WO2018032659A1 - 一种磁流变抛光的方法及设备 - Google Patents

一种磁流变抛光的方法及设备 Download PDF

Info

Publication number
WO2018032659A1
WO2018032659A1 PCT/CN2016/108668 CN2016108668W WO2018032659A1 WO 2018032659 A1 WO2018032659 A1 WO 2018032659A1 CN 2016108668 W CN2016108668 W CN 2016108668W WO 2018032659 A1 WO2018032659 A1 WO 2018032659A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
polishing
magnetorheological
magnetic field
magnetic
Prior art date
Application number
PCT/CN2016/108668
Other languages
English (en)
French (fr)
Inventor
高为鑫
喻志刚
韩奎
Original Assignee
江苏天一超细金属粉末有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏天一超细金属粉末有限公司 filed Critical 江苏天一超细金属粉末有限公司
Publication of WO2018032659A1 publication Critical patent/WO2018032659A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • B24B1/005Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes using a magnetic polishing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor

Definitions

  • the present invention relates to a method and apparatus for selective, multi-faceted and multi-dimensional polishing of a workpiece surface. Specifically, the present invention relates to a large/small adjustment of the solid-liquid change, the magnetic saturation induction strength, and the shear yield strength of a magnetorheological polishing liquid by controlling the presence/absence, strength, weakness, and position of the magnetic field.
  • Magnetorheological fluids are composed of ferromagnetic particles, carrier liquids and auxiliaries. Under the action of a magnetic field, the ferromagnetic particles are magnetically polarized and arranged so that the magnetorheological fluid becomes a solid like in an instant, and when the magnetic field is removed, it is instantaneously converted into a liquid, and the change is fast, reversible, and continuous. Due to the nature of magnetorheological fluids, which can be used in the field of intelligent control, it has become more and more noticed by researchers that the application of magnetorheological fluids has also been researched and developed.
  • the magnetic field used in magnetorheological fluid is the magnetic field generated by the induction core (made of ferromagnetic material) when the induction coil is energized. It can quickly control the magnetorheological fluid by turning on or off the current. Solid/liquid changes.
  • the inventors disclosed in the method and apparatus for uniform distribution/ordered arrangement of preferred abrasive grains of ZL200710022816. 4 (U.S. Patent No. 8,262,758 B2; European Patent No. 1995020; Korean Patent No. 10-1599865)
  • a method and apparatus for aspirating/discharging abrasive particles coated with a soft magnetic material with or without a magnetic field, and inventing the use of a current to turn on and off to control the presence or absence of a magnetic field, thereby achieving a steering target The purpose of the object.
  • the inventors described the generation of the magnetic field of the exciting coil in ZL20062009. 3, ZL200620097771. 8.
  • the magnetorheological polishing liquid is prepared by adding an abrasive to a magnetorheological fluid.
  • Patent CN104999344 A, CN105014484 A discloses two (substantially one) magnetic rheological polishing equipment magnetic field generating device, the technical idea of the magnetic field generating device is the same as ZL200710022816. 4, only the technical principle of ZL200710022816. 4 is transplanted.
  • Patent application CN105458839 A discloses a magnetorheological polishing method and device for polishing a workpiece, which still relies on "in the magnetorheological polishing liquid having a magnetic field, the workpiece is made to have multiple degrees of freedom. The movement "to achieve the purpose of polishing the workpiece.
  • the magnetorheological polishing liquid under the action of a magnetic field is not moving, and its polishing depends on the workpiece.
  • the movement realizes that the smart material such as magnetorheological fluid does not exert its rheological effect; the movement of the workpiece is made with multiple degrees of freedom, and the polishing control of the workpiece is poor; at the same time, the mechanism for making the workpiece with multiple degrees of freedom movement It is relatively complicated, and the speed of multi-dimensional movement is generally slow, which increases the manufacturing cost of the equipment and the polishing efficiency is not high.
  • Patent CN103612162 A discloses a magnetorheological fluid curved surface polishing system, which is a good application of magnetorheological polishing technology, but must manufacture different polishing systems for different workpieces, especially the surface of the polished shaft, which must be The corresponding workpiece is thrown, which limits its versatility.
  • Patent CN103921176 A discloses a magnetorheological polishing apparatus suitable for ultra-large aperture optical processing.
  • This invention is formed by improvements in conventional polishing processes using magnetorheological techniques.
  • the currently widely used magnetorheological polishing device is mainly composed of a driving wheel mechanical system and a magnetorheological fluid circulation system. ...
  • the working mechanism is to utilize a magnetorheological fluid in a magnetic field.
  • the rheology of the workpiece is polished, and the magnetorheological fluid is brought into the polishing zone by the polishing wheel.
  • the magnetorheological fluid becomes hard, becomes a viscoplastic Bingham medium, and forms a ribbon protrusion.
  • the medium flows through the slit between the working and the moving disc, a large shear force is generated on the area where the surface of the workpiece is in contact with the workpiece to remove the material.
  • the inventors have confirmed that the polishing effect of the magnetorheological polishing liquid on the workpiece is changed by the magnetic rheological polishing liquid in response to the magnetic field.
  • the magnetorheological fluid is brought into the polishing zone by the polishing wheel, ... when the medium flows through the slit between the workpiece and the moving disk, the surface of the workpiece is in contact with it.
  • the area produces a large shear force to remove the workpiece material.
  • the magnetic field generating device of the present invention does not use a ring-shaped tube in the hollow core and a triangular-shaped outer winding which is assembled into a circular magnetic field, and is in the form of a magnetic pole. Instead, the coil is wound on the iron core to form an intrinsic magnetic pole; different magnetorheological polishing liquid containers are designed according to the shape and size of the polished workpiece; the iron core around the coil is flexibly assembled in the magnetorheological polishing liquid.
