critical 住友電工スチールワイヤー株式会社
Publication of WO2018034062A1 publication Critical patent/WO2018034062A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/12Mounting of reinforcing inserts; Prestressing

Definitions

  • the present invention relates to a management method and a management apparatus for managing a PC steel stranded wire with an optical fiber (Steel Strand for Prestressed Concrete).
  • This application claims priority based on Japanese Patent Application No. 2016-159299 filed on Aug. 15, 2016, and incorporates all the content described in the Japanese application.
  • Patent Document 1 discloses a PC material with strain detection provided with an optical fiber, and a strain detection system. This strain detection system measures the strain of the optical fiber based on the frequency shift of the Brillouin scattered light of the incident light incident on the optical fiber, and detects the strain of the PC material.
  • the management method of the present disclosure includes a PC steel stranded wire formed by twisting a plurality of PC steel strands, and an optical fiber installed along a twist line of the PC steel stranded wire.
  • a management method for managing twisted wires in which an abnormality of a PC steel twisted wire is measured based on the transmission loss measured in the step of measuring the transmission loss of scattered light incident on the optical fiber and the step of measuring the transmission loss. Detecting.
  • the management device is a PC steel with an optical fiber having a PC steel stranded wire formed by twisting a plurality of PC steel strands, and an optical fiber installed along a twist line of the PC steel stranded wire.
  • a management device for managing twisted wires which measures a transmission loss of scattered light of light incident on an optical fiber, and detects an abnormality of a PC steel twisted wire based on the transmission loss measured by the measurement unit.
  • a detection unit is a PC steel with an optical fiber having a PC steel stranded wire formed by twisting a plurality of PC steel strands, and an optical fiber installed along a twist line of the PC steel stranded wire.
  • FIG. 1A is a perspective view of an example of a PC steel stranded wire with an optical fiber to which a management method and a management apparatus according to an embodiment are applied.
  • FIG. 1B is a perspective view of an example of an optical fiber.
  • FIG. 2 is a block diagram illustrating a configuration example of a management apparatus when measuring strain of an optical fiber.
  • FIG. 3 is a block diagram illustrating a configuration example of a management apparatus when measuring a transmission loss of an optical fiber.
  • FIG. 4 is a graph illustrating strain based on Brillouin scattered light.
  • FIG. 5 is a graph illustrating the intensity of Rayleigh scattered light.
  • FIG. 6 is a graph illustrating the relative relationship between the strain of FIG. 4 and the strength of FIG.
  • FIG. 1A is a perspective view of an example of a PC steel stranded wire with an optical fiber to which a management method and a management apparatus according to an embodiment are applied.
  • FIG. 1B is a perspective view of an example of an
  • FIG. 7 is a flowchart illustrating processing during construction of the management method according to the first embodiment.
  • FIG. 8 is a flowchart illustrating processing immediately before and during service of the management method according to the first embodiment.
  • FIG. 9 is a flowchart illustrating processing immediately before and during service of the management method according to the second embodiment.
  • FIG. 10 is another graph illustrating strain based on Brillouin scattered light.
  • FIG. 11 is another graph illustrating the intensity of Rayleigh scattered light.
  • FIG. 12 is a graph illustrating the relative relationship between the strain of FIG. 10 and the strength of FIG.
  • FIG. 13 is a graph illustrating the relationship between the strain in FIG. 10 and the difference in strength between the two points in FIG. 11.
  • FIG. 14 is a partial cross-sectional view of an example of a fixing unit structure for fixing the PC steel stranded wire with optical fiber of FIG. 1A.
  • FIG. 15 is an exploded perspective view of the socket and wedge of the fixing unit structure of FIG.
  • the management method which concerns on one Embodiment of this application is the light which has the PC steel twisted wire formed by twisting the some PC steel strand, and the optical fiber installed along the twist line of PC steel twisted wire
  • a management method for managing a PC steel stranded wire with a fiber comprising: measuring a transmission loss of scattered light incident on an optical fiber; and measuring the transmission loss based on the transmission loss measured in the measuring step. Detecting a line abnormality.
  • the simple measuring instrument which measures a transmission loss can be utilized for management of PC steel twisted wire, it becomes possible to detect abnormally the PC steel twisted wire of PC structure easily.
  • the abnormality of the PC steel stranded wire in the step of detecting an abnormality, may be detected further based on the correlation between the transmission loss and the strain of the PC steel stranded wire.
  • the strain of the PC steel stranded wire in addition to the measured transmission loss, can be estimated based on the correlation, and the abnormality of the PC steel stranded wire is detected in the step of detecting the abnormality based on the estimated strain of the PC steel stranded wire. it can.
  • the management method further includes a step of acquiring a correlation, and in the step of detecting an abnormality, the distortion is acquired from the transmission loss based on the correlation acquired in the step of acquiring the correlation, and acquired.
  • An abnormality of the PC steel stranded wire may be detected based on the strain.
  • the acquired correlation can be used in the step of detecting the abnormality.
  • the transmission loss is measured by measuring the transmission loss according to the tension introduced into the PC steel stranded wire during the construction of the PC steel stranded wire with optical fiber.
  • the reference transmission loss that is the transmission loss before the use of the PC steel stranded wire with optical fiber and the PC steel stranded wire with optical fiber.
  • the monitoring transmission loss which is the transmission loss in service, and detecting the abnormality
  • an abnormality of the PC steel stranded wire may be detected based on the obtained change in strain.
  • the correlation inherent to the PC structure can be obtained.
  • the step of detecting the abnormality based on the correlation specific to the PC structure acquired in the step of acquiring the correlation, and the reference transmission loss and the monitoring transmission loss measured in the step of measuring the transmission loss, The strain according to the reference transmission loss before the service and the strain according to the monitoring transmission loss during the service can be calculated, and the change of the strain with respect to the before service can be acquired. Therefore, it is possible to accurately detect an abnormality in the PC steel stranded wire with reference to before use.
  • the management method may further include a step of notifying information regarding the abnormality of the PC steel stranded wire detected by the step of detecting the abnormality.
  • the information regarding the abnormality of the detected PC steel twisted wire can be easily recognized by the notification unit.
  • this indication can also be grasped as invention of a management device, and this management device is along the twist of the PC steel twisted wire formed by twisting a plurality of PC steel strands, and the twist of the PC steel twisted wire.
  • a management device for managing a PC steel stranded wire with an optical fiber and a measuring unit that measures a transmission loss of scattered light incident on the optical fiber, and is measured by the measuring unit And a detector for detecting an abnormality of the PC steel stranded wire based on the transmission loss.
  • the simple measuring instrument which measures a transmission loss can be utilized for management of PC steel twisted wire, it becomes possible to detect abnormally the PC steel twisted wire of PC structure easily.
  • the detection unit may detect an abnormality in the PC steel stranded wire based on the correlation between the transmission loss and the strain in the PC steel stranded wire.
  • the strain of the PC steel stranded wire can be estimated based on the measured transmission loss and the correlation, and the abnormality of the PC steel stranded wire can be detected by the detection unit based on the estimated strain of the PC steel stranded wire.
  • the management device may further include a notification unit that notifies information related to abnormality of the PC steel stranded wire detected by the detection unit.
  • a notification unit that notifies information related to abnormality of the PC steel stranded wire detected by the detection unit.
  • the information regarding the abnormality of the detected PC steel twisted wire can be easily recognized by the notification unit.
  • the PC steel stranded wire with an optical fiber is in contact with the fixed portion and through which the PC steel stranded wire with an optical fiber is inserted, and is installed behind the base and the PC with the optical fiber.
  • the fixing portion may be fixed by a fixing portion structure including a socket through which the steel stranded wire is inserted and a wedge inserted from the rear between the inner wall surface of the socket and the PC steel stranded wire with optical fiber. .
  • a fixing portion structure including a socket through which the steel stranded wire is inserted and a wedge inserted from the rear between the inner wall surface of the socket and the PC steel stranded wire with optical fiber.
  • the management method and management device are for managing a PC structure using a PC steel stranded wire 1 with an optical fiber.
  • Management of the PC structure means detecting whether or not an abnormality has occurred in the PC steel stranded wire, which is the key to the durability of the PC structure.
  • an abnormality of the PC steel stranded wire for example, fluctuation (for example, decrease) in the tension of the PC steel stranded wire fixed to the PC structure in a state where the tension is previously introduced.
  • the PC steel twist is performed based on the transmission loss (transmission loss) of light in the optical fiber using the PC steel twisted wire 1 with an optical fiber. Indirectly obtain the fluctuation of the tension of the line.
  • the transmission loss means the degree of attenuation of the transmission intensity of light transmitted through the optical fiber.
  • FIG. 1A is a perspective view of a PC steel stranded wire 1 with an optical fiber to which a management method and a management apparatus according to an embodiment are applied.
  • FIG. 1B is a perspective view of an example of an optical fiber of a PC steel stranded wire 1 with an optical fiber shown in FIG. 1A.
  • FIG. 2 is a block diagram illustrating a configuration example of a management apparatus when measuring strain of an optical fiber.
  • FIG. 3 is a block diagram illustrating a configuration example of a management apparatus when measuring a transmission loss of an optical fiber.
  • the PC steel stranded wire 1 with an optical fiber includes a PC steel stranded wire 3 and an optical fiber member (optical fiber) 20 attached to the surface of the PC steel stranded wire 3.
  • the PC steel stranded wire 3 is a stranded wire formed by twisting a plurality of PC steel strands 4 having the same diameter made of, for example, a strand steel material.
  • the PC steel stranded wire 3 is formed by twisting seven PC steel strands 4.
  • a twist line 3a of the PC steel stranded wire 3 is formed as a valley between two adjacent PC steel strands 4, 4.
  • the valley is inclined at a predetermined angle on the surface of the PC steel stranded wire 3 with respect to the bus bar extending in parallel with the axis A of the PC steel stranded wire 3 and extends in a spiral shape with the axis A as the center.
  • the PC steel stranded wire 3 has a helical twist 3a.
  • a coating (sheath) for preventing corrosion or the like is provided on the surface of the PC steel stranded wire 3.
  • the optical fiber members 20 are respectively installed along two of the twists 3a, for example.
  • Each optical fiber member 20 is installed so as to be embedded in the valley, and extends in a spiral manner between the adjacent PC steel wires 4, 4 along the adjacent PC steel wires 4, 4. It is installed to do.
  • the optical fiber member 20 includes an optical fiber main body 21 embedded in the center of a surface orthogonal to the extending direction, and a resin filler 22 surrounding the optical fiber main body 21.
  • the optical fiber main body 21 has an optical fiber strand 23 and a coating 24 that covers the optical fiber strand 23.
  • the coating 24 is made of, for example, a polyamide-based material.
  • the filler 22 is a member that fills a gap between the PC steel strands 4 and 4 and the optical fiber main body 21 in the twist 3a where the optical fiber member 20 is installed, and is made of, for example, polyethylene resin.
  • the above-mentioned PC steel stranded wire with optical fiber 1 is fixed to the PC structure while tension is introduced into the PC steel stranded wire 1 with optical fiber for reinforcement of the PC structure.
  • the optical fiber member 20 is disposed in the stranded line 3a, when the PC steel stranded wire 3 is distorted, the optical fiber strand 23 of the optical fiber member 20 is also distorted.
  • strength of the light transmitted through the optical fiber strand 23 (henceforth a "transmission loss" only) may arise.
  • the distortion and transmission loss of the optical fiber 23 are measured using the management device 70 as follows.
  • the management device 70 is connected to the PC steel stranded wire 1 with an optical fiber via a measuring instrument 80A.
  • BOTDR can be used as the measuring instrument 80A.
  • BOTDR is a measuring instrument for measuring the strain and temperature of the optical fiber 23 using Brillouin scattered light.
  • Brillouin scattered light is one of various scattered light that is generated when pulsed light incident on the optical fiber strand 23 travels through the optical fiber strand 23.
  • Brillouin scattered light is scattered light that depends on strain and temperature changes among various types of scattered light.
  • the measuring instrument 80A has an optical signal transmitter 81A, a spectroscopic unit 82A, a detector 83A, and an optical signal receiver 84A.
  • the optical signal transmitter 81A includes a light source and a pulse generator.
  • the optical signal transmitter 81 ⁇ / b> A generates pulsed light and causes the generated pulsed light to enter the optical fiber strand 23.
  • the spectroscopic unit 82 ⁇ / b> A splits the Brillouin scattered light returned from the optical fiber strand 23.
  • the detector 83A detects the Brillouin scattered light spectrally separated by the spectroscopic unit 82A, for example, by an optical heterodyne method.
  • the optical signal receiving unit 84A measures a frequency shift generated in the detected Brillouin scattered light.
  • AQ8603 manufactured by Yokogawa Electric Corporation can be used.
  • a tension sensor 76 is connected to the PC steel stranded wire with optical fiber 1.
  • the tension sensor 76 measures the tension introduced into the PC steel stranded wire 1 with an optical fiber.
  • the tension sensor 76 inputs information about the measured tension to the management device 70.
  • the management device 70 is connected to the PC steel stranded wire 1 with an optical fiber via a measuring instrument 80B.
  • a measuring instrument 80B for example, an OTDR (Optical Time Domain Reflectometer) can be used.
  • the OTDR is a measuring instrument for measuring the transmission loss of the optical fiber 23 based on the intensity of Rayleigh scattered light.
  • Rayleigh scattered light is one of various types of scattered light that is generated when pulsed light incident on the optical fiber strand 23 travels through the optical fiber strand 23.
  • Rayleigh scattered light is scattered light having the same frequency as incident light among various scattered light, and the light intensity depending on the loss of each part of the optical fiber strand 23.
  • the measuring instrument 80B has an optical signal transmitter 81B, a spectroscopic unit 82B, and an optical signal receiver 83B.
  • the optical signal transmitter 81B includes a light source and a pulse generator.
  • the optical signal transmission unit 81B generates pulsed light and causes the generated pulsed light to enter the optical fiber strand 23.
  • the spectroscopic unit 82B splits the Rayleigh scattered light returned from the optical fiber strand 23.
  • the optical signal receiving unit 83B measures the intensity of the scattered Rayleigh scattered light.
  • the pulsed light generated by the optical signal transmission unit 81 ⁇ / b> B including the light source and the pulse generator is incident on the optical fiber strand 23.
  • the returned Rayleigh scattered light is split by the spectroscopic unit 82B and received by the optical signal receiving unit 83B.
  • the measuring instrument 80B measures the intensity of Rayleigh scattered light received by the optical signal receiving unit 83B.
  • a tension sensor 76 is connected to the PC steel stranded wire with optical fiber 1.
  • the tension sensor 76 detects the tension introduced into the PC steel stranded wire 1 with an optical fiber.
  • the tension sensor 76 inputs information regarding the detected tension to the management device 70. Note that the tension sensor 76 may be omitted during use of the PC steel stranded wire 1 with an optical fiber.
  • the management device 70 detects an abnormality in the PC steel stranded wire 3 based on at least the transmission loss of the optical fiber strand 23.
  • the management device 70 is, for example, a computer configured by a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory), in which a control program for controlling the management device 70 is stored.
  • the CPU controls the management device 70 based on the control program stored in the ROM, and the RAM functions as a work memory when the CPU executes the control program stored in the ROM.
  • the management apparatus 70 includes a measurement unit 71, a relationship acquisition unit 72, a storage unit 73, an abnormality detection unit 74, and a display unit (notification unit) 75 as functional configurations.
  • the measuring unit 71 measures the strain of the optical fiber 23 based on the frequency shift of the Brillouin scattered light received by the optical signal receiving unit 84A of the measuring instrument 80A.
