WO2018033069A1 - 一种数据传输、数据处理方法及装置 - Google Patents

一种数据传输、数据处理方法及装置 Download PDF

Info

Publication number
WO2018033069A1
WO2018033069A1 PCT/CN2017/097522 CN2017097522W WO2018033069A1 WO 2018033069 A1 WO2018033069 A1 WO 2018033069A1 CN 2017097522 W CN2017097522 W CN 2017097522W WO 2018033069 A1 WO2018033069 A1 WO 2018033069A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
target
cbs
sent
air interface
Prior art date
Application number
PCT/CN2017/097522
Other languages
English (en)
French (fr)
Inventor
刘菁
曾清海
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17841041.1A priority Critical patent/EP3477881B1/en
Publication of WO2018033069A1 publication Critical patent/WO2018033069A1/zh
Priority to US16/278,146 priority patent/US20190182809A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1657Implicit acknowledgement of correct or incorrect reception, e.g. with a moving window
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/188Time-out mechanisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/10Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a data transmission, data processing method, and apparatus.
  • the reliability of data transmission is implemented through a two-layer retransmission mechanism, including: HARQ (Hybrid Automatic Repeat reQuest) at the MAC (Medium Access Control) layer. , hybrid automatic repeat request) and ARQ (Auto Repeat reQuest) of the RLC (Radio Link Control) layer, thereby increasing the delay of data transmission.
  • HARQ Hybrid Automatic Repeat reQuest
  • ARQ Automatic Repeat reQuest
  • the receiver will send feedback to the sender. If it is received correctly, it will feed back ACK (Acknowledgement). If it is not received correctly, it will feed back NACK. (Negative Acknowledgement, negative response). After receiving the NACK feedback from the receiving end, the transmitting end will perform data retransmission to the receiving end.
  • the HARQ is used as an example.
  • the base station After determining the number of physical resource blocks (PBs) allocated to the terminal, the base station determines the MCS (Modulation and Coding Scheme) according to the CQI (Channel Quality Indicator) information fed back by the terminal. Modulation and coding strategy).
  • the size of the TB (Transport Block) scheduled by the current TTI (Transmission Time Interval) is determined according to the number of PRBs and the MCS.
  • the base station MAC layer notifies the RLC layer of the determined TB block size, so that the RLC layer segments/reorganizes the RLC SDU (Service Data Unit) according to the determined TB block size.
  • the MAC layer multiplexes RLC PDUs (Protocol Data Units) received on each logical channel to generate TB blocks, and sends the generated TB blocks to the PHY (Physical) layer for processing.
  • RLC PDUs Protocol Data Units
  • the PHY layer adds the CRC block to the CRC (Cyclic Redundancy Check) check code, performs separation processing to obtain CB (Code Block), and adds a CRC check code to each CB. . Finally, each CB is channel coded using a Turbo code, and then mapped to the PRB for transmission to the terminal. As long as the terminal finds that there is a CRC check error corresponding to the CB in the received CB, the terminal considers that the entire TB block transmits an error and feeds back the NACK information to the base station, thereby triggering the base station to retransmit the entire TB block.
  • CRC Cyclic Redundancy Check
  • the currently visible scheme is mainly to generate a new CB in addition to the CB generated by the existing mechanism in the process of generating CB.
  • the newly generated CB contains redundant information of other CBs. If the sender includes these newly generated CBs at the time of initial transmission, these CBs can detect errors and correct errors, so that the receiver can correctly decode the TB according to the received CB, thereby avoiding The transmission delay caused by retransmission.
  • the receiver needs to feed back to the sender the number of CBs that are erroneously received, so that the sender performs CB based on the feedback information of the receiver. Granular retransmission without the need for retransmission of the entire TB, thereby saving the overhead of air interface resources.
  • the receiver needs to feed back the number of CBs that are erroneously received to the sender, which increases the feedback overhead of the receiver, especially when the channel quality is poor and the receiver is incorrectly connected. The number of CBs received is very large.
  • the embodiment of the present application provides a data transmission and data processing method and device, and provides a data transmission method.
  • an embodiment of the present application provides a data transmission method, including:
  • the first device performs network coding on the target transmission block TB to generate a CB, and performs the CB transmission to the second device according to the first information.
  • the first device receives the second information sent by the second device, where the second information is used to adjust the number of CBs sent by the air interface indicated by the first information.
  • the first device performs the CB transmission to the second device according to the first information after the target TB performs network coding to generate the CB.
  • the first device adjusts, according to the second information, the number of CBs sent in the air interface indicated by the first information. According to the foregoing method, it is possible to control the number of CBs to be transmitted on the air interface at the transmitting end, and adjust the number of CBs to be transmitted in the air interface according to the second information, thereby ensuring that the delay of data transmission is reduced.
  • the first device is an access network device
  • the first device determines the first information, including:
  • the first device determines the first information by using a physical PHY layer of the first device according to the size of the target TB, modulation and coding policy MCS information, and physical resource block PRB allocation information.
  • the first device is a terminal
  • the first device determines the first information, including:
  • the first device receives the downlink control information DCI sent by the second device, where the DCI carries the first information.
  • the second information is that the second device determines, by the second device, the number of correctly received CBs and the CB required by the second device to correctly decode the target TB. The difference between the numbers;
  • the method further includes:
  • the first device determines that the difference is less than the first threshold, increasing the number of CBs sent by the air interface indicated by the first information; or
  • the first device determines that the difference is greater than the second threshold, reducing the number of air interface CBs indicated by the first information
  • the first threshold is less than or equal to the second threshold.
  • the method further includes:
  • the first device starts a timer
  • the first device Before the timer expires, if the first device receives the second information sent by the second device, increasing the number of CBs sent by the air interface according to the second information; or
  • the first device Before the timer expires, if the first device does not receive the second information sent by the second device, the first device reduces the number of CBs sent by the air interface.
  • the method further includes:
  • the first device sends, to the second device, coding indication information, where the coding indication information is used to indicate whether a network coding function is used in the process of generating the CB by the target TB.
  • the coding indication information includes at least one of the following:
  • an embodiment of the present application provides a data transmission method, including:
  • the second device generates second information according to a difference between correctly receiving the difference between the number of code blocks CB generated by the target transmission block TB transmitted by the first device and the number of CBs required to correctly decode the target TB;
  • the second information is used to adjust the number of CBs sent by the air interface indicated by the first information;
  • the first information indicates the number of CBs sent by the air interface;
  • the second device sends the second information to the first device.
  • the second device according to correctly receiving the number of CBs generated by the target TB sent by the first device, and the number of CBs required to correctly decode the target TB The difference between the two generates a second message, including:
  • the device adds the second information of the number of CBs sent by the air interface.
  • the method further includes:
  • the second device receives the coding indication information sent by the first device, where the coding indication information is used to indicate whether the network coding function is used in the process of the CB generated by the target TB;
  • the second device determines, according to the coding indication information, that the CB generated by the target TB is network coded, performing network decoding on the received CB and restoring the target TB.
  • the coding indication information includes at least one of the following:
  • an embodiment of the present application provides a data processing method, including:
  • the sending device receives the target protocol data unit RLC PDU, and performs network coding on the target RLC PDU to obtain at least one network coding block;
  • the transmitting device generates a target TB according to the at least one network coding block.
  • the size of each network coding block is the same as the size of the CB generated by the physical PHY layer of the sending device.
  • each network coding block includes an attribute indication information, where the attribute indication information is used to indicate information about an RLC PDU to which the network coding block that includes the attribute indication information belongs.
  • the embodiment of the present application provides a data transmission apparatus, including:
  • a processing unit configured to determine first information; the first information is used to indicate the number of air interface transmission code blocks CB; the target transmission block TB is network coded to generate a CB, and the second information is performed according to the first information.
  • the transceiver unit is configured to receive second information sent by the second device, where the second information is used to adjust the number of CBs sent by the air interface indicated by the first information.
  • the device is an access network device
  • the processing unit is specifically configured to:
  • the first information is determined by a physical PHY layer of the apparatus according to the size of the target TB, modulation and coding policy MCS information, and physical resource block PRB allocation information.
  • the device is a terminal
  • the processing unit is specifically configured to:
  • the second information is that the second device determines, by the second device, the number of correctly received CBs and the CB required by the second device to correctly decode the target TB. The difference between the numbers;
  • the processing unit is specifically configured to:
  • the first device determines that the difference is less than the first threshold, increasing the number of CBs sent by the air interface indicated by the first information; or
  • the first device determines that the difference is greater than the second threshold, reducing the number of air interface CBs indicated by the first information
  • the first threshold is less than or equal to the second threshold.
  • the processing unit is specifically configured to:
  • the device Before the timer expires, if the device receives the second information sent by the second device, increasing the number of CBs sent by the air interface according to the second information; or
  • the device Before the timer expires, if the device does not receive the second information sent by the second device, the number of CBs sent by the air interface is reduced.
  • the transceiver unit is further configured to:
  • coding indication information is used to indicate whether a network coding function is used in the process of generating the CB by the target TB.
  • the coding indication information includes at least one of the following:
  • an embodiment of the present application provides a data transmission apparatus, including:
  • a processing unit configured to generate second information according to a difference between correctly receiving the difference between the number of code blocks CB generated by the target transmission block TB and the number of CBs required to correctly decode the target TB sent by the first device;
  • the second information is used to adjust the number of CBs sent by the air interface indicated by the first information;
  • the first information indicates the number of CBs sent by the air interface;
  • transceiver unit configured to send the second information to the first device.
  • the processing unit is specifically configured to:
  • the target TB If the difference between the correctly received CB number generated by the target TB and the number of CBs required to correctly decode the target TB is less than the first threshold, generating, to instruct the first device to add an air interface to send the CB The second amount of information.
  • the transceiver unit is further configured to:
  • coding indication information is used to indicate whether a network coding function is used in a process of using the CB generated by the target TB;
  • the processing unit is further configured to: if it is determined, according to the coding indication information, that the CB generated by the target TB is network coded, perform network decoding on the received CB and restore the target TB.
  • the coding indication information includes at least one of the following:
  • an embodiment of the present application provides a data processing apparatus, including:
  • a transceiver unit configured to receive a target protocol data unit RLC PDU, and perform network coding on the target RLC PDU to obtain at least one network coding block;
  • a processing unit configured to generate a target TB according to the at least one network coding block.
  • the size of each network coding block is the same as the size of the CB generated by the physical PHY layer of the sending device.
  • each network coding block includes an attribute indication information, where the attribute indication information is used to indicate information about an RLC PDU to which the network coding block that includes the attribute indication information belongs.
  • the embodiment of the present application provides a data transmission apparatus, including:
  • a processor configured to determine the first information; the first information is used to indicate the number of air interface transmission code blocks CB; the target transmission block TB is network coded to generate a CB, and the second information is performed according to the first information. The sending of the CB;
  • the transceiver is configured to receive second information sent by the second device, where the second information is used to adjust the number of CBs sent by the air interface indicated by the first information.
  • the device is an access network device
  • the processor is specifically configured to:
  • the first information is determined by a physical PHY layer of the apparatus according to the size of the target TB, modulation and coding policy MCS information, and physical resource block PRB allocation information.
  • the device is a terminal
  • the processor is specifically configured to:
  • the second information is determined to be correct for the second device a difference between the number of received CBs and the number of CBs required by the second device to correctly decode the target TB;
  • the processor is specifically configured to:
  • the first device determines that the difference is less than the first threshold, increasing the number of CBs sent by the air interface indicated by the first information; or
  • the first device determines that the difference is greater than the second threshold, reducing the number of air interface CBs indicated by the first information
  • the first threshold is less than or equal to the second threshold.
  • the processor is specifically configured to:
  • the device Before the timer expires, if the device receives the second information sent by the second device, increasing the number of CBs sent by the air interface according to the second information; or
  • the device Before the timer expires, if the device does not receive the second information sent by the second device, the number of CBs sent by the air interface is reduced.
  • the transceiver is further configured to:
  • coding indication information is used to indicate whether a network coding function is used in the process of generating the CB by the target TB.
  • the coding indication information includes at least one of the following:
