WO2018030000A1 - タイヤマウントセンサ、ダイアグ履歴記憶装置およびダイアグ報知装置 - Google Patents

タイヤマウントセンサ、ダイアグ履歴記憶装置およびダイアグ報知装置 Download PDF

Info

Publication number
WO2018030000A1
WO2018030000A1 PCT/JP2017/023197 JP2017023197W WO2018030000A1 WO 2018030000 A1 WO2018030000 A1 WO 2018030000A1 JP 2017023197 W JP2017023197 W JP 2017023197W WO 2018030000 A1 WO2018030000 A1 WO 2018030000A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
output voltage
abnormality
road surface
diagnosis history
Prior art date
Application number
PCT/JP2017/023197
Other languages
English (en)
French (fr)
Inventor
良佑 神林
高俊 関澤
雅士 森
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017115278A external-priority patent/JP6547793B2/ja
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US16/324,132 priority Critical patent/US11065920B2/en
Publication of WO2018030000A1 publication Critical patent/WO2018030000A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres

Definitions

  • the present disclosure relates to a tire mount sensor and a diagnosis history storage device capable of leaving a diagnosis history such as a tire scratch, and a diagnosis notification device having these.
  • TPMS tire pressure detection system
  • a sensor transmitter equipped with a pressure sensor on the wheel side is attached and a receiver is installed on the vehicle body side, and a tire air pressure detection result detected by the pressure sensor is transmitted from the sensor transmitter and received by the receiver. Therefore, the tire air pressure is detected.
  • Patent Document 1 discloses a technique for detecting a tire abnormality by performing frequency analysis on a detection signal of an acceleration sensor attached to a tire tread and comparing a vibration component in a specific frequency band with a normal value. Proposed.
  • TPMS as described above can detect changes in tire air pressure, it cannot detect tire abnormalities such as tire scratches and dents. There is a concern that a tire abnormality may cause a tire failure in the future and cause a vehicle running failure due to the tire failure. In order to avoid a tire failure that causes a driving failure, it is important to detect a tire abnormality in advance prior to a tire failure, but it is important to detect a tire abnormality in advance. difficult.
  • tire abnormalities occur when a large impact is received.
  • a tire abnormality is detected by constantly monitoring a vibration component in a specific frequency band, regardless of whether a situation in which an abnormality may occur in the tire has occurred or not, Detection will be performed. Therefore, since the abnormality of the tire is detected even though the situation where the abnormality can occur in the tire is not reached, the abnormality of the tire cannot be detected after accurately detecting the situation where the abnormality can occur in the tire. .
  • the present disclosure provides a tire mount sensor that can detect in advance that a tire abnormality may have occurred after accurately detecting a situation where an abnormality may occur in the tire before the tire malfunctions.
  • the purpose is to do.
  • another object of the present invention is to provide a tire mount sensor, a diagnosis history storage device, and a diagnosis notification device having these when it is detected that there is a possibility that a tire abnormality may have occurred, as a diagnosis history. To do.
  • a tire mount sensor is based on a vibration detection unit that outputs an output voltage corresponding to the magnitude of tire vibration as a detection signal, and a change in an output voltage waveform indicated by the detection signal of the vibration detection unit. And a signal processing unit that detects that the tire has received an impact and compares the output voltage before and after the detection to detect the possibility of tire abnormality.
  • a tire mount sensor that can detect in advance that a tire abnormality may have occurred after accurately detecting a situation where an abnormality may occur in the tire can be obtained in advance. Is possible.
  • the tire mount sensor in the above aspect has a storage unit that stores a diagnosis history when a possibility of abnormality of the tire is detected.
  • the diagnostic history stored in the tire mount sensor is read to inform that there is a possibility of abnormality in the tire at the automobile maintenance shop, etc. It is also possible.
  • a road surface state estimation device 100 to which the tire mount sensor 1 according to the present embodiment is applied will be described with reference to FIGS.
  • the road surface state estimation device 100 according to the present embodiment estimates a road surface state during travel of the vehicle.
  • the tire mount sensor 1 applied to the road surface state estimation device 100 uses a tire surface sensor. A case where a diagnosis history relating to abnormality is left will be described.
  • the road surface state estimating device 100 has a tire mount sensor 1 provided on the wheel side and a vehicle body side system 2 including each part provided on the vehicle body side.
  • a receiver 21, a notification device 22, and the like are provided.
  • the road surface state estimation device 100 detects vibrations of tires provided to the respective wheels by the tire mount sensor 1 and is traveling such as data indicating road surface ⁇ between the tire 3 and the road surface being traveled based on the vibrations. Is generated and transmitted to the receiver 21 side.
  • the data of the road surface ⁇ is referred to as ⁇ data
  • the data indicating the road surface state including the ⁇ data is referred to as road surface data.
  • the road surface state estimation device 100 receives the road surface data transmitted from the tire mount sensor 1 by the receiver 21 and transmits the road surface state indicated by the road surface data from the notification device 22.
  • the road surface state estimation device 100 receives the road surface data transmitted from the tire mount sensor 1 by the receiver 21 and transmits the road surface state indicated by the road surface data from the notification device 22.
  • the road surface state estimating device 100 detects that the tire mount sensor 1 may have a tire abnormality such as a scratch or a dent on the basis of the vibration of the tire, and leaves this as a diagnosis history. .
  • the tire mount sensor 1 and the receiver 21 are configured as follows.
  • the tire mount sensor 1 is a tire side device provided on the tire side. As shown in FIG. 2, the tire mount sensor 1 includes a power source 11, an acceleration sensor 12, a control unit 13, a storage circuit unit 14, an LF reception circuit 15, and an RF transmission circuit 16, and is shown in FIG. Thus, it is provided on the back surface side of the tread 31 of the tire 3.
  • the power source 11 is constituted by, for example, a battery and supplies power for driving each part of the tire mount sensor 1.
  • the acceleration sensor 12 constitutes a vibration detection unit for detecting vibration applied to the tire.
  • the acceleration sensor 12 detects acceleration as a detection signal corresponding to vibration in a tire tangential direction indicated by an arrow X in FIG. 3 in a direction in contact with a circular orbit drawn by the tire mount sensor 1 when the tire 3 rotates.
  • the detection signal is output.
  • the acceleration sensor 12 generates an output voltage as a detection signal in which one of the two directions indicated by the arrow X is positive and the opposite direction is negative.
  • the control unit 13 is a part corresponding to a signal processing unit, and uses the detection signal of the acceleration sensor 12 as a detection signal representing vibration data in the tire tangential direction, obtains road surface data by processing the detection signal, It plays a role of transmitting it to the RF transmission circuit 16.
  • the control unit 13 extracts the ground contact section of the acceleration sensor 12 when the tire 3 rotates based on the detection signal of the acceleration sensor 12, that is, the time change of the output voltage of the acceleration sensor 12.
  • the contact section here means a section in which a portion of the tread 31 of the tire 3 corresponding to the location where the acceleration sensor 12 is disposed is grounded on the road surface.
  • the location where the acceleration sensor 12 is disposed is the location where the tire mount sensor 1 is disposed
  • the portion corresponding to the location where the tire mount sensor 1 is disposed in the tread 31 of the tire 3 is the road surface. It is an agreement with the grounded section.
  • the arrangement location of the tire mount sensor 1 in the tread 31 of the tire 3, in other words, the arrangement location of the acceleration sensor 12 is referred to as an apparatus arrangement location.
  • the control unit 13 extracts the high-frequency component from the detection signal and extracts the high-frequency component as described later.
  • a road surface condition such as road surface ⁇ is detected based on the component.
  • control unit 13 when the control unit 13 detects the road surface state, the control unit 13 generates road surface data indicating the road surface state, and performs a process of transmitting it to the RF transmission circuit 16. Thereby, road surface data is transmitted to the receiver 21 through the RF transmission circuit 16.
  • control part 13 detects that the abnormality of the tire 3 may have occurred based on the detection signal of the acceleration sensor 12, and when detecting that the abnormality may have occurred, it is used as a diagnosis history. It plays a role of storing in the memory circuit section 14. Furthermore, the control unit 13 also plays a role of transmitting data related to the diagnosis history from the RF transmission circuit 16 when an instruction for a response related to the diagnosis history is given through the tool 200 shown in FIG.
  • control unit 13 is configured by a known microcomputer including a CPU, ROM, RAM, I / O, and the like, and performs the above-described processing according to a program stored in the ROM. And the control part 13 is provided with the area extraction part 13a, the level calculation part 13b, the data generation part 13c, and the abnormality detection part 13d as a function part which performs those processes.
  • the section extracting unit 13a extracts the ground section by detecting the peak value of the detection signal represented by the output voltage of the acceleration sensor 12.
  • the output voltage waveform of the acceleration sensor 12 during tire rotation is, for example, the waveform shown in FIG.
  • the output voltage of the acceleration sensor 12 takes a maximum value at the start of grounding when the portion corresponding to the device arrangement location starts to ground as the tire 3 rotates.
  • the section extraction unit 13a detects the start of grounding at which the output voltage of the acceleration sensor 12 takes a maximum value as the timing of the first peak value.
  • the output voltage of the acceleration sensor 12 takes a minimum value at the end of the grounding when the device arrangement portion is grounded with the rotation of the tire 3 when the grounding is stopped.
  • the section extraction unit 13a detects the end of grounding at which the output voltage of the acceleration sensor 12 takes a minimum value as the timing of the second peak value.
  • the reason why the output voltage of the acceleration sensor 12 takes a peak value at the above timing is as follows. That is, when the device arrangement place comes into contact with the rotation of the tire 3, the portion of the tire 3 that has been a substantially cylindrical surface in the vicinity of the acceleration sensor 12 is pressed and deformed into a flat shape. By receiving an impact at this time, the output voltage of the acceleration sensor 12 takes the first peak value. In addition, when the device arrangement part moves away from the ground contact surface with the rotation of the tire 3, the tire 3 is released from pressing in the vicinity of the acceleration sensor 12 and returns from a planar shape to a substantially cylindrical shape. By receiving an impact when the tire 3 returns to its original shape, the output voltage of the acceleration sensor 12 takes the second peak value.
  • the output voltage of the acceleration sensor 12 takes the first and second peak values when the grounding starts and when the grounding ends, respectively. Moreover, since the direction of the impact when the tire 3 is pressed and the direction of the impact when released from the press are opposite directions, the sign of the output voltage is also opposite.
  • the section extracting unit 13a extracts the ground contact section of the acceleration sensor 12 by extracting the detection signal data including the timings of the first and second peak values, and the level calculating unit 13b indicates that it is in the grounded section. To tell.
  • the section extraction unit 13a sends a transmission trigger to the RF transmission circuit 16 at this timing.
  • road surface data such as ⁇ data created by the data generation unit 13c is transmitted from the RF transmission circuit 16 as will be described later.
  • the data transmission by the RF transmission circuit 16 is not always performed, but is performed only at the end of the grounding of the acceleration sensor 12, so that the power consumption can be reduced.
