WO2018032645A1 - 一种宽带宽频率捷变信号测量仪器及测量方法 - Google Patents

一种宽带宽频率捷变信号测量仪器及测量方法 Download PDF

Info

Publication number
WO2018032645A1
WO2018032645A1 PCT/CN2016/107463 CN2016107463W WO2018032645A1 WO 2018032645 A1 WO2018032645 A1 WO 2018032645A1 CN 2016107463 W CN2016107463 W CN 2016107463W WO 2018032645 A1 WO2018032645 A1 WO 2018032645A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
signal
unit
mixing
intermediate frequency
Prior art date
Application number
PCT/CN2016/107463
Other languages
English (en)
French (fr)
Inventor
张超
许建华
杜会文
向长波
詹永卫
Original Assignee
中国电子科技集团公司第四十一研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电子科技集团公司第四十一研究所 filed Critical 中国电子科技集团公司第四十一研究所
Publication of WO2018032645A1 publication Critical patent/WO2018032645A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/02Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis

Definitions

  • the invention relates to the field of testing technology, in particular to a wide bandwidth frequency agile signal measuring instrument, and to a wide bandwidth frequency agile signal measuring method.
  • Frequency agile bandwidth also known as frequency hopping bandwidth
  • the frequency switching time of the frequency hopping and agile signal directly affects the anti-interference performance of the radar or electronic countermeasure system. Therefore, the parameter measurement of frequency hopping, frequency conversion time and frequency stabilization time of the frequency hopping signal is an important test content of the frequency conversion system.
  • the signal output from the agile converter usually changes in frequency and power, as shown in Figure 1.
  • the output signal power P0 is unstable throughout the transition process time ⁇ , and the output signal power is also reduced, so During ⁇ , the transmitter output signal is normally in the off state.
  • the testing of the above indicators has always been a difficult problem.
  • the existing technical solutions include a modulation domain analyzer scheme, a real-time oscilloscope scheme, and a real-time signal analyzer scheme, which are respectively described below.
  • the first technical solution is a modulation domain analyzer method.
  • the modulation domain analysis is to measure the instantaneous frequency of the signal by counting the pulse after the pulsed signal is measured. Therefore, the shortcoming of the technical solution is that the dynamic range is small, and the existing modulation domain is currently available.
  • the signal power measured by the analyzer is typically greater than -25 dBm.
  • the modulation domain analyzer has a measurement bandwidth of up to several GHz. When the agile frequency range is larger than the measurement bandwidth of the modulation domain analyzer, for example, greater than 10 GHz, the modulation domain analyzer still cannot measure its frequency. Switch Time to measure.
  • the second technical solution is the oscilloscope method.
  • the measurement bandwidth of the existing real-time oscilloscope can cover 60 GHz.
  • the real-time bandwidth of Tektronix DSA70000 series oscilloscope reaches 67 GHz.
  • the basic principle of measuring the frequency agile signal by the oscilloscope method is shown in Figure 2.
  • the high-speed ADC directly collects the input agile signal, and the storage module caches the collected data.
  • the sampled signal data is digitally mixed and digitally filtered by software. The purpose is to mix the occupied frequency band of the measured signal into a frequency band with zero frequency as the center frequency, and perform digital filtering to reduce the processing bandwidth. Achieve higher digital processing gains and improve the accuracy of frequency measurements.
  • the digitally filtered output signal obtains the instantaneous frequency of the signal through phase differential frequency measurement, and measures the frequency switching time of the augmented signal according to the obtained instantaneous frequency waveform; and can also perform Fourier transform on the time domain signal output by the digital filtering. Obtaining the real-time spectrum of the signal, forming a waterfall graph shows that the spectrum of the signal can be clearly observed as a function of time.
  • the real-time oscilloscope's ADC acquisition bit width is usually 8 bits, and it is necessary to measure the signal of all input bandwidths. For example, a certain frequency conversion signal frequency is switched from 20 GHz to 21 GHz, and the real-time oscilloscope still needs to perform signals for all 21 GHz bandwidth. The measurement is acquired, so the dynamic range is the same as that of the modulation domain analyzer, and it is still impossible to measure the power agile signal with low power.
  • the oscilloscope uses digital filtering to minimize the processing bandwidth to obtain processing gain, the frequency agile range of the frequency agile signal itself is very wide, often reaching 10 GHz or more.
  • the filter bandwidth must be greater than The frequency agility range of the signal, so the measurement performance gains obtained by digital filtering are very limited.
  • real-time oscilloscopes with a measurement bandwidth of 10 GHz are expensive and the measurement cost is very high.
  • the third technical solution is a real-time signal analyzer method, as shown in FIG. 3, first adopting superheterodyne frequency conversion technology.
  • the frequency band of the frequency agile bandwidth is frequency-converted to an intermediate frequency band centered on a fixed intermediate frequency, and then the ADC is used to acquire and process the intermediate frequency signal.
  • the technical solution of the processing is similar to that of the real-time oscilloscope.
  • the frequency of the signal to be measured is reduced by the down-conversion method, so that the acquisition can be performed with a higher sampling bit width at a lower sampling frequency, thereby obtaining a very high measurement dynamic range.
  • a real-time oscilloscope using the second technical solution still needs to collect and measure signals of all 21 GHz bandwidth, and requires a sampling frequency of at least 42 GHz.
  • a sampling rate greater than 2 GHz can be used.
  • the third technical solution is limited by the real-time analysis bandwidth.
  • the present invention provides a wide bandwidth frequency agile signal measuring instrument and a measuring method.
  • a wide bandwidth frequency agile signal measuring instrument comprising:
  • a first mixing and filtering unit configured to perform a first mixing process on the input signal
  • a second mixing filtering unit configured to perform a second mixing process on the output signal of the first mixing filtering unit, and generate a fixed analog intermediate frequency signal
  • An ADC acquisition unit configured to acquire a fixed analog intermediate frequency signal output by the second mixing filter unit to generate a digital intermediate frequency signal
  • An orthogonal transform unit configured to perform orthogonal transform on the digital intermediate frequency signal to generate an IQ complex signal
  • a digital filtering unit for performing digital decimation filtering on the IQ signal
  • the measurement and analysis unit performs processing analysis based on the IQ signal outputted by the digital filtering unit, and obtains a spectrum change waterfall diagram, a power time curve and a frequency time curve of the frequency agile signal, and obtains the measurement result;
  • Display unit for displaying measurement results and curves.
  • the first mixing and filtering unit includes: a first mixing unit, configured to mix the input signal and the first local oscillator signal output by the first local oscillator unit to generate a variable intermediate frequency signal;
