WO2018030540A1 - ユーザ端末、基地局装置及び無線通信方法 - Google Patents

ユーザ端末、基地局装置及び無線通信方法 Download PDF

Info

Publication number
WO2018030540A1
WO2018030540A1 PCT/JP2017/029220 JP2017029220W WO2018030540A1 WO 2018030540 A1 WO2018030540 A1 WO 2018030540A1 JP 2017029220 W JP2017029220 W JP 2017029220W WO 2018030540 A1 WO2018030540 A1 WO 2018030540A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
combination
base station
basic
auxiliary
Prior art date
Application number
PCT/JP2017/029220
Other languages
English (en)
French (fr)
Inventor
聡 永田
ホイリン リー
スウネイ ナ
ホイリン ジャン
佑一 柿島
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to CN201780025374.0A priority Critical patent/CN109075842A/zh
Priority to US16/317,994 priority patent/US11418246B2/en
Priority to JP2018533580A priority patent/JP7136696B2/ja
Priority to EP17839604.0A priority patent/EP3419189A4/en
Publication of WO2018030540A1 publication Critical patent/WO2018030540A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to a user terminal, a base station apparatus, and a wireless communication method. More specifically, the present invention relates to a user terminal, a base station apparatus, and a radio communication method to which a beam selection method and a beam determination method can be applied in a radio communication system.
  • FD-MIMO Full Dimensional MIMO
  • massive MIMO massive MIMO
  • LTE Long Term Evolution
  • LTE-Advanced Pro LTE-Advanced Pro
  • each beam is measured by the mobile station, and the measurement result of CSI-RS included in each beam is fed back from the mobile station to the base station.
  • the base station selects a subsequent beam to be transmitted to the mobile station from the plurality of candidate beams according to the feedback.
  • the base station transmits channel state reference signals (CSI-RS) for a plurality of candidate beams statically or semi-statically by RRC signaling. Send to.
  • CSI-RS channel state reference signals
  • the present invention has been made in view of the above points, and provides a user terminal, a base station apparatus, and a wireless communication method capable of suppressing signaling overhead used for beam measurement and reducing the complexity of beam measurement and calculation. Is one of the purposes.
  • One aspect of the present invention is a user terminal that reports channel state information to a base station apparatus, and receives each base beam reference signal included in one or more base beams transmitted from the base station.
  • a determining unit for determining a suitable basic beam and an auxiliary beam to be combined with the preferred basic beam based on the received basic beam reference signal, and combination information regarding a combination of the preferable basic beam and the auxiliary beam.
  • a transmission unit for transmitting to the base station apparatus.
  • Another aspect of the present invention is a receiver that receives combination information related to a combination of a suitable basic beam and an auxiliary beam transmitted from a user terminal, and combines the preferred basic beam and the auxiliary beam according to the received combination information.
  • a beam determining unit that determines a transmission beam for the user terminal.
  • the present invention it is possible to provide a user terminal, a base station apparatus, and a wireless communication method capable of suppressing signaling overhead used for beam measurement and reducing the complexity of beam measurement and calculation.
  • FIG. 3 is a schematic diagram illustrating determining a preferred base beam and an auxiliary beam to be combined with the preferred base beam according to one embodiment of the present invention.
  • 6 is a flowchart illustrating a beam determination method executed by a base station according to an example of the present invention. 6 is a flowchart illustrating a beam combining method performed by a base station according to an example of the present invention.
  • 1 is an exemplary block diagram illustrating a mobile station according to an embodiment of the present invention.
  • 1 is an exemplary block diagram illustrating a base station according to an embodiment of the present invention.
  • FIG. 3 is an exemplary block diagram illustrating a transmission beam determination unit according to one example of the present invention.
  • the UE described herein includes various types of user terminals, such as mobile terminals (or mobile stations) or fixed terminals. However, for convenience, in the following, UE and mobile station may be used interchangeably in some cases. Also good.
  • the base station includes various types of base station apparatuses such as gNB and transmission points.
  • FIG. 1 is a flowchart showing a beam selection method applied to a mobile station according to one embodiment of the present invention.
  • a basic beam reference signal transmitted from a base station is received.
  • the base station generates multiple groups of beams, and each group of beams may include multiple base beams.
  • a base beam reference signal for each base beam in a group of beams is received.
  • a new codebook is created for the base beam that can be generated by the base station.
  • the base beam that can be generated by the base station may be a beam corresponding to an existing codebook (for example, a codebook in 3GPP standard Release 13), thereby ensuring good compatibility with the existing codebook. Is done.
  • step S102 according to the basic beam reference signal, a suitable basic beam and whether or not it is necessary to perform beam combination are determined. For example, the channel state of each fundamental beam is measured according to the fundamental beam reference signal, and the fundamental beam having the best channel state is selected as the preferred fundamental beam among the plurality of fundamental beams corresponding to the fundamental beam reference signal according to the measurement result. select.
  • step S102 it is further determined whether or not it is necessary to perform a beam combination of a suitable basic beam and another beam according to the measurement result. For example, if the measurement result of the preferred basic beam indicates that the channel state of the beam satisfies a predetermined channel state threshold, it is determined in step S102 that it is not necessary to perform beam combination. On the other hand, if the measurement result of the preferred basic beam indicates that the channel state of the beam does not reach the predetermined channel state threshold, it is determined in step S102 that it is necessary to perform beam combination, and the beam combination is determined. To obtain a beam with a better channel condition.
  • step S103 basic beam information related to the preferred basic beam and combination information related to the beam combination are transmitted to the base station.
  • the basic beam information of the preferred basic beam is the beam index of the preferred basic beam.
  • step S103 basic beam information regarding a suitable basic beam and combination information regarding the fact that it is not necessary to perform beam combination are set as bases. Send to the station. Further, for example, when it is determined in step S102 that it is necessary to perform beam combination, in step S103, basic beam information regarding a suitable basic beam and combination information regarding the necessity of performing beam combination are obtained. Send to base station.
  • the method shown in FIG. 1 further comprises an auxiliary beam combined with a preferred base beam and an auxiliary beam combination factor. Including.
  • the base station can generate a plurality of groups of beams.
  • the auxiliary beam to be determined may be another base beam in the same beam group as the preferred base beam.
  • the determined auxiliary beam and the preferred base beam may be in different beam groups, i.e. the auxiliary beam may be a base beam in another beam group.
  • FIG. 2 is a schematic diagram illustrating the determination of the preferred basic beam and the auxiliary beam combined with the preferred basic beam according to one embodiment of the present invention.
  • the mobile station receives a base beam reference signal of a group of base beams (ie, base beams 210-240) transmitted from the base station.
  • step S102 in the example shown in FIG. 2, it is determined that the preferred basic beam is the basic beam 220 and that beam combination is necessary.
  • the mobile station further determines to perform beam combination using the beam 240 in the same beam group as the basic beam 220.
  • the combination coefficient of the auxiliary beam may be a coefficient for adjusting the auxiliary beam when combining with the suitable basic beam.
  • the coefficient for adjusting the auxiliary beam includes an amplitude coefficient and a phase coefficient in order to adjust the amplitude and phase of the auxiliary beam.
  • the beam B 0 to be obtained is determined by combining the suitable basic beam b 0 and the auxiliary beam b i according to the following formula (1).
  • x i represents an amplitude coefficient
  • ⁇ i represents a phase coefficient
  • the combination information about the beam combination includes information about the auxiliary beam and its combination coefficient.
  • the combination information includes auxiliary beam information regarding the auxiliary beam combined with the preferred basic beam and coefficient information regarding the combination coefficient of the auxiliary beam.
  • the auxiliary beam information for the auxiliary beam may be the beam index of the auxiliary beam.
  • the coefficient information includes amplitude information and phase information.
  • the amplitude information indicates the amplitude coefficient
  • the phase information indicates the phase coefficient.
  • the amplitude information may be used to indicate whether it is necessary to perform beam combination, that is, in order to indicate whether it is necessary to perform beam combination, It is not necessary to provide another identifier different from the amplitude information. Specifically, amplitude information is set to zero when it is determined that it is not necessary to perform beam combination. If it is not necessary to perform beam combination, it is not necessary to notify the base station of the auxiliary beam and the parameters for adjusting the auxiliary beam. In step S103, the mobile station By transmitting the amplitude information to the base station, the base station is notified that the preferred base beam selected by the mobile station and that the preferred base beam does not require beam combination.
  • the mobile station may not transmit information other than the amplitude information (for example, auxiliary beam information and phase coefficient) in the combination information to the base station.
  • the mobile station transmits basic beam information, auxiliary beam information, amplitude information, and phase information regarding a suitable basic beam to the base station.
  • amplitude information and information other than the amplitude information in the combination information may be transmitted.
  • amplitude information is first transmitted, and then information other than amplitude is transmitted from the combination information. Therefore, the base station determines whether or not information other than the amplitude information among the combination information can be received according to the amplitude information.
  • information other than the amplitude information in the combination information may be divided into a plurality of times and transmitted to the base station. For example, first, auxiliary beam information may be transmitted, and then phase information may be transmitted again.
  • the combination information includes combination instruction information indicating whether or not it is necessary to perform beam combination, auxiliary beam information regarding an auxiliary beam to be combined with a suitable basic beam, and auxiliary beam. And coefficient information related to the combination coefficient. If it is not necessary to perform beam combination, it is not necessary to notify the base station of the auxiliary beam and the parameters for adjusting the auxiliary beam.
  • the mobile station By transmitting the combination instruction information to the base station, the base station is notified that the preferred basic beam selected by the mobile station and that the preferred basic beam does not need to be combined. The mobile station may not send the combination information to the base station.
  • the mobile station transmits basic beam information and combination instruction information regarding a suitable basic beam to the base station, and auxiliary beam information and coefficient information (for example, amplitude and phase information) Are further transmitted to the base station.
  • combination instruction information and information other than the combination instruction information in the combination information may be transmitted in step S103.
  • the combination instruction information is first transmitted, and then information other than the combination instruction information is transmitted among the combination information. Therefore, the base station determines whether information other than the combination instruction information can be received in the combination information according to the combination instruction information.
  • information other than the combination instruction information in the combination information may be divided into a plurality of times and transmitted to the base station. For example, first, auxiliary beam information and amplitude information are transmitted, and then phase information is transmitted.
  • the combination information is based on the physical uplink control channel (PUCCH: Physical Uplink Control Channel) and / or the physical uplink shared channel (PUSCH: Physical Uplink Shared Channel). Send to the station.