  • a flexible adaptive solid with magnetic saturation induction intensity and shear yield strength is formed, which acts on the surface of the workpiece and causes the surface of the workpiece and the magnetorheological polishing solid to be different due to the surface topography of the workpiece. The distance is different, and the same intensity polishing is performed.
  • the iron core of the present invention comprises an I-shaped iron core, a strip or a rod-shaped iron core, a massive core, and the cross section thereof may be a circular shape and an arbitrary polygonal shape; in order to make the iron core have a sufficiently high magnetic permeability, a low coercivity Force (remaining magnetism), the iron core is made of pure iron.
  • the measure for adjusting the magnetic field strength comprises: adjusting a magnetic field strength by winding a plurality of coil windings on the same iron core, adjusting a coil current by a potentiometer to control a magnetic field strength, a computer controlled magnetic field strength, etc., and two Or the combined use of three programs.
  • the plurality of coil windings are wound on the same core to adjust the magnetic field strength.
  • the insulated copper wire to be wound by the iron core is divided into two or more windings, so that the strength of the magnetic field generated by the induction core is adjusted by the number of energized coils.
  • the magnetic saturation induction intensity and the shear yield strength of the magnetorheological polishing liquid under the action of a magnetic field are adjusted to be solid-like, and the polishing intensity is applied according to the surface topography of the workpiece.
  • the potentiometer adjusts the coil current magnitude to control the magnetic field strength. It refers to adjusting the coil current through the potentiometer, controlling the magnetic field strength generated by the coil induction core, and adjusting the magnetic saturation induction intensity and the shear yield strength of the magnetorheological polishing liquid under the action of the magnetic field to reach a solid, according to the workpiece.
  • the surface topography imparts the purpose of polishing strength.
  • the computer controls the strength of the magnetic field. It refers to the process of collecting the surface data of the workpiece by using the scanning sensor or the 3D scanner, inputting the surface data collected by the scanning sensor or the 3D scanner and the surface polishing requirement of the workpiece into the computer, and controlling the magnetic field strength by the computer to adjust the magnetic current under the magnetic field.
  • the magnetic saturation induction strength and the shear yield strength of the variable polishing liquid become flexible adaptive solids, and the polishing strength is applied according to the surface topography of the workpiece.
  • the above scheme for controlling the strength of the magnetic field may be used alone or in combination of two or three.
  • the different magnetorheological polishing liquid container and the curved panel of the integrated iron core according to the present invention Made of non-ferromagnetic material, including stainless steel (alloy) materials, ceramic materials and polymers, and their composite materials; the shape can be spherical, hemispherical, cylindrical, truncated, lenticular, rectangular, groove Shape and well type, tunnel type, etc., or even the workpiece itself or a certain surface of the magnetorheological polishing mechanism. The choice of materials and shape selection depend on the requirements of the workpiece.
  • the iron core around the coil is flexibly assembled on the outer side of the magnetorheological polishing liquid container, or integrated into a polishing mechanism on the polishing side of the workpiece to generate magnetic fields of different strengths, and the magneto-rheological polishing liquid is controlled. Solids have different magnetic saturation induction and shear yield strength. It means that the magnetic pole of the iron core is embedded outside any form of magnetorheological polishing liquid container, or integrated on a non-ferromagnetic plate that matches the polished surface of the workpiece, and the length of the core and the size of the magnetic pole surface It can be changed according to the size and shape of the polishing surface of the magnetorheological polishing liquid container or the workpiece.
  • the magnetorheological polishing liquid-containing container with the core magnetic pole of the present invention may be fixed or movable with respect to the workpiece.
  • the magnetorheological polishing liquid of the present invention is a mixed liquid containing a carrier liquid (including water-based, oil-based), ferromagnetic particles, an abrasive, and an auxiliary thereof. Under the action of the magnetic field generated by the energized coil winding induction core, the ferromagnetic particles are arranged by magnetic polarization, so that the magnetorheological polishing liquid becomes a flexible and adaptive polishing solid, which acts on the surface of the workpiece to polish. .
  • a carrier liquid including water-based, oil-based
  • ferromagnetic particles Under the action of the magnetic field generated by the energized coil winding induction core, the ferromagnetic particles are arranged by magnetic polarization, so that the magnetorheological polishing liquid becomes a flexible and adaptive polishing solid, which acts on the surface of the workpiece to polish.
  • the polishing of the workpiece only needs to be linear or circular motion in the magnetorheological polishing liquid, and the magnetorheological polishing liquid under the magnetic field forms a flexible adaptive solid, according to the surface topography of the workpiece (each Class surface) or under computer control, the high (long) degree, saturation magnetic induction and shear yield strength of the changing solids form a multi-dimensional interaction with the workpiece to achieve the purpose of intelligent polishing.
  • the workpiece can also be fixed, and the positional change of the magnetic field can be used to drive the magnetic rheological flexible adaptive polishing solid to move on the surface of the workpiece to achieve polishing of the workpiece.
  • the polishing method may be a separate movement of a workpiece, a magnetorheological polishing liquid container filled with a core magnetic pole, or a magnetorheological polishing mechanism that absorbs a magnetorheological polishing liquid solid, or may be simultaneously performed. Opposite movement.
  • the polishing method of the invention is suitable for polishing various materials, various curved workpieces and their inner and outer surfaces.