  • the measuring unit 71 measures the transmission loss of the optical fiber 23 based on the intensity of the Rayleigh scattered light received by the optical signal receiving unit 83B of the measuring instrument 80B.
  • the transmission loss can be obtained by, for example, the difference between the intensity of Rayleigh scattered light at a predetermined position of the optical fiber strand 23 and the intensity of Rayleigh scattered light at a position different from the predetermined position of the optical fiber strand 23.
  • the measuring unit 71 measures the tension introduced into the PC steel stranded wire with optical fiber 1 based on the information about the tension input by the tension sensor 76.
  • the measuring unit 71 is an optical fiber corresponding to the tension force introduced into the PC steel stranded wire 1 with an optical fiber stepwise by the measuring instrument 80A and the measuring instrument 80B. The distortion and transmission loss of the strand 23 are measured. Moreover, the measurement part 71 measures the reference
  • the measuring unit 71 utilizes the fact that the speed of light propagating through the optical fiber strand 23 is constant, and the scattered light by the pulsed light incident on the optical fiber strand 23 is converted into a PC steel stranded wire with an optical fiber.
  • the position in the extending direction of 1 is specified.
  • the measuring unit 71 measures the elapsed time from when the pulsed light is incident on the optical fiber strand 23 to when the scattered light returns, thereby distortion and transmission loss of the optical fiber strand 23 corresponding to the scattered light. Is specified at which position in the extending direction of the PC steel stranded wire 1 with an optical fiber.
  • the relationship acquisition unit 72 acquires the correlation between the distortion of the optical fiber 23 and the transmission loss.
  • the relationship acquisition unit 72 transmits, for example, the strain of the optical fiber 23 measured by the measuring unit 71 using the measuring instrument 80A and the transmission of the optical fiber 23 measured by the measuring unit 71 using the measuring instrument 80B. Based on the loss, the relationship of the transmission loss to the distortion is acquired.
  • the relationship acquisition unit 72 acquires the strain of the optical fiber 23 by acquiring the relationship of the transmission loss to the strain for each tension force introduced stepwise during the construction of the PC steel stranded wire with optical fiber 1. Get the correlation of transmission loss.
  • the relationship acquisition unit 72 causes the storage unit 73 to store the acquired correlation between distortion and transmission loss.
  • the storage unit 73 stores the correlation between the distortion of the optical fiber 23 and the transmission loss. Moreover, the memory
  • the storage unit 73 has a nonvolatile storage area.
  • the storage unit 73 is, for example, an HDD (Hard Disk Drive).
  • the anomaly detector 74 detects an anomaly in the PC steel stranded wire with optical fiber 1 based on the correlation between strain and transmission loss.
  • the abnormality detection unit 74 acquires a change in the strain of the optical fiber 23 based on the correlation acquired by the relationship acquisition unit 72, the reference transmission loss, and the monitoring transmission loss, and based on the acquired change in strain.
  • the abnormality detection unit 74 acquires a reference strain that is a strain of the optical fiber 23 corresponding to the reference transmission loss, using the correlation stored in the storage unit 73.
  • the abnormality detection unit 74 uses the correlation stored in the storage unit 73 to obtain monitoring strain that is strain of the optical fiber 23 corresponding to the monitoring transmission loss.
  • the abnormality detection unit 74 determines whether or not the change of the monitored strain with respect to the reference strain is equal to or greater than a predetermined reference value.
  • the predetermined reference value may be a fixed value or a predetermined ratio (for example, several%) with respect to the reference strain.
  • the abnormality detection unit 74 detects an abnormality of the PC steel stranded wire with optical fiber 1 when it is determined that the change of the monitored strain with respect to the reference strain is equal to or greater than a predetermined reference value.
  • the abnormality detection unit 74 causes the display unit 75 to display information related to the abnormality in the PC steel stranded wire 1 with an optical fiber.
  • the display unit 75 visually notifies the information regarding the abnormality of the PC steel stranded wire with optical fiber 1 detected by the abnormality detection unit 74.
  • the display unit 75 is a display device provided in the management device 70, for example.
  • the display part 75 displays the information regarding abnormality of PC steel twisted wire 1 with an optical fiber as a character, an image, etc. with respect to the administrator etc. which mainly operate the management apparatus 70.
  • the information regarding the abnormality of the PC steel stranded wire 1 with optical fiber includes information that the PC steel stranded wire 1 with optical fiber is abnormal and information that the PC steel stranded wire 1 with optical fiber is normal. It is.
  • the relationship of strain with respect to the position in the extending direction of the PC steel stranded wire with optical fiber 1 is acquired by the measuring unit 71 as shown in FIG.
  • the relationship of the transmission loss with respect to the position in the extending direction of the PC steel stranded wire with fiber 1 is acquired by the measuring unit 71 as shown in FIG.
  • tensile_strength measured by the measurement part 71 is acquired by the relationship acquisition part 72 as FIG. 6 shows.
  • FIG. 4 is a graph illustrating strain based on Brillouin scattered light.
  • FIG. 5 is a graph illustrating the intensity of Rayleigh scattered light.
  • FIG. 6 is a graph illustrating the relative relationship between the strain of FIG. 4 and the strength of FIG. 4 to 6, the tension forces of the optical fiber-attached PC steel stranded wire 1 in the respective states T 0 to T 7 are substantially equal to each other in the drawings. More specifically, in FIGS. 4 to 6, T 6 indicates a state in which the maximum tension is introduced into the PC steel stranded wire 1 with an optical fiber, and T 1 indicates a tension that is about half of the tension. The state in which the force is introduced into the PC steel stranded wire with optical fiber 1 is shown.
  • T 2 to T 6 indicate a state in which a tension force obtained by approximately dividing the tension forces of T 1 and T 6 is gradually introduced into the PC steel stranded wire 1 with an optical fiber.
  • T 7 shows a state after fixing the optical fiber with PC steel twisted wire 1 from a state of T 6. 4 to 6,
  • T 0 indicates a state in which no tension is introduced into the PC steel stranded wire 1 with an optical fiber.
  • an experimental PC structure is used.
  • the PC structure extends linearly at least from position P 0 to position P 1 .
  • the PC steel stranded wire with optical fiber 1 extends along the extending direction of the PC structure, and is fixed at the position P 0 and the position P 1 in a state where tension is introduced. .
  • the distance from the position P 0 to the position P 1 is about 5 m.
  • the horizontal axis of FIG. 4 shows the position in the extending direction of the PC steel stranded wire 1 with optical fiber, and the vertical axis shows the amount of strain at each position of the PC steel stranded wire 1 with optical fiber.
  • This strain is measured by the measuring unit 71 using the measuring instrument 80A.
  • a jack (not shown) is used for the PC steel stranded wire with optical fiber.
  • Tension is introduced in stages. Therefore, a strain corresponding to the introduced tension is generated in the section from the position P 0 to the position P 1 (T 1 to T 6 ).
  • the PC steel stranded wire 1 with an optical fiber is fixed in the state T 7 where the tension is relaxed from the state T 6 where the maximum tension is introduced, the PC steel stranded wire 1 with an optical fiber is fixed. Produces a strain smaller than the tension at T 6 (T 7 ).
  • the horizontal axis of FIG. 5 shows the position in the extending direction of the PC steel stranded wire 1 with an optical fiber
  • the vertical axis shows the intensity of Rayleigh scattered light at each position of the PC steel stranded wire 1 with an optical fiber. This intensity is measured by the measuring unit 71 using the measuring instrument 80B.
  • the intensity of the Rayleigh scattered light is reduced (attenuated) in accordance with the tension introduced into the PC steel stranded wire 1 with an optical fiber, in the section from the position P 0 to the position P 1 . Transmission loss has occurred (T 0 to T 6 ).
  • the graph of FIG. 6 is obtained.
  • the horizontal axis of FIG. 6 shows the amount of strain of the PC steel stranded wire 1 with optical fiber, and the vertical axis shows the intensity of Rayleigh scattered light.
  • the tension force when the PC steel stranded wire with optical fiber 1 is fixed to the PC structure (for example, immediately before service) is T 7 , and the intensity of Rayleigh scattered light at this time is about 42. 2 [dB].
  • the intensity of Rayleigh scattered light is measured while the PC steel stranded wire with optical fiber 1 is in service, thereby grasping the decrease in tension of the PC steel stranded wire with optical fiber 1. be able to.
  • the strain of the PC steel stranded wire with optical fiber 1 increases. Since it is estimated that the quantity decreased, it can be grasped that the tension of the PC steel stranded wire with optical fiber 1 is reduced.
  • FIG. 7 is a flowchart illustrating processing during construction of the management method according to the first embodiment.
  • FIG. 8 is a flowchart illustrating processing immediately before and during service of the management method according to the first embodiment. Since the degree of attenuation of Rayleigh scattered light means transmission loss as described above, for the sake of easy explanation, “Intensity of Rayleigh scattered light”, “Measurement of intensity of Rayleigh scattered light”, etc. May be simply referred to as “transmission loss”, “transmission loss measurement”, or the like.
  • the correlation between the strain of the PC steel stranded wire with optical fiber 1 and the transmission loss is obtained when the PC steel stranded wire with optical fiber 1 is constructed. Then, while the PC steel stranded wire with optical fiber 1 is in service, the abnormality of the PC steel stranded wire with optical fiber 1 is detected using the acquired correlation.
  • a relationship acquisition step (step S10 to step S13) is performed.
  • the strain and transmission loss of the optical fiber 23 are measured (step S10).
  • the measuring unit 71 measures the relationship of strain with respect to the position in the extending direction of the PC steel stranded wire with optical fiber 1 using the measuring instrument 80 ⁇ / b> A.
  • the measurement unit 71 measures the relationship of the transmission loss with respect to the position in the extending direction of the PC steel stranded wire with optical fiber 1 using the measuring instrument 80 ⁇ / b> B.
  • step S11 tension is introduced into the PC steel stranded wire with optical fiber 1 installed in the PC structure (step S11).
  • step S11 for example, using a jack (not shown), tension is introduced stepwise into the PC steel stranded wire 1 with an optical fiber.
  • step S12 the strain and transmission loss of the optical fiber 23 are measured for each tension introduced into the PC steel stranded wire with optical fiber 1 (step S12).
  • step S ⁇ b> 12 the measurement unit 71 measures the relationship of strain with respect to the position in the extending direction of the PC steel stranded wire with optical fiber 1 using the measuring instrument 80 ⁇ / b> A.
  • step S ⁇ b> 12 the measurement unit 71 measures the relationship of the transmission loss with respect to the position in the extending direction of the PC steel stranded wire with optical fiber 1 using the measuring instrument 80 ⁇ / b> B.
  • the correlation acquisition unit 72 acquires the correlation between the strain of the optical fiber 23 and the transmission loss (step S13).
  • step S ⁇ b> 13 the relationship acquisition unit 72 acquires the correlation between strain and transmission loss associated with each tension.
  • the PC steel stranded wire 1 with an optical fiber is fixed. Thereby, construction of the PC steel stranded wire 1 with an optical fiber is completed, and the PC steel stranded wire 1 with an optical fiber is ready for use.
  • a loss measurement step (steps S20 to S22) and an abnormality detection step (steps S23 to S23) are performed.
  • Step S26) and a notification step (Step S27) are performed. More specifically, a loss measurement step (steps S20 and S21) is performed immediately before service (before service). During operation, the loss measurement step, the abnormality detection step, and the notification step (steps S22 to S27) are periodically performed.
  • step S20 the reference transmission loss before the use of the PC steel stranded wire with optical fiber 1 is measured.
  • the measuring unit 71 measures the relationship of the reference transmission loss with respect to the position in the extending direction of the PC steel stranded wire with optical fiber 1 using the measuring instrument 80B. Then, in-service of the PC steel stranded wire with optical fiber 1 is started (step S21).
  • step S22 the monitoring transmission loss during operation of the PC steel stranded wire with optical fiber 1 is measured.
  • step S ⁇ b> 22 the measurement unit 71 measures the relationship of the monitoring transmission loss with respect to the position in the extending direction of the PC steel stranded wire with optical fiber 1 using the measuring instrument 80 ⁇ / b> B.
  • the abnormality detection unit 74 acquires the reference distortion from the reference transmission loss and acquires the monitoring distortion from the monitoring transmission loss (step S23). Thereafter, the change amount of the monitored strain with respect to the reference strain is acquired (step S24).
  • the abnormality detection unit 74 determines whether or not the amount of change in strain is greater than or equal to a predetermined reference value (step S25).
  • a predetermined reference value step S25: YES
  • the PC steel stranded wire with optical fiber. 1 is notified of information indicating that there is an abnormality (step S26).
  • step S26 information indicating that there is an abnormality in the PC steel stranded wire with optical fiber 1 is displayed on the display unit 75.
  • information indicating that there is an abnormality in the PC steel stranded wire with optical fiber 1 may be notified to the administrator or the like by contacting a management room where the administrator or the like is located by a communication device (not shown).
  • step S25 when the abnormality detecting unit 74 determines that the amount of change in strain is not equal to or greater than a predetermined reference value (step S25: NO), it is determined that there is no abnormality in the PC steel stranded wire 1 with optical fiber, and the PC steel with optical fiber. A series of processing is completed without notifying information about abnormality of the stranded wire 1. In this case, the display unit 75 may notify information indicating that the PC steel stranded wire with optical fiber 1 is normal.
  • the transmission loss is measured by the measurement unit 71 in the loss measurement step.
  • the abnormality detection unit 74 detects an abnormality of the PC steel stranded wire with optical fiber 1 based on the transmission loss and the correlation between the strain and the transmission loss.
  • strain of the PC steel stranded wire 1 with an optical fiber can be estimated based on a correlation.
  • the abnormality detecting unit 74 can detect the abnormality of the PC steel stranded wire with optical fiber 1 in the abnormality detecting step.
  • the relationship acquisition unit 72 acquires the correlation between distortion and transmission loss.
  • the abnormality detection unit 74 acquires strain from the transmission loss based on the correlation, and detects abnormality of the PC steel stranded wire with optical fiber 1 based on the acquired strain.
  • the acquired correlation can be used in the abnormality detection step by acquiring the correlation between the distortion and the transmission loss in advance in the relationship acquiring step.
  • the transmission loss according to the tension introduced into the PC steel stranded wire 1 with optical fiber by the relationship acquisition unit 72 is reduced to the PC steel stranded wire 1 with optical fiber.
  • the measurement unit 71 measures the reference transmission loss and the monitoring transmission loss.
  • the abnormality detection unit 74 acquires a change in strain based on the correlation, the reference transmission loss, and the monitoring transmission loss, and the abnormality in the PC steel stranded wire with optical fiber 1 based on the acquired change in strain. Is detected. Thereby, the abnormality of PC steel twisted wire 1 with an optical fiber on the basis of before service can be detected with high accuracy.
  • FIG. 9 is a flowchart illustrating processing immediately before and during service of the management method according to the second embodiment.
  • the processing is started immediately before service of the PC steel stranded wire with optical fiber 1 (before service).
  • the management method according to this embodiment does not acquire a correlation during construction of the PC steel stranded wire 1 with an optical fiber, while the PC steel stranded wire 1 with an optical fiber is in service. This is different from the management method according to the first embodiment in that an abnormality of the optical fiber-attached PC steel stranded wire 1 is detected using only the transmission loss.
  • step S30 the reference transmission loss before the use of the PC steel stranded wire with optical fiber 1 is measured (step S30). Thereafter, the use of the PC steel stranded wire with optical fiber 1 is started (step S31), and the monitoring transmission loss during the use of the PC steel stranded wire with optical fiber 1 is measured (step S32).
  • step S30 to step S32 are the same as the loss measurement steps (step S20, step S22) in the management method according to the first embodiment.