  • the combination information may be transmitted to the base station periodically or aperiodically as necessary.
  • the entire combination information is transmitted to the base station by PUCCH.
  • the combination information may be transmitted by PUCCH using a precoding matrix index (PMI: Precoding Matrix Indicator).
  • PMI Precoding Matrix Indicator
  • the combination information includes part or all of information in information such as combination instruction information, auxiliary beam information, amplitude information, and phase information.
  • the entire combination information may be transmitted using one PMI, or the entire combination information may be transmitted using a plurality of PMIs.
  • combination instruction information and / or auxiliary beam information in the combination information is transmitted using the first PMI, and other information in the combination information is transmitted using the second PMI.
  • the entire combination information may be transmitted to the base station using PUSCH.
  • some information in the combination information may be transmitted to the base station by PUCCH, and the other information in the combination information may be transmitted to the base station by PUSCH.
  • some information in the combination information may be transmitted by PUCCH, and the remaining partial information in the combination information may be transmitted to the base station by PUSCH.
  • the combination information includes part or all of the information such as combination instruction information, auxiliary beam information, amplitude information, and phase information
  • the combination instruction information and / or auxiliary beam in the combination information by PUCCH Information is transmitted, and other information in the combination information is transmitted by PUSCH.
  • the base station In order to avoid collision between a beam for one mobile station and a beam for another mobile station, the base station notifies the mobile station of the beam whose use is restricted by transmitting beam restriction information to the mobile station. May be.
  • the method shown in FIG. 1 receives the beam limit information transmitted from the base station, where the beam limit information indicates the beam whose use is limited, and then the auxiliary beam determined in step S102. And obtaining a correlation coefficient between the beam and the limited beam indicated by the beam limitation information.
  • the correlation coefficient R (k) is acquired by the following equation (2).
  • b k represents a beam whose use is restricted.
  • step S103 the basic beam information regarding the preferable basic beam and the combination information instructing not to perform the beam combination are transmitted to the base station.
  • the auxiliary beam to be combined with the preferred base beam is re-established, and the combination coefficient of the auxiliary beam to be re-established is re-established.
  • step S103 basic beam information relating to the preferred basic beam, auxiliary beam information relating to the reselected auxiliary beam, and coefficient information relating to the combination coefficient of the reselected auxiliary beam are transmitted to the base station.
  • a suitable basic beam is determined in accordance with a basic beam reference signal, and then it is determined whether or not it is necessary to combine the preferable basic beam with another beam.
  • the result can be fed back to the base station. Therefore, even in a Massive MIMO system with a larger number of antennas, a beam that can be used when a base station subsequently communicates with the mobile station without increasing the signaling overhead for beam measurement as the number of antennas increases. Can be obtained accurately.
  • the basic beam is a beam corresponding to an existing code book, good compatibility with the existing code book is ensured.
  • a plurality of suitable basic beams may be determined in step S102. In this case, it is determined whether or not it is necessary to perform beam combination for each preferable basic beam, and when it is necessary to perform beam combination, an auxiliary beam combined with the preferable basic beam, A combination coefficient may be determined.
  • FIG. 3 is a flowchart illustrating a beam determination method 300 performed by a base station according to an example of the present invention.
  • step S301 basic beam information and combination information transmitted from a mobile station are received.
  • the basic beam information and the combination information are generated by the mobile station according to the basic beam reference signal transmitted from the base station.
  • the basic beam information and the combination information have already been described in detail with reference to FIGS. 1 and 2, and thus the description thereof is omitted here.
  • step S302 a suitable basic beam is acquired according to the basic beam information, and it is determined in step S303 whether it is necessary to perform beam combination according to the combination information. Then, in step S304, if it is not necessary to perform beam combination, the preferred base beam is determined as the transmission beam for the mobile station. In the subsequent data transmission process, the preferred base beam is used to transmit data to the mobile station.
  • FIG. 4 is a flowchart illustrating a beam combining method 400 performed by a base station according to one example of the present invention.
  • a beam combining method 400 performed by a base station according to one example of the present invention.
  • an auxiliary beam and an auxiliary beam combination coefficient are acquired according to the combination information.
  • a transmission beam for the mobile station is obtained according to the combination coefficient of the preferred basic beam, the auxiliary beam, and the auxiliary beam.
  • the combination coefficient may include an amplitude coefficient and a phase coefficient.
  • the transmission beam is obtained by combining the suitable basic beam and the auxiliary beam according to the above formula (1).
  • the mobile station first transmits information indicating whether it is necessary to perform beam combination among the combination information, and performs beam combination when it is necessary to perform beam combination. After transmitting the information indicating whether or not it is necessary, the remaining information in the combination information may be transmitted. Accordingly, in step S301, the base station first receives information indicating whether it is necessary to perform beam combination. When it is determined in step S303 that it is not necessary to perform beam combination, the base station determines that it is not necessary to receive the remaining information in the combination information, and performs beam combination according to the remaining information in the combination information. Confirm that it is not necessary to do. On the other hand, when it is determined in step S303 that it is necessary to perform beam combination, the base station determines that it is necessary to receive the remaining information in the combination information, and the remaining information in the combination information. To determine that it is necessary to perform beam combination.
  • use of the method shown in FIG. 3 is limited by transmitting beam restriction information to the mobile station before receiving basic beam information and combination information transmitted from the mobile station. It may further include notifying the beam. Further, the mobile station generates basic beam information and combination information according to the beam restriction information, thereby avoiding collision between the beam for the mobile station and the beam for another mobile station.
  • the beam determination method determines whether or not it is necessary to perform a suitable basic beam and beam combination by receiving basic beam information and combination information generated by the mobile station according to the basic beam reference signal. A heel is determined and a transmission beam for the mobile station is further determined. Therefore, even in a Massive MIMO system with a larger number of antennas, a beam that can be used when a base station subsequently communicates with the mobile station without increasing the signaling overhead for beam measurement as the number of antennas increases. Can be obtained accurately.
  • the basic beam is a beam corresponding to an existing code book, good compatibility with the existing code book is ensured.
  • FIG. 5 is an exemplary block diagram illustrating a mobile station 500 according to an embodiment of the present invention.
  • the mobile station 500 includes a reception unit 510, a determination unit 520 and a transmission unit 530.
  • the mobile station 500 may further include other components.
  • these components are not related to the contents of the embodiment of the present invention, illustration and description thereof are omitted here. .
  • the specific details of the following operations executed by the mobile station 500 according to the embodiment of the present invention are the same as the details described with reference to FIGS. Therefore, the duplicate description of the same details is omitted.
  • the receiving unit 510 receives the basic beam reference signal transmitted from the base station.
  • the base station generates multiple groups of beams, and each group of beams can include multiple base beams.
  • the receiving unit 510 may receive a base beam reference signal for each base beam in a group of beams.
  • a new codebook of basic beams that can be generated by the base station may be created.
  • the base beam that can be generated by the base station may be a beam corresponding to an existing code book (for example, a code book in 3GPP standard Release 13), thereby ensuring good compatibility with the existing code book.
  • an existing code book for example, a code book in 3GPP standard Release 13
  • the confirmation unit 520 determines a suitable basic beam and whether or not beam combination is necessary according to the basic beam reference signal. For example, measure the channel condition of each fundamental beam according to the fundamental beam reference signal, and select the fundamental beam with the best channel condition as the preferred fundamental beam among multiple fundamental beams corresponding to the fundamental beam reference signal according to the measurement result. To do.
  • the determination unit 520 determines whether or not it is necessary to perform a beam combination of a suitable basic beam and another beam according to the measurement result. For example, if the measurement result of the preferred base beam indicates that the channel state of the beam meets a predetermined channel state threshold, the determination unit 520 determines that no beam combination is necessary. On the other hand, if the measurement result of the preferred basic beam indicates that the channel state of the beam does not reach the predetermined channel state threshold, the determination unit 520 determines that it is necessary to perform the beam combination, and the beam combination To obtain a beam with a better channel condition.
  • the transmission unit 530 transmits the basic beam information regarding the preferred basic beam and the combination information regarding the beam combination to the base station.
  • the basic beam information of the preferred basic beam is the beam index of the preferred basic beam.
  • the transmission unit 530 bases the basic beam information on the preferred basic beam and the combination information on the fact that it is not necessary to perform beam combination. Send to the station. Also, for example, when it is determined by the determination unit 520 that it is necessary to perform beam combination, the transmission unit 530 includes basic beam information regarding a suitable basic beam and combination information regarding the necessity of performing beam combination. Send to base station.
  • the determination unit 520 when it is determined that it is necessary to perform beam combination, the determination unit 520 further determines an auxiliary beam to be combined with a suitable basic beam and an auxiliary beam combination coefficient.
  • the base station can generate a plurality of groups of beams.
  • the auxiliary beam determined by the determination unit 520 may be another base beam in the same beam group as the preferred base beam.
  • the auxiliary beam and the preferred base beam determined by the determination unit 520 may be in different beam groups, i.e. the auxiliary beam may be a base beam in another beam group.
  • the combination coefficient of the auxiliary beam is a coefficient for adjusting the auxiliary beam when combining with the suitable basic beam.
  • the coefficient for adjusting the auxiliary beam includes an amplitude coefficient and a phase coefficient in order to adjust the amplitude and phase of the auxiliary beam.
  • the beam obtained by combining the suitable basic beam and the auxiliary beam by the above formula (1) is determined as the transmission beam.
  • the combination information on the beam combination includes the mutual information of the auxiliary beam and its combination coefficient.
  • the combination information includes auxiliary beam information regarding the auxiliary beam combined with the preferred basic beam and coefficient information regarding the combination coefficient of the auxiliary beam.
  • the auxiliary beam information for the auxiliary beam may be the beam index of the auxiliary beam.
  • the coefficient information includes amplitude information and phase information.
  • the amplitude information indicates the amplitude coefficient
  • the phase information indicates the phase coefficient.