  • the first local oscillator unit is a tunable local oscillator signal generator, and the first filtering unit is a set of different frequency filters or frequency tunable filters for performing the first intermediate frequency signal output by the first mixing unit. Filter processing.
  • the second mixing and filtering unit includes: a second mixing unit, configured to mix the input signal and the second local oscillator signal output by the second local oscillator unit to generate a fixed intermediate frequency signal;
  • the second local oscillator unit is another tunable local oscillator signal generator, and the second filter unit is a fixed intermediate frequency filter for filtering the second intermediate frequency signal output by the second mixing unit.
  • the second mixing filter unit is implemented by one or more stages of frequency conversion scheme.
  • the first mixing filtering unit and the second mixing filtering unit are the same.
  • the input signal is first divided into two paths, and the two signals respectively enter the same The two paths, first, each signal enters the tuning pre-selection filtering unit to filter the image frequency signal, and the output of the tuning pre-selection filtering unit enters the mixing unit, and the mixing unit converts the input F1 frequency signal to the F0 through the local oscillator unit.
  • the two F0 intermediate frequency signals of the two paths are the same, the two channels are collected to the intermediate frequency filtering unit, the intermediate frequency filtering unit is a fixed intermediate frequency filter, the center frequency is F0, and the output F0 intermediate frequency signal is filtered and filtered.
  • the orthogonal transform unit generates IQ complex signal data by using a digital mixing or Hilbert transform.
  • the present invention also proposes a wide bandwidth frequency agile signal measuring method for measuring frequency switching time, frequency stabilization time, power stabilization time and power switching from the F1 frequency point to the F2 frequency point process, including the following step:
  • Step 1 set the first local oscillator signal whose output frequency is (F2+F1)/2;
  • Step 2 If F2>F1, adjust the filter center frequency of the first mixing filter unit to be equal to or approximately equal to (F2-F1)/2, otherwise perform the fourth step;
  • the third step adjusting the output frequency of the second local oscillator unit, and changing the signal of the center frequency of the first mixing filter unit to (F2-F1)/2 to a fixed intermediate frequency, and performing the sixth step;
  • Step 4 adjusting the filter center frequency of the first mixing filter unit to be equal to or approximately equal to (F1-F2)/2;
  • Step 5 adjusting the output frequency of the second local oscillator unit, and changing the signal whose center frequency of the first mixing filter unit is (F1-F2)/2 to a fixed intermediate frequency, and performing the sixth step;
  • Step 6 performing ADC acquisition on the intermediate frequency signal output by the second mixing filter unit, and obtaining all signal data of the frequency agile signal switching from the stable F1 frequency point to the stable F2 frequency point;
  • Step 7 Perform digital orthogonal transform and digital filtering on all signal data collected by the ADC to obtain IQ complex signal data that meets the analysis bandwidth requirement; satisfying the analysis bandwidth requirement means that the analysis bandwidth is at least equal to or greater than the frequency of the agile signal. The maximum range of frequency changes during the point;
  • the eighth step performing measurement analysis on the IQ complex signal data, obtaining a spectrum change waterfall graph, a power time curve and a frequency time curve of the frequency agile signal, and obtaining the measurement result.
  • the analysis of the measurement data adopts a group of any one or more of the following three methods. Combined:
  • the first analysis method is to obtain the instantaneous frequency waveform of the intermediate frequency signal by using the phase difference method, and obtain the frequency switching time measurement value and the frequency stability time measurement value based on the instantaneous frequency waveform data;
  • the second analysis method is to use the FFT spectrum to calculate the spectrum trajectory of the spectrum as a function of time, and obtain the frequency switching time measurement value based on the waterfall map trajectory data;
  • the third analysis method is to obtain the instantaneous amplitude waveform of the center signal by the amplitude detection method, and obtain the power agility time measurement value and the power stability time measurement value based on the instantaneous amplitude waveform.
  • the invention has the beneficial effects that the measurement and analysis of the agile signal with the frequency agility range larger than the analysis bandwidth of the superheterodyne instrument can be completed.
  • Figure 1 is a schematic diagram of a frequency agile process
  • Figure 2 is a schematic diagram of an oscilloscope method for measuring a frequency agile signal
  • Figure 3 is a schematic diagram of a real-time signal analyzer method for measuring a frequency agile signal
  • FIG. 4 is a schematic diagram of a wide bandwidth frequency agile signal measuring instrument proposed by the present invention.
  • FIG. 5 is a schematic diagram of another embodiment of a first mixing filter unit or a second mixing filter unit of the present invention.
  • the invention provides a wide bandwidth frequency agile signal measuring instrument and a measuring method, which can complete the measurement and analysis of the agile signal with a frequency agility range larger than the analysis bandwidth of the superheterodyne instrument.
  • the frequency switching time of the agile signal in the present invention refers to the time taken for the signal to jump from the operating frequency F1 to the other operating frequency F2.
  • the wide bandwidth frequency agile signal measuring instrument comprises: a first mixing filtering unit 404 for inputting a signal for performing a first mixing process; and a second mixing filtering unit 408 for The output signal of the first mixing and filtering unit 404 performs a second mixing process and generates a fixed analog intermediate frequency signal.
  • the ADC acquisition unit 409 is configured to collect and generate a fixed analog intermediate frequency signal output by the second mixing and filtering unit 408.
  • the intermediate frequency signal; the orthogonal transform unit 410 is configured to perform orthogonal transform on the digital intermediate frequency signal to generate an IQ complex signal;
  • the digital filtering unit 411 is configured to perform digital decimation filtering processing on the IQ signal;
  • the measurement analyzing unit 412 is based on the digital filtering unit 411.
  • the output IQ signal is processed and analyzed to obtain a spectrum change waterfall graph, a power time curve and a frequency time curve of the frequency agile signal, and a measurement result is obtained; and a display unit 413 is configured to display the measurement result and the curve.
  • the first mixing and filtering unit 404 includes: a first mixing unit 401, configured to input signals and The first local oscillator signal outputted by a local oscillator unit 402 is mixed to generate a variable intermediate frequency signal; the first local oscillator unit 402 is a tunable local oscillator signal generator, and the first filtering unit 403 is a set of switched filter banks. Or a tunable filter for filtering the first intermediate frequency signal output by the first mixing unit 401.
  • the first intermediate frequency output by the first mixing unit 401 is not fixed.