  • the invention fully utilizes the function of the magnetic rheological polishing liquid to form a flexible adaptive solid material under the action of a controllable magnetic field; applicable to various materials, various curved workpieces and internal and external parts thereof Surface polishing; polishing equipment does not need to be configured to make the workpiece move in multiple degrees of freedom, reducing equipment manufacturing costs, improving polishing accuracy and intelligence.
  • Figure 1 is a set of magnetorheological polishing equipment consisting of a plurality of core magnetic poles wound with coils and a plurality of vertical groove type and one well type magnetorheological polishing liquid container for rectangular workpieces with circular curved surfaces around the rectangle schematic diagram.
  • 1-1 is a circumferentially assembled core with a coil wound
  • 2- 1 is a vertical groove type magnetorheological polishing liquid container
  • 2- 2 is a well type magnetorheological polishing liquid container
  • 3- 1 is a combination of a guide rail for controlling the running of the workpiece and a workpiece for holding the workpiece in the vertical groove type magnetorheological polishing liquid container;
  • 3- 2 is a combination of a guide rail for controlling the running of the workpiece in the well type magnetorheological polishing liquid container and clamping the workpiece;
  • 4- 1 is a workpiece that moves up and down vertically in a vertical groove type magnetorheological polishing liquid container
  • 4- 2 is a workpiece that moves up and down vertically in a well type magnetorheological polishing fluid container.
  • 5- 1 is a magnetorheological polishing liquid installed in a vertical tank type container
  • 5-2 is a magnetorheological polishing liquid installed in a well-type container
  • Figure 1 shows the working mode of the magnetorheological polishing equipment
  • the circumferentially arranged vertical groove type magnetorheological polishing liquid container 2-1 shown in Fig. 1 is suitable for polishing the workpiece 4-1 with a curved surface (higher flange) around the rectangle.
  • the polished surface of the workpiece is attached to the grooved magnetic field formed by the magnetic pole, and the magnetorheological polishing liquid 5-1 forms a groove-type flexible adaptive solid like under the action of the grooved magnetic field 1-1, and the workpiece is in the clamping and moving mechanism 3-
  • Under the driving of 1 vertical and vertical movement is performed in the groove type magnetorheological polishing solid, and the polishing surface acts on the magnetorheological polishing solid, and the bottom of the workpiece and the four arc surfaces are polished.
  • the well type magnetorheological polishing liquid container 2-2 shown in Fig. 1 is suitable for workpieces with a circular arc surface around the rectangle (lower flange or only rectangular workpiece plate with curved surface or lead angle) 4- 2 Polished.
  • the polished surface of the workpiece is attached to the circumferential magnetic field 1-2 formed by the magnetic pole, and the magnetorheological polishing liquid 5-2 forms a flexible adaptive solid like around the drum under the action of the circumferential magnetic field 1-2, and the workpiece is clamped and moved.
  • the mechanism 3-2 is driven vertically up and down, the polishing surface acts on the magnetorheological polishing solid, and the bottom of the workpiece and the four arc surfaces are polished.
  • Figure 2 is a schematic view of a drum-type magnetorheological polishing apparatus for polishing a disk-shaped workpiece.
  • 1-1 is a core magnetic pole wound around a coil of a magnetic rheological polishing liquid drum
  • 1-2 is a core magnetic pole wound around a bottom of a drum of a magnetorheological polishing liquid
  • Figure 2 shows the working mode of the magnetorheological polishing equipment
  • the magnetorheological polishing apparatus shown in Fig. 2 is suitable for polishing a disk-shaped workpiece.
  • the magnetorheological polishing liquid 3 contained in the drum 2 becomes an adaptive flexible solid under the action of the circumferential and bottom magnetic fields 1.
  • the workpiece 4 is attached to the magnetorheological polishing type under the driving of the clamping rotating mechanism 5.
  • the solid is circularly moved, the polished surface of the workpiece acts on the magnetorheological polishing solid, and the outer surface of the disc-shaped workpiece is polished.
  • Figure 3 is a schematic view of a magnetorheological polishing apparatus for polishing the inner curved surface of a lens.
  • 1 is a support system of a magnetorheological polishing mechanism
  • 3 is a core magnetic pole assembly wound with a coil
  • 5 is a 3 and 4 integrated magnetorheological polishing mechanism
  • Figure 3 shows the working mode of the magnetorheological polishing equipment
  • the magnetorheological polishing device shown in Figure 3 is suitable for polishing the inner surface of the lens.
  • the magnetorheological polishing liquid 5 is injected into the concave lens 7. After the iron core combined magnetic pole 3 is turned on, the magnetic field generated by the magnetic core 3 is transmitted through the integrated magnetic curved panel 4, so that the magnetorheological polishing liquid 6 is attracted to the magnetic pole curved panel 4.
  • the surface of the concave lens has the same curved surface motion, and the magnetorheological polishing solid acts on the inner curved surface of the concave lens to perform polishing on the curved surface of the concave lens.
  • Figure 4 is a schematic view of a magnetorheological polishing apparatus for polishing the outer curved surface of a ball-shaped workpiece.
  • 3 is a core magnetic pole assembly wound with a coil
  • 5 is a 3 and 4 integrated magnetorheological polishing mechanism
  • Figure 4 shows the working mode of the magnetorheological polishing equipment
  • the magnetorheological polishing device shown in Figure 4 is suitable for polishing the outer surface of a ball-like workpiece.
  • the core magnetic pole assembly 3 around the coil is turned on, and the generated magnetic field is transmitted through the integrated magnetic curved panel 4, and the magnetorheological polishing liquid 6 is injected into the magnetic flux polishing liquid 6 to be attracted to the magnetic pole.
  • the magnetorheological polishing mechanism 5 and the magnetorheological polishing solid absorbed by the magnetic field, driven by the annular curved motion system 2, at an appropriate distance, The same surface motion is performed along the surface-like curved surface workpiece, and the magnetorheological polishing solid acts on the outer curved surface of the ball-like external workpiece, and the outer surface of the ball-like workpiece is polished.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

