WO2018032720A1 - 血液细胞及生化成分分析仪及方法 - Google Patents

血液细胞及生化成分分析仪及方法 Download PDF

Info

Publication number
WO2018032720A1
WO2018032720A1 PCT/CN2017/070576 CN2017070576W WO2018032720A1 WO 2018032720 A1 WO2018032720 A1 WO 2018032720A1 CN 2017070576 W CN2017070576 W CN 2017070576W WO 2018032720 A1 WO2018032720 A1 WO 2018032720A1
Authority
WO
WIPO (PCT)
Prior art keywords
cup
detecting
detection
biochemical
module
Prior art date
Application number
PCT/CN2017/070576
Other languages
English (en)
French (fr)
Inventor
徐新
董自权
曹宁
宋成桥
周强
郭敏
Original Assignee
江苏英诺华医疗技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏英诺华医疗技术有限公司 filed Critical 江苏英诺华医疗技术有限公司
Publication of WO2018032720A1 publication Critical patent/WO2018032720A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations

Definitions

  • the invention belongs to the technical field of medical test and detection, in particular to a blood cell and a biochemical component analyzer and method.
  • the existing blood cell detection and biochemical detection are generally performed on the blood analyzer and the biochemical analyzer respectively, so two blood samples and two different instruments must be prepared during the detection, the operation is cumbersome, and the sample coding information is prone to occur in manual transmission. Wrong, this mode of detection is especially unsuitable for rapid detection in outpatients, emergency departments, etc. Moreover, the existing instrument detection items capable of performing routine blood and biochemical tests are single, the structure is complicated, and the process is cumbersome.
  • the technical solution for achieving the object of the present invention is: a blood cell and a biochemical component analyzer, comprising a transfer module, a first hemolytic agent addition module, a second hemolytic agent addition module, a diluent addition module, a cleaning agent addition module, a cleaning module, a mixing module, a control module, a first detecting cup, a second detecting cup and a third detecting cup;
  • the transfer module is configured to transfer a biochemical reagent and a sample, including a biochemical reagent bit, a sample bit, a sample aspirating needle, a first liquid extracting device, a connecting line, and a moving device; and the moving device is configured to drive the aspirating needle in the sample position , moving between the biochemical reagent position, the first detection cup, the second detection cup and the third detection cup;
  • the first hemolytic agent addition module includes a first hemolytic agent site and a second liquid extraction device for adding a first hemolytic agent to the first test cup;
  • the second hemolytic agent adding module includes a second hemolytic agent position and a fifth liquid extracting device for adding a second hemolytic agent to the second detecting cup;
  • the diluent adding module includes a dilution liquid level and a third liquid extracting device for injecting a diluent into the first detecting cup, the second detecting cup, the third detecting cup, the aspirating needle and the aspirating needle washer;
  • the cleaning agent adding module includes a cleaning agent position and a fourth liquid extracting device for adding a cleaning agent to the first detecting cup and the second detecting cup;
  • the cleaning module includes a sample needle cleaner, a connection line, a waste liquid discharge pipe, and a waste liquid pump,
  • the suction needle cleaner is used for cleaning the outer wall of the suction needle
  • the waste liquid discharge tube is for discharging the waste liquid in the detection cup and the waste liquid generated after the cleaning of the suction needle cleaner, and the waste liquid pump provides power for discharging the waste liquid;
  • the mixing module mixes the liquid in the detection cup by blowing the bottoms of the first, second and third detection cups;
  • the cups of the first detecting cup, the second detecting cup and the third detecting cup are respectively provided with a first particle counting detecting device, a second particle counting detecting device and a third particle counting detecting device, and the first particle counting detecting device And a second particle count detecting device for detecting nucleated cells of the liquid in the cup, and a third particle counting detecting device for detecting the quantity and volume of the red blood cells and the platelets; one of the first detecting cup and the second detecting cup
  • the detection cup is provided with a transmitted light detecting device for hemoglobin detection, and at least one of the first detecting cup and the second detecting cup is provided with a biochemical detecting device for detecting biochemical items after adding the biochemical reagent;
  • the control module is configured to control a transfer module, a diluent addition module, a first hemolytic agent addition module, a second hemolytic agent addition module, a cleaning agent addition module, a cleaning module, a mixing module, a first detection cup, and a second detection cup. Work with the third test cup and perform test data analysis processing, display, printing, output test results, and communication with the outside.
  • the invention also provides a blood cell and biochemical component analyzer, comprising a transfer module, a first hemolytic agent addition module, a second hemolytic agent addition module, a third hemolytic agent addition module, a diluent addition module, a cleaning agent addition module, and a cleaning Module, mixing module, control module, first detecting cup, second detecting cup, third detecting cup and fourth detecting cup;
  • the transfer module is configured to transfer a biochemical reagent and a sample, including a biochemical reagent bit, a sample bit, a sample aspirating needle, a first liquid extracting device, a connecting line, and a moving device; and the moving device is configured to drive the aspirating needle in the sample position , moving between the biochemical reagent position, the first detection cup, the second detection cup, the third detection cup and the fourth detection cup;
  • the first hemolytic agent addition module includes a first hemolytic agent site and a second liquid extraction device for adding a first hemolytic agent to the first test cup;
  • the second hemolytic agent adding module includes a second hemolytic agent position and a fifth liquid extracting device for adding a second hemolytic agent to the second detecting cup;
  • the third hemolytic agent addition module includes a third hemolytic agent site and a sixth liquid extracting device for adding a third hemolytic agent to the fourth test cup;
  • the diluent addition module includes a dilution liquid level and a third liquid extraction device for the first detection cup, the second detection cup, the third detection cup, the fourth detection cup, the suction needle and the suction needle cleaner Injecting a diluent;
  • the cleaning agent adding module includes a cleaning agent position and a fourth liquid extracting device for adding a cleaning agent to the first detecting cup, the second detecting cup and the fourth detecting cup;
  • the cleaning module comprises a sample suction cleaner, a connection pipeline, a waste liquid discharge pipe and a waste liquid pump, wherein the suction needle cleaner is used for cleaning the outer wall of the suction needle, and the waste liquid discharge pipe is used for discharging the waste in the detection cup.
  • the liquid and the waste liquid generated after the sample cleaner is cleaned, and the waste liquid pump provides power for discharging the waste liquid;
  • the mixing module mixes the liquid in the detection cup by bubbling to the bottoms of the first, second, third and fourth detection cups;
  • the cups of the first detecting cup, the second detecting cup, the third detecting cup and the fourth detecting cup are respectively provided with a first particle counting detecting device, a second particle counting detecting device, a third particle counting detecting device and a first a four-particle counting detecting device, a first particle counting detecting device, a second particle counting detecting device and a fourth particle counting detecting device for detecting nucleated cells of the liquid in the cup, and a third particle counting detecting device for erythrocytes and platelets
  • the quantity and volume are detected; one of the first detection cup, the second detection cup and the fourth detection cup is provided with a transmitted light detecting device for hemoglobin detection, the first detection cup, the second detection cup and the first At least one of the four test cups is provided with a biochemical detection device for biochemical detection after adding biochemical reagents;
  • the control module is configured to control a transfer module, a diluent addition module, a first hemolytic agent addition module, a second hemolytic agent addition module, a third hemolytic agent addition module, a cleaning agent addition module, a cleaning module, a mixing module, and a first
  • the detection cup, the second detection cup, the third detection cup, and the fourth detection cup operate, and perform detection data analysis processing, display, printing, output detection results, and communication with the outside.
  • the invention also provides an analysis method of a blood cell and a biochemical component analyzer, the method comprising the following steps:
  • Step 1 Quantitatively draw the whole blood sample from the sample cup through the aspirating needle, quantitatively transfer to the first detection cup, the second detection cup and the fourth detection cup, and the diluent addition module is directed to the first detection cup and the second detection cup. And adding a quantitative dilution solution to the fourth detection cup, and mixing the first detection cup, the second detection cup and the fourth detection cup through the mixing module; cleaning the outer wall of the suction needle through the suction needle cleaner;
  • Step 2 absorbing a quantitative dilution and mixing the blood sample from any one of the first, second, and fourth test cups by aspirating needle to the third test cup, mixing with the diluent in the cup, and mixing the module
  • the liquid in the third test cup is mixed, and the third particle counting detecting device performs red blood cell and platelet detection on the blood sample mixed in the third detecting cup; the outer wall of the sucking needle is cleaned by the suction needle cleaner;
  • Step 3 adding a quantitative first hemolytic agent to the first test cup through the first hemolytic agent adding module, and mixing the liquid in the first test cup through the mixing module, the first particle counting detecting device and the transmitted light detecting device Detecting nucleated cells and hemoglobin in the blood sample after mixing the first test cup;
  • Step 4 adding a second hemolytic agent to the second test cup by the second hemolytic agent adding device, and detecting the nucleated cells by the second particle counting detecting device;
  • Step 5 adding a third hemolytic agent to the fourth test cup by the third hemolytic agent adding device, and detecting the nucleated cells by the fourth particle counting detecting device;
  • Step 6 After the cleaning, the sample needle is moved to the biochemical reagent position, and the first biochemical reagent is taken up and transferred to the first test cup, and the liquid in the first test cup is mixed again, and the biochemical is added through the first biochemical detection device. The diluted sample mixed after the reagent is tested to obtain the test result of the corresponding biochemical project;
  • Step 7 The cleaned sample needle is moved to the second biochemical reagent position, and the second biochemical reagent is taken up to the second test cup, and the second biochemical test device is used to perform the second biochemical test; after cleaning
  • the aspirating needle quantitatively absorbs the third biochemical reagent, adds the fourth detecting cup, and performs the third biochemical project detection through the third biochemical detecting device.
  • the present invention uses a whole blood sample to quickly complete blood routine and multiple biochemical tests on one instrument, and the original independent detection process Part of the process is effectively integrated, avoiding the duplication of some processes, greatly simplifying the operation procedure and saving the detection time;
  • the invention can complete the biochemical project detection only by using whole blood, and the whole blood is eliminated by the correction method of the invention The difference between the biochemical detection results of the biochemical components and the serum/plasma samples is ensured, and the detection results are accurate and can be compared with the classical biochemical detection methods.
  • the overall structure of the analyzer used in the present invention is simple, and only one aspirating needle is used.
  • Fig. 1 ⁇ 1 is a schematic diagram showing the mutual positional relationship between the sample position Cs, the first biochemical reagent position R1, the first detection cup C1, the second detection cup C2 and the third detection cup C3, and a schematic diagram of the movement path of the suction needle.
  • Figure 1-2 shows the sample position Cs, the first biochemical reagent position R1, the second biochemical reagent position R1', the first test cup C1, the second test cup C2, the fourth test cup C4 and the third test cup C3.
  • Figure 1-3 shows the sample position Cs, the first biochemical reagent position R1, the second biochemical reagent position R1', the third biochemical reagent position R1", the first detection cup C1, the second detection cup C2, the fourth detection cup C4, and A schematic diagram of the mutual positional relationship between the third detection cup C3 and a schematic diagram of the movement path of the suction needle.
  • Figure 1-4 shows the sample position Cs, the first test cup C1, the second test cup C2, the fourth test cup C4, and the third A schematic diagram of the mutual positional relationship between the test cup C3, the first biochemical reagent position R1, the second biochemical reagent position R1' and the third biochemical reagent position R1" and a schematic diagram of the movement path of the aspirating needle.
  • Figure 1-5 shows the sample position Cs, the first test cup C1, the second test cup C2, the fourth test cup C4, the third test cup C3, the first biochemical reagent bit R1, the second biochemical reagent bit R1' and the third A schematic diagram of the mutual positional relationship between the biochemical reagent positions R1" and a schematic diagram of the arc motion path of the aspirating needle.
