WO2018028660A1 - 用户设备、基站及其功率控制方法 - Google Patents

用户设备、基站及其功率控制方法 Download PDF

Info

Publication number
WO2018028660A1
WO2018028660A1 PCT/CN2017/097026 CN2017097026W WO2018028660A1 WO 2018028660 A1 WO2018028660 A1 WO 2018028660A1 CN 2017097026 W CN2017097026 W CN 2017097026W WO 2018028660 A1 WO2018028660 A1 WO 2018028660A1
Authority
WO
WIPO (PCT)
Prior art keywords
spucch
spusch
pucch
power
user equipment
Prior art date
Application number
PCT/CN2017/097026
Other languages
English (en)
French (fr)
Inventor
张萌
刘仁茂
Original Assignee
夏普株式会社
张萌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 张萌 filed Critical 夏普株式会社
Publication of WO2018028660A1 publication Critical patent/WO2018028660A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to the field of wireless communication technologies, and more particularly, to a power control method under Short Transmission Time Interval (sTTI), and a base station and a user equipment.
  • sTTI Short Transmission Time Interval
  • Modern wireless mobile communication systems present two distinctive features.
  • One is broadband high speed.
  • the fourth generation wireless mobile communication system has a bandwidth of up to 100 MHz and a downlink rate of up to 1 Gbps.
  • the second is mobile internet, which promotes mobile Internet access and mobile video on demand. , emerging services such as online navigation.
  • the Latency Reduction technology will support short-term TTI (sTTI) in both uplink and downlink, where 1 sTTI contains less than 14 OFDM, which can contain 2 OFDM symbols or 7 OFDM symbols, or other numbers less than 14.
  • the downlink channel supported by the project includes a Short Physical Downlink Control Channel (sPDCCH) and a Short Physical Downlink Shared Channel (sPDSCH), and the supported uplink channel has a short-term physical uplink control channel.
  • sPDCCH Short Physical Downlink Control Channel
  • sPDSCH Short Physical Downlink Shared Channel
  • sPDCCH Short Physical Uplink Control Channel
  • sPUSCH Short Physical Uplink Shared Channel
  • sPDCCH is used for The downlink control information is transmitted, the sPDSCH is used to transmit downlink data information, the sPUCCH is used to transmit uplink control information, and the sPUSCH is used to transmit uplink data information.
  • TTI refers to a subframe or transmission time interval of LTE/LTE-A with a duration of 1 ms and including 14 OFDM symbols;
  • sTTI refers to a duration of less than 1 ms and contains less than 14 OFDM symbols.
  • Subframe or transmission time interval which may contain 2 OFDM symbols or 7 OFDM symbols, or other numbers less than 14.
  • the UE can simultaneously support the transmission of sTTI and TTI in the latency reduction mode.
  • the UE may simultaneously support PUCCH, PUSCH, sPUCCH and sPUSCH, or support any subset of the above four different channels.
  • how to design the power of sPUCCH and sPUSCH will be an unavoidable problem.
  • the problem to be solved by the present invention is how to allocate the power of the sPUCCH and the sPUSCH when the UE supports both sTTI and TTI.
  • embodiments of the present invention provide a user equipment, a base station, and a corresponding power control method thereof.
  • a user equipment comprising: a receiver, configured to receive configuration information from a base station, the configuration information indicating a channel type transmitted by the user equipment on a short-term transmission time interval sTTI, and the user equipment is transmitting a channel type transmitted on the time interval TTI; and a power calculation unit configured to calculate a power allocated to the short physical uplink control channel sPUCCH and/or the short physical uplink shared channel sPUSCH according to the received configuration information.
  • a base station comprising: a configuration information generator, configured to generate configuration information, the configuration information indicating a channel type transmitted by the user equipment on a short-term transmission time interval sTTI, and the user equipment is transmitting a channel type transmitted on the time interval; a transmitter, configured to send the configuration information to the user equipment.
  • a power control method comprising: receiving configuration information from a base station, the configuration information indicating a channel type transmitted by the user equipment on a short-term transmission time interval sTTI and the user equipment being in a transmission time interval TTI The type of channel transmitted on; and calculating the power allocated to the short physical uplink control channel sPUCCH and/or the short physical uplink shared channel sPUSCH according to the received configuration information.
  • a power control method including: generating configuration information, the configuration information indicating a channel type transmitted by a user equipment on a short-term transmission time interval sTTI and the user equipment transmitting on a transmission time interval Channel type; sending the configuration information to the user equipment.
  • the foregoing solution solves the problem of how to allocate the power of the sPUCCH and the sPUSCH when the UE supports the sTTI and the TTI at the same time.
  • FIG. 1 shows a schematic diagram of a power control scheme in accordance with an embodiment of the present invention
  • FIG. 2 shows a simplified block diagram of a user equipment in accordance with an embodiment of the present invention
  • FIG. 3 shows a simplified block diagram of a base station in accordance with an embodiment of the present invention.
  • TTI refers to a subframe or transmission time interval of LTE/LTE-A with a duration of 1 ms and including 14 OFDM symbols; sTTI refers to a duration of less than 1 ms and contains less than 14 OFDM symbols. Subframe or transmission time interval, which may contain 2 OFDM symbols or 7 OFDM symbols, or other numbers less than 14.
  • the sTTI subframe with the sequence number k and the TTI subframe with the sequence number i are temporally coincident or partially coincident, that is, the sTTI and the TTI are simultaneously transmitted.
  • i and k can be the same value or different values.
  • FIG. 1 shows a schematic diagram of a power control scheme in accordance with an embodiment of the present invention. It should be noted that although the method is shown in FIG. 1 in the form of information exchange between the base station and the user equipment, FIG. 1 may be divided into operations (methods) respectively shown in the base station and in the user equipment. Two different flow charts. As shown, the method includes the following steps.
  • Step s201 The base station generates configuration information, which is used to indicate the channel type that the UE transmits on the sTTI and the channel type that the UE transmits on the TTI.
  • Step s202 The base station sends the configuration information to the UE.
  • Step s101 The UE receives configuration information sent by the base station.
  • Step s102 The UE calculates the power of the uplink channel carried by the sTTI according to the received configuration information.
  • the configuration information is used to indicate that the UE transmits the sPUCCH on the sTTI and the UE transmits the PUCCH on the TTI.
  • the transmission power of the sPUCCH can be written as min (A). , B) form.
  • A can be P CMAX,c (i)-P PUCCH (i) or 10log 10 (P CMAX,c (i)-P PUCCH (i)).
  • P CMAX,c (i) is the maximum transmit power of the UE in the i-th TTI subframe or the i-th sTTI subframe of the serving cell c
  • P PUCCH,c (i) is the i-th of the UE in the serving cell c Transmit power at the PUCCH of one TTI subframe.
  • B includes P 0_sPUCCH , PL c , h(n CQI , n HARQ , n SR ), 10log 10 (M sPUCCH, c (k)), ⁇ TF, c (i) and g sPUCCH (i), Or include any subset of them, where the operand for each item can be a plus or a minus sign.
  • P 0_sPUCCH is a parameter calculated by a parameter configured by a higher layer, which represents an average interference level on the sPUCCH channel, or a relative noise level, and the calculation method thereof can be referred to the literature [3GPP TS 36.213 V13.1.1 (2016-03)] The part of P 0_sPUCCH is described in section 5.1.2.1.
  • PL c represents the large scale pass loss on the carrier of sequence number c.
  • M sPUCCH,c (k) represents the number of RBs or the number of PRBs or the number of REs allocated to the sPUCCH at the kth sTTI subframe of the serving cell c.
  • h(n CQI , n HARQ , n SR ) is related to n CQI , n HARQ and n SR , where n CQI , n HARQ and n SR respectively represent the number of bits used to feed back CQI, HARQ and SR in the sPUCCH.
  • ⁇ TF,c (i) The calculation method of ⁇ TF,c (i) can be referred to the section of ⁇ TF,c (i) described in section 5.1.2.1 of [3GPP TS 36.213 V13.1.1 (2016-03)].
  • g sPUCCH (i) is related to the TPC control signaling configured by the base station, and its calculation method can refer to the part of g(i) introduced in section 5.1.2.1 of the document [3GPP TS 36.213 V13.1.1 (2016-03)].
  • the transmit power of the sPUCCH can be any suitable transmit power of the sPUCCH.
  • the transmit power of the sPUCCH can be any suitable transmit power of the sPUCCH.
  • the transmit power of the sPUCCH may be
  • the configuration information is used to indicate that the UE transmits the sPUSCH on the sTTI and the UE transmits the PUCCH on the TTI.
  • the transmission power of sPUSCH can be written as min (C). , D) form.
  • C can be P CMAX,c (i)-P PUCCH (i) or 10log 10 (P CMAX,c (i)-P PUCCH (i)).
  • P CMAX,c (i) is the maximum transmit power of the UE in the i-th TTI subframe or the i-th sTTI subframe of the serving cell c
  • P PUCCH,c (i) is the i-th of the UE in the serving cell c Transmit power at the PUCCH of one TTI subframe.
  • D includes P O_sPUSCH, c (j), ⁇ O_sPUSCH, c (j), PL c , 10 log 10 (M sPUSCH, c (k)), ⁇ TF, c (i) and f sPUSCH,c ( k), or any subset of them, where the operand for each item can be a plus or a minus sign.
  • P O_sPUSCH,c (j) are parameters calculated by parameters configured by higher layers, which represent the average interference level on the sPUSCH channel, or the relative noise level, and the calculation method can be referred to the literature [3GPP TS 36.213 V13.1.1 ( The section of P O_sPUSCH,c (j) is described in section 5.1.1.1 of 2016-03)].
  • PL c represents the large-scale path loss on the carrier of sequence number c
