WO2018029929A1 - Momentum detection device - Google Patents

Momentum detection device Download PDF

Info

Publication number
WO2018029929A1
WO2018029929A1 PCT/JP2017/018138 JP2017018138W WO2018029929A1 WO 2018029929 A1 WO2018029929 A1 WO 2018029929A1 JP 2017018138 W JP2017018138 W JP 2017018138W WO 2018029929 A1 WO2018029929 A1 WO 2018029929A1
Authority
WO
WIPO (PCT)
Prior art keywords
clock
drive
detection
vibrating body
signal
Prior art date
Application number
PCT/JP2017/018138
Other languages
French (fr)
Japanese (ja)
Inventor
和夫 小埜
俊 大島
都留 康隆
敏明 中村
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2018029929A1 publication Critical patent/WO2018029929A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5726Signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5733Structural details or topology
    • G01C19/5755Structural details or topology the devices having a single sensing mass
    • G01C19/5762Structural details or topology the devices having a single sensing mass the sensing mass being connected to a driving mass, e.g. driving frames
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up

Definitions

  • the present invention relates to inertia detection technology.
  • a vibration-type inertial sensor (hereinafter sometimes referred to as an inertial detection device) is a type of inertial sensor that detects physical quantities such as acceleration or angular velocity of an object using changes in vibration amplitude or vibration frequency of an inertial body. Sensor.
  • the vibration type angular velocity sensor is capable of observing the state of an object such as a change in angular velocity and a tilt angle exerted by a substance.
  • the vibration type inertial sensor can be used for various purposes such as control of vehicles such as automobiles, attitude control or attitude detection of unmanned airplanes or remote control robots, observation of sound waves or seismic waves, acquisition of maintenance information on aged infrastructure, installation on smartphones, etc. Used for applications.
  • inertia sensors are being developed as an element constituting an automatic driving system.
  • the capacity detection type inertial sensor can be realized as a MEMS sensor at a small size and at a low price by applying a MEMS (Micro Electro Mechanical Systems) structure, and therefore, its use is expanding. Since the sensor element uses a material such as silicon and has a high affinity with the detection circuit, there is a manufacturing advantage.
  • This servo control is a control for applying a servo force to the inertial body in order to control the displacement when the inertial body is displaced in the inertial coordinate system in accordance with a change in physical quantity.
  • this servo control is a control for applying a servo voltage to the inertial body from the circuit unit to give a servo force so that the inertial body is in a suitable vibration state.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-201850 (Patent Document 1) is cited as an example of the prior art relating to a capacitance detection type and servo control type inertial sensor. Patent Document 1 describes that a physical quantity detection device includes a signal processing circuit that outputs a feedback voltage, carrier wave signal generation means, and the like.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-201850
  • the resonance frequency of the vibration type inertial sensor element is MEMS
  • the amplitude control of the servo voltage needs to be performed with high accuracy like the frequency.
  • a representative embodiment of the present invention is an inertial detection device including a vibrating body and a drive control unit that drives the vibrating body, wherein the drive control unit is a displacement in a driving direction of the vibrating body.
  • a drive detection signal representing the first clock is sampled with a first clock, and the first clock is generated so that the length of each cycle is different based on the sampled drive detection signal, and two or more of the first clock are generated.
  • a drive signal having a cycle having the same length as a total of a predetermined number of cycles is applied to the vibrating body in order to drive the vibrating body.
  • a high-Q sensor element can be applied to a capacitance detection type and servo control type vibration type inertial sensor without increasing the circuit scale. Therefore, it is possible to provide a vibration type inertial sensor with high cost at a low cost. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
  • Phases of the analog clock source signal, the latch clock, the counter, the drive clock, the delay control clock source signal when the delay control value is 3, and the delay control clock source signal when the delay control value is 5 in the first embodiment of the present invention It is a figure which shows a relationship. The phase relationship between the output of the voltage controlled oscillation circuit, the delay control clock, the amplitude control signal, the delayed amplitude control signals 0 to 7 and the delay amplitude signal when the amplitude delay control value is 2 and the drive clock in the first embodiment of the present invention is shown.
  • FIG. It is a figure which shows the phase relationship of the carrier wave, the analog signal in the time T1, and the analog signal in the time T2 in Embodiment 1 of this invention, and a comparative example.
  • Example 2 of the present invention It is a functional block diagram of the angular velocity detection apparatus to which Example 2 of the present invention is applied. It is a figure which shows the structure of the clock generation circuit in Example 2 of this invention. It is a figure which shows the structure of the delay circuit in Example 2 of this invention. It is a functional block diagram of the angular velocity detection apparatus to which Example 3 of the present invention is applied. It is a functional block diagram of the acceleration detection apparatus to which Example 4 of the present invention is applied. It is a figure which shows the sensor in Example 4 of this invention. It is a figure which shows the equivalent circuit of the sensor in Example 4 of this invention. It is a figure which shows the time change waveform of the voltage which can be observed in the connection of the sensor element and circuit in Example 1 of this invention, and each connection pad.
  • the vibration type angular velocity sensor 1 (SENSOR1) 110 has nine types of electric input / output terminals in total, and controls the angular velocity sensor by applying appropriate signals to the input terminals.
  • Nine types of drive signals DRIVEP and DRIVEN, drive detection signals ASIGDP and ASIGDN, servo voltage signals SERVOP and SERVON, detection signals ASIGSP and ASIGSN, and carrier wave CARRY are all terminals.
  • the above is a functional terminal provided in a general uniaxial angular velocity sensor, and when one sensor element has a plurality of detection axes, the number of terminals increases corresponding to the number of detection axes.
  • the drive signal is used to vibrate the drive mass 150, which is a part of the vibrating body, in the X direction shown in FIG. 1 with a constant frequency and a constant amplitude.
  • the drive detection signals ASIGDP and ASIGDN are signals for detecting the vibration state of the drive mass 150 by changing the capacitance, and the displacement of the vibrating body in the X direction can be obtained from these signals.
  • the carrier wave CARRY is an AC signal for detecting a change in capacitance.
  • an analog front end 109 described later is constituted by a sampling and holding circuit, it often operates at a frequency that is 1 or 0.5 times the carrier frequency. When low frequency noise is removed by synchronous detection, the analog front end 109 may sample and hold at a frequency 0.5 times higher.
  • the servo voltage signal is used to apply an electrostatic force in a direction to cancel the displacement when the detection mass 151 that is a part of the vibrating body is displaced in the Y direction perpendicular to the X direction shown in FIG.
  • the detection mass 151 is displaced in the Y direction.
  • This is detected by detection signal terminals that output detection signals ASIGSP and ASIGSN, and a servo signal is applied to a terminal to which a servo voltage signal is applied in order to cancel the displacement of the detection mass 151.
  • the same carrier wave is also used to detect the displacement of the detection mass 151 by changing the capacitance.
  • the vibration type angular velocity sensor 110 is the same type as the angular velocity sensor that is connected to and controlled by the circuit of the first embodiment of the present invention.
  • a displacement 114 shown in FIG. 1 is a time change of a voltage waveform representing a displacement of the driving mass 150 in the X direction.
  • the displacement 115 obtained from the detection signals ASIGSP and ASIGSN is a time change of the voltage waveform representing the displacement of the detection mass 151 in the Y direction.
  • the displacement 115 includes a voltage waveform 118 before the servo voltage is applied and a voltage waveform 119 after the servo voltage is applied. In the state where the servo control for the detection mass 151 is working correctly, the amplitude of the detection signal becomes small as the waveform 119. This indicates that the displacement of the detection mass 151 is small.
  • the circuit block 112 that performs appropriate feedback control based on the displacement 114 of the drive mass generates a drive control signal 116.
  • FIG. 1 shows a time change of the drive control signal 116. It is desirable that the phase of the drive control signal 116 is advanced by 90 degrees compared to the displacement 114. This is because when the vibration frequency of the drive mass 150 matches the resonance frequency determined by the mechanical structure of the drive mass 150, the drive mass displacement is delayed by 90 degrees with respect to the drive signal.
  • the driving mass 150 is driven at the resonance frequency, the energy applied for driving is converted into the oscillating motion of the driving mass 150 with a minimum loss, which contributes to a reduction in power.
  • the drive control signal 116 is input to the digital-analog converter (DAC) 101, and drive signals DRIVEP and DRIVEN are generated. The above is a general control loop of the driving mass 150.
  • DAC digital-analog converter
  • the circuit block 113 that performs appropriate feedback control based on the displacement 115 of the detection mass 151 outputs a sensor output SENSOROUT and a servo control signal 117.
  • the sensor output SENSOROUT is output as an amplitude component of the signal component VSIG121 of the servo control signal 117 (showing the time change of VSIG121 in FIG. 1).
  • the amplitude of the VSIG 121 is proportional to the arithmetic product of the time derivative V of the displacement 114 in the X direction of the driving mass 150 and RATE, and the frequency thereof is the same as that of the displacement 114.
  • the phase of the VSIG 121 is shifted by 90 degrees compared to the displacement 114 when the delay in the analog front end 109 (ANALOG) and the circuit block 113 (YCTRL) is assumed to be zero. If the delay in the circuit block is not zero, the circuit block 113 provides an appropriate delay for the 90 degree phase shift.
  • the quadrature component VERR 120 (showing the time change of VERR 120 in FIG. 1) is in phase with the displacement 114, and the amplitude is also proportional.
  • the servo control signal 117 is a sum of VSIG 121 and VERR 120, which is input to the DAC 101, and SERVOP and SERVON are output.
  • the DAC 101 may be basically the same type as that for drive control, but the number of constituent bits is generally different. The above is the control loop of the detection mass 151.
  • the control of the vibration type angular velocity sensor requires two loops of the drive control which is the control loop of the drive mass 150 and the detection control which is the control loop of the detection mass 151, and how these are highly accurate and highly stable. This will affect the control and stability of the angular velocity sensor output.
  • FIG. 2 shows the relationship between the amplitude gain of the sensor element and the drive frequency, and the relationship between the drive frequency control signal and the drive signal frequency.
  • a sensor element is constituted by a vibrating body having a secondary transfer characteristic, and the amplitude gain is designed to take a maximum value at a resonance frequency f0.
  • the drive frequency control value is sparse (that is, the step of the settable drive frequency value is large)
  • the drive control is performed at a frequency close to f0 but different from f0. There is no choice but to get a sufficient amplitude gain of the sensor element.
  • the drive frequency control value can be set sufficiently densely (that is, the step of the settable drive frequency value is sufficiently small)
  • the amplitude of the sensor element The gain can be utilized to the maximum. Therefore, the drive amplitude can be increased with a small input energy, which contributes to low power consumption.
  • the control frequency step is small, the error of the drive frequency control is reduced, so that the stability is improved and the signal-to-noise ratio of the sensor output can be improved. That is, in the drive frequency control, it is a problem to design a control circuit so that the control steps can be sufficiently dense according to the resonance frequency of the sensor element.
  • FIG. 3 schematically shows the distribution of the resonance frequency f0 and the distribution of the Q value of the sensor element.
  • the left side of FIG. 3 shows the distribution of the resonance frequency f0, where the horizontal axis is f0 and the vertical axis is the number of sensor elements.
  • the right side of FIG. 3 shows the distribution of the Q value, the horizontal axis is the Q value, and the vertical axis is the number of sensor elements. Due to manufacturing variations of sensor elements, the f0 and Q values have a distribution centered on the typical value TYPICAL.
  • An ideal control is to make the controllable range 152 indicated by hatching wider than this.
  • FIGS. 3A and 3B show examples of the controllable range 152 when ideal control and inappropriate control are performed, respectively.
  • the ideal control is to reduce the frequency control error as shown in FIG. 2 and widen the controllable range as shown in FIG. 3, but this is a contradictory request. That is, assuming a certain circuit scale, the controllable range must be narrowed if the control error is reduced, and the control error must be increased if the controllable range is widened. It has been a problem with the conventional control method to achieve both of these.
  • the Q value will be described in a little more detail with reference to FIG.
  • f0 is defined as the resonance frequency
  • ⁇ f is defined as a difference between two frequency points at which the energy is halved compared to the resonance energy at the resonance frequency. That is, it can be said that the Q value increases in proportion to f0.
  • FIG. 4A shows a relationship 153 between the Q value and ⁇ f when a certain f0 is assumed. If a sensor element having a large Q value is used, the loss of input energy can be reduced as described above, which contributes to a reduction in power consumption. However, if the Q value is increased, ⁇ f becomes smaller.
  • ⁇ f is smaller than 1 Hz. This means that in order to properly control a sensor element having a Q value exceeding 10,000, it is necessary to perform frequency control with an error smaller than 1 Hz (that is, in steps smaller than that).
  • the frequency control is performed with high accuracy and the variation in f0 is assumed to be, for example, several kHz, the control does not fail, leading to an increase in the circuit scale, which has led to an increase in cost.
  • FIG. 5 and FIG. 6 are used to explain how the above problem is solved in the first embodiment. This is based on a method of increasing the sampling rate and reducing the control error as a method of expanding the controllable range while improving the frequency control accuracy with a circuit scale equivalent to the conventional one.
  • FIG. 5 is a diagram for explaining comparison of noise intensity between normal sampling and oversampling.
  • the relationship among the gain curve 500 of the sensor element, the overall noise intensity 501 at the time of oversampling, the in-band noise intensity 503, the overall noise intensity 502 at the time of normal sampling, and the in-band noise intensity 504 is shown.
  • the total noise intensity 501 at the time of oversampling and the total noise intensity 502 at the time of normal sampling have the same area, but the total noise intensity 501 at the time of oversampling is distributed over a wide frequency region because the sampling frequency is high. For this reason, during oversampling, the noise intensity per frequency is smaller than during normal sampling.
  • the in-band noise intensity becomes a problem.
  • the in-band noise intensity 503 during oversampling can be reduced.
  • the in-band noise can be halved by doubling the sampling rate.
  • the first embodiment reduces the frequency control error.
  • FIG. 6 is a diagram showing the relationship between the number of frequency control steps and the normalization error when the control sampling rate Fs is changed.
  • the controllable frequency range when compared with the same noise intensity, can be increased as the control sampling rate Fs is increased. Further, when compared with the same number of frequency control steps and the same controllable frequency range, the noise intensity decreases as the control sampling rate Fs increases. That is, noise intensity can be reduced by making Fs sufficiently larger than f0.
  • the first embodiment achieves both a wide controllable frequency range and detailed frequency control.
  • the inertial detection device according to the first embodiment is an angular velocity sensor of a capacity detection type and a uniaxial servo control system.
  • FIG. 7 is a functional block diagram showing a configuration of the vibration type angular velocity detection device according to the first embodiment of the present invention.
  • the drive control circuit 100 is a circuit that performs drive control of the sensor 110.
  • the angular velocity signal detection circuit block 143 performs feedback control of the detection mass 151 according to the input angular velocity, and calculates and outputs a sensor output SENSOROUT indicating the angular velocity.
  • the angular velocity signal detection circuit block 143 receives the detection control signal YCTRL from the drive control circuit 100, receives the detection mass displacement outputs ASIGSP and ASIGSN of the sensor 110 in synchronization with this signal, and receives the detection control signals SERVOP and SERVON according to the detection control signals SERVOP and SERVON.
  • This is a general angular velocity output control block that controls the detected mass and calculates and outputs the sensor output SENSOROUT.
  • the detected mass displacement signals ASIGDP and ASIGDN from the sensor 110 are analog signals, and the analog front end 109 is a circuit that appropriately amplifies and converts them.
  • P and N indicate that the detected mass displacement signal is a differential input to the analog front end 109.
  • a circuit block that receives an input of the digital drive mass displacement signal DSIGD, performs quadrature detection based on the quadrature detection timing signal CTRCLK1, and outputs the in-phase component INPHASE and the quadrature phase component QUAD is a quadrature detection circuit DEMOD (106).
  • the quadrature detection circuit 106 includes two multipliers 102. One multiplier 102 multiplies DSIGD and CTRCLK and outputs INPHASE, and the other multiplier 102 multiplies DSIGD and a clock that is 90 degrees out of phase with CTRCLK and outputs QUAD.
  • a circuit that outputs the frequency control signal PIDS and the amplitude control signal PIDC with the input of INPHASE and QUAD is the control circuit 105.
  • the control circuit 105 is composed of a PID (ProportionalifIntegral Differential) controller, and in calculating the proportional component P, the integral component I, and the differential component D, a coefficient CTRLVALS necessary for each calculation is input from the memory 111 to the control circuit 105. .
  • PID ProportionalifIntegral Differential
  • the frequency control signal PIDS is input to the clock generation circuit CLKGEN1 (104). Based on the input frequency control signal PIDS and the control multiplier CTRLVALS from the memory 111, the clock generation circuit CLKGEN1 (104) modulates CTRCLK2 serving as a latch clock of the delay circuit 103 and the drive signal modulation circuit DMOD (107). A clock DCLKD and an analog circuit clock CLKA are generated. The role and phase relationship of each clock will be described in the explanation of the operation of each circuit block.
  • the analog circuit clock CLKA is amplified to an appropriate analog signal by the analog driver 108 and input to the sensor 110 as a carrier wave CARRY.
  • the analog circuit clock is a reference clock for the analog front end 109. That is, the carrier wave and the operation timing of the analog circuit are synchronized.
  • the amplitude control value signal PIDC is input to the delay circuit 103 for appropriate delay.
  • the delay circuit 103 latches PIDC with CTRCLK2, delays PIDC based on the delay information DCTR2, and outputs it as a delay drive amplitude DAMP.
  • the drive signal modulation circuit 107 includes a multiplier 102 that multiplies DAMP and the modulation clock DCLKD, and outputs a drive modulation signal DRIVE0 as a multiplication result.
  • the digital-analog conversion circuit DAC (101) converts DRIVE0 into drive signals DRIVEP and DRIVEN and inputs them to the sensor 110.
  • P and N represent positive and negative, and DRIVEP and DRIVEN have the same amplitude and have a phase difference of 180 degrees (that is, the amplitudes are inverted from each other).
  • the feature of the circuit function block described above is that there are no filters that lower the sampling rate after the analog front end 109, after the quadrature detection circuit 106, and after the control circuit 105, respectively.
  • this configuration it is possible to configure a control loop without reducing the sampling rate Fs of the analog front end 109, and to reduce the noise intensity by utilizing the oversampling effect as described with reference to FIGS.
  • the oversampling rate Fs has an effect of reducing noise if Fs> f0, even if a filter circuit is inserted for the purpose of lowering the sampling rate as long as this condition is satisfied, it is included in the range of the first embodiment. .
  • f0 is the resonance frequency of the sensor 110.
  • FIG. 8 is a diagram illustrating a specific configuration example of the clock generation circuit 104 according to the first embodiment of the present invention.
  • the frequency control signal PIDS is input to the voltage controlled oscillation circuit VCO (122).
  • the voltage controlled oscillation circuit 122 has a frequency variable range controlled by the voltage controlled oscillation circuit control coefficient VCTRL, and generates a clock CLK0 having a frequency corresponding to PIDS within the frequency range.
  • the voltage-controlled oscillation circuit control coefficient VCCTRL is set so that the frequency of the generated analog clock CLKA is at least twice the natural frequency of the vibration body of the sensor 110 including the drive mass 150 and the detection mass 151. Is set.
  • the voltage-controlled oscillation circuit control coefficient VCCTRL is set so that the voltage-controlled oscillation circuit 122 can generate a clock CLK0 having a frequency 16 times the natural frequency of the vibrating body according to PIDS, and the natural vibration of the vibrating body is determined from the clock CLK0.
  • An analog clock CLKA having a frequency eight times the number may be generated (see FIGS. 17 to 20 and the like).
  • the frequency of the analog clock CLKA in the above description is, for example, an average calculated from the number of periods included in a certain period. May be a typical frequency.
  • the counter circuit 123 generates an analog clock original signal CLKA0, a modulation clock original signal DCLKD0, a K-times count clock CLKK, and an L-times count clock CLKL by counting up or counting down using CLK0 as a count clock.
  • the counter 124 generates a clock CTRCLK10 obtained by latching and delaying DCLKD0 with CLKL based on the delay information DCTRL1.
  • each cycle of the analog clock CLKA has a length corresponding to the size of each sample value of the quadrature component QUAD, and the length differs for each cycle (see FIG. 17). .
  • FIG. 9 is a diagram illustrating a specific configuration example of the voltage controlled oscillation circuit 122 according to the first embodiment of the present invention.
  • the voltage control current output circuit 126 outputs a reference current IREF based on the oscillation circuit control coefficient VCTRL.