  • the abnormality detection unit 74 acquires the amount of change in the monitored transmission loss with respect to the reference transmission loss (step S33). Subsequently, the abnormality detection unit 74 determines whether or not the amount of change in transmission loss is equal to or greater than a predetermined reference value (step S34). When the abnormality detecting unit 74 determines that the amount of change in transmission loss is equal to or greater than a predetermined reference value (step S34: YES), it is determined that there is an abnormality in the PC steel stranded wire 1 with optical fiber, and the PC steel twist with optical fiber. Information indicating that the line 1 is abnormal is notified (step S35). This step S35 is the same as the notification step (step S35) in the management method according to the first embodiment. Thereafter, a series of processing is terminated.
  • step S34 NO
  • the abnormality detection unit 74 determines that the change amount of the transmission loss is not equal to or greater than the predetermined reference value (step S34: NO)
  • the PC with optical fiber is used.
  • a series of processes is terminated without notifying information about the abnormality of the steel stranded wire 1.
  • the display unit 75 may notify information indicating that the PC steel stranded wire with optical fiber 1 is normal.
  • FIG. 10 is another graph illustrating strain based on Brillouin scattered light.
  • FIG. 11 is another graph illustrating the intensity of Rayleigh scattered light.
  • FIG. 12 is a graph illustrating the relative relationship between the strain of FIG. 10 and the strength of FIG.
  • FIG. 13 is a graph illustrating the relationship between the strain in FIG. 10 and the difference in strength between the two points in FIG. 11.
  • PC steel stranded wires 1 with an optical fiber of about 190 m connected in series are installed in the PC structure.
  • This PC structure extends linearly from position 0 [m] to position 600 [m] on at least the horizontal axis of FIGS.
  • the PC steel stranded wire with optical fiber 1 extends along the extending direction of the PC structure, and is fixed in a state in which a tension force is introduced.
  • the first PC steel stranded wire with optical fiber 1 is fixed at a fixing portion provided at a pair of fixing positions at a position 30 [m] and a position 200 [m].
  • the second PC steel stranded wire with an optical fiber 1 is fixed at a fixing portion provided at a pair of fixing positions of a position 230 [m] and a position 400 [m].
  • the third PC steel stranded wire with an optical fiber 1 is fixed in a fixing portion provided at a pair of fixing positions at a position 430 [m] and a position 600 [m].
  • the strain of the optical fiber strand 23 in the first PC-fiber stranded wire with an optical fiber 1 is also simply referred to as “strain of the first optical fiber strand 23”.
  • strain of the first optical fiber strand 23 The same applies to the second PC steel stranded wire with optical fiber 1 and the third PC steel stranded wire with optical fiber 1.
  • T 10 shows a state where tension to the optical fiber with PC steel twisted wire 1 is not introduced.
  • T 11 indicates a state in which about 5MPa of tension to the optical fiber with PC steel twisted wire 1 was introduced.
  • T 12 indicates a state in which the tension of approximately 15MPa in the optical fiber with PC steel twisted wire 1 was introduced.
  • T 13 indicates a state in which the tension of approximately 20MPa in the optical fiber with PC steel twisted wire 1 was introduced.
  • T 14 indicates a state in which the tension of approximately 25MPa in the optical fiber with PC steel twisted wire 1 was introduced.
  • T 15 indicates a state in which the tension of approximately 30MPa in the optical fiber with PC steel twisted wire 1 was introduced.
  • T 16 indicates a state in which the tension of approximately 35MPa in the optical fiber with PC steel twisted wire 1 was introduced.
  • T 17 indicates a state in which the tension force of about 40.7MPa, the largest tension to the optical fiber with PC steel twisted wire 1 was introduced.
  • T 18 shows a state after fixing the optical fiber with PC steel twisted wire 1 from a state of T 17.
  • the strain 10 represents the amount of strain at each position of the PC steel stranded wire 1 with an optical fiber. This strain is measured by the measuring unit 71 using the measuring instrument 80A. In the example of FIG. 10, similarly to the example of FIG. 4, the strain of the optical fiber 23 is generated in the section from the position 30 [m] to the position 600 [m] according to the tension force introduced in stages. Yes.
  • FIG. 11 represents the intensity of Rayleigh scattered light at each position of the PC steel stranded wire 1 with an optical fiber. This intensity is measured by the measuring unit 71 using the measuring instrument 80B. In the example of FIG. 11, since the intensity of the Rayleigh scattered light is reduced (attenuated) in accordance with the tension force introduced stepwise, as in the example of FIG. 5, the position 30 [m] to the position 600 [m]. ] Transmission loss has occurred in the section up to].
  • the intensity of the Rayleigh scattered light with respect to the amount of strain and the intensity of the Rayleigh scattered light with respect to the amount of strain of the third optical fiber 23 at the position 430 [m] are introduced into the PC steel stranded wire 1 with optical fiber.
  • the graph of FIG. 12 is obtained.
  • the horizontal axis in FIG. 12 indicates the amount of strain of the optical fiber 23, and the vertical axis indicates the intensity of Rayleigh scattered light.
  • an optical fiber 23 strain As shown in FIG. 12, in accordance with tension to the optical fiber with PC steel twisted wire 1 is introduced stepwise (from plots of T 10 toward the plot of T 18), an optical fiber 23 strain The phenomenon that the intensity of Rayleigh scattered light tends to decrease (decay) while the amount increases is occurring in each of the PC steel stranded wires 1 with optical fibers. Similar to the example of FIG. 4, it is found that there is a correlation between the strain of the optical fiber 23 and the transmission loss of the optical fiber 23.
  • the difference in the intensity of Rayleigh scattered light between the pair of fixing units (about 170 m) (hereinafter also simply referred to as “intensity difference”)
  • the plot of FIG. 13 is obtained by plotting each of the PC steel stranded wire with optical fiber 1 for each tension introduced into the PC steel stranded wire with optical fiber 1.
  • the horizontal axis in FIG. 13 indicates the amount of strain of the optical fiber 23, and the vertical axis indicates the intensity difference between the pair of fixing portions.
  • the change in the intensity of the Rayleigh scattered light with respect to the tension introduced into the PC steel stranded wire 1 with an optical fiber is shown when focusing on a predetermined position of the PC steel stranded wire 1 with an optical fiber.
  • the PC steel stranded wire with optical fiber 1 when the range from one fixing position to the other fixing position in the extending direction of the PC steel stranded wire with optical fiber 1 is focused. It shows the change in strength difference with the introduced tension.
  • the transmission loss is measured by the measurement unit 71 in the loss measurement step.
  • the abnormality detection unit 74 detects an abnormality of the PC steel stranded wire with optical fiber 1 based on the transmission loss.
  • the measuring instrument 80B for measuring the transmission loss is simpler than the measuring instrument 80A for measuring the strain. Therefore, since the simple measuring instrument 80B which measures a transmission loss can be utilized for management of the PC steel twisted wire 1 with an optical fiber, it can detect simply the abnormality of the PC steel twisted wire 1 with an optical fiber of a PC structure. Is possible.
  • the optical fiber as described above is based on the principle that the PC steel stranded wire with optical fiber 1 is pressed by the wedge. It is expected that a phenomenon that the intensity of Rayleigh scattered light decreases (decays) while the amount of distortion of the strands 23 increases easily occurs.
  • the management method and the management device 70 described above are suitable for managing the PC steel stranded wire with an optical fiber 1 fixed on the fixing portion by the PC steel stranded wire fixing portion structure 100 as described below. .
  • This PC steel stranded fixing part structure 100 is mechanically stable by pressing the fixing part 101, which is a structure such as a retaining wall provided on the rock mass R, to the rock mass R side, for example, on a dam or a slope. It is applied to the ground anchor 50 for securing the property.
  • the plurality of PC steel stranded wires constituting the ground anchor 50 do not necessarily have to be the PC steel stranded wire 1 with an optical fiber, and even if no optical fiber is attached to some PC steel stranded wires. Good.
  • “PC steel stranded wire with optical fiber 1” and “part of PC steel stranded wire with no optical fiber attached” may be collectively abbreviated as “PC steel stranded wire 1, 3”. .
  • FIG. 14 is a partial cross-sectional view of an example of a fixing portion structure for fixing the PC steel stranded wire with optical fiber of FIG. 1A.
  • the ground anchor 50 is provided inside the hole 103 drilled in the rock mass R and the fixing portion 101.
  • the front end sides of the PC steel stranded wires 1 and 3 are inserted into the holes 103, and the rear end sides of the PC steel stranded wires 1 and 3 protrude rearward from the fixing surface 101a.
  • the ground anchor 50 includes a head 51 including a PC steel stranded wire fixing portion structure 100, an anchor free length portion 52, an anchor body length portion 55, and a plurality of PC steel stranded wires.
  • the head 51 is provided at the opening of the hole 103 in the fixing surface 101 a of the fixing unit 101.
  • the head portion 51 fixes the rear ends of the PC steel stranded wires 1 and 3 to the fixing portion 101 by the PC steel stranded wire fixing portion structure 100.
  • the rear ends of the PC steel stranded wires 1 and 3 are fixed to the fixing portion 101 so as to maintain the tension.
  • the anchor free length portion 52 is a portion where the PC steel stranded wires 1 and 3 are not fixed in the ground anchor 50 on the front side from the fixing surface 101a.
  • the PC steel stranded wires 1 and 3 extend so as to connect the head part 51 and the anchor body long part 55.
  • the anchor free length portion 52 includes a presser plate 53 and an array plate 54 provided in the hole 103 of the fixing portion 101.
  • the holding plate 53 is inserted with the PC steel stranded wires 1 and 3, and seals the hole 103 between the fixed surface 101 a and the array plate 54.
  • PC steel stranded wires 1 and 3 are inserted through the array plate 54.
  • the array plate 54 aligns the PC steel stranded wires 1 and 3 so that the PC steel stranded wires 1 and 3 are substantially parallel to each other behind the array plate 54.
  • the hole 103 in the anchor free long portion 52 is filled with the filler 5 on the front side of the presser plate 53.
  • the hole 103 in the anchor body long part 55 is filled with the filler 5 continuously from the anchor free long part 52.
  • the filler 5 is, for example, cement milk, mortar, or the like, and is filled in the hole 103 and cured in order to fix the PC steel stranded wires 1 and 3 in the hole 103.
  • the anchor body length portion 55 is a portion for fixing the front end portions of the PC steel stranded wires 1 and 3 in the ground anchor 50.
  • the anchor body length portion 55 has a load-bearing body 56 for fixing the front end portions of the PC steel stranded wires 1 and 3 continuously extending from the anchor free length portion 52.
  • the load-bearing body 56 is formed by casting the front ends of the PC steel stranded wires 1 and 3 and casting, for example, an aluminum alloy.
  • the PC steel stranded wire fixing part structure 100 is in contact with the fixing surface 101a of the fixing part 101 and has a base 11 through which the PC steel stranded wires 1 and 3 are inserted.
  • a socket 13 through which the wires 1 and 3 are inserted, and a wedge 16 disposed between the inner wall surface 13s of the tapered hole 13a of the socket 13 and the PC steel stranded wires 1 and 3 are provided.
  • the base 11 is a bearing plate that supports the tension of the PC steel stranded wires 1 and 3.
  • the base 11 has a circular opening 11a through which a plurality of PC steel stranded wires 1 and 3 are inserted.
  • the base 11 is formed with a plurality of screw holes for attaching a cap 14 described later.
  • a cylindrical spacer 12 having a through hole through which the PC steel stranded wires 1 and 3 are inserted is inserted.
  • the diameter of the front surface of the spacer 12 is larger than the diameter of the circular opening 11a.
  • the socket 13 is a columnar member disposed on the rear surface of the spacer 12. As an example, the diameter of the front surface of the socket 13 is smaller than the diameter of the rear surface of the spacer 12.
  • the spacer 12 and the socket 13 are covered with a cap 14.
  • the cap 14 has a hat shape, and is fixed by screwing a bolt B into a screw hole of the base 11.
  • An O-ring 14 c is disposed between the cap 14 and the base 11, and a sealed space is defined by the cap 14 and the base 11.
  • This sealed space includes a space behind the presser plate 53 in the hole 103.
  • This sealed space is filled with rust preventive oil 15.
  • the rust preventive oil 15 is injected through the injection port 14a.
  • an exhaust port 14 b for discharging the air in the sealed space is provided.
  • FIG. 15 is an exploded perspective view of the socket and wedge of the fixing unit structure of FIG.
  • the socket 13 is formed with a tapered hole 13 a through which a plurality of (here, four) PC steel stranded wires 1 and 3 are inserted.
  • the tapered hole 13a has a conical surface formed such that its inner wall surface 13s decreases in diameter toward the front.
  • the wedge 16 functions as a wedge in a state where it is inserted from the rear between the inner wall surface 13s of the tapered hole 13a and the PC steel stranded wires 1 and 3 (hereinafter also simply referred to as “inserted state”).
  • the wedge 16 has a truncated cone (tapered) wedge body 17 having a through hole in the center.
  • the outer wall surface of the wedge body 17 is a conical surface corresponding to the inner wall surface 13s of the tapered hole 13a.
  • the inner wall surface 17 d of the wedge body 17 is a cylindrical surface corresponding to the outer peripheral surface of the PC steel stranded wires 1 and 3, and is in close contact with the outer peripheral surface of the PC steel stranded wires 1 and 3.
  • the wedge body 17 includes three wedge pieces 17a, 17b, and 17c that are formed by being divided into three in the circumferential direction.
  • the wedge pieces 17a to 17c are arranged at equal intervals so as to surround the PC steel stranded wires 1 and 3 in the circumferential direction in the inserted state.
  • the front end surfaces 17t of the wedge pieces 17a to 17c are substantially flush with the front surface of the socket 13.
  • the rear ends of the wedge pieces 17a to 17c protrude rearward from the rear surface of the socket 13.
  • the rear end portions of the PC steel stranded wires 1 and 3 protrude further rearward from the rear end surfaces 17u of the wedge pieces 17a to 17c.
  • the wedge body 17 is inserted from the rear between the inner wall surface 13 s of the tapered hole 13 a of the socket 13 and the PC steel stranded wires 1 and 3 inserted through the socket 13.
  • the wedge body 17 functions as a wedge between the socket 13 and the PC steel stranded wires 1 and 3.
  • the wedge bodies 17 press the inner wall surface 13s of the tapered hole 13a of the socket 13 and the PC steel stranded wires 1 and 3 inserted through the socket 13, respectively.
  • the wedge body 17 presses the PC steel stranded wires 1 and 3 more strongly, so that the PC steel stranded wires 1 and 3 are firmly held.
  • the PC steel stranded wires 1 and 3 are fixed to the fixing portion 101 so as to support the tension.
  • the wedge body 17 strongly presses the PC steel stranded wires 1 and 3 in the radial direction by the inner wall surface 17 d of the wedge body 17.
  • the management device 70 is in contact with the fixed portion 101 and through which the PC steel stranded wire with optical fiber 1 is inserted, and the PC steel stranded wire with optical fiber installed behind the base 11.
  • PC steel stranded wire fixing portion structure 100 including a socket 13 through which the cable 1 is inserted and a wedge 16 inserted from the rear between the inner wall surface 13s of the socket 13 and the PC steel stranded wire 1 with an optical fiber.
  • the present invention can be suitably applied to the PC steel stranded wire with an optical fiber fixed to the fixing unit 101. Thereby, the abnormality of the PC steel stranded wire 1 with an optical fiber of a PC structure is simply detected using the transmission loss caused by the PC steel stranded wire 1 with an optical fiber being pressed by the inserted wedge 16. Is possible.
  • the present invention is not limited to the case where the present invention is applied to the PC steel stranded wire 3 having the seven PC steel strands 4 as in the above embodiment.
  • the 19 stranded PC steel stranded wire or other PC The same applies to steel stranded wires.
  • the two optical fiber members 20 were attached to PC steel twisted wire 1 with an optical fiber, the number of the optical fiber members 20 is not limited to this.
  • the ground anchor 50 is exemplified as the PC structure, but the PC structure may be a structure using prestressed concrete or the like.
  • tensile_strength of the PC steel twisted wire 1 with an optical fiber may be introduce
  • the abnormality detection part 74 used the transmission loss before service of the PC steel twisted wire 1 with an optical fiber as a reference
  • a strain value for example, a fixed value
  • the correlation is acquired in advance by the relationship acquisition unit 72 during the construction of the PC steel stranded wire 1 with an optical fiber, but is not limited thereto.
  • the correlation may be acquired by, for example, simulation or the like separately from the construction of the PC steel stranded wire 1 with an optical fiber.
  • reports the information regarding the abnormality of PC steel twisted wire 1 with an optical fiber was used as an alerting
  • the information regarding the abnormality of PC steel twisted wire 1 with an optical fiber was audibly heard.
  • a buzzer, a speaker, or the like for informing the user may be used, or a buzzer, a speaker, or the like for audibly informing information related to the abnormality of the PC steel stranded wire with optical fiber 1 may be used.
  • the socket 13 has four tapered holes 13a, but the number of tapered holes 13a is not limited to this.
  • the wedge body 17 is divided into three wedge pieces by being divided into three in the circumferential direction.
  • the number of wedge bodies divided is not limited to this.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Piles And Underground Anchors (AREA)
  • Reinforcement Elements For Buildings (AREA)

