WO2018032998A1 - 一种信号干扰装置和方法 - Google Patents

一种信号干扰装置和方法 Download PDF

Info

Publication number
WO2018032998A1
WO2018032998A1 PCT/CN2017/096469 CN2017096469W WO2018032998A1 WO 2018032998 A1 WO2018032998 A1 WO 2018032998A1 CN 2017096469 W CN2017096469 W CN 2017096469W WO 2018032998 A1 WO2018032998 A1 WO 2018032998A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
interference
link
modulated
air
Prior art date
Application number
PCT/CN2017/096469
Other languages
English (en)
French (fr)
Inventor
张岩
倪慧娟
丁高泉
于濛
刘贞社
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Publication of WO2018032998A1 publication Critical patent/WO2018032998A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/60Jamming involving special techniques
    • H04K3/62Jamming involving special techniques by exposing communication, processing or storing systems to electromagnetic wave radiation, e.g. causing disturbance, disruption or damage of electronic circuits, or causing external injection of faults in the information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/40Jamming having variable characteristics
    • H04K3/43Jamming having variable characteristics characterized by the control of the jamming power, signal-to-noise ratio or geographic coverage area
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/40Jamming having variable characteristics
    • H04K3/45Jamming having variable characteristics characterized by including monitoring of the target or target signal, e.g. in reactive jammers or follower jammers for example by means of an alternation of jamming phases and monitoring phases, called "look-through mode"