  • the digital-analog conversion circuit 127 generates a voltage signal DAC0 based on the frequency control signal PIDS.
  • An oscillation circuit that generates the clock CLK0 based on IREF and DAC0 is OSCGEN (128).
  • the oscillating circuit 128 is basically a general oscillating circuit having a mechanism for adjusting the charging time of the capacitor with current and voltage and thereby changing the oscillating frequency. In the first embodiment, even if the frequency step is increased by oversampling, the noise intensity can be lowered. Therefore, the number of control steps of the voltage control current output circuit 126 and the digital / analog conversion circuit 127 may be reduced. Therefore, the circuit scale of the voltage control current output circuit 126 and the digital-analog conversion circuit 127 can be reduced, which contributes to cost reduction.
  • FIG. 10 is a diagram illustrating a specific configuration example of the voltage controlled current output circuit 126 according to the first embodiment of the present invention.
  • the voltage control current output circuit 126 has a decoder 129 that decodes VCOCRL to obtain an 8-bit output, and a current source CS (130) that determines ON / OFF of the output current by the decoder output. For example, among the 8 bits from ⁇ 0> to ⁇ 7>, the decoder 129 is ON only for ⁇ 0> and the rest is OFF, ⁇ 1: 0> is ON and the rest is OFF, or ⁇ 2: 0> is ON And outputs the value that the rest is OFF. As a result, according to the output of the decoder 129, the magnitude of IREF can be changed in 8 ways from 1 CS output to 8 outputs.
  • 10 is an example of 8-gradation current output by a 3-bit decoder, but this is an example, and the number of bits can be freely changed by the system. For example, if VCCTRL is 4 bits, the current output can be changed to 16 gradations, and if 5 bits, it can be changed to 32 gradations. However, increasing the number of bits is not preferable because the circuit scale increases. According to the first embodiment, the number of bits can be reduced due to the oversampling effect. Therefore, it is desirable to set the number of bits to the smallest within a range that can satisfy the target performance of the system.
  • FIG. 11 is a diagram illustrating a specific configuration example of the analog front end 109 according to the first embodiment of the present invention.
  • the C / V conversion circuit 131 is a circuit block that amplifies and converts the input of the analog amplitude signals ASIGDP and ASIGDN into voltage signals CVDP and CVDN, respectively.
  • the C / V conversion circuit 131 operates in synchronization with the analog clock CLKA.
  • a switched capacitor circuit having a sampling hold circuit may be applied.
  • An amplifier circuit 132 that amplifies the differential C / V conversion circuit outputs CVDP and CVDN and outputs differential voltage signals of AMPDP and AMPDN follows the C / V conversion circuit 131.
  • the amplifier circuit 132 may be inserted when the gain of the C / V conversion circuit 131 is insufficient, and may not be required when the amplification is not insufficient.
  • the amplifier circuit 132 is preferably a fully differential amplifier that amplifies the differential input to obtain a differential output. By using a fully differential amplifier, common-mode noise can be reduced and the dynamic range can be widened.
  • the amplifier circuit 132 also operates in synchronization with the analog clock CLKA.
  • a circuit that converts the differential outputs AMPDP and AMPDN of the amplifier circuit 132 into a digital signal DSIGD is an analog-digital conversion circuit ADC (133).
  • ADCs such as ⁇ ADC, SAR ADC, and cyclic ADC are known as ADCs, but any ADC circuit may be applied in the first embodiment.
  • the ADC 133 also operates in synchronization with the analog clock CLKA. All circuit blocks of the C / V conversion circuit 131, the amplifier circuit 132, and the ADC 133 are synchronized with CLKA.
  • a unique clock may be generated based on CLKA in each circuit block, but details are omitted.
  • FIG. 12 is a diagram illustrating a specific configuration example of the delay circuit 103 according to the first embodiment of the present invention.
  • the delay circuit 103 has a configuration in which eight data latch circuits DL (134) that latch the amplitude control signal PIDC at the timing of the latch clock CTRCLK2 are connected in series.
  • the output of each data latch circuit is an 8-bit delay amplitude control signal PIDCD ⁇ 7: 0>.
  • ⁇ 0> has a delay of one clock of CTRCLK2 with respect to PIDC.
  • ⁇ 1> has two clocks
  • ⁇ 2> has three clocks, and similarly, the delay amount increases in units of CTRCLK2.
  • a circuit that selects one signal from PIDCD ⁇ 7: 0> by DCTR 2 is a MUX circuit 135.
  • a delay drive amplitude signal sequence DAMP having a delay designated by DCTR2 is obtained.
  • eight delay amounts can be set because it is assumed that the ACLK operates at a frequency eight times the sensor resonance frequency f0.
  • the oversampling ratio is set to 8 times.
  • the number of data latches 134 in series needs to be increased according to the oversampling ratio. For example, when the oversampling ratio is 16 times, a 16-stage data latch 134 is required.
  • the oversampling ratio is 8 times
  • FIG. 13 is a diagram illustrating a specific configuration of the digital-analog conversion circuit DAC according to the first embodiment of the present invention.
  • the decoder 137 that decodes the input of the drive modulation signal DRIVE0 selects one of the complementary signals SELP ⁇ 0: m> and SELN ⁇ 0: m> according to the value of DRIVE0.
  • SELP and SELN are input to the voltage selection circuit VSEL136.
  • the voltage selection circuit VSEL136 is configured to select and output one voltage obtained by dividing the voltage difference between the high-voltage side reference voltage VREFH and the low-voltage side reference voltage VREFL by one switch 139 by connecting the resistors RES138 in series. .
  • VREFH and VREFL are not particularly required to be the same as the power supply voltage, and are preferably set according to the sensor characteristics.
  • the complementary output of the VSEL 136 is adjusted in output impedance and output amplitude by the analog buffer 140 and output to the sensor as drive signals DRIVEP and DRIVEN.
  • the analog buffer 140 When a high voltage is required as the driving voltage, the analog buffer 140 must also operate as a level conversion circuit, and the first embodiment includes such a case where a high voltage is output.
  • the length of one cycle is a predetermined number of cycles of the analog clock CLKA. In the embodiment, it is the same as the total length of 8 cycles).
  • FIG. 14 is a diagram illustrating a specific configuration example of the switch 139 included in the DAC according to the first embodiment of the present invention.
  • the switch 139 has a switch (sw1) 144.
  • One switch 144 is a switch that selects whether or not to output in1 as outp when the SELP and the input signal in are input as ck1 and in1, respectively, according to the value of ck1.
  • the other switch 144 is a switch that selects whether or not to output in2 as outn according to the value of ck2 when SELN and the input signal in are input as ck2 and in2, respectively.
  • FIG. 15 is a diagram illustrating a specific configuration example of the switch 144 according to the first embodiment of the present invention.
  • the switch 144 includes a PMOS 141 that is a P-type MOS transistor and an NMOS 142 that is an N-type MOS transistor.
  • the selection signal CK (corresponding to ck1 and ck2 in FIG. 14) is inverted in logic by the inverter and input to the gate g of the PMOS 141, and input to the gate g of the NMOS 142 without being inverted.
  • the input of the switch 144 (corresponding to in1 and in2 in FIG. 14) is SWin, which is input to the sources s of the PMOS and NMOS, and the output SWout of the switch 130 (corresponding to outp and outn in FIG. 14) is the PMOS 141 and NMOS 142 Connected to the drain d. That is, by using PMOS and NMOS as switches, the switch 144 is configured as an analog switch that outputs all analog voltage levels between VREFH and VREFL in FIG. 13 depending on CK.
  • FIG. 16 is a diagram showing an equivalent circuit of the sensor 110 according to the first embodiment of the present invention.
  • the equivalent circuit of the sensor 110 has a configuration in which a total of eight capacitances share one terminal as an input terminal for the carrier CARRY.
  • Capacitances Cxfp and Cxfn including input terminals of drive voltage signals DRIVEP and DRIVEN are a positive side drive capacity and a negative side drive capacity, respectively.
  • the electrostatic force that drives the driving mass 150 is proportional to (DRIVEP-CARRY) ⁇ 2- (DRIVEN-CARRY) ⁇ 2.
  • the driving mass 150 is driven by this electrostatic force.
  • the electrostatic capacitances Cxsp and Cxsn to which the drive detection signals ASIGDP and ASIGDN are connected are a positive drive detection capacitor and a negative drive detection capacitor, respectively.
  • the displacement of the driving mass 150 can be detected by Cxsp-Cxsn.
  • the electrostatic capacities Cyfp and Cyfn to which the servo voltage signals SERVOP and SERVON are connected are a positive servo capacity and a negative servo capacity, respectively.
  • the electrostatic force applied when servo-controlling the detection mass 151 is proportional to (SERVOP-CARRY) ⁇ 2- (SERVON-CARRY) ⁇ 2.
  • Capacitances Cysp and Cysn to which the detection signals ASIGSP and ASIGSN are connected are a positive-side detection capacitor and a negative-side detection capacitor, respectively.
  • the displacement of the detection mass 151 can be detected by Cysp-Cysn.
  • FIG. 17 is a diagram schematically showing operation waveforms of the quadrature detection circuit 106 in the first embodiment and the comparative example of the present invention.
  • FIG. 17A the operation waveform of the present embodiment shown in FIG. 17A is compared with the comparative example shown in FIG.
  • FIG. 17A show the relationship among the analog clock CLKA, the drive amplitude information DSIGD digitally converted by the ADC, the quadrature phase component QUAD, and the in-phase component INPHASE in each example.
  • Each data point is indicated by a dot, and the timing of the DSIGD data point is the same as the rising edge of CLKA. This indicates that data is being sampled at the rising edge of the analog clock CLKA.
  • FIG. 1 As apparent from the fact that there are 8 data points for one DSIGD period and the DSIGD period is the resonance oscillation period of the drive mass, FIG.
  • the QUAD that is the second harmonic component of the sine and the INPHASE that is the second harmonic component of the cosine are not filtered, and the oversampling ratio is 8 times.
  • the frequency control value can take a different value for each data point
  • the time interval of each sampling point that is, the period of the analog clock CLKA is different for each clock.
  • the comparative example in the QUAD signal and the INPHASE signal, since the second harmonic component is removed by the filter, there is only one control point during the resonance period. Therefore, the clock cycle of CLKA does not change at least during one resonance cycle.
  • the greatest difference between the first embodiment and the comparative example is the number of QUAD and INPHASE data points.
  • the analog sampling interval changes even within one resonance cycle.
  • a signal obtained by setting CLKA to a desired voltage amplitude by an analog buffer is a carrier CARRY. Therefore, the same characteristics as those of CLKA are observed in the time waveform of the carrier.
  • FIG. 18 is a diagram illustrating operation waveforms of the clock generation circuit CLKGEN in the first embodiment.
  • the counter COUNT0 is configured as a count-up type counter, and performs a count-up operation at the rising edge of CLK0.
  • a 3-bit counter (count from 0 to 7) is shown. The number of bits of the counter may be changed depending on the design.
  • the analog clock source signal CLKA0 is a second harmonic of CLK0 (that is, a signal whose one cycle corresponds to two cycles of CLK0), and the drive clock source signal DCLKD0 is a sixteenth harmonic of CLK0.
  • the frequency control signal PIDS is also updated at the rising edge of CLKA0 which is the original signal of CLKA.
  • the oscillation frequency of CLK0 changes according to PIDS, and the count-up timing also changes accordingly.
  • the time interval for counting up changes.
  • a period of one period of CLKD0 is represented by 0.5 * T03 + 2 * (T10 + T11 + T12) + 1.5 * T13 as shown in FIG.
  • FIG. 19 is a diagram showing operation waveforms of a conventional clock generation circuit. This is a comparative example for comparison with the operation waveform of the first embodiment shown in FIG.
  • the time of one period of DCLKD0 is expressed, in the first embodiment, it is expressed by the sum of five types of times T03, T10, T11, T12 and T13, whereas in the comparative example, it is expressed by two types of times T0 + T1. Therefore, in the comparative example, the gradation of time that can be expressed is sparse compared to the first embodiment. In other words, in the comparative example, when performing drive control, the gradation of frequency control becomes sparse, which means that an error from the resonance frequency of the sensor increases. Since the number of bits of the counter is exactly the same in the first embodiment and the comparative example, the first embodiment shows that the noise is reduced by devising the control method without increasing the circuit scale.
  • FIG. 20 is a diagram illustrating a method of generating the delay clock CTRCLK10 in the clock generation circuit CLKGEN based on the waveforms.
  • CTRCLK10 is a clock generated by delaying the drive clock original signal DCLKD0 based on the delay amount control multiplier DCTRL1.
  • the eighth harmonic of CLKA0 is DCLKD0
  • FIG. 20 shows an example in which the oversampling ratio is eight. Therefore, the delay amount must be set from 0 to 7 in units of one clock of CLKA0. Therefore, in the first embodiment, the delay information is generated by the 3-bit counter COUNT1 using CLKA0 as the count-up clock, and DCLKD0 is latched at the rising edge of the latch clock CLKL at the timing when the value of COUNT1 coincides with DCTRL1. To do.
  • the delay amount setting for quadrature detection is 8 times the oversampling ratio, all values from 0 to 7 can be set, which contributes to improving the timing accuracy of quadrature detection. Since the oversampling ratio changes depending on the design, for example, when it is 16 times, the clock generation circuit CLKGEN needs to be designed so that all the delay amounts from 0 to 15 can be set.
  • FIG. 21 is a diagram showing an example of operation waveforms of the delay circuit 103 in FIG.
  • the value of the amplitude control signal PIDC is updated at the rising edge of CLKA0 for use in control without removing the second harmonic component in INPHASE. This is latched in each data latch at the rising edge of the latch clock CTRCLK2 of the data latch train, and its outputs are PIDCD ⁇ 0> to ⁇ 7>.
  • DCTR2 2
  • PIDCD ⁇ 2> is selected by the MUX
  • data delayed by three clocks of CLKA0 compared to PIDC is output as the output DAMP of the delay circuit 103 as shown in FIG.
  • DCLKD0 is an eighth harmonic of CLKA0 as in FIG. 20, FIG. 21 shows an example with an oversampling ratio of eight. Therefore, fine delay settings are possible because there are delay settings from 0 to 7. This improves the stability of the drive amplitude control and contributes to the stabilization of the sensor output.
  • FIG. 22 shows the reason why oversampling is possible in Example 1 by comparing with the comparative example.
  • the driving mass 150 of the angular velocity sensor is stationary when the power is turned off. Therefore, after the power is turned on, the drive control circuit 100 controls the drive mass 150 from the stationary state to the resonant state. There is a possibility that the vibration frequency of the drive mass 150 is larger or smaller than the resonance frequency in the stage before reaching the resonance state.
  • the oversampling ratio in the comparative example is 11 times at time T1 and 8 times at time T2. If the oversampling ratio changes with time, the control error does not become constant, so that stable control cannot be performed. As a result, the sensor output becomes unstable or the noise intensity increases.
  • the first embodiment has a configuration equivalent to a PLL (Phase Locked Loop) including a sensor in a control loop, as is apparent from the configuration shown in FIG. For this reason, even if the resonance frequency of the sensor element changes, it is possible to maintain the oversampling ratio set in the circuit even in a situation where the vibration state of the drive mass gradually changes from the sensor power ON. It is very different from the comparative example. This also makes it possible to construct a control loop based on the basic principle of noise reduction by oversampling.
  • PLL Phase Locked Loop
  • FIG. 30 is a schematic diagram illustrating an electrical signal applied to the sensor element from the control circuit according to the first embodiment.
  • the first feature is that the cycle of the carrier wave CARRY continues to change during one cycle of the drive voltages DRIVER and DRIVEN.
  • Servo voltages SERVOP and SERVON are also output so that their values change at the same timing as the change in CARRY.
  • the drive mass displacement detection signals ASIGDP and ASIGDN, and the detection mass displacement detection signals ASIGSP and ASIGSN are input to the C / V conversion circuit, so that a constant level is obtained due to the virtual grounding of the operational amplifier in the C / V conversion circuit. Observed as an unchanging waveform.
  • Example 2 will be described with reference to FIGS. Except for the differences described below, each part of the system of the second embodiment has the same functions as the parts denoted by the same reference numerals of the first embodiment shown in FIGS. 1 to 22 and 30. Those explanations are omitted.
  • FIG. 23 is a functional block diagram showing the configuration of the vibration type angular velocity detection device according to the second embodiment of the present invention.
  • the concept of oversampling is introduced to control the drive mass 150.
  • the same concept is applied to the control loop of the detection mass 151, which is different from the first embodiment.
  • the delay circuit 203 receives two inputs of the error component ERR and the signal component SIG, and outputs two signals of the delay error component ERRD and the delay signal component SIGD. This is different from the drive control circuit 100 of the first embodiment.
  • the configuration of the modulation circuit SMOD202 that modulates ERRD and SIGD with the modulation clock DCLKD is also different from the drive signal modulation circuit DMOD102 of the first embodiment.
  • the control of the detection mass 151 needs to apply a servo signal so as to cancel the error component and the signal component, respectively, and therefore there is an adder SUM201 that adds the error component and the signal component.
  • a general drive control circuit (DRVCTRL2) 205 that receives the drive mass displacement detection signals ASIGDP and ASIGDN and generates drive voltages DRIVEP and DRIVEN outputs a drive control timing signal XCTRL to the angular velocity detection circuit 200.
  • the clock generation circuit 204 that generates various clocks is also different from the first embodiment.
  • the angular velocity detection circuit block 200 according to the second embodiment includes a circuit block LOGIC 206 that performs a necessary calculation on the signal component SIG in order to output an angular velocity signal.
  • FIG. 24 is a diagram illustrating a specific configuration of the clock generation circuit 204 according to the second embodiment of the present invention.
  • the drive control timing signal XCTRL is a signal generated by the general drive control circuit 205 and indicating the control timing for driving the drive mass 150.
  • the drive control timing signal XCTRL may be a signal similar to CLK0 shown in FIG. .
  • FIG. 25 is a diagram showing a specific configuration of the delay circuit 203 according to the second embodiment of the present invention.
  • the delay circuit 203 Since the delay circuit 203 requires two systems of input / output, the delay circuit 203 has two delay circuits 103 shown in FIG.
  • the displacement signal in the Y direction detected from the sensor is modulated by the driving frequency of the vibrating body, it is necessary to perform synchronous detection that is accurately matched to the driving frequency in order to obtain the angular velocity.
  • the angular velocity can be obtained by performing synchronous detection accurately matched to the drive frequency.
  • Example 3 will be described with reference to FIG. Except for the differences described below, each part of the system of the third embodiment has the same functions as the parts denoted by the same reference numerals of the first and second embodiments shown in FIGS. 1 to 25 and FIG. Therefore, those descriptions are omitted.
  • FIG. 26 is a block diagram illustrating a configuration of the vibration type angular velocity detection device according to the third embodiment of the present invention.
  • the apparatus of the third embodiment includes an angular velocity sensor controller 300 that performs oversampling by both the control of the driving mass 150 and the control of the detection mass 151.
  • the angular velocity sensor controller 300 includes both the drive control circuit 100 shown in FIG. 7 and the angular velocity detection circuit 200 shown in FIG.
  • the drive control timing signal XCTRL of the present embodiment is a signal indicating the control timing for driving the drive mass 150 generated by the drive control circuit 100 similar to that of the first embodiment.
  • the CLK0 shown in FIG. The same signal may be used.
  • the angular velocity can be obtained by performing the synchronous detection accurately matched to the drive frequency.
  • Embodiment 4 will be described with reference to FIGS. Except for the differences described below, each part of the system of the fourth embodiment has the same functions as the parts denoted by the same reference numerals in the first to third embodiments shown in FIGS. 1 to 26 and 30. Therefore, those descriptions are omitted.
  • Example 1 an angular velocity sensor is shown as an example of a vibration type inertial sensor to which the present invention is applied.
  • Example 4 an acceleration sensor is shown as another example of a vibration type inertial sensor.
  • FIG. 27 is a functional block diagram showing the configuration of the vibration-type acceleration detection device according to the fourth embodiment of the present invention.
  • the acceleration detection device of the fourth embodiment shown in FIG. 27 has no angular velocity detection circuit 143 as compared with the first embodiment shown in FIG. 7, and the control target sensor is a resonance frequency change type acceleration sensor 400.
  • the sensor 400 is an acceleration sensor that outputs a detected acceleration as the resonance frequency changes when acceleration is applied to a state in which the detection mass 401 (see FIG. 28) is maintained in a constant vibration state.
  • the configuration of the control circuit 411 is different from that of the angular velocity sensor shown in FIG. 7 except that a circuit block 410 that calculates and outputs acceleration information by inputting the amplitude control signal PIDC and the frequency control signal PIDS is added. Same as the drive mass control loop.
  • FIG. 28 is a diagram illustrating an example of a sensor element of the vibration type acceleration sensor according to the fourth embodiment of the present invention.
  • the sensor 400 of the fourth embodiment is a capacity detection type, a carrier wave CARRY is necessary, and this is input to the detection mass 401.
  • FIG. 29 is a diagram showing an equivalent circuit of the sensor 400 shown in FIG.
  • the equivalent circuit of the sensor 400 has a configuration in which a total of four capacitances share one terminal as an input terminal for the carrier CARRY.
  • Capacitances Cxfp and Cxfn including input terminals of drive voltage signals DRIVEP and DRIVEN are a positive side drive capacity and a negative side drive capacity, respectively.
  • the electrostatic force that drives the detection mass 401 is proportional to (DRIVEP-CARRY) ⁇ 2- (DRIVEN-CARRY) ⁇ 2.
  • the detection mass 401 is driven by this electrostatic force so as to maintain a constant vibration state.
  • Capacitances Cxsp and Cxsn to which ASIGDP and ASIGDN are connected are a positive detection capacitance and a negative detection capacitance, respectively.
  • the displacement of the detection mass 401 can be detected by Cxsp-Cxsn.
  • the fourth embodiment it is possible to apply a high-Q sensor element without increasing the circuit scale even when the inertial detection device is an acceleration detection device.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for better understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Signal Processing (AREA)
  • Gyroscopes (AREA)