  • Figure 2 is a schematic view of four test cups of the present invention.
  • Figure 3 ⁇ 1 to Figure 3 ⁇ 3 show top views of the first test cup of the present invention.
  • Figure 4 is a schematic view showing the structure of the analyzer of the present invention.
  • Fig. 5 is a graph showing the correlation analysis between the existing biochemical analyzer and the analyzer of the present invention for detecting CRP results.
  • Fig. 6 is a graph showing the correlation analysis between the existing biochemical analyzer and the analyzer of the present invention for detecting HbA1c results.
  • the blood cell and biochemical component analyzer of the invention comprises a transfer module, a first hemolytic agent adding module, a second hemolytic agent adding module, a diluent adding module, a cleaning agent adding module, a cleaning module, a mixing module, a control module , a first test cup, a second test cup and a third test cup;
  • the transfer module is configured to transfer a biochemical reagent and a sample, including a biochemical reagent bit, a sample bit, a sample aspirating needle, a first liquid extracting device, a connecting line, and a moving device; and the moving device is configured to drive the aspirating needle in the sample position , moving between the biochemical reagent position, the first detection cup, the second detection cup and the third detection cup;
  • the first hemolytic agent addition module includes a first hemolytic agent site and a second liquid extraction device for adding a first hemolytic agent to the first test cup;
  • the second hemolytic agent adding module includes a second hemolytic agent position and a fifth liquid extracting device for adding a second hemolytic agent to the second detecting cup;
  • the diluent adding module includes a dilution liquid level and a third liquid extracting device for injecting a diluent into the first detecting cup, the second detecting cup, the third detecting cup, the aspirating needle and the aspirating needle washer;
  • the cleaning agent adding module includes a cleaning agent position and a fourth liquid extracting device for adding a cleaning agent to the first detecting cup and the second detecting cup;
  • the cleaning module comprises a sample suction cleaner, a connection pipeline, a waste liquid discharge pipe and a waste liquid pump, wherein the suction needle cleaner is used for cleaning the outer wall of the suction needle, and the waste liquid discharge pipe is used for discharging the waste in the detection cup.
  • the liquid and the waste liquid generated after the sample cleaner is cleaned, and the waste liquid pump provides power for discharging the waste liquid;
  • the mixing module mixes the liquid in the detection cup by blowing the bottoms of the first, second and third detection cups;
  • the cups of the first detecting cup, the second detecting cup and the third detecting cup are respectively provided with a first particle counting detecting device, a second particle counting detecting device and a third particle counting detecting device, and the first particle counting detecting device And a second particle count detecting device for detecting nucleated cells of the liquid in the cup, and a third particle counting detecting device for detecting the quantity and volume of the red blood cells and the platelets; one of the first detecting cup and the second detecting cup
  • the detection cup is provided with a transmitted light detecting device for hemoglobin detection, and at least one of the first detecting cup and the second detecting cup is provided with a biochemical detecting device for detecting biochemical items after adding the biochemical reagent;
  • the control module is configured to control a transfer module, a diluent addition module, a first hemolytic agent addition module, a second hemolytic agent addition module, a cleaning agent addition module, a cleaning module, a mixing module, a first detection cup, and a second detection cup. Work with the third test cup and perform test data analysis processing, display, printing, output test results, and communication with the outside.
  • the invention also provides a blood cell and biochemical component analyzer, comprising a transfer module, a first hemolytic agent addition module, a second hemolytic agent addition module, a third hemolytic agent addition module, a diluent addition module, a cleaning agent addition module, and a cleaning Module, mixing module, control module, first detecting cup, second detecting cup, third detecting cup and fourth detecting cup;
  • the transfer module is configured to transfer a biochemical reagent and a sample, including a biochemical reagent bit, a sample bit, a sample aspirating needle, a first liquid extracting device, a connecting line, and a moving device; and the moving device is configured to drive the aspirating needle in the sample position , moving between the biochemical reagent position, the first detection cup, the second detection cup, the third detection cup and the fourth detection cup;
  • the first hemolytic agent addition module includes a first hemolytic agent site and a second liquid extraction device for adding a first hemolytic agent to the first test cup;
  • the second hemolytic agent adding module includes a second hemolytic agent position and a fifth liquid extracting device for adding a second hemolytic agent to the second detecting cup;
  • the third hemolytic agent addition module includes a third hemolytic agent site and a sixth liquid extracting device for adding a third hemolytic agent to the fourth test cup;
  • the diluent addition module includes a dilution liquid level and a third liquid extraction device for the first detection cup, the second detection cup, the third detection cup, the fourth detection cup, the suction needle and the suction needle cleaner Injecting a diluent;
  • the cleaning agent adding module includes a cleaning agent position and a fourth liquid extracting device for adding a cleaning agent to the first detecting cup, the second detecting cup and the fourth detecting cup;
  • the cleaning module comprises a sample suction cleaner, a connection pipeline, a waste liquid discharge pipe and a waste liquid pump, wherein the suction needle cleaner is used for cleaning the outer wall of the suction needle, and the waste liquid discharge pipe is used for discharging the waste in the detection cup. Liquid and The waste liquid generated after the suction needle cleaner is cleaned, and the waste liquid pump provides power for discharging the waste liquid;
  • the mixing module mixes the liquid in the detection cup by bubbling to the bottoms of the first, second, third and fourth detection cups;
  • the cups of the first detecting cup, the second detecting cup, the third detecting cup and the fourth detecting cup are respectively provided with a first particle counting detecting device, a second particle counting detecting device, a third particle counting detecting device and a first a four-particle counting detecting device, a first particle counting detecting device, a second particle counting detecting device and a fourth particle counting detecting device for detecting nucleated cells of the liquid in the cup, and a third particle counting detecting device for erythrocytes and platelets
  • the quantity and volume are detected; one of the first detection cup, the second detection cup and the fourth detection cup is provided with a transmitted light detecting device for hemoglobin detection, the first detection cup, the second detection cup and the first At least one of the four test cups is provided with a biochemical detection device for biochemical detection after adding biochemical reagents;
  • the control module is configured to control a transfer module, a diluent addition module, a first hemolytic agent addition module, a second hemolytic agent addition module, a third hemolytic agent addition module, a cleaning agent addition module, a cleaning module, a mixing module, and a first
  • the detection cup, the second detection cup, the third detection cup, and the fourth detection cup operate, and perform detection data analysis processing, display, printing, output detection results, and communication with the outside.
  • the first detecting cup wall is provided with a transmitted light detecting device and a first biochemical detecting device
  • the second detecting cup wall is provided with a second biochemical detecting device
  • the fourth detecting cup wall is provided with a third biochemical device Detection device.
  • the biochemical detecting device includes one or both of a transmitted light detecting device and a scattered light detecting device.
  • the analyzer further includes a washer for cleaning the outer wall of the sample needle.
  • the scattered light detecting device and the transmitted light detecting device are both multi-wavelength detecting devices.
  • the instrument switches wavelengths according to the detection requirements.
  • the switching of the detection wavelength is realized by switching the light source, switching the voltage or installing a monochromator device capable of changing the wavelength before the detector.
  • the analyzer further includes a cleaning cup for cleaning the inside and outside of the suction needle.
  • the invention also provides an analysis method based on a blood cell and a biochemical component analyzer, the method comprising the following steps:
  • Step 1 Quantitatively draw the whole blood sample from the sample cup through the aspirating needle, quantitatively transfer to the first detection cup, the second detection cup and the fourth detection cup, and the diluent addition module is directed to the first detection cup and the second detection cup. And adding a quantitative dilution solution to the fourth detection cup, and mixing the first detection cup, the second detection cup and the fourth detection cup through the mixing module; cleaning the outer wall of the suction needle through the suction needle cleaner;
  • Step 2 absorbing a quantitative dilution and mixing the blood sample from any one of the first, second, and fourth test cups by aspirating needle to the third test cup, mixing with the diluent in the cup, and mixing the module
  • the liquid in the third test cup is mixed, and the third particle counting detecting device performs red blood cell and platelet detection on the blood sample mixed in the third detecting cup; the outer wall of the sucking needle is cleaned by the suction needle cleaner;
  • Step 3 adding a first amount of the first hemolytic agent to the first test cup through the first hemolytic agent adding module, and mixing the liquid in the first test cup through the mixing module, the first particle counting detecting device and the transmitted light detecting device respectively Detecting nucleated cells and hemoglobin in the blood sample after mixing the first test cup;
  • Step 4 adding a second hemolytic agent to the second test cup by the second hemolytic agent adding device, and detecting the nucleated cells by the second particle counting detecting device;
  • Step 5 adding a third hemolytic agent to the fourth test cup by the third hemolytic agent adding device, and detecting the nucleated cells by the fourth particle counting detecting device;
  • Step 6 After the cleaning, the sample needle is moved to the biochemical reagent position, and the first biochemical reagent is taken up and transferred to the first test cup, and the liquid in the first test cup is mixed again, and the biochemical is added through the first biochemical detection device. The diluted sample mixed after the reagent is tested to obtain the test result of the corresponding biochemical project;
  • Step 7 The cleaned sample needle is moved to the second biochemical reagent position, and the second biochemical reagent is taken up to the second test cup, and the second biochemical test device is used to perform the second biochemical test; after cleaning
  • the aspirating needle quantitatively absorbs the third biochemical reagent, adds the fourth detecting cup, and performs the third biochemical project detection through the third biochemical detecting device.
  • the cleaning cup and the diluent adding module are used to clean the detection cups and the suction needles, and the instrument completes the detection process.
  • the nucleated cells of the present invention include basophils, eosinophils, lymphocytes, monocytes, neutrophils, and reticulocytes.
  • the detection and analysis method of nucleated cells may be an electrical impedance method, an electrical impedance combined with sheath flow optical detection method or a simple cell staining sheath flow technique detection method.
  • the instrument can automatically correct the biochemical component detection results of each blood sample to ensure that each biochemical test result of the instrument is consistent with the actual biochemical composition or standard biochemical test results.
  • the instrument does not need to correct the test results.
  • the principle of the correction is because the standard biochemical test is to detect the biochemical content in plasma/serum, while the whole blood contains a lot of cellular components, and some biochemical components are different inside and outside the cell; some biochemical components are only/mainly in the blood cells.
  • biochemical components are mainly present in the blood cells, so the biochemical content of the whole blood sample may be different from the plasma/serum; in addition, when the red blood cells, white blood cells, and platelets in the whole blood are also involved in the biochemical test, the component may also be Corresponding biochemical project testing has a certain impact. Therefore, there is an error between the biochemical test results of whole blood samples and the biochemical test results of plasma/serum.
  • serum/plasma volume whole blood volume - cell volume
  • cell volume platelet count in whole blood ⁇ mean platelet volume + number of red blood cells in whole blood ⁇ average volume of red blood cells + number of white blood cells in whole blood ⁇ average volume of all white blood cells ⁇ correction factor b, the correction factors a and b range from 0.3 to 4.0, respectively.
  • "/" means the meaning of "or”.
  • the volume of white blood cells can be calculated as follows:
  • Leukocyte volume mean leukocyte volume ⁇ number of large white cells ⁇ correction factor c + small white blood cell volume ⁇ small white blood cell count ⁇ correction factor d, correction factors c and d range from 0.3 to 4.0, respectively.