  • the timing at which the output voltage of the acceleration sensor 12 takes the second peak value has been described as an example of the data transmission timing from the RF transmission circuit 16, but of course, other timings may be used.
  • a mode in which data transmission is performed once for a plurality of rotations or a plurality of times for each rotation may be employed.
  • the level calculation unit 13b when notified from the section extraction unit 13a that it is in the grounding section, calculates the level of the high-frequency component caused by the vibration of the tire 3 included in the output voltage of the acceleration sensor 12 during that period. Then, the level calculation unit 13b transmits the calculation result to the data generation unit 13c as road surface data such as ⁇ data.
  • the level of the high-frequency component is calculated as an index representing the road surface state such as the road surface ⁇ .
  • FIG. 5A shows a change in the output voltage of the acceleration sensor 12 when traveling on a high ⁇ road surface having a relatively large road surface ⁇ such as an asphalt road.
  • FIG. 5B shows a change in the output voltage of the acceleration sensor 12 when the vehicle is traveling on a low ⁇ road surface where the road surface ⁇ is relatively small to the extent corresponding to the frozen road.
  • the first and second peak values appear at the beginning and end of the contact section, that is, at the start and end of the contact of the acceleration sensor 12, regardless of the road surface ⁇ .
  • the output voltage of the acceleration sensor 12 changes due to the influence of the road surface ⁇ .
  • the road surface ⁇ is low, such as when traveling on a low ⁇ road surface
  • fine high-frequency vibration due to slip of the tire 3 is superimposed on the output voltage.
  • Such a fine high-frequency signal due to the slip of the tire 3 is not superposed when the road surface ⁇ is high, such as when traveling on a high ⁇ road surface.
  • the frequency analysis of the output voltage during the grounding section is performed for each of the cases where the road surface ⁇ is high and low, the result shown in FIG. 6 is obtained.
  • the level is high when the road surface ⁇ is high or low, but in the high frequency range of 1 kHz or higher, the level is higher when the road surface ⁇ is low than when it is high. .
  • the level of the high frequency component of the output voltage of the acceleration sensor 12 serves as an index representing the road surface state.
  • the level calculation unit 13b calculates the level of the high frequency component of the output voltage of the acceleration sensor 12 during the grounding section by the level calculation unit 13b. Therefore, by calculating the level of the high frequency component of the output voltage of the acceleration sensor 12 during the grounding section by the level calculation unit 13b, this can be converted to ⁇ data. Further, from the ⁇ data, for example, when the road surface ⁇ is low, the road surface type corresponding to the road surface ⁇ can be detected as a road surface state, such as determining that the road is frozen.
  • the level of the high frequency component can be calculated by extracting the high frequency component from the output voltage of the acceleration sensor 12 and integrating the extracted high frequency component during the grounding section.
  • the high frequency components of the frequency bands fa to fb that are assumed to change according to the road surface condition and the road surface ⁇ are extracted by filtering or the like, and the voltages of the high frequency components of the frequency bands fa to fb extracted by the frequency analysis are obtained. Integrate.
  • a capacitor (not shown) is charged. In this way, the amount of charge increases when the road surface ⁇ is low, such as when traveling on a low ⁇ road surface, rather than when the road surface ⁇ is high, such as when traveling on a high ⁇ road surface. .
  • this charge amount as the ⁇ data it is possible to estimate the road surface ⁇ such that the larger the charge amount indicated by the ⁇ data, the lower the road surface ⁇ .
  • the data generation unit 13c basically generates road surface data based on the calculation result of the level calculation unit 13b.
  • the data generation unit 13c adopts ⁇ data as it is as road surface data, obtains a road surface state such as a frozen road or an asphalt road from ⁇ data, and generates data indicating the road surface data as road surface data.
  • the control unit 13 includes the abnormality detection unit 13d, detects a situation where an abnormality may occur in the tire 3 based on the detection signal of the acceleration sensor 12, and detects an abnormality in the tire 3. Detect that it may have occurred.
  • the control unit 13 detects that there is a possibility that an abnormality has occurred, the control unit 13 also plays a role of storing it in the storage circuit unit 14 as a diagnosis history.
  • the detection signal of the acceleration sensor 12 takes the output voltage waveform shown in FIG. 4 every time the tire 3 makes one rotation.
  • the output voltage waveform is distorted. That is, the vibration component due to the impact is superimposed on the output voltage waveform.
  • the first peak value becomes larger than when traveling on a flat road. In this case, although it depends on the vehicle speed, if the vehicle speed is 80 km / h, the first peak value increases to 150 G or more even though it is about 90 G on a flat road. Further, even when an impact is applied when not in the ground section, a large vibration waveform is generated in a region other than the ground section in the output voltage waveform.
  • the output voltage waveform of the acceleration sensor 12 in one rotation of the tire 3 is stored as a basic waveform for comparison, and the output voltage waveform of the acceleration sensor 12 in one rotation of the tire 3 is compared with the basic waveform.
  • the impact is detected from the difference.
  • the basic waveform such as when the first peak value is 150 G or more, or when a G larger than the basic waveform is generated in a region other than the first peak value or the second peak value, When the output voltage waveform becomes larger than a predetermined value, it is detected that an impact has occurred.
  • the output voltage waveform of the acceleration sensor 12 during one rotation of the tire 3 before and after the detection for example, the output voltage of the acceleration sensor 12 for one rotation before and immediately after the detection. Compare waveforms and examine changes in output voltage waveform. For example, as shown in FIG. 7, when a scratch or a dent is generated in the tire 3 due to an impact, a deviation occurs in the output voltage waveform before and after the impact is detected. For this reason, it can be detected from the change in the output voltage waveform before and after the impact detection that the tire 3 may have an abnormality such as a scratch or a dent. For example, as shown in FIG.
  • the control unit 13 detects that there is a possibility that an abnormality of the tire 3 has occurred after accurately detecting a situation in which an abnormality such as a scratch or a dent on the tire 3 may occur.
  • the control unit 13 transmits the diagnosis history to the storage circuit unit 14 or transmits data from the RF transmission circuit 16 as data related to the diagnosis history as necessary. . Further, as will be described later, the control unit 13 causes the RF transmission circuit 16 to transmit data relating to the diagnosis history when the tool 200 issues a response relating to the diagnosis history.
  • the storage circuit unit 14 is a part corresponding to the storage unit, and performs erasure in addition to storing and reading data in accordance with instructions from the control unit 13. For example, when the storage circuit unit 14 is notified from the control unit 13 that an abnormality in the tire 3 has been detected, the storage circuit unit 14 stores the information as a diagnosis history. In addition, when the control circuit 13 issues an instruction to read data relating to the diagnosis history, the storage circuit section 14 reads the diagnosis history and transmits it to the control section 13.
  • the LF reception circuit 15 corresponds to a reception unit, and is a circuit that receives a command input from the tool 200 or the like. For example, when an LF wave including an instruction command is transmitted to the tire mount sensor 1 through the tool 200 in an automobile maintenance shop or the like, the instruction command is transmitted to the control unit 13 through the LF reception circuit 15. Based on this, the control unit 13 instructs the storage circuit unit 14 to read out the diagnosis history, causes the storage circuit unit 14 to read out data related to the diagnosis history, and reads the read data from the RF transmission circuit 16. Processing to send is performed.
  • the RF transmission circuit 16 constitutes a transmission unit that transmits road surface data such as ⁇ data transmitted from the data generation unit 13c and data related to the diagnosis history to the receiver 21. Communication between the RF transmission circuit 16 and the receiver 21 can be performed by a known short-range wireless communication technology such as Bluetooth (registered trademark).
  • a transmission trigger is sent from the section extraction unit 13a to cause an RF transmission circuit.
  • Road surface data is sent from 16.
  • the data transmission by the RF transmission circuit 16 is not always performed, but is performed only at the end of the grounding of the acceleration sensor 12, so that the power consumption can be reduced.
  • the road surface data and the data relating to the diagnosis history are sent together with the unique identification information (hereinafter referred to as ID information) of the wheels provided in advance for each tire 3 provided in the vehicle.
  • ID information unique identification information
  • the position of each wheel can be specified by a well-known wheel position detection device that detects where the wheel is attached to the vehicle. Therefore, the road surface data and the data relating to the diagnosis history are transmitted to the receiver 21 together with the ID information. Which wheel data is available can be discriminated.
  • the receiver 21 receives the road surface data transmitted from the tire mount sensor 1, estimates the road surface state based on the road surface data, transmits the estimated road surface state to the notification device 22, and if necessary, from the notification device 22. Inform the driver of the road surface condition.
  • the driver tries to drive corresponding to the road surface condition, and the danger of the vehicle can be avoided.
  • the road surface state estimated through the notification device 22 may be always displayed, or the estimated road surface state needs to be operated more carefully such as a wet road, a frozen road, a low ⁇ road, or the like. Only when the road surface condition is displayed, the driver may be warned.
  • the vehicle motion control is performed based on the transmitted road surface state. Can also be executed.
  • the receiver 21 receives data relating to the diagnosis history transmitted from the tire mount sensor 1 and grasps the diagnosis history based on this data. Then, the receiver 21 transmits data related to the diagnosis history to the notification device 22 as necessary, and displays from the notification device 22 that there is a diagnosis history or that there is a possibility that an abnormality has occurred in the tire 3. As a result, it is possible to know in advance that the abnormality of the tire 3 may have occurred before the traveling failure of the vehicle occurs, leading to a failure of the tire 3 that causes the traveling failure of the vehicle. Can be avoided.
  • the notification device 22 is composed of a meter display, for example, and is used when notifying the driver of the road surface condition and the diagnosis history.
  • the notification device 22 is configured by a meter display, the notification device 22 is disposed at a place where the driver can visually recognize the vehicle while driving, for example, in an instrument panel of the vehicle.
  • the meter display visually displays the road surface state and diagnostic history to the driver by displaying in a manner in which the road surface state and diagnostic history can be grasped. can do.
  • the notification device 22 can also be configured by a buzzer or a voice guidance device.
  • reporting apparatus 22 can alert
  • the meter display device has been exemplified as the notification device 22 that performs visual notification, the notification device 22 may be configured by a display device that displays information such as a head-up display.
  • each part which comprises the vehicle body side system 2 is connected through in-vehicle LAN (abbreviation of Local * AreaNetwork) by CAN (abbreviation for Controller
  • in-vehicle LAN abbreviation of Local * AreaNetwork
  • CAN abbreviation for Controller
  • the output voltage waveform is analyzed each time the tire 3 makes one rotation based on the detection signal of the acceleration sensor 12 to obtain road surface data. Then, at the timing when the output voltage waveform becomes the second peak value, a transmission trigger is issued from the control unit 13 to the RF transmission circuit 16, and road surface data is transmitted.