  • M sPUSCH,c (k) represents the number of RBs or the number of PRBs or the number of REs allocated to the sPUSCH of the kth sTTI subframe of the serving cell c.
  • ⁇ O_sPUSCH,c (j) ⁇ c,2 ⁇ 0,0.4,0.5,0.6,0.7,0.8,0.9,1 ⁇ , where ⁇ c,2 is configured by higher layer signaling .
  • ⁇ TF,c (i) The calculation method of ⁇ TF,c (i) can be referred to the section of ⁇ TF,c (i) in section 5.1.1.1 of the literature [3GPP TS 36.213 V13.1.1 (2016-03)].
  • f sPUSCH,c (k) is related to the TPC control signaling configured by the base station, and its calculation method can refer to the part of f c (i) introduced in section 5.1.1.1 of the document [3GPP TS 36.213 V13.1.1(2016-03)]. .
  • the transmit power of the sPUSCH can be
  • the configuration information is used to indicate that the UE transmits the sPUCCH and the sPUSCH on the sTTI and the UE transmits the PUCCH on the TTI.
  • the transmission power of sPUCCH can be Written in the form of min (A, B).
  • A can be P CMAX,c (i)-P PUCCH (i) or 10log 10 (P CMAX,c (i)-P PUCCH (i)).
  • P CMAX,c (i) is the maximum transmit power of the UE in the i-th TTI subframe or the i-th sTTI subframe of the serving cell c
  • P PUCCH,c (i) is the ith of the UE in the serving cell c Transmit power at the PUCCH of the TTI subframe.
  • B includes P 0_sPUCCH , PL c , h(n CQI , n HARQ , n SR ), 10log 10 (M sPUCCH, c (k)), ⁇ TF, c (i) and g sPUCCH (i), Or include any subset of them, where the operand for each item can be a plus or a minus sign.
  • P 0_sPUCCH is a parameter calculated by a parameter configured by a higher layer, which represents an average interference level on the sPUCCH channel, or a relative noise level, and the calculation method thereof can be referred to the literature [3GPP TS 36.213 V13.1.1 (2016-03)] The part of P 0_sPUCCH is described in section 5.1.2.1.
  • PL c represents the large scale pass loss on the carrier of sequence number c.
  • M sPUCCH,c (k) represents the number of RBs or the number of PRBs or the number of REs allocated to the sPUCCH of the kth sTTI subframe of the serving cell c.
  • h(n CQI , n HARQ , n SR ) is related to n CQI , n HARQ and n SR , where n CQI , n HARQ and n SR respectively represent the number of bits of CQI, HARQ and SR fed back in the sPUCCH.
  • ⁇ TF,c (i) The calculation method of ⁇ TF,c (i) can be referred to the section of ⁇ TF,c (i) described in section 5.1.2.1 of [3GPP TS 36.213 V13.1.1 (2016-03)].
  • g sPUCCH (i) is related to the TPC control signaling configured by the base station, and its calculation method can refer to the part of g(i) introduced in section 5.1.2.1 of the document [3GPP TS 36.213 V13.1.1 (2016-03)].
  • the transmit power of the sPUCCH can be any suitable transmit power of the sPUCCH.
  • the transmit power of the sPUCCH can be any suitable transmit power of the sPUCCH.
  • the transmit power of the sPUCCH may be
  • sPUSCH when sPUSCH, sPUCCH and PUCCH are simultaneously transmitted (herein “simultaneous transmission” means that both coincide in time or partially coincide), on OFDM symbols for simultaneous transmission of PUCCH, sPUSCH and sPUCCH
  • the transmit power of sPUSCH can be written in the form of min(C, D).
  • C can be P CMAX,c (i)-P PUCCH (i)-P sPUCCH,c (k) or 10log 10 (P CMAX,c (i)-P PUCCH (i)-P sPUCCH,c (k )).
  • P CMAX,c (i) is the maximum transmit power of the UE in the i-th TTI subframe or the i-th sTTI subframe of the serving cell c
  • P PUCCH,c (i) is the i-th of the UE in the serving cell c
  • the transmit power at the PUCCH of the TTI subframe, P sPUCCH,c (k) is the transmit power of the UE at the sPUCCH of the kth sTTI subframe of the serving cell c.
  • D includes P O_sPUSCH, c(j), ⁇ O_sPUSCH, c (j), PL c , 10log 10 (M sPUSCH, c (k)), ⁇ TF, c (i) and f sPUSCH,c ( k), or any subset of them, where the operand for each item can be a plus or a minus sign.
  • P O_sPUSCH,c (j) are parameters calculated by parameters configured by higher layers, which represent the average interference level on the sPUSCH channel, or the relative noise level, and the calculation method can be referred to the literature [3GPP TS 36.213 V13.1.1 ( The section of P O_sPUSCH,c (j) is described in section 5.1.1.1 of 2016-03)].
  • PL c represents the large-scale path loss on the carrier of sequence number c
  • M sPUSCH,c (k) represents the number of RBs or the number of PRBs or the number of REs allocated to the sPUSCH of the kth sTTI subframe of the serving cell c.
  • ⁇ O_sPUSCH,c (j) ⁇ c,2 ⁇ 0,0.4,0.5,0.6,0.7,0.8,0.9,1 ⁇ , where ⁇ c,2 is configured by higher layer signaling .
  • ⁇ TF,c (i) The calculation method of ⁇ TF,c (i) can be referred to the section of ⁇ TF,c (i) in section 5.1.1.1 of the literature [3GPP TS 36.213 V13.1.1 (2016-03)].
  • f sPUSCH,c (k) is related to the TPC control signaling configured by the base station, and the calculation method thereof can refer to the part of f c (i) introduced in section 5.1.1.1 of the document [3GPP TS 36.213 V13.1.1 (2016-03)]. .
  • the transmit power of the sPUSCH can be
  • the configuration information may be adopted even if the configuration information indicates that the user equipment transmits the sPUCCH and the sPUSCH on the sTTI and the PUCCH on the TTI.
  • the configuration information is used to indicate that the UE transmits the sPUSCH and the sTTI.
  • the sPUCCH and the UE transmit the PUSCH and the PUCCH on the TTI.
  • sPUSCH, sPUCCH, PUSCH, and PUCCH are simultaneously transmitted (herein “simultaneous transmission” means that the two coincide in time or partially coincide), on the OFDM symbols for simultaneous transmission of sPUSCH, sPUCCH, PUSCH and PUCCH, sPUCCH
  • the transmit power can be written in the form of min(A, B). Wherein A can be P CMAX,c (i)-P PUCCH (i) or 10log 10 (P CMAX,c (i)-P PUCCH (i)).
  • P CMAX,c (i) is the maximum transmit power of the UE in the i-th TTI subframe or the i-th sTTI subframe of the serving cell c
  • P PUCCH,c (i) is the i-th of the UE in the serving cell c Transmit power at the PUCCH of one TTI subframe.
  • B includes P 0_sPUCCH , PL c , h(n CQI , n HARQ , n SR ), l0log 10 (M sPUCCH, c (k)), ⁇ TF, c (i) and g sPUCCH (i), Or include any subset of them, where the operand for each item can be a plus or a minus sign.
  • P 0_sPUCCH is a parameter calculated by a parameter configured by a higher layer, which represents an average interference level on the sPUCCH channel, or a relative noise level, and the calculation method thereof can be referred to the literature [3GPP TS 36.213 V13.1.1 (2016-03)] The part of P 0_sPUCCH is described in section 5.1.2.1.
  • PL c represents a large scale pass loss on the carrier of sequence number c.
  • M sPUCCH,c (k) represents the number of RBs or the number of PRBs or the number of REs allocated to the sPUCCH.
  • h(n CQI , n HARQ , n SR ) is related to n CQI , n HARQ and n SR , where n CQI , n HARQ and n SR respectively represent the number of bits of CQI, HARQ and SR fed back in the sPUCCH.
  • ⁇ TF,c (i) The calculation method of ⁇ TF,c (i) can be referred to the section of ⁇ TF,c (i) described in section 5.1.2.1 of [3GPP TS 36.213 V13.1.1 (2016-03)].
  • g sPUCCH (k) is related to the TPC control signaling configured by the base station, and its calculation method can refer to the part of g(i) introduced in section 5.1.2.1 of the document [3GPP TS 36.213 V13.1.1 (2016-03)].
  • the transmit power of the sPUCCH can be any suitable transmit power of the sPUCCH.
  • the transmit power of the sPUCCH can be any suitable transmit power of the sPUCCH.
  • the transmit power of the sPUCCH may be
  • the transmit power of the sPUSCH can be written in the form of min(C, D). Where C can be
  • P CMAX,c (i) is the maximum transmit power of the UE in the i-th TTI subframe or the i-th sTTI subframe of the serving cell c
  • P PUCCH,c (i) is the i-th of the UE in the serving cell c
  • the transmit power at the PUCCH of the TTI subframe, P PUSCH,c (i) is the transmit power of the UE at the PUSCH of the i-th TTI subframe of the serving cell c
  • P sPUCCH,c (k) is the UE in the serving cell Transmit power at the sPUCCH of the kth sTTI subframe of c.
  • P O_sPUSCH,c (j) are parameters calculated by parameters configured by higher layers, which represent the average interference level on the sPUSCH channel, or the relative noise level, and the calculation method can be referred to the literature [3GPP TS 36.213 V13.1.1 ( The section of P O_sPUSCH,c (j) is described in section 5.1.1.1 of 2016-03)].
  • PL c represents the large-scale path loss on the carrier of sequence number c.
  • M sPUSCH,c (k) represents the number of RBs or the number of PRBs or the number of REs allocated to the sPUSCH of the kth sTTI subframe of the serving cell c.
  • ⁇ O_sPUSCH,c (j) ⁇ c,2 ⁇ 0,0.4,0.5,0.6,0.7,0.8,0.9,1 ⁇ , where ⁇ c,2 is configured by higher layer signaling .
  • ⁇ TF,c (i) The calculation method of ⁇ TF,c (i) can be referred to the section of ⁇ TF,c (i) in section 5.1.1.1 of the literature [3GPP TS 36.213 V13.1.1 (2016-03)].
  • f sPUSCH,c (k) is related to the TPC control signaling configured by the base station, and the calculation method thereof can refer to the part of f c (i) introduced in section 5.1.1.1 of the document [3GPP TS 36.213 V13.1.1 (2016-03)]. .
  • the transmit power of the sPUSCH can be
  • sPUSCH and PUCCH are simultaneously transmitted, even if the configuration information indicates that the user equipment transmits sPUCCH and sPUSCH on the sTTI and
  • the PUCCH and the PUSCH are transmitted on the TTI, and the schemes described in the first embodiment, the second embodiment, and the third embodiment may also be employed. Or in some other examples, power may be reserved for sPUSCH or sPUCCH but not used.
  • the transmit power of the sPUCCH or sPUSCH is expressed in the form of min(A, B) or min(C, D), where A and C consider the power headroom, and C and D consider Is a performance requirement (such as QoS requirements, such as noise requirements, path loss requirements, etc.) Should affect the transmission power of the channel.
  • a and C consider the power headroom
  • C and D consider Is a performance requirement (such as QoS requirements, such as noise requirements, path loss requirements, etc.) Should affect the transmission power of the channel.
  • QoS requirements such as noise requirements, path loss requirements, etc.
  • the configuration information is used to indicate that the UE transmits the sPUCCH on the sTTI and the UE transmits the PUCCH on the TTI.
  • the transmit power of the sPUCCH should not exceed the power A on the OFDM symbol for simultaneous transmission of the PUCCH and the sPUCCH. .