  • Leukocyte volume average lymphocyte volume ⁇ number of lymphocytes ⁇ correction factor e + neutrophil volume ⁇ number of neutrophils ⁇ correction factor f + intermediate cell volume ⁇ number of intermediate cells ⁇ correction factor g, correction factor e ⁇ g
  • the range is 0.3 ⁇ 4.0.
  • Figure 1 ⁇ 1 The movement path of the sample needle is sample position Cs ⁇ first biochemical reagent position R1 ⁇ first detection cup C1 ⁇ second detection cup C2 ⁇ third detection cup C3;
  • Figure 1 ⁇ 2 The movement path of the sample needle is sample position Cs ⁇ first biochemical reagent position R1 ⁇ second biochemical reagent position R1′ ⁇ first detection cup C1 ⁇ second detection cup C2 ⁇ fourth detection cup C4 ⁇ third Detection cup C3;
  • Figure 1 ⁇ 3 The movement path of the sample needle is sample position Cs ⁇ first biochemical reagent position R1 ⁇ second biochemical reagent position R1′ ⁇ third biochemical reagent position R1” ⁇ first detection cup C1 ⁇ second detection cup C2 ⁇ Fourth detecting cup C4 ⁇ third detecting cup C3;
  • FIG. 1 ⁇ 4 and Figure 1 ⁇ 5 The movement path of the sample needle is sample position Cs ⁇ first detection cup C1 ⁇ second detection cup C2 ⁇ fourth detection cup C4 ⁇ third detection cup C3 ⁇ first biochemical reagent position R1 ⁇ Second biochemical reagent position R1' ⁇ third biochemical reagent position R1”.
  • test cups are taken as an example to detect blood routine and single-reagent biochemical items.
  • the first detecting cup C1 is provided with a first particle counting detecting device D4 and a first transmitted light.
  • a detecting device and a first biochemical detecting device the first biochemical detecting device comprising a first scattered light detecting device; the first transmitted light detecting device comprising a first transmitted light source L1; the first scattered light detecting device comprising a first scattered light source L4, The first scattered light detecting device shares the first detector D1 with the first transmitted light detecting device.
  • the second detecting cup C2 is provided with a second particle counting detecting means D5 and a second biochemical detecting means, and the second biochemical detecting means comprises a second transmitted light detecting means and a second scattered light detecting means.
  • the second transmitted light detecting device and the second scattered light detecting device select one of them to perform biochemical item detection;
  • the second transmitted light detecting device includes a second transmitted light source L2, and the second scattered light detecting device includes a second scattered light source L5, The second scattered light detecting device and the second transmitted light detecting device share the second detector D2;
  • the fourth detecting cup C4 is provided with a fourth particle counting detecting device D6 and a third biochemical detecting device, the third biochemical detecting device comprising a third transmitted light detecting device and a third scattered light detecting device, a third transmitted light detecting device and The third scattered light detecting device selects one of the opening for biochemical item detection;
  • the third transmitted light detecting device includes a third transmitted light source L3, and the third scattered light detecting device includes a third scattered light source L6, a third transmitted light detecting device and The third scattered light detecting device shares the third detector D3;
  • the third detecting cup C3 is provided with a third particle count detecting means D7.
  • the suction needle N1 moves into the sample cup, the second valve V2 is closed, the first valve V1 is opened, the first liquid extraction device S1 is pulled back, and the quantitative sample is sucked into the suction needle N1, and the mobile device is driven.
  • the second valve V2 is closed, the first valve V1 is opened, and the first liquid extracting device S1 pushes the blood sample of the sucking needle N1 into the first detecting cup C1; according to the same method, sucking The sample needle N1 moves into the second detection cup C2 and the fourth detection cup C4, and the quantitative blood sample is respectively added to the second detection cup C2 and the fourth detection cup C4; the sixth valve V6 in the diluent addition module is opened, and the second valve V2 , the twenty-fourth valve V24, the twentieth valve V20, the twenty-first valve V21 and the fifth valve V5 are closed, the third liquid extraction device S3 piston pullback pulls the diluent R3 into the third liquid extraction device S3, the first The six valves V6 are closed, the twentieth valve V20, the twenty-first valve V21, the twenty-fourth valve V24 are opened, and the third liquid extracting device S3 is propelled by the piston, and the diluent in the third
  • the sample needle N1 draws a partially diluted sample from the first test cup C1 in the previous manner, and transfers to the third test cup C3.
  • the sixth valve V6 in the diluent addition module is opened, and the second valve V2 is opened.
  • Twenty-four valve V24, twentieth valve V20, twenty-first valve V21 and fifth valve V5 are closed, the third liquid extraction device S3 piston pulls back to absorb the quantitative dilution liquid R3, the sixth valve V6, the twenty-fourth The valve V24, the twentieth valve V20 and the twenty-first valve V21 are closed, the fifth valve V5, the first valve V1 and the second valve V2 are opened, and the third liquid extracting device S3 is advanced by the piston in the third liquid extracting device S3.
  • the quantitative diluent is injected into the third test cup C3 through the fourth diluent needle N3, and simultaneously enters the sample needle N1 through the pipe to clean the inside of the sample needle N1.
  • the ninth valve V9, the twenty-second valve V22, the twenty-third valve V23 and the twelfth valve V12 are closed, the tenth valve V10 and the eleventh valve V11 are opened, the air pump P1 is blown, and the driving gas is driven.
  • the third particle count detecting means D7 detects the number and volume of sample platelets and red blood cells in the third detecting cup C3.
  • the external needle cleaner cleans the outside of the suction needle N1.
  • the fourth valve V4 is opened, the third valve V3 is closed, the second liquid extracting device S2 is pulled back, the first hemolytic agent R2 is sucked into the second liquid extracting device S2, the fourth valve V4 is closed, and the third valve V3 is opened, the second The liquid extracting device S2 advances the piston to cause the first hemolytic agent to enter the first detecting cup C1.
  • the eleventh valve V11 and the ninth valve V9 in the mixing module are opened, and the tenth valve V10, the twenty-second valve V22, the twenty-third valve V23 and the twelfth valve V12 are closed, the air pump P1 is blown, and the gas is driven.
  • the first particle counting detecting means D4 in the first detecting cup C1 detects the nucleated cells in the cup, the first transmitted light source L1 is turned on, and the first detector D1 detects the hemoglobin content.
  • the aspirating needle N1 moves to the first biochemical reagent position R1, and the aspirating needle N1 penetrates into the first biochemical reagent, and the first biochemical reagent is combined with the first liquid extracting device S1, the first valve V1 and the second valve V2, and the first biochemical reagent
  • the first biochemical reagent is taken up in position R1, and then the sample needle N1 is moved to the first detecting cup C1, the first biochemical reagent is added to the first detecting cup C1, and the eleventh valve V11 and the ninth valve V9 in the mixing module are mixed.
  • the tenth valve V10, the twenty-second valve V22, the twenty-third valve V23 and the twelfth valve V12 are closed, the air pump P1 is blown, and the driving gas enters the bottom of the first detecting cup C1 along the pipeline, and the mixing cup is mixed.
  • Medium liquid As shown in FIG. 2, the first scattered light source L4 is turned on, the first transmitted light source L1 is turned off, and the first detector D1 detects the scattered light signal to obtain a single reagent biochemical item detection result.
  • the external needle cleaner cleans the outside of the suction needle N1.
  • the thirteenth valve V13 is opened, the fourteenth valve V14 is closed, the fifth liquid extracting device S5 is pulled back, the second hemolytic agent R5 is sucked into the fifth liquid extracting device S5, the thirteenth valve V13 is closed, and the fourteenth valve V14 is closed.
  • the fifth liquid extracting device S5 advances the piston to make the quantitative second hemolytic agent enter the second detecting cup C2.
  • the eleventh valve V11 and the twenty-second valve V22 of the mixing module are opened, the ninth valve V9, the twenty-third valve V23, the tenth valve V10 and the
  • the twelve valve V12 is closed, the air pump P1 is blown, and the driving gas enters the bottom of the second detecting cup C2 along the pipeline to mix the liquid in the cup.
  • the second particle count detecting means D5 detects a part of the nucleated cells in the cup.
  • the sixth liquid extracting device S6 advances the piston to make the third hemolytic agent enter the fourth detecting cup C4.
  • the eleventh valve V11 and the twenty-third valve V23 are opened, and the ninth valve V9, the twenty-second valve V22, the tenth valve V10 and the twelfth valve V12 are closed, the air pump P1 is blown, and the gas is driven.
  • the fourth particle count detecting device D6 detects a part of the nucleated cells in the cup.
  • the ninth valve V9, the twenty-second valve V22, the twenty-third valve V23, the tenth valve V10 and the twelfth valve V12 are opened, and the waste liquid pump P2 is pumped, and each test cup and needle are cleaned.
  • the detection waste liquid in the device and the pipeline is discharged into the waste liquid collector; after that, the eighth valve V8 in the cleaning agent addition module is opened, the seventh valve V7 is closed, the fourth liquid extraction device S4 is pulled back, and the cleaning agent R4 is sucked into the fourth The liquid extracting device S4, after which the eighth valve V8 is closed, the seventh valve V7, the seventeenth valve V17, the eighteenth valve V18 and the nineteenth valve V19 are opened, the fourth liquid extracting device S4 is advanced, and the cleaning agent R4 is passed through the first
  • the cleaning agent needle N4 enters the first detection cup C1, enters the second detection cup C2 through the second cleaning agent needle N4 1 , enters the fourth detection cup C4 through the third cleaning agent needle N4 2 , and then opens the ninth valve V9, and then the second The twelve valve V22, the twenty-third valve V23 and the twelfth valve V12, the waste liquid pump P2 is pumped, and the cleaning waste liquid is discharged into the waste liquid collector.
  • the sixth valve V6 of the diluent addition module is opened, the second valve V2, the twenty-fourth valve V24, the twentieth valve V20, the twenty-first valve V21 and the fifth valve V5 are closed, and the third liquid extraction device S3 is piston-returned.
  • the third liquid extracting device S3 pushes the quantitative diluent in the third liquid extracting device S3 through the fourth diluent needle N3 into the third detecting cup C3, and enters the first detecting cup C1 through the first diluent needle N3 1 .
  • the second dilution liquid needle N3 2 enters the second detection cup C2, enters the fourth detection cup C4 through the third dilution liquid needle N3 3 , and enters the suction needle N1 through the pipeline, and the detection cup and the suction needle N1 are respectively Cleaned inside.
  • the suction needle N1 also performs external cleaning of the needle at this time.
  • the ninth valve V9, the twenty-second valve V22, the twenty-third valve V23, the tenth valve V10 and the twelfth valve V12, the waste liquid pump P2 are opened. Pumping, cleaning waste liquid is discharged into the waste collector.
  • the analyzer of the present embodiment differs from Embodiment 1 in that the blood routine and the two-reagent biochemical project are detected in the present embodiment.
  • the aspirating needle N1 moves to the first biochemical reagent position R1, and the aspirating needle N1 penetrates into the first biochemical reagent, and the first liquid extracting device S1, the first valve V1 and the second valve V2 cooperate to absorb the quantitative first biochemical
  • the aspirating needle N1 is moved to the first detecting cup C1
  • the first biochemical reagent is added to the first detecting cup C1
  • the eleventh valve V11 and the ninth valve V9 of the mixing module are opened, and the tenth valve V10, the first The twenty-two valve V22, the twenty-third valve V23 and the twelfth valve V12 are closed, the air pump P1 is blown, and the driving gas enters the bottom of the first detecting cup C1 along the pipeline to mix the liquid in the cup.
  • the sample needle N1 is moved to the second biochemical reagent position R1', and the second biochemical reagent is taken up in the same manner and transferred to the first test cup C1.
  • the first scattered light source L4 When the first transmitted light source L1 is turned off, the first detector D1 detects the scattered light signal to obtain the detection result of the two-reagent biochemical item.
  • the difference between the embodiment and the embodiment 1 and the embodiment 2 is that the first transmitted light source L1 is turned on, the first scattered light source L4 is turned off, and the first detector D1 detects the transmitted light signal to obtain a biochemical item detection result.
  • the analyzer of this embodiment differs from Embodiment 1 in that the first transmission light source L1, the second transmission light source L2, and the third transmission source of the present embodiment L3 sets a plurality of wavelengths, and converts the first filter F1, the second filter F2, and the third filter F3 to obtain transmitted light of different wavelengths for detection of different biochemical items.
  • the first filter F1, the second filter F2, and the third filter F3 have different wavelengths.
  • the difference between the analyzer of this embodiment and the embodiment 1 is that the first scattering light source L4, the second scattering light source L5, and the third scattering light source of the embodiment are combined with FIG. 3-1, FIG. 3-2, and FIG. L6 sets a plurality of wavelengths, and converts the first filter F1, the second filter F2, and the third filter F3 to obtain scattered light of different wavelengths for detection of different biochemical items.