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a signal interference apparatus and method.
  • Terminal signal jammers are mainly used in various test venues, schools, gas stations, churches, courts, libraries, conference centers (rooms), theaters, hospitals, government, finance, prisons, public security, military heavy places, etc. .
  • the terminal signal jammer can make the terminal in the state of searching the network, no signal, no service system, etc., thereby blocking the terminal signal and ensuring the security of the shielded area.
  • the commonly used terminal signal jammer usually adopts a signal interference mode: a normal transmission mode that scans from the low-end frequency of the forward channel to the high-end at a certain speed.
  • the existing signal interference mode has a problem in that the frequency sweeping mode from the low-end frequency of the forward channel to the high-end scanning has higher power requirements for the interference signal, and the terminal signal jammer is always in the normal-time mode, and the power consumption of the device Larger, and for a communication system with a flexible configuration, such as the 4th Generation Mobile Communication (4G) system, it is often impossible to block the communication between the terminal and the outside world, and it is impossible to completely block the communication of the terminal.
  • 4G 4th Generation Mobile Communication
  • the invention provides a signal interference device and method, which solves the problem that the existing terminal signal jammer has high power requirement, large power consumption of the device, and cannot completely block terminal communication.
  • a signal interference device including:
  • a receiving link for receiving an air signal, converting the air signal into a digital signal, and transmitting the digital signal to a programmable interference source module;
  • a programmable interference source module configured to perform desynchronization processing on the digital signal, generate a transmission modulation signal according to a result of the de-synchronization processing, and send the transmission modulation signal to a transmission link;
  • a transmit link for receiving the transmit modulated signal, converting the transmit modulated signal to a modulated interference signal, and radiating the modulated interference signal into the air.
  • the receiving link includes:
  • a limiter for limiting the air signal
  • a first mixer configured to perform frequency conversion processing on the low-noise amplified air signal according to the first local oscillator signal to obtain an intermediate frequency signal
  • a first filter configured to perform filtering processing on the intermediate frequency signal
  • a first amplifier configured to perform amplification processing on the filtered intermediate frequency signal
  • An analog to digital converter for converting the amplified intermediate frequency signal into the digital signal.
  • the receiving link further includes: a first switch, a second switch, a third switch, and at least one filter link and a through link;
  • the second switch and the third switch are configured to control selection of the at least one filter link and a through link, and select a filter link or a through link as the limiter and the low noise amplifier Connection link between;
  • the first switch is configured to control the air signal after the limiting processing to enter the first mixer.
  • the transmitting link includes:
  • a digital-to-analog converter configured to receive the transmit modulated signal, and convert the transmit modulated signal into an analog signal
  • a second mixer configured to perform a mixing process on the analog signal according to the second local oscillation signal to obtain a pre-modulation interference signal; wherein, a frequency of the pre-modulation interference signal matches an interference frequency point;
  • a second oscillator configured to generate the second local oscillator signal
  • a second filter configured to perform filtering processing on the pre-modulation interference signal
  • a second amplifier configured to perform amplification processing on the pre-modulated interference signal after filtering
  • a passive filter configured to filter out harmonics in the pre-modulated interference signal after the amplification process, to obtain the modulated interference signal
  • a second antenna for radiating the modulated interference signal into the air.
  • the transmitting link further includes: a coupler disposed between the second amplifier and the passive filter;
  • the coupler is configured to perform a coupling process on the amplified pre-modulation interference signal to obtain a coupled signal, and send the coupled signal to the first mixer through the first switch;
  • the programmable interference source module is further configured to detect the transmitting link according to a coupled signal processed by the first mixer, the first filter, the first amplifier, and the analog-to-digital converter in sequence Output power.
  • the device further includes: a phase locked loop respectively connected to the receiving link, the programmable interference source module and the transmitting link;
  • the phase locked loop is configured to generate a clock signal, and send the clock signal to the receiving link, the programmable interference source module, and the transmitting link, respectively, to implement synchronization of the signal interference device .
  • the invention also discloses a signal interference method, comprising:
  • the receiving the air signal, converting the air signal into a digital signal, and transmitting the digital signal to the programmable interference source module comprises:
  • the air signal is sequentially passed through a limiting process of the limiter, a low noise amplification process of the low noise amplifier, a mixing process of the first mixer and the first oscillator, to obtain an intermediate frequency signal;
  • the intermediate frequency signal is sequentially passed through a filtering process of the first filter, an amplification process of the first amplifier, and an analog-to-digital conversion process of the analog-to-digital converter to obtain the digital signal.
  • the receiving the air signal, converting the air signal into a digital signal, and transmitting the digital signal to the programmable interference source module further includes:
  • the air signal after the clipping process is controlled by the first switch to enter the first mixer.
  • the transmitting by the transmitting link, receiving the transmit modulated signal, converting the transmit modulated signal into a modulated interference signal, and radiating the modulated interference signal into the air, comprising:
  • the pre-modulation interference signal is sequentially passed through a filtering process of the second filter, an amplification process of the second amplifier, and a harmonic filtering process of the passive filter to obtain the modulated interference signal;
  • the modulated interference signal is radiated into the air by a second antenna.
  • the transmitting by the transmitting link, the transmitting the modulated signal, converting the transmitted modulated signal into a modulated interference signal, and radiating the modulated interference signal into the air, further comprising:
  • the method further includes: monitoring, by the programmable interference source module, a coupled signal processed by the first mixer, the first filter, the first amplifier, and the analog-to-digital converter in sequence, The output power of the transmit link is determined.
  • the method further includes:
  • a clock signal is generated by the phase locked loop, and the clock signal is separately sent to the receiving link, the programmable interference source module, and the transmitting link to implement synchronization of the signal interference device.
  • the present invention includes the following advantages:
  • the invention discloses a signal interference device, comprising: a receiving link, a programmable interference source module and a transmitting link.
  • the receiving link may convert the air signal for indicating the environmental condition of the interference area into a digital signal and send it to the programmable interference source module, and the programmable interference source module determines the environmental condition of the external interference area according to the digital signal, and generates
  • the transmitting modulated signal is adapted to the external environment, and finally, the transmitted modulated signal is radiated into the air through the transmission link modulation processing, thereby achieving interference and shielding of signals in the interference region.
  • the detection of the interference region can be realized by acquiring the air signal in the interference region, and the modulation interference is generated by using the programmable interference source module and the transmission link to selectively use different output powers of different interference sources.
  • signal that is, for different interference area ranges, the power is adjustable, and for different communication system targets, corresponding effective interference sources can be generated to meet different application scenarios, and the interference and shielding of the terminal signals in various scenarios are effectively realized;
  • the continuous frequency sweeping operation is avoided, the power requirement of the generated modulated interference signal is reduced, and the signal jamming device does not need to be in the normal emitting mode, which reduces the power consumption of the device.
  • FIG. 1 is a block diagram showing the structure of a signal interference device according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural diagram of a signal interference device according to Embodiment 2 of the present invention.
  • FIG. 3 is a flow chart showing the steps of a signal interference method according to Embodiment 3 of the present invention.
  • Embodiment 4 is a flow chart showing the steps of a preferred signal interference method in Embodiment 3 of the present invention.
  • the signal interference device may include a receiving link 10, a programmable interference source module 20, and a transmitting link 30.
  • the receiving link 10 is for receiving an air signal, converting the air signal to a digital signal, and transmitting the digital signal to a programmable interference source module.
  • the receive link 10 can receive over-the-air signals in any suitable manner, for example, but can be, but is not limited to, receiving over-the-air signals through antennas disposed in the receive link 10. Further, the receiving link 10 may convert the received air signal into a digital signal and send it to the programmable interference source module, so that the programmable interference source module analyzes the air environment according to the digital signal, and determines according to the analysis result. Matching transmit modulated signals.
  • the programmable interference source module 20 is configured to perform desynchronization processing on the digital signal, generate a transmission modulation signal according to the result of the de-synchronization processing, and send the transmission modulation signal to a transmission link.
  • the programmable interference source module 20 can implement the configuration of the control and parameters of the receive link 10 and the transmit link 30 described below.
  • the programmable interference source module 20 can perform desynchronization processing on the digital signal reported by the receiving link 10, and implement control on the following transmission link 30 and the receiving link 10 according to the result of the de-synchronization processing.
  • the programmable interference source module 20 may determine the frequency band, the standard, and the power of the current interference region according to the result of the desynchronization processing; and then, generate and transmit the transmit modulated signal in a targeted manner to ensure modulation by the transmit link radiation.
  • the interference signal matches the environment of the current interference area, achieving the effect of green energy saving.
  • the transmit link 30 is configured to receive the transmit modulated signal, convert the transmit modulated signal to a modulated interference signal, and radiate the modulated interference signal into the air.
  • the transmit link 30 may convert the transmit modulated signal output by the programmable interference source module 20 into a modulated interference signal, and radiate the modulated interference signal into the air. Signal interference to the interference area is achieved.
  • a signal interference apparatus may include: a receiving link, a programmable interference source module, and a transmitting link.
  • the receiving link may convert the air signal for indicating the environmental condition of the interference area into a digital signal and send it to the programmable interference source module, and the programmable interference source module determines the environmental condition of the external interference area according to the digital signal, and generates
  • the transmitting modulated signal is adapted to the external environment, and finally, the transmitted modulated signal is radiated into the air through the transmission link modulation processing, thereby achieving interference and shielding of signals in the interference region.
  • the detection of the interference region can be implemented by acquiring the air signal in the interference region, and then the programmable interference source module and the transmission link are used to generate different output powers of different interference sources. Modulate the interference signal. That is, for different interference area ranges, the power is adjustable, and for different communication system targets, corresponding effective interference sources can be generated to meet different application scenarios, and the interference and shielding of the terminal signals in various scenarios are effectively realized; The continuous frequency sweeping operation is avoided, the power requirement of the generated modulated interference signal is reduced, and the signal jamming device does not need to be in the normal emitting mode, which reduces the power consumption of the device.
  • the signal interference device may include a receiving link 10, a programmable interference source module 20, a transmitting link 30, and a Phase Locked Loop (PLL) 40.
  • PLL Phase Locked Loop
  • the receiving link 10 includes: a first antenna 101, a limiter 104, a third switch 102, at least one filter link and a through link, a second switch 103, and a low noise amplifier (LNA, Low Noise Amplifier) connected in sequence.
  • LNA Low Noise Amplifier
  • 105 a first switch 106, a first mixer 107, a first filter 109, a first amplifier 110, and an analog-to-digital converter (A/D) 111
  • a first oscillator 108 is coupled to a mixer 107.
  • the transmitting link 30 includes a D/A (Digital-to-Analog Converter) 308, a second mixer 306, a second filter 305, a second amplifier 304, and a coupler 303.
  • the receiving link 10 is configured to receive an air signal, convert the air signal into a digital signal, and transmit the digital signal to a programmable interference source module.
  • the programmable interference source module 20 is configured to perform desynchronization processing on the digital signal, generate a transmission modulation signal according to the result of the de-synchronization processing, and send the transmission modulation signal to a transmission link.
  • the transmit link 30 is configured to receive the transmit modulated signal, convert the transmit modulated signal to a modulated interference signal, and radiate the modulated interference signal into the air.