  • A can be P CMAX,c (i)-P PUCCH (i) or 10log 10 (P CMAX,c (i)-P PUCCH (i)).
  • P CMAX,c (i) is the maximum transmit power of the UE in the i-th TTI subframe or the i-th sTTI subframe of the serving cell c
  • P PUCCH,c (i) is the i-th of the UE in the serving cell c Transmit power at the PUCCH of one TTI subframe.
  • the configuration information is used to indicate that the UE transmits the sPUSCH on the sTTI and the UE transmits the PUCCH on the TTI.
  • sPUSCH When sPUSCH is transmitted simultaneously with PUCCH (herein “simultaneous transmission” means that the two coincide in time or partially coincide), on the OFDM symbol for simultaneous transmission of PUCCH and sPUSCH, the transmission power of sPUSCH should not exceed power C.
  • C can be P CMAX,c (i)-P PUCCH (i) or 10log 10 (P CMAX,c (i)-P PUCCH (i)).
  • P CMAX,c (i) is the maximum transmit power of the UE in the i-th TTI subframe or the i-th sTTI subframe of the serving cell c
  • P PUCCH,c (i) is the i-th of the UE in the serving cell c Transmit power at the PUCCH of one TTI subframe.
  • the configuration information is used to indicate that the UE transmits the sPUCCH and the sPUSCH on the sTTI and the UE transmits the PUCCH on the TTI.
  • sPUCCH When sPUCCH, sPUSCH and PUCCH are simultaneously transmitted (herein “simultaneous transmission” means that the two coincide in time or partially coincide), on the OFDM symbols for simultaneous transmission of PUCCH, sPUSCH and sPUCCH, the transmission power of sPUCCH is not Power A should be exceeded.
  • A can be P CMAX,c (i)-P PUCCH (i) or 10log 10 (P CMAX,c (i)-P PUCCH (i)).
  • P CMAX,c (i) is the maximum transmit power of the UE in the i-th TTI subframe or the i-th sTTI subframe of the serving cell c
  • P PUCCH,c (i) is the ith of the UE in the serving cell c Transmit power at the PUCCH of the TTI subframe.
  • sPUSCH when sPUSCH, sPUCCH and PUCCH are simultaneously transmitted (herein “simultaneous transmission” means that both coincide in time or partially coincide), on OFDM symbols for simultaneous transmission of PUCCH, sPUSCH and sPUCCH
  • the transmit power of sPUSCH should not exceed power C.
  • C can be P CMAX,c (i)-P PUCCH (i)-P sPUCCH,c (k) or 10log 10 (P CMAX,c (i)-P PUCCH (i)-P sPUCCH,c (k )).
  • P CMAX,c (i) is the maximum transmit power of the UE in the i-th TTI subframe or the i-th sTTI subframe of the serving cell c
  • P PUCCH,c (i) is the i-th of the UE in the serving cell c
  • the transmit power at the PUCCH of the TTI subframe, P sPUCCH,c (k) is the transmit power of the UE at the sPUCCH of the kth sTTI subframe of the serving cell c.
  • the configuration information is used to indicate that the UE transmits the sPUSCH and the sPUCCH on the sTTI and the UE transmits the PUSCH and the PUCCH on the TTI.
  • sPUSCH, sPUCCH, PUSCH, and PUCCH are simultaneously transmitted (herein “simultaneous transmission” means that the two coincide in time or partially coincide), on the OFDM symbols for simultaneous transmission of sPUSCH, sPUCCH, PUSCH and PUCCH, sPUCCH
  • the transmit power should not exceed the power A.
  • A can be P CMAX,c (i)-P PUCCH (i) or 10log 10 (P CMAX,c (i)-P PUCCH (i)).
  • P CMAX,c (i) is the maximum transmit power of the UE in the i-th TTI subframe or the i-th sTTI subframe of the serving cell c
  • P PUCCH,c (i) is the i-th of the UE in the serving cell c Transmit power at the PUCCH of one TTI subframe.
  • simultaneous transmission means that the two coincide in time or partially coincide
  • simultaneous transmission is performed on sPUSCH, sPUCCH, PUSCH and PUCCH.
  • the transmit power of the sPUSCH should not exceed the power C.
  • P CMAX,c (i) is the maximum transmit power of the UE in the i-th TTI subframe or the i-th sTTI subframe of the serving cell c
  • P PUCCH,c (i) is the i-th of the UE in the serving cell c
  • the transmit power at the PUCCH of the TTI subframe, P PUSCH,c (i) is the transmit power of the UE at the PUSCH of the i-th TTI subframe of the serving cell c
  • P sPUCCH,c (k) is the UE in the serving cell Transmit power at the sPUCCH of the kth sTTI subframe of c.
  • the present invention also provides a user equipment and a base station for performing the above method, as shown in Figures 2 and 3, respectively.
  • Figures 2 and 3 are merely schematic block diagrams illustrating the schematic implementation of the present invention at the user equipment and base station, and for the sake of clarity only the components/components relating to the description of the present invention are shown. In particular implementations, other components/components that are commonly used or conceivable to those skilled in the art may also be included.
  • FIG. 2 shows a schematic simplified block diagram of a user equipment in accordance with an embodiment of the present invention.
  • the user equipment includes: a receiver 310, configured to receive configuration information from a base station, where the configuration information indicates a channel type that the user equipment transmits on the sTTI and a channel type that the user equipment transmits on the TTI; and a power calculation unit 320, where The power allocated to the sPUCCH and/or the sPUSCH is calculated based on the received configuration information.
  • the power calculation unit 320 can perform the methods described in the first to eighth embodiments described above.
  • the user equipment can also include a transmitter 330 for transmitting signals to the base station based on the allocated power.
  • the user equipment may also include a memory 340 for storing information and data that the user equipment needs and/or generates in operation.
  • FIG. 3 shows a schematic simplified block diagram of a base station in accordance with an embodiment of the present invention.
  • the base station includes: a configuration information generator 410, configured to generate configuration information indicating a channel type transmitted by the user equipment on the sTTI and a channel type transmitted by the user equipment on the TTI; and a transmitter 420 for using the user equipment Send configuration information.
  • the base station may further include a receiver 430 for receiving a signal transmitted by the user equipment to the base station according to the power allocation determined based on the configuration information.
  • the user equipment may also include a memory 440 for storing information and data that the base station needs and/or generates in operation.
  • the method and apparatus of the present invention have been described above in connection with the preferred embodiments. Those skilled in the art will appreciate that the methods shown above are merely exemplary. The method of the present invention is not limited to the steps and sequences shown above.
  • the network node and user equipment shown above may Including more modules, for example, may also include modules that can be developed or developed in the future for base stations, MMEs, or UEs, and the like.
  • the various logos shown above are merely exemplary and not limiting, and the invention is not limited to specific cells as examples of such identifications. Many variations and modifications can be made by those skilled in the art in light of the teachings of the illustrated embodiments.
  • base station refers to a mobile communication data and control switching center having a large transmission power and a relatively large coverage area, including resource allocation scheduling, data reception and transmission, and the like.
  • User equipment refers to a user mobile terminal, for example, a terminal device including a mobile phone, a notebook, etc., which can perform wireless communication with a base station or a micro base station.
  • the program running on the device according to the present invention may be a program that causes a computer to implement the functions of the embodiments of the present invention by controlling a central processing unit (CPU).
  • the program or information processed by the program may be temporarily stored in a volatile memory (such as a random access memory RAM), a hard disk drive (HDD), a non-volatile memory (such as a flash memory), or other memory system.
  • a program for realizing the functions of the embodiments of the present invention can be recorded on a computer readable recording medium.
  • the corresponding functions can be realized by causing a computer system to read programs recorded on the recording medium and execute the programs.
  • the so-called "computer system” herein may be a computer system embedded in the device, and may include an operating system or hardware (such as a peripheral device).
  • the "computer readable recording medium” may be a semiconductor recording medium, an optical recording medium, a magnetic recording medium, a recording medium of a short-term dynamic storage program, or any other recording medium readable by a computer.
  • circuitry e.g., monolithic or multi-chip integrated circuits.
  • Circuitry designed to perform the functions described in this specification can include general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or other programmable logic devices, discrete Gate or transistor logic, discrete hardware components, or any combination of the above.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • a general purpose processor may be a microprocessor or any existing processor, controller, microcontroller, or state machine.
  • the above circuit may be a digital circuit or an analog circuit.
  • One or more embodiments of the present invention may also be implemented using these new integrated circuit technologies in the context of new integrated circuit technologies that have replaced existing integrated circuits due to advances in semiconductor technology.
  • the present invention is not limited to the above embodiment. Although various examples of the embodiments have been described, the invention is not limited thereto.
  • Fixed or non-mobile power installed indoors or outdoors The child device can be used as a terminal device or a communication device such as an AV device, a kitchen device, a cleaning device, an air conditioner, an office device, a vending machine, and other home appliances.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种用户设备、一种基站以及其对应的功率控制方法。用户设备包括:接收机,用于从基站接收配置信息,所述配置信息指示用户设备在短时传输时间间隔sTTI上传输的信道类型以及所述用户设备在传输时间间隔TTI上传输的信道类型;以及功率计算单元,用于根据接收到的配置信息计算向短物理上行控制信道sPUCCH和/或短物理上行共享信道sPUSCH分配的功率。上述方案解决了UE同时支持sTTI和TTI时,如何分配sPUCCH以及sPUSCH的功率的问题。