Abstract

This momentum detection device has a vibrating body and a drive control unit for driving the vibrating body. The drive control unit samples a drive detection signal expressing displacement in the driving direction of the vibrating body at a first clock; generates the first clock on the basis of the sampled drive detection signal such that the length of each period varies; and applies a drive signal having a period of the same length as the total length of a prescribed number of periods, greater than or equal to two, of the first clock to the vibrating body for the purpose of driving the vibrating body.

Description

慣性検出装置Inertial detection device 参照による取り込みImport by reference
 本出願は、平成28年(2016年)8月8日に出願された日本出願である特願2016-155905の優先権を主張し、その内容を参照することにより、本出願に取り込む。 This application claims the priority of Japanese Patent Application No. 2016-155905, filed on August 8, 2016, and is incorporated into the present application by referring to its contents.
 本発明は、慣性検出技術に関する。 The present invention relates to inertia detection technology.
 振動型慣性センサ(以下、慣性検出装置と呼ぶ場合がある)は、慣性センサの一種類であり、慣性体の振動振幅又は振動周波数の変化を利用して物体の加速度又は角速度等の物理量を検出するセンサである。振動型角速度センサは、物質が及ぼす角速度の変動、傾斜角等の物体の状態を観測可能である。振動型慣性センサは、例えば自動車等の乗り物の制御、無人飛行機又は遠隔操作ロボットの姿勢制御又は姿勢検知、音波又は地震波等の観測、老朽インフラの保守情報の取得、スマートフォンへの具備等、各種の用途に使用されている。近年では自動車の自動運転技術へのニーズが高まっており、慣性センサは自動運転システムを構成する一要素としても開発がすすめられている。 A vibration-type inertial sensor (hereinafter sometimes referred to as an inertial detection device) is a type of inertial sensor that detects physical quantities such as acceleration or angular velocity of an object using changes in vibration amplitude or vibration frequency of an inertial body. Sensor. The vibration type angular velocity sensor is capable of observing the state of an object such as a change in angular velocity and a tilt angle exerted by a substance. The vibration type inertial sensor can be used for various purposes such as control of vehicles such as automobiles, attitude control or attitude detection of unmanned airplanes or remote control robots, observation of sound waves or seismic waves, acquisition of maintenance information on aged infrastructure, installation on smartphones, etc. Used for applications. In recent years, there has been a growing need for automatic driving technology for automobiles, and inertia sensors are being developed as an element constituting an automatic driving system.
 慣性センサの検出原理として、容量検出型がある。容量検出型では、センサ要素の慣性体を構成する電極間の静電容量の変化に基づいて物理量が検出される。上記静電容量は搬送波と呼ばれる交流パルス信号を印加することで検出される。容量検出型の慣性センサは、MEMS(Micro Electro Mechanical Systems)構造の適用によってMEMSセンサとして小型及び低価格で実現できるため、用途が拡大している。そのセンサ要素は、シリコン等の物質が用いられ、検出回路との親和性が高いので、製造上の利点がある。 There is a capacitance detection type as the detection principle of the inertial sensor. In the capacitance detection type, a physical quantity is detected based on a change in capacitance between electrodes constituting the inertial body of the sensor element. The capacitance is detected by applying an AC pulse signal called a carrier wave. The capacity detection type inertial sensor can be realized as a MEMS sensor at a small size and at a low price by applying a MEMS (Micro Electro Mechanical Systems) structure, and therefore, its use is expanding. Since the sensor element uses a material such as silicon and has a high affinity with the detection circuit, there is a manufacturing advantage.
 慣性センサにおいて検出精度を向上するための方式としては、センサ要素の慣性体をサーボ制御する方式がある。このサーボ制御は、慣性体が物理量の変化に伴って慣性座標系で変位する場合に、この変位を制御するために慣性体にサーボ力を与える制御である。言い換えると、このサーボ制御は、回路部から慣性体にサーボ電圧を印加してサーボ力を与えることによって、慣性体が好適な振動状態になるようにする制御である。 As a method for improving detection accuracy in an inertial sensor, there is a method of servo-controlling the inertial body of the sensor element. This servo control is a control for applying a servo force to the inertial body in order to control the displacement when the inertial body is displaced in the inertial coordinate system in accordance with a change in physical quantity. In other words, this servo control is a control for applying a servo voltage to the inertial body from the circuit unit to give a servo force so that the inertial body is in a suitable vibration state.
 容量検出型及びサーボ制御方式の慣性センサに関する先行技術例としては、特開平11-201850号公報(特許文献1)が挙げられる。特許文献1には、物理量検出装置として、フィードバック電圧を出力する信号処理回路、搬送波信号発生手段、等を備える旨が記載されている。 Japanese Patent Laid-Open No. 11-201850 (Patent Document 1) is cited as an example of the prior art relating to a capacitance detection type and servo control type inertial sensor. Patent Document 1 describes that a physical quantity detection device includes a signal processing circuit that outputs a feedback voltage, carrier wave signal generation means, and the like.
  特許文献1:特開平11-201850号公報 Patent Document 1: Japanese Patent Laid-Open No. 11-201850
 振動型慣性センサの安定性を向上するには慣性体の振動状態を高精度に一定に保ち続ける必要がある。これに効果的なのはセンサ要素にQ値(Quality factor)が高いもの(以下、高Q品)を適用することである。高Q品を適用することによって振動状態が安定しやすくなり、かつ、印加した振動エネルギーの散逸を小さくすることが出来るため、低電力化にも寄与する。しかし、高Q品を適切に制御するためには、その共振周波数に正確に合わせた交流サーボ信号によってサーボ制御を行う必要があり、非常に高精度に交流サーボ電圧の周波数を制御する必要がある。 In order to improve the stability of the vibration type inertial sensor, it is necessary to keep the vibration state of the inertial body constant with high accuracy. It is effective to apply a sensor element having a high Q value (Quality factor) (hereinafter referred to as a high Q product). By applying a high-Q product, the vibration state can be easily stabilized and the dissipation of the applied vibration energy can be reduced, which contributes to a reduction in power consumption. However, in order to properly control a high Q product, it is necessary to perform servo control with an AC servo signal accurately matched to the resonance frequency, and it is necessary to control the frequency of the AC servo voltage with very high accuracy. .
 一方で振動型慣性センサ要素の共振周波数はMEMSを仮定した場合、ウエハ内ばらつき、ロット間ばらつき等の様々な要因によって設計値を中心とした分布を持つことは避けられない。つまり、ある程度の幅を持った共振周波数分布に対応する制御方式が必要となる。 On the other hand, assuming that the resonance frequency of the vibration type inertial sensor element is MEMS, it is inevitable that the resonance frequency has a distribution centered on the design value due to various factors such as in-wafer variation and lot-to-lot variation. That is, a control method corresponding to the resonance frequency distribution having a certain width is required.
 また、高Q品はひとたびサーボ制御周波数が共振周波数に一致すると、その大きなゲインによって急激に振動振幅が増大する傾向がある。このため、サーボ電圧の振幅制御も、周波数と同様に高精度に行う必要がある。 Also, once the servo control frequency matches the resonance frequency, the high Q product tends to increase the vibration amplitude suddenly due to its large gain. For this reason, the amplitude control of the servo voltage needs to be performed with high accuracy like the frequency.
 よって、高Q品を適切に振動型慣性センサに適用するには、広い周波数範囲において高精度に共振周波数に合わせ、更に緻密にその電圧振幅が制御された交流サーボ信号を生成する手段が必要となる。このような交流サーボ信号を生成するためには、高精度に周波数を制御可能な電圧制御発振器と高精度にアナログ電圧を制御できるDAC(デジタル/アナログコンバータ)が必要となる。しかし、これを実現するには複雑な回路が必要となり、結果として回路面積が大きくなり、消費電流の増大及び製造コストの増大につながると言った課題があった。 Therefore, in order to appropriately apply a high Q product to a vibration type inertial sensor, means for generating an AC servo signal whose frequency amplitude is more precisely controlled in a wide frequency range and precisely adjusted to the resonance frequency is required. Become. In order to generate such an AC servo signal, a voltage controlled oscillator capable of controlling the frequency with high accuracy and a DAC (digital / analog converter) capable of controlling the analog voltage with high accuracy are required. However, in order to realize this, there is a problem that a complicated circuit is required, resulting in an increase in circuit area, leading to an increase in current consumption and an increase in manufacturing cost.
 本発明のうち代表的な実施の形態は、振動体と、前記振動体を駆動する駆動制御部と、を有する慣性検出装置であって、前記駆動制御部は、前記振動体の駆動方向の変位を表す駆動検出信号を第1クロックでサンプリングし、前記サンプリングされた駆動検出信号に基づいて、1周期ごとの長さが異なるように前記第1クロックを生成し、前記第1クロックの2以上の所定の数の周期の合計と同じ長さの周期を有する駆動信号を、前記振動体を駆動するために前記振動体に印加することを特徴とする。 A representative embodiment of the present invention is an inertial detection device including a vibrating body and a drive control unit that drives the vibrating body, wherein the drive control unit is a displacement in a driving direction of the vibrating body. A drive detection signal representing the first clock is sampled with a first clock, and the first clock is generated so that the length of each cycle is different based on the sampled drive detection signal, and two or more of the first clock are generated. A drive signal having a cycle having the same length as a total of a predetermined number of cycles is applied to the vibrating body in order to drive the vibrating body.
 本発明のうち代表的な実施の形態によれば、容量検出型及びサーボ制御方式の振動型慣性センサに対して回路規模を増大することなく高Qのセンサ要素を適用することができ、安定性が高い振動型慣性センサを低コストで提供可能となる。上記した以外の課題、構成、及び効果は、以下の実施形態の説明によって明らかにされる。 According to a representative embodiment of the present invention, a high-Q sensor element can be applied to a capacitance detection type and servo control type vibration type inertial sensor without increasing the circuit scale. Therefore, it is possible to provide a vibration type inertial sensor with high cost at a low cost. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
角速度センサの制御方法を示す図である。It is a figure which shows the control method of an angular velocity sensor. 本発明の実施例1と比較例とにおけるセンサ要素の動作点を比較した図である。It is the figure which compared the operating point of the sensor element in Example 1 and a comparative example of this invention. センサ要素の共振周波数とQ値がばらつきを持つことを示した図である。It is the figure which showed that the resonant frequency and Q value of a sensor element have dispersion | variation. センサ要素のQ値に依存してゲイン曲線の半値幅が減少することを示した図である。It is the figure which showed that the half value width of a gain curve decreased depending on the Q value of a sensor element. 本発明の実施例1と比較例とにおけるセンサ要素の帯域内ノイズを比較した図である。It is the figure which compared the in-band noise of the sensor element in Example 1 and a comparative example of this invention. オーバーサンプリング比と規格化雑音強度と必要なDACビット数との関係を示す図である。It is a figure which shows the relationship between oversampling ratio, normalized noise intensity, and required DAC bit number. 本発明の実施例1を適用した角速度検出装置の機能ブロック図である。It is a functional block diagram of the angular velocity detection apparatus to which Example 1 of the present invention is applied. 本発明の実施例1におけるクロック生成回路の構成を示す図である。It is a figure which shows the structure of the clock generation circuit in Example 1 of this invention. 本発明の実施例1における電圧制御発振回路の構成を示す図である。It is a figure which shows the structure of the voltage control oscillation circuit in Example 1 of this invention. 本発明の実施例1における電圧制御電流出力回路の構成を示す図である。It is a figure which shows the structure of the voltage control current output circuit in Example 1 of this invention. 本発明の実施例1におけるアナログフロントエンド回路の構成を示す図である。It is a figure which shows the structure of the analog front end circuit in Example 1 of this invention. 本発明の実施例1における遅延回路の構成を示す図である。It is a figure which shows the structure of the delay circuit in Example 1 of this invention. 本発明の実施例1におけるDAC回路の構成を示す図である。It is a figure which shows the structure of the DAC circuit in Example 1 of this invention. 本発明の実施例1におけるDAC回路内のスイッチ回路の構成を示す図である。It is a figure which shows the structure of the switch circuit in the DAC circuit in Example 1 of this invention. 本発明の実施例1におけるスイッチ回路内のスイッチ1回路の構成を示す図である。It is a figure which shows the structure of the switch 1 circuit in the switch circuit in Example 1 of this invention. 本発明の実施例1におけるセンサ1の等価回路を示す図である。It is a figure which shows the equivalent circuit of the sensor 1 in Example 1 of this invention. 本発明の実施例1と比較例とにおける、アナログクロックと、ADCによって変換されたアナログ信号と、直交検波後の直角位相成分および同位相成分の波形とのタイミング関係を示す図である。It is a figure which shows the timing relationship between the analog clock in Example 1 and the comparative example of this invention, the analog signal converted by ADC, the quadrature component after quadrature detection, and the waveform of an in-phase component. 本発明の実施例1における駆動周波数制御信号と電圧制御発振回路出力とクロック発生回路内のカウンタとアナログクロックと駆動クロックとの位相関係を示す図である。It is a figure which shows the phase relationship of the drive frequency control signal in Example 1 of this invention, a voltage control oscillation circuit output, the counter in a clock generation circuit, an analog clock, and a drive clock. 比較例における駆動周波数制御信号と電圧制御発振回路出力とクロック発生回路内のカウンタとアナログクロックと駆動クロックとの位相関係を示す図である。It is a figure which shows the phase relationship of the drive frequency control signal in a comparative example, a voltage control oscillation circuit output, the counter in a clock generation circuit, an analog clock, and a drive clock. 本発明の実施例1におけるアナログクロック元信号とラッチクロックとカウンタと駆動クロックと遅延制御値が3の時の遅延制御クロック元信号と遅延制御値が5の時の遅延制御クロック元信号との位相関係を示す図である。Phases of the analog clock source signal, the latch clock, the counter, the drive clock, the delay control clock source signal when the delay control value is 3, and the delay control clock source signal when the delay control value is 5 in the first embodiment of the present invention It is a figure which shows a relationship. 本発明の実施例1における電圧制御発振回路出力と遅延制御クロックと振幅制御信号と遅延した振幅制御信号0から7と振幅遅延制御値が2の時の遅延振幅信号と駆動クロックとの位相関係を示す図である。The phase relationship between the output of the voltage controlled oscillation circuit, the delay control clock, the amplitude control signal, the delayed amplitude control signals 0 to 7 and the delay amplitude signal when the amplitude delay control value is 2 and the drive clock in the first embodiment of the present invention is shown. FIG. 本発明の実施の形態1と比較例とにおける、搬送波と時刻T1におけるアナログ信号と時刻T2におけるアナログ信号との位相関係を示す図である。It is a figure which shows the phase relationship of the carrier wave, the analog signal in the time T1, and the analog signal in the time T2 in Embodiment 1 of this invention, and a comparative example. 本発明の実施例2を適用した角速度検出装置の機能ブロック図である。It is a functional block diagram of the angular velocity detection apparatus to which Example 2 of the present invention is applied. 本発明の実施例2におけるクロック生成回路の構成を示す図である。It is a figure which shows the structure of the clock generation circuit in Example 2 of this invention. 本発明の実施例2における遅延回路の構成を示す図である。It is a figure which shows the structure of the delay circuit in Example 2 of this invention. 本発明の実施例3を適用した角速度検出装置の機能ブロック図である。It is a functional block diagram of the angular velocity detection apparatus to which Example 3 of the present invention is applied. 本発明の実施例4を適用した加速度検出装置の機能ブロック図である。It is a functional block diagram of the acceleration detection apparatus to which Example 4 of the present invention is applied. 本発明の実施例4におけるセンサを示す図である。It is a figure which shows the sensor in Example 4 of this invention. 本発明の実施例4におけるセンサの等価回路を示す図である。It is a figure which shows the equivalent circuit of the sensor in Example 4 of this invention. 本発明の実施例1におけるセンサ素子と回路との接続と各接続パッドにおいて、観測されうる電圧の時間変化波形を示す図である。It is a figure which shows the time change waveform of the voltage which can be observed in the connection of the sensor element and circuit in Example 1 of this invention, and each connection pad.
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において同一部には原則として同一符号を付し、その繰り返しの説明は省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted.
 [比較例および一般的な角速度センサの制御例] [Comparative example and general angular velocity sensor control example]
 図1を用いて比較例および一般的な角速度センサの制御例について説明する。振動型角速度センサ1(SENSOR1)110には電気入出力端子が全部で9種類存在し、入力端子に適切な信号を印加することによって角速度センサを制御する。
駆動信号DRIVEPとDRIVEN、駆動検出信号ASIGDPとASIGDN、サーボ電圧信号SERVOPとSERVON、検出信号ASIGSPとASIGSN、並びに、搬送波CARRYの9種類が全端子である。上記は一般的な一軸の角速度センサに具備された機能端子であり、1つのセンサ要素が複数の検出軸を備えるような場合には検出軸の数に対応して端子数は増大する。
A control example of a comparative example and a general angular velocity sensor will be described with reference to FIG. The vibration type angular velocity sensor 1 (SENSOR1) 110 has nine types of electric input / output terminals in total, and controls the angular velocity sensor by applying appropriate signals to the input terminals.
Nine types of drive signals DRIVEP and DRIVEN, drive detection signals ASIGDP and ASIGDN, servo voltage signals SERVOP and SERVON, detection signals ASIGSP and ASIGSN, and carrier wave CARRY are all terminals. The above is a functional terminal provided in a general uniaxial angular velocity sensor, and when one sensor element has a plurality of detection axes, the number of terminals increases corresponding to the number of detection axes.
 駆動信号は、振動体の一部である駆動マス150を図1に示したX方向に一定周波数および一定振幅で制御して振動させるために用いられる。駆動検出信号ASIGDPおよびASIGDNは、駆動マス150の振動状態を静電容量変化で検出するための信号であり、これらから振動体のX方向の変位を得ることができる。搬送波CARRYは、静電容量の変化を検出するための交流信号である。後述するアナログフロントエンド109は、サンプリングホールド回路によって構成される場合、搬送波周波数の1倍または0.5倍の周波数で動作していることが多い。同期検波によって低周波雑音を除去する場合には、アナログフロントエンド109は0.5倍の周波数でサンプリングホールドすることがある。 The drive signal is used to vibrate the drive mass 150, which is a part of the vibrating body, in the X direction shown in FIG. 1 with a constant frequency and a constant amplitude. The drive detection signals ASIGDP and ASIGDN are signals for detecting the vibration state of the drive mass 150 by changing the capacitance, and the displacement of the vibrating body in the X direction can be obtained from these signals. The carrier wave CARRY is an AC signal for detecting a change in capacitance. When an analog front end 109 described later is constituted by a sampling and holding circuit, it often operates at a frequency that is 1 or 0.5 times the carrier frequency. When low frequency noise is removed by synchronous detection, the analog front end 109 may sample and hold at a frequency 0.5 times higher.
 サーボ電圧信号は、振動体の一部である検出マス151が図1に示したX方向に直交するY方向に変位した時にその変位を打ち消す方向に静電気力を印加するために用いられる。駆動マス150がX方向に一定の周波数および一定の振幅で振動している状態で角速度RATEが印加されると、検出マス151がY方向に変位する。これを検出するのが検出信号ASIGSPおよびASIGSNを出力する検出信号端子であり、検出マス151の変位を打ち消すためにサーボ電圧信号を印加する端子に印加されるのがサーボ信号である。検出マス151の変位を容量変化で検出するのにも同じ搬送波が用いられる。振動型角速度センサ110は本発明の実施例1の回路に接続して制御する角速度センサと同一種類である。 The servo voltage signal is used to apply an electrostatic force in a direction to cancel the displacement when the detection mass 151 that is a part of the vibrating body is displaced in the Y direction perpendicular to the X direction shown in FIG. When the angular velocity RATE is applied while the driving mass 150 is oscillating at a constant frequency and a constant amplitude in the X direction, the detection mass 151 is displaced in the Y direction. This is detected by detection signal terminals that output detection signals ASIGSP and ASIGSN, and a servo signal is applied to a terminal to which a servo voltage signal is applied in order to cancel the displacement of the detection mass 151. The same carrier wave is also used to detect the displacement of the detection mass 151 by changing the capacitance. The vibration type angular velocity sensor 110 is the same type as the angular velocity sensor that is connected to and controlled by the circuit of the first embodiment of the present invention.
 駆動検出信号および検出信号はアナログフロントエンド109でデジタル信号に変換される。図1に示す変位114は、駆動マス150のX方向の変位を表す電圧波形の時間変化である。検出信号ASIGSPおよびASIGSNから得られる変位115は、検出マス151のY方向の変位を表す電圧波形の時間変化である。変位115にはサーボ電圧印加前の電圧波形118およびサーボ電圧印加後の電圧波形119を含む。検出マス151に対するサーボ制御が正しく効いている状態では波形119の通り検出信号の振幅が小さくなる。これはつまり検出マス151の変位が小さくなっていることを示している。 The drive detection signal and the detection signal are converted into a digital signal by the analog front end 109. A displacement 114 shown in FIG. 1 is a time change of a voltage waveform representing a displacement of the driving mass 150 in the X direction. The displacement 115 obtained from the detection signals ASIGSP and ASIGSN is a time change of the voltage waveform representing the displacement of the detection mass 151 in the Y direction. The displacement 115 includes a voltage waveform 118 before the servo voltage is applied and a voltage waveform 119 after the servo voltage is applied. In the state where the servo control for the detection mass 151 is working correctly, the amplitude of the detection signal becomes small as the waveform 119. This indicates that the displacement of the detection mass 151 is small.
 駆動マスの変位114に基づいて適切なフィードバック制御を施す回路ブロック112は、駆動制御信号116を生成する。図1には、駆動制御信号116の時間変化を示している。駆動制御信号116の位相は変位114と比較して90度進んでいる状態が望ましい。これは、駆動マス150の振動周波数が駆動マス150の機械構造で決定する共振周波数と一致した場合には、駆動信号に対して駆動マス変位が90度遅れるためである。共振周波数で駆動マス150を駆動すると、駆動のために印加したエネルギーがロスを最小にして駆動マス150の振動運動に変換されるため、小電力化に寄与する。駆動制御信号116はデジタルアナログ変換器(DAC)101に入力され、駆動信号DRIVEPおよびDRIVENが生成される。以上が一般的な駆動マス150の制御ループである。 The circuit block 112 that performs appropriate feedback control based on the displacement 114 of the drive mass generates a drive control signal 116. FIG. 1 shows a time change of the drive control signal 116. It is desirable that the phase of the drive control signal 116 is advanced by 90 degrees compared to the displacement 114. This is because when the vibration frequency of the drive mass 150 matches the resonance frequency determined by the mechanical structure of the drive mass 150, the drive mass displacement is delayed by 90 degrees with respect to the drive signal. When the driving mass 150 is driven at the resonance frequency, the energy applied for driving is converted into the oscillating motion of the driving mass 150 with a minimum loss, which contributes to a reduction in power. The drive control signal 116 is input to the digital-analog converter (DAC) 101, and drive signals DRIVEP and DRIVEN are generated. The above is a general control loop of the driving mass 150.