Abstract

複数のPC鋼素線が撚られて形成されたPC鋼撚線と、PC鋼撚線の撚り目に沿って設置された光ファイバと、を有する光ファイバ付PC撚線を管理する管理方法を開示する。この管理方法は、光ファイバに入射させた光の散乱光の伝送ロスを計測するステップと、伝送ロスを計測するステップで計測した伝送ロスに基づいて光ファイバ付PC鋼撚線の異常を検知するステップと、を備える。

Description

管理方法及び管理装置
 本発明は、光ファイバ付のPC鋼撚線(Steel Strand for Prestressed Concrete)を管理する管理方法及び管理装置に関する。
 本出願は、2016年8月15日出願の日本出願第2016-159299号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 特許文献1は、光ファイバを備えたひずみ検知付きPC材、及び、ひずみ検知システムを開示する。このひずみ検知システムは、光ファイバに入射した入射光のブリルアン散乱光の周波数シフトに基づいて光ファイバのひずみを測定し、PC材のひずみを検知する。
特開2000-46527号公報
 本開示の管理方法は、複数のPC鋼素線が撚られて形成されたPC鋼撚線と、PC鋼撚線の撚り目に沿って設置された光ファイバと、を有する光ファイバ付PC鋼撚線を管理する管理方法であって、光ファイバに入射させた光の散乱光の伝送ロスを計測するステップと、伝送ロスを計測するステップで計測した伝送ロスに基づいてPC鋼撚線の異常を検知するステップと、を備える。
 本開示の管理装置は、複数のPC鋼素線が撚られて形成されたPC鋼撚線と、PC鋼撚線の撚り目に沿って設置された光ファイバと、を有する光ファイバ付PC鋼撚線を管理する管理装置であって、光ファイバに入射させた光の散乱光の伝送ロスを計測する計測部と、計測部で計測した伝送ロスに基づいてPC鋼撚線の異常を検知する検知部と、を備える。
図1Aは、一実施形態に係る管理方法及び管理装置が適用される光ファイバ付PC鋼撚線の一例の斜視図である。 図1Bは、光ファイバの一例の斜視図である。 図2は、光ファイバ素線のひずみを計測するときの管理装置の構成例を示すブロック図である。 図3は、光ファイバ素線の伝送ロスを計測するときの管理装置の構成例を示すブロック図である。 図4は、ブリルアン散乱光に基づくひずみを例示するグラフである。 図5は、レーリー散乱光の強度を例示するグラフである。 図6は、図4のひずみと図5の強度との相対関係を例示するグラフである。 図7は、第1実施形態に係る管理方法の施工中における処理を例示するフローチャートである。 図8は、第1実施形態に係る管理方法の供用直前及び供用中における処理を例示するフローチャートである。 図9は、第2実施形態に係る管理方法の供用直前及び供用中における処理を例示するフローチャートである。 図10は、ブリルアン散乱光に基づくひずみを例示する他のグラフである。 図11は、レーリー散乱光の強度を例示する他のグラフである。 図12は、図10のひずみと図11の強度との相対関係を例示するグラフである。 図13は、図10のひずみと、図11の2点間での強度の差と、の関係を例示するグラフである。 図14は、図1Aの光ファイバ付PC鋼撚線を定着する定着部構造の一例の一部断面図である。 図15は、図14の定着部構造のソケット及びウェッジの分解斜視図である。
[本開示が解決しようとする課題]
 特許文献1に記載のひずみ検知システムでは、ブリルアン散乱光により光ファイバのひずみ等を計測するための計測器として、例えばBOTDR(Brillouin Optical Time Domain Reflectometer)が必要である。しかしながら、BOTDRは、機材が高価である等の事情により、供用中のPC構造物における定期的なPC鋼撚線の管理に適しているとは言い難い。そこで、より簡易的にPC構造物のPC鋼撚線の異常を検知することが望まれている。本開示は、簡易的にPC構造物のPC鋼撚線の異常を検知可能な管理方法及び管理装置を提供することを目的とする。
 [本開示の効果]
 本開示によれば、簡易的にPC構造物のPC鋼撚線の異常を検知可能な管理方法及び管理装置を提供することができる。
 [本願発明の実施形態の説明]
 最初に本願発明の実施形態を列記して説明する。本願の一実施形態に係る管理方法は、複数のPC鋼素線が撚られて形成されたPC鋼撚線と、PC鋼撚線の撚り目に沿って設置された光ファイバと、を有する光ファイバ付PC鋼撚線を管理する管理方法であって、光ファイバに入射させた光の散乱光の伝送ロスを計測するステップと、伝送ロスを計測ステップで計測した伝送ロスに基づいてPC鋼撚線の異常を検知するステップと、を備える。
 この管理方法では、伝送ロスを計測するステップにより伝送ロスを計測することで、計測した伝送ロスに基づいて異常を検知するステップでPC鋼撚線の異常を検知できる。よって、伝送ロスを計測する簡易的な計測器がPC鋼撚線の管理に利用できるため、簡易的にPC構造物のPC鋼撚線の異常を検知することが可能となる。
 一実施形態に係る管理方法では、異常を検知するステップでは、伝送ロスとPC鋼撚線のひずみとの相関関係に更に基づいてPC鋼撚線の異常を検知してもよい。この場合、計測した伝送ロスに加えて相関関係に基づいてPC鋼撚線のひずみを推定でき、推定したPC鋼撚線のひずみに基づいて異常を検知するステップでPC鋼撚線の異常を検知できる。
 一実施形態に係る管理方法では、相関関係を取得するステップを更に備え、異常を検知するステップでは、相関関係を取得するステップで取得した相関関係に基づいて伝送ロスからひずみを取得し、取得したひずみに基づいてPC鋼撚線の異常を検知してもよい。この場合、相関関係を取得するステップにより伝送ロスとひずみとの相関関係を予め取得することで、取得した相関関係を異常を検知するステップにおいて用いることができる。
 一実施形態に係る管理方法では、相関関係を取得するステップでは、光ファイバ付PC鋼撚線の施工中においてPC鋼撚線へ導入される緊張力に応じた伝送ロスを計測することで伝送ロスとPC鋼撚線のひずみとの相関関係を取得し、伝送ロスを計測するステップでは、光ファイバ付PC鋼撚線の供用前における伝送ロスである基準伝送ロスと、光ファイバ付PC鋼撚線の供用中における伝送ロスである監視伝送ロスと、を計測し、異常を検知するステップでは、関係取得ステップで取得した相関関係と、基準伝送ロスと、監視伝送ロスと、に基づいてひずみの変化を取得し、取得したひずみの変化に基づいてPC鋼撚線の異常を検知してもよい。この場合、相関関係を取得するステップでは、光ファイバ付PC鋼撚線の施工中においてPC鋼撚線へ導入される緊張力に応じた伝送ロスを計測するため、当該PC構造物固有の相関関係を取得できる。また、異常を検知するステップでは、相関関係を取得するステップで取得した当該PC構造物固有の相関関係と、伝送ロスを計測するステップで計測した基準伝送ロス及び監視伝送ロスと、に基づいて、供用前の基準伝送ロスに応じたひずみ及び供用中の監視伝送ロスに応じたひずみを算出でき、供用前を基準としたひずみの変化を取得できる。よって、供用前を基準としたPC鋼撚線の異常を精度良く検知できる。
 一実施形態に係る管理方法では、異常を検知するステップにより検知したPC鋼撚線の異常に関する情報を報知するステップを更に備えてもよい。この場合、報知部により、検知したPC鋼撚線の異常に関する情報を容易に認識することができる。
 また、本開示は、管理装置の発明としても捉えることができ、この管理装置は、複数のPC鋼素線が撚られて形成されたPC鋼撚線と、PC鋼撚線の撚り目に沿って設置された光ファイバと、を有する光ファイバ付PC鋼撚線を管理する管理装置であって、光ファイバに入射させた光の散乱光の伝送ロスを計測する計測部と、計測部で計測した伝送ロスに基づいてPC鋼撚線の異常を検知する検知部と、を備える。
 この管理装置では、計測部により伝送ロスを計測することで、計測した伝送ロスに基づいて検知部でPC鋼撚線の異常を検知できる。よって、伝送ロスを計測する簡易的な計測器がPC鋼撚線の管理に利用できるため、簡易的にPC構造物のPC鋼撚線の異常を検知することが可能となる。
 一実施形態に係る管理装置では、検知部は、伝送ロスとPC鋼撚線のひずみとの相関関係に更に基づいてPC鋼撚線の異常を検知してもよい。この場合、計測した伝送ロス及び相関関係に基づいてPC鋼撚線のひずみを推定でき、推定したPC鋼撚線のひずみに基づいて検知部でPC鋼撚線の異常を検知できる。
 一実施形態に係る管理装置では、検知部により検知したPC鋼撚線の異常に関する情報を報知する報知部を更に備えてもよい。この場合、報知部により、検知したPC鋼撚線の異常に関する情報を容易に認識することができる。
 一実施形態に係る管理装置では、光ファイバ付PC鋼撚線は、被定着部に当接すると共に光ファイバ付PC鋼撚線を挿通させるベースと、ベースの後方に設置されると共に光ファイバ付PC鋼撚線を挿通させるソケットと、ソケットの内壁面と光ファイバ付PC鋼撚線との間に後方から挿入されるウェッジと、を備える定着部構造により、被定着部に定着されていてもよい。この場合、挿入されたウェッジにより光ファイバ付PC鋼撚線が圧迫されて生じる伝送ロスを利用して、簡易的にPC構造物のPC鋼撚線の異常を検知することが可能となる。
 [本願発明の実施形態の詳細]
 本願発明の実施形態に係る管理方法及び管理装置の具体例を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。また、以下の説明において、同一要素又は同一機能を有する要素には、同一符号を用いる場合があり、重複する説明は省略する。以下の説明において、「前方」、「後方」、「前端」、「後端」などの前後の概念を持つ語を用いる場合には、図14における紙面上方を後方、図14における紙面下方を前方とする。
 本実施形態に係る管理方法及び管理装置は、光ファイバ付PC鋼撚線1を用いてPC構造物の管理をするためのものである。PC構造物の管理は、PC構造物の耐久性の要となるPC鋼撚線に異常が生じているか否かを検知することを意味する。PC鋼撚線の異常としては、例えば、予め緊張力が導入された状態でPC構造物に定着されたPC鋼撚線の緊張力の変動(例えば低下)が挙げられる。本実施形態に係る管理方法及び管理装置によるPC構造物の管理においては、光ファイバ付PC鋼撚線1を用いて、光ファイバ素線における光の伝送ロス(伝送損失)に基づいてPC鋼撚線の緊張力の変動を間接的に取得する。伝送ロスとは、光ファイバ内を伝送する光の伝送強度の減衰度合いを意味する。
 まず、光ファイバ付PC鋼撚線1について説明する。図1Aは、一実施形態に係る管理方法及び管理装置が適用される光ファイバ付PC鋼撚線1の斜視図である。図1Bは、図1Aに示す光ファイバ付PC鋼撚線1の光ファイバの一例の斜視図である。図2は、光ファイバ素線のひずみを計測するときの管理装置の構成例を示すブロック図である。図3は、光ファイバ素線の伝送ロスを計測するときの管理装置の構成例を示すブロック図である。
 図1Aに示されるように、光ファイバ付PC鋼撚線1は、PC鋼撚線3と、PC鋼撚線3の表面に取り付けられた光ファイバ部材(光ファイバ)20と、を有する。PC鋼撚線3は、例えばストランド鋼材からなる同一径の複数のPC鋼素線4が撚られて形成された撚線である。PC鋼撚線3は、一例として、7本のPC鋼素線4が撚られて形成されている。PC鋼撚線3の表面には、互いに隣接する2本のPC鋼素線4,4同士の間の谷間として、PC鋼撚線3の撚り目3aが形成されている。この谷間は、PC鋼撚線3の表面においてPC鋼撚線3の軸線Aに平行に延びる母線に対して所定の角度で傾斜しており、軸線Aを中心とした螺旋状に延在する。つまり、PC鋼撚線3は、螺旋状の撚り目3aを有する。PC鋼撚線3の表面には、腐食防止等のための被覆(シース)が設けられる。
 図1Bに示されるように、光ファイバ部材20は、例えば、上記撚り目3aのうちの二つに沿ってそれぞれ設置されている。各光ファイバ部材20は、上記の谷間に埋め込まれるように設置され、互いに隣接するPC鋼素線4,4同士の間において当該隣接するPC鋼素線4,4に沿って螺旋状に延在するように設置されている。光ファイバ部材20は、延在方向に直交する面の中央に埋め込まれた光ファイバ本体21と、光ファイバ本体21を包囲する樹脂製のフィラー22と、を有する。光ファイバ本体21は、光ファイバ素線23と、当該光ファイバ素線23を覆う被覆24とを有する。被覆24は、例えばポリアミド系材料からなる。フィラー22は、光ファイバ部材20が設置された撚り目3aにおけるPC鋼素線4,4と、光ファイバ本体21と、の間の隙間を埋める部材であり、例えばポリエチレン樹脂等からなる。
 以上のような光ファイバ付PC鋼撚線1は、PC構造物の補強のため、光ファイバ付PC鋼撚線1に緊張力が導入されつつPC構造物へ定着される。このとき、光ファイバ部材20が撚り目3aに配置されているため、PC鋼撚線3にひずみが生じると光ファイバ部材20の光ファイバ素線23にもひずみが生じる。また、光ファイバ素線23においては、光ファイバ素線23内を伝送される光の強度の低下(以下、単に「伝送ロス」とも称する)が生じ得る。光ファイバ素線23のひずみ及び伝送ロスは、管理装置70を用いて以下のようにして計測される。
 図2に示されるように、光ファイバ素線23のひずみを計測するためには、管理装置70は、計測器80Aを介して光ファイバ付PC鋼撚線1に接続される。計測器80Aとしては、例えばBOTDRを用いることができる。BOTDRは、ブリルアン散乱光により光ファイバ素線23のひずみ及び温度を計測するための計測器である。ブリルアン散乱光は、光ファイバ素線23に入射されたパルス光が光ファイバ素線23中を進む際に生じさせる各種散乱光のうちの一つである。ブリルアン散乱光は、各種散乱光のうち、ひずみ及び温度の変化に依存する散乱光である。