Description

用户设备、基站及其功率控制方法 技术领域
本发明涉及无线通信技术领域,更具体地,本发明涉及短时传输时间间隔(Short Transmission Time Interval,sTTI)下的功率控制方法,以及基站和用户设备。
背景技术
现代无线移动通信系统呈现出两个显著特点,一是宽带高速率,比如第四代无线移动通信系统的带宽可达100MHz,下行速率高达1Gbps;二是移动互联,推动了移动上网、手机视频点播、在线导航等新兴业务。这两个特点对无线移动通信技术提出了较高要求,主要有:超高速率无线传输、区域间干扰抑制、移动中可靠传输信号、分布式/集中式信号处理等等。
在2016年6月举行的3GPP RAN 72全会上,提出了一个新的工作项目(参见非专利文献:RP-161044:New WID for LTE:Latency reduction by processing time reduction)。在该项目的前期研究(study item,SI)中,Latency Reduction技术将在上行和下行同时支持短时TTI(short TTI,sTTI),其中1个sTTI包含的OFDM的数目小于14,其可以包含2个OFDM符号或7个OFDM符号,或者是其他小于14的数目。该项目支持的下行信道有短时物理下行控制信道(Short Physical Downlink Control Channel,sPDCCH)和短时物理下行共享信道(Short Physical Downlink Shared Channel,sPDSCH),支持的上行信道有短时物理上行控制信道(Short Physical Uplink Control Channel,sPUCCH)和短时物理上行共享信道(Short Physical Uplink Shared Channel,sPUSCH),其中sPDCCH、sPDSCH、sPUCCH以及sPUSCH都是以sTTI作为传输时间间隔的物理信道。sPDCCH用于 传输下行控制信息,sPDSCH用于传输下行数据信息,sPUCCH用于传输上行控制信息,sPUSCH用于传输上行数据信息。
同时,很多公司提出希望UE同时支持Latency reduction的sTTI和LTE/LTE-A的TTI,其中LTE/LTE-A的TTI时间长度为1ms包含有14个OFDM符号。本发明中,TTI指的是LTE/LTE-A的持续周期为1ms且包含14个OFDM符号的子帧(subframe)或者传输时间间隔;sTTI指的是持续周期小于1ms且包含小于14个OFDM符号的子帧(subframe)或者传输时间间隔,其可以包含2个OFDM符号或7个OFDM符号,或者是其他小于14的数目。
UE在latency reduction模式下可以同时支持sTTI和TTI的传输,此时UE有可能同时支持PUCCH,PUSCH,sPUCCH和sPUSCH,或者支持以上四种不同信道的任意子集。此时,如何设计sPUCCH以及sPUSCH的功率将会是一个不可回避的问题。
因此,本发明解决的问题是:UE同时支持sTTI和TTI时,如何分配sPUCCH以及sPUSCH的功率。
发明内容
为解决上述问题中的至少一些,本发明的实施例提供了一种用户设备、一种基站及其对应的功率控制方法。
根据一个方案,提供了一种用户设备,包括:接收机,用于从基站接收配置信息,所述配置信息指示用户设备在短时传输时间间隔sTTI上传输的信道类型以及所述用户设备在传输时间间隔TTI上传输的信道类型;以及功率计算单元,用于根据接收到的配置信息计算向短物理上行控制信道sPUCCH和/或短物理上行共享信道sPUSCH分配的功率。
根据另一方案,提供了一种基站,包括:配置信息生成器,用于生成配置信息,所述配置信息指示用户设备在短时传输时间间隔sTTI上传输的信道类型以及所述用户设备在传输时间间隔上传输的信道类型;发射机,用于向所述用户设备发送所述配置信息。
根据另一方案,提供了一种功率控制方法,包括:从基站接收配置信息,所述配置信息指示用户设备在短时传输时间间隔sTTI上传输的信道类型以及所述用户设备在传输时间间隔TTI上传输的信道类型;以及根据接收到的配置信息计算向短物理上行控制信道sPUCCH和/或短物理上行共享信道sPUSCH分配的功率。
根据又一方案,提供了一种功率控制方法,包括:生成配置信息,所述配置信息指示用户设备在短时传输时间间隔sTTI上传输的信道类型以及所述用户设备在传输时间间隔上传输的信道类型;向所述用户设备发送所述配置信息。
上述方案解决了UE同时支持sTTI和TTI时,如何分配sPUCCH以及sPUSCH的功率的问题。
附图说明
通过下文结合附图的详细描述,本发明的上述和其它特征将会变得更加明显,其中:
图1示出了根据本发明实施例的功率控制方案的示意图;
图2示出了根据本发明实施例的用户设备的简化框图;以及
图3示出了根据本发明的实施例的基站的简化框图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细阐述。应当注意,本发明不应局限于下文所述的具体实施方式。另外,为了简便起见,省略了对与本发明没有直接关联的公知技术的详细描述,以防止对本发明的理解造成混淆。
下文以LTE移动通信系统及其后续的演进版本作为示例应用环境,具体描述了根据本发明的多个实施方式。然而,需要指出的是,本发明不限于以下实施方式,而是可适用于更多其它的无线通信系统,例如今后的5G 蜂窝通信系统。
本发明中,TTI指的是LTE/LTE-A的持续周期为1ms且包含14个OFDM符号的子帧(subframe)或者传输时间间隔;sTTI指的是持续周期小于1ms且包含小于14个OFDM符号的子帧(subframe)或者传输时间间隔,其可以包含2个OFDM符号或7个OFDM符号,或者是其他小于14的数目。
序号为k的sTTI子帧与序号为i的TTI子帧在时间上重合或部分重合,即sTTI与TTI同时传输。其中i与k可以是相同的值,也可以是不同的值。
图1示出了根据本发明实施例的功率控制方案的示意图。需要注意的是,虽然在图1中按照基站与用户设备进行信息交互的形式示出了该方法,也可以将图1划分为分别仅示出在基站和在用户设备中执行的操作(方法)的两个不同的流程图。如图所示,该方法包括以下步骤。
步骤s201:基站生成配置信息,用于指示UE在sTTI上传输的信道类型以及UE在TTI上传输的信道类型。
步骤s202:基站向UE发送该配置信息
步骤s101:UE接收基站发送的配置信息
步骤s102:UE根据收到的配置信息计算sTTI所承载的上行信道的功率
作为第一实施例,配置信息用于指示UE在sTTI上传输sPUCCH以及UE在TTI上传输PUCCH。
当sPUCCH与PUCCH同时传输时(在此“同时传输”指的是二者在时间上重合或部分重合),在对PUCCH与sPUCCH进行同时传输的OFDM符号上,sPUCCH的发射功率可以写成min(A,B)的形式。
A可以是PCMAX,c(i)-PPUCCH(i)或者10log10(PCMAX,c(i)-PPUCCH(i))。其中,PCMAX,c(i)是UE在服务小区c的第i个TTI子帧或第i个sTTI子帧的最大发射功率,PPUCCH,c(i)是UE在服务小区c的第i个TTI子帧的PUCCH处的发射功率。
B的表达形式包含有P0_sPUCCH,PLc,h(nCQI,nHARQ,nSR),10log10(MsPUCCH,c(k)),ΔTF,c(i)和gsPUCCH(i),或者包含它们的任意子集,其中针对每一项的运算符号可以是加号也可以是减号。
其中,P0_sPUCCH是由高层配置的参数计算的参数,其代表了sPUCCH信道上的平均干扰水平,或者相对的噪声水平,其计算方法可以参考文献[3GPP TS 36.213 V13.1.1(2016-03)]中5.1.2.1章节中介绍P0_sPUCCH的部分。
PLc代表了序号c的载波上的大尺度路径损失(large scale pass loss)。
MsPUCCH,c(k)代表了向服务小区c的第k个sTTI子帧处的sPUCCH分配的RB数目或者PRB数目或者RE数目。
h(nCQI,nHARQ,nSR)的计算与nCQI,nHARQ和nSR有关,其中nCQI,nHARQ和nSR分别表示在sPUCCH中用来反馈CQI,HARQ和SR的比特数。以下提供了在本发明实施例中可用的几种h(nCQI,nHARQ,nSR)的计算方式,
h(nCQI,nHARQ,nSR)=0
Figure PCTCN2017097026-appb-000001
Figure PCTCN2017097026-appb-000002
Figure PCTCN2017097026-appb-000003
Figure PCTCN2017097026-appb-000004
Figure PCTCN2017097026-appb-000005
Figure PCTCN2017097026-appb-000006
ΔTF,c(i)的计算方法可以参考文献[3GPP TS 36.213 V13.1.1(2016-03)]中5.1.2.1章节中介绍ΔTF,c(i)的部分。
gsPUCCH(i)与基站配置的TPC控制信令有关,其计算方法可以参考文献[3GPP TS 36.213 V13.1.1(2016-03)]中5.1.2.1章节中介绍g(i)的部分。
作为一个示例,sPUCCH的发射功率可以是
Figure PCTCN2017097026-appb-000007
作为另一个示例,sPUCCH的发射功率可以是
Figure PCTCN2017097026-appb-000008
作为第二实施例,配置信息用于指示UE在sTTI上传输sPUSCH以及UE在TTI上传输PUCCH。
当sPUSCH与PUCCH同时传输时(在此“同时传输”指的是二者在时间上重合或部分重合),在对PUCCH与sPUSCH进行同时传输的OFDM 符号上,sPUSCH的发射功率可以写成min(C,D)的形式。其中,C可以是PCMAX,c(i)-PPUCCH(i)或者10log10(PCMAX,c(i)-PPUCCH(i))。
其中,PCMAX,c(i)是UE在服务小区c的第i个TTI子帧或第i个sTTI子帧的最大发射功率,PPUCCH,c(i)是UE在服务小区c的第i个TTI子帧的PUCCH处的发射功率。
D的表达形式包含有PO_sPUSCH,c(j),αO_sPUSCH,c(j),PLc,10log10(MsPUSCH,c(k)),ΔTF,c(i)和fsPUSCH,c(k),或者包含它们的任意子集,其中针对每一项的运算符号可以是加号也可以是减号。
其中,PO_sPUSCH,c(j)是由高层配置的参数计算的参数,其代表了sPUSCH信道上的平均干扰水平,或者相对的噪声水平,其计算方法可以参考文献[3GPP TS 36.213 V13.1.1(2016-03)]中5.1.1.1章节中介绍PO_sPUSCH,c(j)的部分。
PLc代表了序号c的载波上的大尺度路径损失