  • the second mixing and filtering unit 408 includes: a second mixing unit 405, configured to mix the input signal and the second local oscillator signal output by the second local oscillator unit 406 to generate a fixed intermediate frequency signal, and the second local oscillator The unit 406 is another tunable local oscillator signal generator, and the second filtering unit 407 is a fixed intermediate frequency filter for filtering the second intermediate frequency signal output by the second mixing unit 405.
  • the second mixing filter unit 408 can also be implemented by a one-stage or multi-stage frequency conversion scheme.
  • the orthogonal transform unit 410 generates IQ complex signal data by digital mixing or Hilbert transform.
  • the orthogonal transform unit 410, the digital filtering unit 411, and the measurement analyzing unit 412 may each adopt a general purpose processor CPU, a digital signal processor DSP, one or more application specific integrated circuits ASIC, one or more programmable gate array FPGAs, or Any combination of these is implemented.
  • the first and second mixing filter units in the present invention may also be implemented by using multiple mixing units and multiple local oscillator units.
  • the purpose is to convert both the F1 frequency signal and the F2 frequency signal to a certain frequency, as shown in FIG. 5.
  • the intermediate frequency filtering unit 5011 is a fixed intermediate frequency filter, and the center frequency is F0.
  • the input signal is first divided into two paths 501 and 502. The two signals enter the same two paths respectively. First, each signal enters the tuning preselection filtering unit 503/504 to filter out the possible image frequency signals, and the tuning is performed.
  • the output of the preselected filtering unit 503/504 enters the mixing unit 505/506, and the mixing unit 505/506 converts the signal of the input signal F1 frequency to the F0 intermediate frequency 509/5010 through the local oscillator unit 507/508, two F0 intermediate frequency signals.
  • the numbers are the same.
  • the two channels are integrated into the intermediate frequency filtering unit 5011, the intermediate frequency filtering unit 5011 is a fixed intermediate frequency filter, the center frequency is F0, and the intermediate frequency filtering unit 5011 filters the two F0 intermediate frequency signals output, and filters out the first/second mixing filter.
  • the high-speed ADC can directly digitize the F0 IF signal, or further reduce the F0 IF signal by digital or digital filtering through one or more stages of frequency conversion filtering.
  • the invention also proposes a wide bandwidth frequency agile signal measuring method, which measures the frequency switching time, the frequency stabilization time and the power stabilization time of the process from the F1 frequency point to the F2 frequency point process. And power switching time, including the following steps:
  • Step 1 set the first local oscillator signal whose output frequency is (F2+F1)/2;
  • Step 2 If F2>F1, adjust the filter center frequency of the first filtering unit to be equal to or approximately equal to (F2-F1)/2, otherwise perform the fourth step;
  • the third step adjusting the output frequency of the second local oscillator unit, changing the signal whose center frequency of the first frequency conversion filter unit is (F2-F1)/2 to a fixed intermediate frequency, and performing the sixth step;
  • Step 4 adjusting the filter center frequency of the first filtering unit to be equal to or approximately equal to (F1-F2)/2;
  • Step 5 adjusting the output frequency of the second local oscillator unit, and changing the signal whose center frequency of the first frequency conversion filter unit is (F1-F2)/2 to a fixed intermediate frequency, and performing the sixth step;
  • Step 6 performing ADC acquisition on the intermediate frequency signal output by the second filtering unit, and obtaining all signal data of the frequency agile signal switching from the stable F1 frequency point to the stable F2 frequency point;
  • Step 7 Perform digital orthogonal transform and digital filtering on all signal data collected by the ADC to obtain IQ complex signal data that meets the analysis bandwidth requirement; satisfying the analysis bandwidth requirement means that the analysis bandwidth is at least equal to or greater than the frequency of the agile signal. The maximum range of frequency changes during the point;
  • Step 8 Perform measurement analysis on the IQ complex signal data to obtain a spectrum change waterfall of the frequency agile signal Layout, power time curve and frequency time curve, and obtain the measurement results.
  • the analysis of the measurement data adopts any one or a combination of the following three methods:
  • the first analysis method is to obtain the instantaneous frequency waveform of the intermediate frequency signal by using the phase difference method, and obtain the frequency switching time measurement value and the frequency stability time measurement value based on the instantaneous frequency waveform data;
  • the second analysis method is to use the FFT spectrum to calculate the spectrum trajectory of the spectrum as a function of time, and obtain the frequency switching time measurement value based on the waterfall map trajectory data;
  • the third analysis method is to obtain the instantaneous amplitude waveform of the center signal by the amplitude detection method, and obtain the power agility time measurement value and the power stability time measurement value based on the instantaneous amplitude waveform.
  • the agile signal can be quickly and agile in a wide frequency range, belonging to the wideband signal, but from a specific moment, the agile signal is a narrowband signal. Since the F1 frequency signal and the F2 frequency signal do not occur at the same time, the key of the measurement method disclosed in the present invention is to frequency-convert both the F1 frequency signal and the F2 frequency signal to a certain frequency, such as a frequency, by the first mixing filtering unit. F0 or near the frequency of F0, so that the narrowband signal analyzer can be used for acquisition and processing.
  • the wide bandwidth frequency agile signal measurement method proposed by the present invention may include the following steps:
  • Step 1 Set the first local oscillator unit 402 to output a first local oscillator signal having a frequency of (F2+F1)/2, for example, 35 GHz.
  • Step 2 Adjust the filter center frequency of the first filtering unit to be equal to (F2-F1)/2.
  • the filter center frequency of the first filtering unit is adjusted to 15 GHz.
  • the third step adjusting the output frequency of the second local oscillator unit, and changing the signal of the center frequency of 15 GHz outputted by the first frequency conversion filtering unit to a certain fixed intermediate frequency.
  • the fourth step performing ADC acquisition on the intermediate frequency signal output by the second filtering unit, and obtaining all signal data of the frequency agile signal switching from the stable F1 frequency point to the stable F2 frequency point.
  • Step 5 Perform digital orthogonal transform and digital filtering on all signal data collected by the ADC to obtain IQ complex signal data that meets the analysis bandwidth requirement.
  • Step 6 Perform measurement analysis on the IQ complex signal data to obtain a spectral change waterfall graph, a power time curve, and a frequency time curve of the frequency agile signal, and obtain measurement results.
  • the invention provides a wide bandwidth frequency agile signal measuring instrument and a measuring method, which can complete the measurement and analysis of the agile signal with a frequency agility range larger than the analysis bandwidth of the superheterodyne instrument.