 検出マス151の変位115に基づいて適切なフィードバック制御を施す回路ブロック113は、センサ出力SENSOROUTおよびサーボ制御信号117を出力する。センサ出力SENSOROUTはサーボ制御信号117の信号成分VSIG121(図1にはVSIG121の時間変化を示す)の振幅成分として出力される。VSIG121の振幅は、駆動マス150のX方向の変位114の時間微分VとRATEとの算術積に比例し、その周波数は変位114と同じである。VSIG121の位相は、アナログフロントエンド109(ANALOG)および回路ブロック113(YCTRL)での遅延がゼロと仮定した場合には、変位114に比較して90度ずれる。上記回路ブロックでの遅延がゼロでない場合、上記90度の位相ずれに適切な遅延が回路ブロック113によって施される。直交位相成分VERR120(図1にはVERR120の時間変化を示す)は、変位114と同位相であり振幅も比例関係にある。VSIG121とVERR120とを加算したものがサーボ制御信号117であり、これがDAC101に入力され、SERVOPおよびSERVONが出力される。DAC101は基本的には駆動制御用のものと同種のもので良いが、構成ビット数などは一般的には異なっている。以上が検出マス151の制御ループである。 The circuit block 113 that performs appropriate feedback control based on the displacement 115 of the detection mass 151 outputs a sensor output SENSOROUT and a servo control signal 117. The sensor output SENSOROUT is output as an amplitude component of the signal component VSIG121 of the servo control signal 117 (showing the time change of VSIG121 in FIG. 1). The amplitude of the VSIG 121 is proportional to the arithmetic product of the time derivative V of the displacement 114 in the X direction of the driving mass 150 and RATE, and the frequency thereof is the same as that of the displacement 114. The phase of the VSIG 121 is shifted by 90 degrees compared to the displacement 114 when the delay in the analog front end 109 (ANALOG) and the circuit block 113 (YCTRL) is assumed to be zero. If the delay in the circuit block is not zero, the circuit block 113 provides an appropriate delay for the 90 degree phase shift. The quadrature component VERR 120 (showing the time change of VERR 120 in FIG. 1) is in phase with the displacement 114, and the amplitude is also proportional. The servo control signal 117 is a sum of VSIG 121 and VERR 120, which is input to the DAC 101, and SERVOP and SERVON are output. The DAC 101 may be basically the same type as that for drive control, but the number of constituent bits is generally different. The above is the control loop of the detection mass 151.
 振動型角速度センサの制御には以上のように駆動マス150の制御ループである駆動制御と検出マス151の制御ループである検出制御の2つのループが必要であり、これらをいかに高精度、高安定に行うかが角速度センサ出力の制御および安定性に影響することになる。 As described above, the control of the vibration type angular velocity sensor requires two loops of the drive control which is the control loop of the drive mass 150 and the detection control which is the control loop of the detection mass 151, and how these are highly accurate and highly stable. This will affect the control and stability of the angular velocity sensor output.
 図2~図4を用いて、駆動制御における課題について実施例1と従来例を比較していかに実施例1がこれを解決するかについて述べる。 Referring to FIGS. 2 to 4, a description will be given of how the first embodiment can solve the problem in drive control by comparing the first embodiment with the conventional example.
 図2は、センサ要素の振幅利得と駆動周波数の関係、駆動周波数制御信号と駆動信号周波数の関係を示している。一般的に二次の伝達特性を有する振動体によってセンサ要素は構成され、共振周波数f0で振幅利得が最大値をとるように設計される。図2(A)に示す不適切な制御では駆動周波数制御値が疎である(すなわち、設定可能な駆動周波数の値のステップが大きい)ため、f0に近いがf0とは異なる周波数で駆動制御を行うしかなく、センサ要素の振幅利得を十分に得ることができない。しかし、図2(B)に示す理想的な制御においては、駆動周波数制御値を十分に密に設定できる(すなわち、設定可能な駆動周波数の値のステップが十分に小さい)ため、センサ要素の振幅利得を最大限に活用できる。よって、小さな入力エネルギーで駆動振幅を大きくすることができ、低電力化に寄与する。また、制御周波数ステップが小さいため駆動周波数制御の誤差が小さくなり、安定性が向上すると共にセンサ出力の信号雑音比を向上することが出来る。つまり、駆動周波数制御においては、センサ要素の共振周波数に応じて制御ステップを十分に密にできるように制御回路を設計することが課題である。 FIG. 2 shows the relationship between the amplitude gain of the sensor element and the drive frequency, and the relationship between the drive frequency control signal and the drive signal frequency. In general, a sensor element is constituted by a vibrating body having a secondary transfer characteristic, and the amplitude gain is designed to take a maximum value at a resonance frequency f0. In the inappropriate control shown in FIG. 2A, since the drive frequency control value is sparse (that is, the step of the settable drive frequency value is large), the drive control is performed at a frequency close to f0 but different from f0. There is no choice but to get a sufficient amplitude gain of the sensor element. However, in the ideal control shown in FIG. 2B, since the drive frequency control value can be set sufficiently densely (that is, the step of the settable drive frequency value is sufficiently small), the amplitude of the sensor element The gain can be utilized to the maximum. Therefore, the drive amplitude can be increased with a small input energy, which contributes to low power consumption. Further, since the control frequency step is small, the error of the drive frequency control is reduced, so that the stability is improved and the signal-to-noise ratio of the sensor output can be improved. That is, in the drive frequency control, it is a problem to design a control circuit so that the control steps can be sufficiently dense according to the resonance frequency of the sensor element.
 図3は、センサ要素の共振周波数f0の分布とQ値の分布を模式的に示したものである。図3の左側は共振周波数f0の分布であり、横軸がf0、縦軸がセンサ要素の個数である。図3の右側はQ値の分布であり、横軸がQ値、縦軸がセンサ要素の個数である。センサ要素の製造ばらつきによってf0及びQ値は典型値TYPICALを中心とした分布を有する。この中に網掛けで示した制御可能な範囲152をより広範囲にすることが理想的な制御である。図3(A)および(B)に、それぞれ、理想的な制御および不適切な制御が行われた場合の制御可能な範囲152の例を示す。広範囲のf0およびQ値を制御できた方がセンサ要素の製造全体数からより多くの良品を得ることができ、コスト低減に寄与できる。不適切な制御では良品となるセンサ要素数が少なく、結果として良品数が少なくなりコストが増大してしまう。 FIG. 3 schematically shows the distribution of the resonance frequency f0 and the distribution of the Q value of the sensor element. The left side of FIG. 3 shows the distribution of the resonance frequency f0, where the horizontal axis is f0 and the vertical axis is the number of sensor elements. The right side of FIG. 3 shows the distribution of the Q value, the horizontal axis is the Q value, and the vertical axis is the number of sensor elements. Due to manufacturing variations of sensor elements, the f0 and Q values have a distribution centered on the typical value TYPICAL. An ideal control is to make the controllable range 152 indicated by hatching wider than this. FIGS. 3A and 3B show examples of the controllable range 152 when ideal control and inappropriate control are performed, respectively. If a wider range of f0 and Q values can be controlled, more non-defective products can be obtained from the total number of sensor elements manufactured, which can contribute to cost reduction. Inappropriate control results in a small number of non-defective sensor elements, resulting in a decrease in the number of non-defective products and an increase in cost.
 図2に示した通り周波数制御誤差を小さくし、かつ、図3に示した通り制御可能範囲を広くする制御が理想的な制御であるが、これは互いに矛盾した要請である。つまりある一定の回路規模を想定した場合、制御誤差を小さくすると制御可能範囲が狭くならざるを得ず、制御可能範囲を広くすると制御誤差を大きくせざるを得ない。これを両立することが従来の制御方法では課題であった。 The ideal control is to reduce the frequency control error as shown in FIG. 2 and widen the controllable range as shown in FIG. 3, but this is a contradictory request. That is, assuming a certain circuit scale, the controllable range must be narrowed if the control error is reduced, and the control error must be increased if the controllable range is widened. It has been a problem with the conventional control method to achieve both of these.
 図4を用いてQ値についてもう少し詳細に説明する。Q値はQ=f0/Δfという定義で与えられる。図4(B)に示すように、f0は共振周波数、Δfは共振周波数における共振エネルギーと比較してエネルギーが1/2になる周波数点を2点取った時のそれらの差分と定義される。つまりQ値はf0に比例して大きくなると言える。図4(A)には、あるf0を仮定した場合のQ値とΔfとの関係153を示す。Q値が大きいセンサ要素を使うと上述した通り入力エネルギーの損失を小さくでき低電力化に寄与するが、Q値を大きくするとΔfが小さくなることになる。例えばQ値が10000以上になるとΔfは1Hzよりも小さくなることになる。これはQ値が10000を超えるようなセンサ要素を適切に制御するには1Hzよりも小さな誤差で(すなわちそれより小さいステップの)周波数制御を行う必要があることを意味している。このように高精度で周波数制御しつつ、f0のばらつきを例えば数kHzと仮定した時にも制御が破綻しないようにすることは回路規模の増大を招き、従来では高コスト化につながっていた。 The Q value will be described in a little more detail with reference to FIG. The Q value is given by the definition Q = f0 / Δf. As shown in FIG. 4B, f0 is defined as the resonance frequency, and Δf is defined as a difference between two frequency points at which the energy is halved compared to the resonance energy at the resonance frequency. That is, it can be said that the Q value increases in proportion to f0. FIG. 4A shows a relationship 153 between the Q value and Δf when a certain f0 is assumed. If a sensor element having a large Q value is used, the loss of input energy can be reduced as described above, which contributes to a reduction in power consumption. However, if the Q value is increased, Δf becomes smaller. For example, when the Q value is 10,000 or more, Δf is smaller than 1 Hz. This means that in order to properly control a sensor element having a Q value exceeding 10,000, it is necessary to perform frequency control with an error smaller than 1 Hz (that is, in steps smaller than that). As described above, when the frequency control is performed with high accuracy and the variation in f0 is assumed to be, for example, several kHz, the control does not fail, leading to an increase in the circuit scale, which has led to an increase in cost.
 図5および図6を用いて、実施例1においてどのようにして上記課題が解決されるかを説明する。これは、従来と同等の回路規模で周波数制御精度を向上しつつ制御可能範囲を広げる方法として、サンプリングレートを向上して制御誤差を低減する方法に基づいている。 FIG. 5 and FIG. 6 are used to explain how the above problem is solved in the first embodiment. This is based on a method of increasing the sampling rate and reducing the control error as a method of expanding the controllable range while improving the frequency control accuracy with a circuit scale equivalent to the conventional one.
 図5は、通常サンプリングとオーバーサンプリングの雑音強度の比較について説明する図である。センサ要素のゲイン曲線500、オーバーサンプリング時の全体雑音強度501、帯域内雑音強度503、通常サンプリング時の全体雑音強度502、帯域内雑音強度504の関係を示す。オーバーサンプリング時の全体雑音強度501と通常サンプリング時の全体雑音強度502は面積が同等であるが、オーバーサンプリング時の全体雑音強度501は、サンプリング周波数が高いため、広い周波数領域に分布する。このため、オーバーサンプリング時は、通常サンプリング時と比較して、周波数あたりの雑音強度が小さくなる。周波数制御を行うに当たっては帯域内雑音強度が問題となるため、オーバーサンプリング時の帯域内雑音強度503と通常サンプリング時の帯域内雑音強度504とを比較するとオーバーサンプリング時の帯域内雑音強度503の方を小さくできる。例えばサンプリングレートを2倍にすることによって、帯域内雑音を1/2にすることができる。この原理に基づいて実施例1は周波数制御誤差を低減する。 FIG. 5 is a diagram for explaining comparison of noise intensity between normal sampling and oversampling. The relationship among the gain curve 500 of the sensor element, the overall noise intensity 501 at the time of oversampling, the in-band noise intensity 503, the overall noise intensity 502 at the time of normal sampling, and the in-band noise intensity 504 is shown. The total noise intensity 501 at the time of oversampling and the total noise intensity 502 at the time of normal sampling have the same area, but the total noise intensity 501 at the time of oversampling is distributed over a wide frequency region because the sampling frequency is high. For this reason, during oversampling, the noise intensity per frequency is smaller than during normal sampling. When performing frequency control, the in-band noise intensity becomes a problem. Therefore, comparing the in-band noise intensity 503 during oversampling with the in-band noise intensity 504 during normal sampling, the in-band noise intensity 503 during oversampling Can be reduced. For example, the in-band noise can be halved by doubling the sampling rate. Based on this principle, the first embodiment reduces the frequency control error.
 図6は、制御サンプリングレートFsを変化させた時の周波数制御ステップ数と正規化誤差の関係を示す図である。周波数制御ステップの横軸は2の累乗で示され、x=3は2^3=8ステップで周波数制御を行うことを示している。また制御可能周波数範囲は一定とするため、ステップ数が大きくなると制御がより微細になることを意味している。Fsをセンサ要素の共振周波数f0の2^1(=2)倍、2^2(=4)倍、・・・と増大すると、同じ雑音強度で比較した場合、制御サンプリングレートFsを大きくするほど必要な周波数制御ステップ数を小さくできることを示している。言い換えると、同じ雑音強度で比較した場合、制御サンプリングレートFsを大きくするほど制御可能周波数範囲を広くすることができる。また、同じ周波数制御ステップ数および同じ制御可能周波数範囲で比較した場合、制御サンプリングレートFsを大きくするほど雑音強度が減少する。すなわち、Fsをf0よりも十分に大きくすることで雑音強度を減少できる。この方法を用いて実施例1では広い制御可能周波数範囲と詳細な周波数制御とを両立する。 FIG. 6 is a diagram showing the relationship between the number of frequency control steps and the normalization error when the control sampling rate Fs is changed. The horizontal axis of the frequency control step is indicated by a power of 2, and x = 3 indicates that frequency control is performed in 2 ^ 3 = 8 steps. Since the controllable frequency range is constant, it means that the control becomes finer as the number of steps increases. When Fs is increased to 2 ^ 1 (= 2) times, 2 ^ 2 (= 4) times, etc. of the resonance frequency f0 of the sensor element, when compared with the same noise intensity, the control sampling rate Fs is increased. It shows that the number of necessary frequency control steps can be reduced. In other words, when compared with the same noise intensity, the controllable frequency range can be increased as the control sampling rate Fs is increased. Further, when compared with the same number of frequency control steps and the same controllable frequency range, the noise intensity decreases as the control sampling rate Fs increases. That is, noise intensity can be reduced by making Fs sufficiently larger than f0. By using this method, the first embodiment achieves both a wide controllable frequency range and detailed frequency control.
 図7~図22を用いて、本発明の実施例1の慣性検出装置について説明する。実施例1の慣性検出装置は、容量検出型及び一軸サーボ制御方式の角速度センサである。 7 to 22, the inertial detection device according to the first embodiment of the present invention will be described. The inertial detection device according to the first embodiment is an angular velocity sensor of a capacity detection type and a uniaxial servo control system.
 [(1-1)慣性センサ_機能ブロック] [(1-1) Inertial sensor_Function block]
 図7は、本発明の実施例1の振動型角速度検出装置の構成を示す機能ブロック図である。 FIG. 7 is a functional block diagram showing a configuration of the vibration type angular velocity detection device according to the first embodiment of the present invention.
 駆動制御回路100は、センサ110の駆動制御を行う回路である。角速度信号検出回路ブロック143は、入力された角速度に応じて検出マス151のフィードバック制御を行うと共に、角速度を示すセンサ出力SENSOROUTを演算して出力する。角速度信号検出回路ブロック143は、駆動制御回路100から検出制御信号YCTRLを受け取り、この信号で同期しながら、センサ110の検出マス変位出力ASIGSPおよびASIGSNを受けて、検出制御信号SERVOPおよびSERVONによってセンサ110の検出マスを制御し、センサ出力SENSOROUTを演算して出力する一般的な角速度出力制御ブロックである。 The drive control circuit 100 is a circuit that performs drive control of the sensor 110. The angular velocity signal detection circuit block 143 performs feedback control of the detection mass 151 according to the input angular velocity, and calculates and outputs a sensor output SENSOROUT indicating the angular velocity. The angular velocity signal detection circuit block 143 receives the detection control signal YCTRL from the drive control circuit 100, receives the detection mass displacement outputs ASIGSP and ASIGSN of the sensor 110 in synchronization with this signal, and receives the detection control signals SERVOP and SERVON according to the detection control signals SERVOP and SERVON. This is a general angular velocity output control block that controls the detected mass and calculates and outputs the sensor output SENSOROUT.
 駆動制御回路100の構成を以下に詳細に説明する。センサ110からの検出マス変位信号ASIGDPおよびASIGDNはアナログ信号であり、これを適切に増幅しデジタル変換する回路がアナログフロントエンド109である。PおよびNは検出マス変位信号がアナログフロントエンド109への差動入力であることを示している。デジタル駆動マス変位信号DSIGDの入力を受けて直交検波タイミング信号CTRCLK1に基づいて直交検波を行い同位相成分INPHASEと直交位相成分QUADを出力する回路ブロックが直交検波回路DEMOD(106)である。直交検波回路106は2つの乗算器102を有する。一つの乗算器102はDSIGDとCTRCLKとを乗算しINPHASEを出力し、もうひとつの乗算器102はDSIGDとCTRCLKから90度位相がずれたクロックとを乗算してQUADを出力する。 The configuration of the drive control circuit 100 will be described in detail below. The detected mass displacement signals ASIGDP and ASIGDN from the sensor 110 are analog signals, and the analog front end 109 is a circuit that appropriately amplifies and converts them. P and N indicate that the detected mass displacement signal is a differential input to the analog front end 109. A circuit block that receives an input of the digital drive mass displacement signal DSIGD, performs quadrature detection based on the quadrature detection timing signal CTRCLK1, and outputs the in-phase component INPHASE and the quadrature phase component QUAD is a quadrature detection circuit DEMOD (106). The quadrature detection circuit 106 includes two multipliers 102. One multiplier 102 multiplies DSIGD and CTRCLK and outputs INPHASE, and the other multiplier 102 multiplies DSIGD and a clock that is 90 degrees out of phase with CTRCLK and outputs QUAD.
 INPHASEとQUADを入力として周波数制御信号PIDSと振幅制御信号PIDCを出力する回路がコントロール回路105である。典型的にはPID(Proportional Integral Differential)コントローラで構成され、比例成分P、積分成分Iおよび微分成分Dを演算するに当たり、それぞれの演算に必要な係数CTRLVALSがメモリ111からコントロール回路105に入力される。 A circuit that outputs the frequency control signal PIDS and the amplitude control signal PIDC with the input of INPHASE and QUAD is the control circuit 105. Typically, it is composed of a PID (ProportionalifIntegral Differential) controller, and in calculating the proportional component P, the integral component I, and the differential component D, a coefficient CTRLVALS necessary for each calculation is input from the memory 111 to the control circuit 105. .
 周波数制御信号PIDSはクロック生成回路CLKGEN1(104)に入力される。クロック生成回路CLKGEN1(104)は、入力された周波数制御信号PIDSと、メモリ111からの制御乗数CTRLVALSとに基づいて、遅延回路103のラッチクロックとなるCTRCLK2、駆動信号変調回路DMOD(107)の変調クロックDCLKD、およびアナログ回路用のクロックCLKAを生成する。それぞれのクロックの役割および位相関係はそれぞれの回路ブロックの動作説明で述べる。 The frequency control signal PIDS is input to the clock generation circuit CLKGEN1 (104). Based on the input frequency control signal PIDS and the control multiplier CTRLVALS from the memory 111, the clock generation circuit CLKGEN1 (104) modulates CTRCLK2 serving as a latch clock of the delay circuit 103 and the drive signal modulation circuit DMOD (107). A clock DCLKD and an analog circuit clock CLKA are generated. The role and phase relationship of each clock will be described in the explanation of the operation of each circuit block.
 アナログ回路クロックCLKAはアナログドライバ108によって適切なアナログ信号に増幅され、搬送波CARRYとしてセンサ110に入力される。また、アナログ回路クロックはアナログフロントエンド109の基準クロックとなる。つまり、搬送波とアナログ回路の動作タイミングは同期していることになる。 The analog circuit clock CLKA is amplified to an appropriate analog signal by the analog driver 108 and input to the sensor 110 as a carrier wave CARRY. The analog circuit clock is a reference clock for the analog front end 109. That is, the carrier wave and the operation timing of the analog circuit are synchronized.
 次に駆動振幅制御ループについて説明する。振幅制御値信号PIDCは適切な遅延を施すため遅延回路103に入力される。遅延回路103は、PIDCをCTRCLK2でラッチして、遅延情報DCTR2に基づきPIDCを遅延させ、遅延駆動振幅DAMPとして出力する。駆動信号変調回路107は、DAMPと変調クロックDCLKDを乗算する乗算器102を有し、乗算結果として駆動変調信号DRIVE0を出力する。デジタルアナログ変換回路DAC(101)は、DRIVE0を駆動信号DRIVEPおよびDRIVENに変換してセンサ110に入力する。ここでPとNは正と負を表しており、DRIVEPとDRIVENは同じ振幅を有し位相が180度ずれた(つまり互いに振幅が反転した)関係にある。 Next, the drive amplitude control loop will be described. The amplitude control value signal PIDC is input to the delay circuit 103 for appropriate delay. The delay circuit 103 latches PIDC with CTRCLK2, delays PIDC based on the delay information DCTR2, and outputs it as a delay drive amplitude DAMP. The drive signal modulation circuit 107 includes a multiplier 102 that multiplies DAMP and the modulation clock DCLKD, and outputs a drive modulation signal DRIVE0 as a multiplication result. The digital-analog conversion circuit DAC (101) converts DRIVE0 into drive signals DRIVEP and DRIVEN and inputs them to the sensor 110. Here, P and N represent positive and negative, and DRIVEP and DRIVEN have the same amplitude and have a phase difference of 180 degrees (that is, the amplitudes are inverted from each other).
 上述した回路機能ブロックの特徴はアナログフロントエンド109の後、直交検波回路106の後、コントロール回路105の後にそれぞれサンプリングレートを落とすフィルタが存在しないことである。この構成によってアナログフロントエンド109のサンプリングレートFsを落とすことなく制御ループを構成し、図5および図6を用いて説明した通りオーバーサンプリング効果を活用して雑音強度を減じることができるのである。またオーバーサンプリングレートFsはFs>f0であればノイズを減じる効果が得られるので、この条件を満たす範囲であればサンプリングレートを下げる目的でフィルタ回路を挿入しても実施例1の範囲に含まれる。ここでf0はセンサ110の共振周波数である。 The feature of the circuit function block described above is that there are no filters that lower the sampling rate after the analog front end 109, after the quadrature detection circuit 106, and after the control circuit 105, respectively. With this configuration, it is possible to configure a control loop without reducing the sampling rate Fs of the analog front end 109, and to reduce the noise intensity by utilizing the oversampling effect as described with reference to FIGS. In addition, since the oversampling rate Fs has an effect of reducing noise if Fs> f0, even if a filter circuit is inserted for the purpose of lowering the sampling rate as long as this condition is satisfied, it is included in the range of the first embodiment. . Here, f0 is the resonance frequency of the sensor 110.
 図8は、本発明の実施例1におけるクロック生成回路104の具体的構成例を示す図である。 FIG. 8 is a diagram illustrating a specific configuration example of the clock generation circuit 104 according to the first embodiment of the present invention.
 周波数制御信号PIDSは電圧制御発振回路VCO(122)に入力される。電圧制御発振回路122は、電圧制御発振回路制御係数VCOCTRLによって制御された周波数可変範囲を持ち、上記周波数範囲内でPIDSに応じた周波数を有するクロックCLK0を生成する。本実施例では、生成されるアナログクロックCLKAの周波数が、駆動マス150及び検出マス151を含むセンサ110の振動体の固有振動数の2倍以上となるように、電圧制御発振回路制御係数VCOCTRLが設定される。例えば、電圧制御発振回路122がPIDSに応じて振動体の固有振動数の16倍の周波数のクロックCLK0を生成できるように電圧制御発振回路制御係数VCOCTRLが設定され、クロックCLK0から振動体の固有振動数の8倍の周波数のアナログクロックCLKAが生成されてもよい(図17~図20等参照)。なお、本実施例ではアナログクロックCLKAの周期の長さが1周期ごとに変化するため、上記の説明におけるアナログクロックCLKAの周波数とは、例えば、ある期間に含まれる周期の数から計算される平均的な周波数であってもよい。 The frequency control signal PIDS is input to the voltage controlled oscillation circuit VCO (122). The voltage controlled oscillation circuit 122 has a frequency variable range controlled by the voltage controlled oscillation circuit control coefficient VCTRL, and generates a clock CLK0 having a frequency corresponding to PIDS within the frequency range. In this embodiment, the voltage-controlled oscillation circuit control coefficient VCCTRL is set so that the frequency of the generated analog clock CLKA is at least twice the natural frequency of the vibration body of the sensor 110 including the drive mass 150 and the detection mass 151. Is set. For example, the voltage-controlled oscillation circuit control coefficient VCCTRL is set so that the voltage-controlled oscillation circuit 122 can generate a clock CLK0 having a frequency 16 times the natural frequency of the vibrating body according to PIDS, and the natural vibration of the vibrating body is determined from the clock CLK0. An analog clock CLKA having a frequency eight times the number may be generated (see FIGS. 17 to 20 and the like). In the present embodiment, since the length of the period of the analog clock CLKA changes every period, the frequency of the analog clock CLKA in the above description is, for example, an average calculated from the number of periods included in a certain period. May be a typical frequency.