MsPUSCH,c(k)代表向服务小区c的第k个sTTI子帧的sPUSCH分配的RB数目或者PRB数目或者RE数目。
如果j=0或者j=1,αO_sPUSCH,c(j)=αc,2∈{0,0.4,0.5,0.6,0.7,0.8,0.9,1},其中αc,2由高层信令配置。
ΔTF,c(i)的计算方法可以参考文献[3GPP TS 36.213 V13.1.1(2016-03)]中5.1.1.1章节中介绍ΔTF,c(i)的部分。
fsPUSCH,c(k)与基站配置的TPC控制信令有关,其计算方法可以参考 文献[3GPP TS 36.213 V13.1.1(2016-03)]中5.1.1.1章节中介绍fc(i)的部分。
作为一个示例,sPUSCH的发射功率可以是
Figure PCTCN2017097026-appb-000009
作为第三实施例,配置信息用于指示UE在sTTI上传输sPUCCH和sPUSCH以及UE在TTI上传输PUCCH。
当sPUCCH,sPUSCH与PUCCH同时传输时(在此“同时传输”指的是二者在时间上重合或部分重合),在对PUCCH、sPUSCH与sPUCCH进行同时传输的OFDM符号上,sPUCCH的发射功率可以写成min(A,B)的形式。其中,A可以是PCMAX,c(i)-PPUCCH(i)或者10log10(PCMAX,c(i)-PPUCCH(i))。
其中,PCMAX,c(i)是UE在服务小区c第i个TTI子帧或第i个sTTI子帧的最大发射功率,PPUCCH,c(i)是UE在服务小区c的第i个TTI子帧的PUCCH处的发射功率。
B的表达形式包含有P0_sPUCCH,PLc,h(nCQI,nHARQ,nSR),10log10(MsPUCCH,c(k)),ΔTF,c(i)和gsPUCCH(i),或者包含它们的任意子集,其中针对每一项的运算符号可以是加号也可以是减号。
其中,P0_sPUCCH是由高层配置的参数计算的参数,其代表了sPUCCH信道上的平均干扰水平,或者相对的噪声水平,其计算方法可以参考文献[3GPP TS 36.213 V13.1.1(2016-03)]中5.1.2.1章节中介绍P0_sPUCCH的部分。
PLc代表了序号c的载波上的大尺度路径损失(large scale pass loss)。
MsPUCCH,c(k)代表向服务小区c的第k个sTTI子帧的sPUCCH分配的RB数目或者PRB数目或者RE数目。
h(nCQI,nHARQ,nSR)的计算与nCQI,nHARQ和nSR有关,其中nCQI,nHARQ和nSR分别表示在sPUCCH中反馈CQI,HARQ和SR的比特数。以下提供了在本发明实施例中可用的几种h(nCQI,nHARQ,nSR)的计算方式,
h(nCQI,nHARQ,nSR)=0
Figure PCTCN2017097026-appb-000010
Figure PCTCN2017097026-appb-000011
Figure PCTCN2017097026-appb-000012
Figure PCTCN2017097026-appb-000013
Figure PCTCN2017097026-appb-000014
Figure PCTCN2017097026-appb-000015
ΔTF,c(i)的计算方法可以参考文献[3GPP TS 36.213 V13.1.1(2016-03)]中5.1.2.1章节中介绍ΔTF,c(i)的部分。
gsPUCCH(i)与基站配置的TPC控制信令有关,其计算方法可以参考文献[3GPP TS 36.213 V13.1.1(2016-03)]中5.1.2.1章节中介绍g(i)的部分。
作为一个示例,sPUCCH的发射功率可以是
Figure PCTCN2017097026-appb-000016
作为另一个示例,sPUCCH的发射功率可以是
Figure PCTCN2017097026-appb-000017
在该实施例中,当sPUSCH,sPUCCH和PUCCH同时传输时(在此“同时传输”指的是二者在时间上重合或部分重合),在对PUCCH、sPUSCH与sPUCCH进行同时传输的OFDM符号上,sPUSCH的发射功率可以写成min(C,D)的形式。其中,C可以是PCMAX,c(i)-PPUCCH(i)-PsPUCCH,c(k)或者10log10(PCMAX,c(i)-PPUCCH(i)-PsPUCCH,c(k))。
其中,PCMAX,c(i)是UE在服务小区c的第i个TTI子帧或第i个sTTI子帧的最大发射功率,PPUCCH,c(i)是UE在服务小区c的第i个TTI子帧的PUCCH处的发射功率,PsPUCCH,c(k)是UE在服务小区c的第k个sTTI子帧的sPUCCH处的发射功率。
D的表达形式包含有PO_sPUSCH,c(j),αO_sPUSCH,c(j),PLc,10log10(MsPUSCH,c(k)),ΔTF,c(i)和fsPUSCH,c(k),或者包含它们的任意子集,其中针对每一项的运算符号可以是加号也可以是减号。
其中,PO_sPUSCH,c(j)是由高层配置的参数计算的参数,其代表了sPUSCH 信道上的平均干扰水平,或者相对的噪声水平,其计算方法可以参考文献[3GPP TS 36.213 V13.1.1(2016-03)]中5.1.1.1章节中介绍PO_sPUSCH,c(j)的部分。
PLc代表了序号c的载波上的大尺度路径损失
MsPUSCH,c(k)代表了向服务小区c的第k个sTTI子帧的sPUSCH分配的RB数目或者PRB数目或者RE数目。
如果j=0或者j=1,αO_sPUSCH,c(j)=αc,2∈{0,0.4,0.5,0.6,0.7,0.8,0.9,1},其中αc,2由高层信令配置。
ΔTF,c(i)的计算方法可以参考文献[3GPP TS 36.213 V13.1.1(2016-03)]中5.1.1.1章节中介绍ΔTF,c(i)的部分。
fsPUSCH,c(k)与基站配置的TPC控制信令有关,其计算方法可以参考文献[3GPP TS 36.213 V13.1.1(2016-03)]中5.1.1.1章节中介绍fc(i)的部分。
作为一个示例,sPUSCH的发射功率可以是
Figure PCTCN2017097026-appb-000018
需要注意的是,在该实施例中,如果仅需要同时传输sPUCCH和PUCCH或同时传输sPUSCH与PUCCH,即使配置信息指示用户设备在sTTI上传输sPUCCH和sPUSCH以及在TTI上传输PUCCH,也可以采用第一实施例或第二实施例所述的方案。或在在其他一些示例中,也可以为sPUSCH或sPUCCH预留功率但却不使用。
作为第四实施例,配置信息用于指示UE在sTTI上传输sPUSCH和 sPUCCH以及UE在TTI上传输PUSCH和PUCCH。
当sPUSCH,sPUCCH,PUSCH和PUCCH同时传输时(在此“同时传输”指的是二者在时间上重合或部分重合),在对sPUSCH,sPUCCH,PUSCH和PUCCH进行同时传输的OFDM符号上,sPUCCH的发射功率可以写成min(A,B)的形式。其中,A可以是PCMAX,c(i)-PPUCCH(i)或者10log10(PCMAX,c(i)-PPUCCH(i))。
其中,PCMAX,c(i)是UE在服务小区c的第i个TTI子帧或第i个sTTI子帧的最大发射功率,PPUCCH,c(i)是UE在服务小区c的第i个TTI子帧的PUCCH处的发射功率。
B的表达形式包含有P0_sPUCCH,PLc,h(nCQI,nHARQ,nSR),l0log10(MsPUCCH,c(k)),ΔTF,c(i)和gsPUCCH(i),或者包含它们的任意子集,其中针对每一项的运算符号可以是加号也可以是减号。
其中,P0_sPUCCH是由高层配置的参数计算的参数,其代表了sPUCCH信道上的平均干扰水平,或者相对的噪声水平,其计算方法可以参考文献[3GPP TS 36.213 V13.1.1(2016-03)]中5.1.2.1章节中介绍P0_sPUCCH的部分。
PLc代表了序号c的载波上的大尺度路径损失(1arge scale pass loss)。
MsPUCCH,c(k)代表了向sPUCCH分配的RB数目或者PRB数目或者RE数目。
h(nCQI,nHARQ,nSR)的计算与nCQI,nHARQ和nSR有关,其中nCQI,nHARQ和nSR分别表示在sPUCCH中反馈CQI,HARQ和SR的比特数。 以下提供了在本发明实施例中可用的几种h(nCQI,nHARQ,nSR)的计算方式,
h(nCQI,nHARQ,nSR)=0
Figure PCTCN2017097026-appb-000019
Figure PCTCN2017097026-appb-000020
Figure PCTCN2017097026-appb-000021
Figure PCTCN2017097026-appb-000022
Figure PCTCN2017097026-appb-000023
Figure PCTCN2017097026-appb-000024
ΔTF,c(i)的计算方法可以参考文献[3GPP TS 36.213 V13.1.1(2016-03)]中5.1.2.1章节中介绍ΔTF,c(i)的部分。
gsPUCCH(k)与基站配置的TPC控制信令有关,其计算方法可以参考文献[3GPP TS 36.213 V13.1.1(2016-03)]中5.1.2.1章节中介绍g(i)的部分。
作为一个示例,sPUCCH的发射功率可以是
Figure PCTCN2017097026-appb-000025
作为另一个示例,sPUCCH的发射功率可以是
Figure PCTCN2017097026-appb-000026
在该实施例中,当sPUSCH,sPUCCH,PUSCH和PUCCH同时传输时(在此“同时传输”指的是二者在时间上重合或部分重合),在对sPUSCH,sPUCCH,PUSCH和PUCCH进行同时传输的OFDM符号上,sPUSCH的发射功率可以写成min(C,D)的形式。其中,C可以是
PCMAX,c(i)-PPUCCH(i)-PPUSCH(i)-PsPUCCH,c(k)或者
10log10(PCMAX,c(i)-PPUCCH(i)-PPUSCH(i)-PsPUCCH,c(k))。
其中,PCMAX,c(i)是UE在服务小区c的第i个TTI子帧或第i个sTTI子帧的最大发射功率,PPUCCH,c(i)是UE在服务小区c的第i个TTI子帧的PUCCH处的发射功率,PPUSCH,c(i)是UE在服务小区c的第i个TTI子帧的PUSCH处的发射功率,PsPUCCH,c(k)是UE在服务小区c的第k个sTTI子帧的sPUCCH处的发射功率。
D的表达形式包含有PO_sPUSCH,c(j),αO_sPUSCH,c(j),PLc,10log10(MsPUsCH,c(k)),ΔTF,c(i)和fsPUSCH,c(k),或者包含它们的任意子集,其中针对每一项的运算符号可以是加号也可以是减号。