  • the combination information is different from amplitude information. It is not necessary to provide one identifier. Specifically, amplitude information is set to zero when it is determined that it is not necessary to perform beam combination. If it is not necessary to perform beam combining, it is not necessary to notify the base station of the auxiliary beam and the parameters for adjusting the auxiliary beam. Is transmitted to the base station to notify the base station that the preferred basic beam selected by the mobile station and that the preferred basic beam does not require beam combination.
  • the mobile station may not transmit information other than the amplitude information (for example, auxiliary beam information and phase coefficient) in the combination information to the base station.
  • the transmission unit 530 transmits basic beam information, auxiliary beam information, amplitude information, and phase information regarding the preferred basic beam to the base station.
  • the transmission unit 530 may transmit amplitude information and information other than the amplitude information among the combination information. For example, amplitude information is first transmitted, and then information other than amplitude is transmitted from the combination information. Therefore, the base station determines whether or not information other than the amplitude information among the combination information can be received according to the amplitude information. Note that information other than the amplitude information in the combination information may be divided into a plurality of times and transmitted to the base station. For example, first, auxiliary beam information may be transmitted, and then phase information may be transmitted again.
  • the combination information includes combination instruction information indicating whether or not it is necessary to perform beam combination, auxiliary beam information regarding an auxiliary beam to be combined with a suitable basic beam, and auxiliary beam. And coefficient information related to the combination coefficient.
  • the transmission unit 530 transmits the basic beam information regarding the preferred basic beam and the combination instruction. By transmitting information to the base station, the base station is notified that the preferred base beam selected by the mobile station and that the preferred base beam does not need to be combined. The mobile station may not send the combination information to the base station.
  • the mobile station transmits basic beam information and combination instruction information regarding a suitable basic beam to the base station, and auxiliary beam information and coefficient information (for example, amplitude information and phase information). Are further transmitted to the base station.
  • the transmission unit 530 may transmit the matching instruction information and information other than the combination instruction information in the combination information.
  • the combination instruction information is first transmitted, and then information other than the combination instruction information is transmitted among the combination information. Therefore, the base station determines whether information other than the combination instruction information can be received in the combination information according to the combination instruction information.
  • information other than the combination instruction information in the combination information may be divided into a plurality of times and transmitted to the base station. For example, first, auxiliary beam information and amplitude information are transmitted, and then phase information is transmitted again.
  • the transmission unit 530 transmits the combination information to the base station using the PUCCH and / or PUSCH. Note that the combination information may be transmitted to the base station periodically or aperiodically as necessary.
  • the entire combination information may be transmitted to the base station by PUCCH.
  • combination information is transmitted by PUCCH using PMI.
  • the combination information includes part or all of information in information such as combination instruction information, auxiliary beam information, amplitude information, and phase information.
  • the entire combination information may be transmitted using one PMI, or the entire combination information may be transmitted using a plurality of PMIs.
  • the combination instruction information and / or auxiliary beam information in the combination information is transmitted using the first PMI, and other information in the combination information is transmitted using the second PMI.
  • the entire combination information may be transmitted to the base station using PUSCH.
  • some information in the combination information may be transmitted to the base station by PUCCH, and the other information in the combination information may be transmitted to the base station by PUSCH.
  • some information in the combination information may be transmitted by PUCCH, and another information in the combination information may be transmitted to the base station by PUSCH.
  • the combination information includes part or all of the information such as combination instruction information, auxiliary beam information, amplitude information, and phase information, the combination instruction information and / or auxiliary beam information in the combination information by PUCCH And other information in the combination information is transmitted by PUSCH.
  • the base station In order to avoid collision between a beam for one mobile station and a beam for another mobile station, the base station notifies the mobile station of the beam whose use is restricted by transmitting beam restriction information to the mobile station. May be.
  • the receiving unit 530 further receives beam restriction information transmitted from the base station, where the beam restriction information indicates a beam whose use is restricted.
  • the mobile station may further include a correlation coefficient acquisition unit to acquire a correlation coefficient between the determined auxiliary beam and the limited beam indicated by the beam limitation information. For example, the correlation coefficient is acquired by the above equation (2).
  • the transmission unit 530 transmits the basic beam information regarding the preferred basic beam and the combination information instructing not to perform the beam combination to the base station. To do.
  • the determination unit 520 re-establishes the auxiliary beam to be combined with the preferred base beam and re-establishes the re-established auxiliary beam combination coefficient.
  • the transmission unit 530 transmits basic beam information regarding the preferred basic beam, auxiliary beam information regarding the reselected auxiliary beam, and coefficient information regarding the combination coefficient of the reselected auxiliary beam to the base station.
  • a suitable basic beam is determined according to the basic beam reference signal, and then it is determined whether or not it is necessary to combine the preferable basic beam with another beam. Can be fed back to the base station. Therefore, even in a Massive MIMO system with a larger number of antennas, a beam that can be used when a base station subsequently communicates with the mobile station without increasing the signaling overhead for beam measurement as the number of antennas increases. Can be obtained accurately.
  • the basic beam is a beam corresponding to an existing code book, good compatibility with the existing code book is ensured.
  • the determination unit 520 may determine a plurality of suitable basic beams. In this case, it is determined whether it is necessary to perform beam combination for each preferable basic beam, and when it is necessary to perform beam combination, an auxiliary beam combined with the preferable basic beam, Determine the combination coefficient.
  • FIG. 6 is an exemplary block diagram illustrating a base station 600 according to an embodiment of the present invention.
  • the base station 600 includes a reception unit 610, a basic beam acquisition unit 620, a combination determination unit 630, and a transmission beam determination unit 640.
  • the base station 600 may further include other components. However, these components are not related to the contents of the embodiment of the present invention, and thus illustration and description thereof are omitted here. . Note that the specific details of the following operations executed by the base station 600 according to the embodiment of the present invention are the same as the details described with reference to FIGS. 3 to 4 in the above sentence, and therefore, duplication is avoided here. Therefore, the duplicate description of the same details is omitted.
  • the receiving unit 610 receives basic beam information and combination information transmitted from the mobile station.
  • the basic beam information and the combination information are generated by the mobile station according to the basic beam reference signal transmitted from the base station.
  • the basic beam information and the combination information have already been described in detail with reference to FIGS. 1 and 2, and thus the description thereof is omitted here.
  • the basic beam acquisition unit 620 acquires a suitable basic beam according to the basic beam information, and the combination determination unit 630 determines whether it is necessary to perform beam combination according to the combination information. Then, if it is not necessary to perform beam combination, transmission beam determination unit 640 determines the preferred base beam as the transmission beam for the mobile station. In the subsequent data transmission process, the preferred base beam is used to transmit data to the mobile station.
  • the transmission beam determination unit 640 further combines a suitable basic beam and another beam.
  • FIG. 7 is an exemplary block diagram illustrating a transmission beam determination unit 640 according to one example of the present invention.
  • the transmission beam determination unit 640 includes an auxiliary beam acquisition module 710 and a combination module 720.
  • the auxiliary beam acquisition module 710 acquires the auxiliary beam and the auxiliary beam combination coefficient according to the combination information.
  • the combination module 720 then obtains a transmission beam for the mobile station according to the preferred base beam, the auxiliary beam, and the combination factor of the auxiliary beam.
  • the combination coefficient includes an amplitude coefficient and a phase coefficient.
  • the transmission beam is obtained by combining the suitable basic beam and the auxiliary beam according to the above formula (1).
  • the mobile station first transmits information indicating whether it is necessary to perform beam combination among the combination information, and performs beam combination when it is necessary to perform beam combination.
  • the remaining information in the combination information may be transmitted after transmitting information indicating whether or not it is necessary.
  • the receiving unit 610 first receives information indicating whether it is necessary to combine the beams.
  • the base station determines that it is not necessary to receive the remaining information in the combination information, and determines the beam combination according to the remaining information in the combination information. Confirm that it is not necessary to do.
  • the base station determines that it is necessary to receive the remaining information in the combination information, and the combination determination unit 630 It is necessary to perform beam combination according to the remaining information in the information.
  • the base station shown in FIG. 6 may further include a transmission unit.
  • the transmitting unit transmits the beam restriction information to the mobile station, thereby notifying the mobile station of the beam whose use is restricted.
  • the mobile station generates basic beam information and combination information according to the beam restriction information, thereby avoiding collision between the beam for the mobile station and the beam for another mobile station.
  • the base station determines whether or not it is necessary to perform beam combination with a suitable basic beam by receiving the basic beam information and the combination information generated by the mobile station according to the basic beam reference signal. And a transmission beam for the mobile station is determined. Therefore, even in a Massive MIMO system with a larger number of antennas, a beam that can be used when a base station subsequently communicates with the mobile station without increasing the signaling overhead for beam measurement as the number of antennas increases. Can be obtained accurately.
  • the basic beam is a beam corresponding to an existing code book, good compatibility with the existing code book is ensured.
  • the software module can be any type of storage medium, for example, RAM (random access memory), flash memory, ROM (read only memory), EPROM (erasable programmable ROM), EEPROM ROM (electrically erasable programmable ROM), registers, It may be stored on a hard disk, a removable disk and a CD-ROM.
  • RAM random access memory
  • flash memory ROM (read only memory)
  • EPROM erasable programmable ROM
  • EEPROM ROM electrically erasable programmable ROM
  • registers It may be stored on a hard disk, a removable disk and a CD-ROM.
  • Such a storage medium is connected to the processor, and the processor writes information in the storage medium or reads information from the storage medium.
  • Such storage media may be further stacked in a processor.
  • Such storage media and processors may be located in the ASIC.
  • Such an ASIC may be arranged in the mobile station 500 and the base station 600.
  • As a stand-alone unit such storage media and processors may be located in mobile station 500 and base station 600.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