一种磁流变抛光的方法及设备,包括将线圈绕制在铁芯(1-1,1-2)上;根据抛光工件(4-1,4-2,4,7)的形状及大小不同,设计不同形状的磁流变抛光液盛装容器(2-1,2-2,2),或将磁流变抛光液(5-1,5-2,3,6)置于工件(4-1,4-2,4,7)的抛光侧;将绕有线圈的铁芯(1-1,1-2)灵活组装在磁流变抛光液盛装容器(2-1,2-2,2)外侧,或集成为抛光机构置于工件(4-1,4-2,4,7)抛光侧,配以调节磁场强度的措施,使之产生不同强度的磁场;含有磨料的磁流变抛光液(5-1,5-2,3,6),在不同强度的磁场作用下,形成磁饱和感应强度及剪切屈服强度可调的柔性自适应类固体,作用于工件(4-1,4-2,4,7)内或外表面,起到因工件(4-1,4-2,4,7)表面形貌不同,导致工件(4-1,4-2,4,7)表面与磁流变抛光类固体距离不同,而进行相同强度抛光研磨的目的。

Description

一种磁流变抛光的方法及设备
技术领域
本发明涉及一种对工件表面进行选择性、 多面及多维抛光的方法及 设备。具体地说, 本发明涉及一种通过控制磁场的有 \无、强\弱、部位, 对应地调节磁流变抛光液的固\液变化、 磁饱和感应强度和剪切屈服强 度的大 \小变化、 以及磁流变抛光液在磁场作用下形成的柔性自适应类 固体, 对不同形貌的工件表面进行相同强度抛光的方法及设备。 属于抛 光技术领域。 背景技术
磁流变液是由铁磁性颗粒、 载液及助剂组成的。 其在磁场作用下, 铁磁性颗粒被磁极化而排列, 使磁流变液在瞬间成为类固体, 当磁场拆 除时, 又在瞬间转变为液体, 且这种变化是快速、 可逆、 连续的。 由于 磁流变液的这种性质, 使其可以被运用于智能控制领域, 因而越来越被 研究者们注意, 磁流变液的应用也得到了相当的研究开发。 为达到控制 和快速响应, 磁流变液所使用的磁场是由感应线圈通电时感应铁芯 (铁 磁性材料制成)所产生的磁场, 可以通过接通或断开电流快速控制磁流 变液的固\液变化。
发明人在 ZL200710022816. 4磨料颗粒均匀分布 /有序排列\择优取 向的方法和装置 (美国专利 US8262758 B2; 欧洲专利 1995020; 韩国专 利 10-1599865 ) 中公开了 "一种利用接通 /断开电流使装置有 /无磁场, 实现对经过镀覆软磁材料的磨料颗粒进行吸 /放……的方法和装置", 发 明了利用电流的接通断开来控制磁场的有无, 进而达到操纵目标物的目 的。
发明人在 ZL20062009. 3、 ZL200620097771. 8中对励磁线圈磁场的 产生作用进行了说明。
磁流变抛光液则是在磁流变液中添加磨料而制取的。
专利 CN104999344 A、 CN105014484 A公开了两种(实质为一种)磁 流变抛光设备的磁场发生装置, 其磁场发生装置的技术思路与 ZL200710022816. 4是相同的, 只是将 ZL200710022816. 4的技术原理移 植到抛光领域应用而己; 专利 CN105458839 A公开了一种磁流变抛光方 法及装置, 其对于工件的抛光, 仍然是依靠 "在具有磁场的磁流变抛光 液中, 使工件做多个自由度的运动", 来达到对工件的抛光目的。 也就 是说, 在磁场作用下的磁流变抛光液是不运动的, 其抛光是依靠工件的 运动实现的, 没有使磁流变液这种智能材料发挥其流变作用; 靠工件做 多个自由度的运动, 对工件的抛光可控性差; 同时, 使工件做多个自由 度运动的机构相对复杂, 且多维运动速度一般都较慢, 增加了设备制造 成本, 抛光效率不高。 该组发明仅理解和应用了磁场有 \无影响磁流变 抛光液固\液变化的一个方面, 没有真正理解和运用磁流变抛光液作为 智能材料的实际价值, 从而限制了对这项技术的应用。
专利 CN103612162 A公开了一种磁流变液曲面抛光系统, 该发明是 磁流变抛光技术较好的应用, 但必须针对不同的工件, 制造不同的抛光 系统, 尤其是抛光轴的曲面, 必须与所抛工件对应, 限制了其通用性。
专利 CN103921176 A公开了适用于超大口径光学加工的磁流变抛光 装置。 该发明与所有在先文件一样, 都是囫于用磁流变技术对传统抛光 工艺的改进形成的。 正如该发明在背景技术中所总结的: "目前广泛使 用的磁流变抛光装置, 主要由主动轮机械系统和磁流变液循环系统组 成。 ……工作机理为利用磁流变液在磁场中的流变性对工件进行抛光, 磁流变液由抛光轮带入抛光区域, 在抛光区域高强度的梯度磁场中, 磁 流变液变硬, 成为具有粘塑性的 Bingham介质, 并形成缎带突起, 当这 种介质流经工作与运动盘之间的狭缝时, 对工件表面与之接触的区域产 生较大的剪切力, 实现工件材料去除。"