Abstract

一种血液细胞及生化成分分析仪及方法,包括转移模块、第一溶血剂添加模块、第二溶血剂添加模块、第三溶血剂添加模块、稀释液添加模块、清洗剂添加模块、清洗模块、混匀模块、控制模块、第一检测杯(C1)、第二检测杯(C2)、第三检测杯(C3)和第四检测杯(C4)。可实现在同一台分析仪上快速完成血液细胞常规和种以上生化项目检测,使得仪器的检测功能更强、样本用量更少、检测效率更高,为临床疾病诊断提供更加全面的信息。

Description

血液细胞及生化成分分析仪及方法 技术领域
本发明属于医学检验检测技术领域,特别是一种血液细胞及生化成分分析仪及方法。
背景技术
在医学临床诊断中常需要实验室同时获得患者血液血细胞检测信息和生化检测信息,实验室提供的综合检查信息可以给临床疾病诊断和治疗提供更加完善的指导信息。
现有血液细胞检测和生化检测一般是分别在血液分析仪和生化分析仪上进行,因此检测时必须准备两份血样和两部不同仪器,操作较为繁琐,且样品编码信息在人工传递中易发生错误,这种检测模式尤其不适合门诊、急诊等快速检测的需要。且已有的可执行血液常规及生化检测的仪器检测项目单一,结构较复杂,流程较繁琐。
发明内容
发明的目的在于提供一种血液细胞及生化成分分析仪及方法。
实现本发明目的的技术方案为:一种血液细胞及生化成分分析仪,包括转移模块、第一溶血剂添加模块、第二溶血剂添加模块、稀释液添加模块、清洗剂添加模块、清洗模块、混匀模块、控制模块、第一检测杯、第二检测杯和第三检测杯;
所述转移模块用于转移生化试剂和样品,包括生化试剂位、样品位、吸样针、第一液体抽取装置、连接管路和移动装置;所述移动装置用于驱动吸样针在样品位、生化试剂位、第一检测杯、第二检测杯和第三检测杯之间移动;
所述第一溶血剂添加模块包括第一溶血剂位和第二液体抽取装置,用于向第一检测杯中添加第一溶血剂;
所述第二溶血剂添加模块包括第二溶血剂位和第五液体抽取装置,用于向第二检测杯中添加第二溶血剂;
所述稀释液添加模块包括一个稀释液位和第三液体抽取装置,用于向第一检测杯、第二检测杯、第三检测杯、吸样针及吸样针清洗器中注入稀释液;
所述清洗剂添加模块包括一个清洗剂位和第四液体抽取装置,用于向第一检测杯和第二检测杯中添加清洗剂;
所述清洗模块包括吸样针清洗器、连接管路、废液排出管以及废液泵,所述 吸样针清洗器用于清洗吸样针外壁,所述废液排出管用于排出检测杯中废液以及吸样针清洗器清洗后产生的废液,所述废液泵为废液排出提供动力;
所述混匀模块通过向第一、第二和第三检测杯底部鼓气,对检测杯中的液体搅动混匀;
第一检测杯、第二检测杯和第三检测杯的杯壁上分别设置有设置有第一颗粒计数检测装置、第二颗粒计数检测装置和第三颗粒计数检测装置,第一颗粒计数检测装置和第二颗粒计数检测装置用于对杯中液体进行有核细胞检测,第三颗粒计数检测装置用于对红细胞和血小板的数量和体积进行检测;第一检测杯和第二检测杯的其中一个检测杯中设置有透射光检测装置,用于血红蛋白检测,第一检测杯和第二检测杯中至少一个检测杯设置有生化检测装置,用于加入生化试剂后进行生化项目检测;
所述控制模块用以控制转移模块、稀释液添加模块、第一溶血剂添加模块、第二溶血剂添加模块、清洗剂添加模块、清洗模块、混匀模块、第一检测杯、第二检测杯和第三检测杯工作,并执行检测数据分析处理、显示、打印、输出检测结果以及与外部通讯。
本发明还提供一种血液细胞及生化成分分析仪,包括转移模块、第一溶血剂添加模块、第二溶血剂添加模块、第三溶血剂添加模块、稀释液添加模块、清洗剂添加模块、清洗模块、混匀模块、控制模块、第一检测杯、第二检测杯、第三检测杯和第四检测杯;
所述转移模块用于转移生化试剂和样品,包括生化试剂位、样品位、吸样针、第一液体抽取装置、连接管路和移动装置;所述移动装置用于驱动吸样针在样品位、生化试剂位、第一检测杯、第二检测杯、第三检测杯和第四检测杯之间移动;
所述第一溶血剂添加模块包括第一溶血剂位和第二液体抽取装置,用于向第一检测杯中添加第一溶血剂;
所述第二溶血剂添加模块包括第二溶血剂位和第五液体抽取装置,用于向第二检测杯中添加第二溶血剂;
所述第三溶血剂添加模块包括第三溶血剂位和第六液体抽取装置,用于向第四检测杯中添加第三溶血剂;
所述稀释液添加模块包括一个稀释液位和第三液体抽取装置,用于向第一检测杯、第二检测杯、第三检测杯、第四检测杯、吸样针及吸样针清洗器中注入稀释液;
所述清洗剂添加模块包括一个清洗剂位和第四液体抽取装置,用于向第一检测杯、第二检测杯和第四检测杯中添加清洗剂;
所述清洗模块包括吸样针清洗器、连接管路、废液排出管以及废液泵,所述吸样针清洗器用于清洗吸样针外壁,所述废液排出管用于排出检测杯中废液以及吸样针清洗器清洗后产生的废液,所述废液泵为废液排出提供动力;
所述混匀模块通过向第一、第二、第三和第四检测杯底部鼓气,对检测杯中的液体搅动混匀;
第一检测杯、第二检测杯、第三检测杯和第四检测杯的杯壁上分别设置有设置有第一颗粒计数检测装置、第二颗粒计数检测装置、第三颗粒计数检测装置和第四颗粒计数检测装置,第一颗粒计数检测装置、第二颗粒计数检测装置和第四颗粒计数检测装置用于对杯中液体进行有核细胞检测,第三颗粒计数检测装置用于对红细胞和血小板的数量和体积进行检测;第一检测杯、第二检测杯和第四检测杯的其中一个检测杯中设置有透射光检测装置,用于血红蛋白检测,第一检测杯、第二检测杯和第四检测杯中至少一个检测杯设置有生化检测装置,用于加入生化试剂后进行生化项目检测;
所述控制模块用以控制转移模块、稀释液添加模块、第一溶血剂添加模块、第二溶血剂添加模块、第三溶血剂添加模块、清洗剂添加模块、清洗模块、混匀模块、第一检测杯、第二检测杯、第三检测杯和第四检测杯工作,并执行检测数据分析处理、显示、打印、输出检测结果以及与外部通讯。
本发明还提供一种血液细胞及生化成分分析仪的分析方法,该方法包括以下步骤:
步骤1、通过吸样针自样品杯中定量吸取全血样品,定量转移到第一检测杯、第二检测杯和第四检测杯中,稀释液添加模块向第一检测杯、第二检测杯和第四检测杯中分别加入定量的稀释液,并通过混匀模块混匀第一检测杯、第二检测杯和第四检测杯;通过吸样针清洗器对吸样针外壁进行清洗;
步骤2、通过吸样针自第一、第二、第四检测杯任意一杯中吸取定量的稀释、混匀后的血样转移至第三检测杯,与杯中的稀释液混合,由混匀模块对第三检测杯中液体混匀,第三颗粒计数检测装置对第三检测杯中混匀后血样进行红细胞及血小板检测;通过吸样针清洗器对吸样针外壁进行清洗;
步骤3、通过第一溶血剂添加模块向第一检测杯中加入定量的第一溶血剂并经混匀模块对第一检测杯内液体混匀,第一颗粒计数检测装置和透射光检测装置 分别对第一检测杯混匀后血样中的有核细胞和血红蛋白进行检测;
步骤4、通过第二溶血剂添加装置向第二检测杯中加入第二溶血剂,第二颗粒计数检测装置对有核细胞进行检测;
步骤5、通过第三溶血剂添加装置向第四检测杯中加入第三溶血剂,第四颗粒计数检测装置对有核细胞进行检测;
步骤6、清洗后的吸样针移动至生化试剂位,吸取定量的第一种生化试剂并转移至第一检测杯,再次混匀第一检测杯中液体,通过第一生化检测装置对加入生化试剂后混匀的稀释样品进行检测,获得相应生化项目的检测结果;
步骤7、清洗后的吸样针再移动至第二生化试剂位,吸取定量的第二种生化试剂加至第二检测杯,通过第二生化检测装置执行第二种生化项目检测;清洗后的吸样针定量吸取第三种生化试剂,加入第四检测杯,通过第三生化检测装置执行第三种生化项目检测。
与现有技术及产品相比,本发明的显著效果为:(1)本发明采用一份全血样本在一台仪器上快速完成血液常规及多项生化检测,将原来各自独立的检测过程的部分流程有效整合,避免了部分流程的重复,大大简化了操作程序,节省了检测时间;(2)本发明仅仅使用全血就可以完成生化项目检测,而且通过本发明的修正方法消除了全血样本检测生化成分与血清/血浆样本的生化检测结果的差异,确保检测结果准确并可以与经典的生化检测方法相比较;(3)本发明采用的分析仪总体结构简单,仅仅一个吸样针就可以完成全部样本及生化试剂的转移或分配;(4)本仪器检测所需要的样本较少,检测过程中细胞检测及生化检测共用样本、稀释和清洗试剂,因此产生的废液更少,更环保。
附图说明
图1‐1为样品位Cs、第一生化试剂位R1、第一检测杯C1、第二检测杯C2和第三检测杯C3之间的相互位置关系示意图及吸样针运动轨迹示意图。
图1‐2为样品位Cs、第一生化试剂位R1、第二生化试剂位R1’、第一检测杯C1、第二检测杯C2、第四检测杯C4和第三检测杯C3之间的相互位置关系示意图及吸样针运动轨迹示意图。
图1‐3为样品位Cs、第一生化试剂位R1、第二生化试剂位R1’、第三生化试剂位R1”、第一检测杯C1、第二检测杯C2、第四检测杯C4和第三检测杯C3之间的相互位置关系示意图及吸样针运动轨迹示意图。
图1‐4为样品位Cs、第一检测杯C1、第二检测杯C2、第四检测杯C4、第三 检测杯C3、第一生化试剂位R1、第二生化试剂位R1’和第三生化试剂位R1”之间的相互位置关系示意图及吸样针运动轨迹示意图。
图1‐5为样品位Cs、第一检测杯C1、第二检测杯C2、第四检测杯C4、第三检测杯C3、第一生化试剂位R1、第二生化试剂位R1’和第三生化试剂位R1”之间的相互位置关系示意图及吸样针弧线运动轨迹示意图。
图2为本发明四个检测杯示意图。
图3‐1~图3‐3为本发明第一检测杯俯视图。
图4为本发明分析仪结构示意图。
图5为现有生化仪与本发明分析仪检测CRP结果相关性分析图。
图6为现有生化仪与本发明分析仪检测HbA1c结果相关性分析图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明。
本发明的一种血液细胞及生化成分分析仪,包括转移模块、第一溶血剂添加模块、第二溶血剂添加模块、稀释液添加模块、清洗剂添加模块、清洗模块、混匀模块、控制模块、第一检测杯、第二检测杯和第三检测杯;