  • the first antenna 101 is configured to receive the air signal; the limiter 104 is configured to perform a clipping process on the air signal; and the low noise amplifier 105 is configured to perform low noise amplification on the air signal after the clipping process;
  • a mixer 107 is configured to perform frequency conversion processing on the low noise amplified air signal according to the first local oscillation signal to obtain an intermediate frequency signal; the first oscillator 108 is configured to generate the first local oscillation signal; and the first filter 109 For performing filtering processing on the intermediate frequency signal; the first amplifier 110 is configured to perform amplification processing on the filtered intermediate frequency signal; and the analog to digital converter 111 is configured to convert the amplified intermediate frequency signal into the digital signal.
  • the second switch 103 and the third switch 102 are configured to control selection of the at least one filter link and the through link, and select a filter link or a through link as the limiter 104 and A connection link between the low noise amplifiers 105.
  • the first switch 106 is configured to control the air signal after the clipping process to enter the first mixer 107.
  • a signal in the space passes through the first antenna 101 and the limiter 104.
  • the air signal passes through the third switch 102 to select a different filtering link or a through link, and then passes through the second switch 103 and then enters the low noise amplifier 105 for low noise amplification, after passing through the first switch.
  • the first mixer 107 is input, and the first local oscillator signal is down-converted to convert the air signal into an intermediate frequency signal, and then filtered and amplified by the first filter 109 and the first amplifier 110, and then passed through the modulus.
  • the converter 111 converts the intermediate frequency signal into a digital signal, and transmits the digital signal to the programmable interference source module 20 for de-synchronization processing.
  • the low noise amplifier 105 has a bypass function, which can be used to bypass low noise when the received signal power is strong, thereby improving the dynamic range of the receiving link. Wai.
  • the digital-to-analog converter 308 is configured to receive the transmit modulated signal, and convert the transmit modulated signal into an analog signal; the second mixer 306 is configured to perform mixing processing on the analog signal according to the second local oscillator signal to obtain Pre-modulating the interference signal; wherein the frequency of the pre-modulation interference signal matches the interference frequency point; the second oscillator 307 is configured to generate the second local oscillation signal; and the second filter 305 is configured to The modulated interference signal is subjected to filtering processing; the second amplifier 304 is configured to perform amplification processing on the filtered pre-modulated interference signal; and the passive filter 302 is configured to filter out harmonics in the pre-modulated interference signal after the amplification processing, and obtain a The modulation interference signal is used; the second antenna 301 is configured to radiate the modulation interference signal into the air.
  • the coupler 303 is configured to perform a coupling process on the amplified pre-modulation interference signal to obtain a coupled signal, and send the coupled signal to the first mixer through the first switch 106. 107.
  • the programmable interference source module 20 can also be configured to detect according to the coupled signals processed by the first mixer 107, the first filter 109, the first amplifier 110, and the analog-to-digital converter 111 in sequence. The output power of the transmit link 30.
  • the digital to analog converter 308 converts the transmit modulated signal output by the programmable interferer module 20.
  • the second mixer 306 and the second local oscillator signal are mixed and adjusted to the interfered RF frequency point, and the second filter 305 filters out spurious signals such as out-of-band harmonics, and then passes through the second.
  • the amplifier 304 is amplified to a certain power after the power amplifier, and finally the harmonic filter is filtered out by the passive filter 302 to avoid interference to other frequency bands, and finally the modulated interference signal is obtained, and the modulated interference signal is radiated into the air by the second antenna 301 to achieve interference. Interference of terminal signals in the area.
  • the amplified signal may be coupled by the coupler 303 to obtain a coupled signal of a certain energy, and the coupled signal may pass through the first switch.
  • the signal is sent to the first mixer 107, and then transmitted to the programmable interference source module 20 through the intermediate frequency processing analog-to-digital conversion to perform transmission power detection to ensure that the output power of the transmission link 30 meets the requirements.
  • the second amplifier 304 there may be one control in the second amplifier 304.
  • the signal is used to switch the amplifier in the TD-LTE system to ensure that the uplink time slot does not transmit data and avoid interference to the communication base station.
  • the phase locked loop 40 can be coupled to the receive link 10, the programmable interferer module 20, and the transmit link 30, respectively. As shown in FIG. 2, the phase locked loop 40 can be coupled to an analog to digital converter 111, a programmable interference source module 20, and a digital to analog converter 308 in the transmit link 30, respectively, in the receive link 10.
  • the phase locked loop 40 can be configured to generate a clock signal and send the clock signal to the receiving link 10, the programmable interference source module 20, and the transmitting link 30, respectively, to implement the signal. Interfering with the synchronization of the device.
  • the signal interference device may further include: a DDR (Double Data Rate Double Rate Synchronous Dynamic Random Access Memory) 50, configured to store data processed by the programmable interference module 20, and when the data amount meets the requirements, the data is solved. Synchronous algorithm processing.
  • DDR Double Data Rate Double Rate Synchronous Dynamic Random Access Memory
  • the receiving link may convert the air signal for indicating the environmental condition of the interference area into a digital signal and send it to the programmable interference source module, and the programmable interference source module according to the digital signal pair
  • the environmental condition of the external interference area is judged to generate a transmission modulation signal adapted to the external environment.
  • the transmission modulation signal is modulated by the transmission link and radiated into the air, thereby realizing interference to signals in the interference area. shield.
  • the signal interference device is adjustable for different interference region ranges, and can generate corresponding effective interference sources for different communication system targets, meet different application scenarios, and effectively implement various scenarios. Interference and shielding of the terminal signal.
  • the time division processing of the modulated interference signal improves the working efficiency of the signal interference device.
  • the receiving link receives the frequency band, the standard, and the power of the current environment, and specifically interferes with the current interference area, and does not need to interfere with the frequency band and the system to turn off the power amplifier, thereby saving power consumption and achieving the effect of green energy saving.
  • the working characteristics of various types of standard equipment under the condition of effectively interfering with the terminal, it is only possible to interfere with the downlink, thereby achieving the purpose of not affecting the work of the base station.
  • the transmit link can be coupled to the receive link by a coupler, enabling fault monitoring of the transmit link.
  • the signal interference method includes:
  • Step 302 Receive an air signal through the receiving link, convert the air signal into a digital signal, and send the digital signal to the programmable interference source module.
  • Step 304 De-synchronize the digital signal by a programmable interference source module, generate a transmission modulation signal according to the result of the de-synchronization processing, and send the transmission modulation signal to a transmission link.
  • Step 306 Receive, by using a transmit link, the transmit modulated signal, convert the transmit modulated signal into a modulated interference signal, and radiate the modulated interference signal into the air.
  • the detection of the interference region can be implemented by acquiring the air signal in the interference region, and then the programmable interference source module and the transmission link are used to generate modulation according to different output powers of different interference sources.
  • Interference signal That is, for different interference area ranges, the power is adjustable, and for different communication system targets, corresponding effective interference sources can be generated to meet different application scenarios, and the interference and shielding of the terminal signals in various scenarios are effectively realized; The continuous frequency sweeping operation is avoided, the power requirement of the generated modulated interference signal is reduced, and the signal jamming device does not need to be in the normal emitting mode, which reduces the power consumption of the device.
  • the step 302 may specifically include: sub-step 3022, receiving the air signal by using a first antenna; and sub-step 3024, sequentially passing the air signal through a limiter of the limiter. a low noise amplification process of the low noise amplifier, a mixing process of the first mixer and the first oscillator, and an intermediate frequency signal is obtained; in step 3026, the intermediate frequency signal is sequentially passed through a filtering process of the first filter, After the amplification processing of an amplifier and the analog-to-digital conversion processing of the analog-to-digital converter, the digital signal is obtained.
  • the step 302 may further include: sub-step 3028, selecting, by the second switch and the third switch, selection of the at least one filter link and the through link, selecting from the at least one filter link and the through link One is a connection link between the limiter and the low noise amplifier.
  • the step 302 may further include: sub-step 30210, controlling, by the first switch, the clipped air signal to enter the first mixer.
  • the step 306 may specifically include: sub-step 3062, receiving, by the digital-to-analog converter, the transmit modulated signal, converting the transmit modulated signal into an analog signal; sub-step 3064, Performing a mixing process on the analog signal by using a second mixer and a second oscillator to obtain a pre-modulation interference signal; wherein a frequency of the pre-modulation interference signal matches an interference frequency point; sub-step 3066, The pre-modulation interference signal is sequentially passed through a filtering process of the second filter, an amplification process of the second amplifier, and a harmonic filtering process of the passive filter to obtain the modulated interference signal; sub-step 3068, passing the second An antenna radiates the modulated interference signal into the air.
  • the step 306 further includes: sub-step 30610, performing coupling processing on the pre-modulation interference signal by a coupler disposed between the second amplifier and the passive filter to obtain a coupled signal; Sub-step 30612, transmitting the coupled signal to the first mixer through the first switch.
  • the method further includes: step 308, through the programmable interference source module, the coupled signal processed through the first mixer, the first filter, the first amplifier, and the analog to digital converter Monitoring is performed to determine the output power of the transmit link.
  • the method may further include: Step 310: generate a clock signal by using a phase locked loop, and send the clock signal to the receiving link, the programmable interference source module, respectively. And the transmitting link to achieve synchronization of the signal interference device.
  • the receiving link may convert the air signal for indicating the environmental condition of the interference area into a digital signal and send it to the programmable interference source module, and the programmable interference source module according to the digital signal pair
  • the environmental condition of the external interference area is judged to generate a transmission modulation signal adapted to the external environment.
  • the transmission modulation signal is modulated by the transmission link and radiated into the air, thereby realizing interference to signals in the interference area. shield.
  • the signal interference device is adjustable for different interference region ranges, and can generate corresponding effective interference sources for different communication system targets, meet different application scenarios, and effectively implement various scenarios. Interference and shielding of the terminal signal.
  • the time division processing of the modulated interference signal improves the working efficiency of the signal interference device.
  • the receiving link receives the frequency band, the standard, and the power of the current environment, and specifically interferes with the current interference area, and does not need to interfere with the frequency band and the system to turn off the power amplifier, thereby saving power consumption and achieving the effect of green energy saving.
  • the working characteristics of various types of standard equipment under the condition of effectively interfering with the terminal, it is only possible to interfere with the downlink, thereby achieving the purpose of not affecting the work of the base station.
  • the transmit link can be coupled to the receive link by a coupler, enabling fault monitoring of the transmit link.
  • the present application also discloses a computer readable recording medium on which a program for the above method is recorded.
  • the computer readable recording medium includes any mechanism for storing or transmitting information in a form readable by a computer (eg, a computer).
  • a machine-readable medium includes read only memory (ROM), random access memory (RAM), magnetic disk storage media, optical storage media, flash storage media, electrical, optical, acoustic, or other forms of propagation signals (eg, carrier waves) , infrared signals, digital signals, etc.).
  • the application can be described in the general context of computer-executable instructions executed by a computer, such as a program module.
  • program modules include routines, programs, objects, components, data structures, and the like that perform particular tasks or implement particular abstract data types.
  • the present application can also be practiced in distributed computing environments where tasks are performed by remote processing devices that are connected through a communication network.
  • program modules can be located in both local and remote computer storage media including storage devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Noise Elimination (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transmitters (AREA)