发明人认为, 磁流变抛光液对工件的工作原理不应仅仅是 "磁流变 液由抛光轮带入抛光区域, ……当这种介质流经工件与运动盘之间的狭 缝时, 对工件表面与之接触的区域产生较大的剪切力, 实现工件材料去 除。"发明人研究证实, 磁流变抛光液对工件的抛光作用是由磁流变抛 光液响应磁场而变成的类固体所具有的磁饱和感应强度和剪切屈服强 度, 以及磁流变类固体与工件之间的接触强度、 相对运动速度决定的。 在磁流变抛光过程中,也不需要"磁流变液由抛光轮带入抛光区域,…… 当这种介质流经工件与运动盘之间的狭缝时, 对工件表面与之接触的区 域产生较大的剪切力, 实现工件材料去除。" 发明内容
本发明的磁场发生装置, 不采用在空芯的环形管及为拼装成圆形磁 场所采用三角状管外绕线,外加磁极的形式。而是将线圈绕制在铁芯上, 形成固有磁极; 根据抛光工件的形状及大小不同, 设计不同的磁流变抛 光液盛装容器; 将绕有线圈的铁芯灵活组装在磁流变抛光液盛装容器外, 或集成在非铁磁性材料制作的与工件抛光面吻合的板上, 配以调节磁场 强度的措施, 使之产生不同强度的磁场; 含有磨料的磁流变抛光液, 在 不同强度的磁场作用下, 形成磁饱和感应强度及剪切屈服强度可调的柔 性自适应类固体, 作用于工件表面, 起到因工件表面形貌不同, 导致工 件表面与磁流变抛光类固体距离不同, 而进行相同强度抛光研磨的目的。 本发明所述的铁芯包括工字型铁芯、 条或棒状铁芯、 块状铁芯, 其 截面可以是圆形及任意多边形; 为使铁芯有足够高的导磁率, 低的矫顽 力 (剩磁), 铁芯选用纯铁加工制造。
本发明所述的调节磁场强度的措施, 包括在同一个铁芯上绕制多个 线圈绕组调节磁场强度, 用电位器调节线圈电流大小控制磁场强度, 电 脑控制磁场强度等, 及其两个或三个方案的综合运用。
所述在同一个铁芯上绕制多个线圈绕组调节磁场强度。是指在同一 个铁芯上绕制线圈时, 将铁芯所要缠绕的绝缘铜线分为两根或两根以上 绕制, 以便利用通电线圈的多少来调节感应铁芯产生的磁场强度, 进而 调节在磁场作用下的磁流变抛光液变为类固体时的磁饱和感应强度及 剪切屈服强度, 达到根据工件的表面形貌施加抛光强度的目的。
所述用电位器调节线圈电流大小控制磁场强度。是指通过电位器调 节线圈电流, 控制线圈感应铁芯产生的磁场强度, 调节在磁场作用下的 磁流变抛光液变为类固体时的磁饱和感应强度及剪切屈服强度, 达到根 据工件的表面形貌施加抛光强度的目的。
所述用电脑控制磁场强度。 是指通过编程, 利用扫描传感器或 3D 扫描仪采集工件表面数据, 将扫描传感器或 3D扫描仪采集的表面数据 与工件表面抛光要求输入电脑, 由电脑控制磁场强度, 调节在磁场作用 下的磁流变抛光液变为柔性自适应类固体时的磁饱和感应强度及剪切 屈服强度, 达到根据工件的表面形貌施加抛光强度的目的。
上述控制磁场强度的方案,可以单独使用,也可以两个或三个并用。 本发明所述不同的磁流变抛光液盛装容器及集成铁芯的曲面板。 由 非铁磁性材料制成, 包括不锈钢 (合金)材料、 陶瓷材料及高聚物, 以及 它们的复合材料; 其形状可以是球形、 半球形、 圆桶形、 圆台形、 透镜 形、 矩形、 槽形及井式、 隧道式等, 乃至于工件本身或磁流变抛光机构 的某个面。 所述材料选用与形状选择都依工件的要求而定。
本发明所述将绕有线圈的铁芯灵活组装在磁流变抛光液盛装容器 外侧, 或集成为抛光机构置于工件抛光侧, 产生不同强度的磁场, 控制 磁流变抛光液变成的类固体具有不同的磁饱和感应强度、剪切屈服强度。 是指铁芯的磁极镶于任何形式的磁流变抛光液盛装容器外部, 或将其集 成在与工件抛光面吻合的非铁磁性板上, 而铁芯的长度、 磁极端面尺寸 可以根据磁流变抛光液盛装容器或工件的抛光面的尺寸、形状进行变化。 本发明所述镶有铁芯磁极的磁流变抛光液盛装容器, 相对于工件, 可以是固定的, 也可以是运动的。
本发明所述的磁流变抛光液, 是含有载液 (包括水基、 油基)、 铁磁 性颗粒、 磨料及其助剂的混合液体。 其在通电的线圈绕组感应铁芯所发 出磁场的作用下, 铁磁性颗粒因被磁极化而排列, 使磁流变抛光液变成 柔性自适应的抛光类固体, 作用于工件表面起到抛光作用。
本发明所述对工件的抛光, 工件在磁流变抛光液中只需要做直线或 圆周运动, 在磁场作用下的磁流变抛光液形成柔性自适应类固体, 根据 工件的表面形貌 (各类曲面)或在电脑控制下, 不断变化类固体的高 (长) 度、 饱和磁感应强度及剪切屈服强度, 形成与工件之间的多维互动, 达 到智能抛光的目的。
本发明所述对工件的抛光,也可以将工件固定,通过磁场位置变换, 带动磁流变柔性自适应抛光类固体在工件表面运动, 实现对工件的抛光。
所述的抛光方法, 可以是工件, 镶有铁芯磁极的磁流变抛光液盛装 容器、 或吸有磁流变抛光液类固体的磁流变抛光机构的各自单独运动, 也可以是同时作相向运动。
本发明所述的抛光方法, 适用于对各类材质、 各种曲面工件及其内 外表面进行的抛光。