所述转移模块用于转移生化试剂和样品,包括生化试剂位、样品位、吸样针、第一液体抽取装置、连接管路和移动装置;所述移动装置用于驱动吸样针在样品位、生化试剂位、第一检测杯、第二检测杯和第三检测杯之间移动;
所述第一溶血剂添加模块包括第一溶血剂位和第二液体抽取装置,用于向第一检测杯中添加第一溶血剂;
所述第二溶血剂添加模块包括第二溶血剂位和第五液体抽取装置,用于向第二检测杯中添加第二溶血剂;
所述稀释液添加模块包括一个稀释液位和第三液体抽取装置,用于向第一检测杯、第二检测杯、第三检测杯、吸样针及吸样针清洗器中注入稀释液;
所述清洗剂添加模块包括一个清洗剂位和第四液体抽取装置,用于向第一检测杯和第二检测杯中添加清洗剂;
所述清洗模块包括吸样针清洗器、连接管路、废液排出管以及废液泵,所述吸样针清洗器用于清洗吸样针外壁,所述废液排出管用于排出检测杯中废液以及吸样针清洗器清洗后产生的废液,所述废液泵为废液排出提供动力;
所述混匀模块通过向第一、第二和第三检测杯底部鼓气,对检测杯中的液体搅动混匀;
第一检测杯、第二检测杯和第三检测杯的杯壁上分别设置有设置有第一颗粒计数检测装置、第二颗粒计数检测装置和第三颗粒计数检测装置,第一颗粒计数检测装置和第二颗粒计数检测装置用于对杯中液体进行有核细胞检测,第三颗粒计数检测装置用于对红细胞和血小板的数量和体积进行检测;第一检测杯和第二检测杯的其中一个检测杯中设置有透射光检测装置,用于血红蛋白检测,第一检测杯和第二检测杯中至少一个检测杯设置有生化检测装置,用于加入生化试剂后进行生化项目检测;
所述控制模块用以控制转移模块、稀释液添加模块、第一溶血剂添加模块、第二溶血剂添加模块、清洗剂添加模块、清洗模块、混匀模块、第一检测杯、第二检测杯和第三检测杯工作,并执行检测数据分析处理、显示、打印、输出检测结果以及与外部通讯。
本发明还提供一种血液细胞及生化成分分析仪,包括转移模块、第一溶血剂添加模块、第二溶血剂添加模块、第三溶血剂添加模块、稀释液添加模块、清洗剂添加模块、清洗模块、混匀模块、控制模块、第一检测杯、第二检测杯、第三检测杯和第四检测杯;
所述转移模块用于转移生化试剂和样品,包括生化试剂位、样品位、吸样针、第一液体抽取装置、连接管路和移动装置;所述移动装置用于驱动吸样针在样品位、生化试剂位、第一检测杯、第二检测杯、第三检测杯和第四检测杯之间移动;
所述第一溶血剂添加模块包括第一溶血剂位和第二液体抽取装置,用于向第一检测杯中添加第一溶血剂;
所述第二溶血剂添加模块包括第二溶血剂位和第五液体抽取装置,用于向第二检测杯中添加第二溶血剂;
所述第三溶血剂添加模块包括第三溶血剂位和第六液体抽取装置,用于向第四检测杯中添加第三溶血剂;
所述稀释液添加模块包括一个稀释液位和第三液体抽取装置,用于向第一检测杯、第二检测杯、第三检测杯、第四检测杯、吸样针及吸样针清洗器中注入稀释液;
所述清洗剂添加模块包括一个清洗剂位和第四液体抽取装置,用于向第一检测杯、第二检测杯和第四检测杯中添加清洗剂;
所述清洗模块包括吸样针清洗器、连接管路、废液排出管以及废液泵,所述吸样针清洗器用于清洗吸样针外壁,所述废液排出管用于排出检测杯中废液以及 吸样针清洗器清洗后产生的废液,所述废液泵为废液排出提供动力;
所述混匀模块通过向第一、第二、第三和第四检测杯底部鼓气,对检测杯中的液体搅动混匀;
第一检测杯、第二检测杯、第三检测杯和第四检测杯的杯壁上分别设置有设置有第一颗粒计数检测装置、第二颗粒计数检测装置、第三颗粒计数检测装置和第四颗粒计数检测装置,第一颗粒计数检测装置、第二颗粒计数检测装置和第四颗粒计数检测装置用于对杯中液体进行有核细胞检测,第三颗粒计数检测装置用于对红细胞和血小板的数量和体积进行检测;第一检测杯、第二检测杯和第四检测杯的其中一个检测杯中设置有透射光检测装置,用于血红蛋白检测,第一检测杯、第二检测杯和第四检测杯中至少一个检测杯设置有生化检测装置,用于加入生化试剂后进行生化项目检测;
所述控制模块用以控制转移模块、稀释液添加模块、第一溶血剂添加模块、第二溶血剂添加模块、第三溶血剂添加模块、清洗剂添加模块、清洗模块、混匀模块、第一检测杯、第二检测杯、第三检测杯和第四检测杯工作,并执行检测数据分析处理、显示、打印、输出检测结果以及与外部通讯。
进一步的,第一检测杯杯壁上设置有透射光检测装置和第一生化检测装置,第二检测杯杯壁上设置有第二生化检测装置,第四检测杯杯壁上设置有第三生化检测装置。
进一步的,所述生化检测装置包括透射光检测装置和散射光检测装置中的一种或两种。
进一步的,分析仪还包括用于清洗吸样针外壁的清洗器。
进一步的,所述散射光检测装置和透射光检测装置均为多波长检测装置。
仪器根据检测需要切换波长,检测波长的切换通过切换光源、切换电压或检测器前安装可改变波长的单色器装置实现。
进一步的,分析仪还包括一个清洗杯,用于对吸样针内外部进行清洗。
本发明还提供一种基于血液细胞及生化成分分析仪的分析方法,该方法包括以下步骤:
步骤1、通过吸样针自样品杯中定量吸取全血样品,定量转移到第一检测杯、第二检测杯和第四检测杯中,稀释液添加模块向第一检测杯、第二检测杯和第四检测杯中分别加入定量的稀释液,并通过混匀模块混匀第一检测杯、第二检测杯和第四检测杯;通过吸样针清洗器对吸样针外壁进行清洗;
步骤2、通过吸样针自第一、第二、第四检测杯任意一杯中吸取定量的稀释、混匀后的血样转移至第三检测杯,与杯中的稀释液混合,由混匀模块对第三检测杯中液体混匀,第三颗粒计数检测装置对第三检测杯中混匀后血样进行红细胞及血小板检测;通过吸样针清洗器对吸样针外壁进行清洗;
步骤3、通过第一溶血剂添加模块向第一检测杯中加入定量的第一溶血剂并经混匀模块对第一检测杯内液体混匀,第一颗粒计数检测装置和透射光检测装置分别对第一检测杯混匀后血样中的有核细胞和血红蛋白进行检测;
步骤4、通过第二溶血剂添加装置向第二检测杯中加入第二溶血剂,第二颗粒计数检测装置对有核细胞进行检测;
步骤5、通过第三溶血剂添加装置向第四检测杯中加入第三溶血剂,第四颗粒计数检测装置对有核细胞进行检测;
步骤6、清洗后的吸样针移动至生化试剂位,吸取定量的第一种生化试剂并转移至第一检测杯,再次混匀第一检测杯中液体,通过第一生化检测装置对加入生化试剂后混匀的稀释样品进行检测,获得相应生化项目的检测结果;
步骤7、清洗后的吸样针再移动至第二生化试剂位,吸取定量的第二种生化试剂加至第二检测杯,通过第二生化检测装置执行第二种生化项目检测;清洗后的吸样针定量吸取第三种生化试剂,加入第四检测杯,通过第三生化检测装置执行第三种生化项目检测。
仪器完成全部检测后通过清洗模块、稀释液添加模块对各检测杯、吸样针进行清洗,仪器完成该次检测流程。
本发明中有核细胞包括嗜碱性粒细胞、嗜酸性粒细胞、淋巴细胞、单核细胞、中性粒细胞检测和网织红细胞。有核细胞的检测分析方法可以是电阻抗法、电阻抗结合鞘流光学检测法或单纯细胞染色鞘流技术检测方法。
对于全血样品与血清/血浆检测有差异的生化检测项目,仪器可自动对每一血样生化成分检测结果进行修正,确保该仪器每一生化检测结果与真实的生化成分或标准的生化检测结果一致,对于血清/血浆检测与全血检测没有差异的生化项目,仪器无需修正检测结果。修正的原理是由于标准的生化检测是检测血浆/血清中的生化成分含量,而全血中含有大量细胞成份,而部分生化成分在细胞内外存在差异;部分生化成分仅仅/主要存在于血液细胞内;部分生化成分主要存在于血液细胞外,因此全血样品生化成分含量与血浆/血清可能存在差异;此外全血中红细胞、白细胞、血小板成份也参与生化项目检测时,该部分成份也可对 相应生化项目检测造成一定影响。因此全血样品生化检测结果与血浆/血清的生化检测结果存在误差。
为消除这些误差,本发明仪器对检测结果按照如下公式修正:
Figure PCTCN2017070576-appb-000001
其中,血清/血浆体积=全血体积-细胞体积,细胞体积=全血中血小板数量×血小板平均体积+全血中红细胞数量×红细胞平均体积+全血中白细胞数量×全部白细胞平均体积×修正因子b,修正因子a和b的范围分别为0.3‐4.0。本发明中,“/”表示“或”的含义。
白细胞的体积可以按照如下公式计算:
(1)白细胞体积=大白细胞平均体积×大白细胞数量×修正因子c+小白细胞体积×小白细胞数量×修正因子d,修正因子c和d的范围为分别为0.3‐4.0。
(2)白细胞体积=淋巴细胞平均体积×淋巴细胞数量×修正因子e+中性粒细胞体积×中性粒细胞数量×修正因子f+中间细胞体积×中间细胞数量×修正因子g,修正因子e‐g的范围为分别为0.3‐4.0。
血液细胞及生化成分分析仪及方法的样品位、各检测杯、生化试剂位均设计在吸样针移动轨迹中,图1‐1至图1‐5为几种具体布局方式:
图1‐1:加样针移动轨迹为样品位Cs→第一生化试剂位R1→第一检测杯C1→第二检测杯C2→第三检测杯C3;
图1‐2:加样针移动轨迹为样品位Cs→第一生化试剂位R1→第二生化试剂位R1’→第一检测杯C1→第二检测杯C2→第四检测杯C4→第三检测杯C3;
图1‐3:加样针移动轨迹为样品位Cs→第一生化试剂位R1→第二生化试剂位R1’→第三生化试剂位R1”→第一检测杯C1→第二检测杯C2→第四检测杯C4→第三检测杯C3;
图1‐4和图1‐5:加样针移动轨迹为样品位Cs→第一检测杯C1→第二检测杯C2→第四检测杯C4→第三检测杯C3→第一生化试剂位R1→第二生化试剂位R1’→第三生化试剂位R1”。
下面结合具体实施例对本发明作进一步说明。
实施例1
本实施例以四个检测杯为例,检测血常规和单试剂生化项目。
如图2所示,第一检测杯C1设置有第一颗粒计数检测装置D4、第一透射光 检测装置和第一生化检测装置,第一生化检测装置包括第一散射光检测装置;第一透射光检测装置包括第一透射光光源L1;第一散射光检测装置包括第一散射光光源L4,第一散射光检测装置与第一透射光检测装置共用第一检测器D1。