Abstract

一种宽带宽频率捷变信号测量仪器,包括:第一混频滤波单元(404),用于对输入信号进行第一混频处理;第二混频滤波单元(408),用于对第一混频滤波单元(404)的输出信号进行第二混频处理,并生成一固定模拟中频信号;ADC采集单元(409),对模拟中频信号进行量化生成数字中频信号;正交变换单元(410),用于数字中频信号进行正交变换,生成IQ复数信号;数字滤波单元(411),用于对IQ信号进行数字抽取滤波处理;测量分析单元(412),基于数字滤波单元输出的IQ信号进行处理分析;显示单元(413),用于显示测量结果和曲线。该宽带宽频率捷变信号测量仪器和测量方法,可以完成对频率捷变范围大于超外差仪器分析带宽的捷变频信号进行测量分析。

Description

一种宽带宽频率捷变信号测量仪器及测量方法 技术领域
本发明涉及测试技术领域,特别涉及一种宽带宽频率捷变信号测量仪器,还涉及一种宽带宽频率捷变信号测量方法。
背景技术
随着干扰与抗干扰技术的发展,捷变频信号在各种雷达与电子对抗装备的大量应用。频率捷变带宽(也称跳频带宽)越来越宽。跳频、捷变频信号的频率切换时间直接影响着雷达或电子对抗系统的抗干扰性能,因此跳频、捷变频信号的频率切换时间、频率稳定时间等参数测量是捷变频系统的重要测试内容。
捷变频输出的信号通常频率和功率都会发生变化,如图1所示。捷变频信号从一个稳定的工作频率f1跳变到另一个稳定的工作频率f2的过程中,输出信号功率P0在整个跳变过程时间τ内,输出频率不稳定,输出信号功率也出现降低,所以τ期间,发射机输出信号通常处于关断状态。
对于上述指标的测试一直以来都是一个难题,现有的技术方案有调制域分析仪方案、实时示波器方案、实时信号分析仪方案等,下面分别描述。
第一技术方案是调制域分析仪法,调制域分析是通过对被测信号进行脉冲整形后通过计数法测量信号的瞬时频率,因此该技术方案的缺点是动态范围小,目前现有的调制域分析仪测量的信号功率通常大于-25dBm。另外受到现有的器件和工艺水平限制,调制域分析仪的测量带宽最大到几GHz,当捷变频率范围大于调制域分析仪的测量带宽,例如大于10GHz,调制域分析仪依然无法对其频率切换 时间进行测量。
第二技术方案是示波器法,随着ADC技术的发展,现有的实时示波器的测量带宽已经可以覆盖到60GHz,例如泰克公司的DSA70000系列示波器的实时带宽达到67GHz。示波器法测量频率捷变信号其基本原理如图2所示,高速ADC直接对输入的捷变频信号进行采集,存储模块对采集数据进行缓存。接下来采用软件对采样的信号数据进行数字混频和数字滤波处理,目的是将被测信号的占用频带混频成以零频为中心频率的频带上,并进行数字滤波减小处理带宽,尽量获得较高的数字处理增益,提高频率测量的准确度。数字滤波输出的信号经过相位差分测频获得信号的瞬时频率,依据获得的瞬时频率波形测量捷变频信号的频率切换时间等参数;还可以通过对数字滤波输出的时域信号进行傅里叶变换,获得信号的的实时频谱,形成瀑布图显示可以清楚的观测到信号的频谱随时间变化的情况。
目前,实时示波器的ADC采集位宽通常为8位,且需要对全部输入带宽的信号进行测量,例如某一捷变频信号频率从20GHz切换到21GHz,采用实时示波器依然要对全部21GHz带宽的信号进行采集测量,因此动态范围和调制域分析仪一样,都很小,对于功率较小的频率捷变信号依然无法进行测量。同时尽管示波器采用数字滤波方式尽量减小处理带宽以获得处理增益,但是由于频率捷变信号的频率捷变范围本身就非常宽,常常达到10GHz以上,即使采用数字滤波,其滤波器带宽也必须大于信号的频率捷变范围,因此由数字滤波处理而获得的测量性能提升非常有限。另外,测量带宽达到10GHz的实时示波器价格昂贵,测量成本非常高。
第三技术方案是实时信号分析仪法,如图3所示,首先采用了超外差变频技 术将频率捷变带宽范围的信号频带变频到以某一固定中频为中心的中频频带上,接下来采用ADC对中频信号进行采集和处理,处理的技术方案与实时示波器的技术方案类似。第三技术方案中,通过下变频法降低了被测信号的频率,使得可以在较低的采样频率上以较高的采样位宽进行采集,进而获得了非常高的测量动态范围。例如某一捷变频信号频率从20GHz切换到21GHz,采用第二技术方案的实时示波器依然要对全部21GHz带宽的信号进行采集测量,需要至少42GHz的采样频率。而采用第三技术方案可以采用大于2GHz的采样速率即可。但是第三技术方案受到实时分析带宽的限制,当捷变频率范围大于实时频谱分析仪的实时分析带宽时,将无法进行测试。
发明内容
针对上述现有技术方案的不足,本发明提出了一种宽带宽频率捷变信号测量仪器及测量方法。
本发明的技术方案是这样实现的:
一种宽带宽频率捷变信号测量仪器,包括:
第一混频滤波单元,用于对输入信号进行第一混频处理;
第二混频滤波单元,用于对第一混频滤波单元的输出信号进行第二混频处理,并生成一固定模拟中频信号;
ADC采集单元,用于对第二混频滤波单元输出的固定模拟中频信号进行采集生成数字中频信号;
正交变换单元,用于对数字中频信号进行正交变换,生成IQ复数信号;
数字滤波单元,用于对IQ信号进行数字抽取滤波处理;
测量分析单元,基于数字滤波单元输出的IQ信号进行处理分析,得到频率捷变信号的频谱变化瀑布图、功率时间曲线和频率时间曲线,并获得测量结果;
显示单元,用于显示测量结果和曲线。