本发明的优点: 本发明充分运用了磁流变抛光液在可控制调节的磁 场作用下, 形成柔性自适应类固体这一智能材料的功能; 适用于各类材 质、 各种曲面工件及其内外表面的抛光; 抛光设备不需要配置使工件作 多个自由度运动的机构, 降低了设备制造成本, 提高了抛光的精准度及 智能化水平。 附图说明
附图仅是对本发明的说明, 不是对本发明权利要求的限制; 所述及 的磁流变抛光设备的磁场强度都是通过所述 1个或 2个或 3个控制方案 控制和调节的。
图 1是一组由多个绕有线圈的铁芯磁极与多个竖槽型及一个井型磁 流变抛光液盛装容器组合, 用于矩形四周带有圆弧曲面工件的磁流变抛 光设备示意图。
1-1是周向装配的绕有线圈的铁芯;
1- 2是径向装配的绕有线圈的铁芯;
2- 1是竖槽型磁流变抛光液盛装容器; 2- 2是井型磁流变抛光液盛装容器;
3- 1是竖槽型磁流变抛光液盛装容器中控制工件运行的导轨及夹持 工件的组合;
3- 2是井型磁流变抛光液盛容器中控制工件运行的导轨及夹持工件 的组合;
4- 1是在竖槽型磁流变抛光液容器中作上下垂直运动的工件;
4- 2是在井型磁流变抛光液容器中作上下垂直运动的工件。
5- 1是装在竖槽型盛装容器中磁流变抛光液;
5-2是装在井型盛装容器中磁流变抛光液;
图 1所示磁流变抛光设备的工作方式:
图 1所示周向排列的竖槽型磁流变抛光液盛装容器 2-1, 适用于矩 形四周带有圆弧曲面(翻边较高)工件 4-1的抛光。 工件抛光面贴于磁 极构成的槽型磁场, 磁流变抛光液 5-1在槽型磁场 1-1的作用下, 形成 槽型柔性自适应的类固体, 工件在夹持及运动机构 3-1的带动下, 在槽 型磁流变抛光类固体中作上下垂直运动, 抛光面作用于磁流变抛光类固 体, 工件底部及四个圆弧曲面被抛光。
图 1所示中的井型磁流变抛光液盛装容器 2-2, 适用矩形四周带有 圆弧曲面 (翻边较低或仅是矩形工件板四边带有曲面或导角)的工件 4-2 抛光。 工件抛光面贴于磁极构成的圆周磁场 1-2, 磁流变抛光液 5-2在 圆周磁场 1-2的作用下, 在圆桶四周形成柔性自适应的类固体, 工件在 夹持及运动机构 3-2的带动下作上下垂直运动, 抛光面作用于磁流变抛 光类固体, 工件底部及四个圆弧曲面被抛光。
图 2是一个抛光圆盘形工件的圆桶型磁流变抛光设备示意图。
1-1是镶于磁流变抛光液圆桶外壁的绕有线圈的铁芯磁极;
1-2是装于磁流变抛光液圆桶底板外的绕有线圈的铁芯磁极;
2是圆桶型磁流变抛光液盛装容器;
3是磁流变抛光液;
4是圆盘形工件;
5是工件夹持旋转机构。
图 2所示磁流变抛光设备的工作方式:
图 2所示的磁流变抛光设备适用于圆盘状工件的抛光。盛装于圆桶 2的磁流变抛光液 3在圆周及底部磁场 1的作用下, 变为自适应柔性类 固体, 工件 4在其夹持旋转机构 5的带动下, 贴于磁流变抛光类固体作 圆周运动, 工件抛光面作用于磁流变抛光类固体, 圆盘状工件外表面被 抛光。 图 3是一个抛光透镜内曲面的磁流变抛光设备示意图。
1是磁流变抛光机构的支撑系统;
2是磁流变抛光机构的环状曲面运动系统, 曲面与工件曲面吻合;
3是绕有线圈的铁芯磁极组合;
4是集成磁极的曲面板, 曲面板与工件曲面吻合;
5是 3和 4集成的磁流变抛光机构;
6是磁流变抛光液;
7是透镜工件;
8是工件支撑。
图 3所示磁流变抛光设备的工作方式:
图 3所示磁流变抛光设备, 适用于透镜内曲面的抛光。 将磁流变抛 光液 5注入凹透镜 7内,铁芯组合磁极 3在接通电源后, 3所产生的磁场 透过集成磁极曲面板 4, 使磁流变抛光液 6被吸于磁极曲面板 4上, 并 变成磁流变抛光类固体, 磁流变抛光机构 5及被其磁场吸住的磁流变抛 光类固体, 在环状曲面运动系统 2的驱动下, 以合适的距离, 做沿凹透 镜内曲面相同的曲面运动, 磁流变抛光类固体作用于凹透镜的内曲面, 实施对凹透镜内曲面的抛光。
图 4是一个抛光球类外形工件外曲面的磁流变抛光设备示意图。
1是磁流变抛光机构支撑;
2是磁流变抛光机构的环状曲面运动系统, 曲面与工件曲面吻合;
3是绕有线圈的铁芯磁极组合;
4是集成磁极的曲面板, 曲面板与工件抛光面吻合;
5是 3和 4集成的磁流变抛光机构;
6是磁流变抛光液;
7是球类外形工件;
8是工件夹持固定机构。
图 4所示磁流变抛光设备的工作方式:
图 4所示磁流变抛光设备, 适用于类球外型工件外曲面的抛光。 将 绕有线圈的铁芯磁极组合 3接通电源, 3所产生的磁场透过集成磁极曲 面板 4, 向 4上注入磁流变抛光液 6, 使磁流变抛光液 6被吸于磁极曲 面板 4上, 并变成磁流变抛光类固体, 磁流变抛光机构 5及被其磁场吸 住的磁流变抛光类固体, 在环状曲面运动系统 2的驱动下, 以合适的距 离, 做沿类球外型曲面工件相同的曲面运动, 磁流变抛光类固体作用于 类球外型工件的外曲面, 实施类球工件外曲面的抛光。