 計測器80Aは、光信号発信部81Aと、分光部82Aと、検波部83Aと、光信号受信部84Aと、を有する。光信号発信部81Aは、光源及びパルス発生器を含む。光信号発信部81Aは、パルス光を発生させ、発生させたパルス光を光ファイバ素線23に入射させる。分光部82Aは、光ファイバ素線23において戻ってきたブリルアン散乱光を分光する。検波部83Aは、例えば光ヘテロダイン法により、分光部82Aで分光されたブリルアン散乱光を検波する。光信号受信部84Aは、検波されたブリルアン散乱光において生じた周波数シフトを計測する。計測器80Aは、例えば、横河電機製 AQ8603等を用いることができる。
 光ファイバ付PC鋼撚線1には、緊張力センサ76が接続されている。緊張力センサ76は、光ファイバ付PC鋼撚線1に導入された緊張力を計測する。緊張力センサ76は、計測した緊張力に関する情報を管理装置70に入力する。
 図3に示されるように、光ファイバ素線23の伝送ロスを計測するためには、管理装置70は、計測器80Bを介して光ファイバ付PC鋼撚線1に接続される。計測器80Bとしては、例えばOTDR(Optical Time Domain Reflectometer)を用いることができる。OTDRは、レーリー散乱光の強度に基づいて光ファイバ素線23の伝送ロスを計測するための計測器である。レーリー散乱光は、光ファイバ素線23に入射されたパルス光が光ファイバ素線23中を進む際に生じさせる各種散乱光のうちの一つである。レーリー散乱光は、各種散乱光のうち、入射光と同じ周波数を持ち、その光強度が光ファイバ素線23の各部分の損失に依存する散乱光である。
 計測器80Bは、光信号発信部81Bと、分光部82Bと、光信号受信部83Bと、を有する。光信号発信部81Bは、光源及びパルス発生器を含む。光信号発信部81Bは、パルス光を発生させ、発生させたパルス光を光ファイバ素線23に入射させる。分光部82Bは、光ファイバ素線23において戻ってきたレーリー散乱光を分光する。光信号受信部83Bは、分光されたレーリー散乱光の強度を計測する。計測器80Bでは、光源及びパルス発生器を含む光信号発信部81Bで発生させたパルス光を、光ファイバ素線23に入射させる。戻ってきたレーリー散乱光は分光部82Bで分光されて光信号受信部83Bで受光される。計測器80Bは、光信号受信部83Bで受光されたレーリー散乱光の強度を計測する。
 光ファイバ付PC鋼撚線1には、緊張力センサ76が接続されている。緊張力センサ76は、光ファイバ付PC鋼撚線1に導入された緊張力を検出する。緊張力センサ76は、検出した緊張力に関する情報を管理装置70に入力する。なお、光ファイバ付PC鋼撚線1の供用中においては、緊張力センサ76が省略されてもよい。
 管理装置70は、少なくとも光ファイバ素線23の伝送ロスに基づいてPC鋼撚線3の異常を検知する。管理装置70は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory、及びRAM(Random Access Memory)によって構成されたコンピュータである。ROMには、管理装置70を制御するための制御プログラムが格納されている。CPUは、ROMに格納された制御プログラムに基づいて、管理装置70を制御する。RAMは、CPUがROMに格納された制御プログラムを実行する際のワークメモリとして機能する。
 管理装置70は、機能的構成として、計測部71と、関係取得部72と、記憶部73と、異常検知部74と、表示部(報知部)75と、を有する。
 計測部71は、計測器80Aの光信号受信部84Aで受光されたブリルアン散乱光の周波数シフトに基づいて光ファイバ素線23のひずみを計測する。計測部71は、計測器80Bの光信号受信部83Bで受光されたレーリー散乱光の強度に基づいて光ファイバ素線23の伝送ロスを計測する。伝送ロスは、例えば、光ファイバ素線23の所定位置におけるレーリー散乱光の強度と、光ファイバ素線23の所定位置とは異なる位置におけるレーリー散乱光の強度と、の差により求めることができる。計測部71は、緊張力センサ76により入力された緊張力に関する情報に基づいて、光ファイバ付PC鋼撚線1に導入された緊張力を計測する。
 計測部71は、光ファイバ付PC鋼撚線1の施工中においては、計測器80A及び計測器80Bにより、光ファイバ付PC鋼撚線1に段階的に導入される緊張力に応じた光ファイバ素線23のひずみ及び伝送ロスを計測する。また、計測部71は、光ファイバ付PC鋼撚線1の供用前においては、計測器80Bにより、当該供用前における伝送ロスである基準伝送ロスを計測する。計測部71は、光ファイバ付PC鋼撚線1の供用前において計測した基準伝送ロスを記憶部73に記憶させる。計測部71は、光ファイバ付PC鋼撚線1の供用中(例えば定期点検時)においては、計測器80Bにより、当該供用中における伝送ロスである監視伝送ロスを計測する。
 計測部71は、光ファイバ素線23を伝搬する光の速さが一定であることを利用して、光ファイバ素線23に入射されたパルス光による散乱光が、光ファイバ付PC鋼撚線1の延在方向におけるどの位置で発生したかを特定する。計測部71は、光ファイバ素線23にパルス光が入射されてから散乱光が戻ってくるまでの経過時間を計測することで、当該散乱光に対応する光ファイバ素線23のひずみ及び伝送ロスが、光ファイバ付PC鋼撚線1の延在方向におけるどの位置で生じているかを特定する。
 関係取得部72は、光ファイバ素線23のひずみ及び伝送ロスの相関関係を取得する。関係取得部72は、例えば、計測器80Aを用いて計測部71で計測された光ファイバ素線23のひずみと、計測器80Bを用いて計測部71で計測された光ファイバ素線23の伝送ロスと、に基づいて、ひずみに対する伝送ロスの関係を取得する。関係取得部72は、例えば、光ファイバ付PC鋼撚線1の施工中において段階的に導入される緊張力ごとにひずみに対する伝送ロスの関係を取得することで、光ファイバ素線23のひずみ及び伝送ロスの相関関係を取得する。関係取得部72は、取得したひずみ及び伝送ロスの相関関係を、記憶部73に記憶させる。
 記憶部73は、光ファイバ素線23のひずみ及び伝送ロスの相関関係を記憶する。また、記憶部73は、光ファイバ付PC鋼撚線1の供用前において計測された基準伝送ロスを記憶する。記憶部73は、不揮発性の記憶領域を有する。記憶部73は、一例として、HDD(Hard Disk Drive)である。
 異常検知部74は、ひずみと伝送ロスとの相関関係に基づいて光ファイバ付PC鋼撚線1の異常を検知する。異常検知部74では、関係取得部72で取得した相関関係と、基準伝送ロスと、監視伝送ロスと、に基づいて光ファイバ素線23のひずみの変化を取得し、取得したひずみの変化に基づいてPC鋼撚線の異常を検知する。具体的には、異常検知部74は、記憶部73に記憶された相関関係を用いて、基準伝送ロスに対応する光ファイバ素線23のひずみである基準ひずみを取得する。異常検知部74は、記憶部73に記憶された相関関係を用いて、監視伝送ロスに対応する光ファイバ素線23のひずみである監視ひずみを取得する。異常検知部74は、例えば、監視ひずみの基準ひずみに対する変化が所定の基準値以上であるか否かを判定する。所定の基準値としては、固定の値であってもよいし、基準ひずみに対する所定の割合(例えば数%)の値であってもよい。
 異常検知部74は、監視ひずみの基準ひずみに対する変化が所定の基準値以上であると判定した場合、光ファイバ付PC鋼撚線1の異常を検知する。異常検知部74は、光ファイバ付PC鋼撚線1の異常を検知した場合、光ファイバ付PC鋼撚線1の異常に関する情報を表示部75に表示させる。
 表示部75は、異常検知部74により検知した光ファイバ付PC鋼撚線1の異常に関する情報を視覚的に報知する。表示部75は、例えば管理装置70に設けられたディスプレイ装置である。表示部75は、主に管理装置70を操作している管理者等に対して、光ファイバ付PC鋼撚線1の異常に関する情報を文字及び画像等として表示する。光ファイバ付PC鋼撚線1の異常に関する情報には、光ファイバ付PC鋼撚線1に異常がある旨の情報と、光ファイバ付PC鋼撚線1に異常がない旨の情報とが含まれる。
 以上のように構成された管理装置70では、一例として、光ファイバ付PC鋼撚線1の延在方向における位置に対するひずみの関係が、図4に示されるように計測部71により取得され、光ファイバ付PC鋼撚線1の延在方向における位置に対する伝送ロスの関係が、図5に示されるように計測部71により取得される。また、計測部71で計測された緊張力ごとに対応付けられたひずみ及び伝送ロスの相関関係が、図6に示されるように関係取得部72により取得される。
 図4は、ブリルアン散乱光に基づくひずみを例示するグラフである。図5は、レーリー散乱光の強度を例示するグラフである。図6は、図4のひずみと図5の強度との相対関係を例示するグラフである。なお、図4~図6では、T~Tの各状態における光ファイバ付PC鋼撚線1の緊張力は、各図間で互いに略等しくされている。より詳細には、図4~図6において、Tは、光ファイバ付PC鋼撚線1に最大の緊張力が導入されている状態を示し、Tは、当該緊張力の約半分の緊張力が光ファイバ付PC鋼撚線1に導入されている状態を示す。T~Tは、T及びTの緊張力を略等分した緊張力が段階的に光ファイバ付PC鋼撚線1に導入されている状態を示す。Tは、Tの状態から光ファイバ付PC鋼撚線1を定着させた後の状態を示す。また、図4~図6において、Tは、光ファイバ付PC鋼撚線1に緊張力が導入されていない状態を示す。
 図4~図6の例では、実験用のPC構造物が用いられている。このPC構造物は、少なくとも位置Pから位置Pまで直線状に延びている。このPC構造物では、光ファイバ付PC鋼撚線1が、PC構造物の延在方向に沿って延在し、緊張力を導入された状態で位置P及び位置Pにおいて定着されている。位置Pから位置Pまでの距離は、約5mである。
 図4の横軸は、光ファイバ付PC鋼撚線1の延在方向における位置を示し、縦軸は、光ファイバ付PC鋼撚線1の各位置におけるひずみの量を示す。このひずみは、計測器80Aを用いて計測部71により計測されたものである。図4の例では、位置P及び位置Pにおいて光ファイバ付PC鋼撚線1を定着させる施工の際、光ファイバ付PC鋼撚線1には、例えば、ジャッキ(不図示)を用いて緊張力が段階的に導入される。そのため、導入された緊張力に応じたひずみが位置Pから位置Pまでの区間において生じている(T~T)。また、光ファイバ付PC鋼撚線1は、最大の緊張力が導入されるTの状態から緊張力が緩和されたTの状態で定着されるため、光ファイバ付PC鋼撚線1には、Tにおける緊張力よりも小さいひずみが生じている(T)。
 図5の横軸は、光ファイバ付PC鋼撚線1の延在方向における位置を示し、縦軸は、光ファイバ付PC鋼撚線1の各位置におけるレーリー散乱光の強度を示す。この強度は、計測器80Bを用いて計測部71により計測されたものである。図5の例では、光ファイバ付PC鋼撚線1に導入された緊張力に応じてレーリー散乱光の強度が低下(減衰)していることから、位置Pから位置Pまでの区間において伝送ロスが生じている(T~T)。また、光ファイバ付PC鋼撚線1は、最大の緊張力が導入されるTの状態から緊張力が緩和されたTの状態で定着されるため、Tの状態における光ファイバ付PC鋼撚線1には、Tにおける緊張力よりも小さい伝送ロスが生じている。
 これら図4及び図5に基づいて、位置Pと位置Pとの中間点Pにおける光ファイバ付PC鋼撚線1のひずみの量と、当該中間点Pにおけるレーリー散乱光の強度と、を光ファイバ付PC鋼撚線1に導入された緊張力ごとにプロットすることにより、図6のグラフが得られる。図6の横軸は、光ファイバ付PC鋼撚線1のひずみの量を示し、縦軸は、レーリー散乱光の強度を示す。
 図6に示されるように、光ファイバ付PC鋼撚線1に緊張力が段階的に導入されるに従って(TのプロットからTのプロットに向かって)、光ファイバ素線23のひずみの量は増加する一方でレーリー散乱光の強度が低下(減衰)する傾向があるという現象が生じる。レーリー散乱光の強度の減衰度合いが光ファイバ素線23の伝送ロスを意味することから、光ファイバ素線23のひずみと、光ファイバ素線23の伝送ロスとの間には、相関関係が存在することが見出される。
 図6の例では、光ファイバ付PC鋼撚線1がPC構造物に定着されるとき(例えば供用直前)の緊張力はTであり、このときのレーリー散乱光の強度は、約42.2[dB]である。そして、図6の相関関係を用いて、光ファイバ付PC鋼撚線1の供用中にレーリー散乱光の強度を計測することで、光ファイバ付PC鋼撚線1の緊張力の低下を把握することができる。例えば、供用中に時間経過に伴い、計測されたレーリー散乱光の強度が増加した場合(すなわち、光ファイバ素線23の伝送ロスが減少した場合)、光ファイバ付PC鋼撚線1のひずみの量が減少したことが推定されることから、光ファイバ付PC鋼撚線1の緊張力が低下していることを把握することができる。
 以上のように構成された管理装置70を用いて実行される管理方法の第1実施形態について、図7及び図8を参照して説明する。図7は、第1実施形態に係る管理方法の施工中における処理を例示するフローチャートである。図8は、第1実施形態に係る管理方法の供用直前及び供用中における処理を例示するフローチャートである。なお、上述のようにレーリー散乱光の強度の減衰度合いが伝送ロスを意味するため、以下では説明の容易化のために、「レーリー散乱光の強度」及び「レーリー散乱光の強度の計測」等を、単に「伝送ロス」及び「伝送ロスの計測」等という場合がある。
 本実施形態に係る管理方法では、光ファイバ付PC鋼撚線1の施工時において光ファイバ付PC鋼撚線1のひずみと伝送ロスとの相関関係を取得する。その後、光ファイバ付PC鋼撚線1の供用中において、取得した相関関係を利用して光ファイバ付PC鋼撚線1の異常を検知する。