可选地,所述第一混频滤波单元包括:第一混频单元,用于对输入信号和第一本振单元输出的第一本振信号进行混频生成一可变中频信号;
第一本振单元是可调谐的本振信号发生器,第一滤波单元是一组频率不同的滤波器或者频率可调谐的滤波器,用于对第一混频单元输出的第一中频信号进行滤波处理。
可选地,所述第二混频滤波单元包括:第二混频单元,用于对输入信号和第二本振单元输出的第二本振信号进行混频生成一固定中频信号;
第二本振单元是另一可调谐的本振信号发生器,第二滤波单元是固定中频滤波器,用于对第二混频单元输出的第二中频信号进行滤波处理。
可选地,所述第二混频滤波单元通过一级或多级变频方案实现。
可选地,所述第一混频滤波单元和第二混频滤波单元相同,第一混频滤波单元或第二混频滤波单元中,输入信号首先功分成两路,两路信号分别进入相同的两条通路,首先,每一路信号分别进入调谐预选滤波单元滤除镜频信号,调谐预选滤波单元的输出进入混频单元,混频单元通过本振单元将输入的F1频率的信号变频到F0中频上,两条通路中的两个F0中频信号是相同的,两条通路汇集到中频滤波单元,中频滤波单元为固定中频滤波器,中心频率为F0,对输出的F0中频信号进行滤波,滤除第一混频滤波单元或第二混频滤波单元的其他频率的信号。
可选地,所述正交变换单元采用数字混频或希尔伯特变换方式生成IQ复数信号数据。
基于上述测量仪器,本发明还提出了一种宽带宽频率捷变信号测量方法,测量从F1频点切换到F2频点过程的频率切换时间、频率稳定时间、功率稳定时间和功率切换,包括以下步骤:
第一步:设置第一本振单元输出频率为(F2+F1)/2的第一本振信号;
第二步:如果F2>F1,则调整第一混频滤波单元的滤波器中心频率等于或近似等于(F2-F1)/2,否则执行第四步;
第三步:调整第二本振单元输出频率,将第一混频滤波单元输出的中心频率为(F2-F1)/2的信号变到某固定中频上,执行第六步;
第四步:调整第一混频滤波单元的滤波器中心频率等于或近似等于(F1-F2)/2;
第五步:调整第二本振单元输出频率,将第一混频滤波单元输出的中心频率为(F1-F2)/2的信号变到某固定中频上,执行第六步;
第六步:对第二混频滤波单元输出的中频信号执行ADC采集,并获得频率捷变信号从稳定的F1频点切换到稳定的F2频点全部过程的所有信号数据;
第七步:对ADC采集的所有信号数据进行数字正交变换和数字滤波,获得满足分析带宽要求的IQ复数信号数据;满足分析带宽要求是指分析带宽至少大于等于捷变频信号驻留到某频点期间频率变化的最大范围;
第八步:对IQ复数信号数据执行测量分析,获得频率捷变信号的频谱变化瀑布图、功率时间曲线和频率时间曲线,并获得测量结果。
可选地,对测量数据的分析采用以下三种方法中的任意一种或多种方法的组 合:
第一种分析方法是采用相位差分法获得中频信号瞬时频率波形,基于瞬时频率波形数据获得频率切换时间测量值和频率稳定时间测量值;
第二种分析方法是采用FFT频谱计算生成的频谱随时间变化的瀑图轨迹,基于瀑布图轨迹数据获得频率切换时间测量值;
第三种分析方法是采用幅度检波法获得中心信号瞬时幅度波形,基于瞬时幅度波形获得功率捷变时间测量值和功率稳定时间测量值。
本发明的有益效果是:可以完成对频率捷变范围大于超外差仪器分析带宽的捷变频信号进行测量分析。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为频率捷变过程示意图;
图2为示波器法测量频率捷变信号的原理图;
图3为实时信号分析仪法测量频率捷变信号的原理图;
图4为本发明提出的宽带宽频率捷变信号测量仪器原理图;
图5为本发明的第一混频滤波单元或第二混频滤波单元的另一种实施方式的原理图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提出了一种宽带宽频率捷变信号测量仪器和测量方法,可以完成对频率捷变范围大于超外差仪器分析带宽的捷变频信号进行测量分析。
本发明中捷变频信号的频率切换时间是指信号从工作频率F1跳变到另一工作频率F2所花费的时间。
下面结合说明书附图对本发明的宽带宽频率捷变信号测量仪器及测量方法进行详细说明。
如图4所示,本发明提出的宽带宽频率捷变信号测量仪器包括:第一混频滤波单元404,用于输入信号进行第一混频处理;第二混频滤波单元408,用于对第一混频滤波单元404的输出信号进行第二混频处理,并生成一固定模拟中频信号;ADC采集单元409,用于对第二混频滤波单元408输出的固定模拟中频信号进行采集生成数字中频信号;正交变换单元410,用于数字中频信号进行正交变换,生成IQ复数信号;数字滤波单元411,用于对IQ信号进行数字抽取滤波处理;测量分析单元412,基于数字滤波单元411输出的IQ信号进行处理分析,得到频率捷变信号的频谱变化瀑布图、功率时间曲线和频率时间曲线,并获得测量结果;显示单元413,用于显示测量结果和曲线。
所述第一混频滤波单元404包括:第一混频单元401,用于对输入信号和第 一本振单元402输出的第一本振信号进行混频生成一可变中频信号;第一本振单元402是可调谐的本振信号发生器,第一滤波单元403是一组开关滤波器组或者可调谐的滤波器,用于对第一混频单元401输出的第一中频信号进行滤波处理。第一混频单元401输出的第一中频频率是不固定的。
所述第二混频滤波单元408包括:第二混频单元405,用于对输入信号和第二本振单元406输出的第二本振信号进行混频生成一固定中频信号,第二本振单元406是另一可调谐的本振信号发生器,第二滤波单元407是固定中频滤波器,用于对第二混频单元405输出的第二中频信号进行滤波处理。
所述第二混频滤波单元408也可通过一级或多级变频方案实现。
所述正交变换单元410采用数字混频或希尔伯特变换方式生成IQ复数信号数据。
所述正交变换单元410、数字滤波单元411和测量分析单元412均可以采用通用处理器CPU、数字信号处理器DSP、一个或多个专用集成电路ASIC、一个或多个可编程门阵列FPGA或其中任意多种组合实现。
为了达到第一混频滤波单元和第二混频滤波单元相同的目的,本发明中第一、第二混频滤波单元也可以采用多个混频单元和多个本振单元的方式实现,其目的是将F1频率的信号和F2频率的信号都变频到某一频率上,如图5所示,该方案中,中频滤波单元5011为固定中频滤波器,中心频率为F0。图5中,输入信号首先公分成两路501和502,两路信号分别进入相同的两条通路,首先,每一路信号分别进入调谐预选滤波单元503/504滤除可能出现的镜频信号,调谐预选滤波单元503/504的输出进入混频单元505/506,混频单元505/506通过本振单元507/508将输入信号F1频率的信号变频到F0中频上509/5010,两个F0中频信 号是相同的。两条通路汇集到中频滤波单元5011,中频滤波单元5011为固定中频滤波器,中心频率为F0,中频滤波单元5011对输出的两个F0中频信号进行滤波,滤除第一/第二混频滤波单元的其他频率的信号。高速ADC可以直接对F0中频信号进行数字化,也可以再通过一级或多级变频滤波将F0中频信号进一步降低后进行数字化采集。
基于上述宽带宽频率捷变信号测量仪器,本发明还提出了一种宽带宽频率捷变信号测量方法,测量从F1频点切换到F2频点过程的频率切换时间、频率稳定时间、功率稳定时间和功率切换时间,包括以下步骤:
第一步:设置第一本振单元输出频率为(F2+F1)/2的第一本振信号;
第二步:如果F2>F1,则调整第一滤波单元的滤波器中心频率等于或近似等于(F2-F1)/2,否则执行第四步;
第三步:调整第二本振单元输出频率,将第一变频滤波单元输出的中心频率为(F2-F1)/2的信号变到某固定中频上,执行第六步;
第四步:调整第一滤波单元的滤波器中心频率等于或近似等于(F1-F2)/2;
第五步:调整第二本振单元输出频率,将第一变频滤波单元输出的中心频率为(F1-F2)/2的信号变到某固定中频上,执行第六步;
第六步:对第二滤波单元输出的中频信号执行ADC采集,并获得频率捷变信号从稳定的F1频点切换到稳定的F2频点全部过程的所有信号数据;
第七步:对ADC采集的所有信号数据进行数字正交变换和数字滤波,获得满足分析带宽要求的IQ复数信号数据;满足分析带宽要求是指分析带宽至少大于等于捷变频信号驻留到某频点期间频率变化的最大范围;
第八步:对IQ复数信号数据执行测量分析获得频率捷变信号的频谱变化瀑 布图、功率时间曲线和频率时间曲线,并获得测量结果。
上述第八步中,对测量数据的分析采用以下三种方法中的任意一种或多种方法的组合:
第一种分析方法是采用相位差分法获得中频信号瞬时频率波形,基于瞬时频率波形数据获得频率切换时间测量值和频率稳定时间测量值;
第二种分析方法是采用FFT频谱计算生成的频谱随时间变化的瀑图轨迹,基于瀑布图轨迹数据获得频率切换时间测量值;
第三种分析方法是采用幅度检波法获得中心信号瞬时幅度波形,基于瞬时幅度波形获得功率捷变时间测量值和功率稳定时间测量值。
从捷变频信号整个工作过程来看,捷变频信号可以在很宽的频率范围内快速捷变,属于宽带信号,但是从某一具体时刻来看,捷变频信号又属于窄带信号。由于F1频率信号和F2频率信号不会同时出现,因此本发明公开的测量方法的关键是通过第一混频滤波单元将F1频率的信号和F2频率的信号都变频到某一频率上,例如频率F0或接近F0的频率上,从而可以采用窄带信号分析仪的思路进行采集和处理。
下面结合具体实施例进一步说明本发明的技术方案和有益效果。
假定测量某捷变频信号从工作频率F1变换到另一工作频率F2的切换时间,例如F1=20GHz,F2=50GHz,且|F1-F2|远大于超外差仪器分析带宽,且该信号输出功率较低,例如-40dBm。调制域分析仪和宽带实时示波器由于动态范围的限制,很难对该信号进行测量,而受现有ADC器件的工艺水平限制,现今微波信号实时分析仪也无法满足30GHz的分析带宽的要求。采用本发明提出的宽带宽频率捷变信号测量方法可包括如下步骤:
第一步:设置第一本振单元402输出频率为(F2+F1)/2的第一本振信号,例如35GHz。
第二步:调整第一滤波单元的滤波器中心频率等于(F2-F1)/2,本例中第一滤波单元的滤波器中心频率调整为15GHz。
第三步:调整第二本振单元输出频率,将第一变频滤波单元输出的中心频率15GHz的信号变到到某固定中频上。
第四步:对第二滤波单元输出的中频信号执行ADC采集,并获得频率捷变信号从稳定的F1频点切换到稳定的F2频点全部过程的所有信号数据。
第五步:对ADC采集的所有信号数据进行数字正交变换和数字滤波,获得满足分析带宽要求的IQ复数信号数据。
第六步:对IQ复数信号数据执行测量分析获得频率捷变信号的频谱变化瀑布图、功率时间曲线和频率时间曲线,并获得测量结果。
本发明提出了一种宽带宽频率捷变信号测量仪器和测量方法,可以完成对频率捷变范围大于超外差仪器分析带宽的捷变频信号进行测量分析。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种宽带宽频率捷变信号测量仪器,其特征在于,包括:
    第一混频滤波单元,用于对输入信号进行第一混频处理;
    第二混频滤波单元,用于对第一混频滤波单元的输出信号进行第二混频处理,并生成一固定模拟中频信号;
    ADC采集单元,用于对第二混频滤波单元输出的固定模拟中频信号进行采集生成数字中频信号;
    正交变换单元,用于数字中频信号进行正交变换,生成IQ复数信号;
    数字滤波单元,用于对IQ信号进行数字抽取滤波处理;
    测量分析单元,基于数字滤波单元输出的IQ信号进行处理分析,得到频率捷变信号的频谱变化瀑布图、功率时间曲线和频率时间曲线,并获得测量结果;
    显示单元,用于显示测量结果和曲线。
  2. 如权利要求1所述的宽带宽频率捷变信号测量仪器,其特征在于,
    所述第一混频滤波单元包括:第一混频单元,用于对输入信号和第一本振单元输出的第一本振信号进行混频生成一可变中频信号;
    第一本振单元是可调谐的本振信号发生器,第一滤波单元是一组频率不同的滤波器或者频率可调谐的滤波器,用于对第一混频单元输出的第一中频信号进行滤波处理。
  3. 如权利要求1所述的宽带宽频率捷变信号测量仪器,其特征在于,
    所述第二混频滤波单元包括:第二混频单元,用于对输入信号和第二本振单元输出的第二本振信号进行混频生成一固定中频信号;
    第二本振单元是另一可调谐的本振信号发生器,第二滤波单元是固定中频滤波器,用于对第二混频单元输出的第二中频信号进行滤波处理。
  4. 如权利要求3所述的宽带宽频率捷变信号测量仪器,其特征在于,
    所述第二混频滤波单元通过一级或多级变频方案实现。
  5. 如权利要求1所述的宽带宽频率捷变信号测量仪器,其特征在于,所述第一混频滤波单元和第二混频滤波单元相同,第一混频滤波单元或第二混频滤波单元中,输入信号首先功分成两路,两路信号分别进入相同的两条通路,首先,每一路信号分别进入调谐预选滤波单元滤除镜频信号,调谐预选滤波单元的输出进入混频单元,混频单元通过本振单元将输入的F1频率的信号变频到F0中频上,两条通路中的两个F0中频信号是相同的,两条通路汇集到中频滤波单元,中频滤波单元为固定中频滤波器,中心频率为F0,对中频信号进行滤波,滤除第一混频滤波单元或第二混频滤波单元的其他频率的信号。
  6. 如权利要求1所述的宽带宽频率捷变信号测量仪器,其特征在于,
    所述正交变换单元采用数字混频或希尔伯特变换方式生成IQ复数信号数据。
  7. 基于权利要求1至6任一项所述的测量仪器的宽带宽频率捷变信号测量方法,其特征在于,测量从F1频点切换到F2频点过程的频率切换时间、频率稳定时间、功率稳定时间和功率切换时间,包括以下步骤:
    第一步:设置第一本振单元输出频率为(F2+F1)/2的第一本振信号;
    第二步:如果F2>F1,则调整第一混频滤波单元的滤波器中心频率等于或近似等于(F2-F1)/2,否则执行第四步;
    第三步:调整第二本振单元输出频率,将第一混频滤波单元输出的中心频率为(F2-F1)/2的信号变到某固定中频上,执行第六步;
    第四步:调整第一混频滤波单元的滤波器中心频率等于或近似等于(F1-F2)/2;
    第五步:调整第二本振单元输出频率,将第一混频滤波单元输出的中心频率为(F1-F2)/2的信号变到某固定中频上,执行第六步;
    第六步:对第二混频滤波单元输出的中频信号执行ADC采集,并获得频率捷变信号从稳定的F1频点切换到稳定的F2频点全部过程的所有信号数据;
    第七步:对ADC采集的所有信号数据进行数字正交变换和数字滤波,获得满足分析带宽要求的IQ复数信号数据;满足分析带宽要求是指分析带宽至少大于等于捷变频信号驻留到某频点期间频率变化的最大范围;
    第八步:对IQ复数信号数据执行测量分析,获得频率捷变信号的频谱变化瀑布图、功率时间曲线和频率时间曲线,并获得测量结果。
  8. 如权利要求7所述宽带宽频率捷变信号测量方法,其特征在于,对测量数据的分析采用以下三种方法中的任意一种或多种方法的组合:
    第一种分析方法是采用相位差分法获得中频信号瞬时频率波形,基于瞬时频率波形数据获得频率切换时间测量值和频率稳定时间测量值;
    第二种分析方法是采用FFT频谱计算生成的频谱随时间变化的瀑图轨迹,基于瀑布图轨迹数据获得频率切换时间测量值;
    第三种分析方法是采用幅度检波法获得中心信号瞬时幅度波形,基于瞬时幅度波形获得功率捷变时间测量值和功率稳定时间测量值。
PCT/CN2016/107463 2016-08-15 2016-11-28 一种宽带宽频率捷变信号测量仪器及测量方法 WO2018032645A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610723493.0 2016-08-15
CN201610723493.0A CN106443177A (zh) 2016-08-15 2016-08-15 一种宽带宽频率捷变信号测量仪器及测量方法