Claims

权利要求
1、 一种磁流变抛光的方法及设备。 包括将线圈绕制在铁芯上; 根 据抛光工件的形状及大小不同, 设计不同形状的磁流变抛光液盛装容器, 或将磁流变抛光液置于工件的抛光侧; 将绕有线圈的铁芯灵活组装在磁 流变抛光液盛装容器外侧, 或集成为抛光机构置于工件抛光侧, 配以调 节磁场强度的措施, 使之产生不同强度的磁场; 含有磨料的磁流变抛光 液, 在不同强度的磁场作用下, 形成磁饱和感应强度及剪切屈服强度可 调的柔性自适应类固体, 作用于工件表面, 起到因工件表面形貌不同, 导致工件表面与磁流变抛光类固体距离不同, 而进行相同强度抛光研磨 的目的。
2、 根据权利要求 1所述的铁芯包括工字型铁芯、 条或棒状铁芯、 块状铁芯, 其截面可以是圆形及任意多边形; 为使铁芯有足够高的导磁 率, 低的矫顽力 (剩磁), 铁芯选用纯铁加工制造。
3、 根据权利要求 1所述的调节磁场强度的措施, 包括在同一个铁 芯上绕制多个线圈绕组调节磁场强度, 用电位器调节线圈电流大小控制 磁场强度, 电脑控制磁场强度等, 及其两个或三个方案并用。
4、 根据权利要求 3所述在同一个铁芯上绕制多个线圈绕组调节磁 场强度。 是指在同一个铁芯上绕制线圈时, 将铁芯所要缠绕的绝缘铜线 分为两根或两根以上绕制, 以便利用通电线圈匝数的多少来控制感应铁 芯产生的磁场强度, 调节在磁场作用下的磁流变抛光液变为类固体时的 磁饱和感应强度及剪切屈服强度, 达到根据工件的表面形貌施加抛光强 度的目的。
5、根据权利要求 3所述用电位器调节线圈电流大小控制磁场强度。 是指通过电位器调节线圈电流, 控制线圈感应铁芯产生的磁场强度, 调 节在磁场作用下的磁流变抛光液变为类固体时的磁饱和感应强度及剪 切屈服强度, 达到根据工件的表面形貌施加抛光强度的目的。
6、 根据权利要求 3所述用电脑控制磁场强度。 是指通过编程, 利 用扫描传感器或 3D扫描仪采集工件表面数据, 将扫描传感器或 3D扫描 仪采集的表面数据与工件表面抛光要求输入电脑, 由电脑控制磁场强度, 调节在磁场作用下的磁流变抛光液变为柔性自适应类固体时的磁饱和 感应强度及剪切屈服强度, 达到根据工件的表面形貌施加抛光强度的目 的。
7、 根据权利要求 3所述的上述控制磁场强度的方案, 可以单独使 用, 也可以两个或三个并用。
8、 根据权利要求 1所述不同的磁流变抛光液盛装容器、 集成磁极 的曲面板, 由非铁磁性材料制成。 包括不锈钢 (合金)材料、 陶瓷材料及 高聚物, 以及它们的复合材料; 其形状可以是球形、 半球形、 圆桶形、 圆台形、 透镜形、 矩形、 槽形及井式、 隧道式等, 乃至于工件本身或磁 流变抛光机构的某个面。所述材料选用与形状选择都依工件的要求而定。
9、 根据权利要求 1所述将绕有线圈的铁芯灵活组装在磁流变抛光 液盛装容器外侧, 或集成为抛光机构置于工件抛光侧, 产生不同强度的 磁场, 进而控制磁流变抛光液变成的类固体具有不同的磁饱和感应强度、 剪切屈服强度。是指铁芯的磁极镶于任何形式的磁流变抛光液盛装容器 外部,或将其集成在与工件抛光面吻合的非铁磁性板上,而铁芯的长度、 磁极端面尺寸可以根据磁流变抛光液盛装容器或工件抛光面的的尺寸、 形状进行变化。
10、 根据权利要求 1所述镶有铁芯磁极的磁流变抛光液盛装容器, 相对于工件, 可以是固定的, 也可以是运动的。
11、 根据权利要求 1所述的磁流变抛光液, 是含有载液 (包括水基、 油基)、 铁磁性颗粒、 磨料及其助剂的混合液体。 其在通电的线圈绕组 感应铁芯所发出磁场的作用下, 铁磁性颗粒因被磁极化而排列, 便磁流 变抛光液变成类固体的柔性抛光体, 作用于工件表面起到抛光作用。 所 述磁流变抛光液中的铁磁性颗粒与磨料在载液中可以是混合态的, 也可 以是复合态的。
12、 根据权利要求 1所述对工件的抛光, 工件在磁流变抛光液中只 需要做直线或圆周运动, 在磁场作用下的磁流变抛光液类固体, 根据工 件的表面形貌或在电脑控制下, 不断变化类固体的高 (长)度、 饱和磁感 应强度及剪切屈服强度, 形成柔性自适应类固体与工件之间的多维互动, 达到智能抛光的目的。
13、 根据权利要求 1所述对工件的抛光, 也可以将工件固定, 通过 磁场位置变换, 带动磁流变柔性自适应抛光类固体在工件表面运动, 实 现对工件的抛光。
14、 权利要求 1所述的抛光方法, 可以是工件, 镶有铁芯磁极的磁 流变抛光液盛装容器或吸有磁流变抛光类固体的磁流变抛光机构的各 自单独运动, 也可以是同时作相向运动。
15、 根据权利要求 1所述对工件的抛光方法, 适用于对各类材质、 各种曲面的工件及其内外表面进行的抛光。
PCT/CN2016/108668 2016-08-19 2016-12-06 一种磁流变抛光的方法及设备 WO2018032659A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610687466.2 2016-08-19
CN201610687466.2A CN107756144B (zh) 2016-08-19 2016-08-19 一种磁流变抛光的方法

Publications (1)

Publication Number Publication Date
WO2018032659A1 true WO2018032659A1 (zh) 2018-02-22

Family

ID=61196327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108668 WO2018032659A1 (zh) 2016-08-19 2016-12-06 一种磁流变抛光的方法及设备

Country Status (2)