Abstract

本发明提供了一种信号干扰装置和方法,其中,所述装置包括:接收链路,用于接收空中信号,将所述空中信号转换为数字信号,并将所述数字信号发送至可编程干扰源模块;可编程干扰源模块,用于对所述数字信号进行解同步处理,根据解同步处理结果生成发射调制信号,并将所述发射调制信号发送至发射链路;发射链路,用于接收所述发射调制信号,将所述发射调制信号转换为调制干扰信号,并将所述调制干扰信号辐射至空中。通过本发明解决了现有的终端信号干扰器存在的功率要求较高、设备功耗较大以及无法完全阻断终端通信的问题。

Description

一种信号干扰装置和方法
本申请要求在2016年8月16日提交中国专利局、申请号为201610675950.3、发明名称为“一种信号干扰装置和方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,特别是涉及一种信号干扰装置和方法。
背景技术
随着移动通信产业的飞速发展,急剧增加了人与人之间的连通性,但是,与此同时,便利的通信方式,也增加了对互通性有特殊要求场地(如,考场、保密会议、监狱等)的信号干扰的操作难度。
终端信号干扰器主要针对各类考场、学校、加油站、教堂、法庭、图书馆、会议中心(室)、影剧院、医院、政府、金融、监狱、公安、军事重地等禁止使用终端进行通信的场所。通过终端信号干扰器可以使终端处于搜索网络、无信号、无服务系统等状态,进而阻断终端信号,保证需屏蔽区域的安全。
目前常见的终端信号干扰器通常采用的信号干扰方式为:以一定的速度从前向信道的低端频率向高端扫描的常发方式。然而,现有的信号干扰方式存在的问题在于:从前向信道的低端频率向高端扫描的扫频方式对干扰信号的功率要求较高,且终端信号干扰器一直处于常发模式,设备功耗较大,且对于配置灵活的通信系统,如4G(the 4th Generation mobile communication,第四代移动通信技术)系统,往往无法阻断终端与外界的通信,无法达到完全阻断终端的通信。
发明内容
本发明提供一种信号干扰装置和方法,以解决现有的终端信号干扰器存在的功率要求较高、设备功耗较大以及无法完全阻断终端通信的问题。
为了解决上述问题,本发明公开了一种信号干扰装置,包括:
接收链路,用于接收空中信号,将所述空中信号转换为数字信号,并将所述数字信号发送至可编程干扰源模块;
可编程干扰源模块,用于对所述数字信号进行解同步处理,根据解同步处理结果生成发射调制信号,并将所述发射调制信号发送至发射链路;
发射链路,用于接收所述发射调制信号,将所述发射调制信号转换为调制干扰信号,并将所述调制干扰信号辐射至空中。
优选的,所述接收链路,包括:
第一天线,用于接收所述空中信号;
限幅器,用于对所述空中信号进行限幅处理;
低噪声放大器,用于对限幅处理后的空中信号进行低噪声放大;
第一混频器,用于根据第一本振信号对低噪声放大后的空中信号进行变频处理,得到中频信号;
第一振荡器,用于生成所述第一本振信号;
第一滤波器,用于对所述中频信号进行滤波处理;
第一放大器,用于对滤波处理后的中频信号进行放大处理;
模数转换器;用于将放大处理后的中频信号转换为所述数字信号。
优选的,所述接收链路,还包括:第一开关、第二开关、第三开关和至少一个滤波链路和直通链路;
其中,
所述第二开关和所述第三开关,用于控制所述至少一个滤波链路和直通链路的选择,选择一条滤波链路或直通链路作为所述限幅器和所述低噪声放大器之间的连接链路;
所述第一开关,用于控制所述限幅处理后的空中信号进入所述第一混频器。
优选的,所述发射链路,包括:
数模转换器,用于接收所述发射调制信号,将所述发射调制信号转换为模拟信号;
第二混频器,用于根据第二本振信号对所述模拟信号进行混频处理,得到预调制干扰信号;其中,所述预调制干扰信号的频点与干扰频点相匹配;
第二振荡器,用于生成所述第二本振信号;
第二滤波器,用于对所述预调制干扰信号进行滤波处理;
第二放大器,用于对滤波处理后的预调制干扰信号进行放大处理;
无源滤波器,用于滤除放大处理后的预调制干扰信号中的谐波,得到所述调制干扰信号;
第二天线,用于将所述调制干扰信号辐射至空中。
优选的,所述发射链路,还包括:设置在所述第二放大器和所述无源滤波器之间的耦合器;
所述耦合器,用于对放大处理后的预调制干扰信号进行耦合处理,得到耦合信号,并将所述耦合信号通过所述第一开关发送至所述第一混频器;
相应地,所述可编程干扰源模块,还用于根据依次经过所述第一混频器、第一滤波器、第一放大器和模数转换器处理后的耦合信号,检测所述发射链路的输出功率。
优选的,所述装置还包括:分别与所述接收链路、所述可编程干扰源模块和所述发射链路连接的锁相环;
所述锁相环,用于生成时钟信号,并将所述时钟信号分别发送至所述接收链路、所述可编程干扰源模块和所述发射链路,以实现所述信号干扰装置的同步。
本发明还公开了一种信号干扰方法,包括:
通过接收链路接收空中信号,将所述空中信号转换为数字信号,并将所述数字信号发送至可编程干扰源模块;
通过可编程干扰源模块对所述数字信号进行解同步处理,根据解同步处理结果生成发射调制信号,并将所述发射调制信号发送至发射链路;
通过发射链路,接收所述发射调制信号,将所述发射调制信号转换为调 制干扰信号,并将所述调制干扰信号辐射至空中。
优选的,所述接收空中信号,将所述空中信号转换为数字信号,并将所述数字信号发送至可编程干扰源模块,包括:
通过第一天线接收所述空中信号;
将所述空中信号依次通过限幅器的限幅处理、低噪声放大器的低噪声放大处理、第一混频器和第一振荡器的混频处理后,得到中频信号;
将所述中频信号依次通过第一滤波器的滤波处理、第一放大器的放大处理、模数转换器的模数转换处理后,得到所述数字信号。
优选的,所述接收空中信号,将所述空中信号转换为数字信号,并将所述数字信号发送至可编程干扰源模块,还包括:
通过第二开关和第三开关控制至少一个滤波链路和直通链路的选择,从所述至少一个滤波链路和直通链路中选择一条作为所述限幅器和所述低噪声放大器之间的连接链路;
以及,
通过第一开关控制所述限幅处理后的空中信号进入所述第一混频器。
优选的,所述通过发射链路,接收所述发射调制信号,将所述发射调制信号转换为调制干扰信号,并将所述调制干扰信号辐射至空中,包括:
通过数模转换器接收所述发射调制信号,将所述发射调制信号转换为模拟信号;
通过第二混频器和第二振荡器生成对所述模拟信号进行混频处理,得到预调制干扰信号;其中,所述预调制干扰信号的频点与干扰频点相匹配;
将所述预调制干扰信号依次通过第二滤波器的滤波处理、第二放大器的放大处理、无源滤波器的谐波滤除处理后,得到所述调制干扰信号;
通过第二天线将所述调制干扰信号辐射至空中。
优选的,所述通过发射链路,接收所述发射调制信号,将所述发射调制信号转换为调制干扰信号,并将所述调制干扰信号辐射至空中,还包括:
通过设置在所述第二放大器和所述无源滤波器之间的耦合器,对所述预调制干扰信号进行耦合处理,得到耦合信号;
将所述耦合信号通过所述第一开关发送至所述第一混频器;
相应地,所述方法还包括:通过所述可编程干扰源模块,对依次经过所述第一混频器、第一滤波器、第一放大器和模数转换器处理后的耦合信号进行监测,确定所述发射链路的输出功率。
优选的,所述方法还包括:
通过锁相环生成时钟信号,将所述时钟信号分别发送至所述接收链路、所述可编程干扰源模块和所述发射链路,以实现信号干扰装置的同步。
与现有技术相比,本发明包括以下优点:
本发明公开了一种信号干扰装置,包括:接收链路、可编程干扰源模块和发射链路。接收链路可以将用于指示干扰区域的环境条件的空中信号转换为数字信号发送至可编程干扰源模块,所述可编程干扰源模块根据数字信号对外部的干扰区域的环境条件进行判断,生成与外部环境相适应的发射调制信号,最后,所述发射调制信号经由发射链路调制处理后辐射至空中,进而实现对干扰区域内的信号的干扰和屏蔽。可见,在本发明中,可以通过获取干扰区域内的空中信号实现对干扰区域的检测,进而通过可编程干扰源模块和发射链路有针对性地采用不同的干扰源不同的输出功率生成调制干扰信号。也即,针对不同干扰区域范围,功率可调,针对不同通信制式目标,可以生成相应有效的干扰源,满足不同应用场景,有效实现了在各类场景下对终端信号的干扰和屏蔽;且,避免了持续扫频操作,降低了对生成的调制干扰信号的功率要求,且,所述信号干扰装置也无需处于常发模式,降低了对设备的功耗。