  • the embodiment of the present application provides a data transmission apparatus, including:
  • a processor configured to generate second information according to a difference between correctly receiving the difference between the number of code blocks CB generated by the target transmission block TB and the number of CBs required to correctly decode the target TB sent by the first device;
  • the second information is used to adjust the number of CBs sent by the air interface indicated by the first information;
  • the first information indicates the number of CBs sent by the air interface;
  • a transceiver configured to send the second information to the first device.
  • the processor is specifically configured to:
  • the target TB If the difference between the correctly received CB number generated by the target TB and the number of CBs required to correctly decode the target TB is less than the first threshold, generating, to instruct the first device to add an air interface to send the CB The second amount of information.
  • the transceiver is further configured to:
  • coding indication information is used to indicate whether a network coding function is used in a process of using the CB generated by the target TB;
  • the processor is further configured to: if it is determined, according to the coding indication information, that the CB generated by the target TB is network coded, perform network decoding on the received CB and restore the target TB.
  • the coding indication information includes at least one of the following:
  • the embodiment of the present application provides a data processing apparatus, including:
  • a transceiver configured to receive a target protocol data unit RLC PDU, and perform network coding on the target RLC PDU to obtain at least one network coding block;
  • a processor configured to generate a target TB according to the at least one network coding block.
  • the size of each network coding block is the same as the size of the CB generated by the physical PHY layer of the sending device.
  • each network coding block includes an attribute indication information, where the attribute indication information is used to indicate information about an RLC PDU to which the network coding block that includes the attribute indication information belongs .
  • the embodiment of the present application provides a computer readable storage medium, where the computer storage medium stores computer readable instructions, and when the computer reads and executes the computer readable instructions, causes the computer to perform any of the above possible designs.
  • the data transmission method
  • the embodiment of the present application provides a computer program product that, when the computer reads and executes the computer program product, causes the computer to execute the data transmission method in any of the above possible designs.
  • the embodiment of the present application provides a chip connected to a memory for reading and executing a software program stored in the memory to implement a data transmission method in any of the above possible designs.
  • the embodiment of the present application provides a computer readable storage medium, where the computer storage medium stores computer readable instructions, and when the computer reads and executes the computer readable instructions, causes the computer to perform any of the above possible designs.
  • the data processing method in .
  • the embodiment of the present application provides a computer program product that, when the computer reads and executes the computer program product, causes the computer to execute the data processing method in any of the above possible designs.
  • the embodiment of the present application provides a chip connected to a memory for reading and executing a software program stored in the memory to implement a data processing method in any of the above possible designs.
  • FIG. 1 is a schematic flowchart of a data transmission method according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of generating a CB according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of receiving feedback according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of receiving feedback according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of receiving feedback according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a data transmission processing method according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of network coding according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a data transmission apparatus according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a data transmission apparatus according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a data transmission apparatus according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a data transmission apparatus according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a data processing apparatus according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a data processing apparatus according to an embodiment of the present application.
  • the embodiments of the present application are applicable to a 4G evolution system, such as an LTE system, a 5G system, and the like.
  • the terminal may be a wireless terminal, for example, a mobile phone, a computer, a tablet computer, a personal digital assistant (PDA), and a mobile Internet device (English: mobile Internet device).
  • a wireless terminal for example, a mobile phone, a computer, a tablet computer, a personal digital assistant (PDA), and a mobile Internet device (English: mobile Internet device).
  • MID mobile Internet device
  • wearable devices Internet Protocol (English: Internet Protocol, abbreviation: IP) telephone, network printer and e-book reader (English: e-book reader).
  • FIG. 1 a schematic flowchart of a data transmission method provided by an embodiment of the present application.
  • the first device in the method shown in FIG. 1 may be an interface device capable of operating in a wireless environment, such as a terminal, a base station, a node, a base station controller, an access point (AP), and the like.
  • a wireless environment such as a terminal, a base station, a node, a base station controller, an access point (AP), and the like.
  • AP access point
  • the method includes:
  • Step 101 The first device determines first information, where the first information is used to indicate the number of CBs sent by the air interface.
  • the first information is used to indicate the number of CBs sent by the air interface.
  • the first information indicates that the first device sends the specified number of CBs in all CBs generated by the target TB in the air interface.
  • Step 102 The first device performs network coding on the target transport block TB to generate a CB, and performs the CB transmission to the second device according to the first information.
  • Step 103 The second device generates second information according to a difference between correctly receiving the difference between the number of code blocks CB generated by the target transmission block TB and the number of CBs required to correctly decode the target TB.
  • the second information is used to adjust the number of CBs sent by the air interface indicated by the first information; the first information indicates the number of CBs sent by the air interface.
  • Step 104 The second device sends the second information to the first device.
  • Step 105 The first device receives the second information sent by the second device, where the second information is used to adjust the number of CBs sent by the air interface indicated by the first information.
  • the first information may be determined by a MAC layer of the first device, and the first information may also be determined by a PHY layer of the first device.
  • the MAC layer of the first device subsequently sends the determined first information to the PHY layer of the first device, thereby implementing The air interface sends the corresponding number of CBs.
  • the PHY layer of the first device determines whether the first information is determined by the PHY layer of the first device, the PHY layer of the first device according to the size of the target TB and the PRB allocation information, and according to the MCS information determined by the CQI fed back by the second device.
  • the size of the target TB, the modulation and coding policy MCS information, and the physical resource block PRB allocation information determine the number of CBs that need to be sent in the air interface, that is, the first information.
  • the first device needs to determine the first information according to the indication of the second device.
  • the MAC layer (control element) sent by the second device may be received by the MAC layer of the first device, thereby determining the first information. information.
  • the MAC layer of the first device may also send the first information to the PHY layer of the first device. If the first information is determined by the PHY layer of the first device, the PHY layer of the first device receives the DCI sent by the PHY layer of the second device, where the DCI carries the first information.
  • the first information may be a specific value of the CB sent by the air interface, or may be an index value, where the index value corresponds to the specific value of the CB sent by the air interface.
  • the first device and the second device may pre-arrange the specific value of the CB corresponding to the air interface corresponding to each index value, and the specific manner of the configuration is not limited in this embodiment of the present application.
  • the PHY layer of the first device may determine the first information according to the size of the target TB, the PRB allocation information, and the MCS information, which may be specifically
  • the size and specific network coding algorithm determines the size of the CB, and determines the maximum bit of the current transmission through the PRB and the MCS, and finally determines the number of CBs that are allowed to be transmitted according to the CB size and the maximum bit of the current transmission.
  • the MAC layer or the PHY layer of the first device may have other manners for determining the first information.
  • the target TB refers to any one of the TBs generated by multiplexing the RLC PDUs received by the MAC layer of the first device from different logical channels.
  • network coding is required before the target TB generates the CB.
  • the network coding refers to coding using fountain codes, etc., and the fountain code includes but is not limited to the LT (Luby Transform) code and the Raptor code. Etc.
  • each CB includes redundant information of other CBs, and the first device only needs to send the specified quantity to the second device according to the determined first information.
  • the CB when the second device correctly receives the number of CBs sufficiently, can decode and restore the target TB according to the received CB.
  • FIG. 2 a schematic diagram of generating a CB provided by an embodiment of the present application is provided.
  • the MAC layer multiplexes the RLC PDUs received on each logical channel to generate a target TB block, and sends the generated target TB block to the PHY layer for processing. At the same time, the MAC layer sends the determined first information to the PHY layer.
  • the network code is generated to generate the CB, and according to the received first information, the specified number of CBs are respectively added with the CRC check code, and then each CB is performed.
  • the second information may have multiple implementation manners.
  • the second information is a difference between the number of CBs that are correctly received by the second device and the number of CBs required to correctly decode the target TB.
  • the second device determines that the difference between the number of correctly received CBs and the number of CBs required to correctly decode the target TB is less than the first threshold. Or the second device generates the second information if it is determined that the difference between the number of correctly received CBs and the number of CBs required to correctly decode the target TB is greater than a second threshold. Wherein the first threshold is less than or equal to the second threshold.
  • step 105 if the first device determines that the difference is less than the first threshold, the number of CBs sent by the air interface indicated by the first information is increased; if the first device determines If the difference is greater than the second threshold, the number of CBs sent by the air interface indicated by the first information is reduced.
  • the second information may be indicated by a flag type. When the flag is set to True, the second information is used to indicate that the first device increases the number of CBs sent by the air interface.
  • the second information may also be in other forms, and details are not described herein again.
  • step 103 the second device determines that the difference between the correctly received CB number generated by the target TB and the number of CBs required to correctly decode the target TB is smaller than the first
  • the threshold value is used to generate second information indicating that the first device increases the number of CBs sent by the air interface.
  • step 105 after the first device sends the CB to the second device according to the first information, the timer is started; during this period, the first device determines that the timing is Before the timeout expires, the first device receives the second information sent by the second device, and increases the number of CBs sent by the air interface according to the second information; if the first device determines that the timer expires, The first device does not receive the second device to send The second information reduces the number of CBs sent by the air interface.
  • the number of CBs sent by the first device to increase the number of CBs sent by the air interface may be increased by the number of CBs sent on the air interface, and the number of CBs sent by the first device is reduced. It is possible to reduce the CB that transmits the preset reference amount based on the number of CBs transmitted last time in the air interface.
  • the preset reference quantity can be determined according to actual conditions, and will not be described here.
  • the preset duration of the timer is a preset duration, and the preset duration may be determined according to actual conditions, and details are not described herein again.
  • step 103 in combination with the foregoing description, if the second device determines that the difference between the number of correctly received CBs and the number of CBs required to correctly decode the target TB is greater than or equal to The first threshold value is less than or equal to the second threshold value, and the second information is no longer generated and sent. Alternatively, if the second device determines that the difference between the correctly received number of CBs generated by the target TB and the number of CBs required to correctly decode the target TB is greater than or equal to the first threshold, The second information is no longer generated and transmitted.
  • FIG. 3 a schematic diagram of receiving feedback provided by an embodiment of the present application is provided.
  • Step 301 The first device determines the first information.
  • Step 302 The first device sends a specified number of CBs to the second device according to the first information.
  • Step 303 If the second device determines that the difference between the number of correctly received CBs and the number of CBs required to correctly decode the target TB is less than the first threshold, or if the second device determines The second information is generated when the difference between the number of correctly received CBs and the number of CBs required to correctly decode the target TB is greater than the second threshold.
  • Step 304 The second device sends the second information to the first device.
  • Step 305 The first device adjusts the first information according to the second information.
  • FIG. 4 a receiving feedback schematic diagram is provided in the embodiment of the present application.
  • Step 401 The first device determines the first information.
  • Step 402 The first device sends a specified number of CBs to the second device according to the first information.
  • Step 403 The first device starts a timer.
  • the timer duration of the timer is the preset duration.
  • Step 404 The second device determines that the difference between the number of correctly received CBs and the number of CBs required to correctly decode the target TB is greater than or equal to the first threshold value and less than or equal to the said The second threshold value does not generate and transmit the second information.
  • Step 405 When the first device does not receive the second information sent by the second device, the first device reduces the number of CBs sent by the air interface.
  • FIG. 5 a receiving feedback schematic diagram is provided in the embodiment of the present application.
  • Step 501 The first device determines the first information.