 カウンタ回路123は、CLK0をカウントクロックとしてカウントアップ又はカウントダウンすることによって、アナログクロック元信号CLKA0、変調クロック元信号DCLKD0、K倍カウントクロックCLKK、およびL倍カウントクロックCLKLを生成する。カウンタ124は、遅延情報DCTRL1に基づきDCLKD0をCLKLでラッチして遅延させたクロックCTRCLK10を生成する。 The counter circuit 123 generates an analog clock original signal CLKA0, a modulation clock original signal DCLKD0, a K-times count clock CLKK, and an L-times count clock CLKL by counting up or counting down using CLK0 as a count clock. The counter 124 generates a clock CTRCLK10 obtained by latching and delaying DCLKD0 with CLKL based on the delay information DCTRL1.
 CLKA0はクロックバッファ125を介してアナログクロックCLKAとして出力され、DCLKD0はクロックバッファ125を介してDCLKDとして出力され、CLKKはクロックバッファ125を介してCTRCLK2として出力され、CTRCLK10はクロックバッファ125を介してCTRCLK1として出力される。これによって、アナログクロックCLKAの各周期は、直交位相成分QUADの各サンプル値の大きさに応じた長さを有することになり、その長さは1周期ごとに異なることとなる(図17参照)。 CLKA0 is output as an analog clock CLKA through the clock buffer 125, DCLKD0 is output as DCLKD through the clock buffer 125, CLKK is output as CTRCLK2 through the clock buffer 125, and CTRCLK10 is output through the clock buffer 125 as CTRCLK1. Is output as Thus, each cycle of the analog clock CLKA has a length corresponding to the size of each sample value of the quadrature component QUAD, and the length differs for each cycle (see FIG. 17). .
 図9は、本発明の実施例1における電圧制御発振回路122の具体的構成例を示す図である。 FIG. 9 is a diagram illustrating a specific configuration example of the voltage controlled oscillation circuit 122 according to the first embodiment of the present invention.
 電圧制御電流出力回路126は発振回路制御係数VCOCTRLに基づいた基準電流IREFを出力する。デジタルアナログ変換回路127は周波数制御信号PIDSに基づいた電圧信号DAC0を生成する。IREFとDAC0とに基づいてクロックCLK0を生成する発振回路がOSCGEN(128)である。発振回路128は基本的には電流と電圧でキャパシタの充電時間を調整してこれによって発振周波数を変化させる機構を持つ、一般的な発振回路である。実施例1ではオーバーサンプリングによって周波数ステップを大きくしても雑音強度を低くすることが出来るため、電圧制御電流出力回路126およびデジタルアナログ変換回路127の制御ステップ数を小さくしても良い。よって、電圧制御電流出力回路126およびデジタルアナログ変換回路127の回路規模を小さくでき、低コスト化に寄与する。 The voltage control current output circuit 126 outputs a reference current IREF based on the oscillation circuit control coefficient VCTRL. The digital-analog conversion circuit 127 generates a voltage signal DAC0 based on the frequency control signal PIDS. An oscillation circuit that generates the clock CLK0 based on IREF and DAC0 is OSCGEN (128). The oscillating circuit 128 is basically a general oscillating circuit having a mechanism for adjusting the charging time of the capacitor with current and voltage and thereby changing the oscillating frequency. In the first embodiment, even if the frequency step is increased by oversampling, the noise intensity can be lowered. Therefore, the number of control steps of the voltage control current output circuit 126 and the digital / analog conversion circuit 127 may be reduced. Therefore, the circuit scale of the voltage control current output circuit 126 and the digital-analog conversion circuit 127 can be reduced, which contributes to cost reduction.
 図10は、本発明の実施例1における電圧制御電流出力回路126の具体的構成例を示す図である。 FIG. 10 is a diagram illustrating a specific configuration example of the voltage controlled current output circuit 126 according to the first embodiment of the present invention.
 電圧制御電流出力回路126は、VCOCTRLをデコードし8ビット出力を得るデコーダ129と、デコーダ出力によって出力電流のON/OFFが決定される電流源CS(130)と、を有する。デコーダ129は、例えば、<0>から<7>の8ビットのうち、<0>だけONで残りはOFF、<1:0>がONで残りがOFF、または、<2:0>がONで残りがOFF、といった値を出力する。これによって、デコーダ129の出力に応じて、IREFの大きさをCS1個の出力から8個の出力まで8通りに変化させることが可能となる。図10に示す電圧制御電流出力回路は3ビットデコーダによる8階調の電流出力例であるが、これは一例であり、システムによって自在にビット数を変更可能である。例えばVCOCTRLが4ビットであれば電流出力は16階調に、5ビットであれば32階調に変更可能である。ただし、ビット数を増大すると回路規模が大きくなるため好ましくない。実施例1によればオーバーサンプリング効果によってビット数を小さくできるため、システムの目標性能を満たせる範囲内で最も小さなビット数にすることが望ましい。 The voltage control current output circuit 126 has a decoder 129 that decodes VCOCRL to obtain an 8-bit output, and a current source CS (130) that determines ON / OFF of the output current by the decoder output. For example, among the 8 bits from <0> to <7>, the decoder 129 is ON only for <0> and the rest is OFF, <1: 0> is ON and the rest is OFF, or <2: 0> is ON And outputs the value that the rest is OFF. As a result, according to the output of the decoder 129, the magnitude of IREF can be changed in 8 ways from 1 CS output to 8 outputs. The voltage-controlled current output circuit shown in FIG. 10 is an example of 8-gradation current output by a 3-bit decoder, but this is an example, and the number of bits can be freely changed by the system. For example, if VCCTRL is 4 bits, the current output can be changed to 16 gradations, and if 5 bits, it can be changed to 32 gradations. However, increasing the number of bits is not preferable because the circuit scale increases. According to the first embodiment, the number of bits can be reduced due to the oversampling effect. Therefore, it is desirable to set the number of bits to the smallest within a range that can satisfy the target performance of the system.
 図11は、本発明の実施例1におけるアナログフロントエンド109の具体的構成例を示す図である。 FIG. 11 is a diagram illustrating a specific configuration example of the analog front end 109 according to the first embodiment of the present invention.
 C/V変換回路131は、アナログ振幅信号ASIGDP及びASIGDNの入力をそれぞれ電圧信号CVDP及びCVDNに増幅し変換する回路ブロックである。C/V変換回路131はアナログクロックCLKAで同期されて動作する。良く知られた回路方式としてサンプリングホールド回路を有するスイッチトキャパシタ回路が適用されることがある。差動のC/V変換回路出力であるCVDP及びCVDNを増幅してAMPDPおよびAMPDNの差動電圧信号を出力するアンプ回路132がC/V変換回路131の後に続く。ただしアンプ回路132はC/V変換回路131では増幅率が不足する場合に挿入すれば良く、不足しない場合にはなくても良い。またアンプ回路132は差動入力を増幅して差動出力を得る完全差動アンプであることが望ましい。完全差動アンプとすることで同相雑音を低減することができ、ダイナミックレンジを広くすることが出来る。アンプ回路132もアナログクロックCLKAと同期して動作する。アンプ回路132の差動出力AMPDPおよびAMPDNをデジタル信号であるDSIGDに変換する回路がアナログデジタル変換回路ADC(133)である。ADCにはΣΔ型ADC、SAR型ADC、サイクリック型ADCと様々な方式が知られているが、実施例1ではどのようなADC回路を適用しても良い。またADC133もアナログクロックCLKAに同期して動作する。C/V変換回路131、アンプ回路132、ADC133の全ての回路ブロックはCLKAに同期する。各回路ブロック内でCLKAを元に独自のクロックを生成しても良いが、詳細は省略する。 The C / V conversion circuit 131 is a circuit block that amplifies and converts the input of the analog amplitude signals ASIGDP and ASIGDN into voltage signals CVDP and CVDN, respectively. The C / V conversion circuit 131 operates in synchronization with the analog clock CLKA. As a well-known circuit system, a switched capacitor circuit having a sampling hold circuit may be applied. An amplifier circuit 132 that amplifies the differential C / V conversion circuit outputs CVDP and CVDN and outputs differential voltage signals of AMPDP and AMPDN follows the C / V conversion circuit 131. However, the amplifier circuit 132 may be inserted when the gain of the C / V conversion circuit 131 is insufficient, and may not be required when the amplification is not insufficient. The amplifier circuit 132 is preferably a fully differential amplifier that amplifies the differential input to obtain a differential output. By using a fully differential amplifier, common-mode noise can be reduced and the dynamic range can be widened. The amplifier circuit 132 also operates in synchronization with the analog clock CLKA. A circuit that converts the differential outputs AMPDP and AMPDN of the amplifier circuit 132 into a digital signal DSIGD is an analog-digital conversion circuit ADC (133). Various ADCs such as ΣΔ ADC, SAR ADC, and cyclic ADC are known as ADCs, but any ADC circuit may be applied in the first embodiment. The ADC 133 also operates in synchronization with the analog clock CLKA. All circuit blocks of the C / V conversion circuit 131, the amplifier circuit 132, and the ADC 133 are synchronized with CLKA. A unique clock may be generated based on CLKA in each circuit block, but details are omitted.
 図12は、本発明の実施例1における遅延回路103の具体的構成例を示す図である。 FIG. 12 is a diagram illustrating a specific configuration example of the delay circuit 103 according to the first embodiment of the present invention.
 遅延回路103は、振幅制御信号PIDCをラッチクロックCTRCLK2のタイミングでラッチするデータラッチ回路DL(134)が8個直列に接続された構成を有する。それぞれのデータラッチ回路の出力は8ビットの遅延振幅制御信号PIDCD<7:0>となる。<0>はPIDCに対してCTRCLK2の1クロック分の遅延があり、以下、<1>では2クロック、<2>では3クロック、以下同様に、遅延量がCTRCLK2を単位として増えていく。 The delay circuit 103 has a configuration in which eight data latch circuits DL (134) that latch the amplitude control signal PIDC at the timing of the latch clock CTRCLK2 are connected in series. The output of each data latch circuit is an 8-bit delay amplitude control signal PIDCD <7: 0>. <0> has a delay of one clock of CTRCLK2 with respect to PIDC. Hereinafter, <1> has two clocks, <2> has three clocks, and similarly, the delay amount increases in units of CTRCLK2.
 PIDCD<7:0>の中から1本の信号をDCTR2によって選択する回路がMUX回路135である。これによってDCTR2で指定された遅延を有する遅延駆動振幅信号列DAMPが得られる。図12に示した例では8通りの遅延量の設定が可能であるが、これはセンサの共振周波数f0の8倍の周波数でACLKが動作している状態を仮定しているためである。言い換えるとオーバーサンプリング比が8倍に設定されていることを仮定している。データラッチ134の直列数はオーバーサンプリング比に応じて大きくする必要がある。例えば、オーバーサンプリング比が16倍の場合には16段のデータラッチ134が必要になる。 A circuit that selects one signal from PIDCD <7: 0> by DCTR 2 is a MUX circuit 135. As a result, a delay drive amplitude signal sequence DAMP having a delay designated by DCTR2 is obtained. In the example shown in FIG. 12, eight delay amounts can be set because it is assumed that the ACLK operates at a frequency eight times the sensor resonance frequency f0. In other words, it is assumed that the oversampling ratio is set to 8 times. The number of data latches 134 in series needs to be increased according to the oversampling ratio. For example, when the oversampling ratio is 16 times, a 16-stage data latch 134 is required.
 あるいは、オーバーサンプリング比が8倍の場合に4個のデータラッチ134を直列に接続し、更にデータの極性を反転できる回路を備えるように構成することも可能である。つまり、オーバーサンプリング比の半分の数のデータラッチ134を直列化し、最後にデータの極性を反転して出力するか、または、そのままの極性で出力するかを選択する回路を設ける構成も可能である。このような構成にすることでデータラッチ回路の数を減らすことが可能となる。遅延回路をこのように構成することで、駆動振幅制御の遅延を、アナログサンプリングクロックを単位として制御できるようになり、駆動制御の精度が向上し、その結果として雑音が小さく安定した角速度センサが提供できるようになるのである。 Alternatively, when the oversampling ratio is 8 times, it is also possible to connect four data latches 134 in series and further comprise a circuit that can invert the polarity of the data. That is, it is also possible to provide a circuit that serializes the number of data latches that is half the oversampling ratio and finally selects whether to output the data with the polarity reversed or with the same polarity. . With this configuration, the number of data latch circuits can be reduced. By configuring the delay circuit in this way, the delay of drive amplitude control can be controlled in units of analog sampling clock, and the accuracy of drive control is improved, resulting in a stable angular velocity sensor with low noise. It will be possible.
 図13は、本発明の実施例1におけるデジタルアナログ変換回路DACの具体的な構成を示す図である。 FIG. 13 is a diagram illustrating a specific configuration of the digital-analog conversion circuit DAC according to the first embodiment of the present invention.
 駆動変調信号DRIVE0の入力をデコードするデコーダ137は相補の信号SELP<0:m>およびSELN<0:m>の中からそれぞれ1本をDRIVE0の値に応じて選択する。相補に選択するとは、SELP<K>とSELN<L>が選択された場合、K+L=mとなるように選択することと定義する。SELPおよびSELNは電圧選択回路VSEL136に入力される。電圧選択回路VSEL136は、抵抗RES138の直列接続によって高電圧側参照電圧VREFHと低電圧側参照電圧VREFLの電圧差を分割した一つの電圧を一つのスイッチ139によって選択して出力するように構成される。VREFHおよびVREFLの値は特に電源電圧と同一にする必要はなく、センサの特性に応じて設定されることが望ましい。VSEL136の相補出力はアナログバッファ140で出力インピーダンス及び出力振幅を調整され駆動信号DRIVEPおよびDRIVENとしてセンサに出力される。駆動電圧として高い電圧が必要な場合には上記アナログバッファ140はレベル変換回路としても動作する必要があり、このように高い電圧を出力するような場合も実施例1は含むものとする。 The decoder 137 that decodes the input of the drive modulation signal DRIVE0 selects one of the complementary signals SELP <0: m> and SELN <0: m> according to the value of DRIVE0. The complementary selection is defined as selecting K + L = m when SELP <K> and SELN <L> are selected. SELP and SELN are input to the voltage selection circuit VSEL136. The voltage selection circuit VSEL136 is configured to select and output one voltage obtained by dividing the voltage difference between the high-voltage side reference voltage VREFH and the low-voltage side reference voltage VREFL by one switch 139 by connecting the resistors RES138 in series. . The values of VREFH and VREFL are not particularly required to be the same as the power supply voltage, and are preferably set according to the sensor characteristics. The complementary output of the VSEL 136 is adjusted in output impedance and output amplitude by the analog buffer 140 and output to the sensor as drive signals DRIVEP and DRIVEN. When a high voltage is required as the driving voltage, the analog buffer 140 must also operate as a level conversion circuit, and the first embodiment includes such a case where a high voltage is output.
 ここまでに説明したように、駆動信号DRIVEPおよびDRIVENは直交検波回路106から出力された同位相成分INPHASEから生成されるため、その1周期の長さはアナログクロックCLKAの所定の複数の周期(本実施例では8周期)の長さの合計と同じになる。 As described so far, since the drive signals DRIVEP and DRIVEN are generated from the in-phase component INPHASE output from the quadrature detection circuit 106, the length of one cycle is a predetermined number of cycles of the analog clock CLKA. In the embodiment, it is the same as the total length of 8 cycles).
 図14は、本発明の実施例1におけるDACに含まれるスイッチ139の具体的な構成例を示す図である。 FIG. 14 is a diagram illustrating a specific configuration example of the switch 139 included in the DAC according to the first embodiment of the present invention.
 スイッチ139は、スイッチ(sw1)144を有する。一方のスイッチ144は、SELPおよび入力信号inがそれぞれck1およびin1として入力されると、in1をoutpとして出力するか否かをck1の値に応じて選択するスイッチである。もう一方のスイッチ144は、SELNおよび入力信号inがそれぞれck2およびin2として入力されると、in2をoutnとして出力するか否かをck2の値に応じて選択するスイッチである。 The switch 139 has a switch (sw1) 144. One switch 144 is a switch that selects whether or not to output in1 as outp when the SELP and the input signal in are input as ck1 and in1, respectively, according to the value of ck1. The other switch 144 is a switch that selects whether or not to output in2 as outn according to the value of ck2 when SELN and the input signal in are input as ck2 and in2, respectively.
 図15は、本発明の実施例1におけるスイッチ144の具体的な構成例を示す図である。 FIG. 15 is a diagram illustrating a specific configuration example of the switch 144 according to the first embodiment of the present invention.
 図15の例では、スイッチ144はP型MOSトランジスタであるPMOS141と、N型MOSトランジスタであるNMOS142とによって構成される。選択信号CK(図14のck1およびck2に相当)は、インバータによって論理が反転されPMOS141のゲートgに入力され、反転されずにNMOS142のゲートgに入力される。スイッチ144の入力(図14のin1およびin2に相当)はSWinであり、これらはPMOSおよびNMOSのソースsに入力され、スイッチ130の出力SWout(図14のoutpおよびoutnに相当)はPMOS141およびNMOS142のドレインdに接続される。つまりスイッチとしてPMOSおよびNMOSを使うことで、スイッチ144は、図13におけるVREFHからVREFLの間のあらゆるアナログ電圧レベルをCKに依存して出力するアナログスイッチとして構成される。 In the example of FIG. 15, the switch 144 includes a PMOS 141 that is a P-type MOS transistor and an NMOS 142 that is an N-type MOS transistor. The selection signal CK (corresponding to ck1 and ck2 in FIG. 14) is inverted in logic by the inverter and input to the gate g of the PMOS 141, and input to the gate g of the NMOS 142 without being inverted. The input of the switch 144 (corresponding to in1 and in2 in FIG. 14) is SWin, which is input to the sources s of the PMOS and NMOS, and the output SWout of the switch 130 (corresponding to outp and outn in FIG. 14) is the PMOS 141 and NMOS 142 Connected to the drain d. That is, by using PMOS and NMOS as switches, the switch 144 is configured as an analog switch that outputs all analog voltage levels between VREFH and VREFL in FIG. 13 depending on CK.
 図16は、本発明の実施例1におけるセンサ110の等価回路を示す図である。 FIG. 16 is a diagram showing an equivalent circuit of the sensor 110 according to the first embodiment of the present invention.
 センサ110の等価回路は、合計8個の静電容量が一方の端子を搬送波CARRYの入力端子として共有する構成である。 The equivalent circuit of the sensor 110 has a configuration in which a total of eight capacitances share one terminal as an input terminal for the carrier CARRY.
 駆動電圧信号DRIVEPおよびDRIVENの入力端子を含む静電容量CxfpおよびCxfnはそれぞれ正側駆動容量及び負側駆動容量である。駆動マス150を駆動する静電気力は(DRIVEP-CARRY)^2-(DRIVEN-CARRY)^2に比例する。この静電気力によって駆動マス150は駆動される。 Capacitances Cxfp and Cxfn including input terminals of drive voltage signals DRIVEP and DRIVEN are a positive side drive capacity and a negative side drive capacity, respectively. The electrostatic force that drives the driving mass 150 is proportional to (DRIVEP-CARRY) ^ 2- (DRIVEN-CARRY) ^ 2. The driving mass 150 is driven by this electrostatic force.
 駆動検出信号ASIGDPおよびASIGDNが接続される静電容量CxspおよびCxsnはそれぞれ正側駆動検出容量および負側駆動検出容量である。駆動マス150の変位はCxsp-Cxsnによって検出することができる。 The electrostatic capacitances Cxsp and Cxsn to which the drive detection signals ASIGDP and ASIGDN are connected are a positive drive detection capacitor and a negative drive detection capacitor, respectively. The displacement of the driving mass 150 can be detected by Cxsp-Cxsn.
 サーボ電圧信号SERVOPおよびSERVONが接続される静電容量CyfpおよびCyfnはそれぞれ正側サーボ容量及び負側サーボ容量である。検出マス151をサーボ制御する際に印加される静電気力は(SERVOP-CARRY)^2-(SERVON-CARRY)^2に比例する。 The electrostatic capacities Cyfp and Cyfn to which the servo voltage signals SERVOP and SERVON are connected are a positive servo capacity and a negative servo capacity, respectively. The electrostatic force applied when servo-controlling the detection mass 151 is proportional to (SERVOP-CARRY) ^ 2- (SERVON-CARRY) ^ 2.
 検出信号ASIGSPおよびASIGSNが接続される静電容量CyspおよびCysnはそれぞれ正側検出容量及び負側検出容量である。検出マス151の変位はCysp-Cysnによって検出することができる。 Capacitances Cysp and Cysn to which the detection signals ASIGSP and ASIGSN are connected are a positive-side detection capacitor and a negative-side detection capacitor, respectively. The displacement of the detection mass 151 can be detected by Cysp-Cysn.
 [実施例1の動作波形] [Operation waveform of Example 1]
 図17から22を用いて実施の形態1の回路の内部動作波形を説明する。必要がある場合には比較例と対比することで実施例1の回路動作の特徴が明らかになる。 The internal operation waveforms of the circuit of the first embodiment will be described with reference to FIGS. When necessary, the characteristics of the circuit operation of the first embodiment become clear by comparing with the comparative example.
 図17は、本発明の実施例1および比較例における直交検波回路106の動作波形を模式的に示した図である。 FIG. 17 is a diagram schematically showing operation waveforms of the quadrature detection circuit 106 in the first embodiment and the comparative example of the present invention.
 実施例1の特徴を説明するため、図17(A)に示す本実施例の動作波形を、図17(B)に示す比較例と対比する。これらの図は、それぞれの例におけるアナログクロックCLKA、ADCによってデジタル変換された駆動振幅情報DSIGD、直交位相成分QUAD、および、同位相成分INPHASEの関係を示したものである。各データ点はドットで示してあり、DSIGDのデータ点のタイミングはCLKAの立ち上がりと同じである。これはアナログクロックCLKAの立ち上がりでデータをサンプリングしていることを表している。DSIGDの一周期に対してデータ点が8点あり、DSIGDの周期は駆動マスの共振振動周期であることから明らかなように、図17はオーバーサンプリング比が8倍の場合の波形例を示す。通常の直交検波を行う際には式(1)に示す通り、cos(コサイン)成分には直流成分と2倍波成分、sin(サイン)成分には2倍波成分(2α)が出現する。 In order to explain the characteristics of the first embodiment, the operation waveform of the present embodiment shown in FIG. 17A is compared with the comparative example shown in FIG. These diagrams show the relationship among the analog clock CLKA, the drive amplitude information DSIGD digitally converted by the ADC, the quadrature phase component QUAD, and the in-phase component INPHASE in each example. Each data point is indicated by a dot, and the timing of the DSIGD data point is the same as the rising edge of CLKA. This indicates that data is being sampled at the rising edge of the analog clock CLKA. As apparent from the fact that there are 8 data points for one DSIGD period and the DSIGD period is the resonance oscillation period of the drive mass, FIG. 17 shows an example of a waveform when the oversampling ratio is 8 times. When performing normal quadrature detection, a DC component and a second harmonic component appear in the cos (cosine) component, and a second harmonic component (2α) appears in the sin (sine) component, as shown in Equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 実施例1ではサインの2倍波成分であるQUADとコサインの2倍波成分であるINPHASEをそれぞれフィルタせずオーバーサンプリング比8倍のまま制御を行う。この結果、周波数制御値がデータ点毎に違う値を取り得るため、実施の形態1では各サンプリング点の時間間隔、つまり、アナログクロックCLKAの周期が1クロック毎に異なることになる。一方、比較例ではQUAD信号およびINPHASE信号において、共に2倍波成分をフィルタで除去するため共振周期の間に1点だけ制御点が存在することとなる。よって少なくとも共振周期1周期の間にCLKAのクロック周期が変化することがない。実施例1と比較例の最も大きな違いはQUAD及びINPHASEのデータ点の数であり、その結果として実施例1ではアナログサンプリングの間隔が共振周期1周期の中であっても変化することである。図7に示す通りCLKAをアナログバッファによって所望の電圧振幅にした信号が搬送波CARRYであるため、搬送波の時間波形においても上記のCLKAと同様の特徴が観測されることになる。 In the first embodiment, the QUAD that is the second harmonic component of the sine and the INPHASE that is the second harmonic component of the cosine are not filtered, and the oversampling ratio is 8 times. As a result, since the frequency control value can take a different value for each data point, in the first embodiment, the time interval of each sampling point, that is, the period of the analog clock CLKA is different for each clock. On the other hand, in the comparative example, in the QUAD signal and the INPHASE signal, since the second harmonic component is removed by the filter, there is only one control point during the resonance period. Therefore, the clock cycle of CLKA does not change at least during one resonance cycle. The greatest difference between the first embodiment and the comparative example is the number of QUAD and INPHASE data points. As a result, in the first embodiment, the analog sampling interval changes even within one resonance cycle. As shown in FIG. 7, a signal obtained by setting CLKA to a desired voltage amplitude by an analog buffer is a carrier CARRY. Therefore, the same characteristics as those of CLKA are observed in the time waveform of the carrier.
 図18は、実施例1におけるクロック発生回路CLKGENの動作波形を示す図である。 FIG. 18 is a diagram illustrating operation waveforms of the clock generation circuit CLKGEN in the first embodiment.