第二检测杯C2设置有第二颗粒计数检测装置D5和第二生化检测装置,第二生化检测装置包括第二透射光检测装置和第二散射光检测装置。第二透射光检测装置和第二散射光检测装置选择其中一个开启进行生化项目检测;第二透射光检测装置包括第二透射光光源L2,第二散射光检测装置包括第二散射光光源L5,第二散射光检测装置与第二透射光检测装置共用第二检测器D2;
第四检测杯C4设有第四颗粒计数检测装置D6和第三生化检测装置,所述第三生化检测装置包括第三透射光检测装置和第三散射光检测装置,第三透射光检测装置和第三散射光检测装置选择其中一个开启进行生化项目检测;第三透射光检测装置包括第三透射光光源L3,第三散射光检测装置包括第三散射光光源L6,第三透射光检测装置和第三散射光检测装置共用第三检测器D3;
第三检测杯C3设置有第三颗粒计数检测装置D7。
如图4所示,吸样针N1移动到样品杯中,第二阀门V2关闭、第一阀门V1打开,第一液体抽取装置S1活塞回拉,定量样品吸入吸样针N1中,移动装置带动N1移动至第一检测杯C1,第二阀门V2关闭,第一阀门V1打开,第一液体抽取装置S1活塞推进将吸样针N1中血样加入到第一检测杯C1中;按照同样方法,吸样针N1移动至第二检测杯C2和第四检测杯C4中,将定量血样分别加入第二检测杯C2和第四检测杯C4;稀释液添加模块中第六阀门V6开启,第二阀门V2、第二十四阀门V24、第二十阀门V20、第二十一阀门V21和第五阀门V5关闭,第三液体抽取装置S3活塞回拉将稀释液R3吸入第三液体抽取装置S3中,第六阀门V6关闭,第二十阀门V20、第二十一阀门V21、第二十四阀门V24开启,第三液体抽取装置S3活塞推进,则原吸入第三液体抽取装置S3中的稀释液沿第一稀释液针N31进入第一检测杯C1,沿第二稀释液针N32进入第二检测杯C2,沿第三稀释液针N33进入第四检测杯C4;混匀模块中第十阀门V10和第十二阀门V12关闭,第九阀门V9、第二十二阀门V22、第二十三阀门V23和第十一阀门V11开启,空气泵P1鼓气,驱动气体沿管路进入第一检测杯C1、第二检测杯C2和第四检测杯C4底部,混匀杯中液体。
吸样针N1按照之前方式自第一检测杯C1中吸取部分混匀后的稀释样本,转移至第三检测杯C3,稀释液添加模块中第六阀门V6开启,第二阀门V2、第 二十四阀门V24、第二十阀门V20、第二十一阀门V21和第五阀门V5关闭,第三液体抽取装置S3活塞回拉吸取定量的稀释液R3,第六阀门V6、第二十四阀门V24、第二十阀门V20和第二十一阀门V21关闭,第五阀门V5、第一阀门V1和第二阀门V2开启,第三液体抽取装置S3活塞推进将第三液体抽取装置S3中的定量稀释液通过第四稀释液针针N3注入第三检测杯C3,同时通过管道进入吸样针N1,对吸样针N1内部进行清洗。混匀模块中第九阀门V9、第二十二阀门V22、第二十三阀门V23和第十二阀门V12关闭,第十阀门V10和第十一阀门V11开启,空气泵P1鼓气,驱动气体沿管路进入第三检测杯C3底部,混匀杯中液体。第三颗粒计数检测装置D7对第三检测杯C3中样品血小板和红细胞的数量和体积进行检测。
针外清洗器对吸样针N1外部进行清洗。之后第四阀门V4开启,第三阀门V3关闭,第二液体抽取装置S2回拉,第一溶血剂R2吸入第二液体抽取装置S2中,第四阀门V4关闭,第三阀门V3开启,第二液体抽取装置S2活塞推进,使定量第一溶血剂进入第一检测杯C1。混匀模块中第十一阀门V11和第九阀门V9开启,第十阀门V10、第二十二阀门V22、第二十三阀门V23和第十二阀门V12关闭,空气泵P1鼓气,驱动气体沿管路进入第一检测杯C1底部,混匀杯中液体。第一检测杯C1中第一颗粒计数检测装置D4对杯中有核细胞进行检测,第一透射光光源L1开启,第一检测器D1对血红蛋白含量进行检测。
吸样针N1移动至第一生化试剂位R1处,吸样针N1深入第一生化试剂内,在第一液体抽取装置S1、第一阀门V1和第二阀门V2配合下,由第一生化试剂位R1中吸取定量第一生化试剂,之后吸样针N1移动至第一检测杯C1处,将第一生化试剂加入第一检测杯C1,混匀模块中第十一阀门V11和第九阀门V9开启,第十阀门V10、第二十二阀门V22、第二十三阀门V23和第十二阀门V12关闭,空气泵P1鼓气,驱动气体沿管路进入第一检测杯C1底部,混匀杯中液体。如图2,第一散射光光源L4开启,第一透射光光源L1关闭,第一检测器D1检测散射光信号,获得单试剂生化项目检测结果。
针外清洗器对吸样针N1外部进行清洗。之后第十三阀门V13开启,第十四阀门V14关闭,第五液体抽取装置S5回拉,第二溶血剂R5吸入第五液体抽取装置S5中,第十三阀门V13关闭,第十四阀门V14开启,第五液体抽取装置S5活塞推进,使定量第二溶血剂进入第二检测杯C2。混匀模块中第十一阀门V11和第二十二阀门V22开启,第九阀门V9、第二十三阀门V23、第十阀门V10和第 十二阀门V12关闭,空气泵P1鼓气,驱动气体沿管路进入第二检测杯C2底部,混匀杯中液体。第二颗粒计数检测装置D5对杯中部分有核细胞进行检测。
之后第十五阀门V15开启,第十六阀门V16关闭,第六液体抽取装置S6回拉,第三溶血剂R6吸入第六液体抽取装置S6中,第十五阀门V15关闭,第十六阀门V16开启,第六液体抽取装置S6活塞推进,使定量第三溶血剂进入第四检测杯C4。混匀模块中第十一阀门V11和第二十三阀门V23开启,第九阀门V9、第二十二阀门V22、第十阀门V10和第十二阀门V12关闭,空气泵P1鼓气,驱动气体沿管路进入第四检测杯C4底部,混匀杯中液体。第四颗粒计数检测装置D6对杯中部分有核细胞进行检测。
检测结束后,打开第九阀门V9、第二十二阀门V22,第二十三阀门V23,第十阀门V10和第十二阀门V12,废液泵P2抽气,将各检测杯、针外清洗器及管路中检测废液排入废液收集器中;之后清洗剂添加模块中的第八阀门V8开启,第七阀门V7关闭,第四液体抽取装置S4回拉,清洗剂R4吸入第四液体抽取装置S4,之后第八阀门V8关闭,第七阀门V7、第十七阀门V17、第十八阀门V18和第十九阀门V19开启,第四液体抽取装置S4推进,清洗剂R4通过第一清洗剂针N4进入第一检测杯C1,通过第二清洗剂针N41进入第二检测杯C2,通过第三清洗剂针N42进入第四检测杯C4,之后打开第九阀门V9,第二十二阀门V22、第二十三阀门V23和第十二阀门V12,废液泵P2抽气,清洗废液排入废液收集器。
稀释液添加模块的第六阀门V6开启,第二阀门V2、第二十四阀门V24、第二十阀门V20、第二十一阀门V21和第五阀门V5关闭,第三液体抽取装置S3活塞回拉吸取定量的稀释液R3,之后第六阀门V6关闭,第五阀门V5、第二十阀门V20、第二十一阀门V21、第二十四阀门V24、第一阀门V1和第二阀门V2开启,第三液体抽取装置S3活塞推进将第三液体抽取装置S3中的定量稀释液通过第四稀释液针N3进入第三检测杯C3,通过第一稀释液针N31进入第一检测杯C1,通过第二稀释液针N32进入第二检测杯C2,通过第三稀释液针N33进入第四检测杯C4中,同时通过管路进入吸样针N1,对各检测杯及吸样针N1内部进行清洗。吸样针N1此时也执行针外部清洗,清洗结束后打开第九阀门V9、第二十二阀门V22,第二十三阀门V23,第十阀门V10和第十二阀门V12,废液泵P2抽气,清洗废液排入废液收集器。
实施例2
结合图2和图4,本实施例的分析仪与实施例1的区别在于,本实施例中检测血常规和双试剂生化项目。
吸样针N1移动至第一生化试剂位R1处,吸样针N1深入第一生化试剂内,在第一液体抽取装置S1、第一阀门V1和第二阀门V2配合下,吸取定量第一生化试剂,之后吸样针N1移动至第一检测杯C1处,将第一生化试剂加入第一检测杯C1,混匀模块中第十一阀门V11和第九阀门V9开启,第十阀门V10、第二十二阀门V22、第二十三阀门V23和第十二阀门V12关闭,空气泵P1鼓气,驱动气体沿管路进入第一检测杯C1底部,混匀杯中液体。之后吸样针N1移动至第二生化试剂位R1’处,按照同样方式吸取定量第二生化试剂并转移至第一检测杯C1,按照上述方式混匀杯中液体后,第一散射光光源L4开启,第一透射光光源L1关闭,第一检测器D1检测散射光信号,获得双试剂生化项目的检测结果。
实施例3
本实施例与实施例1和实施例2的区别在于,第一透射光光源L1开启,第一散射光光源L4关闭,第一检测器D1检测透射光信号,获得生化项目检测结果。
实施例4
结合图3‐1、图3‐2和图3‐3,本实施例的分析仪与实施例1的区别在于,本实施例的第一透射光源L1、第二透射光源L2和第三透射光源L3设置多个波长,通过转换第一滤光片F1、第二滤光片F2和第三滤光片F3得到不同波长的透射光,用于不同生化项目检测。所述第一滤光片F1、第二滤光片F2和第三滤光片F3的波长不同。
实施例5
结合图3‐1、图3‐2和图3‐3,本实施例的分析仪与实施例1的区别在于,本实施例的第一散射光源L4、第二散射光源L5和第三散射光源L6设置多个波长,通过转换第一滤光片F1、第二滤光片F2和第三滤光片F3得到不同波长的散射光,用于不同生化项目检测。
实施例6
本实施例采用现有的生化仪与本发明分析仪检测20个不同样本的CRP和糖化血红蛋白结果进行相关性比较,统计数据如表1。
表1不同样本分别用现有生化仪与本发明分析仪检测结果比较
Figure PCTCN2017070576-appb-000002
Figure PCTCN2017070576-appb-000003
分别采用现有生化仪与本发明分析仪对20个不同样本进行检测,并进行相关性分析,如图5和图6所示,两种不同方法检测结果相关性:RCRP=0.9974≥0.95,RHbA1c=0.9783≥0.95,说明现有生化仪和本发明分析仪的检测结果相关性良好。