  • the tire mount sensor 1 detects that an impact has occurred based on the detection signal of the acceleration sensor 12, the detection signal of the acceleration sensor 12 during one rotation of the tire 3 before and after that, that is, the output voltage waveform is generated. Compare. That is, the detection signals of the acceleration sensor 12 before and after that or the frequency analysis results thereof are compared. Thereby, it is detected that an abnormality may have occurred in the tire 3.
  • the control unit 13 transmits the diagnosis history to the RF transmission circuit 16 and transmits it together with the road surface data or individually.
  • a method of comparing the detection signals of the acceleration sensor 12 during one rotation of the tire 3 or the frequency analysis result thereof is applied. Yes.
  • this is only an example, and other methods, for example, a method of comparing the detection signals of the acceleration sensor 12 or the frequency analysis result thereof for a plurality of rotations of the tire 3, or an average value of the frequency analysis results for a plurality of rotations of the tire 3 A method of comparing each other may be applied.
  • the receiver 21 receives the data, estimates the road surface state based on the road surface data, and transmits the estimated road surface state to the notification device 22. Thereby, a road surface state can be notified to a driver. Further, when the receiver 21 receives data relating to the diagnosis history, the receiver 21 grasps the diagnosis history based on the data, and notifies the notification device 22 of the diagnosis history as necessary. As a result, the notification device 22 can notify that there is a diagnosis history or that there is a possibility that an abnormality has occurred in the tire 3. Accordingly, it is possible to notify the driver of the abnormality of the tire 3 in advance before reaching a future tire malfunction caused by the tire malfunction, that is, a tire malfunction that causes a vehicle running malfunction. .
  • the instruction command is received by the LF receiving circuit 15.
  • This instruction command is transmitted to the control unit 13, and the control unit 13 reads the diagnosis history stored in the storage circuit unit 14. If the diagnosis history is stored, data relating to the diagnosis history is sent to the tool 200 through the RF transmission circuit 16. Thereby, a diagnosis history is sent to the tool 200, and it is possible to grasp that there is a possibility of abnormality in the tire 3 in an automobile maintenance shop or the like.
  • FIG. 9 is a flowchart showing details of the diagnosis history storage process executed by the control unit 13, and is executed every predetermined control cycle.
  • step S100 it is determined whether or not the tire 3 has undergone an impact change in order to detect whether or not the tire 3 is in a situation where an abnormality may occur.
  • the change in which the tire 3 is subjected to an impact here is a distortion of the output voltage waveform of the acceleration sensor 12.
  • the output voltage waveform of the acceleration sensor 12 is compared with the basic waveform, and the acceleration sensor 12 is determined based on the difference between the waveforms. It is determined whether there is distortion of the output voltage waveform. If an affirmative determination is made in step S100, the processing from step S110 is executed, and if a negative determination is made, the processing in step S100 is repeated.
  • step S110 the output voltage waveform of the acceleration sensor 12 for one rotation of the tire 3 before impact is stored in the storage circuit unit 14. Subsequently, the process proceeds to step S120, and after the impact, the output voltage waveform of the acceleration sensor 12 stored in step S110 is read.
  • step S130 the output voltage waveform of the acceleration sensor 12 for one rotation of the tire 3 before impact read in step S120 is compared with the output voltage waveform of the acceleration sensor 12 for one rotation of the tire 3 after impact. And examine the changes.
  • step S140 it is determined whether there is a possibility that an abnormality of the tire 3 has occurred based on the change examined in step S130. That is, if there is a change in the output voltage waveform of the acceleration sensor 12 for one rotation of the tire 3 before and after the impact, there is a possibility that an abnormality has occurred in the tire 3 due to the impact. For this reason, if there is a change in the output voltage waveform of the acceleration sensor 12 before and after the impact, an affirmative determination is made in this step, the process proceeds to step S150, and the diagnosis history is stored in the storage circuit unit 14.
  • step S160 the output voltage waveform of the acceleration sensor 12 for one rotation of the tire 3 stored in the storage circuit unit 14 is obtained. Erase.
  • step S170 data relating to the diagnosis history is transmitted from the RF transmission circuit 16 as necessary, and the diagnosis history storing process is terminated.
  • the receiver 21 receives the data, and the notification device 22 notifies that there is an abnormality in the tire 3 according to the diagnosis history.
  • the road surface state estimation device 100 accurately detects a situation in which an abnormality may occur in the tire 3 based on the detection signal of the acceleration sensor 12 used for detecting the road surface state. It can be detected that an abnormality of the tire 3 may have occurred.
  • the vehicle body side system 2 notifies the user that there is a possibility of abnormality in the tire 3 in advance by notifying the diagnosis history or the possibility of abnormality in the tire 3 through the notification device 22. Is possible. Furthermore, when an attempt is made to check the diagnosis history through the tool 200 at an automobile maintenance shop or the like, the diagnosis history stored in the tire mount sensor 1 is transmitted from the RF transmission circuit 16. As a result, it is possible to tell that there is a possibility of abnormality in the tire 3 at an automobile maintenance shop or the like.
  • the apparatus can be shared and the cost can be reduced. Furthermore, with respect to the acceleration sensor, both the detection that there is a possibility that the abnormality of the tire 3 has occurred and the estimation of the road surface state can be performed only by the acceleration sensor in one direction.
  • the tire mount sensor 1 of the present embodiment does not include the memory circuit unit 14 provided in the first embodiment. Instead, in the vehicle body side system 2, it is detected that there is a possibility that an abnormality may occur in the tire 3 and that there is a possibility that an abnormality in the tire 3 has occurred.
  • the road surface data is acquired by the tire mount sensor 1 based on the detection signal of the acceleration sensor 12, but the output voltage waveform of the acceleration sensor 12 is used instead of the road surface data or together with the road surface data.
  • the data generation unit 13c generates the output voltage waveform data obtained by converting the raw data of the detection signal of the acceleration sensor 12 into a predetermined protocol, and transmits it to the RF transmission circuit 16 as data relating to the diagnosis history.
  • the receiver 21 receives the output voltage waveform data
  • the receiver 21 detects that the tire 3 is in an abnormal state due to an impact or the like based on the output voltage waveform, or the tire 3 has an abnormality. Detect that it may have occurred. About this detection method, it is the same as that of 1st Embodiment.
  • the receiver 21 When the receiver 21 detects that there is a possibility that an abnormality has occurred in the tire 3, it is stored as a diagnosis history in a built-in memory (not shown) or the like, and is notified to the notification device 22 as necessary. Notify that there is a possibility that abnormality has occurred in the diagnosis history or the tire 3.
  • the vehicle body side system 2 instead of the tire mount sensor 1, it is detected that there is a possibility that an abnormality may occur in the tire 3, or that there is a possibility that an abnormality in the tire 3 has occurred, and the diagnosis history Can also be stored as Even if it does in this way, it becomes possible to acquire the effect similar to 1st Embodiment.
  • the tire mount sensor 1 is configured to transmit the output voltage waveform data of the acceleration sensor 12 while acquiring road surface data. However, only the output voltage waveform data of the acceleration sensor 12 is transmitted. It can also be. In that case, the tire mount sensor 1 can provide the vehicle body side system 2 with the function without detecting the road surface condition. In this way, the tire mount sensor 1 only needs to transmit the output voltage waveform data of the acceleration sensor 12, so that the device can be simplified and the power consumption can be reduced. It is also possible to improve the life of a battery used as the power source 11.
  • a third embodiment will be described.
  • the present embodiment is a modification of the method for detecting that an abnormality of the tire 3 has occurred with respect to the first embodiment, and the other aspects are the same as those of the first embodiment. Only parts different from the first embodiment will be described.
  • the tire mount sensor 1 of the present embodiment includes a pressure sensor 17.
  • the pressure sensor 17 is constituted by a diaphragm type sensor using, for example, a silicon substrate, and outputs a detection signal corresponding to the tire pressure.
  • the tire air pressure changes with the deformation of the tire 3. Therefore, it is possible to detect that the tire 3 has received an impact based on the change in the tire air pressure.
  • the control unit 13 receives an impact when the tire air pressure returns to the original value after a predetermined period of time has elapsed after a large change in the tire air pressure, such as when the tire air pressure suddenly increases when climbing a step on the road surface. It is judged that.
  • the output voltage waveform of the acceleration sensor 12 during one rotation of the tire 3 before and after the detection is compared, and the change in the output voltage waveform is examined.
  • an abnormality of the tire 3 is detected, for example, when a scratch or a dent is generated in the tire 3 due to an impact.
  • the impact is detected based on the tire pressure, and the presence or absence of abnormality of the tire 3 is detected based on the vibration applied to the tire 3. Even if such a method is used, the same effect as that of the first embodiment can be obtained.
  • a diagnosis history that is a history that an abnormality may have occurred due to the impact of the tire 3 on the tire mount sensor 1 provided in the road surface state estimation device 100 is stored. Further, based on data from the tire mount sensor 1, the diagnosis history is stored in the vehicle body side system 2, or the diagnosis history is notified.
  • a diagnosis notification device is incorporated in the road surface state estimation device 100 in addition to the tire mount sensor 1 or the diagnosis history storage device that stores the diagnosis history, and is different from the road surface state estimation device 100. You may comprise these as a structure.
  • a portion of the road surface state estimation device 100 that detects the possibility of abnormality of the tire 3 and stores it as a diagnosis history corresponds to a diagnosis history storage device. Further, the portion including the tire mount sensor 1 or the diagnosis history storage device and the receiver 21 and the notification device 22 in the vehicle body side system 2 corresponds to the diagnosis notification device.
  • the grounding section is specified from the detection signal of the acceleration sensor 12 that constitutes the vibration detection unit, and the calculation result of the level of the high frequency component in the detection signal in the grounding section It is used as road surface data indicating the road surface condition.
  • this is only an example of a method for detecting the road surface state using the detection signal at the vibration detection unit, and even if the road surface state is detected by another method using the detection signal at the vibration detection unit. good.
  • the vibration detection unit can also be configured by another element capable of detecting vibration, such as a piezoelectric element.
  • the power source 11 is not limited to a battery, and may be configured by a power generation element or the like.
  • the power supply 11 can be configured while the vibration detection power generation element forms a vibration detection unit.
  • the receiver 21 detects that the tire 3 has received an impact based on the output voltage waveform of the acceleration sensor 12 or that the tire 3 may be abnormal. Furthermore, it plays a role as a control unit for storing a diagnosis history. However, this is merely an example, and a control unit may be provided separately from the receiver 21, or another ECU such as a brake ECU may function as the control unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tires In General (AREA)