其中,PO_sPUSCH,c(j)是由高层配置的参数计算的参数,其代表了sPUSCH信道上的平均干扰水平,或者相对的噪声水平,其计算方法可以参考文献[3GPP TS 36.213 V13.1.1(2016-03)]中5.1.1.1章节中介绍PO_sPUSCH,c(j)的 部分。
PLc代表了序号c的载波上的大尺度路径损失。
MsPUSCH,c(k)代表了向服务小区c的第k个sTTI子帧的sPUSCH分配的RB数目或者PRB数目或者RE数目。
如果j=0或者j=1,αO_sPUSCH,c(j)=αc,2∈{0,0.4,0.5,0.6,0.7,0.8,0.9,1},其中αc,2由高层信令配置。
ΔTF,c(i)的计算方法可以参考文献[3GPP TS 36.213 V13.1.1(2016-03)]中5.1.1.1章节中介绍ΔTF,c(i)的部分。
fsPUSCH,c(k)与基站配置的TPC控制信令有关,其计算方法可以参考文献[3GPP TS 36.213 V13.1.1(2016-03)]中5.1.1.1章节中介绍fc(i)的部分。
作为一个示例,sPUSCH的发射功率可以是
Figure PCTCN2017097026-appb-000027
需要注意的是,在该实施例中,如果需要仅同时传输sPUCCH和PUCCH或仅同时传输sPUSCH与PUCCH或仅同时传输sPUCCH、sPUSCH与PUCCH,即使配置信息指示用户设备在sTTI上传输sPUCCH和sPUSCH以及在TTI上传输PUCCH和PUSCH,也可以采用第一实施例、第二实施例和第三实施例所述的方案。或在在其他一些示例中,也可以为sPUSCH或sPUCCH预留功率但却不使用。
在上述实施例中,通过min(A,B)或min(C,D)的形式来表示sPUCCH或sPUSCH的发射功率,其中,A和C考虑的是功率余量方面,而C和D考虑的是性能要求(例如QoS要求,如噪声要求、路径损失要求等)对相 应信道的发射功率的影响。在下述实施例中,也可以针对sPUCCH和sPUSCH分别仅考虑A和B参数,而不考虑性能要求的影响。
作为第五实施例,配置信息用于指示UE在sTTI上传输sPUCCH以及UE在TTI上传输PUCCH。
当sPUCCH与PUCCH同时传输时(在此“同时传输”指的是二者在时间上重合或部分重合),在对PUCCH与sPUCCH进行同时传输的OFDM符号上,sPUCCH的发射功率不应当超过功率A。
A可以是PCMAX,c(i)-PPUCCH(i)或者10log10(PCMAX,c(i)-PPUCCH(i))。其中,PCMAX,c(i)是UE在服务小区c的第i个TTI子帧或第i个sTTI子帧的最大发射功率,PPUCCH,c(i)是UE在服务小区c的第i个TTI子帧的PUCCH处的发射功率。
作为第六实施例,配置信息用于指示UE在sTTI上传输sPUSCH以及UE在TTI上传输PUCCH。
当sPUSCH与PUCCH同时传输时(在此“同时传输”指的是二者在时间上重合或部分重合),在对PUCCH与sPUSCH进行同时传输的OFDM符号上,sPUSCH的发射功率不应当超过功率C。其中,C可以是PCMAX,c(i)-PPUCCH(i)或者10log10(PCMAX,c(i)-PPUCCH(i))。
其中,PCMAX,c(i)是UE在服务小区c的第i个TTI子帧或第i个sTTI子帧的最大发射功率,PPUCCH,c(i)是UE在服务小区c的第i个TTI子帧的PUCCH处的发射功率。
作为第七实施例,配置信息用于指示UE在sTTI上传输sPUCCH和sPUSCH以及UE在TTI上传输PUCCH。
当sPUCCH,sPUSCH与PUCCH同时传输时(在此“同时传输”指的是二者在时间上重合或部分重合),在对PUCCH、sPUSCH与sPUCCH进行同时传输的OFDM符号上,sPUCCH的发射功率不应当超过功率A。其中,A可以是PCMAX,c(i)-PPUCCH(i)或者10log10(PCMAX,c(i)-PPUCCH(i))。
其中,PCMAX,c(i)是UE在服务小区c第i个TTI子帧或第i个sTTI子 帧的最大发射功率,PPUCCH,c(i)是UE在服务小区c的第i个TTI子帧的PUCCH处的发射功率。
在该实施例中,当sPUSCH,sPUCCH和PUCCH同时传输时(在此“同时传输”指的是二者在时间上重合或部分重合),在对PUCCH、sPUSCH与sPUCCH进行同时传输的OFDM符号上,sPUSCH的发射功率不应当超过功率C。其中,C可以是PCMAX,c(i)-PPUCCH(i)-PsPUCCH,c(k)或者10log10(PCMAX,c(i)-PPUCCH(i)-PsPUCCH,c(k))。
其中,PCMAX,c(i)是UE在服务小区c的第i个TTI子帧或第i个sTTI子帧的最大发射功率,PPUCCH,c(i)是UE在服务小区c的第i个TTI子帧的PUCCH处的发射功率,PsPUCCH,c(k)是UE在服务小区c的第k个sTTI子帧的sPUCCH处的发射功率。
作为第八实施例,配置信息用于指示UE在sTTI上传输sPUSCH和sPUCCH以及UE在TTI上传输PUSCH和PUCCH。
当sPUSCH,sPUCCH,PUSCH和PUCCH同时传输时(在此“同时传输”指的是二者在时间上重合或部分重合),在对sPUSCH,sPUCCH,PUSCH和PUCCH进行同时传输的OFDM符号上,sPUCCH的发射功率不应当超过功率A。其中,A可以是PCMAX,c(i)-PPUCCH(i)或者10log10(PCMAX,c(i)-PPUCCH(i))。
其中,PCMAX,c(i)是UE在服务小区c的第i个TTI子帧或第i个sTTI子帧的最大发射功率,PPUCCH,c(i)是UE在服务小区c的第i个TTI子帧的PUCCH处的发射功率。
在该实施例中,当sPUSCH,sPUCCH,PUSCH和PUCCH同时传输时(在此“同时传输”指的是二者在时间上重合或部分重合),在对sPUSCH,sPUCCH,PUSCH和PUCCH进行同时传输的OFDM符号上,sPUSCH的发射功率不应当超过功率C。其中,C可以是
PCMAX,c(i)-PPUCCH(i)-PPUSCH(i)-PsPUCCH,c(k)或者
10log10(PCMAX,c(i)-PPUCCH(i)-PPUSCH(i)-PsPUCCH,c(k))。
其中,PCMAX,c(i)是UE在服务小区c的第i个TTI子帧或第i个sTTI子帧的最大发射功率,PPUCCH,c(i)是UE在服务小区c的第i个TTI子帧的 PUCCH处的发射功率,PPUSCH,c(i)是UE在服务小区c的第i个TTI子帧的PUSCH处的发射功率,PsPUCCH,c(k)是UE在服务小区c的第k个sTTI子帧的sPUCCH处的发射功率。
本发明还提供了用于执行上述方法的用户设备和基站,如图2和图3分别所示。需要说明的是,图2和图3仅是用于说明本发明在用户设备和基站处的示意性实现的示意性框图,并为了清楚起见仅示出了对说明本发明有关的部件/组件。在具体实现中,还可以包括本领域技术人员通常使用或能够想到的其他部件/组件。
图2示出了根据本发明实施例的用户设备的示意性简化框图。该用户设备包括:接收机310,用于从基站接收配置信息,所述配置信息指示用户设备在sTTI上传输的信道类型以及用户设备在TTI上传输的信道类型;以及功率计算单元320,用于根据接收到的配置信息计算向sPUCCH和/或sPUSCH分配的功率。具体地,功率计算单元320可执行上述第一实施例至第八实施例所述的方法。
该用户设备还可包括发射机330,用于根据所分配的功率向基站发送信号。
该用户设备还可包括存储器340,用于存储用户设备在操作中需要和/或产生的信息和数据。
图3示出了根据本发明实施例的基站的示意性简化框图。基站包括:配置信息生成器410,用于生成配置信息,所述配置信息指示用户设备在sTTI上传输的信道类型以及用户设备在TTI上传输的信道类型;以及发射机420,用于向用户设备发送配置信息。
该基站还可包括接收机430,用于接收用户设备根据基于配置信息确定的功率分配向基站发送的信号。
该用户设备还可包括存储器440,用于存储基站在操作中需要和/或产生的信息和数据。
上文已经结合优选实施例对本发明的方法和涉及的设备进行了描述。本领域技术人员可以理解,上面示出的方法仅是示例性的。本发明的方法并不局限于上面示出的步骤和顺序。上面示出的网络节点和用户设备可以 包括更多的模块,例如还可以包括可以开发的或者将来开发的可用于基站、MME、或UE的模块等等。上文中示出的各种标识仅是示例性的而不是限制性的,本发明并不局限于作为这些标识的示例的具体信元。本领域技术人员根据所示实施例的教导可以进行许多变化和修改。
在本申请中,“基站”是指具有较大发射功率和较广覆盖面积的移动通信数据和控制交换中心,包括资源分配调度、数据接收发送等功能。“用户设备”是指用户移动终端,例如包括移动电话、笔记本等可以与基站或者微基站进行无线通信的终端设备。
运行在根据本发明的设备上的程序可以是通过控制中央处理单元(CPU)来使计算机实现本发明的实施例功能的程序。该程序或由该程序处理的信息可以临时存储在易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器系统中。
用于实现本发明各实施例功能的程序可以记录在计算机可读记录介质上。可以通过使计算机系统读取记录在所述记录介质上的程序并执行这些程序来实现相应的功能。此处的所谓“计算机系统”可以是嵌入在该设备中的计算机系统,可以包括操作系统或硬件(如外围设备)。“计算机可读记录介质”可以是半导体记录介质、光学记录介质、磁性记录介质、短时动态存储程序的记录介质、或计算机可读的任何其他记录介质。
用在上述实施例中的设备的各种特征或功能模块可以通过电路(例如,单片或多片集成电路)来实现或执行。设计用于执行本说明书所描述的功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、或其他可编程逻辑器件、分立的门或晶体管逻辑、分立的硬件组件、或上述器件的任意组合。通用处理器可以是微处理器,也可以是任何现有的处理器、控制器、微控制器、或状态机。上述电路可以是数字电路,也可以是模拟电路。因半导体技术的进步而出现了替代现有集成电路的新的集成电路技术的情况下,本发明的一个或多个实施例也可以使用这些新的集成电路技术来实现。
此外,本发明并不局限于上述实施例。尽管已经描述了所述实施例的各种示例,但本发明并不局限于此。安装在室内或室外的固定或非移动电 子设备可以用作终端设备或通信设备,如AV设备、厨房设备、清洁设备、空调、办公设备、自动贩售机、以及其他家用电器等。
如上,已经参考附图对本发明的实施例进行了详细描述。但是,具体的结构并不局限于上述实施例,本发明也包括不偏离本发明主旨的任何设计改动。另外,可以在权利要求的范围内对本发明进行多种改动,通过适当地组合不同实施例所公开的技术手段所得到的实施例也包含在本发明的技术范围内。此外,上述实施例中所描述的具有相同效果的组件可以相互替代。