Claims (10)

  1. 一种血液细胞及生化成分分析仪,其特征在于,包括转移模块、第一溶血剂添加模块、第二溶血剂添加模块、稀释液添加模块、清洗剂添加模块、清洗模块、混匀模块、控制模块、第一检测杯、第二检测杯和第三检测杯;
    所述转移模块用于转移生化试剂和样品,包括生化试剂位、样品位、吸样针、第一液体抽取装置、连接管路和移动装置;所述移动装置用于驱动吸样针在样品位、生化试剂位、第一检测杯、第二检测杯和第三检测杯之间移动;
    所述第一溶血剂添加模块包括第一溶血剂位和第二液体抽取装置,用于向第一检测杯中添加第一溶血剂;
    所述第二溶血剂添加模块包括第二溶血剂位和第五液体抽取装置,用于向第二检测杯中添加第二溶血剂;
    所述稀释液添加模块包括一个稀释液位和第三液体抽取装置,用于向第一检测杯、第二检测杯、第三检测杯、吸样针及吸样针清洗器中注入稀释液;
    所述清洗剂添加模块包括一个清洗剂位和第四液体抽取装置,用于向第一检测杯和第二检测杯中添加清洗剂;
    所述清洗模块包括吸样针清洗器、连接管路、废液排出管以及废液泵,所述吸样针清洗器用于清洗吸样针外壁,所述废液排出管用于排出检测杯中废液以及吸样针清洗器清洗后产生的废液,所述废液泵为废液排出提供动力;
    所述混匀模块通过向第一、第二和第三检测杯底部鼓气,对检测杯中的液体搅动混匀;
    第一检测杯、第二检测杯和第三检测杯的杯壁上分别设置有第一颗粒计数检测装置、第二颗粒计数检测装置和第三颗粒计数检测装置,第一颗粒计数检测装置和第二颗粒计数检测装置用于对杯中液体进行有核细胞检测,第三颗粒计数检测装置用于对红细胞和血小板的数量和体积进行检测;第一检测杯和第二检测杯的其中一个检测杯中设置有透射光检测装置,用于血红蛋白检测,第一检测杯和第二检测杯中至少一个检测杯设置有生化检测装置,用于加入生化试剂后进行生化项目检测;
    所述控制模块用以控制转移模块、稀释液添加模块、第一溶血剂添加模块、第二溶血剂添加模块、清洗剂添加模块、清洗模块、混匀模块、第一检测杯、第二检测杯和第三检测杯工作,并执行检测数据分析处理、显示、打印、输出检测结果以及与外部通讯。
  2. 一种血液细胞及生化成分分析仪,其特征在于,包括转移模块、第一溶 血剂添加模块、第二溶血剂添加模块、第三溶血剂添加模块、稀释液添加模块、清洗剂添加模块、清洗模块、混匀模块、控制模块、第一检测杯、第二检测杯、第三检测杯和第四检测杯;
    所述转移模块用于转移生化试剂和样品,包括生化试剂位、样品位、吸样针、第一液体抽取装置、连接管路和移动装置;所述移动装置用于驱动吸样针在样品位、生化试剂位、第一检测杯、第二检测杯、第三检测杯和第四检测杯之间移动;
    所述第一溶血剂添加模块包括第一溶血剂位和第二液体抽取装置,用于向第一检测杯中添加第一溶血剂;
    所述第二溶血剂添加模块包括第二溶血剂位和第五液体抽取装置,用于向第二检测杯中添加第二溶血剂;
    所述第三溶血剂添加模块包括第三溶血剂位和第六液体抽取装置,用于向第四检测杯中添加第三溶血剂;
    所述稀释液添加模块包括一个稀释液位和第三液体抽取装置,用于向第一检测杯、第二检测杯、第三检测杯、第四检测杯、吸样针及吸样针清洗器中注入稀释液;
    所述清洗剂添加模块包括一个清洗剂位和第四液体抽取装置,用于向第一检测杯、第二检测杯和第四检测杯中添加清洗剂;
    所述清洗模块包括吸样针清洗器、连接管路、废液排出管以及废液泵,所述吸样针清洗器用于清洗吸样针外壁,所述废液排出管用于排出检测杯中废液以及吸样针清洗器清洗后产生的废液,所述废液泵为废液排出提供动力;
    所述混匀模块通过向第一、第二、第三和第四检测杯底部鼓气,对检测杯中的液体搅动混匀;
    第一检测杯、第二检测杯、第三检测杯和第四检测杯的杯壁上分别设置有设置有第一颗粒计数检测装置、第二颗粒计数检测装置、第三颗粒计数检测装置和第四颗粒计数检测装置,第一颗粒计数检测装置、第二颗粒计数检测装置和第四颗粒计数检测装置用于对杯中液体进行有核细胞检测,第三颗粒计数检测装置用于对红细胞和血小板的数量和体积进行检测;第一检测杯、第二检测杯和第四检测杯的其中一个检测杯中设置有透射光检测装置,用于血红蛋白检测,第一检测杯、第二检测杯和第四检测杯中至少一个检测杯设置有生化检测装置,用于加入生化试剂后进行生化项目检测;
    所述控制模块用以控制转移模块、稀释液添加模块、第一溶血剂添加模块、 第二溶血剂添加模块、第三溶血剂添加模块、清洗剂添加模块、清洗模块、混匀模块、第一检测杯、第二检测杯、第三检测杯和第四检测杯工作,并执行检测数据分析处理、显示、打印、输出检测结果以及与外部通讯。
  3. 根据权利要求2所述的血液细胞及生化成分分析仪,其特征在于,第一检测杯杯壁上设置有透射光检测装置和第一生化检测装置,第二检测杯杯壁上设置有第二生化检测装置,第四检测杯杯壁上设置有第三生化检测装置。
  4. 根据权利要求1、2或3所述的血液细胞及生化成分分析仪,其特征在于,所述生化检测装置包括透射光检测装置和散射光检测装置中的一种或两种。
  5. 根据权利要求1或2所述的血液细胞及生化成分分析仪,其特征在于,分析仪还包括用于清洗吸样针外壁的清洗器。
  6. 根据权利要求1或2所述的血液细胞及生化成分分析仪,其特征在于,所述散射光检测装置和透射光检测装置均为多波长检测装置。
  7. 根据权利要求1或2所述的血液细胞及生化成分分析仪,其特征在于,分析仪还包括一个清洗杯,用于对吸样针内外部进行清洗。
  8. 一种基于权利要求3所述血液细胞及生化成分分析仪的分析方法,其特征在于,该方法包括以下步骤:
    步骤1、通过吸样针自样品杯中定量吸取全血样品,定量转移到第一检测杯、第二检测杯和第四检测杯中,稀释液添加模块向第一检测杯、第二检测杯和第四检测杯中分别加入定量的稀释液,并通过混匀模块混匀第一检测杯、第二检测杯和第四检测杯;通过吸样针清洗器对吸样针外壁进行清洗;
    步骤2、通过吸样针自第一、第二、第四检测杯任意一杯中吸取定量的稀释、混匀后的血样转移至第三检测杯,与杯中的稀释液混合,由混匀模块对第三检测杯中液体混匀,第三颗粒计数检测装置对第三检测杯中混匀后血样进行红细胞及血小板检测;通过吸样针清洗器对吸样针外壁进行清洗;
    步骤3、通过第一溶血剂添加模块向第一检测杯中加入定量的第一溶血剂并经混匀模块对第一检测杯内液体混匀,第一颗粒计数检测装置和透射光检测装置分别对第一检测杯混匀后血样中的有核细胞和血红蛋白进行检测;
    步骤4、通过第二溶血剂添加装置向第二检测杯中加入第二溶血剂,第二颗粒计数检测装置对有核细胞进行检测;
    步骤5、通过第三溶血剂添加装置向第四检测杯中加入第三溶血剂,第四颗粒计数检测装置对有核细胞进行检测;
    步骤6、清洗后的吸样针移动至生化试剂位,吸取定量的第一种生化试剂并转移至第一检测杯,再次混匀第一检测杯中液体,通过第一生化检测装置对加入生化试剂后混匀的稀释样品进行检测,获得相应生化项目的检测结果;
    步骤7、清洗后的吸样针再移动至第二生化试剂位,吸取定量的第二种生化试剂加至第二检测杯,通过第二生化检测装置执行第二种生化项目检测;清洗后的吸样针定量吸取第三种生化试剂,加入第四检测杯,通过第三生化检测装置执行第三种生化项目检测。
  9. 根据权利要求8所述的血液细胞及生化成分分析仪的分析方法,其特征在于,所述生化检测装置包括透射光检测装置和散射光检测装置中的一种或两种。
  10. 根据权利要求8所述的血液细胞及生化成分分析仪的分析方法,其特征在于,仪器检测时自动对生化检测结果进行修正,修正计算公式如下:
    Figure PCTCN2017070576-appb-100001
    其中修正因子a用于修正其它影响因素导致的误差,其范围为0.3‐4.0。
PCT/CN2017/070576 2016-08-17 2017-01-08 血液细胞及生化成分分析仪及方法 WO2018032720A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610681443.0 2016-08-17
CN201610681443.0A CN106124751B (zh) 2016-08-17 2016-08-17 血液细胞及生化成分分析仪及方法