 カウンタCOUNT0は、カウントアップタイプのカウンタとして構成されており、CLK0の立ち上がりエッジでカウントアップ動作を行う。ここでは3ビットカウンタ(0~7までのカウント)の例を示した。カウンタのビット数は設計に依存して変更されても良い。アナログクロック元信号CLKA0はCLK0の2倍波(すなわちその1周期がCLK0の2周期に相当する信号)であり、駆動クロック元信号であるDCLKD0はCLK0の16倍波である。図17によれば直交位相成分QUADのデータはCLKAの立ち上がりで更新されるため、周波数制御信号PIDSもまたCLKAの元信号であるCLKA0の立ち上がりで更新される。PIDSに応じてCLK0の発振周波数は変化し、これに応じてカウントアップのタイミングも変化していく。言い換えるとカウントアップの時間間隔が変化していくことになる。これによってCLKD0のある1周期の時間は、図18に示す通り0.5*T03+2*(T10+T11+T12)+1.5*T13で表される。 The counter COUNT0 is configured as a count-up type counter, and performs a count-up operation at the rising edge of CLK0. Here, an example of a 3-bit counter (count from 0 to 7) is shown. The number of bits of the counter may be changed depending on the design. The analog clock source signal CLKA0 is a second harmonic of CLK0 (that is, a signal whose one cycle corresponds to two cycles of CLK0), and the drive clock source signal DCLKD0 is a sixteenth harmonic of CLK0. According to FIG. 17, since the data of the quadrature phase component QUAD is updated at the rising edge of CLKA, the frequency control signal PIDS is also updated at the rising edge of CLKA0 which is the original signal of CLKA. The oscillation frequency of CLK0 changes according to PIDS, and the count-up timing also changes accordingly. In other words, the time interval for counting up changes. Thus, a period of one period of CLKD0 is represented by 0.5 * T03 + 2 * (T10 + T11 + T12) + 1.5 * T13 as shown in FIG.
 図19は、従来のクロック発生回路の動作波形を示す図である。これは、図18に示す実施例1の動作波形と対比するための比較例である。 FIG. 19 is a diagram showing operation waveforms of a conventional clock generation circuit. This is a comparative example for comparison with the operation waveform of the first embodiment shown in FIG.
 図19に示す比較例では、PIDSの更新がDCLKD0の1周期に一回だけ行われるため、カウンタのカウントアップタイミングはDCLKD0の一周期の間に変化することはなく、よって、DCLKD0のある1周期の時間は0.5*T0+7.5*T1で表現される。 In the comparative example shown in FIG. 19, since the PIDS is updated only once in one cycle of DCLKD0, the count-up timing of the counter does not change during one cycle of DCLKD0, and therefore one cycle of DCLKD0. Is expressed as 0.5 * T0 + 7.5 * T1.
 DCLKD0の1周期の時間を表現するときに、実施例1では5種類の時間T03、T10、T11、T12およびT13の和で表現するのに対して、比較例では2種類の時間T0+T1で表現することになるため、比較例では実施例1と比較して表現できる時間の階調が疎になる。つまり、駆動制御をするに当たり比較例では周波数制御の階調が疎になり、センサの共振周波数との誤差が大きくなることを意味する。実施例1と比較例ではカウンタのビット数は全く同じであるから、実施例1では回路規模を増大することなく制御の方法の工夫で雑音を低減していることを示している。 When the time of one period of DCLKD0 is expressed, in the first embodiment, it is expressed by the sum of five types of times T03, T10, T11, T12 and T13, whereas in the comparative example, it is expressed by two types of times T0 + T1. Therefore, in the comparative example, the gradation of time that can be expressed is sparse compared to the first embodiment. In other words, in the comparative example, when performing drive control, the gradation of frequency control becomes sparse, which means that an error from the resonance frequency of the sensor increases. Since the number of bits of the counter is exactly the same in the first embodiment and the comparative example, the first embodiment shows that the noise is reduced by devising the control method without increasing the circuit scale.
 図20は、クロック発生回路CLKGENにおける遅延クロックCTRCLK10の生成方法を波形に基づいて説明する図である。 FIG. 20 is a diagram illustrating a method of generating the delay clock CTRCLK10 in the clock generation circuit CLKGEN based on the waveforms.
 CTRCLK10は駆動クロック元信号DCLKD0を遅延量制御乗数DCTRL1に基づいて遅延させて生成されるクロックである。CLKA0の8倍波がDCLKD0になっていることから明らかなように、図20にはオーバーサンプリング比が8倍の例を示す。よって遅延量はCLKA0の1クロックを単位として0から7まで設定可能である必要がある。このため、実施例1は、遅延情報を、CLKA0をカウントアップクロックとする3ビットカウンタCOUNT1によって生成し、COUNT1の値がDCTRL1と一致したタイミングでラッチクロックCLKLの立ち上がりエッジでDCLKD0をラッチする構成とする。これによって直交検波の遅延量設定をオーバーサンプリング比8倍ならば0~7の全ての値に設定可能となり、直交検波のタイミング精度向上に寄与する。オーバーサンプリング比は設計によって変化するため、例えば16倍であれば、クロック発生回路CLKGENも遅延量を0~15までの全ての値を設定可能となるように設計する必要がある。 CTRCLK10 is a clock generated by delaying the drive clock original signal DCLKD0 based on the delay amount control multiplier DCTRL1. As is clear from the fact that the eighth harmonic of CLKA0 is DCLKD0, FIG. 20 shows an example in which the oversampling ratio is eight. Therefore, the delay amount must be set from 0 to 7 in units of one clock of CLKA0. Therefore, in the first embodiment, the delay information is generated by the 3-bit counter COUNT1 using CLKA0 as the count-up clock, and DCLKD0 is latched at the rising edge of the latch clock CLKL at the timing when the value of COUNT1 coincides with DCTRL1. To do. As a result, if the delay amount setting for quadrature detection is 8 times the oversampling ratio, all values from 0 to 7 can be set, which contributes to improving the timing accuracy of quadrature detection. Since the oversampling ratio changes depending on the design, for example, when it is 16 times, the clock generation circuit CLKGEN needs to be designed so that all the delay amounts from 0 to 15 can be set.
 図21は、図7における遅延回路103の動作波形例を示す図である。 FIG. 21 is a diagram showing an example of operation waveforms of the delay circuit 103 in FIG.
 振幅制御信号PIDCの値は、図17に示した通り、INPHASEにおいて2倍波成分を除去せずに制御に使うためCLKA0の立ち上がりエッジで更新される。これをデータラッチ列のラッチクロックCTRCLK2の立ち上がりエッジでそれぞれのデータラッチにラッチし、その出力がPIDCD<0>~<7>である。例えば遅延設定値DCTR2=2の場合、PIDCD<2>がMUXによって選択されるため、図21に示す通りPIDCと比較してCLKA0の3クロック分遅延したデータが遅延回路103の出力DAMPとして出力される。図20と同様にDCLKD0がCLKA0の8倍波になっていることから、図21に示すのはオーバーサンプリング比8倍の例である。よって、遅延設定が0~7まで存在することで、きめ細かな遅延設定が可能となっている。これによって駆動振幅制御の安定性が向上し、センサ出力の安定化に寄与する。 As shown in FIG. 17, the value of the amplitude control signal PIDC is updated at the rising edge of CLKA0 for use in control without removing the second harmonic component in INPHASE. This is latched in each data latch at the rising edge of the latch clock CTRCLK2 of the data latch train, and its outputs are PIDCD <0> to <7>. For example, when the delay setting value DCTR2 = 2, since PIDCD <2> is selected by the MUX, data delayed by three clocks of CLKA0 compared to PIDC is output as the output DAMP of the delay circuit 103 as shown in FIG. The Since DCLKD0 is an eighth harmonic of CLKA0 as in FIG. 20, FIG. 21 shows an example with an oversampling ratio of eight. Therefore, fine delay settings are possible because there are delay settings from 0 to 7. This improves the stability of the drive amplitude control and contributes to the stabilization of the sensor output.
 図22は、実施例1においてオーバーサンプリングが可能となっている理由を比較例と対比することで示している。 FIG. 22 shows the reason why oversampling is possible in Example 1 by comparing with the comparative example.
 通常、角速度センサの駆動マス150は電源OFF時には静止している。よって電源ONの後、駆動制御回路100は、駆動マス150を静止状態から共振状態に制御することになる。共振状態に到達する前の段階では共振周波数よりも駆動マス150の振動周波数が大きかったり小さかったりする可能性がある。図22(A)に示す比較例ではCARRYの周波数が常に一定であるため、時刻T1における振動と時刻T2における振動で駆動マス150の振動状態が異なると、オーバーサンプリング比が異なってしまう。比較例におけるオーバーサンプリング比は、時刻T1において11倍、時刻T2において8倍である。時刻によってオーバーサンプリング比が変化すると、制御誤差が一定にならないため安定な制御が出来ず、結果としてセンサ出力が不安定になったり雑音強度が増大したりする。 Normally, the driving mass 150 of the angular velocity sensor is stationary when the power is turned off. Therefore, after the power is turned on, the drive control circuit 100 controls the drive mass 150 from the stationary state to the resonant state. There is a possibility that the vibration frequency of the drive mass 150 is larger or smaller than the resonance frequency in the stage before reaching the resonance state. In the comparative example shown in FIG. 22A, since the CARRY frequency is always constant, if the vibration state of the driving mass 150 is different between the vibration at the time T1 and the vibration at the time T2, the oversampling ratio is different. The oversampling ratio in the comparative example is 11 times at time T1 and 8 times at time T2. If the oversampling ratio changes with time, the control error does not become constant, so that stable control cannot be performed. As a result, the sensor output becomes unstable or the noise intensity increases.
 一方、図22(B)に示す実施例1では、駆動マス150の振動状態に応じてCARRYの周波数も変動するため、時刻T1でもT2でもオーバーサンプリング比は8倍で一定のままである。このため、常に制御誤差を一定に保ち続けられ、結果として安定な制御が可能となる。言い換えると、実施例1は図7に示す構成からも明らかなようにセンサを制御ループに含んだPLL(Phase Locked Loop)と同等の構成になっている。このため、センサ要素の共振周波数が変わっても、センサの電源ONから徐々に駆動マスの振動状態が変化するような状況でも、回路で設定したオーバーサンプリング比を維持することが可能である点が比較例と大きく異なる。また、これによってオーバーサンプリングによる雑音の低減を基本原理とした制御ループが構成できるのである。 On the other hand, in Example 1 shown in FIG. 22B, since the CARRY frequency also fluctuates in accordance with the vibration state of the driving mass 150, the oversampling ratio remains constant at 8 times at both time T1 and T2. For this reason, the control error can always be kept constant, and as a result, stable control becomes possible. In other words, the first embodiment has a configuration equivalent to a PLL (Phase Locked Loop) including a sensor in a control loop, as is apparent from the configuration shown in FIG. For this reason, even if the resonance frequency of the sensor element changes, it is possible to maintain the oversampling ratio set in the circuit even in a situation where the vibration state of the drive mass gradually changes from the sensor power ON. It is very different from the comparative example. This also makes it possible to construct a control loop based on the basic principle of noise reduction by oversampling.
 図30は、実施例1における制御回路からセンサ要素に印加される電気信号を示す模式図である。 FIG. 30 is a schematic diagram illustrating an electrical signal applied to the sensor element from the control circuit according to the first embodiment.
 一番の特徴は搬送波CARRYの周期が駆動電圧DRIVEP及びDRIVENの1周期の間に変化し続けていることである。またサーボ電圧SERVOP及びSERVONの出力もCARRYの変化と同じタイミングで値が変化するように出力される。一方で駆動マス変位検出信号であるASIGDP及びASIGDN、検出マス変位検出信号であるASIGSPおよびASIGSNはC/V変換回路に入力されるため、C/V変換回路におけるオペアンプの仮想接地の効果で一定レベルから変化しない波形となって観測される。 The first feature is that the cycle of the carrier wave CARRY continues to change during one cycle of the drive voltages DRIVER and DRIVEN. Servo voltages SERVOP and SERVON are also output so that their values change at the same timing as the change in CARRY. On the other hand, the drive mass displacement detection signals ASIGDP and ASIGDN, and the detection mass displacement detection signals ASIGSP and ASIGSN are input to the C / V conversion circuit, so that a constant level is obtained due to the virtual grounding of the operational amplifier in the C / V conversion circuit. Observed as an unchanging waveform.
 図23から図25を用いて実施例2について説明する。以下に説明する相違点を除き、実施例2のシステムの各部は、図1~図22および図30に示された実施例1の同一の符号を付された各部と同一の機能を有するため、それらの説明は省略する。 Example 2 will be described with reference to FIGS. Except for the differences described below, each part of the system of the second embodiment has the same functions as the parts denoted by the same reference numerals of the first embodiment shown in FIGS. 1 to 22 and 30. Those explanations are omitted.
 図23は、本発明の実施例2の振動型角速度検出装置の構成を示す機能ブロック図である。 FIG. 23 is a functional block diagram showing the configuration of the vibration type angular velocity detection device according to the second embodiment of the present invention.
 実施例1では駆動マス150の制御にオーバーサンプリングの考え方を導入したが、実施例2では検出マス151の制御ループに同様の考え方を適用している点が、実施例1との相違点である。角速度検出回路ブロック200は、実施例1における駆動制御回路100と比較して遅延回路203がエラー成分ERRと信号成分SIGの2入力を受けて遅延エラー成分ERRDおよび遅延信号成分SIGDの2信号を出力する点が実施例1の駆動制御回路100と異なる。更にERRDおよびSIGDを変調クロックDCLKDによって変調する変調回路SMOD202の構成も実施例1の駆動信号変調回路DMOD102と異なる。また、駆動マス150の制御と異なり、検出マス151の制御ではエラー成分と信号成分をそれぞれ打ち消すようにサーボ信号を印加する必要があるため、エラー成分と信号成分を加算する加算器SUM201が存在する。また駆動マス変位検出信号ASIGDP及びASIGDNを受けて駆動電圧DRIVEP及びDRIVENを生成する一般的な駆動制御回路(DRVCTRL2)205が駆動制御タイミング信号XCTRLを角速度検出回路200に出力するため、これを受けて各種クロックを生成するクロック生成回路204も実施例1とは異なる。また、実施例2の角速度検出回路ブロック200は、角速度信号を出力するために信号成分SIGに対して必要な演算を施す回路ブロックLOGIC206を備える。 In the first embodiment, the concept of oversampling is introduced to control the drive mass 150. However, in the second embodiment, the same concept is applied to the control loop of the detection mass 151, which is different from the first embodiment. . In the angular velocity detection circuit block 200, compared with the drive control circuit 100 in the first embodiment, the delay circuit 203 receives two inputs of the error component ERR and the signal component SIG, and outputs two signals of the delay error component ERRD and the delay signal component SIGD. This is different from the drive control circuit 100 of the first embodiment. Further, the configuration of the modulation circuit SMOD202 that modulates ERRD and SIGD with the modulation clock DCLKD is also different from the drive signal modulation circuit DMOD102 of the first embodiment. Further, unlike the control of the driving mass 150, the control of the detection mass 151 needs to apply a servo signal so as to cancel the error component and the signal component, respectively, and therefore there is an adder SUM201 that adds the error component and the signal component. . A general drive control circuit (DRVCTRL2) 205 that receives the drive mass displacement detection signals ASIGDP and ASIGDN and generates drive voltages DRIVEP and DRIVEN outputs a drive control timing signal XCTRL to the angular velocity detection circuit 200. The clock generation circuit 204 that generates various clocks is also different from the first embodiment. The angular velocity detection circuit block 200 according to the second embodiment includes a circuit block LOGIC 206 that performs a necessary calculation on the signal component SIG in order to output an angular velocity signal.
 図24は、本発明の実施例2のクロック生成回路204の具体的な構成を示す図である。 FIG. 24 is a diagram illustrating a specific configuration of the clock generation circuit 204 according to the second embodiment of the present invention.
 図8に示したクロック生成回路104と比較してVCOが無い点だけが異なり、他は同じ構成を有する。クロック生成回路204では駆動制御タイミング信号XCTRLがカウンタのカウントクロックになるためにVCOが不要となっている。駆動制御タイミング信号XCTRLは、一般的な駆動制御回路205によって生成された、駆動マス150を駆動する制御のタイミングを示す信号であり、例えば、図19に示すCLK0と同様の信号であってもよい。 8 is different from the clock generation circuit 104 shown in FIG. 8 only in that there is no VCO, and the others have the same configuration. In the clock generation circuit 204, since the drive control timing signal XCTRL becomes the count clock of the counter, the VCO is unnecessary. The drive control timing signal XCTRL is a signal generated by the general drive control circuit 205 and indicating the control timing for driving the drive mass 150. For example, the drive control timing signal XCTRL may be a signal similar to CLK0 shown in FIG. .
 図25は、本発明の実施例2の遅延回路203の具体的な構成を示す図である。 FIG. 25 is a diagram showing a specific configuration of the delay circuit 203 according to the second embodiment of the present invention.
 遅延回路203は、2系統の入出力を必要とするため、内部に図12に示した遅延回路103を2つ備えた構成となっている。 Since the delay circuit 203 requires two systems of input / output, the delay circuit 203 has two delay circuits 103 shown in FIG.
 センサから検出されるY方向の変位信号は振動体の駆動周波数で変調されているため、角速度を得るためにはその駆動周波数に正確に合わせた同期検波を行う必要がある。本実施例によれば、駆動周波数に正確に合わせた同期検波を行って角速度を求めることができる。 Since the displacement signal in the Y direction detected from the sensor is modulated by the driving frequency of the vibrating body, it is necessary to perform synchronous detection that is accurately matched to the driving frequency in order to obtain the angular velocity. According to the present embodiment, the angular velocity can be obtained by performing synchronous detection accurately matched to the drive frequency.
 図26を用いて実施例3について説明する。以下に説明する相違点を除き、実施例3のシステムの各部は、図1~図25および図30に示された実施例1および2の同一の符号を付された各部と同一の機能を有するため、それらの説明は省略する。 Example 3 will be described with reference to FIG. Except for the differences described below, each part of the system of the third embodiment has the same functions as the parts denoted by the same reference numerals of the first and second embodiments shown in FIGS. 1 to 25 and FIG. Therefore, those descriptions are omitted.
 図26は、本発明の実施例3の振動型角速度検出装置の構成を示すブロック図である。 FIG. 26 is a block diagram illustrating a configuration of the vibration type angular velocity detection device according to the third embodiment of the present invention.
 実施例1では駆動マス150の制御のみでオーバーサンプリングが行われ検出マス151の制御は従来通りの方法であった。一方、実施例2では検出マス151の制御のみでオーバーサンプリングが行われ、駆動マス150の制御は従来通りの方法であった。これらに対して実施例3の装置は駆動マス150の制御と検出マス151の制御の両方でオーバーサンプリングを行う角速度センサコントローラ300を備える。角速度センサコントローラ300は、図7に示した駆動制御回路100と図23に示した角速度検出回路200の両方を備える。 In the first embodiment, oversampling is performed only by controlling the drive mass 150, and the control of the detection mass 151 is a conventional method. On the other hand, in the second embodiment, oversampling is performed only by the control of the detection mass 151, and the control of the drive mass 150 is a conventional method. On the other hand, the apparatus of the third embodiment includes an angular velocity sensor controller 300 that performs oversampling by both the control of the driving mass 150 and the control of the detection mass 151. The angular velocity sensor controller 300 includes both the drive control circuit 100 shown in FIG. 7 and the angular velocity detection circuit 200 shown in FIG.
 なお、本実施例の駆動制御タイミング信号XCTRLは、実施例1と同様の駆動制御回路100によって生成された、駆動マス150を駆動する制御のタイミングを示す信号であり、例えば、図18に示すCLK0と同様の信号であってもよい。 The drive control timing signal XCTRL of the present embodiment is a signal indicating the control timing for driving the drive mass 150 generated by the drive control circuit 100 similar to that of the first embodiment. For example, the CLK0 shown in FIG. The same signal may be used.
 本実施例によれば、実施例1の駆動制御回路が使用された場合にも、駆動周波数に正確に合わせた同期検波を行って角速度を求めることができる。 According to the present embodiment, even when the drive control circuit according to the first embodiment is used, the angular velocity can be obtained by performing the synchronous detection accurately matched to the drive frequency.
 図27から29を用いて実施の形態4について説明する。以下に説明する相違点を除き、実施例4のシステムの各部は、図1~図26および図30に示された実施例1から3の同一の符号を付された各部と同一の機能を有するため、それらの説明は省略する。 Embodiment 4 will be described with reference to FIGS. Except for the differences described below, each part of the system of the fourth embodiment has the same functions as the parts denoted by the same reference numerals in the first to third embodiments shown in FIGS. 1 to 26 and 30. Therefore, those descriptions are omitted.
 実施例1~3では、本発明が適用される振動型慣性センサの一例として角速度センサを示したが、実施例4では、振動型慣性センサの別の一例として加速度センサを示す。 In Examples 1 to 3, an angular velocity sensor is shown as an example of a vibration type inertial sensor to which the present invention is applied. In Example 4, an acceleration sensor is shown as another example of a vibration type inertial sensor.
 図27は、本発明の実施例4の振動型加速度検出装置の構成を示す機能ブロック図である。 FIG. 27 is a functional block diagram showing the configuration of the vibration-type acceleration detection device according to the fourth embodiment of the present invention.
 図27に示す実施例4の加速度検出装置は、図7に示した実施例1と比較して角速度検出回路143が無く、制御対象のセンサが共振周波数変化型加速度センサ400になっている点が異なる。センサ400は、一定振動状態に検出マス401(図28参照)を保った状態に対して加速度が印加されると共振周波数が変化するため、これを検出加速度として出力する加速度センサである。制御回路411の構成は、振幅制御信号PIDCと周波数制御信号PIDSとを入力として加速度情報を演算して出力する回路ブロック410が追加されている点が異なるほかは、図7に示した角速度センサの駆動マス制御ループと同じである。 The acceleration detection device of the fourth embodiment shown in FIG. 27 has no angular velocity detection circuit 143 as compared with the first embodiment shown in FIG. 7, and the control target sensor is a resonance frequency change type acceleration sensor 400. Different. The sensor 400 is an acceleration sensor that outputs a detected acceleration as the resonance frequency changes when acceleration is applied to a state in which the detection mass 401 (see FIG. 28) is maintained in a constant vibration state. The configuration of the control circuit 411 is different from that of the angular velocity sensor shown in FIG. 7 except that a circuit block 410 that calculates and outputs acceleration information by inputting the amplitude control signal PIDC and the frequency control signal PIDS is added. Same as the drive mass control loop.
 図28は、本発明の実施例4の振動型加速度センサのセンサ要素の一例を示す図である。 FIG. 28 is a diagram illustrating an example of a sensor element of the vibration type acceleration sensor according to the fourth embodiment of the present invention.
 実施例4のセンサ400は容量検出型であるから搬送波CARRYが必要であり、これは検出マス401に入力される。 Since the sensor 400 of the fourth embodiment is a capacity detection type, a carrier wave CARRY is necessary, and this is input to the detection mass 401.
 図29は、図28に示すセンサ400の等価回路を示す図である。 FIG. 29 is a diagram showing an equivalent circuit of the sensor 400 shown in FIG.
 センサ400の等価回路は、合計4個の静電容量が一方の端子を搬送波CARRYの入力端子として共有する構成である。駆動電圧信号DRIVEPおよびDRIVENの入力端子を含む静電容量CxfpおよびCxfnはそれぞれ正側駆動容量及び負側駆動容量である。検出マス401を駆動する静電気力は(DRIVEP-CARRY)^2-(DRIVEN-CARRY)^2に比例する。この静電気力によって検出マス401は一定の振動状態を保つように駆動される。ASIGDPおよびASIGDNが接続される静電容量CxspおよびCxsnはそれぞれ正側検出容量および負側検出容量である。検出マス401の変位はCxsp-Cxsnによって検出することができる。 The equivalent circuit of the sensor 400 has a configuration in which a total of four capacitances share one terminal as an input terminal for the carrier CARRY. Capacitances Cxfp and Cxfn including input terminals of drive voltage signals DRIVEP and DRIVEN are a positive side drive capacity and a negative side drive capacity, respectively. The electrostatic force that drives the detection mass 401 is proportional to (DRIVEP-CARRY) ^ 2- (DRIVEN-CARRY) ^ 2. The detection mass 401 is driven by this electrostatic force so as to maintain a constant vibration state. Capacitances Cxsp and Cxsn to which ASIGDP and ASIGDN are connected are a positive detection capacitance and a negative detection capacitance, respectively. The displacement of the detection mass 401 can be detected by Cxsp-Cxsn.
 上記の実施例4によれば、慣性検出装置が加速度検出装置である場合にも回路規模を増大することなく高Qのセンサ要素を適用することが可能になる。 According to the fourth embodiment, it is possible to apply a high-Q sensor element without increasing the circuit scale even when the inertial detection device is an acceleration detection device.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明のより良い理解のために詳細に説明したのであり、必ずしも説明の全ての構成を備えるものに限定されものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることが可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。また、制御線及び情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線及び情報線を示しているとは限らない。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for better understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment. Further, the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown.