Abstract

路面状態の検出に用いる加速度センサ(12)の検出信号に基づいてタイヤ(3)に異常が発生し得る状況を的確に検知すると共にタイヤ(3)に異常が発生した可能性があることを検知する。また、それをダイアグ履歴として記憶して残す。そして、車体側システム(2)において報知装置(22)を通じてダイアグ履歴もしくはタイヤ(3)に異常が発生した可能性があることを報知することで、ユーザに対して事前にタイヤ(3)に異常の可能性があることを伝える。また、自動車整備工場等でツール(200)を通じてダイアグ履歴を確認する際に、タイヤマウントセンサ(1)に記憶されたダイアグ履歴が読出されるようにする。これにより、自動車整備工場等でタイヤ(3)に異常の可能性があることを伝えることも可能となる。

Description

タイヤマウントセンサ、ダイアグ履歴記憶装置およびダイアグ報知装置 関連出願への相互参照
 本出願は、2016年8月12日に出願された日本特許出願番号2016-159000号と、2017年6月12日に出願された日本特許出願番号2017-115278号とに基づくもので、ここにその記載内容が参照により組み入れられる。
 本開示は、タイヤの傷などのダイアグ履歴を残すことができるタイヤマウントセンサやダイアグ履歴記憶装置およびこれらを有するダイアグ報知装置に関するものである。
 従来、タイヤの異常を検知する方法として、タイヤ空気圧検出システム(以下、TPMSという)によるタイヤ空気圧変化を検知する方法がある。例えば、TPMSでは、車輪側に圧力センサを備えたセンサ送信機を取り付けると共に車体側に受信機を備え、センサ送信機から圧力センサで検出したタイヤ空気圧の検出結果を送信し、受信機で受信することで、タイヤ空気圧検知を行っている。
 また、車両の走行の安全性の面で、タイヤの異常を検知することは重要である。このため、例えば特許文献1において、タイヤのトレッドに取り付けた加速度センサの検出信号を周波数解析し、特定周波数帯域の振動成分を正常時の値と比較することで、タイヤの異常を検知する技術が提案されている。
特許第05495971号公報
 しかしながら、上記のようなTPMSでは、タイヤ空気圧変化を検知することができるものの、タイヤの傷や凹みなどのタイヤの異常を検知することはできない。タイヤの異常は、将来的にタイヤの不具合を発生させ、タイヤの不具合によって車両の走行不具合を発生させることが懸念される。走行不具合を発生させるタイヤの不具合を避けるためには、タイヤの不具合に至る前に、それに先立ってタイヤの異常を事前に発見することが重要であるが、タイヤの異常を事前に発見することは難しい。
 また、タイヤの異常は大きな衝撃を受けたときなどに発生する。ところが、特許文献1のように、常に特定周波数帯域の振動成分をモニタしてタイヤの異常を検知するのでは、タイヤに異常が発生し得る状況が発生したか否かに関係なくタイヤの異常の検知を行うことになる。したがって、タイヤに異常が発生し得る状況に至っていないのにタイヤの異常を検知することになるため、タイヤに異常が発生し得る状況を的確に検知した上でタイヤの異常を検知することができない。
 本開示は、タイヤに異常が発生し得る状況を的確に検出した上でタイヤの異常が発生した可能性があることをタイヤの不具合に至る前に事前に検知することができるタイヤマウントセンサを提供することを目的とする。さらに、タイヤの異常が発生した可能性があることを検知すると、それをダイアグ履歴として残すことができるタイヤマウントセンサやダイアグ履歴記憶装置およびこれらを有するダイアグ報知装置を提供することを他の目的とする。
 本開示の1つの観点におけるタイヤマウントセンサは、タイヤの振動の大きさに応じた出力電圧を検出信号として出力する振動検出部と、振動検出部の検出信号が示す出力電圧波形の変化に基づいて、タイヤが衝撃を受けたことを検知すると共に、該検知前後において出力電圧を比較することで、タイヤの異常が発生した可能性を検知する信号処理部と、を有している。
 このように、振動検出部の検出信号に基づいてタイヤが衝撃を受けたこと、つまりタイヤの異常が発生し得る状況に至ったことを検知している。そして、タイヤの異常が発生し得る状況に至った場合に、タイヤの異常の可能性があることを検知するようにしている。これにより、タイヤに異常が発生し得る状況を的確に検出した上でタイヤの異常が発生した可能性があることをタイヤの不具合に至る前に事前に検知することができるタイヤマウントセンサとすることが可能となる。
 また、上記観点におけるタイヤマウントセンサは、タイヤの異常の可能性が検知されると、ダイアグ履歴として記憶しておく記憶部を有している。
 このように、タイヤの異常の可能性があることを検知すると、それをダイアグ履歴として記憶して残すことができる。このようにすれば、例えば、車体側システムにおいて報知装置を通じてダイアグ履歴もしくはタイヤに異常の可能性があることを報知することで、ユーザに対して事前にタイヤに異常の可能性があることを伝えることが可能となる。また、自動車整備工場等でツールを通じてダイアグ履歴を確認しようとしたときに、タイヤマウントセンサに記憶されたダイアグ履歴を読出すことで、自動車整備工場等でタイヤに異常の可能性があることを伝えることも可能となる。
第1実施形態にかかるタイヤマウントセンサが適用された路面状態推定装置の車両搭載状態でのブロック構成を示した図である。 タイヤマウントセンサのブロック図である。 タイヤマウントセンサが取り付けられたタイヤの断面模式図である。 タイヤ回転時における加速度センサの出力電圧波形図である。 アスファルト路のように路面μが比較的大きな高μ路面を走行している場合における加速度センサの出力電圧の変化を示した図である。 凍結路のように路面μが比較的小さな低μ路面を走行している場合における加速度センサの出力電圧の変化を示した図である。 高μ路面を走行している場合と低μ路面を走行している場合それぞれについて、接地区間中における出力電圧の周波数解析を行った結果を示した図である。 タイヤに傷や凹みがある場合とない場合それぞれの場合における加速度センサの出力電圧波形図である。 図7の出力電圧波形の周波数解析結果を示した図である。 ダイアグ履歴記憶処理の詳細を示したフローチャートである。 第2実施形態にかかるタイヤマウントセンサのブロック図である。 第3実施形態にかかるタイヤマウントセンサのブロック図である。
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
 (第1実施形態)
 図1~図9を参照して、本実施形態にかかるタイヤマウントセンサ1が適用される路面状態推定装置100について説明する。本実施形態にかかる路面状態推定装置100は、車両の走行中の路面状態を推定するものであるが、本実施形態では、この路面状態推定装置100に適用されるタイヤマウントセンサ1にてタイヤの異常に関するダイアグ履歴を残すようにする場合について説明する。
 図1および図2に示すように路面状態推定装置100は、車輪側に設けられたタイヤマウントセンサ1と、車体側に備えられた各部を含む車体側システム2とを有する構成とされている。車体側システム2としては、受信機21や報知装置22などが備えられている。
 路面状態推定装置100は、タイヤマウントセンサ1にて各車輪に備えられるタイヤの振動を検出し、この振動に基づいてタイヤ3と走行中の路面との間の路面μを示すデータなどの走行中の路面状態を表すデータを生成して受信機21側に送信する。以下、路面μのデータのことをμデータといい、μデータを含む路面状態を表すデータのことを路面データという。また、路面状態推定装置100は、受信機21にてタイヤマウントセンサ1から送信された路面データを受信し、路面データに示される路面状態を報知装置22より伝える。これにより、例えば路面μが低いことや乾燥路やウェット路もしくは凍結路であることなど、路面状態をドライバに伝えることが可能となり、滑り易い路面である場合にはドライバに警告することも可能となる。
 また、路面状態推定装置100は、タイヤマウントセンサ1にて、タイヤの振動に基づいてタイヤに傷や凹みなどのタイヤの異常が発生した可能性があることを検知し、これをダイアグ履歴として残す。このようにダイアグ履歴を残すことで、タイヤの異常に起因する将来的なタイヤの不具合、つまり車両の走行不具合を発生させるようなタイヤの不具合に至る前に、ユーザがタイヤの異常を事前に把握することが可能となる。具体的には、タイヤマウントセンサ1および受信機21は、以下のように構成されている。
 タイヤマウントセンサ1は、タイヤ側に備えられるタイヤ側装置である。タイヤマウントセンサ1は、図2に示すように、電源11、加速度センサ12、制御部13、記憶回路部14、LF受信回路15、RF送信回路16を備えた構成とされ、図3に示されるように、タイヤ3のトレッド31の裏面側に設けられる。
 電源11は、例えば電池などによって構成され、タイヤマウントセンサ1の各部を駆動するための電源供給を行っている。
 加速度センサ12は、タイヤに加わる振動を検出するための振動検出部を構成するものである。例えば、加速度センサ12は、タイヤ3が回転する際にタイヤマウントセンサ1が描く円軌道に対して接する方向、つまり図3中の矢印Xで示すタイヤ接線方向の振動に応じた検出信号として、加速度の検出信号を出力する。より詳しくは、加速度センサ12は、矢印Xで示す二方向のうちの一方向を正、反対方向を負とする出力電圧を検出信号として発生させる。
 制御部13は、信号処理部に相当する部分であり、加速度センサ12の検出信号をタイヤ接線方向の振動データを表す検出信号として用いて、この検出信号を処理することで路面データを得て、それをRF送信回路16に伝える役割を果たす。
 具体的には、制御部13は、加速度センサ12の検出信号、つまり加速度センサ12の出力電圧の時間変化に基づいて、タイヤ3の回転時における加速度センサ12の接地区間を抽出している。なお、ここでいう接地区間とは、タイヤ3のトレッド31のうち加速度センサ12の配置箇所と対応する部分が路面接地している区間のことを意味している。本実施形態の場合、加速度センサ12の配置箇所がタイヤマウントセンサ1の配置箇所とされているため、接地区間とはタイヤ3のトレッド31のうちタイヤマウントセンサ1の配置箇所と対応する部分が路面接地している区間と同意である。以下、タイヤ3のトレッド31のうちタイヤマウントセンサ1の配置箇所、換言すれば加速度センサ12の配置箇所のことを装置配置箇所という。