ビーム測定に用いられるシグナリングオーバーヘッドを抑制し、ビーム測定と計算の複雑さを軽減可能にするため、チャネル状態情報を基地局装置へ報告するユーザ端末において、基地局から送信される1つ又は複数の基礎ビームに含まれた各基礎ビーム参照信号を受信する受信部と、受信した基礎ビーム参照信号に基づいて、好適基礎ビームと、好適基礎ビームと組み合わせる補助ビームと、を確定させる確定部と、好適基礎ビームと補助ビームの組み合わせに関する組み合わせ情報を基地局装置へ送信する送信部と、を備える。

Description

ユーザ端末、基地局装置及び無線通信方法
 本発明は、ユーザ端末、基地局装置及び無線通信方法に関する。さらに具体的には、本発明は無線通信システムにおいてビーム選択方法、ビーム確定方法が適用可能なユーザ端末、基地局装置及び無線通信方法に関する。
 LTEシステムの後継システム(例えば、LTE-Advanced又はLTE-Advanced Proとも称する)において、全次元マルチ入力マルチ出力(FD-MIMO:Full Dimensional MIMO)と大規模マルチ入力マルチ出力(Massive MIMO)アンテナが提案されており、それは3GPP(第3世代パートナーシッププロジェクト)において研究されているLTE(ロングタームエボリューション)の無線伝送技術である。従来のMIMOシステムに比べ、FD-MIMOとMassive MIMOシステムにおいて、移動局の数が増えることに応じて、基地局はより多くのアンテナを用いてデータ伝送を行うことで、システムのスループットを向上させることができる。
 従来、移動局にデータのビームを送信するためのビーム選択方法とビーム確定方法が検討されている。従来の方法は、移動局により各ビームを測定し、移動局から基地局へ各ビームに含まれるCSI-RSの測定結果をフィードバックする。基地局は、フィードバックに従って、複数の候補ビームから移動局に伝送する後続のビームを選択する。移動局において後続のビームに含まれるCSI-RSを測定可能にするために、基地局はRRCシグナリングにより複数の候補ビームに対するチャネル状態参照信号(CSI-RS)を静的又は準静的に移動局に送信する。しかしながら、アンテナ数が増えると、ビーム測定に用いられるシグナリングオーバーヘッドも増え、且つビーム測定と計算の複雑さが著しく上がるため、従来の方法はMassive MIMOシステムに適しない。
 本発明はかかる点に鑑みてなされたものであり、ビーム測定に用いられるシグナリングオーバーヘッドを抑制し、ビーム測定と計算の複雑さを軽減可能なユーザ端末、基地局装置及び無線通信方法を提供することを目的の1つとする。
 本発明の1つの態様は、チャネル状態情報を基地局装置へ報告するユーザ端末であって、基地局から送信される1つ又は複数の基礎ビームに含まれた各基礎ビーム参照信号を受信する受信部と、受信した前記基礎ビーム参照信号に基づいて、好適基礎ビームと、前記好適基礎ビームと組み合わせる補助ビームと、を確定させる確定部と、前記好適基礎ビームと前記補助ビームの組み合わせに関する組み合わせ情報を前記基地局装置へ送信する送信部と、を具備する。
 本発明のもう1つの態様は、ユーザ端末から送信される好適基礎ビームと補助ビームの組み合わせに関する組み合わせ情報を受信する受信部と、受信した組み合わせ情報に従って、前記好適基礎ビームと前記補助ビームを組み合わせた前記ユーザ端末に対する伝送ビームを確定させるビーム確定部と、を具備する。
 本発明によれば、ビーム測定に用いられるシグナリングオーバーヘッドを抑制し、ビーム測定と計算の複雑さを軽減可能なユーザ端末、基地局装置及び無線通信方法を提供できる。
本発明の1つの実施例に係る移動局に適用されるビーム選択方法を示すフローチャート。 本発明の1つの実施例に係る好適基礎ビームと、好適基礎ビームと組み合わせる補助ビームとを確定することを示す概略図。 本発明の1つの例示に係る基地局により実行されるビーム確定方法を示すフローチャート。 本発明の1つの例示に係る基地局により実行されるビーム組み合わせ方法を示すフローチャート。 本発明の実施例に係る移動局を示す例示的なブロック図。 本発明の実施例に係る基地局を示す例示的なブロック図。 本発明の1つの例示に係る伝送ビーム確定ユニットを示す例示的なブロック図。
 以下、図面を参照しながら本発明の実施例に係るチャネル状態情報の参照信号の送信方法及び基地局について説明する。図面において、同じ参照符号は同じ要素を示す。理解すべきことは、ここで述べる実施例は説明的なものに過ぎず、本発明の範囲を限定するものとして解釈してはならない。なお、ここに記載のUEは様々なタイプのユーザ端末、例えば移動端末(もしくは移動局と称す)又は固定端末を含み、ただし便宜上、以下では場合によってUEと移動局とを互換して使用してもよい。また、基地局は様々なタイプの基地局装置、例えばgNB、送信ポイントを含む。
 以下、図1を参照しながら本発明の実施例に係る移動局により実行されるビーム選択方法について説明する。図1は本発明の1つの実施例に係る移動局に適用されるビーム選択方法を示すフローチャートである。図1に示すように、ステップS101において、基地局から送信される基礎ビーム参照信号を受信する。本発明の1つの例示によれば、基地局は複数のグループのビームを生成し、各グループのビームは複数の基礎ビームを含むことが可能である。ステップS101においては、1つのグループのビーム中の各基礎ビームのための基礎ビーム参照信号を受信する。例えば、基地局が生成可能な基礎ビームについて新しいコードブックを作成する。又は、基地局が生成可能な基礎ビームは既存のコードブック(例えば、3GPP標準Release 13中のコードブック)に対応するビームであってもよく、それにより既存コードブックとの良好な互換性が確保される。
 ステップS102において、基礎ビーム参照信号に従って、好適基礎ビームと、ビーム組み合わせを行うことが必要であるか否かとを確定する。例えば、基礎ビーム参照信号に従って、各基礎ビームのチャネル状態などを測定し、且つ測定結果に従って、基礎ビーム参照信号に対応する複数の基礎ビームにおいて、チャネル状態が一番よい基礎ビームを好適基礎ビームとして選択する。
 なお、さらに測定結果に従って、好適基礎ビームと他のビームとのビーム組み合わせを行う必要があるか否かを確定する。例えば、好適基礎ビームの測定結果により、該ビームのチャネル状態が所定のチャネル状態閾値を満たすことが示される場合に、ステップS102においてビーム組み合わせを行うことが必要でないと確定する。一方、好適基礎ビームの測定結果により、該ビームのチャネル状態が所定のチャネル状態閾値に達していないことが示される場合に、ステップS102においてビーム組み合わせを行うことが必要であると確定し、ビーム組み合わせによりチャネル状態のよりよいビームを取得する。
 次いで、ステップS103において、好適基礎ビームに関する基礎ビーム情報と、ビーム組み合わせに関する組み合わせ情報とを基地局に送信する。本発明の1つの例示によれば、好適基礎ビームの基礎ビーム情報は、好適基礎ビームのビームインデックスである。
 なお、例えば、ステップS102においてビーム組み合わせを行うことが必要でないと確定される場合に、ステップS103において、好適基礎ビームに関する基礎ビーム情報と、ビーム組み合わせを行うことが必要でないことに関する組み合わせ情報とを基地局に送信する。また例えば、ステップS102においてビーム組み合わせを行うことが必要であると確定される場合に、ステップS103において、好適基礎ビームに関する基礎ビーム情報と、ビーム組み合わせを行うことが必要であることに関する組み合わせ情報とを基地局に送信する。
 本発明のもう1つの例示によれば、ビーム組み合わせを行うことが必要であると確定される場合、図1に示した方法は好適基礎ビームと組み合わせる補助ビームと、補助ビームの組み合わせ係数とをさらに含む。
 上述したように、基地局は複数のグループのビームを生成することが可能である。確定される補助ビームは好適基礎ビームと同じビームグループ中のもう1つの基礎ビームであってもよい。又は、確定される補助ビームと好適基礎ビームとは、異なるビームグループにあってもよく、すなわち、補助ビームはもう1つのビームグループ中の基礎ビームであってもよい。
 図2は本発明の1つの実施例に係る好適基礎ビームと、好適基礎ビームと組み合わせる補助ビームと、を確定することを示す概略図である。図2に示すように、移動局は基地局から送信される1つのグループの基礎ビーム(すなわち、基礎ビーム210-240)の基礎ビーム参照信号を受信する。ステップS102により、図2に示された例示において、好適基礎ビームが基礎ビーム220であることと、ビーム組み合わせを行うことが必要であることとを確定する。なお、図2に示すように、移動局は基礎ビーム220と同じビームグループ中のビーム240を用いてビーム組み合わせを行うことをさらに確定する。
 なお、補助ビームの組み合わせ係数は、好適基礎ビームと組み合わせを行う際に、補助ビームを調整するための係数であってもよい。例えば、補助ビームを調整する係数は、補助ビームの振幅と位相を調整するために、振幅係数と位相係数を含む。例えば、以下の式(1)により好適基礎ビームbと補助ビームbとを組み合わせてビーム組み合わせを行うことで、得られるビームBを確定する。
Figure JPOXMLDOC01-appb-M000001
 ここで、xは振幅係数を表し、φは位相係数を表す。
 それ相応に、ビーム組み合わせに関する組み合わせ情報は、補助ビームとその組み合わせ係数とに関する情報を含む。
 本発明の1つの例示によれば、組み合わせ情報は、好適基礎ビームと組み合わせる補助ビームに関する補助ビーム情報と、補助ビームの組み合わせ係数に関する係数情報とを含む。好適基礎ビームに関する基礎ビーム情報と類似して、補助ビームに関する補助ビーム情報は、補助ビームのビームインデックスであってもよい。なお、例えば、係数情報は、振幅情報と位相情報を含むものである。例えば、振幅情報は、上記振幅係数を示すものであり、位相情報は、上記位相係数を示すものである。