 具体的には、図7に示されるように、関係取得ステップ(ステップS10~ステップS13)を実施する。始めに、PC構造物に設置された光ファイバ付PC鋼撚線1に緊張力が導入される前(緊張前)において、光ファイバ素線23のひずみ及び伝送ロスを計測する(ステップS10)。ステップS10では、計測器80Aを用いて、光ファイバ付PC鋼撚線1の延在方向における位置に対するひずみの関係を計測部71により計測する。ステップS10では、計測器80Bを用いて、光ファイバ付PC鋼撚線1の延在方向における位置に対する伝送ロスの関係を計測部71により計測する。
 続いて、PC構造物に設置された光ファイバ付PC鋼撚線1に緊張力を導入する(ステップS11)。ステップS11では、例えばジャッキ(不図示)を用いて、緊張力を光ファイバ付PC鋼撚線1に段階的に導入する。このとき、光ファイバ付PC鋼撚線1に導入された緊張力ごとに、光ファイバ素線23のひずみ及び伝送ロスを計測する(ステップS12)。ステップS12では、計測器80Aを用いて、光ファイバ付PC鋼撚線1の延在方向における位置に対するひずみの関係を計測部71により計測する。ステップS12では、計測器80Bを用いて、光ファイバ付PC鋼撚線1の延在方向における位置に対する伝送ロスの関係を計測部71により計測する。
 続いて、関係取得部72により、光ファイバ素線23のひずみと伝送ロスとの相関関係を取得する(ステップS13)。ステップS13では、緊張力ごとに対応付けられたひずみ及び伝送ロスの相関関係を、関係取得部72により取得する。最後に、光ファイバ付PC鋼撚線1の定着を行う。これにより、光ファイバ付PC鋼撚線1の施工が完了され、光ファイバ付PC鋼撚線1の供用が可能な状態となる。
 次に、光ファイバ付PC鋼撚線1の供用直前(供用前)及び供用中において、図8に示されるように、ロス計測ステップ(ステップS20~ステップS22)と、異常検知ステップ(ステップS23~ステップS26)と、報知ステップ(ステップS27)と、を実施する。より詳しくは、供用直前(供用前)においては、ロス計測ステップ(ステップS20、S21)を実施する。供用中においては、ロス計測ステップ、異常検知ステップ及び報知ステップ(ステップS22~ステップS27)を定期的に実施する。
 まず、光ファイバ付PC鋼撚線1の供用前における基準伝送ロスを計測する(ステップS20)。ステップS20では、計測器80Bを用いて、光ファイバ付PC鋼撚線1の延在方向における位置に対する基準伝送ロスの関係を計測部71により計測する。その後、光ファイバ付PC鋼撚線1の供用を開始する(ステップS21)。
 続いて、光ファイバ付PC鋼撚線1の供用中における監視伝送ロスを計測する(ステップS22)。ステップS22では、計測器80Bを用いて、光ファイバ付PC鋼撚線1の延在方向における位置に対する監視伝送ロスの関係を計測部71により計測する。
 続いて、上記ステップS13で取得した相関関係を用いて、異常検知部74により、基準伝送ロスから基準ひずみを取得し、監視伝送ロスから監視ひずみを取得する(ステップS23)。その後、基準ひずみに対する監視ひずみの変化量を取得する(ステップS24)。
 続いて、異常検知部74により、ひずみの変化量が所定の基準値以上であるか否かを判定する(ステップS25)。ひずみの変化量が所定の基準値以上であると異常検知部74により判定された場合(ステップS25:YES)、光ファイバ付PC鋼撚線1に異常があるとして、光ファイバ付PC鋼撚線1に異常がある旨の情報を報知する(ステップS26)。ステップS26では、光ファイバ付PC鋼撚線1に異常がある旨の情報を表示部75に表示させる。なお、図示しないランプを点灯させることで、光ファイバ付PC鋼撚線1の管理者等に光ファイバ付PC鋼撚線1に異常がある旨の情報を報知してもよい。また、図示しない通信機器等により管理者等の居所である管理室へ連絡することで、光ファイバ付PC鋼撚線1に異常がある旨の情報を管理者等に報知してもよい。また、光ファイバ付PC鋼撚線1に異常がある旨の情報を含む電子メールを管理者等に配信することで、当該情報をPC鋼撚線3の管理者等に報知してもよい。その後、一連の処理が終了される。
 一方、ひずみの変化量が所定の基準値以上ではないと異常検知部74により判定された場合(ステップS25:NO)、光ファイバ付PC鋼撚線1に異常はないとして、光ファイバ付PC鋼撚線1の異常に関する情報を報知することなく、一連の処理が終了される。なお、この場合、表示部75により、光ファイバ付PC鋼撚線1に異常がない旨の情報を報知してもよい。
 以上説明したように、本実施形態に係る管理方法及び管理装置70では、ロス計測ステップにおいて、計測部71により伝送ロスを計測する。異常検知ステップにおいて、当該伝送ロス、及び、ひずみと伝送ロスとの相関関係に基づいて、異常検知部74で光ファイバ付PC鋼撚線1の異常を検知する。これにより、計測部71により計測した伝送ロスに加えて、相関関係に基づいて光ファイバ付PC鋼撚線1のひずみを推定できる。この推定した光ファイバ付PC鋼撚線1のひずみに基づいて、異常検知ステップにおいて、異常検知部74により光ファイバ付PC鋼撚線1の異常を検知できる。
 この管理方法及び管理装置70では、関係取得ステップにおいて、関係取得部72によりひずみと伝送ロスとの相関関係を取得する。そして、異常検知ステップにおいて、異常検知部74により、相関関係に基づいて伝送ロスからひずみを取得し、取得したひずみに基づいて光ファイバ付PC鋼撚線1の異常を検知する。このように、関係取得ステップにおいてひずみと伝送ロスとの相関関係を予め取得することで、取得した相関関係を異常検知ステップにおいて用いることができる。
 この管理方法及び管理装置70では、関係取得ステップにおいて、関係取得部72により、光ファイバ付PC鋼撚線1へ導入される緊張力に応じた伝送ロスを、光ファイバ付PC鋼撚線1の施工中において計測することで、伝送ロスとPC鋼撚線のひずみとの相関関係を取得する。これにより、当該PC構造物固有の相関関係を取得できる。また、ロス計測ステップにおいて、計測部71により、基準伝送ロスと監視伝送ロスとを計測する。異常検知ステップにおいて、異常検知部74により、相関関係と基準伝送ロスと監視伝送ロスとに基づいてひずみの変化を取得し、取得したひずみの変化に基づいて光ファイバ付PC鋼撚線1の異常を検知する。これにより、供用前を基準とした光ファイバ付PC鋼撚線1の異常を精度良く検知できる。
 この管理方法及び管理装置70では、異常検知ステップにおいて、異常検知部74により検知した光ファイバ付PC鋼撚線1の異常に関する情報を、報知ステップにおいて表示部75により報知する。これにより、検知した光ファイバ付PC鋼撚線1の異常に関する情報を容易に認識することができる。
 次に、管理方法の第2実施形態について、図9を参照して説明する。図9は、第2実施形態に係る管理方法の供用直前及び供用中における処理を例示するフローチャートである。本実施形態に係る管理方法は、光ファイバ付PC鋼撚線1の供用直前(供用前)にその処理が開始される。本実施形態に係る管理方法は、光ファイバ付PC鋼撚線1の施工時において相関関係を取得することなく、光ファイバ付PC鋼撚線1の供用中において、光ファイバ付PC鋼撚線1の伝送ロスのみを利用して光ファイバ付PC鋼撚線1の異常を検知する点で、第1実施形態に係る管理方法と異なる。
 図9に示されるように、光ファイバ付PC鋼撚線1の供用直前(供用前)及び供用中において、ロス計測ステップ(ステップS30~ステップS32)と、異常検知ステップ(ステップS33~ステップS35)と、報知ステップ(ステップS36)と、を実施する。より詳しくは、供用直前(供用前)においては、ロス計測ステップ(ステップS30,S31)を実施する。供用中においては、ロス計測ステップ、異常検知ステップ及び報知ステップ(ステップS32~ステップS36)を定期的に実施する。
 まず、光ファイバ付PC鋼撚線1の供用前における基準伝送ロスを計測する(ステップS30)。その後、光ファイバ付PC鋼撚線1の供用を開始し(ステップS31)、光ファイバ付PC鋼撚線1の供用中における監視伝送ロスを計測する(ステップS32)。これらロス計測ステップ(ステップS30~ステップS32)は、第1実施形態に係る管理方法におけるロス計測ステップ(ステップS20,ステップS22)と同様である。
 続いて、異常検知部74により、基準伝送ロスに対する監視伝送ロスの変化量を取得する(ステップS33)。続いて、異常検知部74により、伝送ロスの変化量が所定の基準値以上であるか否かを判定する(ステップS34)。伝送ロスの変化量が所定の基準値以上であると異常検知部74により判定された場合(ステップS34:YES)、光ファイバ付PC鋼撚線1に異常があるとして、光ファイバ付PC鋼撚線1に異常がある旨の情報を報知する(ステップS35)。このステップS35は、第1実施形態に係る管理方法における報知ステップ(ステップS35)と同様である。その後、一連の処理が終了される。
 一方、伝送ロスの変化量が所定の基準値以上ではないと異常検知部74により判定された場合(ステップS34:NO)、光ファイバ付PC鋼撚線1に異常はないとして、光ファイバ付PC鋼撚線1の異常に関する情報を報知することなく、一連の処理が終了される。なお、この場合、表示部75により、光ファイバ付PC鋼撚線1に異常がない旨の情報を報知してもよい。
 ここで、光ファイバ素線23のひずみの量は増加する一方でレーリー散乱光の強度が低下(減衰)するという現象が生じる原理について、図10~図13を参照しつつ説明する。図10は、ブリルアン散乱光に基づくひずみを例示する他のグラフである。図11は、レーリー散乱光の強度を例示する他のグラフである。図12は、図10のひずみと図11の強度との相対関係を例示するグラフである。図13は、図10のひずみと、図11の2点間での強度の差と、の関係を例示するグラフである。
 図10~図13の例では、約190mの光ファイバ付PC鋼撚線1を3本直列に接続したものがPC構造物に設置されている。このPC構造物は、少なくとも図10,11の横軸における位置0[m]から位置600[m]まで直線状に延びている。このPC構造物では、光ファイバ付PC鋼撚線1が、PC構造物の延在方向に沿って延在し、緊張力を導入された状態で定着されている。1本目の光ファイバ付PC鋼撚線1は、位置30[m]及び位置200[m]の一対の定着位置に設けられた定着部において定着されている。2本目の光ファイバ付PC鋼撚線1は、位置230[m]及び位置400[m]の一対の定着位置に設けられた定着部において定着されている。3本目の光ファイバ付PC鋼撚線1は、位置430[m]及び位置600[m]の一対の定着位置に設けられた定着部において定着されている。以下の説明では、1本目の光ファイバ付PC鋼撚線1における光ファイバ素線23のひずみを、単に「1本目の光ファイバ素線23のひずみ」ともいう。2本目の光ファイバ付PC鋼撚線1、及び、3本目の光ファイバ付PC鋼撚線1についても同様とする。
 図10~図13の例では、図4~6の例と同様に、このPC構造物に光ファイバ付PC鋼撚線1を設置する際、緊張力が段階的に導入されると共に、各緊張力における光ファイバ素線23のひずみ及び伝送ロスが計測されている。図中のT10~T18の各状態における光ファイバ付PC鋼撚線1の緊張力は、各図間で互いに略等しくされている。具体的には、T10は、光ファイバ付PC鋼撚線1に緊張力が導入されていない状態を示す。T11は、光ファイバ付PC鋼撚線1に約5MPaの緊張力が導入された状態を示す。T12は、光ファイバ付PC鋼撚線1に約15MPaの緊張力が導入された状態を示す。T13は、光ファイバ付PC鋼撚線1に約20MPaの緊張力が導入された状態を示す。T14は、光ファイバ付PC鋼撚線1に約25MPaの緊張力が導入された状態を示す。T15は、光ファイバ付PC鋼撚線1に約30MPaの緊張力が導入された状態を示す。T16は、光ファイバ付PC鋼撚線1に約35MPaの緊張力が導入された状態を示す。T17は、光ファイバ付PC鋼撚線1に最大の緊張力である約40.7MPaの緊張力が導入された状態を示す。T18は、T17の状態から光ファイバ付PC鋼撚線1を定着させた後の状態を示す。
 図10の縦軸は、光ファイバ付PC鋼撚線1の各位置におけるひずみの量を示す。このひずみは、計測器80Aを用いて計測部71により計測されたものである。図10の例では、図4の例と同様、段階的に導入される緊張力に応じて、位置30[m]から位置600[m]までの区間において光ファイバ素線23のひずみが生じている。
 図11の縦軸は、光ファイバ付PC鋼撚線1の各位置におけるレーリー散乱光の強度を示す。この強度は、計測器80Bを用いて計測部71により計測されたものである。図11の例では、図5の例と同様、段階的に導入される緊張力に応じてレーリー散乱光の強度が低下(減衰)していることから、位置30[m]から位置600[m]までの区間において伝送ロスが生じている。
 これら図10及び図11に基づいて、位置30[m]における1本目の光ファイバ素線23のひずみの量に対するレーリー散乱光の強度と、位置230[m]における2本目の光ファイバ素線23のひずみの量に対するレーリー散乱光の強度と、位置430[m]における3本目の光ファイバ素線23のひずみの量に対するレーリー散乱光の強度とを、光ファイバ付PC鋼撚線1に導入された緊張力ごとにプロットすることにより、図12のグラフが得られる。図12の横軸は、光ファイバ素線23のひずみの量を示し、縦軸は、レーリー散乱光の強度を示す。
 図12に示されるように、光ファイバ付PC鋼撚線1に緊張力が段階的に導入されるに従って(T10のプロットからT18のプロットに向かって)、光ファイバ素線23のひずみの量は増加する一方でレーリー散乱光の強度が低下(減衰)する傾向があるという現象が、それぞれの光ファイバ付PC鋼撚線1において生じている。図4の例と同様、光ファイバ素線23のひずみと、光ファイバ素線23の伝送ロスとの間には、相関関係が存在することが見出される。