Country Link
CN (1) CN107756144B (zh)
WO (1) WO2018032659A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108942617A (zh) * 2018-07-25 2018-12-07 浙江工业大学 一种模具复杂表面自适应加工平台及其加工方法
CN109834482A (zh) * 2019-04-08 2019-06-04 济南大学 一种壳体类薄壁零件加工方法与装置
CN110170887A (zh) * 2019-06-19 2019-08-27 河北工业大学 一种激光与磁流变液耦合抛光装置
CN110480427A (zh) * 2019-08-28 2019-11-22 绍兴金辉久研科技有限公司 一种超声波振动辅助磁流变超精密抛光装置
CN110757257A (zh) * 2019-11-08 2020-02-07 浙江工业大学 面向复杂曲面加工的三电极体系可控电化学辅助力流变超精密抛光装置
CN112276686A (zh) * 2020-11-26 2021-01-29 福建工程学院 一种单驱动高效高精度陶瓷管外表面磁流变抛光机
CN112658809A (zh) * 2020-12-04 2021-04-16 陕西科技大学 一种基于磁流变液的工件成形与表面抛光装置及加工方法
CN113601126A (zh) * 2021-08-25 2021-11-05 绍兴金辉久研科技有限公司 一种超精密曲面磁流变加工装置及方法
US11440156B2 (en) * 2018-06-19 2022-09-13 Islamic Azad University of Najafabad Magnetic abrasive finishing of curved surfaces
CN116372785A (zh) * 2023-06-05 2023-07-04 长春工业大学 一种适应多种面型的磁流变抛光装置及抛光方法
CN117428580A (zh) * 2023-12-15 2024-01-23 成都市凯林机械贸易有限责任公司 一种阀门加工用抛光装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110202457B (zh) * 2019-07-11 2024-06-25 辽宁科技大学 磁针磁力研磨长直管内表面的装置
CN110340745A (zh) * 2019-07-18 2019-10-18 浙江科惠医疗器械股份有限公司 一种金属髋臼中陶瓷内衬用磁流变抛光机
CN111151350B (zh) * 2020-01-15 2021-04-13 北京佰蔚创新科技有限公司 一种高效药物研磨设备
CN113910009B (zh) * 2021-10-18 2023-08-15 台州学院 磁流变液抛光弹抛光机
CN113977360B (zh) * 2021-10-18 2023-08-25 台州学院 往返式自控旋转磁场磁流变抛光机
CN114102420B (zh) * 2021-11-16 2024-01-30 台州学院 多级匀速自循环式磁流变抛光机
CN118123694B (zh) * 2024-05-06 2024-08-16 中国科学院长春光学精密机械与物理研究所 基于混联机器人磁流变光学加工设备的加工能力评价方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204075883U (zh) * 2014-09-02 2015-01-07 衢州启程机械设备有限公司 一种基于交变磁场的磁流变抛光装置
JP2015040294A (ja) * 2013-08-23 2015-03-02 株式会社クリスタル光学 研磨材
CN204935273U (zh) * 2015-08-17 2016-01-06 宇环数控机床股份有限公司 磁流变抛光设备的磁场发生装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101972952B (zh) * 2010-07-13 2012-01-04 厦门大学 轴对称可变磁场抛光轮
CN101972996B (zh) * 2010-07-13 2012-10-17 厦门大学 可控变磁场小磨头抛光轮
CN104191318B (zh) * 2014-09-01 2017-05-10 浙江师范大学 一种磁流变抛光方法及抛光工具
CN105458839B (zh) * 2015-08-17 2017-11-17 宇环数控机床股份有限公司 一种磁流变抛光方法及装置
CN105328515A (zh) * 2015-11-06 2016-02-17 蓝思科技(长沙)有限公司 一种研磨抛光处理设备及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015040294A (ja) * 2013-08-23 2015-03-02 株式会社クリスタル光学 研磨材
CN204075883U (zh) * 2014-09-02 2015-01-07 衢州启程机械设备有限公司 一种基于交变磁场的磁流变抛光装置
CN204935273U (zh) * 2015-08-17 2016-01-06 宇环数控机床股份有限公司 磁流变抛光设备的磁场发生装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11440156B2 (en) * 2018-06-19 2022-09-13 Islamic Azad University of Najafabad Magnetic abrasive finishing of curved surfaces
CN108942617A (zh) * 2018-07-25 2018-12-07 浙江工业大学 一种模具复杂表面自适应加工平台及其加工方法
CN109834482A (zh) * 2019-04-08 2019-06-04 济南大学 一种壳体类薄壁零件加工方法与装置
CN110170887A (zh) * 2019-06-19 2019-08-27 河北工业大学 一种激光与磁流变液耦合抛光装置
CN110170887B (zh) * 2019-06-19 2023-11-14 河北工业大学 一种激光与磁流变液耦合抛光装置
CN110480427A (zh) * 2019-08-28 2019-11-22 绍兴金辉久研科技有限公司 一种超声波振动辅助磁流变超精密抛光装置
CN110757257A (zh) * 2019-11-08 2020-02-07 浙江工业大学 面向复杂曲面加工的三电极体系可控电化学辅助力流变超精密抛光装置
CN110757257B (zh) * 2019-11-08 2024-05-07 浙江工业大学 三电极体系可控电化学辅助力流变超精密抛光装置
CN112276686A (zh) * 2020-11-26 2021-01-29 福建工程学院 一种单驱动高效高精度陶瓷管外表面磁流变抛光机
CN112658809B (zh) * 2020-12-04 2022-08-12 陕西科技大学 一种基于磁流变液的工件成形与表面抛光装置及加工方法
CN112658809A (zh) * 2020-12-04 2021-04-16 陕西科技大学 一种基于磁流变液的工件成形与表面抛光装置及加工方法
CN113601126A (zh) * 2021-08-25 2021-11-05 绍兴金辉久研科技有限公司 一种超精密曲面磁流变加工装置及方法
CN116372785A (zh) * 2023-06-05 2023-07-04 长春工业大学 一种适应多种面型的磁流变抛光装置及抛光方法
CN116372785B (zh) * 2023-06-05 2023-08-08 长春工业大学 一种适应多种面型的磁流变抛光装置及抛光方法
CN117428580A (zh) * 2023-12-15 2024-01-23 成都市凯林机械贸易有限责任公司 一种阀门加工用抛光装置
CN117428580B (zh) * 2023-12-15 2024-03-19 成都市凯林机械贸易有限责任公司 一种阀门加工用抛光装置

Also Published As

Publication number Publication date
CN107756144B (zh) 2021-11-09
CN107756144A (zh) 2018-03-06

Similar Documents

Publication Publication Date Title
WO2018032659A1 (zh) 一种磁流变抛光的方法及设备
CN104191318B (zh) 一种磁流变抛光方法及抛光工具
WO2017028824A1 (zh) 磁流变抛光设备的磁场发生装置
US3304449A (en) Apparatus for producing sonic and ultrasonic oscillations
CN108311961B (zh) 一种环流静压式磁流变抛光装置
JPS6138863A (ja) 研磨装置
CN101579833B (zh) 高效率可控多磨头磁流变抛光装置
CN104493606B (zh) 加工机床及其基于磁致伸缩的精密进给驱动装置
EP0431553B1 (en) Microscopic grinding method and microscopic grinding device
CN105458839A (zh) 一种磁流变抛光方法及装置
CN107946018B (zh) 一种聚焦磁场调控装置
GB1570934A (en) Method of grinding material in a grinding mill and grinding mill for carrying out sail method
CN207289637U (zh) 一种磁流变抛光装置
CN112692716A (zh) 一种基于可控磁场的内表面磁场辅助光整装置及方法
CN105014484A (zh) 磁流变抛光设备的磁场发生装置
JPS6246306B2 (zh)
US20210327720A1 (en) Magnetic Slurry for Highly Efficiency CMP
JP2015533326A5 (zh)
CN204935273U (zh) 磁流变抛光设备的磁场发生装置
CN108428530B (zh) 磁化方法、磁化装置和磁性编码器用磁铁
CN105099062A (zh) 自驱动转动轴
RU2653021C1 (ru) Способ центробежно-вихревой обработки сырья и аппарат центробежно-вихревой
TWI635036B (zh) 非接觸式陣列線張力控制裝置
CN105099061A (zh) 自驱动转动轴帆板驱动系统
CN108161603B (zh) 磁场辅助平面磨削设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16913413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16913413

Country of ref document: EP

Kind code of ref document: A1