Publications (1)

Publication Number Publication Date
WO2018032645A1 true WO2018032645A1 (zh) 2018-02-22

Family

ID=58181929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/107463 WO2018032645A1 (zh) 2016-08-15 2016-11-28 一种宽带宽频率捷变信号测量仪器及测量方法

Country Status (2)

Country Link
CN (1) CN106443177A (zh)
WO (1) WO2018032645A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109782076A (zh) * 2018-12-28 2019-05-21 北京航天测控技术有限公司 一种用于微波通讯装备的中频信号频率测试方法
CN113949466A (zh) * 2021-11-19 2022-01-18 上海创远仪器技术股份有限公司 实现自动化超宽带无线信号采集传输处理的系统、方法、装置、处理器及其存储介质
CN114268395A (zh) * 2021-12-16 2022-04-01 东南大学 一种快速宽带动态智能频谱监测的实验装置
CN116879627A (zh) * 2023-09-04 2023-10-13 中国电子科技集团公司第二十九研究所 一种纳秒级非相参窄脉冲序列的测频系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107911179B (zh) * 2017-11-15 2020-12-01 中国电子科技集团公司第四十一研究所 一种基于三态校准参数的功率捷变调理方法
CN108776259B (zh) * 2018-06-26 2020-03-24 电子科技大学 基于数字带宽限制技术的功率分析仪
CN109361477B (zh) * 2018-11-13 2021-04-13 中电科思仪科技股份有限公司 一种瞬时频率测量装置及测量方法
CN110579631B (zh) * 2019-10-08 2021-09-21 中国航空工业集团公司北京长城计量测试技术研究所 基于正弦拟合的捷变信号建立时间精确测量方法
CN111786685B (zh) * 2020-06-15 2022-03-15 中国电子科技集团公司第二十研究所 一种带宽和本振灵活可变的超宽带高速并行采集方法
CN114019364A (zh) * 2021-11-05 2022-02-08 上海创远仪器技术股份有限公司 基于矢量网络分析仪结构实现射频开关通断时间测量的方法、装置、处理器及其存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070098045A1 (en) * 2005-11-03 2007-05-03 Cameron Richard A Detection of time-frequency codes using a spectrogram
CN201464557U (zh) * 2009-03-16 2010-05-12 邵啸 一种中频频谱监测装置
CN102075269A (zh) * 2010-12-24 2011-05-25 北京航空航天大学 高速跳频信号的跳速和频率转换时间的测量方法
CN102419389A (zh) * 2010-08-13 2012-04-18 特克特朗尼克公司 测试和测量仪器中的时域测量
CN204269728U (zh) * 2014-11-18 2015-04-15 成都九洲迪飞科技有限责任公司 一种复相关高精度数字测频电路
CN105021900A (zh) * 2015-07-02 2015-11-04 北京理工大学 一种用于多通道测量的通道捷变差分测量方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233876A (ja) * 1995-02-28 1996-09-13 Ando Electric Co Ltd 周波数スペクトラム表示方式
CN1215649C (zh) * 2001-01-12 2005-08-17 旋永南 一种高频信号接收和发送的处理方法
CN203457146U (zh) * 2013-09-13 2014-02-26 贵州航天天马机电科技有限公司 一种无线电超短频接收机
CN104467916A (zh) * 2013-09-13 2015-03-25 贵州航天天马机电科技有限公司 一种超短波跳频接收机
CN104868959B (zh) * 2014-02-21 2018-11-13 中国人民解放军总参谋部第六十三研究所 一种超短波宽带跳频接收信道场强检测方法
CN104579413B (zh) * 2015-01-06 2018-05-11 中电科航空电子有限公司 一种综合射频系统
CN105390783B (zh) * 2015-08-31 2019-03-05 电子科技大学 一种适用于太赫兹波段的镜频抑制混频器结构
CN105790863B (zh) * 2016-03-02 2017-04-26 北京盈想东方科技股份有限公司 单通道频谱监测设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070098045A1 (en) * 2005-11-03 2007-05-03 Cameron Richard A Detection of time-frequency codes using a spectrogram
CN201464557U (zh) * 2009-03-16 2010-05-12 邵啸 一种中频频谱监测装置
CN102419389A (zh) * 2010-08-13 2012-04-18 特克特朗尼克公司 测试和测量仪器中的时域测量
CN102075269A (zh) * 2010-12-24 2011-05-25 北京航空航天大学 高速跳频信号的跳速和频率转换时间的测量方法
CN204269728U (zh) * 2014-11-18 2015-04-15 成都九洲迪飞科技有限责任公司 一种复相关高精度数字测频电路
CN105021900A (zh) * 2015-07-02 2015-11-04 北京理工大学 一种用于多通道测量的通道捷变差分测量方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109782076A (zh) * 2018-12-28 2019-05-21 北京航天测控技术有限公司 一种用于微波通讯装备的中频信号频率测试方法
CN113949466A (zh) * 2021-11-19 2022-01-18 上海创远仪器技术股份有限公司 实现自动化超宽带无线信号采集传输处理的系统、方法、装置、处理器及其存储介质
CN114268395A (zh) * 2021-12-16 2022-04-01 东南大学 一种快速宽带动态智能频谱监测的实验装置
CN114268395B (zh) * 2021-12-16 2024-02-06 东南大学 一种快速宽带动态智能频谱监测的实验装置
CN116879627A (zh) * 2023-09-04 2023-10-13 中国电子科技集团公司第二十九研究所 一种纳秒级非相参窄脉冲序列的测频系统
CN116879627B (zh) * 2023-09-04 2023-11-21 中国电子科技集团公司第二十九研究所 一种纳秒级非相参窄脉冲序列的测频系统

Also Published As

Publication number Publication date
CN106443177A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
WO2018032645A1 (zh) 一种宽带宽频率捷变信号测量仪器及测量方法
EP3361267B1 (en) Multi-domain test and measurement instrument
CN104122444B (zh) 全数字中频频谱分析仪及频谱分析方法
TWI534433B (zh) 多域測試及測量設備
CN106405235A (zh) 一种频谱分析仪及其数据处理方法
CN107239611B (zh) 一种矢量信号分析装置及方法
CN106886002B (zh) 一种频谱分析仪的校准方法
CN106443122B (zh) 一种宽频带大动态信号高精度测量装置及方法
US20060025946A1 (en) Integrated spectrum analyzer circuits and methods for providing on-chip diagnostics
Feldhaus et al. A 1 MHz to 50 GHz direct down-conversion phase noise analyzer with cross-correlation
CN109361477B (zh) 一种瞬时频率测量装置及测量方法
CN107807276B (zh) 一种实时频谱仪跟踪源设计方法
CN103941092B (zh) 一种频域快速扫描测量的装置
US7010443B2 (en) Noise measurement system and method
US7352827B2 (en) Multichannel simultaneous real time spectrum analysis with offset frequency trigger
CN104618037A (zh) 一种射频系统芯片性能测试方法及装置
CN108459203B (zh) 一种超宽带扫频脉冲功率检波装置及方法
Van Moer et al. Proving the usefulness of a 3-port nonlinear vectorial network analyser through mixer measurements
JPH10126217A (ja) デシメーションフィルタ
CN107800443B (zh) 射频无源谐振传感特征解调变换电路
Keller A New Concept for a Wideband FFT-Based EMI Receiver
CN206114773U (zh) 一种高性能频谱分析仪
Ruppalt et al. Simultaneous digital measurement of phase and amplitude noise
JP2019158418A (ja) 測定システム及び測定方法
EP4246151A1 (en) Measurement system for a broadband signal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16913400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16913400

Country of ref document: EP

Kind code of ref document: A1