 本例示において、振幅情報を用いてビーム組み合わせを行うことが必要であるか否かを指示してもよく、すなわちビーム組み合わせを行うことが必要であるか否かを指示するために、組み合わせ情報において振幅情報と異なるもう1つの識別子を設けなくてもよい。具体的には、ビーム組み合わせを行うことが必要でないと確定される場合に、振幅情報をゼロにする。ビーム組み合わせを行うことが必要でない場合には、補助ビームと補助ビームを調整するためのパラメータを基地局に通知することが必要でないため、ステップS103において、移動局は好適基礎ビームに関する基礎ビーム情報と振幅情報とを基地局に送信することで、該移動局が選択した好適基礎ビームと、該好適基礎ビームはビーム組み合わせを行うことが必要でないこととを基地局に通知する。移動局は組み合わせ情報のうち振幅情報以外の他の情報(例えば、補助ビーム情報と位相係数)を基地局に送信しなくてもよい。一方、ビーム組み合わせを行うことが必要である場合に、ステップS103において、移動局は好適基礎ビームに関する基礎ビーム情報、補助ビーム情報、振幅情報及び位相情報を基地局に送信する。
 本例示において、好ましくは、ステップS103において振幅情報と、組み合わせ情報のうち振幅情報以外の情報とをそれぞれ送信してもよい。例えば、まず振幅情報を送信し、次いで組み合わせ情報のうち振幅以外の情報を送信する。したがって、基地局は振幅情報に従って、組み合わせ情報のうち振幅情報以外の情報を受信できるか否かを確定する。なお、組み合わせ情報のうち振幅情報以外の情報を複数回に分けて基地局に送信してもよい。例えば、まず補助ビーム情報を送信してから、再び位相情報を送信してもよい。
 本発明のもう1つの例示によれば、組み合わせ情報は、ビーム組み合わせを行うことが必要であるか否かを指示する組み合わせ指示情報と、好適基礎ビームと組み合わせる補助ビームに関する補助ビーム情報と、補助ビームの組み合わせ係数に関する係数情報とを含む。ビーム組み合わせを行うことが必要でない場合には、補助ビームと補助ビームを調整するためのパラメータを基地局に通知することが必要でないため、ステップS103において、移動局は好適基礎ビームに関する基礎ビーム情報と組み合わせ指示情報とを基地局に送信することで、該移動局が選択した好適基礎ビームと、該好適基礎ビームがビーム組み合わせを行うことが必要でないこととを基地局に通知する。移動局は組み合わせ情報を基地局に送信しなくてもよい。一方、ビーム組み合わせを行うことが必要である場合に、移動局は好適基礎ビームに関する基礎ビーム情報と組み合わせ指示情報を基地局に送信し、且つ補助ビーム情報と係数情報(例えば振幅と位相情報)とを基地局にさらに送信する。
 本例示において、好ましくは、ステップS103において組み合わせ指示情報と、組み合わせ情報のうち組み合わせ指示情報以外の情報とをそれぞれ送信してもよい。例えば、まず組み合わせ指示情報を送信し、次いで組み合わせ情報のうち組み合わせ指示情報以外の情報を送信する。したがって、基地局は組み合わせ指示情報に従って、組み合わせ情報のうち組み合わせ指示情報以外の情報を受信できるか否かを確定する。なお、組み合わせ情報のうち組み合わせ指示情報以外の情報を複数回に分けて基地局に送信してもよい。例えば、まず補助ビーム情報と振幅情報とを送信してから、位相情報を送信する。
 なお、本発明のもう1つの例示によれば、ステップS103において、物理上り制御チャネル(PUCCH:Physical Uplink Control Channel)及び/又は物理上り共有チャネル(PUSCH:Physical Uplink Shared Channel)により、組み合わせ情報を基地局に送信する。なお、必要に応じて、周期的又は非周期的に組み合わせ情報を基地局に送信してもよい。
 例えば、PUCCHにより組み合わせ情報全体を基地局に送信する。具体的には、プリコーディングマトリクス指標(PMI:Precoding Matrix Indicator)を用いてPUCCHにより組み合わせ情報を送信してもよい。上述したように、組み合わせ情報は組み合わせ指示情報、補助ビーム情報、振幅情報、及び位相情報などの情報の中の一部又は全ての情報を含む。1つのPMIを用いて組み合わせ情報全体を送信してもよく、又は、複数のPMIを用いて組み合わせ情報全体を送信してもよい。例えば、第1のPMIを用いて組み合わせ情報中の組み合わせ指示情報及び/又は補助ビーム情報を送信し、第2のPMIを用いて組み合わせ情報中の他の情報を送信する。又は、PUCCHを用いた方法と類似して、PUSCHを用いて組み合わせ情報全体を基地局に送信してもよい。
 また例えば、PUCCHにより組み合わせ情報中の一部の情報を基地局に送信し、PUSCHにより組み合わせ情報中のもう一部の情報を基地局に送信してもよい。具体的には、PUCCHにより組み合わせ情報の中の一部の情報を送信し、PUSCHにより組み合わせ情報の中の残りの一部情報を基地局に送信してもよい。例えば、組み合わせ情報が組み合わせ指示情報、補助ビーム情報、振幅情報、及び位相情報などの情報の中の一部又は全ての情報を含む場合、PUCCHにより組み合わせ情報の中の組み合わせ指示情報及び/又は補助ビーム情報を送信し、PUSCHにより組み合わせ情報の中の他の情報を送信する。
 なお、1つの移動局に対するビームと他の移動局に対するビームとの衝突を回避するために、基地局はビーム制限情報を移動局に送信することで、使用制限中のビームを移動局に通知してもよい。この場合、図1に示された方法は、基地局から送信されるビーム制限情報を受信し、ここでビーム制限情報は使用が制限されたビームを指示し、次いでステップS102において確定された補助ビームとビーム制限情報によって指示される制限ビームとの間の相関係数を取得することをさらに含んでもよい。例えば、以下の式(2)により相関係数R(k)を取得する。
Figure JPOXMLDOC01-appb-M000002
 ここで、bは使用が制限されたビームを表示する。
 相関係数が所定値より大きい場合、本発明の1つの例示によれば、ステップS103において、好適基礎ビームに関する基礎ビーム情報と、ビーム組み合わせを行わないことを指示する組み合わせ情報とを基地局に送信する。又は、本発明のもう1つの例示によれば、好適基礎ビームと組み合わせる補助ビームを再確定し、再確定される補助ビームの組み合わせ係数を再確定する。それ相応に、ステップS103において、好適基礎ビームに関する基礎ビーム情報と、再選択される補助ビームに関する補助ビーム情報と、該再選択される補助ビームの組み合わせ係数に関する係数情報とを基地局に送信する。
 本実施例に係るビーム選択方法においては、まず基礎ビーム参照信号に従って、好適基礎ビームを確定し、次いで該好適基礎ビームと他のビームとを組み合わせることが必要であるか否かを確定し、確定結果を基地局にフィードバックすることができる。したがって、アンテナ数がより多いMassive MIMOシステムにおいても、アンテナ数が増えることに応じてビーム測定のためのシグナリングオーバーヘッドを増やすことなく、基地局が後続で該移動局と通信する時に使用可能なビームを正確に取得することができる。なお、基礎ビームが既存のコードブックに対応するビームである場合には、既存コードブックとの良好な互換性が確保される。
 なお、本発明のもう1つの例示によれば、ステップS102において複数個の好適基礎ビームを確定してもよい。この場合、好適基礎ビームごとにビーム組み合わせを行うことが必要であるか否かを確定し、ビーム組み合わせを行うことが必要である場合に、該好適基礎ビームと組み合わせる補助ビームと、当該補助ビームの組み合わせ係数とを確定してもよい。
 次いで、図3を参照しながら本発明の実施例に係る基地局により実行されるビーム確定方法300について説明する。図3は本発明の1つの例示に係る基地局により実行されるビーム確定方法300を示すフローチャートである。図3に示すように、ステップS301において、移動局から送信される基礎ビーム情報と組み合わせ情報とを受信する。例えば、基礎ビーム情報と組み合わせ情報は基地局から送信される基礎ビーム参照信号に従って、移動局により生成されるものである。以上、図1及び図2を参照しながら基礎ビーム情報と組み合わせ情報について既に詳細に説明したため、ここでは説明を省略する。
 ステップS302において、基礎ビーム情報に従って、好適基礎ビームを取得し、且つステップS303において組み合わせ情報に従って、ビーム組み合わせを行うことが必要であるか否かを確定する。次いでステップS304において、ビーム組み合わせを行うことが必要でない場合に、好適基礎ビームを、移動局のための伝送ビームとして確定する。後続するデータ送信のプロセスにおいては、好適基礎ビームを用いて移動局にデータ伝送を行う。
 一方、ビーム組み合わせを行うことが必要である場合に、図3中の方法は、好適基礎ビームともう1つのビームとを組み合わせることをさらに含んでもよい。図4は本発明の1つの例示に係る基地局により実行されるビーム組み合わせ方法400を示すフローチャートである。図4に示すように、ステップS401において、組み合わせ情報に従って、補助ビームと、補助ビームの組み合わせ係数とを取得する。次いで、ステップS402において、好適基礎ビーム、補助ビーム、及び補助ビームの組み合わせ係数に従って、移動局のための伝送ビームを取得する。上述したように、組み合わせ係数は、振幅係数と位相係数を含んでもよい。例えば、以上の式(1)により、好適基礎ビームと補助ビームとを組み合わせてビーム組み合わせを行うことで、伝送ビームを取得する。
 上述したように、移動局はまず組み合わせ情報のうちビーム組み合わせを行うことが必要であるか否かを指示する情報を送信し、且つビーム組み合わせを行うことが必要である場合に、ビーム組み合わせを行うことが必要である否かを指示する情報を送信した後に、組み合わせ情報の中の残り情報を送信してもよい。それ相応に、基地局はステップS301において、まずビーム組み合わせを行うことが必要であるか否かを指示する情報を受信する。ステップS303により、ビーム組み合わせを行うことが必要でないと確定される場合に、基地局は組み合わせ情報中の残り情報を受信することが必要でないと確定し、且つ組み合わせ情報中の残り情報に従ってビーム組み合わせを行うことが必要でないと確定する。一方、ステップS303により、ビーム組み合わせを行うことが必要であると確定される場合に、基地局は組み合わせ情報中の残り情報を受信することが必要であると確定し、且つ組み合わせ情報中の残り情報に従ってビーム組み合わせを行うことが必要であると確定する。