 一方、上記図10及び図11に基づいて、一対の定着部の間(約170m)でのレーリー散乱光の強度の差(以下、単に「強度差」ともいう)を、1本目~3本目の光ファイバ付PC鋼撚線1のそれぞれについて、光ファイバ付PC鋼撚線1に導入された緊張力ごとにプロットすることにより、図13のグラフが得られる。図13の横軸は、光ファイバ素線23のひずみの量を示し、縦軸は、一対の定着部の間での強度差を示す。
 上記図12の例では、光ファイバ付PC鋼撚線1の所定の位置に着目した場合の、光ファイバ付PC鋼撚線1に導入される緊張力に対するレーリー散乱光の強度の変化を示したのに対し、図13の例では、光ファイバ付PC鋼撚線1の延在方向において一方の定着位置から他方の定着位置までの範囲に着目した場合の、光ファイバ付PC鋼撚線1に導入される緊張力に対する強度差の変化を示している。
 ここで、光ファイバ付PC鋼撚線1の延在方向において一方の定着位置から他方の定着位置までの範囲に着目した場合、以下のような仮説が考えられる。すなわち、光ファイバ付PC鋼撚線1に導入される緊張力に応じて、光ファイバ素線23に影響を及ぼすような光ファイバ付PC鋼撚線1の延在方向における変化(例えば光ファイバ付PC鋼撚線1の撚り目3aの間隔の変化)が生じ、この変化により光ファイバ素線23内の光の伝送が影響されるのではないか、という仮説である。このような仮説の下では、導入される緊張力に応じて一方の定着位置から他方の定着位置までの範囲において一定の規則性を有する強度差の変化が存在すると考えられ、図13において、光ファイバ素線23のひずみと強度差の間に相関関係が存在することとなると考えられる。
 しかしながら、図13においては、光ファイバ付PC鋼撚線1に緊張力が段階的に導入されたとしても(T10のプロットからT18のプロットに向かっても)、強度差における増加傾向又は減少傾向は特に存在せず、光ファイバ素線23のひずみと強度差の間に有意な相関関係は認められない。したがって、光ファイバ素線23のひずみと伝送ロスとの間の上記相関関係は、光ファイバ付PC鋼撚線1の延在方向における変化というよりも、主として定着位置において生じる光ファイバ素線23のひずみに起因するものであると考えられる。
 以上説明したように、本実施形態に係る管理方法及び管理装置70では、ロス計測ステップにおいて、計測部71により伝送ロスを計測する。異常検知ステップにおいて、当該伝送ロスに基づいて、異常検知部74で光ファイバ付PC鋼撚線1の異常を検知する。ここで、伝送ロスを計測するための計測器80Bは、ひずみを計測するための計測器80Aよりも簡易的なものである。よって、伝送ロスを計測する簡易的な計測器80Bが光ファイバ付PC鋼撚線1の管理に利用できるため、簡易的にPC構造物の光ファイバ付PC鋼撚線1の異常を検知することが可能となる。
 ところで、上述のように、光ファイバ素線23のひずみと伝送ロスとの間の相関関係が、定着位置において生じる光ファイバ素線23のひずみに起因するものであると考えられることから、例えば、光ファイバ付PC鋼撚線1が被定着部に楔により定着される定着部構造においては、光ファイバ付PC鋼撚線1が当該楔により圧迫されるという原理で、上述のような、光ファイバ素線23のひずみの量が増加する一方でレーリー散乱光の強度が低下(減衰)するという現象が発生し易いと予想される。
 そこで、上述した管理方法及び管理装置70は、以下のようなPC鋼撚線の定着部構造100により被定着部に定着されている光ファイバ付PC鋼撚線1を管理するために好適である。
 このPC鋼撚線の定着部構造100は、例えば、ダム及び斜面等において、岩盤R上に設けられた擁壁等の構造物である被定着部101を岩盤R側に押し付けて力学的な安定性を確保するためのグラウンドアンカー50に適用される。なお、グラウンドアンカー50を構成する複数のPC鋼撚線は、必ずしも全てが光ファイバ付PC鋼撚線1である必要はなく、一部のPC鋼撚線に光ファイバが取り付けられていなくてもよい。以下の説明では、「光ファイバ付PC鋼撚線1」及び「光ファイバが取り付けられていない一部のPC鋼撚線」をまとめて「PC鋼撚線1,3」と略記することがある。
 図14は、図1Aの光ファイバ付PC鋼撚線を定着する定着部構造の一例の一部断面図である。図14に示されるように、グラウンドアンカー50は、岩盤R及び被定着部101に削孔された孔103の内部に設けられている。グラウンドアンカー50では、PC鋼撚線1,3の前端側が孔103に挿入されており、PC鋼撚線1,3の後端側が被定着面101aから後方に突出している。
 グラウンドアンカー50は、PC鋼撚線の定着部構造100を含む頭部51と、アンカー自由長部52と、アンカー体長部55と、複数のPC鋼撚線と、を備える。頭部51は、被定着部101の被定着面101aにおける孔103の開口部に設けられている。頭部51は、PC鋼撚線の定着部構造100によってPC鋼撚線1,3の後端部を被定着部101に定着させる。頭部51では、PC鋼撚線1,3に所定の緊張力が加えられた後、その緊張力を保持するようにPC鋼撚線1,3の後端部が被定着部101に定着される。
 アンカー自由長部52は、被定着面101aから前方側のグラウンドアンカー50においてPC鋼撚線1,3が定着されていない部分である。アンカー自由長部52では、頭部51とアンカー体長部55とを結ぶようにPC鋼撚線1,3が延在する。アンカー自由長部52は、被定着部101の孔103内に設けられた押え板53及び配列板54を有する。押え板53は、PC鋼撚線1,3が挿通され、被定着面101aと配列板54との間で孔103を密閉する。配列板54には、PC鋼撚線1,3が挿通されている。配列板54は、当該配列板54よりも後方においてPC鋼撚線1,3が互いに略平行となるようにPC鋼撚線1,3を整列させる。
 アンカー自由長部52における孔103には、押え板53よりも前方側において充填材5が充填されている。アンカー体長部55における孔103には、アンカー自由長部52から連続して充填材5が充填されている。充填材5は、例えばセメントミルク及びモルタル等であり、PC鋼撚線1,3を孔103に定着させるために孔103に充填されて硬化される。
 アンカー体長部55は、グラウンドアンカー50においてPC鋼撚線1,3の前端部を定着する部分である。アンカー体長部55は、アンカー自由長部52から連続して延在するPC鋼撚線1,3の前端部を定着するための耐荷体56を有する。耐荷体56は、PC鋼撚線1,3の前端部が配置され、例えばアルミ合金等の鋳造により形成される。
 PC鋼撚線の定着部構造100は、被定着部101の被定着面101aに当接すると共にPC鋼撚線1,3を挿通させるベース11と、ベース11の後方に設置されると共にPC鋼撚線1,3を挿通させるソケット13と、ソケット13のテーパ孔13aの内壁面13sとPC鋼撚線1,3との間に配置されるウェッジ16と、を備える。
 ベース11は、PC鋼撚線1,3の緊張力を支持する支圧板である。ベース11は、複数のPC鋼撚線1,3を挿通させる円形開口11aを有する。ベース11には、後述のキャップ14を取り付けるための複数のネジ穴が形成されている。ベース11とソケット13との間には、PC鋼撚線1,3を挿通させる貫通孔を有する円柱状のスペーサ12が介挿されている。スペーサ12の前面の直径は、円形開口11aの直径よりも大径である。ソケット13は、スペーサ12の後面に配置された円柱状の部材である。一例として、ソケット13の前面の直径は、スペーサ12の後面の直径よりも小径である。
 スペーサ12及びソケット13は、キャップ14によって覆われている。キャップ14は、ハット形状を有し、ベース11のネジ穴にボルトBが螺合して固定される。キャップ14とベース11との間には、Oリング14cが配置され、キャップ14とベース11とによって密閉空間が画成される。この密閉空間は、孔103における押え板53よりも後方側の空間を含む。この密閉空間には、防錆油15が充填される。防錆油15は、注入口14aを介して注入される。キャップ14の頂部には、密閉空間内の空気を排出する排気口14bが設けられている。
 図15は、図14の定着部構造のソケット及びウェッジの分解斜視図である。図15に示されるように、ソケット13には、複数(ここでは4本)のPC鋼撚線1,3を挿通させるテーパ孔13aが形成されている。テーパ孔13aでは、その内壁面13sが前方に行くほど直径が小さくなるように形成された円錐面を成している。
 ウェッジ16は、テーパ孔13aの内壁面13sとPC鋼撚線1,3との間に後方から挿入された状態(以下、単に「挿入状態」ともいう)において楔として機能する。ウェッジ16は、中心に貫通孔を有する円錐台(テーパ形状)のウェッジ体17を有する。ウェッジ体17の外壁面は、テーパ孔13aの内壁面13sに対応する円錐面である。ウェッジ体17の内壁面17dは、PC鋼撚線1,3の外周面に対応する円柱面であり、PC鋼撚線1,3の外周面に密着する。ウェッジ体17は、一例として、周方向に3分割して形成される3つのウェッジ片17a,17b,17cを有する。
 ウェッジ片17a~17cは、挿入状態において、PC鋼撚線1,3を周方向に囲むように等間隔に配置される。ウェッジ片17a~17cの前端面17tは、ソケット13の前面に略面一となる。ウェッジ片17a~17cの後端は、ソケット13の後面から後方に突出する。PC鋼撚線1,3の後端部は、ウェッジ片17a~17cの後端面17uから更に後方に突出する。
 このウェッジ体17は、ソケット13のテーパ孔13aの内壁面13sとソケット13に挿通されたPC鋼撚線1,3との間に、後方から挿入される。ウェッジ体17は、ソケット13とPC鋼撚線1,3との間で楔として機能する。具体的には、挿入状態においては、ソケット13のテーパ孔13aの内壁面13sとソケット13に挿通されたPC鋼撚線1,3とを、ウェッジ体17がそれぞれ押圧する。PC鋼撚線1,3に所定の緊張力が加えられると、ウェッジ体17がPC鋼撚線1,3を更に強く押圧するため、PC鋼撚線1,3が強固に把持される。これにより、PC鋼撚線1,3が緊張力を支持可能に被定着部101に定着される。このとき、このウェッジ体17は、ウェッジ体17の内壁面17dによってPC鋼撚線1,3を径方向に強く圧迫する。
 以上説明したように、管理装置70は、被定着部101に当接すると共に光ファイバ付PC鋼撚線1を挿通させるベース11と、ベース11の後方に設置されると共に光ファイバ付PC鋼撚線1を挿通させるソケット13と、ソケット13の内壁面13sと光ファイバ付PC鋼撚線1との間に後方から挿入されるウェッジ16と、を備えるPC鋼撚線の定着部構造100により、被定着部101に定着されている光ファイバ付PC鋼撚線1に好適に適用することができる。これにより、挿入されたウェッジ16により光ファイバ付PC鋼撚線1が圧迫されて生じる伝送ロスを利用して、簡易的にPC構造物の光ファイバ付PC鋼撚線1の異常を検知することが可能となる。
 以上、本発明の実施形態について説明したが、本発明は、上記実施形態に限られるものではなく、各請求項に記載した要旨を変更しない範囲で変形したものであってもよい。
 例えば、本発明は、上記実施形態のような7本のPC鋼素線4を有するPC鋼撚線3に適用する場合に限定されず、例えば19本撚りのPC鋼撚線、あるいは他のPC鋼撚線にも同様に適用することができる。また、光ファイバ付PC鋼撚線1には2本の光ファイバ部材20が取り付けられていたが、光ファイバ部材20の数はこれに限定されない。
 上記実施形態では、PC構造物としてグラウンドアンカー50を例示したが、PC構造物は、プレストレストコンクリート等を用いた構造物であってもよい。また、光ファイバ付PC鋼撚線1の緊張力は、ポストテンション方式で導入されてもよいし、プレテンション方式で導入されてもよい。
 上記実施形態では、異常検知部74は、光ファイバ付PC鋼撚線1の異常を検知するために、光ファイバ付PC鋼撚線1の供用前の伝送ロスを基準として用いたが、これに限定されるものではない。具体的には、ロス計測ステップは、図8のステップS20及び図9のステップS30を含んでいたが、これらのステップを含んでいなくてもよい。この場合、図8においては、予め設計上あるいはシミュレーション等により求められたひずみ値(例えば固定値)を基準ひずみとして用いて、光ファイバ付PC鋼撚線1の異常を検知してもよい。また、図9においては、予め設計上あるいはシミュレーション等により求められた伝送ロス値(例えば固定値)を基準伝送ロスとして用いて、光ファイバ付PC鋼撚線1の異常を検知してもよい。
 上記実施形態では、相関関係は、光ファイバ付PC鋼撚線1の施工中において関係取得部72により予め取得されたものであったが、これに限定されるものではない。相関関係は、当該光ファイバ付PC鋼撚線1の施工とは別に、例えばシミュレーション等で取得されたものであってもよい。
 上記実施形態では、報知部として、光ファイバ付PC鋼撚線1の異常に関する情報を視覚的に報知する表示部75を用いたが、光ファイバ付PC鋼撚線1の異常に関する情報を聴覚的に報知するブザー又はスピーカ等を用いてもよいし、光ファイバ付PC鋼撚線1の異常に関する情報を聴覚的に報知するブザー又はスピーカ等を用いてもよい。
 上記実施形態では、ソケット13には、4つのテーパ孔13aが形成されていたが、テーパ孔13aの数はこれに限定されない。また、ウェッジ体17は、周方向に3分割して3つのウェッジ片に形成されていたが、ウェッジ体の分割数(1つのウェッジ体を構成するウェッジ片の個数)はこれに限定されない。
 1…光ファイバ付PC鋼撚線、3…PC鋼撚線、3a…撚り目、11…ベース、13…ソケット、16…ウェッジ、20…光ファイバ部材、23…光ファイバ素線、70…管理装置、71…計測部、74…異常検知部、75…表示部、100…定着部構造、101…被定着部。
 