Publications (1)

Publication Number Publication Date
WO2018032720A1 true WO2018032720A1 (zh) 2018-02-22

Family

ID=57279359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/070576 WO2018032720A1 (zh) 2016-08-17 2017-01-08 血液细胞及生化成分分析仪及方法

Country Status (2)

Country Link
CN (1) CN106124751B (zh)
WO (1) WO2018032720A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110346574A (zh) * 2018-04-08 2019-10-18 深圳市帝迈生物技术有限公司 蛋白检测装置复用检测蛋白的方法、血液分析设备及装置
CN110361553A (zh) * 2019-07-22 2019-10-22 迈克医疗电子有限公司 一种全自动样本分析仪及其洗针方法
CN112536267A (zh) * 2020-11-11 2021-03-23 湖南怡田美农业科技有限公司 一种分析仪的清洗结构
CN112585445A (zh) * 2018-08-24 2021-03-30 深圳迈瑞生物医疗电子股份有限公司 血样分析仪、血样分析方法及计算机存储介质
CN113640196A (zh) * 2021-02-03 2021-11-12 深圳市帝迈生物技术有限公司 试剂盒、poct血细胞分析仪
CN113959992A (zh) * 2021-10-20 2022-01-21 深圳市科曼医疗设备有限公司 一种全血检测分析系统及全血样本检测方法
CN114200070A (zh) * 2021-12-14 2022-03-18 嘉兴市唯真生物科技有限公司 一种液相色谱分析装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106124751B (zh) * 2016-08-17 2018-05-18 江苏英诺华医疗技术有限公司 血液细胞及生化成分分析仪及方法
CN106370584A (zh) * 2016-08-17 2017-02-01 江苏英诺华医疗技术有限公司 血细胞和生化检测仪及其检测方法
CN106896049A (zh) * 2017-03-16 2017-06-27 江苏柯伦迪医疗技术有限公司 一种多参数血液分析仪及方法
WO2019127959A1 (zh) * 2017-12-26 2019-07-04 江苏英诺华医疗技术有限公司 一种具有生化、酶免及化学发光快速检测系统及方法
WO2019127958A1 (zh) * 2017-12-26 2019-07-04 江苏英诺华医疗技术有限公司 一种医用快速生化检测系统及检测方法
CN110346573A (zh) * 2018-04-08 2019-10-18 深圳市帝迈生物技术有限公司 血液分析设备
CN113311163B (zh) * 2020-02-26 2024-04-12 深圳迈瑞生物医疗电子股份有限公司 一种检测池的清洗方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0905514A1 (en) * 1997-09-27 1999-03-31 Horiba, Ltd. Blood cell count/immunoassay apparatus using whole blood
CN103336130A (zh) * 2013-06-21 2013-10-02 嘉善加斯戴克医疗器械有限公司 一种全血免疫分析装置及使用此装置的血液分析仪
CN104833813A (zh) * 2015-05-12 2015-08-12 江苏英诺华医疗技术有限公司 一种同时具有血液常规和生化检测功能的分析仪
CN105334333A (zh) * 2014-07-01 2016-02-17 深圳迈瑞生物医疗电子股份有限公司 一种易于更换乳胶试剂的全血测量仪和自动进样装置
CN105699380A (zh) * 2016-03-23 2016-06-22 深圳市帝迈生物技术有限公司 一种可同时测量crp和血常规的分析设备和方法
CN106124751A (zh) * 2016-08-17 2016-11-16 江苏英诺华医疗技术有限公司 血液细胞及生化成分分析仪及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101169450B (zh) * 2006-10-27 2012-06-27 深圳迈瑞生物医疗电子股份有限公司 全自动生化分析方法及装置
US9034257B2 (en) * 2008-10-27 2015-05-19 Nodality, Inc. High throughput flow cytometry system and method
KR102054678B1 (ko) * 2012-07-12 2020-01-22 삼성전자주식회사 유체 분석 카트리지
JP5988830B2 (ja) * 2012-10-30 2016-09-07 シスメックス株式会社 検体分析装置
WO2015054695A2 (en) * 2013-10-11 2015-04-16 Immunetics, Inc. Led assay reader with touchscreen control and barcode sample id
CN104122404A (zh) * 2014-08-01 2014-10-29 江苏英诺华医疗技术有限公司 一种新型快速的多参数血小板功能分析仪及检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0905514A1 (en) * 1997-09-27 1999-03-31 Horiba, Ltd. Blood cell count/immunoassay apparatus using whole blood
CN103336130A (zh) * 2013-06-21 2013-10-02 嘉善加斯戴克医疗器械有限公司 一种全血免疫分析装置及使用此装置的血液分析仪
CN105334333A (zh) * 2014-07-01 2016-02-17 深圳迈瑞生物医疗电子股份有限公司 一种易于更换乳胶试剂的全血测量仪和自动进样装置
CN104833813A (zh) * 2015-05-12 2015-08-12 江苏英诺华医疗技术有限公司 一种同时具有血液常规和生化检测功能的分析仪
CN105699380A (zh) * 2016-03-23 2016-06-22 深圳市帝迈生物技术有限公司 一种可同时测量crp和血常规的分析设备和方法
CN106124751A (zh) * 2016-08-17 2016-11-16 江苏英诺华医疗技术有限公司 血液细胞及生化成分分析仪及方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110346574A (zh) * 2018-04-08 2019-10-18 深圳市帝迈生物技术有限公司 蛋白检测装置复用检测蛋白的方法、血液分析设备及装置
CN112585445A (zh) * 2018-08-24 2021-03-30 深圳迈瑞生物医疗电子股份有限公司 血样分析仪、血样分析方法及计算机存储介质
CN110361553A (zh) * 2019-07-22 2019-10-22 迈克医疗电子有限公司 一种全自动样本分析仪及其洗针方法
CN110361553B (zh) * 2019-07-22 2023-05-23 迈克医疗电子有限公司 一种全自动样本分析仪及其洗针方法
CN112536267A (zh) * 2020-11-11 2021-03-23 湖南怡田美农业科技有限公司 一种分析仪的清洗结构
CN113640196A (zh) * 2021-02-03 2021-11-12 深圳市帝迈生物技术有限公司 试剂盒、poct血细胞分析仪
CN113640196B (zh) * 2021-02-03 2023-12-01 深圳市帝迈生物技术有限公司 试剂盒、poct血细胞分析仪
CN113959992A (zh) * 2021-10-20 2022-01-21 深圳市科曼医疗设备有限公司 一种全血检测分析系统及全血样本检测方法
CN113959992B (zh) * 2021-10-20 2023-07-18 深圳市科曼医疗设备有限公司 一种全血检测分析系统及全血样本检测方法
CN114200070A (zh) * 2021-12-14 2022-03-18 嘉兴市唯真生物科技有限公司 一种液相色谱分析装置

Also Published As

Publication number Publication date
CN106124751B (zh) 2018-05-18
CN106124751A (zh) 2016-11-16

Similar Documents

Publication Publication Date Title
WO2018032720A1 (zh) 血液细胞及生化成分分析仪及方法
WO2018032718A1 (zh) 血细胞和生化检测仪及其检测方法
CN104833813B (zh) 一种同时具有血液常规和生化检测功能的分析仪
US11215609B2 (en) Blood analysis method, control device and blood cell analyzer
CN105699380A (zh) 一种可同时测量crp和血常规的分析设备和方法
CN107656085B (zh) 一种血液检测仪
US20120214224A1 (en) Flow based clinical analysis
CN205656141U (zh) 一种可同时测量crp和血常规的分析设备
US20140134051A1 (en) Automated platelet function analyzer and its analytical methods
US20130171681A1 (en) Blood cell analyzer, blood cell analyzing method, and non-transitory storage medium
CN206020435U (zh) 血细胞和生化检测仪
JP5789635B2 (ja) 全血血球免疫測定装置
CN204595006U (zh) 一种同时具有血液常规和生化检测功能的分析仪
JP3077772B2 (ja) 複数の分析モジュールを用いる粒子自動分析方法及び装置
CN106896049A (zh) 一种多参数血液分析仪及方法
CN106405131A (zh) 一种细胞与蛋白质联合分析装置及其分析方法
CN205538976U (zh) 一种简单可靠的血细胞五分类分析装置
CN107643393B (zh) 样本分析仪及其清洗方法、含有溶血剂成分的液体的用途
CN102600918B (zh) 用于血液分析的微流体芯片及其使用方法
CN206648928U (zh) 一种多参数血液分析仪
CN110873704A (zh) 样本分析装置的液路系统、样本分析装置及样本分析方法
CN108732338A (zh) 一种可兼容白细胞五分类和白细胞三分群的血细胞分析仪及测试方法
CN110871202A (zh) 一种采样针清洗方法、血球分析仪
CN206161493U (zh) 血液细胞及生化成分分析仪
CN108303363B (zh) 一种血细胞分析方法及使用该方法的血细胞分析仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17840698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17840698

Country of ref document: EP

Kind code of ref document: A1