Claims (9)

  1. 一种功率控制方法,包括:
    从基站接收配置信息,所述配置信息指示用户设备在短时传输时间间隔sTTI上传输的信道类型以及所述用户设备在传输时间间隔TTI上传输的信道类型;以及
    根据接收到的配置信息计算向短物理上行控制信道sPUCCH和/或短物理上行共享信道sPUSCH分配的功率。
  2. 根据权利要求1所述的功率控制方法,其中,当所述配置信息指示所述用户设备在sTTI上传输sPUCCH以及在TTI上传输PUCCH时:
    当将sPUCCH与PUCCH同时传输时,在对PUCCH与sPUCCH进行同时传输的正交频分复用OFDM符号上,将为sPUCCH分配的功率计算为不小于功率A,其中,A是PCMAX,c(i)-PPUCCH(i)或者10log10(PCMAX,c(i)-PPUCCH(i)),PCMAX,c(i)是所述用户设备在服务小区c的第i个TTI子帧或第i个sTTI子帧的最大发射功率,PPUCCH,c(i)是所述用户设备在服务小区c的第i个TTI子帧的PUCCH处的发射功率,或
    将为sPUCCH分配的功率计算为min(A,B)的形式,其中,B是PO_sPUCCH,PLc,h(nCQI,nHARQ,nSR),10log10(MsPUCCHc(k)),ΔTF,c(i)和gsPUCCH(i)中的一项或多项的组合,PO_sPUCCH表示sPUCCH信道上的平均干扰水平或者相对的噪声水平,PLc代表了序号c的载波上的大尺度路径损失,MsPUCCH,c(k)代表了向服务小区c的第k个sTTI子帧处的sPUCCH分配的资源块RB数目或者物理资源块PRB数目或者资源单元RE数目,h(nCQI,nHARQ,nSR)表示nCQI、nHARQ和nSR的函数,nCQI、nHARQ和nSR分别表示sPUCCH中用来反馈CQI,HARQ和SR的比特数,ΔTF,c(i)表示不同sPUCCH格式下的功率补偿参数,gsPUCCH(i)表示由基站的TPC命令计算得出的上行sPUCCH动态功率调整参数。
  3. 根据权利要求1所述的功率控制方法,其中,当所述配置信息指示所述用户设备在sTTI上传输sPUSCH以及在TTI上传输PUCCH时:
    当将sPUSCH与PUCCH同时传输时,在对PUCCH与sPUSCH进行同时传输的正交频分复用OFDM符号上,将为sPUSCH分配的功率计算 为不小于功率C,其中,C是PCMAX,c(i)-PPUCCH(i)或者10log10(PCMAX,c(i)-PPUCCH(i)),PCMAX,c(i)是所述用户设备在服务小区c的第i个TTI子帧或第i个sTTI子帧的最大发射功率,PPUCCH,c(i)是所述用户设备在服务小区c的第i个TTI子帧的PUCCH处的发射功率,或
    将为sPUSCH分配的功率计算为min(C,D)的形式,其中,D是PO_sPUSCH,c(j),αO_sPUSCH,c(j),PLc,10log10(MsPUSCH,c(k)),ΔTF,c(i)和fsPUSCH,c(k)中的一项或多项的组合,PO_sPUSCH,c(j)表示sPUSCH信道上的平均干扰水平或者相对的噪声水平,PLc代表了序号c的载波上的大尺度路径损失,MsPUSCH,c(k)代表了向服务小区c的第k个sTTI子帧处的sPUSCH分配的资源块RB数目或者物理资源块PRB数目或者资源单元RE数目,αO_sPUSCH,c(j)表示路径功率损失补偿的比率,ΔTF,c(i)表示不同sPUCCH格式下的功率补偿参数,fsPUSCH,c(k)表示由基站的TPC命令计算得出的上行sPUSCH动态功率调整参数。
  4. 根据权利要求1所述的功率控制方法,其中,当所述配置信息指示所述用户设备在sTTI上传输sPUCCH和sPUSCH以及在TTI上传输PUCCH时:
    当将sPUCCH、sPUSCH与PUCCH同时传输时:
    在对PUCCH、sPUSCH与sPUCCH进行同时传输的正交频分复用OFDM符号上,
    将为sPUCCH分配的功率计算为不小于功率A,其中,A是PCMAX,c(i)-PPUCCH(i)或者10log10(PCMAX,c(i)-PPUCCH(i)),PCMAX,c(i)是所述用户设备在服务小区c的第i个TTI子帧或第i个sTTI子帧的最大发射功率,PPUCCH,c(i)是所述用户设备在服务小区c的第i个TTI子帧的PUCCH处的发射功率,或
    将为sPUCCH分配的功率计算为min(A,B)的形式,其中,B是PO_sPUCCH,PLc,h(nCQI,nHARQ,nSR),10log10(MsPUCCH,c(k)),ΔTF,c(i)和gsPUCCH(i)中的一项或多项的组合,PO_sPUCCH表示sPUCCH信道上的平均干扰水平或者相对的噪声水平,PLc代表了序号c的载波上的大尺度路径损失,MsPUCCH,c(k)代表了向服务小区c的第k个sTTI子帧处的sPUCCH分配的资源块RB数目或者 物理资源块PRB数目或者资源单元RE数目,h(nCQI,nHARQ,nSR)表示nCQI、nHARQ和nSR的函数,nCQI、nHARQ和nSR分别表示sPUCCH中用来反馈CQI,HARQ和SR的比特数,ΔTF,c(i)表示不同sPUCCH格式下的功率补偿参数,gsPUCCH(i)表示由基站的TPC命令计算得出的上行sPUCCH动态功率调整参数;以及
    在对PUCCH、sPUSCH与sPUCCH进行同时传输的正交频分复用OFDM符号上,
    将为sPUSCH分配的功率计算为不小于功率C,其中,C是PCMAX,c(i)-PPUCCH(i)-PsPUCCH,c(k)或者10log10(PCMAX,c(i)-PPUCCH(i)-PsPUCCH,c(k)),PCMAX,c(i)是所述用户设备在服务小区c的第i个TTI子帧或第i个sTTI子帧的最大发射功率,PPUCCH,c(i)是所述用户设备在服务小区c的第i个TTI子帧的PUCCH处的发射功率,PsPUCCH,c(k)是所述用户设备在服务小区c的第k个sTTI子帧的sPUCCH处的发射功率,或
    将为sPUSCH分配的功率计算为min(C,D)的形式,其中,D是PO_sPUSCH,c(j),αO_sPUSCH,c(j),PLc,10log10(MsPUSCH,c(k)),ΔTF,c(i)和fsPUSCH,c(k)中的一项或多项的组合,PO_sPUSCH,c(j)表示sPUSCH信道上的平均干扰水平或者相对的噪声水平,PLc代表了序号c的载波上的大尺度路径损失,MsPUSCH,c(k)代表了向服务小区c的第k个sTTI子帧处的sPUSCH分配的资源块RB数目或者物理资源块PRB数目或者资源单元RE数目,αO_sPUSCH,c(j)表示路径功率损失补偿的比率,ΔTF,c(i)表示不同sPUCCH格式下的功率补偿参数,fsPUSCH,c(k)表示由基站的TPC命令计算得出的上行sPUSCH动态功率调整参数。
  5. 根据权利要求1所述的功率控制方法,其中,当所述配置信息指示所述用户设备在sTTI上传输sPUCCH和sPUSCH以及在TTI上传输PUSCH和PUCCH时:
    当将sPUCCH、sPUSCH、PUSCH与PUCCH同时传输时:
    在对sPUCCH、sPUSCH、PUSCH与PUCCH进行同时传输的正交频分复用OFDM符号上,
    将为sPUCCH分配的功率计算为不小于功率A,其中,A是PCMAX,c(i)-PPUCCH(i)或者10log10(PCMAX,c(i)-PPUCCH(i)),PCMAX,c(i)是所述用户设备在服务小区c的第i个TTI子帧或第i个sTTI子帧的最大发射功率,PPUCCH,c(i)是所述用户设备在服务小区c的第i个TTI子帧的PUCCH处的发射功率,或
    将为sPUCCH分配的功率计算为min(A,B)的形式,其中,B是PO_sPUCCH,PLc,h(nCQI,nHARQ,nSR),10log10(MsPUCCH,c(k)),ΔTF,c(i)和gsPUCCH(i)中的一项或多项的组合,PO_sPUCCH表示sPUCCH信道上的平均干扰水平或者相对的噪声水平,PLc代表了序号c的载波上的大尺度路径损失,MsPUCCH,c(k)代表了向服务小区c的第k个sTTI子帧处的sPUCCH分配的资源块RB数目或者物理资源块PRB数目或者资源单元RE数目,h(nCQI,nHARQ,nSR)表示nCQI、nHARQ和nSR的函数,nCQI、nHARQ和nSR分别表示sPUCCH中用来反馈CQI,HARQ和SR的比特数,ΔTF,c(i)表示不同sPUCCH格式下的功率补偿参数,gsPUCCH(i)表示由基站的TPC命令计算得出的上行sPUCCH动态功率调整参数;以及
    在对sPUCCH、sPUSCH、PUSCH与PUCCH进行同时传输的正交频分复用OFDM符号上,
    将为sPUSCH分配的功率计算为不小于功率C,其中,C是PCMAX,c(i)-PPUCCH(i)-PPUSCH(i)-PsPUCCH,c(k)或者10log10(PCMAX,c(i)-PPUCCH(i)-PPUSCH(i)-PsPUCCH,c(k)),PCMAX,c(i)是所述用户设备在服务小区c的第i个TTI子帧或第i个sTTI子帧的最大发射功率,PPUCCH,c(i)是所述用户设备在服务小区c的第i个TTI子帧的PUCCH处的发射功率,PPUSCH,c(i)是所述用户设备在服务小区c的第i个TTI子帧的PUSCH处的发射功率,PsPUCCH,c(k)是所述用户设备在服务小区c的第k个sTTI子帧的sPUCCH处的发射功率,或
    将为sPUSCH分配的功率计算为min(C,D)的形式,其中,D是PO_sPUSCH,c(j),αO_sPUSCH,c(j),PLc,10log10(MsPUSCH,c(k)),ΔTF,c(i)和fsPUSCH,c(k)中的一项或多项的组合,PO_sPUSCH,c(j)表示sPUSCH信道上的平均干扰水平或者相对的噪声水平,PLc代表了序号c的载 波上的大尺度路径损失,MsPUSCH,c(k)代表了向服务小区c的第k个sTTI子帧处的sPUSCH分配的资源块RB数目或者物理资源块PRB数目或者资源单元RE数目,αO_sPUSCH,c(j)表示路径功率损失补偿的比率,ΔTF,c(i)表示不同sPUCCH格式下的功率补偿参数,fsPUSCH,c(k)表示由基站的TPC命令计算得出的上行sPUSCH动态功率调整参数。
  6. 一种功率控制方法,包括:
    生成配置信息,所述配置信息指示用户设备在短时传输时间间隔sTTI上传输的信道类型以及所述用户设备在传输时间间隔TTI上传输的信道类型;
    向所述用户设备发送所述配置信息。
  7. 一种用户设备,包括:
    接收机,用于从基站接收配置信息,所述配置信息指示用户设备在短时传输时间间隔sTTI上传输的信道类型以及所述用户设备在传输时间间隔TTI上传输的信道类型;以及
    功率计算单元,用于根据接收到的配置信息计算向短物理上行控制信道sPUCCH和/或短物理上行共享信道sPUSCH分配的功率。
  8. 根据权利要求7所述的用户设备,其中,所述功率计算单元用于执行根据权利要求2-5中任一项所述的操作。
  9. 一种基站,包括:
    配置信息生成器,用于生成配置信息,所述配置信息指示用户设备在短时传输时间间隔sTTI上传输的信道类型以及所述用户设备在传输时间间隔TTI上传输的信道类型;
    发射机,用于向所述用户设备发送所述配置信息。
PCT/CN2017/097026 2016-08-12 2017-08-11 用户设备、基站及其功率控制方法 WO2018028660A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610665630.XA CN107734623A (zh) 2016-08-12 2016-08-12 用户设备、基站及其功率控制方法
CN201610665630.X 2016-08-12