Claims (9)

  1.  複数のPC鋼素線が撚られて形成されたPC鋼撚線と、前記PC鋼撚線の撚り目に沿って設置された光ファイバと、を有する光ファイバ付PC鋼撚線を管理する管理方法であって、
     前記光ファイバに入射させた光の散乱光の伝送ロスを計測するステップと、
     前記伝送ロスを計測するステップで計測した前記伝送ロスに基づいて前記PC鋼撚線の異常を検知するステップと、を備える、管理方法。
  2.  前記異常を検知するステップでは、前記伝送ロスと前記PC鋼撚線のひずみとの相関関係に更に基づいて前記PC鋼撚線の異常を検知する、
    請求項1に記載の管理方法。
  3.  前記相関関係を取得するステップを更に備え、
     前記異常を検知するステップでは、前記相関関係を取得するステップで取得した前記相関関係に基づいて前記伝送ロスからひずみを取得し、取得したひずみに基づいて前記PC鋼撚線の異常を検知する、
    請求項2に記載の管理方法。
  4.  前記相関関係を取得するステップでは、前記光ファイバ付PC鋼撚線の施工中において前記PC鋼撚線へ導入される緊張力に応じた伝送ロスを計測することで前記伝送ロスと前記PC鋼撚線のひずみとの相関関係を取得し、
     前記伝送ロスを計測するステップでは、前記光ファイバ付PC鋼撚線の供用前における伝送ロスである基準伝送ロスと、前記光ファイバ付PC鋼撚線の供用中における伝送ロスである監視伝送ロスと、を計測し、
     前記異常を検知するステップでは、前記相関関係を取得するステップで取得した前記相関関係と、前記基準伝送ロスと、前記監視伝送ロスと、に基づいてひずみの変化を取得し、取得したひずみの変化に基づいて前記PC鋼撚線の異常を検知する、
    請求項3に記載の管理方法。
  5.  前記異常を検知するステップにより検知した前記PC鋼撚線の異常に関する情報を報知するステップを更に備える、
    請求項1~請求項4の何れか一項に記載の管理方法。
  6.  複数のPC鋼素線が撚られて形成されたPC鋼撚線と、前記PC鋼撚線の撚り目に沿って設置された光ファイバと、を有する光ファイバ付PC鋼撚線を管理する管理装置であって、
     前記光ファイバに入射させた光の散乱光の伝送ロスを計測する計測部と、
     前記計測部で計測した伝送ロスに基づいて前記PC鋼撚線の異常を検知する検知部と、を備える、管理装置。
  7.  前記検知部は、前記伝送ロスと前記PC鋼撚線のひずみとの相関関係に更に基づいて前記PC鋼撚線の異常を検知する、
    請求項6に記載の管理装置。
  8.  前記検知部により検知した前記PC鋼撚線の異常に関する情報を報知する報知部を更に備える、
    請求項6又は請求項7に記載の管理装置。
  9.  前記光ファイバ付PC鋼撚線は、被定着部に当接すると共に前記光ファイバ付PC鋼撚線を挿通させるベースと、前記ベースから見て前記被定着部とは反対側の位置に設置されると共に前記光ファイバ付PC鋼撚線を挿通させるソケットと、前記ソケットの内壁面と前記光ファイバ付PC鋼撚線との間に前記ベースとは反対側から挿入されるウェッジと、を備える定着部構造により、前記被定着部に定着されている、
    請求項6~請求項8の何れか一項記載の管理装置。
PCT/JP2017/023219 2016-08-15 2017-06-23 管理方法及び管理装置 WO2018034062A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016159299A JP6640676B2 (ja) 2016-08-15 2016-08-15 管理方法及び管理装置
JP2016-159299 2016-08-15

Publications (1)

Publication Number Publication Date
WO2018034062A1 true WO2018034062A1 (ja) 2018-02-22

Family

ID=61196576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023219 WO2018034062A1 (ja) 2016-08-15 2017-06-23 管理方法及び管理装置

Country Status (2)

Country Link
JP (1) JP6640676B2 (ja)
WO (1) WO2018034062A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110793452A (zh) * 2018-08-03 2020-02-14 中冶宝钢技术服务有限公司 一种钢包铁壳变形检测方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7027667B2 (ja) * 2018-05-24 2022-03-02 神鋼鋼線工業株式会社 プレグラウトpc鋼材、そのプレグラウトpc鋼材を用いたモニタリング装置およびモニタリング方法
CN110468719B (zh) * 2019-08-29 2021-09-17 中国十七冶集团有限公司 一种减少自锚式悬索桥大长钢绞线预应力损失的施工方法
JP7385867B2 (ja) * 2020-06-12 2023-11-24 鹿島建設株式会社 ひずみ測定装置、ひずみ測定方法及びひずみ測定プログラム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6013207A (ja) * 1983-07-04 1985-01-23 Nippon Telegr & Teleph Corp <Ntt> 光フアイバを用いた伸び歪の測定方法
US5026141A (en) * 1981-08-24 1991-06-25 G2 Systems Corporation Structural monitoring system using fiber optics
JPH11101617A (ja) * 1997-09-26 1999-04-13 Nkk Corp 構造体ひずみ監視方法およびその監視装置
JP2000018981A (ja) * 1998-06-30 2000-01-21 Mitsubishi Heavy Ind Ltd 光ファイバセンサ
JP2000046527A (ja) * 1998-07-29 2000-02-18 Tokyu Constr Co Ltd ひずみ検知付きpc材、そのひずみ検知システム及び方法
JP2008045280A (ja) * 2006-08-10 2008-02-28 Sumitomo Denko Steel Wire Kk Pc鋼撚り線の接続構造およびその施工方法
JP2016057231A (ja) * 2014-09-11 2016-04-21 鹿島建設株式会社 測定装置、ひずみ測定方法、pc鋼より線、及び光ファイバ部材
JP2016125330A (ja) * 2015-01-08 2016-07-11 住友電工スチールワイヤー株式会社 被覆pc鋼より線

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5026141A (en) * 1981-08-24 1991-06-25 G2 Systems Corporation Structural monitoring system using fiber optics
JPS6013207A (ja) * 1983-07-04 1985-01-23 Nippon Telegr & Teleph Corp <Ntt> 光フアイバを用いた伸び歪の測定方法
JPH11101617A (ja) * 1997-09-26 1999-04-13 Nkk Corp 構造体ひずみ監視方法およびその監視装置
JP2000018981A (ja) * 1998-06-30 2000-01-21 Mitsubishi Heavy Ind Ltd 光ファイバセンサ
JP2000046527A (ja) * 1998-07-29 2000-02-18 Tokyu Constr Co Ltd ひずみ検知付きpc材、そのひずみ検知システム及び方法
JP2008045280A (ja) * 2006-08-10 2008-02-28 Sumitomo Denko Steel Wire Kk Pc鋼撚り線の接続構造およびその施工方法
JP2016057231A (ja) * 2014-09-11 2016-04-21 鹿島建設株式会社 測定装置、ひずみ測定方法、pc鋼より線、及び光ファイバ部材
JP2016125330A (ja) * 2015-01-08 2016-07-11 住友電工スチールワイヤー株式会社 被覆pc鋼より線

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110793452A (zh) * 2018-08-03 2020-02-14 中冶宝钢技术服务有限公司 一种钢包铁壳变形检测方法

Also Published As

Publication number Publication date
JP2018028443A (ja) 2018-02-22
JP6640676B2 (ja) 2020-02-05

Similar Documents

Publication Publication Date Title
WO2018034062A1 (ja) 管理方法及び管理装置
CN104220858B (zh) 用于检测线缆中的扭曲的方法、具有扭曲传感器的电缆和用于制造所述线缆的方法
CN103314415A (zh) 使用光纤元件作为传感器测量电缆的长度的方法
CN107478564B (zh) 基于光纤传感的预应力锚索腐蚀损伤监测方法及装置
KR20100026145A (ko) 광섬유 브래그 격자 센서를 이용한 긴장력 또는 변형량 측정 방법
US6946646B2 (en) Method of evaluating fiber PMD using polarization optical time domain reflectometry
KR102323526B1 (ko) 분포형 광섬유센서-기반 스마트 정착판을 이용한 프리스트레스 강연선의 긴장력 모니터링 시스템 및 그 방법
JP2017043949A (ja) 定着体の残存緊張力評価装置
KR101060751B1 (ko) 브래그 광섬유를 이용한 볼트 축력표시 체결기기
JP6553479B2 (ja) モニタリングシステム、モニタリング方法
CN112834102A (zh) 光纤力传感装置及监测螺栓或螺母松动的系统、方法
JP3534659B2 (ja) トンネルひび割れ検知方法及び装置
JP2007155550A (ja) 傾斜地崩壊検知システム
CN110725347A (zh) 混凝土灌注桩施工过程中断桩的实时检测方法及系统
US20160011107A1 (en) Reflective sensor for detection of material degradation
JP2000018981A (ja) 光ファイバセンサ
KR101486436B1 (ko) 회전 와셔를 이용한 프리스트레스트 콘크리트 구조물의 긴장력 측정방법
JP3759144B2 (ja) トンネル補強材剥離検知方法及び装置
CN112985773A (zh) 基于botdr和otdr的opgw状态检测方法、系统及存储介质
JP2000097647A (ja) 光ファイバを用いた構造物の変状計測方法および光ファイバセンサー
CN211042564U (zh) 光纤力传感装置及监测螺栓或螺母松动的系统
KR101607667B1 (ko) 광섬유를 이용한 지중관로 침하위치 검출시스템
CN2716315Y (zh) 带传感光纤光缆的锚索索体
CN2716316Y (zh) 带传感光纤的锚索索体
CN212620861U (zh) 应变及裂纹监测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17841290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17841290

Country of ref document: EP

Kind code of ref document: A1