 そして、例えば接地区間中における加速度センサ12の検出信号に含まれる高周波成分が路面状態を表していることから、後述するように、制御部13は、検出信号から高周波成分を抽出すると共に抽出した高周波成分に基づいて路面μなどの路面状態を検出している。
 このようにして、制御部13は、路面状態の検出を行うと、その路面状態を示した路面データを生成し、それをRF送信回路16に伝える処理を行う。これにより、RF送信回路16を通じて受信機21に路面データが伝えられるようになっている。
 また、制御部13は、加速度センサ12の検出信号に基づいて、タイヤ3の異常が発生した可能性があることを検知し、異常が発生した可能性があることを検知するとそれをダイアグ履歴として記憶回路部14に記憶させる役割を果たす。さらに、制御部13は、図2に示すツール200などを通じてダイアグ履歴に関する応答の指示があったときに、RF送信回路16よりダイアグ履歴に関するデータを伝える役割も果たす。
 より詳しくは、制御部13は、CPU、ROM、RAM、I/Oなどを備えた周知のマイクロコンピュータによって構成され、ROMなどに記憶されたプログラムに従って上記した処理を行っている。そして、制御部13は、それらの処理を行う機能部として区間抽出部13a、レベル算出部13b、データ生成部13cおよび異常検知部13dを備えている。
 区間抽出部13aは、加速度センサ12の出力電圧で表される検出信号のピーク値を検出することで接地区間を抽出する。タイヤ回転時における加速度センサ12の出力電圧波形は例えば図4に示す波形となる。この図に示されるように、タイヤ3の回転に伴って装置配置箇所と対応する部分が接地し始めた接地開始時に、加速度センサ12の出力電圧が極大値をとる。区間抽出部13aでは、この加速度センサ12の出力電圧が極大値をとる接地開始時を第1ピーク値のタイミングとして検出している。さらに、図4に示されるように、タイヤ3の回転に伴って装置配置箇所が接地していた状態から接地しなくなる接地終了時に、加速度センサ12の出力電圧が極小値をとる。区間抽出部13aでは、この加速度センサ12の出力電圧が極小値をとる接地終了時を第2ピーク値のタイミングとして検出している。
 加速度センサ12の出力電圧が上記のようなタイミングでピーク値をとるのは、以下の理由による。すなわち、タイヤ3の回転に伴って装置配置箇所が接地する際、加速度センサ12の近傍においてタイヤ3のうちそれまで略円筒面であった部分が押圧されて平面状に変形する。このときの衝撃を受けることで、加速度センサ12の出力電圧が第1ピーク値をとる。また、タイヤ3の回転に伴って装置配置箇所が接地面から離れる際には、加速度センサ12の近傍においてタイヤ3は押圧が解放されて平面状から略円筒状に戻る。このタイヤ3の形状が元に戻るときの衝撃を受けることで、加速度センサ12の出力電圧が第2ピーク値をとる。このようにして、加速度センサ12の出力電圧が接地開始時と接地終了時でそれぞれ第1、第2ピーク値をとるのである。また、タイヤ3が押圧される際の衝撃の方向と、押圧から開放される際の衝撃の方向は逆方向であるため、出力電圧の符号も逆方向となる。
 そして、区間抽出部13aは、第1、第2ピーク値のタイミングを含めた検出信号のデータを抽出することで加速度センサ12の接地区間を抽出し、接地区間中であることをレベル算出部13bに伝える。
 また、加速度センサ12の出力電圧が第2ピーク値をとるタイミングが加速度センサ12の接地終了時となるため、区間抽出部13aは、このタイミングでRF送信回路16に送信トリガを送っている。これにより、RF送信回路16より、後述するようにデータ生成部13cで作成されるμデータなどの路面データを送信させている。このように、RF送信回路16によるデータ送信を常に行うのではなく、加速度センサ12の接地終了時に限定して行うようにしているため、消費電力を低減することが可能となる。なお、加速度センサ12の出力電圧が第2ピーク値をとるタイミングをRF送信回路16からのデータ送信タイミングの一例として挙げたが、勿論、他のタイミングであっても良い。また、データ送信をタイヤ3の1回転ごとに1回行うという形態ではなく、複数回転ごとに1回、もしくは1回転ごとに複数回のデータ送信が行われる形態とされても良い。
 レベル算出部13bは、区間抽出部13aから接地区間中であることが伝えられると、その期間中に加速度センサ12の出力電圧に含まれるタイヤ3の振動に起因する高周波成分のレベルを算出する。そして、レベル算出部13bは、その算出結果をμデータなどの路面データとしてデータ生成部13cに伝える。ここで、路面μなどの路面状態を表わす指標として高周波成分のレベルを算出するようにしているが、その理由について図5A、図5Bおよび図6を参照して説明する。
 図5Aは、アスファルト路のように路面μが比較的大きな高μ路面を走行している場合における加速度センサ12の出力電圧の変化を示している。また、図5Bは、凍結路の相当する程度に路面μが比較的小さな低μ路面を走行している場合における加速度センサ12の出力電圧の変化を示している。
 これらの図から分かるように、路面μにかかわらず、接地区間の最初と最後、つまり加速度センサ12の接地開始時と接地終了時において第1、第2ピーク値が現れる。しかしながら、路面μの影響で、加速度センサ12の出力電圧が変化する。例えば、低μ路面の走行時のように路面μが低いときには、タイヤ3のスリップによる細かな高周波振動が出力電圧に重畳される。このようなタイヤ3のスリップによる細かな高周波信号は、高μ路面の走行時のように路面μが高い場合にはあまり重畳されない。
 このため、路面μが高い場合と低い場合それぞれについて、接地区間中における出力電圧の周波数解析を行うと、図6に示す結果となる。すなわち、低周波域では路面μが高い場合と低い場合のいずれを走行する場合にも高いレベルになるが、1kHz以上の高周波域では路面μが低い場合の方が高い場合よりも高いレベルになる。このため、加速度センサ12の出力電圧の高周波成分のレベルが路面状態を表す指標となる。
 したがって、レベル算出部13bによって接地区間中における加速度センサ12の出力電圧の高周波成分のレベルを算出することで、これをμデータとすることが可能となる。また、μデータから、例えば路面μが低い場合に凍結路と判定するなど、路面μと対応する路面の種類を路面状態として検出することもできる。
 例えば、高周波成分のレベルは、加速度センサ12の出力電圧から高周波成分を抽出し、接地区間中に抽出した高周波成分を積分することで算出することができる。具体的には、路面状態や路面μに応じて変化すると想定される周波数帯域fa~fbの高周波成分をフィルタリングなどによって抽出し、周波数解析によって取り出した周波数帯域fa~fbの高周波数成分の電圧を積分する。例えば、図示しないコンデンサにチャージさせる。このようにすれば、高μ路面を走行している場合のように路面μが高い場合よりも低μ路面を走行している場合のように路面μが低い場合の方がチャージ量が多くなる。このチャージ量をμデータとして用いて、μデータが示すチャージ量が多いほど路面μが低いというように路面μを推定できる。
 データ生成部13cは、基本的には、レベル算出部13bでの算出結果に基づいて路面データを生成している。例えば、データ生成部13cは、μデータをそのまま路面データとして採用したり、μデータから凍結路やアスファルト路のような路面状態を求めて、それを示すデータを路面データとして生成している。
 また、上記したように、制御部13は、異常検知部13dを有しており、加速度センサ12の検出信号に基づいて、タイヤ3に異常が発生し得る状況を検出すると共にタイヤ3の異常が発生した可能性があることを検知する。そして、制御部13は、異常が発生した可能性があることを検知すると、それをダイアグ履歴として記憶回路部14に記憶する役割も果たす。
 具体的には、上記したように、加速度センサ12の検出信号は、タイヤ3が1回転する毎に図4に示した出力電圧波形をとる。しかしながら、車両走行中にタイヤ3が路上の段差に乗り上げた場合のように、タイヤ3に異常が発生し得る衝撃を受けると、出力電圧波形に歪が生じる。すなわち、衝撃による振動成分が出力電圧波形に重畳される。例えば、装置配置箇所が接地し始めた接地開始時に衝撃が加わると第1ピーク値が平坦路を走行している場合よりも大きくなる。この場合、車速にも依るが、車速が80km/hであったときであれば、第1ピーク値が平坦路のときに90G程度であったのに150G以上まで上昇する。また、接地区間中以外のときに衝撃が加わったときにも、出力電圧波形のうちの接地区間以外の領域において大きな振動波形が発生する。
 したがって、例えばタイヤ3の1回転における加速度センサ12の出力電圧波形を比較用の基本波形として記憶しておき、その基本波形に対して今回のタイヤ3の1回転中における加速度センサ12の出力電圧波形との相違から衝撃を検知する。例えば、第1ピーク値が150G以上になったことや、第1ピーク値や第2ピーク値以外の領域で、基本波形よりも所定値以上大きなGが発生したときのように、基本波形に対して出力電圧波形が所定値以上大きくなったときに衝撃が発生したことを検知している。
 そして、衝撃が発生したことを検知したときには、検知前後におけるタイヤ3の1回転中の加速度センサ12の出力電圧波形、例えば検知する1回転前と検知直後の1回転分の加速度センサ12の出力電圧波形を比較し、出力電圧波形の変化を調べる。例えば、図7に示すように、衝撃によってタイヤ3に傷や凹みが発生すると、衝撃の検知前後において出力電圧波形にズレが生じる。このため、衝撃の検知前後における出力電圧波形の変化から、タイヤ3に傷や凹みなどの異常が発生した可能性があることを検知することができる。例えば、図8に示すように、加速度センサ12の検出信号に対してフーリエ変換処理などの周波数解析を行うと、低周波数帯域もしくは高周波数帯域において、タイヤ3の異常の有無によって解析結果に差が生じる。この差に基づいて、タイヤ3の異常が発生した可能性があることを検知することができる。例えば、低周波数帯域もしくは高周波数帯域における解析結果の差が所定の閾値よりも大きければ、タイヤ3の異常が発生した可能性があると検知することができる。
 このようにして、制御部13は、タイヤ3の傷や凹みなどの異常が発生し得る状況を的確に検出した上で、タイヤ3の異常が発生した可能性があることを検知している。そして、制御部13は、異常が発生した可能性があることを検知すると、それをダイアグ履歴として記憶回路部14に伝えたり、必要に応じてダイアグ履歴に関するデータとしてRF送信回路16からデータ送信させる。また、制御部13は、後述するように、ツール200よりダイアグ履歴に関する応答の指示があったときに、RF送信回路16よりダイアグ履歴に関するデータを送信させる。
 記憶回路部14は、記憶部に相当する部分であり、制御部13からの指示に従ってデータの記憶や読出しに加えて消去を行う。例えば、記憶回路部14は、制御部13からタイヤ3の異常を検知したことが伝えられると、ダイアグ履歴としてその情報を記憶しておく。また、記憶回路部14は、制御部13からダイアグ履歴に関するデータの読出しの指示が出されると、ダイアグ履歴を読出し、制御部13に伝える。
 LF受信回路15は、受信部に相当し、ツール200などからのコマンド入力を受信する回路である。例えば、自動車整備工場等においてツール200を通じて指示コマンドを含むLF波がタイヤマウントセンサ1に伝えられると、LF受信回路15を通じて指示コマンドが制御部13に伝えられる。これに基づいて、制御部13は、記憶回路部14に対してダイアグ履歴の読出し指示を出し、記憶回路部14からダイアグ履歴に関するデータの読出しを行わせたり、読出したデータをRF送信回路16から送信させる処理を行うようになっている。
 RF送信回路16は、データ生成部13cから伝えられたμデータなどの路面データやダイアグ履歴に関するデータを受信機21に対して送信する送信部を構成するものである。RF送信回路16と受信機21との間の通信は、例えば、Bluetooth(登録商標)などの公知の近距離無線通信技術によって実施可能である。路面データやダイアグ履歴に関するデータを送信するタイミングについては任意であるが、上記したように、本実施形態では、加速度センサ12の接地終了時に区間抽出部13aから送信トリガが送られることでRF送信回路16から路面データが送られるようになっている。このように、RF送信回路16によるデータ送信を常に行うのではなく、加速度センサ12の接地終了時に限定して行うようにしているため、消費電力を低減することが可能となる。
 また、路面データやダイアグ履歴に関するデータについては、車両に備えられたタイヤ3毎に予め備えられている車輪の固有識別情報(以下、ID情報という)と共に送られる。各車輪の位置については、車輪が車両のどの位置に取り付けられているかを検出する周知の車輪位置検出装置によって特定できることから、受信機21にID情報と共に路面データやダイアグ履歴に関するデータを伝えることで、どの車輪のデータであるかが判別可能になる。
 なお、ここでは路面データと共にダイアグ履歴に関するデータをRF送信回路16から送信することについて説明したが、これらを別々のフレームに格納して、個別のタイミングで送信するようにしても良い。
 一方、受信機21は、タイヤマウントセンサ1より送信された路面データを受信し、これに基づいて路面状態を推定すると共に推定した路面状態を報知装置22に伝え、必要に応じて報知装置22より路面状態をドライバに伝える。これにより、ドライバは路面状態に対応した運転を心掛けるようになり、車両の危険性を回避することが可能となる。例えば、報知装置22を通じて推定された路面状態を常に表示するようにしても良いし、推定された路面状態がウェット路や凍結路や低μ路等のように運転をより慎重に行う必要があるときにのみ路面状態を表示してドライバに警告するようにしても良い。また、受信機21からブレーキ制御用の電子制御装置(以下、ECUという)などの車両運動制御を実行するためのECUに対して路面状態を伝えれば、伝えられた路面状態に基づいて車両運動制御が実行されるようにすることもできる。
 さらに、受信機21は、タイヤマウントセンサ1より送信されたダイアグ履歴に関するデータを受信し、これに基づいてダイアグ履歴を把握する。そして、受信機21は、必要に応じてダイアグ履歴に関するデータを報知装置22に伝え、報知装置22よりダイアグ履歴があること、もしくはタイヤ3に異常が発生した可能性があることを表示させる。これにより、タイヤ3の異常が発生した可能性があることを、車両の走行不具合が生じる前に事前に把握することが可能となり、車両の走行不具合を発生させるようなタイヤ3の不具合に至ることを避けることが可能となる。
 報知装置22は、例えばメータ表示器などで構成され、ドライバに対して路面状態やダイアグ履歴を報知する際に用いられる。報知装置22をメータ表示器で構成する場合、ドライバが車両の運転中に視認可能な場所に配置され、例えば車両におけるインストルメントパネル内に設置される。メータ表示器は、受信機21から路面状態やダイアグ履歴が伝えられると、その路面状態やダイアグ履歴が把握できる態様で表示を行うことで、視覚的にドライバに対して路面状態やダイアグ履歴を報知することができる。
 なお、報知装置22をブザーや音声案内装置などで構成することもできる。その場合、報知装置22は、ブザー音や音声案内によって、聴覚的にドライバに対して路面状態やダイアグ履歴を報知することができる。また、視覚的な報知を行う報知装置22としてメータ表示器を例に挙げたが、ヘッドアップディスプレイなどの情報表示を行う表示器によって報知装置22を構成しても良い。
 以上のようにして、本実施形態にかかる路面状態推定装置100が構成されている。なお、車体側システム2を構成する各部が例えばCAN(Controller AreaNetworkの略)通信などによる車内LAN(Local AreaNetworkの略)を通じて接続されている。このため、車内LANを通じて各部が互いに情報伝達できるようになっている。
 続いて、本実施形態にかかる路面状態推定装置100におけるタイヤマウントセンサ1の作動について説明する。
 上記したように、タイヤマウントセンサ1では、加速度センサ12の検出信号に基づいて、制御部13にてタイヤ3が1回転する毎に出力電圧波形を解析し、路面データを得ている。そして、出力電圧波形が第2ピーク値となるタイミングで制御部13からRF送信回路16に送信トリガが出され、路面データが送信される。
 また、タイヤマウントセンサ1では、加速度センサ12の検出信号に基づいて衝撃が発生したことが検知されると、その前後のタイヤ3の1回転中における加速度センサ12の検出信号、つまり出力電圧波形を比較する。すなわち、その前後の加速度センサ12の検出信号同士もしくはその周波数解析結果を比較する。これにより、タイヤ3に異常が発生した可能性があることを検知する。そして、タイヤ3に異常が発生した可能性があることが検知されると、それをダイアグ履歴として記憶回路部に記憶して残しておく。また、制御部13は、ダイアグ履歴をRF送信回路16に伝え、路面データと共にもしくは個別に送信させる。
 なお、ここでは、衝撃が発生した前後の加速度センサ12の検出信号の比較手法として、タイヤ3の1回転中における加速度センサ12の検出信号同士もしくはその周波数解析結果を比較するという手法を適用している。しかしながら、これは一例であり、他の手法、例えばタイヤ3の複数回転における加速度センサ12の検出信号同士もしくはその周波数解析結果を比較する手法や、タイヤ3の複数回転分の周波数解析結果の平均値同士を比較する手法等を適用しても良い。
 一方、受信機21は、RF送信回路16からデータ送信が行われると、それを受信し、路面データに基づいて路面状態を推定すると共に推定した路面状態を報知装置22に伝える。これにより、ドライバに路面状態を報知することができる。また、受信機21は、ダイアグ履歴に関するデータを受信すると、これに基づいてダイアグ履歴を把握し、それを必要に応じて報知装置22に伝える。これにより、報知装置22よりダイアグ履歴があること、もしくはタイヤ3に異常が発生した可能性があることを報知させることができる。したがって、タイヤの異常に起因する将来的なタイヤの不具合、つまり車両の走行不具合を発生させるようなタイヤの不具合に至る前に、ドライバに対してタイヤ3の異常を事前に伝えることが可能となる。
 さらに、自動車整備工場等においてツール200を通じてタイヤマウントセンサ1に対して指示コマンドが送られると、LF受信回路15でその指示コマンドが受信される。この指示コマンドが制御部13に伝わり、制御部13が記憶回路部14に記憶されているダイアグ履歴の読出しを行う。そして、ダイアグ履歴が記憶されている場合には、ダイアグ履歴に関するデータがRF送信回路16を通じてツール200に送られる。これにより、ツール200にダイアグ履歴が送られ、自動車整備工場等においてタイヤ3に異常の可能性があることを把握することが可能となる。
 図9を参照して、タイヤマウントセンサ1が行う具体的な処理について説明する。なお、図9は、制御部13が実行するダイアグ履歴記憶処理の詳細を示したフローチャートであり、所定の制御周期毎に実行される。
 まず、ステップS100では、タイヤ3に異常が発生し得る状況に至ったか否かを検出するために、タイヤ3が衝撃を受けた変化を示したかを判定する。ここでいうタイヤ3が衝撃を受ける変化とは、加速度センサ12の出力電圧波形の歪のことであり、加速度センサ12の出力電圧波形を基本波形と比較し、それらの波形の相違から加速度センサ12の出力電圧波形の歪があるか否かを判定している。そして、ステップS100で肯定判定されるとステップS110以降の処理を実行し、否定判定されるとステップS100の処理を繰り返し行う。
 ステップS110では、記憶回路部14に衝撃前のタイヤ3の1回転分の加速度センサ12の出力電圧波形を記憶する。続いて、ステップS120に進み、衝撃後に、ステップS110で記憶した加速度センサ12の出力電圧波形を読み出す。そして、ステップS130で、ステップS120で読み出した衝撃前のタイヤ3の1回転分の加速度センサ12の出力電圧波形と、衝撃後のタイヤ3の1回転分の加速度センサ12の出力電圧波形とを比較し、その変化を調べる。
 この後、ステップS140に進み、ステップS130での調べた変化に基づいて、タイヤ3の異常が発生した可能性が有るか否かを判定する。つまり、衝撃前後において、タイヤ3の1回転分の加速度センサ12の出力電圧波形に変化があれば、衝撃によってタイヤ3に異常が発生した可能性がある。このため、衝撃前後における加速度センサ12の出力電圧波形の変化があれば本ステップで肯定判定され、ステップS150に進んで記憶回路部14にダイアグ履歴を記憶する。また、衝撃前後における加速度センサ12の出力電圧波形の変化がなければ本ステップで否定判定され、ステップS160に進んで記憶回路部14で記憶したタイヤ3の1回転分の加速度センサ12の出力電圧波形を消去する。
 そして、ステップS170に進み、必要に応じてダイアグ履歴に関するデータをRF送信回路16から送信させて、ダイアグ履歴記憶処理を終了する。なお、RF送信回路16からダイアグ履歴に関するデータが送信されると、受信機21でそれが受信され、報知装置22を通じて、ダイアグ履歴に応じてタイヤ3に異常があることが報知される。
 以上説明したように、本実施形態にかかる路面状態推定装置100では、路面状態の検出に用いる加速度センサ12の検出信号に基づいてタイヤ3に異常が発生し得る状況を的確に検知した上で、タイヤ3の異常が発生した可能性があることを検知することができる。
 また、タイヤ3の異常が発生した可能性があることを検知した場合、それをダイアグ履歴として記憶して残すようにしている。このため、車体側システム2において報知装置22を通じてダイアグ履歴もしくはタイヤ3に異常の可能性があることを報知することで、ユーザに対して事前にタイヤ3に異常の可能性があることを伝えることが可能となる。さらに、自動車整備工場等でツール200を通じてダイアグ履歴を確認しようとしたときに、タイヤマウントセンサ1に記憶されたダイアグ履歴がRF送信回路16より送信されるようにしている。これにより、自動車整備工場等でタイヤ3に異常の可能性があることを伝えることも可能となる。
 そして、このようなタイヤ3の異常の可能性の検知を路面状態の検出に用いる加速度センサ12の検出信号に基づいて行えることから、装置の兼用化が図れ、コスト低減が可能となる。さらに、加速度センサについては、一方向の加速度センサのみでタイヤ3の異常が発生した可能性があることの検知と路面状態の推定の両方を行うことができる。
 すなわち、特許文献1の技術では、タイヤ径方向の加速度を測定しているため、路面状態の検出も行えるようにタイヤの接線方向の加速度の測定も行うための加速度センサも必要となり、二方向の加速度センサが必要になって、部品点数増大を招き、コスト高となる。これに対して、本実施形態のような路面状態推定装置100によれば、二方向の加速度センサを必要としなくても、路面状態を検出しつつ、タイヤに異常が発生し得る状況を的確に検出しタイヤの異常をダイアグ履歴として残すことができるタイヤマウントセンサとすることができる。
 (第2実施形態)
 第2実施形態について説明する。本実施形態は、第1実施形態に対してタイヤ3の異常が発生した可能性があることの検知を車体側システム2で行うように変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
 図10に示すように、本実施形態のタイヤマウントセンサ1には第1実施形態で備えられていた記憶回路部14は備えられていない。その代わりに、車体側システム2において、タイヤ3に異常が発生し得る状況となったことの検知やタイヤ3の異常が発生した可能性があることの検知を行うようにする。
 具体的には、タイヤマウントセンサ1にて加速度センサ12の検出信号に基づいて路面データを取得するようにしているが、路面データに代えて、もしくは、路面データと共に、加速度センサ12の出力電圧波形のデータを受信機21に送信する。例えば、データ生成部13cにて加速度センサ12の検出信号の生データを所定のプロトコルに変換したものを出力電圧波形のデータとして生成し、ダイアグ履歴に関するデータとしてRF送信回路16に伝えて送信させる。そして、受信機21は、出力電圧波形のデータを受信すると、この出力電圧波形に基づいて、衝撃を受ける等によってタイヤ3に異常が発生し得る状況となったことの検知やタイヤ3に異常が発生した可能性があることの検知を行う。この検知手法については、第1実施形態と同様である。
 そして、受信機21にてタイヤ3に異常が発生した可能性があることを検知すると、それをダイアグ履歴として図示しない内蔵メモリなどに記憶しておくと共に、必要に応じて報知装置22に伝えてダイアグ履歴もしくはタイヤ3に異常が発生した可能性があることを報知させる。
 このように、タイヤマウントセンサ1ではなく車体側システム2において、タイヤ3に異常が発生し得る状況となったことの検知やタイヤ3の異常が発生した可能性があることを検知し、ダイアグ履歴として記憶しておくようにすることもできる。このようにしても、第1実施形態と同様の効果を得ることが可能となる。
 なお、タイヤマウントセンサ1からは、路面データを取得しつつ加速度センサ12の出力電圧波形のデータが送信されるようにしているが、単に加速度センサ12の出力電圧波形のデータのみが送信されるようにすることもできる。その場合、タイヤマウントセンサ1では路面状態の検出を行わずに、その機能を車体側システム2に持たせることも可能となる。このようにすれば、タイヤマウントセンサ1では、単に加速度センサ12の出力電圧波形のデータを送信するだけですむため、装置の簡素化をはかることが可能となり、消費電力低減が可能となって、電源11として用いられる電池の寿命向上などを図ることも可能となる。
 (第3実施形態)
 第3実施形態について説明する。本実施形態は、第1実施形態に対してタイヤ3の異常が発生し得る状況となったことの検知の手法を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
 図11に示すように、本実施形態のタイヤマウントセンサ1には、圧力センサ17を備えてある。圧力センサ17は、例えばシリコン基板を用いたダイヤフラム式のセンサによって構成され、タイヤ空気圧に応じた検出信号を出力する。タイヤ空気圧は、タイヤ3が衝撃を受けると、タイヤ3の変形に伴って変化する。したがって、タイヤ空気圧の変化に基づいて、タイヤ3に衝撃を受けたことを検知することができる。例えば、制御部13にて、路面の段差を乗り上げるときにタイヤ空気圧が急増するなど、タイヤ空気圧が大きく変化した後、所定期間が経過して再びタイヤ空気圧が元に戻った場合に、衝撃を受けたと判定している。
 そして、タイヤ空気圧に基づいて衝撃を受けたことを検知した場合、検知前後におけるタイヤ3の1回転中の加速度センサ12の出力電圧波形を比較し、出力電圧波形の変化を調べる。これにより、衝撃によってタイヤ3に傷や凹みなどが発生した場合など、タイヤ3の異常を検知する。
 このように、衝撃を受けたことについてはタイヤ空気圧に基づいて検知し、タイヤ3の異常の有無についてはタイヤ3に加わる振動に基づいて検知する。このような手法を用いても、第1実施形態と同様の効果を得ることができる。
 (他の実施形態)
 本開示は、上記した実施形態に準拠して記述されたが、当該実施形態に限定されるものではなく、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
 例えば、上記実施形態においては、路面状態推定装置100に備えられるタイヤマウントセンサ1にタイヤ3が衝撃を受けて異常が発生した可能性があることの履歴であるダイアグ履歴を記憶するようにした。また、タイヤマウントセンサ1からのデータに基づき、車体側システム2においてダイアグ履歴を記憶するようにしたり、ダイアグ履歴の報知を行うようにした。これは、ダイアグ履歴を記憶するタイヤマウントセンサ1もしくはダイアグ履歴記憶装置に加えてダイアグ報知装置を路面状態推定装置100に組み込んだ場合の例を挙げたに過ぎず、路面状態推定装置100とは別構成としてこれらを構成しても良い。なお、上記実施形態の場合、路面状態推定装置100のうちタイヤ3の異常が発生した可能性を検知し、ダイアグ履歴として記憶しておく部分がダイアグ履歴記憶装置に相当する。また、タイヤマウントセンサ1もしくはダイアグ履歴記憶装置と車体側システム2における受信機21や報知装置22を含めた部分がダイアグ報知装置に相当する。
 また、上記各実施形態に示した路面状態推定装置100では、振動検出部を構成する加速度センサ12の検出信号から接地区間を特定し、接地区間中の検出信号における高周波成分のレベルの算出結果を路面状態が示された路面データとして用いている。しかしながら、これは振動検出部での検出信号を用いて路面状態を検出する手法の一例を示したに過ぎず、振動検出部での検出信号を用いた他の手法によって路面状態を検出しても良い。
 また、振動検出部を加速度センサ12によって構成する場合を例示したが、他の振動検出を行うことができる素子、例えば圧電素子などによって振動検出部を構成することもできる。また、電源11についても、電池に限らず、発電素子などによって構成することもできる。例えば、振動検出発電素子を用いれば、振動検出発電素子によって振動検出部を構成しつつ電源11を構成することもできる。
 また、上記第2実施形態の場合、受信機21にて、加速度センサ12の出力電圧波形に基づきタイヤ3が衝撃を受けたことの検知やタイヤ3に異常が発生した可能性があることの検知、さらにはダイアグ履歴の記憶を行う制御部としての役割を果たしている。しかしながら、これは一例を示したに過ぎず、受信機21とは別に制御部を備えても良いし、ブレーキECUなどの他のECUを制御部として機能させるようにしても良い。

Claims (10)

  1.  タイヤ(3)の裏面に取り付けられるタイヤマウントセンサであって、
     前記タイヤの振動の大きさに応じた出力電圧を検出信号として出力する振動検出部(12)と、
     前記振動検出部の検出信号が示す出力電圧波形の変化に基づいて、前記タイヤが衝撃を受けたことを検知すると共に、該検知前後において前記出力電圧を比較することで、前記タイヤの異常が発生した可能性を検知する信号処理部(13)と、を有しているタイヤマウントセンサ。
  2.  タイヤ(3)の裏面に取り付けられるタイヤマウントセンサであって、
     前記タイヤの振動の大きさに応じた出力電圧を検出信号として出力する振動検出部(11)と、
     前記タイヤ内におけるタイヤ空気圧を検出する圧力センサ(17)と、
     前記タイヤ空気圧の変化に基づいて、前記タイヤが衝撃を受けたことを検知すると共に、該検知前後において前記振動検出部の出力電圧を比較することで、前記タイヤの異常が発生した可能性を検知する信号処理部(13)と、を有しているタイヤマウントセンサ。
  3.  前記信号処理部は、前記タイヤ空気圧の変化を検知し、該タイヤ空気圧の変化を検知した後に、該検知の前の前記タイヤ空気圧に戻ると、前記タイヤが衝撃を受けたことを検知する請求項2に記載のタイヤマウントセンサ。
  4.  前記信号処理部は、車両が平坦路のときの前記出力電圧波形を比較のための基本波形として、該基本波形に対して前記出力電圧波形が所定値以上大きくなったときに、前記タイヤが衝撃を受けたことを検知する請求項1ないし3のいずれか1つに記載のタイヤマウントセンサ。
  5.  前記信号処理部は、前記検知前後において、前記タイヤの1回転中における前記出力電圧波形同士もしくはその周波数解析結果を比較することで、前記タイヤの異常が発生した可能性を検知する請求項1ないし4のいずれか1つに記載のタイヤマウントセンサ。
  6.  前記タイヤの異常の可能性が検知されると、ダイアグ履歴として記憶しておく記憶部(14)を有している請求項1ないし5のいずれか1つに記載のタイヤマウントセンサ。
  7.  外部からの指令コマンドを受信する受信部(15)と、
     前記ダイアグ履歴に関するデータの送信を行う送信部(16)とを含み、
     前記受信部が前記指令コマンドを受信すると、前記制御部は、前記記憶部に記憶された前記ダイアグ履歴を読出し、前記送信部より前記ダイアグ履歴に関するデータを送信させる請求項6に記載のタイヤマウントセンサ。
  8.  請求項7に記載され、前記ダイアグ履歴に関するデータの送信を行う送信部(16)を備えた前記タイヤマウントセンサと、
     車体側に備えられ、前記ダイアグ履歴に関するデータの受信を行う受信機(21)と、前記ダイアグ履歴に関するデータの報知を行う報知装置(22)と、を有するダイアグ報知装置。
  9.  タイヤ(3)の裏面に取り付けられ、前記タイヤの振動の大きさに応じた出力電圧を検出信号として出力する振動検出部(11)と、前記振動検出部の検出信号が示す出力電圧波形のデータを生成する信号処理部(13)と、前記出力電圧波形のデータの送信を行う送信部(16)と、を備えたタイヤマウントセンサ(1)と、
     車体側に備えられ、前記出力電圧波形のデータの受信を行う受信機(21)と、前記出力電圧波形のデータが示す前期出力電圧波形の変化に基づいて、前記タイヤが衝撃を受けたことを検知すると共に、該検知前後において前記出力電圧を比較することで、前記タイヤの異常が発生した可能性を検知するし、前記タイヤの異常の可能性が検知されると、ダイアグ履歴として記憶しておく車両側システム(2)と、を有するダイアグ履歴記憶装置。
  10.  請求項9に記載のダイアグ履歴記憶装置と、
     前記ダイアグ履歴に関するデータの報知を行う報知装置(22)と、を有するダイアグ報知装置。
PCT/JP2017/023197 2016-08-12 2017-06-23 タイヤマウントセンサ、ダイアグ履歴記憶装置およびダイアグ報知装置 WO2018030000A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/324,132 US11065920B2 (en) 2016-08-12 2017-06-23 Tire-mounted sensor, diagnosis history memory device and diagnosis notification device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-159000 2016-08-12
JP2016159000 2016-08-12
JP2017115278A JP6547793B2 (ja) 2016-08-12 2017-06-12 タイヤマウントセンサ、ダイアグ履歴記憶装置およびダイアグ報知装置
JP2017-115278 2017-06-12

Publications (1)

Publication Number Publication Date
WO2018030000A1 true WO2018030000A1 (ja) 2018-02-15

Family

ID=61161873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023197 WO2018030000A1 (ja) 2016-08-12 2017-06-23 タイヤマウントセンサ、ダイアグ履歴記憶装置およびダイアグ報知装置

Country Status (1)

Country Link
WO (1) WO2018030000A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005075315A (ja) * 2003-09-04 2005-03-24 Toyota Motor Corp 車輪状態検出装置
JP2006220422A (ja) * 2005-02-08 2006-08-24 Toyota Motor Corp タイヤの衝撃影響推定装置
JP2009126460A (ja) * 2007-11-27 2009-06-11 Sumitomo Rubber Ind Ltd タイヤの故障検出方法
US20140257629A1 (en) * 2013-03-08 2014-09-11 The Goodyear Tire & Rubber Company Tire load estimation system using road profile adaptive filtering

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005075315A (ja) * 2003-09-04 2005-03-24 Toyota Motor Corp 車輪状態検出装置
JP2006220422A (ja) * 2005-02-08 2006-08-24 Toyota Motor Corp タイヤの衝撃影響推定装置
JP2009126460A (ja) * 2007-11-27 2009-06-11 Sumitomo Rubber Ind Ltd タイヤの故障検出方法
US20140257629A1 (en) * 2013-03-08 2014-09-11 The Goodyear Tire & Rubber Company Tire load estimation system using road profile adaptive filtering

Similar Documents

Publication Publication Date Title
JP6547793B2 (ja) タイヤマウントセンサ、ダイアグ履歴記憶装置およびダイアグ報知装置
JP6620787B2 (ja) 路面状態推定装置
JP6627670B2 (ja) タイヤマウントセンサおよびそれを含む路面状態推定装置
WO2017141585A1 (ja) 車両用危険回避装置
JP6614073B2 (ja) 路面状態推定装置
WO2017159012A1 (ja) ハイドロプレーニング判定装置
EP3013611B1 (en) Method and malfunction detection system for detecting a malfunction of a pressure sensor of a tire pressure monitoring system of a vehicle
US10726714B2 (en) Wheel position detecting device
JP2018009974A (ja) タイヤマウントセンサおよびそれを含む路面状態推定装置
US9688107B2 (en) Tire pressure decrease detection apparatus and method, and computer readable medium therefor
WO2017061397A1 (ja) タイヤマウントセンサおよびそれに用いられるセンサ装置
WO2019168031A1 (ja) 路面状態判別装置
WO2019103095A1 (ja) 路面状態判別装置
EP3666554A1 (en) Tire wear state estimation system and method
US9528899B2 (en) Tire pressure decrease detection apparatus and method, and computer readable medium therefor
JP2018026111A (ja) タイヤマウントセンサおよびチェーン規制管理システム
WO2018030001A1 (ja) 路面状態推定装置
WO2018003693A1 (ja) タイヤマウントセンサおよびそれを含む路面状態推定装置
WO2018030000A1 (ja) タイヤマウントセンサ、ダイアグ履歴記憶装置およびダイアグ報知装置
WO2018025530A1 (ja) タイヤマウントセンサおよびチェーン規制管理システム
WO2018012251A1 (ja) 車輪位置検出装置
JP2006168568A (ja) 路面粗さ検出装置
KR20130022001A (ko) Tpms 센서의 위치 판별 방법 및 이를 이용한 tpms 센서의 위치 판별 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839074

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17839074

Country of ref document: EP

Kind code of ref document: A1