  • Step 502 The first device sends a specified number of CBs to the second device according to the first information.
  • Step 503 The first device starts a timer.
  • the timer duration of the timer is the preset duration.
  • Step 504 The second device generates the second information if it is determined that the difference between the correctly received CB number generated by the target TB and the number of CBs required to correctly decode the target TB is less than the first threshold. .
  • the second information is used to indicate that the first device increases the number of CBs sent by the air interface.
  • Step 505 The second device sends the second information to the first device.
  • Step 506 The first device receives the second information sent by the second device, and determines that the timer does not time out, and increases the number of CBs sent by the air interface.
  • the first device may further send, to the second device, coding indication information, to indicate whether a network coding function is used in the process of generating the CB by the target TB, so that the second device determines whether The received CB performs network decoding.
  • the coding indication information includes at least one of the following:
  • the MAC layer identifier is used to indicate that the MAC layer of the CB is generated by using a network coding manner
  • a carrier identifier used to indicate a carrier carrying a network-coded CB
  • a network slice identifier is used to indicate a network slice carrying a network-encoded CB. It should be noted that the network slice may refer to a logical network function combination that supports a specific use case communication service requirement.
  • an air interface type identifier that indicates the type of air interface that sends the network-coded CB.
  • the air interface is also referred to as an air interface, and may be an interface between the terminal and the radio access network, and may be an air interface such as a Uu interface.
  • the second device receives the coding indication information sent by the first device, and determines, according to the coding indication information, that the CB generated by the target TB is network coded, and then receives the The CB to the network performs network decoding and recovers the target TB.
  • FIG. 6 is a schematic flowchart of a data transmission processing method provided by an embodiment of the present application.
  • the transmitting device in the method shown in FIG. 6 may be an interface device capable of operating in a wireless environment, such as a terminal, a base station, a node, a base station controller, an access point (AP), and the like.
  • a wireless environment such as a terminal, a base station, a node, a base station controller, an access point (AP), and the like.
  • AP access point
  • the method includes:
  • Step 601 The sending device receives the target RLC PDU, and performs network coding on the target RLC PDU to obtain at least one network coding block.
  • Step 602 The network device generates a target TB according to the at least one network coding block.
  • the target RLC PDU may be received by the MAC layer of the sending device.
  • the MAC layer After receiving the target RLC PDU, the MAC layer performs network coding on the received target RLC PDU to generate at least one network coding block.
  • the size of each network coding block is the same as the size of the CB generated by the PHY layer of the sending device.
  • the network coding refers to coding using a fountain code or the like, and the fountain code includes, but is not limited to, an LT code, a Raptor code, or the like.
  • the transmitting device In step 602, the transmitting device generates a target TB according to the generated at least one network coding block. Specifically, in combination with FIG. 7, the transmitting device performs network coding on the received target RLC PDU, and generates at least one network coding block. The transmitting device aggregates the network coding blocks generated by each RLC PDU to generate a target TB. The network coding block included in the target TB may be from other RLC PDUs in addition to the target RLC PDU. Subsequently, the MAC layer of the transmitting device transmits the generated target TB to the PHY layer of the network device.
  • the PHY layer After receiving the target TB, the PHY layer uses the existing LTE mechanism to split the target TB into several CBs, adds the CRC, performs channel coding, and then sends out the air interface.
  • the transmitting device repeats the above before receiving the confirmation message sent by the receiver of the target TB. process.
  • the acknowledgement message is used to indicate that the receiver has correctly decoded the target RLC PDU.
  • each network coding block includes an attribute indication information, where the attribute indication information is used to indicate information of an RLC PDU to which the network coding block that includes the attribute indication information belongs.
  • the receiver may determine the RLC PDU to which each network coding block belongs according to the attribute indication information.
  • the receiver sends an acknowledgement message to the sending device after receiving the target TB and determining that the target RLC PDU can be restored according to the target TB, otherwise the receiver does not send a feedback message to the sending device.
  • the embodiment of the present application further provides a data transmission device, which can perform the foregoing method embodiments.
  • FIG. 8 a schematic structural diagram of a data transmission apparatus is provided in an embodiment of the present application.
  • the device includes:
  • the processing unit 801 is configured to determine first information, where the first information is used to indicate the number of air interface transmission code blocks CB, and the target transmission block TB is network coded to generate a CB, and according to the first information, to the second device. Performing the sending of the CB;
  • the transceiver unit 802 is configured to receive second information sent by the second device, where the second information is used to adjust the number of CBs sent by the air interface indicated by the first information.
  • the device is an access network device
  • the processing unit 801 is specifically configured to:
  • the first information is determined by a physical PHY layer of the apparatus according to the size of the target TB, modulation and coding policy MCS information, and physical resource block PRB allocation information.
  • the device is a terminal
  • the processing unit 801 is specifically configured to:
  • the second information is a difference between the number of correctly received CBs by the second device and the number of CBs required by the second device to correctly decode the target TB.
  • the processing unit 801 is specifically configured to:
  • the first device determines that the difference is less than the first threshold, increasing the number of CBs sent by the air interface indicated by the first information; or
  • the first device determines that the difference is greater than the second threshold, reducing the number of air interface CBs indicated by the first information
  • the first threshold is less than or equal to the second threshold.
  • processing unit 801 is specifically configured to:
  • the device Before the timer expires, if the device receives the second information sent by the second device, increasing the number of CBs sent by the air interface according to the second information; or
  • the device Before the timer expires, if the device does not receive the second information sent by the second device, the number of CBs sent by the air interface is reduced.
  • the transceiver unit 802 is further configured to:
  • coding indication information is used to indicate whether a network coding function is used in the process of generating the CB by the target TB.
  • the coding indication information includes at least one of the following:
  • FIG. 9 a schematic structural diagram of a data transmission apparatus is provided in an embodiment of the present application.
  • the device includes:
  • the processing unit 901 is configured to generate second information according to a difference between correctly receiving the difference between the number of code blocks CB generated by the target transmission block TB and the number of CBs required to correctly decode the target TB sent by the first device;
  • the second information is used to adjust the number of CBs sent by the air interface indicated by the first information;
  • the first information indicates the number of CBs sent by the air interface;
  • the transceiver unit 902 is configured to send the second information to the first device.
  • processing unit 901 is specifically configured to:
  • the target TB If the difference between the correctly received CB number generated by the target TB and the number of CBs required to correctly decode the target TB is less than the first threshold, generating, to instruct the first device to add an air interface to send the CB The second amount of information.
  • the transceiver unit 902 is further configured to:
  • coding indication information is used to indicate whether a network coding function is used in a process of using the CB generated by the target TB;
  • the processing unit 901 is further configured to: if it is determined, according to the coding indication information, that the CB generated by the target TB is network coded, perform network decoding on the received CB and restore the target TB.
  • the coding indication information includes at least one of the following:
  • FIG. 10 a schematic structural diagram of a data processing apparatus is provided in an embodiment of the present application.
  • the apparatus includes:
  • the transceiver unit 1001 is configured to receive a target protocol data unit RLC PDU, and perform network coding on the target RLC PDU to obtain at least one network coding block.
  • the processing unit 1002 is configured to generate a target TB according to the at least one network coding block.
  • each network coding block is the same as the size of the CB generated by the physical PHY layer of the sending device.
  • each network coding block includes an attribute indication information, where the attribute indication information is used to indicate information of an RLC PDU to which the network coding block that includes the attribute indication information belongs.
  • FIG. 11 a schematic structural diagram of a data transmission apparatus is provided in an embodiment of the present application.
  • the apparatus includes:
  • the processor 1101 is configured to determine first information, where the first information is used to indicate the number of air interface transmission code blocks CB, and the target transmission block TB is network coded to generate a CB, and according to the first information, to the second device. Carry out the CB Send
  • the transceiver 1102 is configured to receive second information sent by the second device, where the second information is used to adjust the number of CBs sent by the air interface indicated by the first information.
  • the device is an access network device
  • the processor 1101 is specifically configured to:
  • the first information is determined by a physical PHY layer of the apparatus according to the size of the target TB, modulation and coding policy MCS information, and physical resource block PRB allocation information.
  • the device is a terminal
  • the processor 1101 is specifically configured to:
  • the second information is a difference between the number of correctly received CBs by the second device and the number of CBs required by the second device to correctly decode the target TB.
  • the processor 1101 is specifically configured to:
  • the first device determines that the difference is less than the first threshold, increasing the number of CBs sent by the air interface indicated by the first information; or
  • the first device determines that the difference is greater than the second threshold, reducing the number of air interface CBs indicated by the first information
  • the first threshold is less than or equal to the second threshold.
  • the processor 1101 is specifically configured to:
  • the device Before the timer expires, if the device receives the second information sent by the second device, increasing the number of CBs sent by the air interface according to the second information; or
  • the device Before the timer expires, if the device does not receive the second information sent by the second device, the number of CBs sent by the air interface is reduced.
  • the transceiver 1102 is further configured to:
  • coding indication information is used to indicate whether a network coding function is used in the process of generating the CB by the target TB.
  • the coding indication information includes at least one of the following:
  • FIG. 12 a schematic structural diagram of a data transmission apparatus is provided in an embodiment of the present application.
  • the apparatus includes:
  • the processor 1201 is configured to generate second information according to a difference between correctly receiving the difference between the number of code blocks CB generated by the target transmission block TB and the number of CBs required to correctly decode the target TB sent by the first device;
  • the second information is used to adjust the number of CBs sent by the air interface indicated by the first information;
  • the first information indicates the number of CBs sent by the air interface. the amount;
  • the transceiver 1202 is configured to send the second information to the first device.
  • the processor 1201 is specifically configured to:
  • the target TB If the difference between the correctly received CB number generated by the target TB and the number of CBs required to correctly decode the target TB is less than the first threshold, generating, to instruct the first device to add an air interface to send the CB The second amount of information.
  • the transceiver 1202 is further configured to:
  • coding indication information is used to indicate whether a network coding function is used in a process of using the CB generated by the target TB;
  • the processor 1201 is further configured to: if it is determined, according to the coding indication information, that the CB generated by the target TB is network coded, perform network decoding on the received CB and restore the target TB.
  • the coding indication information includes at least one of the following:
  • FIG. 13 a schematic structural diagram of a data processing apparatus according to an embodiment of the present application is provided.
  • the apparatus includes:
  • the transceiver 1301 is configured to receive a target protocol data unit RLC PDU, and perform network coding on the target RLC PDU to obtain at least one network coding block.
  • the processor 1302 is configured to generate a target TB according to the at least one network coding block.
  • each network coding block is the same as the size of the CB generated by the physical PHY layer of the sending device.
  • each network coding block includes an attribute indication information, where the attribute indication information is used to indicate information of an RLC PDU to which the network coding block that includes the attribute indication information belongs.
  • the transceiver can be a wired transceiver, a wireless transceiver, or a combination thereof.
  • the wired transceiver can be, for example, an Ethernet interface.
  • the Ethernet interface can be an optical interface, an electrical interface, or a combination thereof.
  • the wireless transceiver can be, for example, a wireless local area network transceiver, a cellular network transceiver, or a combination thereof.
  • the processor may be a central processing unit (English: central processing unit, abbreviated: CPU), a network processor (English: network processor, abbreviated: NP) or a combination of CPU and NP.
  • the processor may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (abbreviated as PLD), or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above PLD can be a complex programmable logic device (English: complex programmable logic device, abbreviation: CPLD), field-programmable gate array (English: field-programmable gate array, abbreviation: FPGA), general array logic (English: generic array Logic, abbreviation: GAL) or any combination thereof.
  • the bus interface may also be included in FIG. 11 to FIG. 13 , and the bus interface may include any number of interconnected buses and bridges, and specifically, various circuits of the memory represented by one or more processors and memories represented by the processor. Linked together.
  • the bus interface can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the transceiver provides means for communicating with various other devices on a transmission medium.
  • the processor is responsible for managing the bus architecture and the usual processing, and the memory can store the data that the processor uses when performing operations.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

一种数据传输、数据处理方法及装置,包括:第一设备确定第一信息;所述第一信息用于指示空口发送码块CB的数量;所述第一设备将目标传输块TB进行网络编码后生成CB,并根据所述第一信息向第二设备进行所述CB的发送;所述第一设备接收所述第二设备发送的第二信息,所述第二信息用于调整第一信息所指示的在空口发送CB的数量;发送设备接收目标协议数据单元RLC PDU,并将所述目标RLC PDU进行网络编码后获得至少一个网络编码块;所述发送设备根据所述至少一个网络编码块生成目标TB。

Description

一种数据传输、数据处理方法及装置
本申请要求在2016年8月17日提交国知局、申请号为201610681997.0、发明名称为“一种数据传输、数据处理方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种数据传输、数据处理方法及装置。
背景技术
现有LTE(Long Term Evolution,长期演进)系统中,数据传输的可靠性是通过两层重传机制来实现,包括:MAC(Medium Access Control,媒体接入控制)层的HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)以及RLC(Radio Link Control,无线链路控制)层的ARQ(Auto Repeat reQuest,自动重传请求),从而增加了数据传输的时延。无论是HARQ还是ARQ,发送端向接收端发送了数据之后,接收端将向发送端进行接收信息的反馈,如果正确接收,则反馈ACK(Acknowledgement,确认应答),如果未正确接收,则反馈NACK(Negative Acknowledgement,否定应答)。发送端收到接收端的NACK反馈后,将向接收端进行数据重传。
以下行HARQ为例,基站确定了分配给终端的PRB(physical resource block,物理资源块)个数之后,根据终端反馈的CQI(Channel Quality Indicator,信道质量指示)信息确定MCS(Modulation and Coding Scheme,调制与编码策略)。最后根据PRB个数,以及MCS经查表确定当前TTI(Transmission Time Interval,传输时间间隔)调度的TB(Transport Block,传输块)的大小。基站MAC层将确定的TB块大小通知RLC层,以便RLC层根据确定的TB块大小对RLC SDU(Service Data Unit,服务数据单元)进行分段/重组。MAC层将从各逻辑信道上收到的RLC PDU(Protocol Data Unit,协议数据单元)进行复用后生成TB块,并将生成的TB块送到PHY(Physical,物理)层处理。
PHY层将收到的TB块加上CRC(Cyclic Redundancy Check,循环冗余校验)校验码后,进行分隔处理得到CB(Code Block,码块),并对每个CB加CRC校验码。最后,每个CB分别使用Turbo码进行信道编码后,映射到PRB上发送给终端。终端只要发现收到的CB中有一个CB对应的CRC校验出错,则认为整个TB块传输错误,并向基站反馈NACK信息,从而触发基站对整个TB块进行重传。
为了进一步减少数据传输的时延,保证数据传输的可靠性,目前可见的方案主要是在生成CB过程中,除了按现有机制生成的CB之外,还引入了外码编码新生成了一个或者多个CB,新生成的CB包含了其他CB的冗余信息。如果发送方在初传时就包含了这些新生成的CB,因为这些CB即可以检错又可以纠错,这样接收方根据接收到的CB就可以很大概率的正确译码出TB,从而避免了重传导致的传输时延。如果发送方在初传时没有包含这些新生成的CB,为了减少重传数据的数量,接收方需要向发送方反馈错误接收的CB的个数,这样发送方根据接收方的反馈信息进行基于CB粒度的重传,而不需要整个TB的重传,从而节省了空口资源的开销。但是上述方案中,接收方需要向发送方反馈错误接收的CB的个数,这样会增加接收方的反馈开销,特别是在信道质量差导致接收方错误接 收的CB的个数非常多的情况下。
发明内容
本申请实施例提供一种数据传输、数据处理方法及装置,用以提供一种数据传输方法。
第一方面,本申请实施例提供一种数据传输方法,包括:
第一设备确定第一信息;所述第一信息用于指示空口发送码块CB的数量;
所述第一设备将目标传输块TB进行网络编码后生成CB,并根据所述第一信息向第二设备进行所述CB的发送;
所述第一设备接收所述第二设备发送的第二信息,所述第二信息用于调整第一信息所指示的在空口发送CB的数量。
根据本申请实施例提供的方法,第一设备在将目标TB进行网络编码生成CB之后,根据第一信息向第二设备进行所述CB的发送。所述第一设备在接收到所述第二设备发送的第二信息之后,根据所述第二信息调整所述第一信息所指示的在空口发送CB的数量。根据上述方法,可以实现在发送端控制在空口发送CB的数量,并根据第二信息调整在空口发送CB的数量,从而可以确保减少数据传输的时延。
在第一方面的任意一种可能的实现方式中,所述第一设备为接入网设备;
所述第一设备确定第一信息,包括:
所述第一设备通过所述第一设备的媒体接入控制MAC层确定所述第一信息;或者,
所述第一设备通过所述第一设备的物理PHY层根据所述目标TB的大小、调制与编码策略MCS信息以及物理资源块PRB分配信息确定所述第一信息。
在第一方面的任意一种可能的实现方式中,所述第一设备为终端;
所述第一设备确定第一信息,包括:
所述第一设备接收第二设备发送的MAC控制元素,所述MAC控制元素中携带所述第一信息;或者
所述第一设备接收第二设备发送的下行控制信息DCI,所述DCI中携带所述第一信息。
在第一方面的任意一种可能的实现方式中,所述第二信息为所述第二设备确定正确接收到CB的数量与所述第二设备正确译码所述目标TB所需的CB的数量之间的差值;
所述第一设备接收所述第二设备发送的第二信息之后,还包括:
所述第一设备若确定所述差值小于第一门限值,则增加所述第一信息所指示的空口发送CB的数量;或者
所述第一设备若确定所述差值大于第二门限值,则减少所述第一信息所指示的空口发送CB的数量;
其中,所述第一门限值小于或等于所述第二门限值。
在第一方面的任意一种可能的实现方式中,所述方法还包括:
所述第一设备开启定时器;
在所述定时器超时之前,如果所述第一设备接收到所述第二设备发送的第二信息,则根据所述第二信息增加空口发送CB的数量;或者
在所述定时器超时之前,如果所述第一设备未接收到所述第二设备发送的第二信息,则所述第一设备减少空口发送CB的数量。
在第一方面的任意一种可能的实现方式中,所述方法还包括:
所述第一设备向所述第二设备发送编码指示信息,所述编码指示信息用于指示由所述目标TB生成所述CB的过程中是否使用网络编码功能。
在第一方面的任意一种可能的实现方式中,所述编码指示信息中包括以下至少一项:
MAC层标识;
载波标识;
网络切片标识;
空口类型标识。
第二方面,本申请实施例提供一种数据传输方法,包括:
第二设备根据正确接收第一设备发送的由目标传输块TB生成的码块CB的数量与正确译码所述目标TB所需的CB的数量之间的差值生成第二信息;所述第二信息用于调整第一信息所指示的在空口发送CB的数量;所述第一信息指示空口发送CB的数量;
所述第二设备向所述第一设备发送所述第二信息。
在第二方面的任意一种可能的实现方式中,所述第二设备根据正确接收由第一设备发送的由目标TB生成的CB的数量与正确译码所述目标TB所需的CB的数量之间的差值生成第二信息,包括:
所述第二设备若正确接收到的由目标TB生成的CB数量与正确译码所述目标TB所需的CB的数量之间的差值小于第一门限值,则生成用于指示第一设备增加空口发送CB的数量的第二信息。
在第二方面的任意一种可能的实现方式中,所述方法还包括:
所述第二设备接收所述第一设备发送的编码指示信息,所述编码指示信息用于指示由所述目标TB生成的CB的过程中是否使用网络编码功能;
所述第二设备若根据所述编码指示信息确定由所述目标TB生成的CB经过网络编码,则对接收到的CB进行网络译码并恢复所述目标TB。
在第二方面的任意一种可能的实现方式中,所述编码指示信息中包括以下至少一项:
媒体接入控制MAC层标识;
载波标识;
网络切片标识;
空口类型标识。
第三方面,本申请实施例提供一种数据处理方法,包括:
发送设备接收目标协议数据单元RLC PDU,并将所述目标RLC PDU进行网络编码后获得至少一个网络编码块;
所述发送设备根据所述至少一个网络编码块生成目标TB。
在第三方面的任意一种可能的实现方式中,每个网络编码块的大小与所述发送设备的物理PHY层生成的CB的大小相同。
在第三方面的任意一种可能的实现方式中,每个网络编码块中包括一个属性指示信息,所述属性指示信息用于指示包括所述属性指示信息的网络编码块所属的RLC PDU的信息。
第四方面,本申请实施例提供一种数据传输装置,包括:
处理单元,用于确定第一信息;所述第一信息用于指示空口发送码块CB的数量;将目标传输块TB进行网络编码后生成CB,并根据所述第一信息向第二设备进行所述CB的 发送;
收发单元,用于接收所述第二设备发送的第二信息,所述第二信息用于调整第一信息所指示的在空口发送CB的数量。
在第四方面的任意一种可能的实现方式中,所述装置为接入网设备;
所述处理单元具体用于:
通过所述装置的媒体接入控制MAC层确定所述第一信息;或者,
通过所述装置的物理PHY层根据所述目标TB的大小、调制与编码策略MCS信息以及物理资源块PRB分配信息确定所述第一信息。
在第四方面的任意一种可能的实现方式中,所述装置为终端;
所述处理单元具体用于:
接收第二设备发送的MAC控制元素,所述MAC控制元素中携带所述第一信息;或者
接收第二设备发送的下行控制信息DCI,所述DCI中携带所述第一信息。
在第四方面的任意一种可能的实现方式中,所述第二信息为所述第二设备确定正确接收到CB的数量与所述第二设备正确译码所述目标TB所需的CB的数量之间的差值;
所述处理单元具体用于:
所述第一设备若确定所述差值小于第一门限值,则增加所述第一信息所指示的空口发送CB的数量;或者
所述第一设备若确定所述差值大于第二门限值,则减少所述第一信息所指示的空口发送CB的数量;
其中,所述第一门限值小于或等于所述第二门限值。
在第四方面的任意一种可能的实现方式中,所述处理单元具体用于:
开启定时器;
在所述定时器超时之前,如果所述装置接收到所述第二设备发送的第二信息,则根据所述第二信息增加空口发送CB的数量;或者
在所述定时器超时之前,如果所述装置未接收到所述第二设备发送的第二信息,则减少空口发送CB的数量。
在第四方面的任意一种可能的实现方式中,所述收发单元还用于:
向所述第二设备发送编码指示信息,所述编码指示信息用于指示由所述目标TB生成所述CB的过程中是否使用网络编码功能。
在第四方面的任意一种可能的实现方式中,所述编码指示信息中包括以下至少一项:
MAC层标识;
载波标识;
网络切片标识;
空口类型标识。
第五方面,本申请实施例提供一种数据传输装置,包括:
处理单元,用于根据正确接收第一设备发送的由目标传输块TB生成的码块CB的数量与正确译码所述目标TB所需的CB的数量之间的差值生成第二信息;所述第二信息用于调整第一信息所指示的在空口发送CB的数量;所述第一信息指示空口发送CB的数量;
收发单元,用于向所述第一设备发送所述第二信息。
在第五方面的任意一种可能的实现方式中,所述处理单元具体用于:
若正确接收到的由目标TB生成的CB数量与正确译码所述目标TB所需的CB的数量之间的差值小于第一门限值,则生成用于指示第一设备增加空口发送CB的数量的第二信息。
在第五方面的任意一种可能的实现方式中,所述收发单元还用于:
接收所述第一设备发送的编码指示信息,所述编码指示信息用于指示由所述目标TB生成的CB的过程中是否使用网络编码功能;
所述处理单元还用于,若根据所述编码指示信息确定由所述目标TB生成的CB经过网络编码,则对接收到的CB进行网络译码并恢复所述目标TB。
在第五方面的任意一种可能的实现方式中,所述编码指示信息中包括以下至少一项:
媒体接入控制MAC层标识;
载波标识;
网络切片标识;
空口类型标识。
第六方面,本申请实施例提供一种数据处理装置,包括:
收发单元,用于接收目标协议数据单元RLC PDU,并将所述目标RLC PDU进行网络编码后获得至少一个网络编码块;
处理单元,用于根据所述至少一个网络编码块生成目标TB。
在第六方面的任意一种可能的实现方式中,每个网络编码块的大小与所述发送设备的物理PHY层生成的CB的大小相同。
在第六方面的任意一种可能的实现方式中,每个网络编码块中包括一个属性指示信息,所述属性指示信息用于指示包括所述属性指示信息的网络编码块所属的RLC PDU的信息。
第七方面,本申请实施例提供一种数据传输装置,包括:
处理器,用于确定第一信息;所述第一信息用于指示空口发送码块CB的数量;将目标传输块TB进行网络编码后生成CB,并根据所述第一信息向第二设备进行所述CB的发送;
收发机,用于接收所述第二设备发送的第二信息,所述第二信息用于调整第一信息所指示的在空口发送CB的数量。
在第七方面的任意一种可能的实现方式中,所述装置为接入网设备;
所述处理器具体用于:
通过所述装置的媒体接入控制MAC层确定所述第一信息;或者,
通过所述装置的物理PHY层根据所述目标TB的大小、调制与编码策略MCS信息以及物理资源块PRB分配信息确定所述第一信息。
在第七方面的任意一种可能的实现方式中,所述装置为终端;
所述处理器具体用于:
接收第二设备发送的MAC控制元素,所述MAC控制元素中携带所述第一信息;或者
接收第二设备发送的下行控制信息DCI,所述DCI中携带所述第一信息。
在第七方面的任意一种可能的实现方式中,所述第二信息为所述第二设备确定正确接 收到CB的数量与所述第二设备正确译码所述目标TB所需的CB的数量之间的差值;
所述处理器具体用于:
所述第一设备若确定所述差值小于第一门限值,则增加所述第一信息所指示的空口发送CB的数量;或者
所述第一设备若确定所述差值大于第二门限值,则减少所述第一信息所指示的空口发送CB的数量;
其中,所述第一门限值小于或等于所述第二门限值。
在第七方面的任意一种可能的实现方式中,所述处理器具体用于:
开启定时器;
在所述定时器超时之前,如果所述装置接收到所述第二设备发送的第二信息,则根据所述第二信息增加空口发送CB的数量;或者
在所述定时器超时之前,如果所述装置未接收到所述第二设备发送的第二信息,则减少空口发送CB的数量。
在第七方面的任意一种可能的实现方式中,所述收发机还用于:
向所述第二设备发送编码指示信息,所述编码指示信息用于指示由所述目标TB生成所述CB的过程中是否使用网络编码功能。
在第七方面的任意一种可能的实现方式中,所述编码指示信息中包括以下至少一项:
MAC层标识;
载波标识;
网络切片标识;
空口类型标识。
第八方面,本申请实施例提供一种数据传输装置,包括:
处理器,用于根据正确接收第一设备发送的由目标传输块TB生成的码块CB的数量与正确译码所述目标TB所需的CB的数量之间的差值生成第二信息;所述第二信息用于调整第一信息所指示的在空口发送CB的数量;所述第一信息指示空口发送CB的数量;
收发机,用于向所述第一设备发送所述第二信息。
在第八方面的任意一种可能的实现方式中,所述处理器具体用于:
若正确接收到的由目标TB生成的CB数量与正确译码所述目标TB所需的CB的数量之间的差值小于第一门限值,则生成用于指示第一设备增加空口发送CB的数量的第二信息。
在第八方面的任意一种可能的实现方式中,所述收发机还用于:
接收所述第一设备发送的编码指示信息,所述编码指示信息用于指示由所述目标TB生成的CB的过程中是否使用网络编码功能;
所述处理器还用于,若根据所述编码指示信息确定由所述目标TB生成的CB经过网络编码,则对接收到的CB进行网络译码并恢复所述目标TB。
在第八方面的任意一种可能的实现方式中,所述编码指示信息中包括以下至少一项:
媒体接入控制MAC层标识;
载波标识;
网络切片标识;
空口类型标识。
第九方面,本申请实施例提供一种数据处理装置,包括:
收发机,用于接收目标协议数据单元RLC PDU,并将所述目标RLC PDU进行网络编码后获得至少一个网络编码块;
处理器,用于根据所述至少一个网络编码块生成目标TB。
在第九方面的任意一种可能的实现方式中,每个网络编码块的大小与所述发送设备的物理PHY层生成的CB的大小相同。
在第九方面的任意一种可能的实现方式中,每个网络编码块中包括一个属性指示信息,所述属性指示信息用于指示包括所述属性指示信息的网络编码块所属的RLC PDU的信息。
本申请实施例提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述任一种可能的设计中的数据传输方法。
本申请实施例提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述任一种可能的设计中的数据传输方法。
本申请实施例提供一种芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现上述任一种可能的设计中的数据传输方法。
本申请实施例提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述任一种可能的设计中的数据处理方法。
本申请实施例提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述任一种可能的设计中的数据处理方法。
本申请实施例提供一种芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现上述任一种可能的设计中的数据处理方法。
附图说明
图1为本申请实施例提供的一种数据传输方法流程示意图;
图2为本申请实施例提供的一种生成CB示意图;
图3为本申请实施例提供的一种接收反馈示意图;
图4为本申请实施例提供的一种接收反馈示意图;
图5为本申请实施例提供的一种接收反馈示意图;
图6为本申请实施例提供的一种数据传输处理方法流程示意图;
图7本申请实施例提供一种网络编码示意图;
图8本申请实施例提供一种数据传输装置结构示意图;
图9本申请实施例提供一种数据传输装置结构示意图;
图10本申请实施例提供一种数据传输装置结构示意图;
图11本申请实施例提供一种数据传输装置结构示意图;
图12本申请实施例提供一种数据处理装置结构示意图;
图13本申请实施例提供一种数据处理装置结构示意图。
具体实施方式
本申请实施例适用于4G演进系统,如LTE系统、5G系统等通信系统。
本申请实施例中,终端可以是可以为无线终端,例如可以为移动电话、计算机、平板电脑、个人数码助理(英文:personal digital assistant,缩写:PDA)、移动互联网设备(英文:mobile Internet device,缩写:MID)、可穿戴设备、互联网协议(英文:Internet Protocol,缩写:IP)电话、网络打印机和电子书阅读器(英文:e-book reader)等。
基于上述描述,如图1所示,为本申请实施例提供的一种数据传输方法流程示意图。
图1所示的方法中的第一设备可以为终端、基站、节点、基站控制器、接入点(Access Point,AP)等能够在无线环境中工作的接口设备。
参见图1,该方法包括:
步骤101:第一设备确定第一信息;所述第一信息用于指示空口发送CB的数量。
需要说明的是,第一信息用于指示空口发送CB的数量的意思是指,第一信息指示第一设备将目标TB生成的所有CB中指定数量的CB在空口发送。
步骤102:所述第一设备将目标传输块TB进行网络编码后生成CB,并根据所述第一信息向第二设备进行所述CB的发送。
步骤103:第二设备根据正确接收第一设备发送的由目标传输块TB生成的码块CB的数量与正确译码所述目标TB所需的CB的数量之间的差值生成第二信息;所述第二信息用于调整第一信息所指示的在空口发送CB的数量;所述第一信息指示空口发送CB的数量。
步骤104:所述第二设备向所述第一设备发送所述第二信息。
步骤105:所述第一设备接收所述第二设备发送的第二信息,所述第二信息用于调整第一信息所指示的在空口发送CB的数量。
步骤101中,如果第一设备为网络设备,例如:基站,可以由第一设备的MAC层确定所述第一信息,也可以由第一设备的PHY层确定所述第一信息。
若由所述第一设备的MAC层确定所述第一信息,所述第一设备的MAC层随后将确定出的第一信息发送给所述第一设备的PHY层,从而实现通过PHY层在空口发送相应数量的CB。
若由第一设备的PHY层确定所述第一信息,所述第一设备的PHY层根据所述目标TB的大小和PRB分配信息,并根据所述第二设备反馈的CQI确定的MCS信息,从而所述目标TB的大小、调制与编码策略MCS信息以及物理资源块PRB分配信息确定需要在空口发送的CB的数量,即第一信息。
如果第一设备为终端,第一设备需要根据第二设备的指示来确定所述第一信息。此时,若由第一设备的MAC层确定所述第一信息,可以由所述第一设备的MAC层接收第二设备发送的MAC CE(control element,控制元素),从而确定所述第一信息。其中所述MAC CE中携带所述第一信息,所述第一设备的MAC层还可以将所述第一信息发送给所述第一设备的PHY层。若由第一设备的PHY层确定所述第一信息,所述第一设备的PHY层接收第二设备的PHY层发送的DCI,所述DCI中携带所述第一信息。
本申请实施例中,第一信息可以为空口发送CB的具体数值,也可以为一个索引值,所述索引值对应空口发送CB的具体数值。在该方式下,第一设备与第二设备可以预先约定每个索引值所对应的空口发送CB的具体数值,具体约定方式,本申请实施例对此并不限定。
本申请实施例中,如果第一设备为网络设备,所述第一设备的PHY层可以根据所述目标TB的大小、PRB分配信息以及MCS信息来确定所述第一信息,具体可以是通过TB大小和具体的网路编码算法确定CB的大小,并通过PRB和MCS确定当前传输的最大bit,最后根据CB大小和当前传输的最大bit从而确定允许传输的CB数量。当然以上只是示例,第一设备的MAC层或者PHY层具体如何确定所述第一信息还可以有其他方式,本申请实施例对此并不限定。
步骤102中,目标TB是指第一设备的MAC层将从不同逻辑信道上收到的RLC PDU进行复用后生成的TB中的任意一个TB。
本申请实施例中,将目标TB生成CB之前需要进行网络编码,其中,网络编码指的是使用喷泉码(fountain codes)等进行编码,喷泉码包括但不限于LT(Luby Transform)码、Raptor码等编码。同时,本申请实施例中,目标TB使用网络编码后生成CB之后,其中的每一个CB都包含其他CB的冗余信息,第一设备只需要按照确定的第一信息向第二设备发送指定数量的CB,第二设备在正确接收到CB的数量足够多时,就可以根据接收到的CB进行译码并还原出所述目标TB。
结合前面的描述,如图2所示,为本申请实施例提供的一种生成CB示意图。
图2中,MAC层将从各逻辑信道上收到的RLC PDU进行复用后生成目标TB块,并将生成的目标TB块送到PHY层处理。同时,MAC层将确定的第一信息发送到PHY层。
PHY层将收到的TB块加上CRC校验码后,进行网络编码生成CB,并根据收到的第一信息,将指定数量的CB分别加上CRC校验码后,对每个CB进行Turbo编码,并将经过Turbo信道编码后的数据映射到PRB上,最后通过空口发送给终端。
本申请实施例中,第二信息可以有多种实现方式。一种可能的实现方式中,所述第二信息为所述第二设备确定正确接收到CB的数量与正确译码所述目标TB所需的CB的数量之间的差值。
在该实现方式下,在步骤103中,所述第二设备若确定正确接收到的CB的数量与正确译码所述目标TB所需的CB的数量之间的差值小于第一门限值,或者,所述第二设备若确定正确接收到的CB的数量与正确译码所述目标TB所需的CB的数量之间的差值大于第二门限值,则生成所述第二信息;其中,所述第一门限值小于或等于所述第二门限值。
相应的,在步骤105中,所述第一设备若确定所述差值小于第一门限值,则增加所述第一信息所指示的空口发送的CB的数量;所述第一设备若确定所述差值大于第二门限值,则减少所述第一信息所指示的空口发送的CB的数量。
一种可能的实现方式中,第二信息可以通过flag类型来指示,当flag置为True时,此时,所述第二信息用于指示第一设备增加空口发送的CB的数量。当然,在该实现方式下,第二信息还可以为其他形式,在此不再赘述。
在该实现方式下,步骤103中,所述第二设备若确定正确接收到的由目标TB生成的CB数量与正确译码所述目标TB所需的CB的数量之间的差值小于第一门限值,则生成用于指示第一设备增加空口发送的CB的数量的第二信息。
在该实现方式下,步骤105中,所述第一设备根据所述第一信息向第二设备进行CB的发送之后,开启定时器;在此期间,所述第一设备若确定在所述定时器超时之前,所述第一设备接收到所述第二设备发送的第二信息,则根据所述第二信息增加空口发送的CB的数量;第一设备若确定在所述定时器超时时,所述第一设备未接收到所述第二设备发送 的第二信息,则减少空口发送的CB的数量。
本申请实施例中,第一设备增加空口发送的CB的数量可以是在上一次在空口发送的CB的数量的基础上增加发送预设基准量的CB;第一设备减少空口发送的CB的数量可以是在上一次在空口发送的CB的数量的基础上减少发送预设基准量的CB。预设基准量可以根据实际情况确定,在此不再赘述。
需要说明的是,所述定时器的定时时长为预设时长,预设时长可以根据实际情况确定,在此不再赘述。
可选的,在步骤103中,结合前面的描述,所述第二设备若确定正确接收到的CB的数量与正确译码所述目标TB所需的CB的数量之间的差值大于或等于所述第一门限值且小于或等于所述第二门限值,则不再生成并发送所述第二信息。或者,所述第二设备若确定正确接收到的由目标TB生成的CB数量与正确译码所述目标TB所需的CB的数量之间的差值大于或等于所述第一门限值,则不再生成并发送所述第二信息。
举例来说,结合前面的描述,如图3所示,为本申请实施例提供的一种接收反馈示意图。
步骤301:第一设备确定第一信息。
第一信息的具体内容可以参考前面的描述,在此不再赘述。
步骤302:第一设备根据第一信息向第二设备发送指定数量的CB。
步骤303:第二设备若确定正确接收到的CB的数量与正确译码所述目标TB所需的CB的数量之间的差值小于第一门限值,或者,所述第二设备若确定正确接收到的CB的数量与正确译码所述目标TB所需的CB的数量之间的差值大于第二门限值,则生成第二信息。
步骤304:第二设备向第一设备发送第二信息。
步骤305:第一设备根据所述第二信息调整所述第一信息。
再举例来说,结合前面的描述,如图4所示,为本申请实施例提供的一种接收反馈示意图。
步骤401:第一设备确定第一信息。
第一信息的具体内容可以参考前面的描述,在此不再赘述。
步骤402:第一设备根据第一信息向第二设备发送指定数量的CB。
步骤403:第一设备开启定时器。
定时器的定时时长为预设时长。
步骤404:第二设备若确定正确接收到的CB的数量与正确译码所述目标TB所需的CB的数量之间的差值大于或等于所述第一门限值且小于或等于所述第二门限值,则不生成并发送所述第二信息。
步骤405:第一设备在所述定时器超时时,所述第一设备未接收到所述第二设备发送的第二信息,则减少空口发送的CB的数量。
再举例来说,结合前面的描述,如图5所示,为本申请实施例提供的一种接收反馈示意图。
步骤501:第一设备确定第一信息。
第一信息的具体内容可以参考前面的描述,在此不再赘述。
步骤502:第一设备根据第一信息向第二设备发送指定数量的CB。
步骤503:第一设备开启定时器。
定时器的定时时长为预设时长。
步骤504:第二设备若确定正确接收到的由目标TB生成的CB数量与正确译码所述目标TB所需的CB的数量之间的差值小于第一门限值,则生成第二信息。所述第二信息用于指示第一设备增加空口发送的CB的数量。
步骤505:第二设备向第一设备发送第二信息。
步骤506:第一设备接收到所述第二设备发送的第二信息,并确定所述定时器未超时,则增加空口发送的CB的数量。
步骤105中,所述第一设备还可以向所述第二设备发送编码指示信息,用于指示由所述目标TB生成所述CB的过程中是否使用网络编码功能,以便第二设备确定是否对接收到的CB进行网络译码。
可选的,所述编码指示信息中包括以下至少一项:
MAC层标识,用于指示采用网络编码方式生成CB的MAC层;
载波标识,用于指示承载经过网络编码的CB的载波;
网络切片(network slice)标识,用于指示承载经过网络编码的CB的网络切片;需要说明的是,网络切片可以是指支持特定用例通信业务需求的逻辑网络功能组合。
空口(air interface)类型标识,用于指示发送经过网络编码的CB的空口类型。本申请实施例中,空口又称为空中接口,可以是指终端和无线接入网络之间的接口,例如可以是指Uu接口等空口,本申请实施例对此并不限定。
相应的,在步骤104之后,所述第二设备若接收到所述第一设备发送的编码指示信息,并根据所述编码指示信息确定由所述目标TB生成的CB经过网络编码,则对接收到的CB进行网络译码并恢复所述目标TB。
如图6所示,为本申请实施例提供的一种数据传输处理方法流程示意图。
图6所示的方法中的发送设备可以为终端、基站、节点、基站控制器、接入点(Access Point,AP)等能够在无线环境中工作的接口设备。
参见图6,该方法包括:
步骤601:发送设备接收目标RLC PDU,并将所述目标RLC PDU进行网络编码后获得至少一个网络编码块;
步骤602:所述网络设备根据所述至少一个网络编码块生成目标TB。
步骤601中,可以由发送设备的MAC层接收目标RLC PDU,MAC层接收目标RLC PDU之后,将收到的目标RLC PDU进行网络编码,生成至少一个网络编码块。其中,每个网络编码块的大小与所述发送设备的PHY层生成的CB的大小相同。其中,网络编码指的是使用喷泉码等进行编码,喷泉码包括但不限于LT码、Raptor码等编码。
步骤602中,发送设备根据生成的至少一个网络编码块生成目标TB。具体的,结合图7所示,发送设备将收到的目标RLC PDU进行网络编码后,生成至少一个网络编码块。发送设备将由每个RLC PDU生成的网络编码块进行汇聚,生成目标TB。其中,目标TB中包括的网络编码块除了来自目标RLC PDU之外,还可能来自其他RLC PDU。随后,发送设备的MAC层将生成的目标TB发送至网络设备的PHY层。PHY层收到该目标TB后,沿用现有LTE机制,将目标TB拆分成若干个CB,并加CRC后进行信道编码,然后在空口发送出去。发送设备在接收到目标TB的接收方发送的确认消息之前,会一直重复上述 过程。所述确认消息用于指示接收方已经正确译码出所述目标RLC PDU。
可选的,每个网络编码块中包括一个属性指示信息,所述属性指示信息用于指示包括所述属性指示信息的网络编码块所属的RLC PDU的信息。接收方在接收到每个网络编码块之后,可以根据属性指示信息确定每个网络编码块所属的RLC PDU。
在上述方法中,接收方在接收到目标TB并确定可以根据目标TB还原出目标RLC PDU,则向发送设备发送确认消息,否则接收方不会向发送设备发送反馈消息。
基于相同的技术构思,本申请实施例还提供一种数据传输装置,该装置可执行上述方法实施例。
如图8所示,为本申请实施例提供一种数据传输装置结构示意图。
参见图8,该装置包括:
处理单元801,用于确定第一信息;所述第一信息用于指示空口发送码块CB的数量;将目标传输块TB进行网络编码后生成CB,并根据所述第一信息向第二设备进行所述CB的发送;
收发单元802,用于接收所述第二设备发送的第二信息,所述第二信息用于调整第一信息所指示的在空口发送CB的数量。
可选的,所述装置为接入网设备;
所述处理单元801具体用于:
通过所述装置的媒体接入控制MAC层确定所述第一信息;或者,
通过所述装置的物理PHY层根据所述目标TB的大小、调制与编码策略MCS信息以及物理资源块PRB分配信息确定所述第一信息。
可选的,所述装置为终端;
所述处理单元801具体用于:
接收第二设备发送的MAC控制元素,所述MAC控制元素中携带所述第一信息;或者
接收第二设备发送的下行控制信息DCI,所述DCI中携带所述第一信息。
可选的,所述第二信息为所述第二设备确定正确接收到CB的数量与所述第二设备正确译码所述目标TB所需的CB的数量之间的差值;
所述处理单元801具体用于:
所述第一设备若确定所述差值小于第一门限值,则增加所述第一信息所指示的空口发送CB的数量;或者
所述第一设备若确定所述差值大于第二门限值,则减少所述第一信息所指示的空口发送CB的数量;
其中,所述第一门限值小于或等于所述第二门限值。
可选的,所述处理单元801具体用于:
开启定时器;
在所述定时器超时之前,如果所述装置接收到所述第二设备发送的第二信息,则根据所述第二信息增加空口发送CB的数量;或者
在所述定时器超时之前,如果所述装置未接收到所述第二设备发送的第二信息,则减少空口发送CB的数量。
可选的,所述收发单元802还用于:
向所述第二设备发送编码指示信息,所述编码指示信息用于指示由所述目标TB生成所述CB的过程中是否使用网络编码功能。
可选的,所述编码指示信息中包括以下至少一项:
MAC层标识;
载波标识;
网络切片标识;
空口类型标识。
如图9所示,为本申请实施例提供一种数据传输装置结构示意图。
参见图9,该装置包括:
处理单元901,用于根据正确接收第一设备发送的由目标传输块TB生成的码块CB的数量与正确译码所述目标TB所需的CB的数量之间的差值生成第二信息;所述第二信息用于调整第一信息所指示的在空口发送CB的数量;所述第一信息指示空口发送CB的数量;
收发单元902,用于向所述第一设备发送所述第二信息。
可选的,所述处理单元901具体用于:
若正确接收到的由目标TB生成的CB数量与正确译码所述目标TB所需的CB的数量之间的差值小于第一门限值,则生成用于指示第一设备增加空口发送CB的数量的第二信息。
可选的,所述收发单元902还用于:
接收所述第一设备发送的编码指示信息,所述编码指示信息用于指示由所述目标TB生成的CB的过程中是否使用网络编码功能;
所述处理单元901还用于,若根据所述编码指示信息确定由所述目标TB生成的CB经过网络编码,则对接收到的CB进行网络译码并恢复所述目标TB。
可选的,所述编码指示信息中包括以下至少一项:
媒体接入控制MAC层标识;
载波标识;
网络切片标识;
空口类型标识。
如图10所示,为本申请实施例提供一种数据处理装置结构示意图。
参见图10,该装置包括:
收发单元1001,用于接收目标协议数据单元RLC PDU,并将所述目标RLC PDU进行网络编码后获得至少一个网络编码块;
处理单元1002,用于根据所述至少一个网络编码块生成目标TB。
可选的,每个网络编码块的大小与所述发送设备的物理PHY层生成的CB的大小相同。
可选的,每个网络编码块中包括一个属性指示信息,所述属性指示信息用于指示包括所述属性指示信息的网络编码块所属的RLC PDU的信息。
如图11所示,为本申请实施例提供一种数据传输装置结构示意图。
参见图11,该装置包括:
处理器1101,用于确定第一信息;所述第一信息用于指示空口发送码块CB的数量;将目标传输块TB进行网络编码后生成CB,并根据所述第一信息向第二设备进行所述CB 的发送;
收发机1102,用于接收所述第二设备发送的第二信息,所述第二信息用于调整第一信息所指示的在空口发送CB的数量。
可选的,所述装置为接入网设备;
所述处理器1101具体用于:
通过所述装置的媒体接入控制MAC层确定所述第一信息;或者,
通过所述装置的物理PHY层根据所述目标TB的大小、调制与编码策略MCS信息以及物理资源块PRB分配信息确定所述第一信息。
可选的,所述装置为终端;
所述处理器1101具体用于:
接收第二设备发送的MAC控制元素,所述MAC控制元素中携带所述第一信息;或者
接收第二设备发送的下行控制信息DCI,所述DCI中携带所述第一信息。
可选的,所述第二信息为所述第二设备确定正确接收到CB的数量与所述第二设备正确译码所述目标TB所需的CB的数量之间的差值;
所述处理器1101具体用于:
所述第一设备若确定所述差值小于第一门限值,则增加所述第一信息所指示的空口发送CB的数量;或者
所述第一设备若确定所述差值大于第二门限值,则减少所述第一信息所指示的空口发送CB的数量;
其中,所述第一门限值小于或等于所述第二门限值。
可选的,所述处理器1101具体用于:
开启定时器;
在所述定时器超时之前,如果所述装置接收到所述第二设备发送的第二信息,则根据所述第二信息增加空口发送CB的数量;或者
在所述定时器超时之前,如果所述装置未接收到所述第二设备发送的第二信息,则减少空口发送CB的数量。
可选的,所述收发机1102还用于:
向所述第二设备发送编码指示信息,所述编码指示信息用于指示由所述目标TB生成所述CB的过程中是否使用网络编码功能。
可选的,所述编码指示信息中包括以下至少一项:
MAC层标识;
载波标识;
网络切片标识;
空口类型标识。
如图12所示,为本申请实施例提供一种数据传输装置结构示意图。
参见图12,该装置包括:
处理器1201,用于根据正确接收第一设备发送的由目标传输块TB生成的码块CB的数量与正确译码所述目标TB所需的CB的数量之间的差值生成第二信息;所述第二信息用于调整第一信息所指示的在空口发送CB的数量;所述第一信息指示空口发送CB的数 量;
收发机1202,用于向所述第一设备发送所述第二信息。
可选的,所述处理器1201具体用于:
若正确接收到的由目标TB生成的CB数量与正确译码所述目标TB所需的CB的数量之间的差值小于第一门限值,则生成用于指示第一设备增加空口发送CB的数量的第二信息。
可选的,所述收发机1202还用于:
接收所述第一设备发送的编码指示信息,所述编码指示信息用于指示由所述目标TB生成的CB的过程中是否使用网络编码功能;
所述处理器1201还用于,若根据所述编码指示信息确定由所述目标TB生成的CB经过网络编码,则对接收到的CB进行网络译码并恢复所述目标TB。
可选的,所述编码指示信息中包括以下至少一项:
媒体接入控制MAC层标识;
载波标识;
网络切片标识;
空口类型标识。
如图13所示,为本申请实施例提供一种数据处理装置结构示意图。
参见图13,该装置包括:
收发机1301,用于接收目标协议数据单元RLC PDU,并将所述目标RLC PDU进行网络编码后获得至少一个网络编码块;
处理器1302,用于根据所述至少一个网络编码块生成目标TB。
可选的,每个网络编码块的大小与所述发送设备的物理PHY层生成的CB的大小相同。
可选的,每个网络编码块中包括一个属性指示信息,所述属性指示信息用于指示包括所述属性指示信息的网络编码块所属的RLC PDU的信息。
图11至图13中,收发机可以是有线收发机,无线收发机或其组合。有线收发机例如可以为以太网接口。以太网接口可以是光接口,电接口或其组合。无线收发机例如可以为无线局域网收发机,蜂窝网络收发机或其组合。处理器可以是中央处理器(英文:central processing unit,缩写:CPU),网络处理器(英文:network processor,缩写:NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(英文:application-specific integrated circuit,缩写:ASIC),可编程逻辑器件(英文:programmable logic device,缩写:PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(英文:complex programmable logic device,缩写:CPLD),现场可编程逻辑门阵列(英文:field-programmable gate array,缩写:FPGA),通用阵列逻辑(英文:generic array logic,缩写:GAL)或其任意组合。
可选的,图11至图13中还可以包括总线接口,总线接口可以包括任意数量的互联的总线和桥,具体由处理器代表的一个或多个处理器和存储器代表的存储器的各种电路链接在一起。总线接口还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机提供用于在传输介质上与各种其他设备通信的单元。处理器负责管理总线架构和通常的处理,存储器可以存储处理器在执行操作时所使用的数据。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (28)

  1. 一种数据传输方法,其特征在于,包括:
    第一设备确定第一信息;所述第一信息用于指示空口发送码块CB的数量;
    所述第一设备将目标传输块TB进行网络编码后生成CB,并根据所述第一信息向第二设备进行所述CB的发送;
    所述第一设备接收所述第二设备发送的第二信息,所述第二信息用于调整第一信息所指示的在空口发送CB的数量。
  2. 根据权利要求1所述的方法,其特征在于,所述第一设备为接入网设备;
    所述第一设备确定第一信息,包括:
    所述第一设备通过所述第一设备的媒体接入控制MAC层确定所述第一信息;或者,
    所述第一设备通过所述第一设备的物理PHY层根据所述目标TB的大小、调制与编码策略MCS信息以及物理资源块PRB分配信息确定所述第一信息。
  3. 根据权利要求1所述的方法,其特征在于,所述第一设备为终端;
    所述第一设备确定第一信息,包括:
    所述第一设备接收第二设备发送的MAC控制元素,所述MAC控制元素中携带所述第一信息;或者
    所述第一设备接收第二设备发送的下行控制信息DCI,所述DCI中携带所述第一信息。
  4. 根据权利要求1至3任一所述的方法,其特征在于,所述第二信息为所述第二设备确定正确接收到CB的数量与所述第二设备正确译码所述目标TB所需的CB的数量之间的差值;
    所述第一设备接收所述第二设备发送的第二信息之后,还包括:
    所述第一设备若确定所述差值小于第一门限值,则增加所述第一信息所指示的空口发送CB的数量;或者
    所述第一设备若确定所述差值大于第二门限值,则减少所述第一信息所指示的空口发送CB的数量;
    其中,所述第一门限值小于或等于所述第二门限值。
  5. 根据权利要求1至4任一所述的方法,其特征在于,所述方法还包括:
    所述第一设备开启定时器;
    在所述定时器超时之前,如果所述第一设备接收到所述第二设备发送的第二信息,则根据所述第二信息增加空口发送CB的数量;或者
    在所述定时器超时之前,如果所述第一设备未接收到所述第二设备发送的第二信息,则所述第一设备减少空口发送CB的数量。
  6. 根据权利要求1至5任一所述的方法,其特征在于,所述方法还包括:
    所述第一设备向所述第二设备发送编码指示信息,所述编码指示信息用于指示由所述目标TB生成所述CB的过程中是否使用网络编码功能。
  7. 根据权利要求6所述的方法,其特征在于,所述编码指示信息中包括以下至少一项:
    MAC层标识;
    载波标识;
    网络切片标识;
    空口类型标识。
  8. 一种数据传输方法,其特征在于,包括:
    第二设备根据正确接收第一设备发送的由目标传输块TB生成的码块CB的数量与正确译码所述目标TB所需的CB的数量之间的差值生成第二信息;所述第二信息用于调整第一信息所指示的在空口发送CB的数量;所述第一信息指示空口发送CB的数量;
    所述第二设备向所述第一设备发送所述第二信息。
  9. 根据权利要求8所述的方法,其特征在于,所述第二设备根据正确接收由第一设备发送的由目标TB生成的CB的数量与正确译码所述目标TB所需的CB的数量之间的差值生成第二信息,包括:
    所述第二设备若正确接收到的由目标TB生成的CB数量与正确译码所述目标TB所需的CB的数量之间的差值小于第一门限值,则生成用于指示第一设备增加空口发送CB的数量的第二信息。
  10. 根据权利要求8至9任一所述的方法,其特征在于,所述方法还包括:
    所述第二设备接收所述第一设备发送的编码指示信息,所述编码指示信息用于指示由所述目标TB生成的CB的过程中是否使用网络编码功能;
    所述第二设备若根据所述编码指示信息确定由所述目标TB生成的CB经过网络编码,则对接收到的CB进行网络译码并恢复所述目标TB。
  11. 根据权利要求10所述的方法,其特征在于,所述编码指示信息中包括以下至少一项:
    媒体接入控制MAC层标识;
    载波标识;
    网络切片标识;
    空口类型标识。
  12. 一种数据处理方法,其特征在于,包括:
    发送设备接收目标协议数据单元RLC PDU,并将所述目标RLC PDU进行网络编码后获得至少一个网络编码块;
    所述发送设备根据所述至少一个网络编码块生成目标TB。
  13. 根据权利要求12所述的方法,其特征在于,每个网络编码块的大小与所述发送设备的物理PHY层生成的CB的大小相同。
  14. 根据权利要求12至13任一所述的方法,其特征在于,每个网络编码块中包括一个属性指示信息,所述属性指示信息用于指示包括所述属性指示信息的网络编码块所属的RLC PDU的信息。
  15. 一种数据传输装置,其特征在于,包括:
    处理单元,用于确定第一信息;所述第一信息用于指示空口发送码块CB的数量;将目标传输块TB进行网络编码后生成CB,并根据所述第一信息向第二设备进行所述CB的发送;
    收发单元,用于接收所述第二设备发送的第二信息,所述第二信息用于调整第一信息所指示的在空口发送CB的数量。
  16. 根据权利要求15所述的装置,其特征在于,所述装置为接入网设备;
    所述处理单元具体用于:
    通过所述装置的媒体接入控制MAC层确定所述第一信息;或者,
    通过所述装置的物理PHY层根据所述目标TB的大小、调制与编码策略MCS信息以及物理资源块PRB分配信息确定所述第一信息。
  17. 根据权利要求15所述的装置,其特征在于,所述装置为终端;
    所述处理单元具体用于:
    接收第二设备发送的MAC控制元素,所述MAC控制元素中携带所述第一信息;或者
    接收第二设备发送的下行控制信息DCI,所述DCI中携带所述第一信息。
  18. 根据权利要求15至17任一所述的装置,其特征在于,所述第二信息为所述第二设备确定正确接收到CB的数量与所述第二设备正确译码所述目标TB所需的CB的数量之间的差值;
    所述处理单元具体用于:
    所述第一设备若确定所述差值小于第一门限值,则增加所述第一信息所指示的空口发送CB的数量;或者
    所述第一设备若确定所述差值大于第二门限值,则减少所述第一信息所指示的空口发送CB的数量;
    其中,所述第一门限值小于或等于所述第二门限值。
  19. 根据权利要求15至18任一所述的装置,其特征在于,所述处理单元具体用于:
    开启定时器;
    在所述定时器超时之前,如果所述装置接收到所述第二设备发送的第二信息,则根据所述第二信息增加空口发送CB的数量;或者
    在所述定时器超时之前,如果所述装置未接收到所述第二设备发送的第二信息,则减少空口发送CB的数量。
  20. 根据权利要求15至19任一所述的装置,其特征在于,所述收发单元还用于:
    向所述第二设备发送编码指示信息,所述编码指示信息用于指示由所述目标TB生成所述CB的过程中是否使用网络编码功能。
  21. 根据权利要求20所述的装置,其特征在于,所述编码指示信息中包括以下至少一项:
    MAC层标识;
    载波标识;
    网络切片标识;
    空口类型标识。
  22. 一种数据传输装置,其特征在于,包括:
    处理单元,用于根据正确接收第一设备发送的由目标传输块TB生成的码块CB的数量与正确译码所述目标TB所需的CB的数量之间的差值生成第二信息;所述第二信息用于调整第一信息所指示的在空口发送CB的数量;所述第一信息指示空口发送CB的数量;
    收发单元,用于向所述第一设备发送所述第二信息。
  23. 根据权利要求22所述的装置,其特征在于,所述处理单元具体用于:
    若正确接收到的由目标TB生成的CB数量与正确译码所述目标TB所需的CB的数量 之间的差值小于第一门限值,则生成用于指示第一设备增加空口发送CB的数量的第二信息。
  24. 根据权利要求22至23任一所述的装置,其特征在于,所述收发单元还用于:
    接收所述第一设备发送的编码指示信息,所述编码指示信息用于指示由所述目标TB生成的CB的过程中是否使用网络编码功能;
    所述处理单元还用于,若根据所述编码指示信息确定由所述目标TB生成的CB经过网络编码,则对接收到的CB进行网络译码并恢复所述目标TB。
  25. 根据权利要求24所述的装置,其特征在于,所述编码指示信息中包括以下至少一项:
    媒体接入控制MAC层标识;
    载波标识;
    网络切片标识;
    空口类型标识。
  26. 一种数据处理装置,其特征在于,包括:
    收发单元,用于接收目标协议数据单元RLC PDU,并将所述目标RLC PDU进行网络编码后获得至少一个网络编码块;
    处理单元,用于根据所述至少一个网络编码块生成目标TB。
  27. 根据权利要求26所述的装置,其特征在于,每个网络编码块的大小与所述发送设备的物理PHY层生成的CB的大小相同。
  28. 根据权利要求26至27任一所述的装置,其特征在于,每个网络编码块中包括一个属性指示信息,所述属性指示信息用于指示包括所述属性指示信息的网络编码块所属的RLC PDU的信息。
PCT/CN2017/097522 2016-08-17 2017-08-15 一种数据传输、数据处理方法及装置 WO2018033069A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17841041.1A EP3477881B1 (en) 2016-08-17 2017-08-15 Data transmission and data processing method and device
US16/278,146 US20190182809A1 (en) 2016-08-17 2019-02-17 Data transmission method and apparatus, and data processing method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610681997.0A CN107769887B (zh) 2016-08-17 2016-08-17 一种数据传输、数据处理方法及装置
CN201610681997.0 2016-08-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/278,146 Continuation US20190182809A1 (en) 2016-08-17 2019-02-17 Data transmission method and apparatus, and data processing method and apparatus

Publications (1)

Publication Number Publication Date
WO2018033069A1 true WO2018033069A1 (zh) 2018-02-22

Family

ID=61197243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097522 WO2018033069A1 (zh) 2016-08-17 2017-08-15 一种数据传输、数据处理方法及装置

Country Status (4)

Country Link
US (1) US20190182809A1 (zh)
EP (1) EP3477881B1 (zh)
CN (1) CN107769887B (zh)
WO (1) WO2018033069A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210336725A1 (en) * 2020-04-27 2021-10-28 Qualcomm Incorporated Network coding termination and procedures using feedback
US11445481B2 (en) * 2018-06-01 2022-09-13 Apple Inc. Early packet delivery to radio link control

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109274534B (zh) * 2018-09-30 2021-07-30 中国联合网络通信集团有限公司 一种网络切片的监管方法及设备、通信系统
CN113114410A (zh) * 2020-01-10 2021-07-13 维沃移动通信有限公司 数据处理方法、配置方法及通信设备
CN113271176B (zh) * 2020-02-14 2024-04-12 华为技术有限公司 网络编码方法和通信装置
CN113839739B (zh) * 2020-06-24 2023-07-28 华为技术有限公司 通信系统中数据处理方法和装置
WO2022017517A1 (en) * 2020-07-24 2022-01-27 Qualcomm Incorporated Rateless coding at a layer two protocol layer
WO2022027213A1 (en) * 2020-08-04 2022-02-10 Qualcomm Incorporated Network coding augmented radio link control (rlc) layer communication
WO2022016488A1 (en) * 2020-07-24 2022-01-27 Qualcomm Incorporated Rateless coding at a packet data convergence protocol layer
CN115087033A (zh) * 2021-03-16 2022-09-20 维沃移动通信有限公司 网络编码处理方法、装置、通信设备及可读存储介质
US20230171069A1 (en) * 2021-11-29 2023-06-01 Qualcomm Incorporated Network coding using feedback associated with feedback bins
WO2023170584A1 (en) * 2022-03-07 2023-09-14 Lenovo (Singapore) Pte. Ltd. Configuring based on network coding
WO2023170586A1 (en) * 2022-03-07 2023-09-14 Lenovo (Singapore) Pte. Ltd. Configuring based on network coding and multiplexing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030123409A1 (en) * 2001-10-17 2003-07-03 Samsung Electronics Co., Ltd. Apparatus and method for multiplexing/demultiplexing transport channels in a CDMA communication system
CN101938334A (zh) * 2010-09-21 2011-01-05 上海大学 随机网络编码和自动重传请求联合的自适应差错控制方法
CN103647621A (zh) * 2013-11-29 2014-03-19 华为技术有限公司 数据编码的处理方法和装置
CN105450357A (zh) * 2014-09-24 2016-03-30 中兴通讯股份有限公司 编码参数的调整、反馈信息的处理方法及装置
CN105515733A (zh) * 2014-09-24 2016-04-20 中兴通讯股份有限公司 一种反馈方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4349114B2 (ja) * 2003-12-10 2009-10-21 ソニー株式会社 送信装置および方法、受信装置および方法、記録媒体、並びにプログラム
JP4356742B2 (ja) * 2006-12-25 2009-11-04 ソニー株式会社 データ通信システム、データ送信装置およびデータ送信方法
CA2786083C (en) * 2009-12-31 2015-08-25 Huawei Technologies Co., Ltd. Contention based resource configuration method and apparatus
CN102801490A (zh) * 2011-05-25 2012-11-28 中兴通讯股份有限公司 一种上行协作集中信息交互的方法及系统
WO2013183236A1 (ja) * 2012-06-04 2013-12-12 パナソニック株式会社 送信装置、受信装置、送信方法および受信方法
US10091117B2 (en) * 2015-07-24 2018-10-02 Qualcomm Incorporated Code block segmentation and rate matching for multiple transport block transmissions
CN117061067A (zh) * 2016-06-20 2023-11-14 株式会社Ntt都科摩 终端、无线通信方法、基站以及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030123409A1 (en) * 2001-10-17 2003-07-03 Samsung Electronics Co., Ltd. Apparatus and method for multiplexing/demultiplexing transport channels in a CDMA communication system
CN101938334A (zh) * 2010-09-21 2011-01-05 上海大学 随机网络编码和自动重传请求联合的自适应差错控制方法
CN103647621A (zh) * 2013-11-29 2014-03-19 华为技术有限公司 数据编码的处理方法和装置
CN105450357A (zh) * 2014-09-24 2016-03-30 中兴通讯股份有限公司 编码参数的调整、反馈信息的处理方法及装置
CN105515733A (zh) * 2014-09-24 2016-04-20 中兴通讯股份有限公司 一种反馈方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3477881A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11445481B2 (en) * 2018-06-01 2022-09-13 Apple Inc. Early packet delivery to radio link control
US20210336725A1 (en) * 2020-04-27 2021-10-28 Qualcomm Incorporated Network coding termination and procedures using feedback
US11588587B2 (en) * 2020-04-27 2023-02-21 Qualcomm Incorporated Network coding termination and procedures using feedback

Also Published As

Publication number Publication date
EP3477881B1 (en) 2021-11-24
EP3477881A4 (en) 2019-10-23
US20190182809A1 (en) 2019-06-13
CN107769887A (zh) 2018-03-06
CN107769887B (zh) 2021-02-12
EP3477881A1 (en) 2019-05-01

Similar Documents

Publication Publication Date Title
WO2018033069A1 (zh) 一种数据传输、数据处理方法及装置
EP3430750B1 (en) Method for partial retransmission
KR102356204B1 (ko) 통신 방법 및 통신 장치
KR102566795B1 (ko) 데이터 송신을 위한 방법, 디바이스, 및 시스템
JP2018510570A (ja) マルチレイヤプロトコルワイヤレスシステムにおいてバースト性パンクチャリングおよび干渉を軽減するためのコードブロックレベルの誤り訂正および媒体アクセス制御(mac)レベルのハイブリッド自動再送要求
KR102334935B1 (ko) 전송 방법, 단말 장치 및 기지국
WO2010115295A1 (zh) 请求重传方法、重传方法及其设备
WO2020244645A1 (zh) 一种通信方法及装置
CN110870237A (zh) 基于数据块的传输
TW201138359A (en) Method and system to improve link budget of a wireless system
WO2018028682A1 (zh) 一种数据传输方法、装置和系统
US11817958B2 (en) MAC-based hybrid automatic repeat request (HARQ)
JP7297678B2 (ja) データが破損しているかどうかを判断するための方法および装置
JP6899450B2 (ja) データ伝送方法、端末及び基地局
WO2019095971A1 (zh) 一种通信方法及设备
WO2018141229A1 (zh) 数据传输方法和装置
WO2020220962A1 (zh) 直通链路传输方法和终端
WO2021233146A1 (zh) 一种数据调度方法及装置
WO2018201905A1 (zh) 一种数据传输方法、终端以及基站
WO2018137584A1 (zh) 用于反馈的方法、设备和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17841041

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017841041

Country of ref document: EP

Effective date: 20190122

NENP Non-entry into the national phase

Ref country code: DE