附图说明
图1是本发明实施例一中一种信号干扰装置的结构框图;
图2是本发明实施例二中一种信号干扰装置的架构示意图;
图3是本发明实施例三中一种信号干扰方法的步骤流程图;
图4是本发明实施例三中一种优选的信号干扰方法的步骤流程图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
实施例一
参照图1,示出了本发明实施例一中一种信号干扰装置的结构框图。在本实施例中,所述信号干扰装置可以包括:接收链路10、可编程干扰源模块20和发射链路30。
接收链路10用于接收空中信号,将所述空中信号转换为数字信号,并将所述数字信号发送至可编程干扰源模块。
在本实施例中,接收链路10可以通过任意一种适当的方式接收空中信号,例如,可以但不仅限于通过设置在所述接收链路10中的天线来接收空中信号。进一步地,所述接收链路10可以将接收到的空中信号转换为数字信号后发送至可编程干扰源模块,以便可编程干扰源模块根据所述数字信号对空中环境进行分析,根据分析结果确定相匹配的发射调制信号。
可编程干扰源模块20用于对所述数字信号进行解同步处理,根据解同步处理结果生成发射调制信号,并将所述发射调制信号发送至发射链路。
在本实施例中,可编程干扰源模块20可以实现对接收链路10和下述发射链路30的控制和参数的配置。
具体地,所述可编程干扰源模块20可以对接收链路10上报的数字信号进行解同步处理,根据解同步处理结果实现对下述发射链路30以及接收链路10的控制。例如,可编程干扰源模块20可以根据所述解同步处理结果确定当前干扰区域的频段、制式、功率;然后,有针对性地生成并发送所述发射调制信号,确保通过发射链路辐射的调制干扰信号与当前干扰区域的环境相匹配,达到绿色节能的效果。
发射链路30用于接收所述发射调制信号,将所述发射调制信号转换为调制干扰信号,并将所述调制干扰信号辐射至空中。
在本实施例中,所述发射链路30可以将所述可编程干扰源模块20输出的发射调制信号转换为调制干扰信号,并将所述调制干扰信号辐射至空中, 实现对干扰区域的信号干扰。
综上所述,本实施例所述的一种信号干扰装置可以包括:接收链路、可编程干扰源模块和发射链路。接收链路可以将用于指示干扰区域的环境条件的空中信号转换为数字信号发送至可编程干扰源模块,所述可编程干扰源模块根据数字信号对外部的干扰区域的环境条件进行判断,生成与外部环境相适应的发射调制信号,最后,所述发射调制信号经由发射链路调制处理后辐射至空中,进而实现对干扰区域内的信号的干扰和屏蔽。可见,在本实施例中,可以通过获取干扰区域内的空中信号,实现对干扰区域的检测,进而通过可编程干扰源模块和发射链路有针对性地采用不同的干扰源不同的输出功率生成调制干扰信号。也即,针对不同干扰区域范围,功率可调,针对不同通信制式目标,可以生成相应有效的干扰源,满足不同应用场景,有效实现了在各类场景下对终端信号的干扰和屏蔽;且,避免了持续扫频操作,降低了对生成的调制干扰信号的功率要求,且,所述信号干扰装置也无需处于常发模式,降低了对设备的功耗。
实施例二
参照图2,示出了本发明实施例二中一种信号干扰装置的架构示意图。如图2所示,所述信号干扰装置可以包括:接收链路10、可编程干扰源模块20、发射链路30和锁相环(PLL,Phase Locked Loop)40。
其中,
所述接收链路10包括:依次连接的第一天线101、限幅器104、第三开关102、至少一个滤波链路和直通链路、第二开关103、低噪声放大器(LNA,Low Noise Amplifier)105、第一开关106、第一混频器107、第一滤波器109、第一放大器110和模数转换器(A/D,Analog-to-Digital Converter)111,以及,与所述第一混频器107连接的第一振荡器108。
所述发射链路30包括:依次链接的数模转换器(D/A,Digital-to-Analog Converter)308、第二混频器306、第二滤波器305、第二放大器304、耦合器303、无源滤波器(无源滤波器,又称LC滤波器,Passive filter)302和第二天线301,以及,与所述第二混频器306连接的第二振荡器307。
具体地,接收链路10用于接收空中信号,将所述空中信号转换为数字信号,并将所述数字信号发送至可编程干扰源模块。可编程干扰源模块20,用于对所述数字信号进行解同步处理,根据解同步处理结果生成发射调制信号,并将所述发射调制信号发送至发射链路。发射链路30用于接收所述发射调制信号,将所述发射调制信号转换为调制干扰信号,并将所述调制干扰信号辐射至空中。
在本实施例的一优选方案中,在所述接收链路10中:
所述第一天线101用于接收所述空中信号;限幅器104用于对所述空中信号进行限幅处理;低噪声放大器105用于对限幅处理后的空中信号进行低噪声放大;第一混频器107用于根据第一本振信号对低噪声放大后的空中信号进行变频处理,得到中频信号;第一振荡器108用于生成所述第一本振信号;第一滤波器109用于对所述中频信号进行滤波处理;第一放大器110用于对滤波处理后的中频信号进行放大处理;模数转换器111用于将放大处理后的中频信号转换为所述数字信号。
优选的,所述第二开关103和所述第三开关102用于控制所述至少一个滤波链路和直通链路的选择,选择一条滤波链路或直通链路作为所述限幅器104和所述低噪声放大器105之间的连接链路。所述第一开关106用于控制所述限幅处理后的空中信号进入所述第一混频器107。
为了便于对接收链路10的链路结构的理解,下面对所述接收链路10的具体工作流程进行简单的说明:空间中的信号(空中信号)通过第一天线101和限幅器104的处理后进入接收链路10,空中信号经过第三开关102选择不同的滤波链路或直通链路,再经过第二开关103后进入到低噪声放大器105进行低噪声放大,在经过第一开关106后进入第一混频器107,通过第一本振信号进行下变频处理,将空中信号转换为中频信号,再经过第一滤波器109和第一放大器110的滤波和放大后,经由模数转换器111将中频信号转换为数字信号,将所述数字信号传输给可编程干扰源模块20做解同步处理。
需要说明的是,在本实施例中,所述低噪声放大器105具有可旁路功能,可以用于在接收信号功率较强时旁路低噪放,进而提高接收链路的动态范 围。
在本实施例的又一优选方案中,在所述发射链路30中:
数模转换器308用于接收所述发射调制信号,将所述发射调制信号转换为模拟信号;第二混频器306用于根据第二本振信号对所述模拟信号进行混频处理,得到预调制干扰信号;其中,所述预调制干扰信号的频点与干扰频点相匹配;第二振荡器307用于生成所述第二本振信号;第二滤波器305用于对所述预调制干扰信号进行滤波处理;第二放大器304用于对滤波处理后的预调制干扰信号进行放大处理;无源滤波器302用于滤除放大处理后的预调制干扰信号中的谐波,得到所述调制干扰信号;第二天线301用于将所述调制干扰信号辐射至空中。
优选的,所述耦合器303可以用于对放大处理后的预调制干扰信号进行耦合处理,得到耦合信号,并将所述耦合信号通过所述第一开关106发送至所述第一混频器107。相应地,所述可编程干扰源模块20还可以用于根据依次经过所述第一混频器107、第一滤波器109、第一放大器110和模数转换器111处理后的耦合信号,检测所述发射链路30的输出功率。
为了便于对发射链路30的链路结构的理解,下面对所述发射链路30的具体工作流程进行简单的说明:数模转换器308将可编程干扰源模块20输出的发射调制信号转换为模拟信号,经第二混频器306与第二本振信号混频后调整到被干扰的射频频点,经过第二滤波器305滤除带外谐波等杂散信号,再经过第二放大器304功放后放大到一定功率,最后经过无源滤波器302滤除谐波,避免对其他频段产生干扰,最终得到调制干扰信号,将调制干扰信号由第二天线301辐射到空中,实现对干扰区域内终端信号的干扰。