Publications (1)

Publication Number Publication Date
WO2018028660A1 true WO2018028660A1 (zh) 2018-02-15

Family

ID=61162927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097026 WO2018028660A1 (zh) 2016-08-12 2017-08-11 用户设备、基站及其功率控制方法

Country Status (2)

Country Link
CN (1) CN107734623A (zh)
WO (1) WO2018028660A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108650709A (zh) * 2018-05-11 2018-10-12 中国信息通信研究院 一种上行传输功率分配方法和移动通信系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102300303A (zh) * 2010-06-24 2011-12-28 夏普株式会社 上行多输入多输出信道的功率控制方法
CN103200662A (zh) * 2012-01-09 2013-07-10 华为技术有限公司 上行发送功率确定方法及用户设备
CN103327594A (zh) * 2012-03-22 2013-09-25 电信科学技术研究院 上行功率控制方法、设备及系统
US20140177572A1 (en) * 2009-01-30 2014-06-26 Samsung Electronics Co., Ltd. Transmitting uplink control information over a data channel or over a control channel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140177572A1 (en) * 2009-01-30 2014-06-26 Samsung Electronics Co., Ltd. Transmitting uplink control information over a data channel or over a control channel
CN102300303A (zh) * 2010-06-24 2011-12-28 夏普株式会社 上行多输入多输出信道的功率控制方法
CN103200662A (zh) * 2012-01-09 2013-07-10 华为技术有限公司 上行发送功率确定方法及用户设备
CN103327594A (zh) * 2012-03-22 2013-09-25 电信科学技术研究院 上行功率控制方法、设备及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PANASONIC: "UL aspect of shortened TTI", 3GPP TSG RAN WG1 MEETING #85 R1-164914, 13 May 2016 (2016-05-13), XP051090214 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108650709A (zh) * 2018-05-11 2018-10-12 中国信息通信研究院 一种上行传输功率分配方法和移动通信系统
CN108650709B (zh) * 2018-05-11 2022-07-19 中国信息通信研究院 一种上行传输功率分配方法和移动通信系统

Also Published As

Publication number Publication date
CN107734623A (zh) 2018-02-23

Similar Documents

Publication Publication Date Title
US11184903B1 (en) Methods and systems for performance enhancement of downlink shared channels
JP6523278B2 (ja) 端末装置、基地局装置、および通信方法
JP6962197B2 (ja) 装置及び方法
JP6701439B2 (ja) 短縮された送信時間間隔(tti)を用いたpuschにおけるアップリンク制御シグナリング
WO2019062998A1 (zh) 功率控制方法及装置
US20140105049A1 (en) Apparatus and method for transmitting and receiving channel state information of downlink channel in mobile communication system
AU2017310778B2 (en) Terminal Apparatus, Base Station Apparatus, Communication Method, and Integrated Circuit
US10855500B2 (en) Terminal apparatus, base station apparatus, communication method, and integrated circuit
JP2014192860A (ja) 送信装置及び送信方法
US20120230211A1 (en) Methods and network nodes for allocating control channel elements for physical downlink control channel
US11026184B2 (en) Terminal apparatus, base station apparatus, and communication method for transmitting resource information and transmission power control information to the terminal device with a grant-free access resource allocation or a scheduled access resource allocation
JP6656150B2 (ja) 端末装置、基地局装置、および通信方法
TWI771337B (zh) 傳輸上行控制訊息的方法、終端設備和網路設備
US20160204838A1 (en) Signaling method for coordinated multiple point transmission and reception, and apparatus therefor
WO2019159568A1 (ja) 送信機及び送信方法
US10104652B2 (en) Transmission apparatus
CA3177853A1 (en) Systems and methods for tci state activation and codepoint to tci state mapping
JPWO2016163186A1 (ja) 端末装置、基地局装置、集積回路、および、通信方法
TWI700910B (zh) 通訊裝置及通訊方法
WO2018157365A1 (zh) 一种被用于功率调整的用户设备、基站中的方法和装置
JP2019024148A (ja) 通信装置および通信方法
WO2018028658A1 (zh) 信道功率控制方法、用户设备及基站
JP2018056603A (ja) 基地局装置、端末装置および通信方法
WO2018028660A1 (zh) 用户设备、基站及其功率控制方法
WO2016182038A1 (ja) 端末装置および基地局装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838790

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17838790

Country of ref document: EP

Kind code of ref document: A1