 なお、好ましくは、図3に示された方法は、移動局から送信される基礎ビーム情報と組み合わせ情報とを受信する前に、ビーム制限情報を移動局に送信することで、使用が制限されるビームを通知することをさらに含んでもよい。移動局はさらにビーム制限情報に従って、基礎ビーム情報と組み合わせ情報とを生成することで、該移動局に対するビームと他の移動局に対するビームとの衝突を回避する。
 本実施例に係るビーム確定方法においては、移動局が基礎ビーム参照信号に従って生成した基礎ビーム情報と組み合わせ情報とを受信することで、好適基礎ビームと、ビーム組み合わせを行うことが必要であるか否かとを確定し、且つ、該移動局のための伝送ビームをさらに確定する。したがって、アンテナ数がより多いMassive MIMOシステムにおいても、アンテナ数が増えることに応じてビーム測定のためのシグナリングオーバーヘッドを増やすことなく、基地局が後続で該移動局と通信する時に使用可能なビームを正確に取得することができる。なお、基礎ビームが既存のコードブックに対応するビームである場合には、既存コードブックとの良好な互換性が確保される。
 以下、図5を参照しながら本発明の実施例に係る移動局について説明する。図5は本発明の実施例に係る移動局500を示す例示的なブロック図である。図5に示すように、移動局500は受信ユニット510、確定ユニット520及び送信ユニット530を含む。この3つのユニット以外にも、移動局500はさらに他の構成要素を含んでもよく、ただし、これらの構成要素は本発明の実施例の内容に関わらないため、ここではその図示及び説明を省略する。なお、本発明の実施例に係る移動局500が実行する下記の動作の具体的な詳細は、以上の文面において図1~2を参照し説明した詳細と同じであり、そのためここでは重複を避けるために同じ詳細についての重複する説明を省略する。
 受信ユニット510は、基地局から送信された基礎ビーム参照信号を受信する。本発明の1つの例示によれば、基地局は複数のグループのビームを生成し、グループごとのビームは複数の基礎ビームを含むことが可能である。受信ユニット510は、1つのグループのビーム中の各基礎ビームのための基礎ビーム参照信号を受信してもよい。例えば、基地局が生成可能な基礎ビームの新しいコードブックを作成してもよい。又は、基地局が生成可能な基礎ビームは既存のコードブック(例えば、3GPP標準Release 13におけるコードブック)に対応するビームであってもよく、それにより既存コードブックとの良好な互換性が確保される。
 確定ユニット520は、基礎ビーム参照信号に従って、好適基礎ビームと、ビーム組み合わせを行うことが必要であるか否かとを確定する。例えば、基礎ビーム参照信号に従って、各基礎ビームのチャネル状態などを測定し、測定結果に従って、基礎ビーム参照信号に対応する複数の基礎ビームにおいて、チャネル状態が一番よい基礎ビームを好適基礎ビームとして選択する。
 なお、さらに測定結果に従って、好適基礎ビームと他のビームとのビーム組み合わせを行うことが必要であるか否かを確定してもよい。例えば、好適基礎ビームの測定結果により、該ビームのチャネル状態が所定のチャネル状態閾値を満たすことが示される場合、確定ユニット520はビーム組み合わせを行うことが必要でないと確定する。一方、好適基礎ビームの測定結果により、該ビームのチャネル状態が所定のチャネル状態閾値に達していないことが示される場合、確定ユニット520はビーム組み合わせを行うことが必要であると確定し、ビーム組み合わせによりチャネル状態のよりよいビームを取得する。
 次いで、送信ユニット530は、好適基礎ビームに関する基礎ビーム情報と、ビーム組み合わせに関する組み合わせ情報とを基地局に送信する。本発明の1つの例示によれば、好適基礎ビームの基礎ビーム情報は、好適基礎ビームのビームインデックスである。
 なお、例えば、確定ユニット520によりビーム組み合わせを行うことが必要でないと確定される場合、送信ユニット530は好適基礎ビームに関する基礎ビーム情報と、ビーム組み合わせを行うことが必要でないことに関する組み合わせ情報とを基地局に送信する。また例えば、確定ユニット520によりビーム組み合わせを行うことが必要であると確定される場合、送信ユニット530は好適基礎ビームに関する基礎ビーム情報と、ビーム組み合わせを行うことが必要であることに関する組み合わせ情報とを基地局に送信する。
 本発明のもう1つの例示によれば、ビーム組み合わせを行うことが必要であると確定される場合、確定ユニット520はさらに好適基礎ビームと組み合わせる補助ビームと、補助ビームの組み合わせ係数とを確定する。
 上述したように、基地局は複数のグループのビームを生成することが可能である。確定ユニット520により確定される補助ビームは、好適基礎ビームと同じビームグループ中のもう1つの基礎ビームであってもよい。又は、確定ユニット520により確定される補助ビームと好適基礎ビームとは、異なるビームグループにあってもよく、すなわち、補助ビームはもう1つのビームグループ中の基礎ビームであってもよい。
 なお、補助ビームの組み合わせ係数は、好適基礎ビームと組み合わせを行う際に、補助ビームを調整するための係数である。例えば、補助ビームを調整する係数は、補助ビームの振幅と位相を調整するために、振幅係数と位相係数を含む。例えば、上記の式(1)により好適基礎ビームと補助ビームとを組み合わせてビーム組み合わせを行うことで、得られたビームを伝送ビームとして確定する。
 それ相応に、ビーム組み合わせに関する組み合わせ情報は補助ビームとその組み合わせ係数との相互の情報を含む。
 本発明の1つの例示によれば、組み合わせ情報は、好適基礎ビームと組み合わせる補助ビームに関する補助ビーム情報と、補助ビームの組み合わせ係数に関する係数情報とを含む。好適基礎ビームに関する基礎ビーム情報と類似して、補助ビームに関する補助ビーム情報は、補助ビームのビームインデックスであってもよい。なお、例えば、係数情報は振幅情報と位相情報とを含む。例えば、振幅情報は、上記振幅係数を示すものであり、且つ位相情報は上記位相係数を示すものである。
 本例示において、振幅情報によりビーム組み合わせを行うことが必要であるか否かを指示し、すなわちビーム組み合わせを行うことが必要であるか否かを指示するために、組み合わせ情報において振幅情報と異なるもう1つの識別子を設けなくてもよい。具体的には、ビーム組み合わせを行うことが必要でないと確定される場合に、振幅情報をゼロにする。ビーム組み合わせを行うことが必要でない場合には、補助ビームと補助ビームを調整するためのパラメータを基地局に通知することが必要でないため、送信ユニット530は好適基礎ビームに関する基礎ビーム情報と振幅情報とを基地局に送信することで、該移動局が選択した好適基礎ビームと、該好適基礎ビームがビーム組み合わせを行うことが必要でないこととを基地局に通知する。移動局は組み合わせ情報のうち振幅情報以外の他の情報(例えば、補助ビーム情報と位相係数)を基地局に送信しなくてもよい。一方、ビーム組み合わせを行うことが必要である場合に、送信ユニット530は好適基礎ビームに関する基礎ビーム情報、補助ビーム情報、振幅情報及び位相情報を基地局に送信する。
 本例示において、好ましくは、送信ユニット530は振幅情報と、組み合わせ情報のうち振幅情報以外の情報とをそれぞれ送信してもよい。例えば、まず振幅情報を送信し、次いで組み合わせ情報のうち振幅以外の情報を送信する。したがって、基地局は振幅情報に従って、組み合わせ情報のうち振幅情報以外の情報を受信できるか否かを確定する。なお、組み合わせ情報のうち振幅情報以外の情報を複数回に分けて基地局に送信してもよい。例えば、まず補助ビーム情報を送信してから、再び位相情報を送信してもよい。
 本発明のもう1つの例示によれば、組み合わせ情報は、ビーム組み合わせを行うことが必要であるか否かを指示する組み合わせ指示情報と、好適基礎ビームと組み合わせる補助ビームに関する補助ビーム情報と、補助ビームの組み合わせ係数に関する係数情報とを含む。ビーム組み合わせを行うことが必要でない場合には、補助ビームと補助ビームを調整するためのパラメータを基地局に通知することが必要でないため、送信ユニット530は好適基礎ビームに関する基礎ビーム情報と、組み合わせ指示情報とを基地局に送信することで、該移動局が選択した好適基礎ビームと、該好適基礎ビームがビーム組み合わせを行うことが必要でないこととを基地局に通知する。移動局は組み合わせ情報を基地局に送信しなくてもよい。一方、ビーム組み合わせを行うことが必要である場合、移動局は好適基礎ビームに関する基礎ビーム情報と組み合わせ指示情報とを基地局に送信し、且つ補助ビーム情報と係数情報(例えば振幅情報と位相情報)とを基地局にさらに送信する。
 本例示において、好ましくは、送信ユニット530はみ合わせ指示情報と、組み合わせ情報のうち組み合わせ指示情報以外の情報とをそれぞれ送信してもよい。例えば、まず組み合わせ指示情報を送信し、次いで組み合わせ情報のうち組み合わせ指示情報以外の情報を送信する。したがって、基地局は組み合わせ指示情報に従って、組み合わせ情報のうち組み合わせ指示情報以外の情報を受信できるか否かを確定する。なお、組み合わせ情報のうち組み合わせ指示情報以外の情報を複数回に分けて基地局に送信してもよい。例えば、まず補助ビーム情報と振幅情報とを送信してから、再び位相情報を送信する。
 なお、本発明のもう1つの例示によれば、送信ユニット530はPUCCH及び/又はPUSCHにより、組み合わせ情報を基地局に送信する。なお、必要に応じて、周期的又は非周期的に組み合わせ情報を基地局に送信してもよい。
 例えば、PUCCHにより組み合わせ情報全体を基地局に送信してもよい。具体的には、PMIを用いてPUCCHにより組み合わせ情報を送信する。上述したように、組み合わせ情報は組み合わせ指示情報、補助ビーム情報、振幅情報、及び位相情報などの情報の中の一部又は全ての情報を含む。1つのPMIを用いて組み合わせ情報全体を送信してもよく、又は、複数のPMIを用いて組み合わせ情報全体を送信してもよい。例えば、第1のPMIを用いて組み合わせ情報中の組み合わせ指示情報及び/又は補助ビーム情報を送信し、且つ第2のPMIを用いて組み合わせ情報中の他の情報を送信する。又は、PUCCHを用いた方法と類似して、PUSCHを用いて組み合わせ情報全体を基地局に送信してもよい。