Claims (9)

  1.  振動体と、前記振動体を駆動する駆動制御部と、を有する慣性検出装置であって、
     前記駆動制御部は、
     前記振動体の駆動方向の変位を表す駆動検出信号を第1クロックでサンプリングし、
     前記サンプリングされた駆動検出信号に基づいて、1周期ごとの長さが異なるように前記第1クロックを生成し、
     前記第1クロックの2以上の所定の数の周期の合計と同じ長さの周期を有する駆動信号を、前記振動体を駆動するために前記振動体に印加することを特徴とする慣性検出装置。
    An inertial detection device having a vibrating body and a drive control unit that drives the vibrating body,
    The drive control unit
    A drive detection signal representing a displacement in the drive direction of the vibrator is sampled by a first clock
    Based on the sampled drive detection signal, the first clock is generated so that the length of each period is different,
    An inertial detection device, wherein a drive signal having a cycle having the same length as a total of a predetermined number of cycles of two or more of the first clock is applied to the vibrating body in order to drive the vibrating body.
  2.  請求項1に記載の慣性検出装置であって、
     前記駆動制御部は、
     前記第1クロックでサンプリングされた駆動検出信号を直交検波し、
     各周期が、前記直交検波によって得られた直交位相成分の各サンプル値の大きさに応じた長さを有する前記第1クロックを生成することを特徴とする慣性検出装置。
    The inertial detection device according to claim 1,
    The drive control unit
    Quadrature detection of the drive detection signal sampled by the first clock;
    The inertial detection device according to claim 1, wherein each cycle generates the first clock having a length corresponding to the size of each sample value of the quadrature phase component obtained by the quadrature detection.
  3.  請求項2に記載の慣性検出装置であって、
     前記駆動制御部は、前記第1クロックの周波数が前記振動体の固有振動数の2倍以上になるように前記第1クロックを生成することを特徴とする慣性検出装置。
    The inertial detection device according to claim 2,
    The inertial detection device, wherein the drive control unit generates the first clock so that a frequency of the first clock is twice or more a natural frequency of the vibrating body.
  4.  請求項3に記載の慣性検出装置であって、
     前記駆動制御部は、前記第1クロックと同じ周期の信号を、前記振動体の変位を検出するための搬送波信号として前記振動体に印加することを特徴とする慣性検出装置。
    The inertial detection device according to claim 3,
    The inertial detection device, wherein the drive control unit applies a signal having the same cycle as the first clock to the vibrating body as a carrier wave signal for detecting displacement of the vibrating body.
  5.  請求項2に記載の慣性検出装置であって、
     前記駆動制御部は、前記直交検波によって得られた前記直交位相成分および同位相成分に基づいて、前記振動体に加えられた加速度を示す出力信号を生成することを特徴とする慣性検出装置。
    The inertial detection device according to claim 2,
    The inertial detection apparatus, wherein the drive control unit generates an output signal indicating an acceleration applied to the vibrating body based on the quadrature phase component and the same phase component obtained by the quadrature detection.
  6.  請求項1に記載の慣性検出装置であって、
     前記振動体の前記駆動方向に直交する方向の変位を表す検出信号に基づいて、前記振動体に加えられた角速度を示す出力信号を生成する角速度検出部をさらに有することを特徴とする慣性検出装置。
    The inertial detection device according to claim 1,
    An inertial detection device further comprising an angular velocity detection unit that generates an output signal indicating an angular velocity applied to the vibrating body based on a detection signal representing a displacement of the vibrating body in a direction orthogonal to the driving direction. .
  7.  請求項6に記載の慣性検出装置であって、
     前記角速度検出部は、
     前記駆動制御部による前記振動体の駆動制御のタイミングを示す信号に基づいて生成した第2クロックで前記検出信号をサンプリングし、
     前記第2クロックでサンプリングされた駆動検出信号を直交検波し、
     前記直交検波によって得られた同位相成分に基づいて、前記振動体に加えられた角速度を示す出力信号を生成し、
     前記第2クロックの2以上の所定の数の周期の合計と同じ長さの周期を有するサーボ信号を、前記振動体の前記駆動方向に直交する方向の変位を打ち消すために前記振動体に印加することを特徴とする慣性検出装置。
    The inertial detection device according to claim 6,
    The angular velocity detector
    Sampling the detection signal with a second clock generated based on a signal indicating timing of drive control of the vibrator by the drive control unit;
    Quadrature detection of the drive detection signal sampled by the second clock;
    Based on the in-phase component obtained by the quadrature detection, an output signal indicating an angular velocity applied to the vibrator is generated,
    A servo signal having a period having the same length as the sum of two or more predetermined numbers of periods of the second clock is applied to the vibrating body in order to cancel the displacement of the vibrating body in a direction orthogonal to the driving direction. An inertia detection device characterized by that.
  8.  振動体と、前記振動体を駆動する駆動制御部と、角速度検出部と、を有する慣性検出装置であって、
     前記角速度検出部は、
     前記駆動制御部による前記振動体の駆動制御のタイミングを示す信号に基づいて生成した第2クロックで、前記振動体の駆動方向に直交する方向の変位を表す検出信号をサンプリングし、
     前記第2クロックでサンプリングされた駆動検出信号を直交検波し、
     前記直交検波によって得られた同位相成分に基づいて、前記振動体に加えられた角速度を示す出力信号を生成し、
     前記第2クロックの2以上の所定の数の周期の合計と同じ長さの周期を有するサーボ信号を、前記振動体の前記駆動方向に直交する方向の変位を打ち消すために前記振動体に印加することを特徴とする慣性検出装置。
    An inertial detection device having a vibrating body, a drive control unit that drives the vibrating body, and an angular velocity detection unit,
    The angular velocity detector
    Sampling a detection signal representing a displacement in a direction orthogonal to the driving direction of the vibrating body with a second clock generated based on a signal indicating timing of driving control of the vibrating body by the drive control unit;
    Quadrature detection of the drive detection signal sampled by the second clock;
    Based on the in-phase component obtained by the quadrature detection, an output signal indicating an angular velocity applied to the vibrator is generated,
    A servo signal having a period having the same length as the sum of two or more predetermined numbers of periods of the second clock is applied to the vibrating body in order to cancel the displacement of the vibrating body in a direction orthogonal to the driving direction. An inertia detection device characterized by that.
  9.  振動体と、前記振動体を駆動する駆動制御部と、を有する慣性検出装置であって、
     前記駆動制御部は、
     前記振動体の駆動方向の変位を表す駆動検出信号を第1クロックでサンプリングし、
     前記第1クロックでサンプリングされた駆動検出信号を直交検波し、
     各周期が、前記直交検波によって得られた直交位相成分の各サンプル値の大きさに応じた長さを有する前記第1クロックを生成し、
     前記第1クロックの2以上の所定の数の周期の合計と同じ長さの周期を有する駆動信号を、前記振動体を駆動するために前記振動体に印加することを特徴とする慣性検出装置。
    An inertial detection device having a vibrating body and a drive control unit that drives the vibrating body,
    The drive control unit
    A drive detection signal representing a displacement in the drive direction of the vibrator is sampled by a first clock
    Quadrature detection of the drive detection signal sampled by the first clock;
    Each cycle generates the first clock having a length corresponding to the size of each sample value of the quadrature phase component obtained by the quadrature detection;
    An inertial detection device, wherein a drive signal having a cycle having the same length as a total of a predetermined number of cycles of two or more of the first clock is applied to the vibrating body in order to drive the vibrating body.
PCT/JP2017/018138 2016-08-08 2017-05-15 Momentum detection device WO2018029929A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-155905 2016-08-08
JP2016155905A JP6602274B2 (en) 2016-08-08 2016-08-08 Inertial detection device