其中,所述模拟信号在经过第二放大器304功放后放大到一定功率之后,还可以通过耦合器303对放大后的信号进行耦合,得到一定能量的耦合信号,所述耦合信号可以经过第一开关106发送至第一混频器107,再经过中频处理模数转换后传输给可编程干扰源模块20进行发射功率检测,保证发射链路30的输出功率满足要求。
需要说明的是,在本实施例中,所述第二放大器304中可以存在一个控 制信号,用于在TD-LTE系统中对放大器进行切换,保证上行时隙不发数据,避免对通信基站的干扰。
在本实施例的另一优选方案中,所述锁相环40可以分别与所述接收链路10、可编程干扰源模块20和发射链路30连接。如图2所示,所述锁相环40可以分别与所述接收链路10中的模数转换器111、可编程干扰源模块20和发射链路30中的数模转换器308连接。
其中,锁相环40可以用于生成时钟信号,并将所述时钟信号分别发送至所述接收链路10、所述可编程干扰源模块20和所述发射链路30,以实现所述信号干扰装置的同步。
此外,所述信号干扰装置还可以包括:DDR(Double Data Rate双倍速率同步动态随机存储器)50,用于存储经过可编程干扰模块20处理的数据,当数据量满足要求后,对数据做解同步算法处理。
综上所述,在本实施例中,接收链路可以将用于指示干扰区域的环境条件的空中信号转换为数字信号发送至可编程干扰源模块,所述可编程干扰源模块根据数字信号对外部的干扰区域的环境条件进行判断,生成与外部环境相适应的发射调制信号,最后,所述发射调制信号经由发射链路调制处理后辐射至空中,进而实现对干扰区域内的信号的干扰和屏蔽。可见,在本实施例中,所述信号干扰装置针对不同干扰区域范围,功率可调,针对不同通信制式目标,可以生成相应有效的干扰源,满足不同应用场景,有效实现了在各类场景下对终端信号的干扰和屏蔽。
其次,在本实施例中,对调制干扰信号的时分处理,提升了所述信号干扰装置的工作效率。利用接收链路接收当前环境的频段、制式、功率,针对性地对当前需干扰的区域进行干扰,不需要干扰的频段和制式关闭功放,可以节省功耗,达到绿色节能的效果。且,针对各类制式设备工作特点,在有效干扰终端的条件下,做到只干扰下行,进而达到不影响基站工作的目的。
此外,通过耦合器可以将发射链路耦合到接收链路,实现了对发射链路的故障监测。
实施例三
基于与上述装置实施例同一发明构思,参照图3,示出了本发明实施例三中一种信号干扰方法的步骤流程图。在本实施例中,所述信号干扰方法包括:
步骤302,通过接收链路接收空中信号,将所述空中信号转换为数字信号,并将所述数字信号发送至可编程干扰源模块。
步骤304,通过可编程干扰源模块对所述数字信号进行解同步处理,根据解同步处理结果生成发射调制信号,并将所述发射调制信号发送至发射链路。
步骤306,通过发射链路,接收所述发射调制信号,将所述发射调制信号转换为调制干扰信号,并将所述调制干扰信号辐射至空中。
可见,在本实施例中,可以通过获取干扰区域内的空中信号实现对干扰区域的检测,进而通过可编程干扰源模块和发射链路有针对性地采用不同的干扰源不同的输出功率生成调制干扰信号。也即,针对不同干扰区域范围,功率可调,针对不同通信制式目标,可以生成相应有效的干扰源,满足不同应用场景,有效实现了在各类场景下对终端信号的干扰和屏蔽;且,避免了持续扫频操作,降低了对生成的调制干扰信号的功率要求,且,所述信号干扰装置也无需处于常发模式,降低了对设备的功耗。
参照图4,示出了本发明实施例三中一种优选的信号干扰方法的步骤流程图。
在本实施例的一优选方案中,所述步骤302具体可以包括:子步骤3022,通过第一天线接收所述空中信号;子步骤3024,将所述空中信号依次通过限幅器的限幅处理、低噪声放大器的低噪声放大处理、第一混频器和第一振荡器的混频处理后,得到中频信号;子步骤3026,将所述中频信号依次通过第一滤波器的滤波处理、第一放大器的放大处理、模数转换器的模数转换处理后,得到所述数字信号。
优选的,所述步骤302还可以包括:子步骤3028,通过第二开关和第三开关控制至少一个滤波链路和直通链路的选择,从所述至少一个滤波链路和直通链路中选择一条作为所述限幅器和所述低噪声放大器之间的连接链路。
进一步优选的,所述步骤302还可以包括:子步骤30210,通过第一开关控制所述限幅处理后的空中信号进入所述第一混频器。
在本实施例的又一优选方案中,所述步骤306具体可以包括:子步骤3062,通过数模转换器接收所述发射调制信号,将所述发射调制信号转换为模拟信号;子步骤3064,通过第二混频器和第二振荡器生成对所述模拟信号进行混频处理,得到预调制干扰信号;其中,所述预调制干扰信号的频点与干扰频点相匹配;子步骤3066,将所述预调制干扰信号依次通过第二滤波器的滤波处理、第二放大器的放大处理、无源滤波器的谐波滤除处理后,得到所述调制干扰信号;子步骤3068,通过第二天线将所述调制干扰信号辐射至空中。
优选地,所述步骤306还包括:子步骤30610,通过设置在所述第二放大器和所述无源滤波器之间的耦合器,对所述预调制干扰信号进行耦合处理,得到耦合信号;子步骤30612,将所述耦合信号通过所述第一开关发送至所述第一混频器。
相应地,所述方法还包括:步骤308,通过所述可编程干扰源模块,对依次经过所述第一混频器、第一滤波器、第一放大器和模数转换器处理后的耦合信号进行监测,确定所述发射链路的输出功率。
在本实施例的另一优选方案中,所述方法还可以包括:步骤310,通过锁相环生成时钟信号,将所述时钟信号分别发送至所述接收链路、所述可编程干扰源模块和所述发射链路,以实现信号干扰装置的同步。
综上所述,在本实施例中,接收链路可以将用于指示干扰区域的环境条件的空中信号转换为数字信号发送至可编程干扰源模块,所述可编程干扰源模块根据数字信号对外部的干扰区域的环境条件进行判断,生成与外部环境相适应的发射调制信号,最后,所述发射调制信号经由发射链路调制处理后辐射至空中,进而实现对干扰区域内的信号的干扰和屏蔽。可见,在本实施例中,所述信号干扰装置针对不同干扰区域范围,功率可调,针对不同通信制式目标,可以生成相应有效的干扰源,满足不同应用场景,有效实现了在各类场景下对终端信号的干扰和屏蔽。
其次,在本实施例中,对调制干扰信号的时分处理,提升了所述信号干扰装置的工作效率。利用接收链路接收当前环境的频段、制式、功率,针对性地对当前需干扰的区域进行干扰,不需要干扰的频段和制式关闭功放,可以节省功耗,达到绿色节能的效果。且,针对各类制式设备工作特点,在有效干扰终端的条件下,做到只干扰下行,进而达到不影响基站工作的目的。
此外,通过耦合器可以将发射链路耦合到接收链路,实现了对发射链路的故障监测。
需要说明的是,对于前述的方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作并不一定是本发明所必需的。
实施例四
本申请还公开了一种在其上记录有用于上述方法的程序的计算机可读记录介质。
所述计算机可读记录介质包括用于以计算机(例如计算机)可读的形式存储或传送信息的任何机制。例如,机器可读介质包括只读存储器(ROM)、随机存取存储器(RAM)、磁盘存储介质、光存储介质、闪速存储介质、电、光、声或其他形式的传播信号(例如,载波、红外信号、数字信号等)等。
本申请可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本申请,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来 将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个......”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上对本发明所提供的一种信号干扰装置和方法进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (12)

  1. 一种信号干扰装置,其特征在于,包括:
    接收链路,用于接收空中信号,将所述空中信号转换为数字信号,并将所述数字信号发送至可编程干扰源模块;
    可编程干扰源模块,用于对所述数字信号进行解同步处理,根据解同步处理结果生成发射调制信号,并将所述发射调制信号发送至发射链路;
    发射链路,用于接收所述发射调制信号,将所述发射调制信号转换为调制干扰信号,并将所述调制干扰信号辐射至空中。
  2. 根据权利要求1所述的装置,其特征在于,所述接收链路包括:第一天线,用于接收所述空中信号;
    限幅器,用于对所述空中信号进行限幅处理;
    低噪声放大器,用于对限幅处理后的空中信号进行低噪声放大;
    第一混频器,用于根据第一本振信号对低噪声放大后的空中信号进行变频处理,得到中频信号;
    第一振荡器,用于生成所述第一本振信号;
    第一滤波器,用于对所述中频信号进行滤波处理;
    第一放大器,用于对滤波处理后的中频信号进行放大处理;
    模数转换器;用于将放大处理后的中频信号转换为所述数字信号。
  3. 根据权利要求2所述的装置,其特征在于,所述接收链路·还包括:第一开关、第二开关、第三开关和至少一个滤波链路和直通链路;
    其中,
    所述第二开关和所述第三开关用于控制所述至少一个滤波链路和直通链路的选择,选择一条滤波链路或直通链路作为所述限幅器和所述低噪声放大器之间的连接链路;
    所述第一开关用于控制所述限幅处理后的空中信号进入所述第一混频器。
  4. 根据权利要求3所述的装置,其特征在于,所述发射链路包括:
    数模转换器,用于接收所述发射调制信号,将所述发射调制信号转换为模拟信号;
    第二混频器,用于根据第二本振信号对所述模拟信号进行混频处理,得到预调制干扰信号;其中,所述预调制干扰信号的频点与干扰频点相匹配;
    第二振荡器,用于生成所述第二本振信号;
    第二滤波器,用于对所述预调制干扰信号进行滤波处理;
    第二放大器,用于对滤波处理后的预调制干扰信号进行放大处理;
    无源滤波器,用于滤除放大处理后的预调制干扰信号中的谐波,得到所述调制干扰信号;
    第二天线,用于将所述调制干扰信号辐射至空中。
  5. 根据权利要求4所述的装置,其特征在于,所述发射链路还包括:设置在所述第二放大器和所述无源滤波器之间的耦合器;
    所述耦合器,用于对放大处理后的预调制干扰信号进行耦合处理,得到耦合信号,并将所述耦合信号通过所述第一开关发送至所述第一混频器;
    相应地,所述可编程干扰源模块还用于根据依次经过所述第一混频器、第一滤波器、第一放大器和模数转换器处理后的耦合信号,检测所述发射链路的输出功率。
  6. 根据权利要求1-5任一项所述的装置,其特征在于,还包括:分别与所述接收链路、所述可编程干扰源模块和所述发射链路连接的锁相环;
    所述锁相环用于生成时钟信号,并将所述时钟信号分别发送至所述接收链路、所述可编程干扰源模块和所述发射链路,以实现所述信号干扰装置的同步。
  7. 一种信号干扰方法,其特征在于,包括:
    通过接收链路接收空中信号,将所述空中信号转换为数字信号,并将所述数字信号发送至可编程干扰源模块;
    通过可编程干扰源模块对所述数字信号进行解同步处理,根据解同步处理结果生成发射调制信号,并将所述发射调制信号发送至发射链路;
    通过发射链路,接收所述发射调制信号,将所述发射调制信号转换为调制干扰信号,并将所述调制干扰信号辐射至空中。
  8. 根据权利要求7所述的方法,其特征在于,所述接收空中信号,将所述空中信号转换为数字信号,并将所述数字信号发送至可编程干扰源模块,包括:
    通过第一天线接收所述空中信号;
    将所述空中信号依次通过限幅器的限幅处理、低噪声放大器的低噪声放大处理、第一混频器和第一振荡器的混频处理后,得到中频信号;
    将所述中频信号依次通过第一滤波器的滤波处理、第一放大器的放大处理、模数转换器的模数转换处理后,得到所述数字信号。
  9. 根据权利要求8所述的方法,其特征在于,所述接收空中信号,将所述空中信号转换为数字信号,并将所述数字信号发送至可编程干扰源模块,还包括:
    通过第二开关和第三开关控制至少一个滤波链路和直通链路的选择,从所述至少一个滤波链路和直通链路中选择一条作为所述限幅器和所述低噪声放大器之间的连接链路;
    以及,
    通过第一开关控制所述限幅处理后的空中信号进入所述第一混频器。
  10. 根据权利要求9所述的方法,其特征在于,所述通过发射链路,接收所述发射调制信号,将所述发射调制信号转换为调制干扰信号,并将所述调制干扰信号辐射至空中,包括:
    通过数模转换器接收所述发射调制信号,将所述发射调制信号转换为模拟信号;
    通过第二混频器和第二振荡器生成对所述模拟信号进行混频处理,得到预调制干扰信号;其中,所述预调制干扰信号的频点与干扰频点相匹配;
    将所述预调制干扰信号依次通过第二滤波器的滤波处理、第二放大器的放大处理、无源滤波器的谐波滤除处理后,得到所述调制干扰信号;
    通过第二天线将所述调制干扰信号辐射至空中。
  11. 根据权利要求10所述的方法,其特征在于,所述通过发射链路,接收所述发射调制信号,将所述发射调制信号转换为调制干扰信号,并将所 述调制干扰信号辐射至空中,还包括:
    通过设置在所述第二放大器和所述无源滤波器之间的耦合器,对所述预调制干扰信号进行耦合处理,得到耦合信号;
    将所述耦合信号通过所述第一开关发送至所述第一混频器;
    相应地,所述方法还包括:通过所述可编程干扰源模块,对依次经过所述第一混频器、第一滤波器、第一放大器和模数转换器处理后的耦合信号进行监测,确定所述发射链路的输出功率。
  12. 根据权利要求7-11任一项所述的方法,其特征在于,还包括:
    通过锁相环生成时钟信号,将所述时钟信号分别发送至所述接收链路、所述可编程干扰源模块和所述发射链路,以实现信号干扰装置的同步。
PCT/CN2017/096469 2016-08-16 2017-08-08 一种信号干扰装置和方法 WO2018032998A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610675950.3 2016-08-16
CN201610675950.3A CN107769886B (zh) 2016-08-16 2016-08-16 一种信号干扰装置和方法

Publications (1)

Publication Number Publication Date
WO2018032998A1 true WO2018032998A1 (zh) 2018-02-22

Family

ID=61196385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/096469 WO2018032998A1 (zh) 2016-08-16 2017-08-08 一种信号干扰装置和方法

Country Status (2)

Country Link
CN (1) CN107769886B (zh)
WO (1) WO2018032998A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109443098A (zh) * 2018-11-29 2019-03-08 西安爱生无人机技术有限公司 用于无人机的诱捕装置、系统及方法
CN110572235A (zh) * 2019-09-16 2019-12-13 浙江三维通信科技有限公司 信号屏蔽装置及方法
CN111722255A (zh) * 2020-06-09 2020-09-29 上海交通大学 一种基于空时调制的区域导航定位系统及方法
CN111835368A (zh) * 2020-07-31 2020-10-27 海能达通信股份有限公司 一种零中频接收系统
CN111970084A (zh) * 2020-07-08 2020-11-20 北京航天华腾科技有限公司 干扰信号生成装置、方法及干扰信号源设备
CN111970082A (zh) * 2020-07-08 2020-11-20 北京航天华腾科技有限公司 干扰信号生成装置及干扰信号源设备
CN113708884A (zh) * 2020-05-22 2021-11-26 中国科学院信息工程研究所 一种面向5g nr的转发干扰方法及系统
CN114441889A (zh) * 2022-04-02 2022-05-06 深圳市鼎阳科技股份有限公司 一种网络分析仪及谐波测试方法、存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109782236B (zh) * 2019-02-27 2020-11-27 珠海格力电器股份有限公司 一种微波雷达对数据交互的屏蔽方法及装置
CN111458684B (zh) * 2020-05-18 2020-11-24 北京航天长征飞行器研究所 一种两点源相干角度干扰系统和方法
CN111970083B (zh) * 2020-07-08 2022-04-08 北京航天华腾科技有限公司 干扰信号生成装置、方法及干扰信号源设备
CN111970066B (zh) * 2020-08-14 2022-08-02 浙江三维通信科技有限公司 一种功率检测方法、装置、存储介质和电子装置
CN112202503B (zh) * 2020-09-22 2022-08-26 展讯通信(上海)有限公司 一种干扰处理方法、终端设备和计算机可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102594483A (zh) * 2012-03-08 2012-07-18 南京泰之联无线科技有限公司 一种全频段考场无线信号屏蔽器
JP5083355B2 (ja) * 2010-03-29 2012-11-28 三菱電機株式会社 送信装置
CN103188028A (zh) * 2011-12-29 2013-07-03 中国移动通信集团广西有限公司 一种信号干扰方法及信号干扰器
CN103916207A (zh) * 2014-04-11 2014-07-09 北京理工大学 一种主动式多频段电力线通信干扰设备与方法
CN104570010A (zh) * 2014-11-04 2015-04-29 河北晶禾电子技术有限公司 便携式标准干扰源

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7532856B2 (en) * 2006-03-24 2009-05-12 Robert Eugene Stoddard Regenerative jammer with multiple jamming algorithms
CN104539386A (zh) * 2014-12-26 2015-04-22 成都杰联祺业电子有限责任公司 一种互联型全频段信号屏蔽的装置、系统和方法
CN204761451U (zh) * 2015-07-09 2015-11-11 福州市澳瀚信息技术有限公司 一种录放式无线信号阻断装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5083355B2 (ja) * 2010-03-29 2012-11-28 三菱電機株式会社 送信装置
CN103188028A (zh) * 2011-12-29 2013-07-03 中国移动通信集团广西有限公司 一种信号干扰方法及信号干扰器
CN102594483A (zh) * 2012-03-08 2012-07-18 南京泰之联无线科技有限公司 一种全频段考场无线信号屏蔽器
CN103916207A (zh) * 2014-04-11 2014-07-09 北京理工大学 一种主动式多频段电力线通信干扰设备与方法
CN104570010A (zh) * 2014-11-04 2015-04-29 河北晶禾电子技术有限公司 便携式标准干扰源

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109443098A (zh) * 2018-11-29 2019-03-08 西安爱生无人机技术有限公司 用于无人机的诱捕装置、系统及方法
CN110572235A (zh) * 2019-09-16 2019-12-13 浙江三维通信科技有限公司 信号屏蔽装置及方法
CN113708884A (zh) * 2020-05-22 2021-11-26 中国科学院信息工程研究所 一种面向5g nr的转发干扰方法及系统
CN113708884B (zh) * 2020-05-22 2023-08-04 中国科学院信息工程研究所 面向涉密会议场所的违规使用移动终端的转发干扰方法
CN111722255A (zh) * 2020-06-09 2020-09-29 上海交通大学 一种基于空时调制的区域导航定位系统及方法
CN111722255B (zh) * 2020-06-09 2022-08-26 上海交通大学 一种基于空时调制的区域导航定位系统及方法
CN111970084A (zh) * 2020-07-08 2020-11-20 北京航天华腾科技有限公司 干扰信号生成装置、方法及干扰信号源设备
CN111970082A (zh) * 2020-07-08 2020-11-20 北京航天华腾科技有限公司 干扰信号生成装置及干扰信号源设备
CN111970084B (zh) * 2020-07-08 2023-08-11 北京航天华腾科技有限公司 干扰信号生成装置、方法及干扰信号源设备
CN111835368A (zh) * 2020-07-31 2020-10-27 海能达通信股份有限公司 一种零中频接收系统
CN111835368B (zh) * 2020-07-31 2022-11-18 海能达通信股份有限公司 一种零中频接收系统
CN114441889A (zh) * 2022-04-02 2022-05-06 深圳市鼎阳科技股份有限公司 一种网络分析仪及谐波测试方法、存储介质

Also Published As

Publication number Publication date
CN107769886A (zh) 2018-03-06
CN107769886B (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
WO2018032998A1 (zh) 一种信号干扰装置和方法
US10756881B2 (en) Method and system for operating a communications device that communicates via inductive coupling
US20160365914A1 (en) Method for reducing adjacent-channel interference and relay device
WO2019120585A1 (en) System, network node, wireless device, method and computer program for low-power backscattering operation
CN102983880B (zh) 一种wcdma信号屏蔽系统
JP2016511959A (ja) 無線ベースバンドデータを伝送する方法、装置および無線遠隔ユニット
US9571136B2 (en) Apparatus for transmitting and receiving signals in radio frequency system
CN107359958B (zh) 捷变频智能干扰机
CN111698054B (zh) 一种基于同步信号相干干扰的5g手机干扰器
WO2018113199A1 (zh) 一种信号屏蔽方法和装置
CN204733174U (zh) 一种频域阻断式无线信号阻断装置
Mishra Development of GSM—900 mobile jammer: an approach to overcome existing limitation of jammer
CN101826881B (zh) 用于根据接收信号的特性来适配接收机接收链组件的方法、电路和系统
US1836594A (en) Radio signaling system
KR102257764B1 (ko) 근거리 무선 통신 장치
CN104034408A (zh) 一种基于相关检测技术的激光侦听装置
CN204614445U (zh) 一种亚音识别压制系统
CN212850500U (zh) 小型化抗干扰射频接收电路模块
WO2024088218A1 (zh) 信号传输方法、装置、通信设备及存储介质
Hanoon et al. Exploring Design Rate Gain Regions in Full-Duplex Wireless Communications
KR100497940B1 (ko) 무선 랜 중계기 및 그 방법
CN113708884B (zh) 面向涉密会议场所的违规使用移动终端的转发干扰方法
WO2023189460A1 (ja) 受信装置、受信方法、並びにプログラム
KR101732510B1 (ko) 슈퍼 재생 수신기 시스템의 채널 대역폭의 최소화를 위한 방법 및 장치
CN101136664B (zh) 抗干扰的具有单一频率的超音频数据的传输方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17840972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17840972

Country of ref document: EP

Kind code of ref document: A1