 また例えば、PUCCHにより組み合わせ情報中の一部の情報を基地局に送信し、PUSCHにより組み合わせ情報中のもう一部の情報を基地局に送信してもよい。具体的には、PUCCHにより組み合わせ情報中の一部情報を送信し、PUSCHにより組み合わせ情報中のもう一部情報を基地局に送信してもよい。例えば、組み合わせ情報が組み合わせ指示情報、補助ビーム情報、振幅情報、及び位相情報などの情報の中の一部又は全ての情報を含む場合、PUCCHにより組み合わせ情報中の組み合わせ指示情報及び/又は補助ビーム情報を送信し、PUSCHにより組み合わせ情報中の他の情報を送信する。
 なお、1つの移動局に対するビームと他の移動局に対するビームとの衝突を回避するために、基地局はビーム制限情報を移動局に送信することで、使用制限中のビームを移動局に通知してもよい。この場合、受信ユニット530はさらに基地局から送信されるビーム制限情報を受信し、ここでビーム制限情報は使用が制限されたビームを指示する。なお、移動局は、確定される補助ビームとビーム制限情報によって指示される制限ビームとの間の相関係数を取得するために、相関係数取得ユニットをさらに含んでもよい。例えば、上記の式(2)により相関係数を取得する。
 相関係数が所定値より大きい場合、本発明の1つの例示によれば、送信ユニット530は好適基礎ビームに関する基礎ビーム情報と、ビーム組み合わせを行わないことを指示する組み合わせ情報とを基地局に送信する。又は、本発明のもう1つの例示によれば、確定ユニット520は好適基礎ビームと組み合わせる補助ビームを再確定し、再確定される補助ビームの組み合わせ係数を再確定する。それ相応に、送信ユニット530は好適基礎ビームに関する基礎ビーム情報と、再選択される補助ビームに関する補助ビーム情報と、該再選択される補助ビームの組み合わせ係数に関する係数情報とを基地局に送信する。
 本実施例に係る移動局においては、まず基礎ビーム参照信号に従って、好適基礎ビームを確定し、次いで該好適基礎ビームと他のビームとを組み合わせることが必要であるか否かを確定し、確定結果を基地局にフィードバックすることができる。したがって、アンテナ数がより多いMassive MIMOシステムにおいても、アンテナ数が増えることに応じてビーム測定のためのシグナリングオーバーヘッドを増やすことなく、基地局が後続で該移動局と通信する時に使用可能なビームを正確に取得することができる。なお、基礎ビームが既存のコードブックに対応するビームである場合には、既存コードブックとの良好な互換性が確保される。
 なお、本発明のもう1つの例示によれば、確定ユニット520は複数の好適基礎ビームを確定してもよい。この場合、好適基礎ビームごとにビーム組み合わせを行うことが必要であるか否かを確定し、且つビーム組み合わせを行うことが必要である場合に、該好適基礎ビームと組み合わせる補助ビームと、補助ビームの組み合わせ係数とを確定する。
 以下、図6を参照しながら本発明の実施例に係る基地局について説明する。図6は本発明の実施例に係る基地局600を示す例示的なブロック図である。図6に示すように、基地局600は受信ユニット610、基礎ビーム取得ユニット620、組み合わせ確定ユニット630及び伝送ビーム確定ユニット640を含む。この4つのユニット以外にも、基地局600はさらに他の構成要素を含んでもよく、ただし、これらの構成要素は本発明の実施例の内容に関わらないため、ここではその図示及び説明を省略する。なお、本発明の実施例に係る基地局600が実行する下記の動作の具体的な詳細は、以上の文面において図3~4を参照し説明した詳細と同じであり、そのためここでは重複を避けるために同じ詳細についての重複する説明を省略する。
 受信ユニット610は、移動局から送信される基礎ビーム情報と組み合わせ情報とを受信する。例えば、基礎ビーム情報と組み合わせ情報は基地局から送信される基礎ビーム参照信号に従って、移動局により生成されるものである。以上、図1及び図2を参照しながら基礎ビーム情報と組み合わせ情報について既に詳細に説明したため、ここでは説明を省略する。
 基礎ビーム取得ユニット620は基礎ビーム情報に従って、好適基礎ビームを取得し、組み合わせ確定ユニット630は組み合わせ情報に従って、ビーム組み合わせを行うことが必要であるか否かを確定する。次いでビーム組み合わせを行うことが必要でない場合に、伝送ビーム確定ユニット640は好適基礎ビームを移動局のための伝送ビームとして確定する。後続するデータ送信のプロセスにおいて、好適基礎ビームを用いて移動局にデータ伝送を行う。
 一方、ビーム組み合わせを行うことが必要である場合に、伝送ビーム確定ユニット640はさらに好適基礎ビームともう1つのビームとを組み合わせる。図7は本発明の1つの例示に係る伝送ビーム確定ユニット640を示す例示的なブロック図である。図7に示すように、伝送ビーム確定ユニット640は、補助ビーム取得モジュール710と組み合わせモジュール720とを含む。補助ビーム取得モジュール710は組み合わせ情報に従って、補助ビームと、補助ビームの組み合わせ係数とを取得する。次いで、組み合わせモジュール720は好適基礎ビーム、補助ビーム、及び補助ビームの組み合わせ係数に従って、移動局のための伝送ビームを取得する。上述したように、組み合わせ係数は、振幅係数と位相係数を含む。例えば、以上の式(1)により、好適基礎ビームと補助ビームとを組み合わせてビーム組み合わせを行うことで、伝送ビームを取得する。
 上述したように、移動局はまず組み合わせ情報のうちビーム組み合わせを行うことが必要であるか否かを指示する情報を送信し、且つビーム組み合わせを行うことが必要である場合に、ビーム組み合わせを行うことが必要である否かを指示する情報を送信した後に、組み合わせ情報中の残り情報を送信してもよい。それ相応に、受信ユニット610において、まずビーム組み合わせを行うことが必要であるか否かを指示する情報を受信する。組み合わせ確定ユニット630によりビーム組み合わせを行うことが必要でないと確定される場合に、基地局は組み合わせ情報中の残り情報を受信することが必要でないと確定し、組み合わせ情報中の残り情報に従ってビーム組み合わせを行うことが必要でないと確定する。一方、組み合わせ確定ユニット630によりビーム組み合わせを行うことが必要であると確定される場合に、基地局は組み合わせ情報中の残り情報を受信することが必要であると確定し、組み合わせ確定ユニット630は組み合わせ情報中の残り情報に従ってビーム組み合わせを行うことが必要である。
 なお、好ましくは、図6に示す基地局は、送信ユニットをさらに含んでもよい。送信ユニットは受信ユニット610が移動局から送信される基礎ビーム情報と組み合わせ情報とを受信する前に、ビーム制限情報を移動局に送信することで、使用が制限されるビームを移動局に通知する。移動局はさらにビーム制限情報に従って、基礎ビーム情報と組み合わせ情報とを生成することで、該移動局に対するビームと他の移動局に対するビームとの衝突を回避する。
 本実施例に係る基地局においては、移動局が基礎ビーム参照信号に従って生成した基礎ビーム情報と組み合わせ情報とを受信することで、好適基礎ビームと、ビーム組み合わせを行うことが必要であるか否かとを確定し、さらに該移動局のための伝送ビームを確定する。したがって、アンテナ数がより多いMassive MIMOシステムにおいても、アンテナ数が増えることに応じてビーム測定のためのシグナリングオーバーヘッドを増やすことなく、基地局が後続で該移動局と通信する時に使用可能なビームを正確に取得することができる。なお、基礎ビームが既存のコードブックに対応するビームである場合に、既存コードブックとの良好な互換性が確保される。
 上記移動局500及び基地局600の動作はハードウェアにて実施されてもよく、プロセッサによって実行されるソフトウェアモジュールにて実施されてもよく、さらに両者の組み合わせにて実施されてもよい。例えば、プロセッサによって実行されるソフトウェアモジュールにて移動局における確定ユニットを実施されてもよい。また例えば、プロセッサによって実行されるソフトウェアモジュールにて基地局における基礎ビーム取得ユニット、組み合わせ確定ユニット及び伝送ビーム確定ユニットを実施されてもよい。
 ソフトウェアモジュールはいかなる形式の記憶媒体、例えば、RAM(ランダムアクセスメモリ)、フラッシュメモリ、ROM(読み取り専用メモリ)、EPROM(消去可能なプログラマブルROM)、EEPAROM(電気的消去可能なプログラマブルROM)、レジスタ、ハードディスク、取り外し可能ディスク及びCD-ROMに格納されてもよい。
 このような記憶媒体をプロセッサに接続し、プロセッサは該記憶媒体に情報を書き込み、又は該記憶媒体から情報を読み取るようにする。このような記憶媒体はさらにプロセッサにおいて積み重ねられてもよい。このような記憶媒体及びプロセッサはASICに配置されてもよい。このようなASICは移動局500及び基地局600の中に配置されてもよい。独立したユニットとして、このような記憶媒体及びプロセッサは移動局500及び基地局600の中に配置されてもよい。
 このように、上記実施例により本発明について詳細に説明した。しかしながら、当業者にとって理解すべきことは、本発明はここに説明した実施例に限定されるものではない。本発明は請求の範囲により限定される本発明の範囲を逸脱しない状況の下で修正、変更された態様で実施されてもよい。したがって、明細書における説明は例示を解釈することのみを意図しており、本発明にいかなる限定的な意味も加えない。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されないということは明らかである。本発明は、請求の範囲の記載に基づいて定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とし、本発明に対して何ら制限的な意味をもたらさない。