Publications (1)

Publication Number Publication Date
WO2018029929A1 true WO2018029929A1 (en) 2018-02-15

Family

ID=61162086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018138 WO2018029929A1 (en) 2016-08-08 2017-05-15 Momentum detection device

Country Status (2)

Country Link
JP (1) JP6602274B2 (en)
WO (1) WO2018029929A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151669A (en) * 2008-12-25 2010-07-08 Panasonic Corp Physical quantity detection circuit and physical quantity sensor device
JP2010185714A (en) * 2009-02-10 2010-08-26 Panasonic Corp System and device for physical quantity sensor
JP2011064515A (en) * 2009-09-16 2011-03-31 Hitachi Automotive Systems Ltd Angular speed and acceleration detector
US20130239680A1 (en) * 2010-02-15 2013-09-19 Stmicroelectronics S.R.L. Microelectromechanical gyroscope with calibrated synchronization of actuation and method for actuating a microelectromechanical gyroscope
JP2015056692A (en) * 2013-09-10 2015-03-23 日立オートモティブシステムズ株式会社 Oscillation circuit, and semiconductor integrated circuit device and rotation angle detection device using the same
US20150176992A1 (en) * 2013-12-19 2015-06-25 Em Microelectronic-Marin Sa Electronic circuit for measuring rotational speed in a mems gyroscope and method for actuating the circuit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151669A (en) * 2008-12-25 2010-07-08 Panasonic Corp Physical quantity detection circuit and physical quantity sensor device
JP2010185714A (en) * 2009-02-10 2010-08-26 Panasonic Corp System and device for physical quantity sensor
JP2011064515A (en) * 2009-09-16 2011-03-31 Hitachi Automotive Systems Ltd Angular speed and acceleration detector
US20130239680A1 (en) * 2010-02-15 2013-09-19 Stmicroelectronics S.R.L. Microelectromechanical gyroscope with calibrated synchronization of actuation and method for actuating a microelectromechanical gyroscope
JP2015056692A (en) * 2013-09-10 2015-03-23 日立オートモティブシステムズ株式会社 Oscillation circuit, and semiconductor integrated circuit device and rotation angle detection device using the same
US20150176992A1 (en) * 2013-12-19 2015-06-25 Em Microelectronic-Marin Sa Electronic circuit for measuring rotational speed in a mems gyroscope and method for actuating the circuit

Also Published As

Publication number Publication date
JP2018025414A (en) 2018-02-15
JP6602274B2 (en) 2019-11-06

Similar Documents

Publication Publication Date Title
US10365104B2 (en) Digital controller for a MEMS gyroscope
US11112248B2 (en) Secondary sense loop with force feedback capability
JP5487546B2 (en) Angular velocity sensor
WO2011045909A1 (en) Angular velocity sensor
EP2647952B1 (en) Mems device automatic-gain control loop for mechanical amplitude drive
CN106027043B (en) Circuit device, electronic apparatus, and moving object
JP6623616B2 (en) Circuit devices, physical quantity sensors, oscillators, electronic equipment, and moving objects
JP2010034722A (en) Pll circuit and angular speed sensor using the same
JP2009281888A (en) Physical quantity detection circuit, physical quantity sensor apparatus equipped with same, and physical quantity detection method
KR101298289B1 (en) Driving circuit, system and driving method for gyro sensor
JP6602274B2 (en) Inertial detection device
US8316710B2 (en) Physical quantity measuring apparatus
JP2004222377A (en) Of resonance control unit and control method of resonance device
JP2016197017A (en) Angular velocity sensor
US10320410B2 (en) Successive approximation type A/D conversion circuit
JP5316434B2 (en) Angular velocity sensor
JP5387314B2 (en) Angular velocity sensor
JP6280767B2 (en) Driving circuit
JP5316435B2 (en) Angular velocity sensor
JP6206113B2 (en) Vibrator drive circuit
WO2015146165A1 (en) Angular velocity sensor, driving circuit and driving method for same, and angular velocity detection sensor device
JP2014041035A (en) Angular velocity sensor
JP2014021092A (en) Angular velocity sensor
JP2017034789A (en) Rotary actuator
JP2005253230A (en) Frequency control circuit and oscillatory type drive device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17839004

Country of ref document: EP

Kind code of ref document: A1