Claims (8)

  1.  チャネル状態情報を基地局装置へ報告するユーザ端末であって、
     基地局から送信される1つ又は複数の基礎ビームに含まれた各基礎ビーム参照信号を受信する受信部と、
     受信した前記基礎ビーム参照信号に基づいて、好適基礎ビームと、前記好適基礎ビームと組み合わせる補助ビームと、を確定させる確定部と、
     前記好適基礎ビームと前記補助ビームの組み合わせに関する組み合わせ情報を前記基地局装置へ送信する送信部と、
    を具備したことを特徴とするユーザ端末。
  2.  前記組み合わせ情報は、前記補助ビームに関する補助ビーム情報と、前記補助ビームに関する係数情報と、を含むことを特徴とする請求項1記載のユーザ端末。
  3.  前記係数情報は、振幅情報と位相情報を含むことを特徴とする請求項2記載のユーザ端末。
  4.  前記振幅情報は、前記好適基礎ビームに対して前記補助ビームを組み合わせない場合に対応して、ゼロを設定可能であることを特徴とする請求項3記載のユーザ端末。
  5.  ユーザ端末から送信される好適基礎ビームと補助ビームの組み合わせに関する組み合わせ情報を受信する受信部と、
     受信した組み合わせ情報に従って、前記好適基礎ビームと前記補助ビームを組み合わせた前記ユーザ端末に対する伝送ビームを確定させるビーム確定部と、を具備したことを特徴とする基地局装置。
  6.  前記ビーム確定部は、前記組み合わせ情報に含まれる前記補助ビームの振幅情報がゼロであれば、前記好適基礎ビームを伝送ビームとして確定させることを特徴とする請求項5記載の基地局装置。
  7.  チャネル状態情報を基地局装置へ報告する無線通信方法であって、
     基地局から送信される1つ又は複数の基礎ビームにそれぞれ含まれた基礎ビーム参照信号を受信するステップと、
     受信した前記基礎ビーム参照信号に基づいて、好適基礎ビームと、前記好適基礎ビームと組み合わせる補助ビームと、を確定させるステップと、
     前記好適基礎ビームと前記補助ビームの組み合わせに関する組み合わせ情報を前記基地局装置へ送信するステップと、
    を具備したことを特徴とする無線通信方法。
  8.  ユーザ端末から送信される好適基礎ビームと補助ビームの組み合わせに関する組み合わせ情報を受信するステップと、
     受信した組み合わせ情報に従って、前記好適基礎ビームと前記補助ビームを組み合わせた前記ユーザ端末に対する伝送ビームを確定させるステップと、を具備したことを特徴とする無線通信方法。
PCT/JP2017/029220 2016-08-11 2017-08-10 ユーザ端末、基地局装置及び無線通信方法 WO2018030540A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780025374.0A CN109075842A (zh) 2016-08-11 2017-08-10 用户终端、基站装置以及无线通信方法
US16/317,994 US11418246B2 (en) 2016-08-11 2017-08-10 User terminal, base station apparatus and radio communication method
JP2018533580A JP7136696B2 (ja) 2016-08-11 2017-08-10 ユーザ端末、基地局装置、無線通信方法及びシステム
EP17839604.0A EP3419189A4 (en) 2016-08-11 2017-08-10 USER DEVICE, BASIC STATION AND WIRELESS COMMUNICATION METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610658464.0 2016-08-11
CN201610658464.0A CN107734657A (zh) 2016-08-11 2016-08-11 波束选择方法、波束确定方法、移动台以及基站

Publications (1)

Publication Number Publication Date
WO2018030540A1 true WO2018030540A1 (ja) 2018-02-15

Family

ID=61163243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029220 WO2018030540A1 (ja) 2016-08-11 2017-08-10 ユーザ端末、基地局装置及び無線通信方法

Country Status (5)

Country Link
US (1) US11418246B2 (ja)
EP (1) EP3419189A4 (ja)
JP (1) JP7136696B2 (ja)
CN (2) CN107734657A (ja)
WO (1) WO2018030540A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10992352B2 (en) 2018-09-20 2021-04-27 Fujitsu Limited Base station apparatus, selection method, and terminal device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11168453A (ja) * 1997-09-26 1999-06-22 Lucent Technol Inc 多重アンテナ通信システムおよびその方法
WO2015005641A1 (en) * 2013-07-08 2015-01-15 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data in a communication system using beamforming

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5592490A (en) * 1991-12-12 1997-01-07 Arraycomm, Inc. Spectrally efficient high capacity wireless communication systems
CN102316598B (zh) * 2011-09-16 2013-09-18 华中科技大学 一种基于贪婪波束选择策略的orbf多用户调度方法
US9749108B2 (en) * 2012-02-16 2017-08-29 Panasonic Intellectual Property Corporation Of America Terminal, base station, transmission method, and reception method
KR101655924B1 (ko) * 2012-03-07 2016-09-08 엘지전자 주식회사 무선 접속 시스템에서 계층적 빔 포밍 방법 및 이를 위한 장치
WO2014107012A1 (en) * 2013-01-02 2014-07-10 Lg Electronics Inc. Method and apparatus for receiving downlink radio signal
CN106105065B (zh) 2014-03-26 2019-09-06 诺基亚技术有限公司 无线电频率波束成形基函数反馈
US9967124B2 (en) 2014-03-26 2018-05-08 Nokia Solutions And Networks Oy Use of basis functions for transmission of broadcast control information in a wireless network
US9654195B2 (en) * 2014-11-17 2017-05-16 Samsung Electronics Co., Ltd. Methods to calculate linear combination pre-coders for MIMO wireless communication systems
EP3306843B1 (en) 2015-05-25 2023-04-05 Sony Group Corporation Wireless communication device and method
US10122430B2 (en) * 2015-09-18 2018-11-06 Lg Electronics Inc. Method of transmitting channel state information and apparatus therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11168453A (ja) * 1997-09-26 1999-06-22 Lucent Technol Inc 多重アンテナ通信システムおよびその方法
WO2015005641A1 (en) * 2013-07-08 2015-01-15 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data in a communication system using beamforming

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3419189A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10992352B2 (en) 2018-09-20 2021-04-27 Fujitsu Limited Base station apparatus, selection method, and terminal device

Also Published As

Publication number Publication date
EP3419189A4 (en) 2019-10-09
CN107734657A (zh) 2018-02-23
CN109075842A (zh) 2018-12-21
US11418246B2 (en) 2022-08-16
JPWO2018030540A1 (ja) 2019-06-20
JP7136696B2 (ja) 2022-09-13
EP3419189A1 (en) 2018-12-26
US20210297137A1 (en) 2021-09-23

Similar Documents

Publication Publication Date Title
US11101853B2 (en) Method for determining precoding matrix indicator, user equipment, and base station
US10313911B2 (en) Mobile station, base station and radio communication method
EP3276850B1 (en) Method and device for constraining codebook subset
US10396875B2 (en) Channel state information feedback and receiving method and device
US20160134352A1 (en) System and Method for Beam-Formed Channel State Reference Signals
CN109076572B (zh) 信道状态信息参考信号发送方法及基站
CN108886430B (zh) 参考信号发送方法、信道状态信息反馈方法、基站和移动台
EP2999133A1 (en) Pilot signal transmission method, base station and user equipment
US10362505B2 (en) Method and terminal for handling channel state information
EP3675378A1 (en) Measurement method, network device, and terminal device
US11133855B2 (en) Uplink beam management
JP2019521570A (ja) チャネル状態情報報告方法、チャネル状態情報読み出し方法、及び関連装置
WO2018030540A1 (ja) ユーザ端末、基地局装置及び無線通信方法
JP7035031B2 (ja) チャネル状態測定方法、送信方法、移動局及び基地局
JP2017508318A (ja) パイロット信号を送信する方法、基地局及びユーザ装置
CN110493881B (zh) 一种ue、基站中的用于多天线传输方法和装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017839604

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017839604

Country of ref document: EP

Effective date: 20180920

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839604

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018533580

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE