WO2018028618A1 - 跟踪波束的方法、终端设备和网络侧设备 - Google Patents

跟踪波束的方法、终端设备和网络侧设备 Download PDF

Info

Publication number
WO2018028618A1
WO2018028618A1 PCT/CN2017/096725 CN2017096725W WO2018028618A1 WO 2018028618 A1 WO2018028618 A1 WO 2018028618A1 CN 2017096725 W CN2017096725 W CN 2017096725W WO 2018028618 A1 WO2018028618 A1 WO 2018028618A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
terminal device
beams
reference quality
network side
Prior art date
Application number
PCT/CN2017/096725
Other languages
English (en)
French (fr)
Inventor
唐珣
权威
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2019507177A priority Critical patent/JP6896061B2/ja
Priority to EP17838748.6A priority patent/EP3493423B1/en
Priority to BR112019002698A priority patent/BR112019002698A2/pt
Priority to AU2017311078A priority patent/AU2017311078A1/en
Publication of WO2018028618A1 publication Critical patent/WO2018028618A1/zh
Priority to US16/271,214 priority patent/US11233558B2/en
Priority to AU2020256361A priority patent/AU2020256361B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/24Monitoring; Testing of receivers with feedback of measurements to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/26Monitoring; Testing of receivers using historical data, averaging values or statistics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0857Joint weighting using maximum ratio combining techniques, e.g. signal-to- interference ratio [SIR], received signal strenght indication [RSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the embodiments of the present application relate to the field of wireless communication technologies, and more specifically, to a method for tracking a beam, a terminal device, and a network side device.
  • the path loss is proportional to the frequency and distance.
  • the frequency used by the communication device increases, the path loss increases at the same distance.
  • the maximum path loss value that the entire wireless link can bear is fixed under the premise that the transmitter and the receiver are unchanged. Therefore, when the frequency used by the communication device increases, the effective communication distance between the communication devices is inevitably reduced.
  • the use of a high frequency spectrum results in a reduction in cell coverage. The reduction of cell coverage will result in more base station equipment being required to complete coverage under the same coverage area requirements, and network deployment costs will increase. At the same time, the reduction of cell coverage will result in frequent handovers between cells, which will also lead to a decline in user experience.
  • Beamforming is a multi-antenna transmission/reception technique that combines signals on multiple antennas to form a narrow beam to obtain transmit/receive gain, which can effectively expand cell coverage.
  • the terminal device establishes communication with the network side device in a conventional manner (for example, a wide beam). After the communication is established, the beamforming technology can be used to transmit data between the terminal device and the network side device.
  • the beamforming technology can be used to transmit data between the terminal device and the network side device.
  • all channels including control channels, random access channels, etc.
  • the key problem to be solved is how to maintain beam alignment, that is, tracking in the case of channel changes and terminal equipment movement. Beam.
  • the embodiment of the present application provides a method for tracking a beam, a terminal device, and a network side device, so as to transmit information of all channels by using a beamforming technology.
  • the embodiment of the present application provides a method for tracking a beam, where the method includes: determining, by a terminal device, N first beam reference quality values, where the N first beam reference quality values respectively correspond to N beams, where N is a positive integer greater than or equal to 1; the terminal device selects M beams from the N beams according to the N first beam reference quality values and a cell to which each of the N beams belongs, where M is greater than Or a positive integer equal to 1 and less than or equal to N, the M beams belong to a camping cell or a serving cell of the terminal device; the terminal device selects M The beam indicates to the network side device that provides service to the terminal device.
  • the terminal device can track the detectable beam and report the tracked camped cell or the serving cell's beam to the network side device, so that the network side device can select an appropriate beam from the reported beam.
  • a beam for communicating with the terminal device includes: determining, by a terminal device, N first beam reference quality values, where the N first beam reference quality values respectively correspond to N beams
  • the terminal device indicates the selected M beams to the network side device, where the terminal device sends the first beam tracking to the network side device.
  • the first beam tracking message includes an index of the M beams, where the first beam tracking message is a medium access control MAC layer message. In this way, the terminal device can directly indicate the selected M beams to the network side device through the MAC layer message.
  • the method further includes: the terminal device is in an index corresponding to the first target beam And transmitting, by the time-frequency resource and/or the code resource, a random access preamble to the network side device, where the first target beam is a beam with the highest reference quality value of the first beam of the M beams.
  • the terminal device can implicitly indicate the beam with the highest beam quality value to the network side device by using the time-frequency resource and/or the code resource of the random access preamble without passing an additional signaling. In this way, signaling overhead can be saved.
  • the terminal device may determine a second beam reference quality value of each beam based on multiple first beam reference quality values of each beam.
  • the beam reference quality value tracked by the terminal device is a measurement result accumulated after a period of time.
  • the second beam tracking message may include an index of a beam of at least one of the cells to which the N beams belong.
  • the network side device can obtain the beam quality value of the camped cell and the neighboring cell of the terminal device.
  • the network side device can determine not only the cell status of the camping cell or the serving cell of the terminal device, but also the cell status of the neighboring cell that the terminal device can detect.
  • the terminal device determines, according to the N second beam reference quality values, a second beam tracking message, including: Determining, by the terminal device, the second beam tracking message according to the N second beam reference quality values, a cell to which each of the N beams belongs, a first preset threshold, and a second preset threshold, where The first preset threshold is greater than the second preset threshold, and the second beam tracking message includes an index of the candidate beam and/or an index of the available beam, where the second beam reference quality value of the candidate beam is greater than or equal to the first preset The threshold, the second beam reference quality value of the available beam is less than the first preset threshold and greater than or equal to the second preset threshold.
  • the terminal device directly reports the candidate beam and/or the available beam to the network side device, so that the network side device can select a suitable beam from the received candidate beam and/or available beam and the terminal device. Communicate.
  • the second beam tracking message further includes a second beam reference quality value of the candidate beam and/or the available The second beam reference quality value of the beam.
  • a sixth possible implementation of the first aspect Determining, by the terminal device, the second beam tracking message according to the N second beam reference quality values, including: the terminal device according to the N second beam reference quality values, a cell to which each of the N beams belongs, and a Determining, by the preset threshold, the second beam tracking message, where the second beam tracking message includes an index of P beams, where a second beam reference quality value of each of the P beams is greater than or equal to the third
  • the preset threshold, P is a positive integer greater than or equal to 1 and less than or equal to M.
  • the terminal device can report the index of the beam that meets the preset condition (that is, greater than or equal to the third preset threshold) to the network side device, so that the network side device can directly comply with the preset condition.
  • the appropriate beam is selected from the beam to communicate with the terminal device.
  • the second beam tracking message further includes a second of the N beams that is greater than the third preset threshold Beam reference quality value.
  • the terminal device determines, according to the N second beam reference quality values, a second beam tracking message, including: Determining, by the terminal device, at least two reference beams of each of at least one of the cells to which the N beams belong according to the N second beam reference quality values and a cell to which each of the N beams belongs. At least two reference beams of the cells are at least two beams having the highest second reference quality value in the each cell; the terminal device determines the second beam tracking message, the second beam tracking message including the determined each An index of at least two reference beams of a cell.
  • the terminal device may directly report the multiple beams with the highest beam reference quality value to the network side device, so that the network side device may select one of the multiple beams with the highest beam quality value.
  • the second beam tracking message further includes a second beam reference of the at least two reference beams of each cell Quality value.
  • the terminal device determines, according to the N second beam reference quality values, a second beam tracking message, including: The terminal device determines a cell measurement result according to the N second beam reference quality values and a cell to which each of the N beams belongs, where the cell measurement result is each cell in at least one cell of the cells to which the N beams belong. The highest second beam reference quality value; the terminal device determines the second beam tracking message, the second beam tracking message including the cell measurement result.
  • the terminal device may determine the cell measurement result according to the result of the beam tracking, and report the measured cell measurement result to the network side device, so that the network side device acquires the cell measurement result tracked by the terminal device.
  • the determining, by the N second reference, the second tracking information, the second beam tracking message includes: the terminal The device determines, according to the N second beam reference quality values and a cell to which each of the N beams belongs, at least two reference beams of each of the at least one of the cells to which the N beams belong, the each cell The at least two reference beams are at least two beams having a second beam reference quality value in each of the cells; the terminal device determines a cell measurement result, where the cell measurement result includes a second of the at least two reference beams of the each cell An average of the beam reference quality values; the terminal device determines the second beam tracking message, the second beam tracking message including the cell measurement result.
  • the terminal device may determine the cell measurement result according to the result of the beam tracking, and report the measured cell measurement result to the network side device, so that the network side device acquires the cell measurement result tracked by the terminal device.
  • the method further includes: The terminal device is based on the N Determining, by the first beam reference quality value, a cell to which each of the N beams belongs, determining a first beam reference quality value that is the highest quality of each of the at least one of the cells to which the N beams belong; the terminal device according to the Determining, by the highest first beam reference quality value of each cell, a second beam reference quality value of each cell; the terminal device sends the second beam reference quality value of each cell as a cell measurement result to the RRC layer message to The network side device.
  • the terminal device may determine the cell measurement result according to the result of the beam tracking, and report the measured cell measurement result to the network side device, so that the network side device acquires the cell measurement result tracked by the terminal device.
  • the method further includes: the terminal And determining, according to the N first beam reference quality values and the cell to which each of the N beams belongs, the highest at least two first beam references of each of the at least one of the cells to which the N beams belong. An average value of the quality values; the terminal device determines a second beam reference quality of each of the cells according to an average of the highest at least two first beam reference quality values of the each cell; the terminal device uses the cell The second beam reference quality is sent to the network side device as an RRC layer message as a cell measurement result.
  • the terminal device may determine the cell measurement result according to the result of the beam tracking, and report the measured cell measurement result to the network side device, so that the network side device acquires the cell measurement result tracked by the terminal device.
  • the method further includes: determining, by the terminal device, whether the preset measurement event is met according to the cell measurement result.
  • the terminal device may determine whether the preset measurement event is met according to the result of the beam tracking, so as to select the reported content according to the determination result.
  • the value of the M is indicated by the network side device to the terminal device .
  • the embodiment of the present application provides a method for tracking a beam, where the method includes: the network side device acquires M beams indicated by the terminal device, where the M beams belong to a camping cell or a serving cell of the terminal device, M is a positive integer greater than or equal to 1; the network side device selects one beam from the M beams; the network side device sends a downlink message to the terminal device by using the selected beam.
  • the network side device may obtain a beam of the resident cell or the serving cell that belongs to the terminal device that is tracked by the terminal device.
  • the network side device acquires the M beams that are indicated by the terminal device, and the network side device receives the first beam tracking message that is sent by the terminal device,
  • the first beam tracking message includes an index of the M beams, wherein the first beam tracking message is a MAC layer message.
  • the network side device may directly acquire the M beams indicated by the terminal device.
  • the method further includes: the network side device receiving the random access preamble sent by the terminal device And determining, by the network side device, the first target beam according to the time-frequency resource and/or the code resource used by the random access preamble, where the first target beam is the highest reference quality value of the first beam in the M beams Beam.
  • the network side device may determine the first target beam according to an implicit indication of the terminal device. The network side device can determine the first target beam without receiving additional signaling. In this way, signaling overhead can be saved.
  • the method further includes: receiving, by the network side device, a second beam tracking message sent by the terminal device, where the second beam tracking message is an RRC layer message, where the second beam tracking message includes an index of the candidate beam and/or Or an index of the available beam, the second beam reference quality value of the candidate beam is greater than or equal to the first preset threshold, and the second beam reference quality value of the available beam is smaller than the first preset threshold and greater than or equal to the second pre- The threshold is set, and the first preset threshold is greater than the second preset threshold.
  • the network side device may directly determine the candidate beam and/or the available beam according to the beam tracking message sent by the terminal device, without determining the candidate beam and/or the available beam according to the preset threshold. In this way, resources of the network side device can be saved.
  • the second beam tracking message further includes a second beam reference quality value of the candidate beam and/or the available The second beam reference quality value of the beam.
  • the method further includes: the network The side device receives the second beam tracking message sent by the terminal device, where the second beam tracking message is an RRC layer message, where the second beam tracking message includes an index of P beams, and each of the P beams
  • the second beam reference quality value is greater than or equal to a third preset threshold, and P is a positive integer greater than or equal to 1 and less than or equal to M.
  • the network side device may directly determine, according to the beam tracking message sent by the terminal device, a beam that satisfies the second beam reference quality value greater than or equal to the third preset threshold, without determining that the foregoing is satisfied according to the preset threshold. Conditional beam. In this way, resources of the network side device can be saved.
  • the second beam tracking message further includes a second beam reference quality value of the at least one beam.
  • the method further includes: the network The side device receives the second beam tracking message sent by the terminal device, where the second beam tracking message is an RRC layer message, where the second beam tracking message includes an index of at least two reference beams respectively belonging to each cell in the at least one cell.
  • the at least two reference beams of each cell are at least two beams with the highest second reference quality value in the each cell.
  • the network side device may directly determine, according to the beam tracking message sent by the terminal device, multiple beams with the highest beam reference quality in each cell in the at least one cell, without determining the at least one cell by itself.
  • the second beam in each cell refers to multiple beams of the highest quality. In this way, resources of the network side device can be saved.
  • the second beam tracking message further includes a second beam of the at least two reference beams in each cell Reference quality value.
  • the method further includes: the network The side device receives the second beam tracking message sent by the terminal device, where the second beam tracking message is an RRC layer message, where the second beam tracking message includes a cell measurement result, where the cell measurement result is used by each cell in the at least one cell The highest quality second beam reference quality value.
  • the network side device can directly obtain the cell measurement result reported by the terminal device, and does not need to determine the cell measurement result by itself. In this way, resources of the network side device can be saved.
  • the method further includes: the network The side device receives the second beam tracking message sent by the terminal device, where the second beam tracking message is an RRC layer message, and the second beam tracking message
  • the message includes a cell measurement result including an average of second beam reference quality values of at least two reference beams of each of the at least one cell, the at least two reference beams of each cell being the each cell
  • the second beam in the reference has at least two beams with the highest quality value.
  • the network side device can directly obtain the cell measurement result reported by the terminal device, and does not need to determine the cell measurement result by itself. In this way, resources of the network side device can be saved.
  • the method further includes: Receiving, by the network side device, a cell measurement result of each cell in the at least one cell sent by the terminal device, where the cell measurement result of each cell includes a second beam reference quality value of each cell, where the second cell of each cell
  • the beam reference quality value is determined based on the highest first beam reference quality value of each cell.
  • the network side device can directly obtain the cell measurement result reported by the terminal device, and does not need to determine the cell measurement result by itself. In this way, resources of the network side device can be saved.
  • the method further includes: Receiving, by the network side device, a cell measurement result of each cell in the at least one cell sent by the terminal device, where the cell measurement result of each cell is a second beam reference quality value of each cell, and the second cell of each cell
  • the beam reference quality is determined based on an average of the highest at least two first beam reference quality values for each cell.
  • the value of the M is indicated by the network side device to the terminal device .
  • the embodiment of the present application provides a method for tracking a beam, where the method includes: the terminal device sends a beam training request to the network side device by using the first beam; and the terminal device uses the beam training response sent by the network side device, Determining a second beam for communicating with the network side device, wherein the beam training response includes M physical pilot resources, and M is a positive integer greater than or equal to 1.
  • the terminal device can select a suitable beam from multiple available beams to communicate with the network side device.
  • the method further includes: the terminal device uses N beams respectively Sending, by the N time-frequency resources, a random access preamble to the network side device, where the subframe number and/or the frequency resource number of any two of the N time-frequency resources are different, and N is greater than or equal to a positive integer of 2; the terminal device receives at least one random access response message sent by the network side device; the terminal device according to the RA-RNTI in each random access response message in the at least one random access response message The value determines the first beam from the N beams.
  • the terminal device may select one of a plurality of available beams that can be used for communication with the network side device, to use the beam to send a request message to the network side device.
  • the terminal device determines, according to the beam training response sent by the network side device,
  • the second beam that is communicated by the network side device includes: the terminal device sends a reference signal to the network side device by using M beams respectively on the M physical pilot resources; the terminal device receives the feedback information sent by the network side device, The feedback information includes an index of one or more of the M beams; the terminal device determines the second beam according to the feedback information, wherein the second beam belongs to the one or more beams.
  • the terminal device can train the available beam and determine a beam that can be used for communication with the network side device according to the information fed back by the network side device.
  • the terminal device uses M beams to the network side respectively on the M physical layer pilot resources. Before the device sends the reference signal, the method further includes: the terminal device selecting M beams from the plurality of available beams. In the above technical solution, the terminal device may select a suitable number of beams for training, so that the number of beams used for training is equal to the physical layer pilot resources allocated by the network side device for the terminal device for the training beam.
  • the terminal device determines, according to the beam training response sent by the network side device, Before the second beam is communicated with the network side device, the method further includes: the terminal device indicating the number of available transmit beams to the network side device.
  • the terminal device may send the number of available beams to the network side device, so that the network side device determines, according to the number of available beams, the number of physical layer pilot resources that need to be allocated for the terminal device.
  • the embodiment of the present application provides a method for tracking a beam, where the method includes: the network side device receives a beam training request sent by the terminal device; the network side device sends a beam training response to the terminal device, where the beam training response includes M physical pilot resources, M is a positive integer greater than or equal to 1.
  • the network side device may allocate physical pilot resources for performing beam training to the terminal device, so that the terminal device selects a suitable beam according to the physical pilot resource to communicate with the network side device.
  • the method before the network side device receives the beam training request sent by the terminal device, the method further includes: the network side device receiving the N sent by the terminal device a random access preamble, where N is a positive integer greater than or equal to 1; the network side device determines N RA-RANT values according to time-frequency resources of each random access preamble in the N random access preambles The network side device sends N random access responses to the terminal device, and the N random access responses are scrambled using the N RA-RNTI values, respectively.
  • the network side device feeds back the available uplink beam to the terminal device, so that the terminal device sends the beam training request to the network side device by using the uplink beam.
  • the method further includes: the network side device receiving the terminal device in the M physical guides A reference signal sent by the M beams is respectively used on the frequency resource; the network side device determines a beam quality value of each of the M beams according to the received reference signal; and the network side device is configured according to the beam quality of each beam And determining feedback information, the feedback information including an index of one or more of the M beams.
  • the network side device may feed back one or more beams used by the terminal device to communicate with the network side device to the terminal device, so that the terminal device is from the one or more beams. Select the appropriate beam to communicate with the network side device.
  • the network side device determines, according to the beam quality value of each beam, the feedback information, including: the network The side device determines, according to the beam quality value of each beam, that the feedback information includes an index of one or more beams with the highest beam quality value; or the network side device determines the feedback information according to the beam quality value of each beam. An index of one or more beams including a beam quality value greater than a predetermined threshold.
  • the network side device may directly feed back a beam that satisfies a specific condition to the terminal device, so that the terminal device may directly determine the available uplink beam by using the feedback information. The terminal device does not need to determine the beam that satisfies the specific condition by itself. In this way, the resources of the terminal device can be received.
  • the method before the network side device sends the beam training response to the terminal device, the method further The network side device receives the number of available transmit beams sent by the terminal device, and the network side device determines, according to the number of available transmit beams, the number M of physical pilot resources, where M is equal to or smaller than the number of available transmit beams.
  • the device on the network side allocates the appropriate number of physical pilot resources to the terminal device, so that the number of physical pilot resources is the same as the number of available transmit beams of the terminal device.
  • the embodiment of the present application provides a terminal device, where the terminal device includes various units for implementing the method of the first aspect or any possible implementation manner of the first aspect.
  • the embodiment of the present application provides a network side device, where the network side device includes each unit of a method for implementing the second aspect or any possible implementation manner of the second aspect.
  • the embodiment of the present application provides a terminal device, where the terminal device includes various units of a method for implementing the third aspect or any possible implementation manner of the third aspect.
  • an embodiment of the present application provides a network side device, where the network side device includes each unit of a method for implementing the fourth aspect or any possible implementation manner of the fourth aspect.
  • the embodiment of the present application provides a computer readable storage medium storing instructions for implementing the method of the first aspect or any of the possible implementation manners of the first aspect.
  • the embodiment of the present application provides a terminal device, where the terminal device includes a memory and a processor, where the memory includes the computer readable storage medium of the ninth aspect, the processor is configured to execute the instruction stored by the computer readable storage medium .
  • the embodiment of the present application provides a computer readable storage medium storing instructions for implementing the method of any of the second aspect or the second aspect of the second aspect.
  • the embodiment of the present application provides a terminal device, where the terminal device includes a memory and a processor, where the memory includes the computer readable storage medium of the eleventh aspect, the processor is configured to execute the computer readable storage medium storage Instructions.
  • the embodiment of the present application provides a computer readable storage medium storing instructions for implementing the method of any one of the third aspect or the third aspect.
  • the embodiment of the present application provides a terminal device, where the terminal device includes a memory and a processor, where the memory includes the computer readable storage medium of the thirteenth aspect, the processor is configured to execute the computer readable storage medium storage Instructions.
  • the embodiment of the present application provides a computer readable storage medium storing instructions for implementing the method of any of the possible implementations of the fourth aspect or the fourth aspect.
  • the embodiment of the present application provides a terminal device, where the terminal device includes a memory and a processor, where the memory includes the computer readable storage medium of the fifteenth aspect, the processor is configured to execute the computer readable storage medium storage Instructions.
  • FIG. 1 is a schematic flowchart of a beam tracking method according to an embodiment of the present application.
  • Figure 2 is a schematic diagram of feedback of the M beams using the load portion of the MAC CE.
  • FIG. 3 is a schematic flowchart of another method for beam tracking according to an embodiment of the present application.
  • FIG. 4 is a structural block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 5 is a structural block diagram of a network side device according to an embodiment of the present application.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • 5G fifth generation
  • NR New Radio
  • a terminal device which may also be called a user equipment (User Equipment, UE), a mobile terminal (MT), a mobile user equipment, etc., may be connected to one or more via a radio access network (for example, a Radio Access Network, RAN).
  • the core network communicates, and the user equipment can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal, for example, can be portable, pocket, handheld, computer built, or in-vehicle Mobile device.
  • the network side device may be an eNB or an e-NodeB in LTE, or may be a base station in 5G or NR or a Transmission Reception Point (TRP).
  • TRP Transmission Reception Point
  • a camping cell may also be referred to as a serving cell or a home cell.
  • a cell that the terminal device can select in which system messages and paging messages are monitored.
  • the cell selected by the terminal device is the camped cell of the terminal device.
  • the terminal device may detect other cells in addition to the selected camping cell, and the other cells may be referred to as neighboring cells of the terminal device.
  • FIG. 1 is a schematic flowchart of a beam tracking method according to an embodiment of the present application.
  • the terminal device determines N first beam reference quality values, where the N first beam reference quality values respectively correspond to N beams, and N is a positive integer greater than or equal to 1.
  • the terminal device can determine the operating frequency during the cell search phase.
  • the terminal may detect N beams on the working frequency, wherein the N beams may belong to different cells. For example, one or more beams of the camped cells belonging to the terminal device may be included in the N beams.
  • the N beams may also include one or more beams that are not in the neighboring cell of the terminal device.
  • the terminal device may have at least one neighboring cell, and each neighboring cell has a corresponding beam.
  • the "cell to which the beam belongs" as referred to in the embodiment of the present application refers to a beam that the beam belongs to the network side device serving the cell in the cell.
  • the "cell corresponding to the cell” refers to a beam used by the network side device serving the cell in the cell.
  • the network side device 1 uses the beam 1, the beam 2, and the beam 3 in the cell A, and the network side device 2 uses the beam 4, the beam 5, and the beam 6 in the cell B. Then, the beam 1 to the beam 3 belong to the cell A, the beam 4 to the beam 6 belong to the cell B, the beam corresponding to the cell A is the beam 1 to the beam 3, and the beam corresponding to the cell B is the beam 4 to the beam 6.
  • one network side device may provide services for one or more cells, or may provide services for only one cell, which is not limited in this application.
  • the terminal device may respectively determine a first beam reference quality value of each of the N beams.
  • the first beam reference quality value of each beam may be determined according to a received power of the reference signal sent by receiving the each beam, for example, may be a reference signal received power (Reference Signal Received) Power, RSRP), can also be the reference signal reception quality (Reference Signal Received Quality, RSRQ) and so on. Therefore, it can be understood that the first beam reference quality value is a beam quality value measured based on physical layer measurements.
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • the first beam reference quality value of each beam may be determined according to a historical first beam reference quality value and a current beam quality value of each beam.
  • the first beam reference quality value may be determined by using the following formula:
  • a Is the filter coefficient.
  • the current beam quality value is a beam quality value based on physical layer measurements. For example, it can be RSRP, RSRQ.
  • the Media Access Control (MAC) layer may also be filtered based on the measurement result of the physical layer, and reported according to the filtering, that is, the first beam reference quality value is a MAC layer filtered result.
  • the terminal device selects M beams from the N beams according to the N first beam reference quality values and a cell to which each of the N beams belongs, where M is greater than or equal to 1 and less than or A positive integer equal to N, the M beams belonging to the camping cell of the terminal device.
  • the terminal device may determine, from the N beams, at least one beam that belongs to the camping cell, and then determine, from the at least one beam, the M with the highest beam reference quality value.
  • the value of M may be preset or may be indicated by the network side device to the terminal device. It can be understood that, if the number of the beams that belong to the camping cell determined by the terminal device is less than a preset value or a value indicated by the network side device, the M beams are determined by the terminal device to belong to the camping cell. All beams.
  • the terminal device may determine, from the N beams, at least one beam that belongs to the camping cell, and then determine, from the at least one beam, a value greater than the first beam reference quality value.
  • the preset threshold is one or more beams.
  • the preset threshold may be preset or may be indicated by the network side device to the terminal device.
  • the terminal device may determine, from the N beams, at least one beam that belongs to the camping cell, and then determine, from the at least one beam, a value greater than the first beam reference quality value.
  • the preset threshold is one or more beams.
  • the terminal device may determine, from the one or more beams whose first beam reference quality value is greater than the preset threshold, the M beams with the highest first beam reference quality value.
  • the preset threshold may be preset or may be indicated by the network side device to the terminal device.
  • the value of M may be preset or may be indicated by the network side device to the terminal device.
  • the M devices are determined.
  • the beam is all beams that are determined by the terminal device and belong to the camping cell and the first beam reference quality value is greater than the preset threshold.
  • the terminal device indicates the selected M beams to the network side device that provides the terminal device with a service.
  • Each of the beams detected by the terminal device has a corresponding index, and the terminal device may send the index of the determined M beams to the network side device to indicate the M beams selected by the network side device by the terminal device.
  • the network side device may determine, according to an index of the received beam, a beam selected by the terminal device.
  • the terminal device may display the index of the M beams displayly, or may implicitly indicate the index of the M beams.
  • the terminal device may display an index indicating the M wave speeds.
  • the terminal device may send a first beam tracking message to the network side device, where the beam tracking message includes an index of the M beams, where the first beam tracking message is a media access control (MAC). Layer message.
  • MAC media access control
  • the terminal device can directly indicate the selected M beams to the network side device through the MAC layer message.
  • the first beam tracking message may feed back the index of the M beams to the network side device by using a load component of a MAC Control Element (CE).
  • Figure 2 is a schematic diagram of feedback of the M beams using the load portion of the MAC CE. As shown in FIG. 2, the number of M is 4. The number of bits occupied by a single beam index can be six. If the terminal device determines that the number of eligible Ms is less than 4, the other locations are filled with invalid values. It can be understood that if the number of beams to be reported exceeds the number of beams that can be carried by one MAC CE, the terminal device can send the index of the M beams to the network side device through multiple MAC CEs.
  • the order of the indexes of the beams in the first beam tracking message may be determined according to the first beam reference quality value of each beam.
  • the first one of the indexes of the M beams is an index of a beam with the highest beam reference quality value
  • the second beam index is the first beam reference quality value. The index of the second highest beam, and so on.
  • the network side device can determine the order of the first beam reference quality value of the beam according to the order of the indexes of the beams in the beam tracking message, so that the beam with the highest beam reference quality value can be determined.
  • the terminal device may further send the measurement result of the M beams to the network side device.
  • the terminal device may send the first beam reference quality value of each of the M beams to the network side device by using the first beam tracking message.
  • the terminal device can also use other messages to carry the first beam reference quality value of each of the M beams.
  • the terminal device may implicitly indicate an index of the M beams. For example, if the M value is 1, the terminal device may send a random access preamble to the network side device on the time-frequency and/or code resource corresponding to the beam, so as to indicate the one beam to the network-side device.
  • the specific process can be similar to step 104.
  • the one beam may be the beam with the highest beam reference quality value in the camped cell of the terminal device detected by the terminal device.
  • the terminal device can implicitly indicate a beam to the network side device by using the time-frequency resource and/or the code resource of the random access preamble without passing an additional signaling. In this way, signaling overhead can be saved.
  • the terminal device can track the detectable beam and report the tracked camped cell beam to the network side device, so that the network side device can select an appropriate beam from the reported beam for the A beam that communicates with the terminal device.
  • the network side device may select one or more beams from the M beams indicated by the terminal device.
  • the network side device may send a downlink message to the terminal device by using the selected beam.
  • the method can also include step 104.
  • the terminal device sends a random access preamble to the network side device on a time-frequency resource and/or a code resource corresponding to an index of the first target beam, where the first target beam is the M beams.
  • the first beam refers to the beam with the highest quality value.
  • the network side device may determine, according to the time-frequency resource and/or the code resource of the received random access preamble, the beam with the highest beam reference quality value of the camped cell belonging to the terminal device detected by the terminal device. . In this way, the terminal device can directly indicate the beam with the highest beam reference quality value to the network side device.
  • the network side device can also directly determine the beam with the highest beam reference quality value. At the same time, no additional signaling is needed during the indication process, which saves channel resources.
  • the time-frequency resource of each random access preamble corresponds to an index of one beam.
  • the terminal device may determine a corresponding time-frequency resource according to the index of the first target beam, and send the random access preamble to the network side device on the time-frequency resource.
  • the network side device may directly determine the first beam reference quality value of the terminal device in the camped cell of the terminal device according to the time-frequency resource that receives the random access preamble. The index of the highest beam.
  • the time-frequency resource of each random access preamble corresponds to an index of a group of beams.
  • Different code resources on the same time-frequency resource correspond to different beams. For example, if the total number of available preambles is 64, then each beam can correspond to 8 preambles. For example, frequency f 1 , subframe 1, preamble 1 to 8 correspond to the index of beam 1; frequency f 1 , subframe 1, preamble 9 to 16 correspond to the index of beam 2, and so on.
  • the terminal device may determine a corresponding time-frequency resource and a code resource according to the index of the first target beam, and send a random access preamble to the network-side device on the time-frequency resource and the code resource.
  • the network side device may directly determine the first beam reference quality of the terminal device in the camped cell of the terminal device according to the time-frequency resource and the code resource that receive the random access preamble. The index of the beam with the highest value.
  • the mapping between the index of the beam and the time-frequency resource and the code resource may be preset. For example, it may be specified that each of the available preamble codes is divided into L groups in each random access time-frequency resource, and the number of preambles in each group is K/L, and the index of the corresponding beam is 0 to L-1. .
  • the number of packets L may be indicated by the network side device to the terminal device.
  • the network side device may indicate the number of packets L to the terminal device in a system message or a Radio Resource Control (RRC) layer message. In this way, the adaptability to the number of different beams and the number of preambles can be guaranteed.
  • RRC Radio Resource Control
  • the network side device may further indicate a correspondence between a time-frequency resource and a beam group.
  • three frequency resources are configured in one subframe, and each frequency resource corresponds to one beam group.
  • the frequency resource 1 corresponds to the beam group 1
  • the frequency resource 2 corresponds to the beam group 2
  • the frequency resource 3 corresponds to the beam group 3.
  • the preamble in each beam group corresponds to S/3 beams, where S is the total number of beams.
  • the number of downlink beams in the cell and the correspondence between each beam and the random access preamble may be specified by the protocol, or the system broadcast message indicates the terminal device.
  • the terminal device may first indicate the first target beam to the network side device, and then indicate the M beams to the network side device. In other embodiments, the terminal device may first indicate the M beams to the network side device, and then indicate the first target beam to the network side device.
  • the network side device may select a beam that communicates with the terminal device according to the M beams. For example, the network side device may select one of the M beams as a target beam to communicate with the terminal device. The network side device may also select multiple beams of the M beams as target beams to communicate with the terminal device. The network side device can use the target beam to transmit information of all channels to the terminal device. The terminal device can also detect whether the network side device sends information to the terminal device on the target beam.
  • the target beam may be determined according to a preset rule. For example, the target beam may be one or more beams with the highest beam quality among the M beams.
  • the terminal device can track the beam of the camped cell and/or the neighboring cell of the terminal device based on the beam quality of the RRC layer, in addition to tracking the beam belonging to the camped cell based on the beam quality of the physical layer.
  • the specific tracking method refer to step 105 to step 107, or step 108 to step 110, or step 111 to step 113.
  • the terminal device determines N second beam reference quality values, where an nth second beam reference quality value of the N second beam reference quality values is based on an nth of the N first beam reference quality values.
  • the terminal device may directly determine the second beam of the nth beam according to the first beam reference quality value of the nth beam. Reference quality value.
  • the terminal device may determine the second beam reference quality value by using the following formula:
  • the Q t is the filtered second beam reference quality value obtained by the terminal device
  • q t is the current first beam reference quality value
  • Q t-1 is the historical second beam reference quality value of the beam of the terminal
  • a is the filter coefficient.
  • a preset threshold may be set. If a first beam reference quality value of a beam is greater than the preset threshold, the beam may be determined according to the first beam reference quality value of the beam. The second beam reference quality value; if a first beam reference quality value of one beam is less than the preset threshold, the beam may be stopped from filtering to determine a second beam reference quality value of the beam.
  • a detection period can be set. The first beam reference quality value outside the detection period does not affect the filtering process during the detection period. If all the first beam reference quality values of a beam in the detection period are greater than the preset threshold, but a first beam reference quality value of the beam outside the detection period is less than the preset threshold, the corresponding correspondence may still be determined.
  • the second beam reference quality value of the beam during the detection period. If a first beam reference quality value of a beam in the detection period is less than the preset threshold, stopping filtering the first beam reference quality value of the beam. In this case, the terminal device may restart the detection period when the first beam reference quality value of the beam is greater than the preset threshold.
  • the terminal device determines a second beam tracking message according to the N second beam reference quality values.
  • the terminal device determines the second beam tracking message according to the N second beam reference quality values, where the terminal device: according to the N second beam reference quality values, the N The second beam tracking message is determined by the cell to which each beam in the beam belongs, the first preset threshold, and the second preset threshold, where the first preset threshold is greater than the second preset threshold, the second beam The tracking message includes an index of the candidate beam and/or an index of the available beam, where the second beam reference quality value of the candidate beam is greater than or equal to the first preset threshold, and the second beam reference quality value of the available beam is smaller than the first pre- Set a threshold and greater than or equal to the second preset threshold.
  • the second beam tracking message may further include a second beam reference quality value of the candidate beam and/or the available beam.
  • the terminal device directly reports the candidate beam and/or the available beam to the network side device, so that the network side device can select a suitable beam from the received candidate beam and/or available beam and the terminal device. Communicate.
  • the terminal device can determine the cell to which the beam belongs according to the pilot information corresponding to the beam.
  • the pilot information is a reference signal that is generated based on the cell identity.
  • the second beam tracking message may include an index of a beam of at least one of the cells to which the N beams belong.
  • the at least one cell may comprise a camped cell of the terminal device.
  • the candidate beam and the available beam may be candidate beams and available beams of each of all cells to which the N beams belong, or may be candidate beams and available for one or more of all cells to which the N beams belong. Beam. For example, assume that the N beams belong to cell 1 (assuming cell 1 is a camping cell of the terminal device), cell 2, and cell 3. The terminal device may only determine the candidate beam and the available beam of the cell 1. The terminal device can also A candidate beam and an available beam of any two or all of Cell 1, Cell 2, and Cell 3 are determined.
  • only one of the candidate beam and the available beam may be included in one or more cells.
  • one or more cells may include candidate beams and available beams.
  • the network side device can select a suitable beam to communicate with the terminal device according to the candidate beam and the available beam.
  • the terminal device determines the second beam tracking message according to the N second beam reference quality values, where the terminal device: according to the N second beam reference quality values, the N The second beam tracking message is determined by the cell to which each beam in the beam belongs and the third preset threshold, wherein the second beam tracking message includes a second beam reference quality value of the N beams is greater than or equal to the third The index of the preset threshold beam.
  • the second beam tracking message may further include a second beam reference quality value of the N beams that is greater than or equal to the third preset threshold.
  • the terminal device can report the index of the beam that meets the preset condition (that is, greater than or equal to the third preset threshold) to the network side device, so that the network side device can directly comply with the preset condition.
  • the appropriate beam is selected from the beam to communicate with the terminal device.
  • the second beam tracking message includes an index of P beams, and a second beam reference quality value of each of the P beams is greater than or equal to the third preset threshold, where P is a positive integer greater than or equal to 1 and less than or equal to M.
  • the terminal device determines that the number of beams that meet the preset condition is greater than or equal to M, the terminal device reports an index of the M beams. If the terminal device determines that the number of beams that meet the preset condition is not greater than M, report an index of all the beams that meet the preset condition.
  • the third preset threshold may be equal to the first preset threshold. In some embodiments, the third preset threshold may be equal to the second preset threshold. In some embodiments, the third preset threshold may not be equal to the first preset threshold or the second preset threshold, for example, the third preset threshold may be greater than the second preset threshold and smaller than the first Preset threshold.
  • the index of the beam included in the second beam tracking message may be an index of a beam that satisfies a second beam reference quality value greater than the third preset threshold in at least one of the cells to which the N beams belong.
  • the index of the beam included in the second beam tracking message may also be an index of a beam that satisfies the second beam reference quality value greater than the third preset threshold among all the cells to which the N beams belong.
  • the terminal device determines the second beam tracking message according to the N second beam reference quality values, including: the terminal device according to the N second beam reference quality values and the N a cell to which each beam belongs to determine at least two reference beams of each of at least one of the cells to which the N beams belong, and at least two reference beams of each of the cells are in the each of the cells
  • the second beam refers to the two beams with the highest quality value.
  • the terminal device determines the second beam tracking message, the second beam tracking message including the determined index of the at least two reference beams of the each cell.
  • the second beam tracking message may further include a second beam reference quality value of the at least two reference beams of each cell.
  • the number of reference beams that need to be determined may be specified by a protocol, or may be configured by the base station to the terminal device.
  • the terminal device may directly report the multiple beams with the highest beam reference quality value to the network side device, so that the network side device may select one of the multiple beams with the highest beam quality value.
  • a beam used to communicate with the terminal device may be specified by a protocol, or may be configured by the base station to the terminal device.
  • the index of the beam included in the second beam tracking message may be an index of at least two reference beams in at least one of all cells to which the N beams belong.
  • a beam included in the second beam tracking message The index may also be an index of at least two reference beams of each of all cells to which the N beams belong.
  • the second beam tracking message may include a second beam reference quality value of the beam in addition to the index of the beam. It can be understood that, if the second beam tracking message includes an index of a beam that belongs to multiple cells, the second beam tracking message may further include information for indicating a cell to which the beam belongs.
  • the order of the indexes of the multiple beams may be determined according to a second beam reference quality value of the beam.
  • the second beam reference quality value of the beam corresponding to the index of the first beam is the highest
  • the second beam reference quality value of the beam corresponding to the index of the second beam is the second highest
  • the network side device can determine the second beam reference quality value order of the beams in each cell according to the order of the indexes of the received beams.
  • the terminal device may determine a cell measurement result according to the N second beam reference quality values, and determine that the second beam tracking message includes the cell measurement result. By reporting the cell measurement result, the network side device can perform cell level tracking on the beam.
  • the cell measurement result may be the highest quality second beam reference quality value of each of the at least one of the cells to which the N beams belong.
  • the terminal device may determine a second beam reference quality value of the second beam reference quality value in the cell 1 as the cell measurement result of the cell 1.
  • the terminal device may also determine the highest second beam reference quality value of the cell 2 as the cell measurement result of the cell 2.
  • the terminal device can also determine the highest second beam reference quality value of the cell 3 as the cell measurement result of the cell 3.
  • the cell measurement result may include cell measurement results of cell 1, cell 2, and cell 3.
  • the cell measurement result may be an average value of second beam reference quality values of at least two reference beams of each of the at least one of the cells to which the N beams belong, where The at least two reference beams of each cell are at least two beams of the second beam with the highest reference quality value in each of the cells.
  • the number of reference beams that need to be determined may be specified by the protocol, or may be configured by the network side device to the terminal device.
  • the terminal device may determine an average of three second beam reference quality values of the second beam reference quality value in the cell 1 as the cell measurement result of the cell 1.
  • the terminal device may also determine an average of the highest three second beam reference quality values of the cell 2 as the cell measurement result of the cell 2.
  • the terminal device may also determine an average of the highest three second beam reference quality values of the cell 3 as the cell measurement result of the cell 3.
  • the cell measurement result may include cell measurement results of cell 1, cell 2, and cell 3.
  • the average value may be an arithmetic mean value, a geometric mean value, or the like, which is not limited in the embodiment of the present application.
  • the second beam tracking message may further include the N second beam reference quality values and an index of the N beams.
  • the network side device can determine a specific result according to the N second beam reference quality values.
  • the network side device may determine the candidate beam and/or the available beam according to the first preset threshold and the second preset threshold. It can be understood that the network side device can also determine candidate beams and/or available beams of at least one of the cells to which the N beams belong.
  • the network side device may determine, by the third preset threshold, the beam whose second beam reference quality value is higher than the third budget threshold.
  • the network side device may determine multiple beams with the highest beam reference quality in each cell.
  • the network side device can determine the cell measurement result.
  • the specific process of the network side device determining the specific result is determined by the terminal device to determine the same specific result. The specific process is similar, so I won't go into details here.
  • the terminal device sends the second beam tracking message to the network side device, where the second beam tracking message is an RRC layer message.
  • the terminal device may determine a second beam reference quality value of each beam based on multiple first beam reference quality values of each beam.
  • the beam reference quality value tracked by the terminal device is a measurement result accumulated after a period of time.
  • the second beam tracking message may include an index of a beam of at least one of the cells to which the N beams belong.
  • the network side device can obtain the beam quality value of the camped cell and the neighboring cell of the terminal device.
  • the network side device can determine not only the cell status of the camped cell of the terminal device but also the cell status of the neighboring cell that the terminal device can detect.
  • the terminal device may periodically send the second beam tracking message to the network side device.
  • the sending period may be preset, or may be indicated by the network side device to the terminal device.
  • the terminal device may further send the second beam tracking message to the network side device if the preset measurement event is met. Specifically, the terminal device may use the beam-based cell measurement result to determine whether the preset measurement event is satisfied. The terminal device may send the second beam tracking message to the network side device if the preset measurement event is met. The terminal device can also report the preset measurement event at the same time.
  • the preset measurement event may include one or more of the following: a cell measurement result of the camping cell of the terminal device is smaller than a cell offset of a neighboring cell of the terminal device; a preset offset of the terminal device; The cell measurement result of the cell is smaller than a preset threshold; the cell measurement result of the neighboring cell of the terminal device is greater than a preset threshold.
  • the preset measurement event component and the preset offset and the preset threshold value used in the preset measurement event may be preset by the terminal device, or may be indicated by the network side device to the terminal device.
  • the terminal device may determine whether the preset measurement event is met according to the result of the beam tracking, so as to select the reported content according to the determination result.
  • the terminal device may further determine the cell measurement result by using the steps 108 to 110 and send the cell measurement result to the network side device.
  • the terminal device determines, according to the N first beam reference quality values and a cell to which each of the N beams belongs, a first beam reference with the highest quality of each cell in at least one of the cells to which the N beams belong. Quality value.
  • the terminal device determines a second beam reference quality value of each cell according to the first beam reference quality value that is the highest quality of each cell.
  • the second beam reference quality value can also be determined by using Equation 1.2, and need not be described here.
  • the terminal device sends the second beam reference quality value of each cell to the network side device by using an RRC layer message.
  • the second beam reference quality value of each cell is the cell measurement result of the each cell.
  • the terminal device may determine the cell measurement result according to the result of the beam tracking, and report the measured cell measurement result to the network side device, so that the network side device acquires the cell measurement result tracked by the terminal device.
  • the terminal device may further send the second beam tracking message to the network side device if the preset measurement event is met. Specifically, the terminal device may use the beam-based cell measurement result to determine whether the preset measurement event is satisfied. The terminal device may send the second beam tracking message to the network side device if the preset measurement event is met. The terminal device can also report the preset measurement event at the same time. The specific content of the preset measurement event is the same as step 107, and need not be described here.
  • the terminal device may periodically send the second beam reference quality value of each cell to the network side device.
  • the sending period may be preset, or may be indicated by the network side device to the terminal device.
  • the terminal device may further determine the cell measurement result and send the cell measurement result to the network side device by using steps 111 to 113.
  • the terminal device determines, according to the N first beam reference quality values and a cell to which each of the N beams belongs, the first beam reference of each cell in at least one of the cells to which the N beams belong. The average of at least two beams with the highest quality value.
  • the terminal device determines a second beam reference quality value of each cell according to an average value of at least two beams of the first beam reference quality value of each cell.
  • the terminal device sends the second beam reference quality value of each cell to the network side device by using an RRC layer message.
  • the second beam reference quality value of each cell is the cell measurement result of the each cell.
  • the terminal device may determine the cell measurement result according to the result of the beam tracking, and report the measured cell measurement result to the network side device, so that the network side device acquires the cell measurement result tracked by the terminal device.
  • the terminal device may further send the second beam tracking message to the network side device if the preset measurement event is met. Specifically, the terminal device may use the beam-based cell measurement result to determine whether the preset measurement event is satisfied. The terminal device may send the second beam tracking message to the network side device if the preset measurement event is met. The terminal device can also report the preset measurement event at the same time. The specific content of the preset measurement event is the same as step 107, and need not be described here.
  • the terminal device may periodically send the second beam reference quality value of each cell to the network side device.
  • the sending period may be preset, or may be indicated by the network side device to the terminal device.
  • step 104 may be performed after step 103 or before step 103.
  • step 105 to step 107, step 108 to step 110, and step 111 to step 113 may be performed after step 104, or may be performed after step 103.
  • steps 101 through 103 are shown in FIG.
  • FIG. 3 is a schematic flowchart of another method for beam tracking according to an embodiment of the present application.
  • the terminal device sends a beam training request to the network side device by using the first beam.
  • the terminal device may determine the first beam by using the N beams to send a random access preamble to the network side device by using N time beams, where The subframe number and/or the frequency resource number of any two of the N time-frequency resources are different, and N is a positive integer greater than or equal to 2; the terminal device receives at least one random connection sent by the network side device. And the terminal device determines the first beam from the N beams according to the value of the RA-RANTI in each of the random access response messages in the at least one random access response message. In this way, the terminal device can select one of a plurality of available beams that can be used for communication with the network side device to use the beam to send a request message to the network side device.
  • the network side device may determine a random access-radio network temporary identifier according to the time-frequency resource of the random access preamble (Random Access-Radio Network) Temporary Identifier, RA-RNTI).
  • RA-RNTI Random Access-Radio Network Temporary Identifier
  • RA-RNTI 1+t_id+10*f_id, (Formula 1.3)
  • the RA-RNTI is the value of the RA-RNTI
  • the t_id is the subframe number
  • the f_id is the frequency resource number.
  • the random access response message sent by the network side device is scrambled using the determined RA-RNTI value.
  • the terminal device can determine that one or more of the N beams can be used to transmit uplink information by descrambling the random access response message.
  • the terminal device only receives a random access response message sent by the network side device.
  • the terminal device descrambles the random access response message according to the RA-RNTI value, and determines a time-frequency resource when transmitting the preamble. Since the time-frequency resource and the beam are in one-to-one correspondence, the terminal device may determine that the beam corresponding to the time-frequency resource is the first beam.
  • the terminal device may receive multiple random access response messages sent by the network side device.
  • the terminal device may descramble the received RA-RNTI value of the first random access response message, determine a time-frequency resource, and determine that the beam corresponding to the time-frequency resource is the first Beam.
  • the terminal device may also descramble the received RA-RNTI value of any random access response message, determine a time-frequency resource, and determine that the beam corresponding to the time-frequency resource is the first beam.
  • the first beam may be any one of the beams that the terminal device can use.
  • the terminal device determines, according to the beam training response sent by the network side device, a second beam that is in communication with the network side device, where the beam training response includes M physical pilot resources, where M is greater than or equal to 1. Integer.
  • the terminal device can select a suitable beam from multiple available beams to communicate with the network side device.
  • the terminal device may send reference signals to the network side device by using M beams respectively on the M physical layer pilot resources; the terminal device receives feedback information sent by the network side device. And the feedback information includes an index of one or more of the M beams; the terminal device determines the second beam according to the feedback information, where the second beam belongs to the one or more beams.
  • the terminal device can train the available beam and determine a beam that can be used for communication with the network side device according to the information fed back by the network side device.
  • the network side device may determine a beam quality value of each of the M beams according to the received reference signal.
  • the network side device determines the feedback information according to the determined beam quality value of each beam, and the feedback information may include an index of one or more beams of the M beams with the highest beam quality value.
  • the feedback information may include an index of one or more beams whose beam quality values are greater than a predetermined threshold.
  • the terminal device may determine, according to the M physical pilot resources, a first physical pilot resource, and use at least one beam to the network side device on the first physical pilot resource. Transmitting a reference signal, where the first physical pilot resource is a physical layer pilot resource corresponding to a physical layer pilot resource used by the terminal device to receive the information sent by the network side device; the terminal device receives the network side device sending Feedback information, the feedback information including an index of one or more beams in the at least one beam; the terminal device determines the second beam according to the feedback information, wherein the second beam belongs to the one or more beams.
  • the feedback information may be sent to the terminal device through a dedicated physical layer resource, or may be sent to the terminal device through a MAC layer message or an RRC layer message, which is not limited in this embodiment of the present application.
  • the beam quality value may be RSRP, RSRQ, etc., or may be filtered by Equation 1.1.
  • the received beam quality value is not limited in the embodiment of the present application.
  • the number of available transmit beams of the terminal device may be less than the number M of physical pilot resources.
  • the terminal device may also select M beams from multiple available beams. .
  • the terminal device may randomly select M beams, or may select M beams determined according to the RA-RNTI value in the received random access response message.
  • the terminal device may select a suitable number of beams for training, so that the number of beams used for training is equal to the physical layer pilot resources allocated by the network side device for the terminal device for the training beam.
  • the pilot resources configured by the network side device may be periodically configured, and the pilot resources may also be discretely configured.
  • the pilot resources include a Demodulation Reference Signal (DMRS), a Sounding Reference Signal (SRS), and the like.
  • DMRS Demodulation Reference Signal
  • SRS Sounding Reference Signal
  • the pilot resource configured by the network side device includes a first identifier, where the first identifier is used to indicate that the pilot resource is a pilot resource used for beam training.
  • the terminal device may send the terminal device to be available.
  • the number of beams is indicated to the network side device.
  • the number of available transmit beams of the terminal device can be carried by the beam training request.
  • the network side device may determine the number M of physical pilot resources according to the number of available transmit beams.
  • the number M of physical pilot resources may be equal to or less than the number of available transmit beams.
  • the terminal device may send the number of available beams to the network side device, so that the network side device determines, according to the number of available beams, the number of physical layer pilot resources that need to be allocated for the terminal device.
  • the embodiment of the present application further provides a terminal device.
  • the terminal device includes a processing unit and a transmitting unit.
  • a processing unit configured to determine N first beam reference quality values, where the N first beam reference quality values respectively correspond to N beams, and N is a positive integer greater than or equal to 1.
  • the processing unit is further configured to select M beams from the N beams according to the N first beam reference quality values and a cell to which each of the N beams belongs, where M is greater than or equal to 1 and less than Or a positive integer equal to N, the M beams belonging to the camping cell of the terminal device.
  • a sending unit configured to indicate the selected M beams to the network side device that provides the terminal device with a service.
  • the sending unit is configured to send, to the network side device, a first beam tracking message, where the first beam tracking message includes an index of the M beams, where the first beam tracking message is Control MAC layer messages for media access.
  • the sending unit is further configured to send a random access preamble to the network side device on a time-frequency resource and/or a code resource corresponding to an index of the first target beam, where The first target beam is a beam with the highest beam reference quality value among the M beams.
  • the processing unit is further configured to determine a second beam tracking message according to the N second beam reference quality values.
  • the sending unit is further configured to send the second beam tracking message to the network side device, where the second beam tracking message is a radio resource control RRC layer message.
  • the processing unit is specifically configured to: according to the N second beam reference quality values, a cell to which each of the N beams belongs, a first preset threshold, and a second preset Threshold, determining the second beam And the first preset threshold is greater than the second preset threshold, where the second beam tracking message includes an index of the candidate beam and/or an index of the available beam, where the second beam reference quality value of the candidate beam is greater than or And being equal to the first preset threshold, the second beam reference quality value of the available beam is less than the first preset threshold and greater than or equal to the second preset threshold.
  • the processing unit is configured to determine the second according to the N second beam reference quality values, a cell to which each of the N beams belongs, and a third preset threshold. And a beam tracking message, where the second beam tracking message includes an index of a second beam reference quality value of the N beams that is greater than or equal to the third preset threshold beam.
  • the processing unit is configured to determine, according to the N second beam reference quality values and a cell to which each of the N beams belongs, at least one cell in the cell to which the N beams belong. At least two reference beams of each cell, the at least two reference beams of each cell being at least two beams having the highest second reference quality value in each of the cells; determining the second beam tracking message, the first The two beam tracking message includes the determined index of at least two reference beams of each of the cells.
  • the processing unit is configured to determine a cell measurement result and determine the second beam tracking according to the N second beam reference quality values and a cell to which each of the N beams belongs.
  • the message, the cell measurement result is the highest second beam reference quality value of each cell in at least one of the cells to which the N beams belong, and the second beam tracking message includes the cell measurement result.
  • the processing unit is configured to determine, according to the N second beam reference quality values and a cell to which each of the N beams belongs, at least one cell in the cell to which the N beams belong. At least two reference beams of each cell, the at least two reference beams of each cell being at least two beams having a second beam reference quality value in each of the cells; determining a cell measurement result, the cell measurement result including the An average of second beam reference quality values for at least two reference beams of each cell; determining the second beam tracking message, the second beam tracking message including the cell measurement result.
  • the processing unit is further configured to determine, according to the N first beam reference quality values and a cell to which each of the N beams belongs, determine at least one of the cells to which the N beams belong. a first beam reference quality value of the highest quality of each cell in the cell; the processing unit is further configured to determine a second beam reference quality value of each cell according to the highest first beam reference quality value of each cell; And is further configured to send the second beam reference quality value of each cell to the network side device by using an RRC layer message as a cell measurement result.
  • the processing unit is further configured to determine, according to the N first beam reference quality values and a cell to which each of the N beams belongs, determine at least one of the cells to which the N beams belong. An average of the highest at least two first beam reference quality values of each cell in the cell; the processing unit is further configured to determine, according to an average of the highest at least two first beam reference quality values of each cell a second beam reference quality of each cell; the sending unit is further configured to send the second beam reference quality of each cell to the network side device by using an RRC layer message as a cell measurement result.
  • the processing unit is further configured to determine, according to the cell measurement result, whether the preset measurement event is met.
  • the terminal device further includes a receiving unit, configured to receive a value of M indicated by the network side device.
  • the processing unit may be implemented by a processor, and the sending unit may be configured by a transmitter.
  • the receiving unit can be implemented by a receiver or a transceiver.
  • the embodiment of the present application further provides a structural block diagram of a network side device.
  • the network side device includes a receiving unit, a processing unit, and a sending unit.
  • a receiving unit configured to acquire M beams indicated by the terminal device, where the M beams belong to a camping cell of the terminal device, and M is a positive integer greater than or equal to 1.
  • a processing unit configured to select one of the M beams.
  • a sending unit configured to send a downlink message to the terminal device by using the selected beam.
  • the receiving unit is configured to receive a first beam tracking message sent by the terminal device, where the first beam tracking message includes an index of the M beams, where the first beam tracking message is MAC layer message.
  • the receiving unit is further configured to receive a random access preamble sent by the terminal device.
  • the processing unit is further configured to determine, according to the time-frequency resource and/or the code resource used by the random access preamble, the first target beam, where the first target beam is the highest reference quality value of the first beam in the M beams. Beam.
  • the receiving unit is further configured to receive a second beam tracking message sent by the terminal device, where the second beam tracking message is an RRC layer message, where the second beam tracking message includes a candidate beam.
  • An index of an index and/or an available beam the second beam reference quality value of the candidate beam being greater than or equal to a first preset threshold, the second beam reference quality value of the available beam being less than the first preset threshold and greater than or equal to the a second preset threshold, where the first preset threshold is greater than the second preset threshold.
  • the receiving unit is further configured to receive a second beam tracking message sent by the terminal device, where the second beam tracking message is an RRC layer message, where the second beam tracking message includes at least one An index of the beam, the second beam reference quality value of the at least one beam being greater than or equal to the third preset threshold beam.
  • the receiving unit is further configured to receive a second beam tracking message sent by the terminal device, where the second beam tracking message is an RRC layer message, where the second beam tracking message includes at least An index of at least two reference beams of each cell in a cell, where at least two reference beams of each cell are at least two beams with the highest second reference quality value in each cell.
  • the receiving unit is further configured to receive a second beam tracking message sent by the terminal device, where the second beam tracking message is an RRC layer message, where the second beam tracking message includes a cell measurement result.
  • the cell measurement result is the highest quality second beam reference quality value of each cell in at least one cell.
  • the receiving unit is further configured to receive a second beam tracking message sent by the terminal device, where the second beam tracking message is an RRC layer message, where the second beam tracking message includes a cell measurement result.
  • the cell measurement result includes an average of second beam reference quality values of at least two reference beams of each cell in the at least one cell, and at least two reference beams of each cell are second beams in the each cell Refer to at least two beams with the highest quality value.
  • the receiving unit is further configured to receive a cell measurement result of each cell in the at least one cell that is sent by the terminal device, where the cell measurement result of each cell includes the Two beam reference quality values.
  • the receiving unit is further configured to receive a second beam tracking message sent by the terminal device, where the second beam tracking message is an RRC layer message, where the second beam tracking message includes a cell measurement
  • the cell measurement result includes a second beam reference quality of each cell in at least one cell, the number of each cell
  • the two beam reference quality is determined based on an average of at least two first beam reference quality values for each cell.
  • the sending unit is further configured to send the value of the M to the terminal device.
  • the processing unit may be implemented by a processor, which may be implemented by a transmitter or a transceiver, which may be implemented by a receiver or a transceiver.
  • the embodiment of the present application further provides a terminal device.
  • the terminal device includes a transmitting unit, a receiving unit, and a processing unit.
  • a sending unit configured to send a beam training request to the network side device by using the first beam.
  • the receiving unit is configured to receive a beam training response sent by the network side device.
  • a processing unit configured to determine, according to the beam training response, a second beam for communicating with the network side device, where the beam training response includes M physical pilot resources, where M is a positive integer greater than or equal to 1.
  • the sending unit is further configured to send, by using N beams, N random preambles to the network side device, where the N time-frequency resources are respectively used, where any two of the N time-frequency resources are used.
  • the subframe number and/or the frequency resource number of the time-frequency resources are different, and N is a positive integer greater than or equal to 2.
  • the receiving unit is further configured to receive at least one random access response message sent by the network side device.
  • the processing unit is further configured to determine the first beam from the N beams according to a value of the RA-RNTI in each random access response message in the at least one random access response message.
  • the sending unit is further configured to send the reference signal to the network side device by using M beams on the M physical pilot resources.
  • the receiving unit is further configured to receive feedback information sent by the network side device, where the feedback information includes an index of one or more of the M beams.
  • the processing unit is configured to determine the second beam according to the feedback information, where the second beam belongs to the one or more beams.
  • the processing unit is further configured to select M beams from the plurality of available beams.
  • the sending unit is further configured to indicate, to the network side device, the number of available transmit beams of the terminal device.
  • the processing unit may be implemented by a processor, which may be implemented by a transmitter or a transceiver, which may be implemented by a receiver or a transceiver.
  • the embodiment of the present application further provides a network side device.
  • the network side device includes a receiving unit, a processing unit, and a sending unit.
  • the receiving unit is configured to receive a beam training request sent by the terminal device.
  • a processing unit configured to determine a beam training response, where the beam training response includes M physical pilot resources, and M is a positive integer greater than or equal to 1.
  • a sending unit configured to send the beam training response to the terminal device.
  • the receiving unit is further configured to receive N random access preambles sent by the terminal device, where N is a positive integer greater than or equal to 1.
  • the processing unit is further configured to determine N RA-RANT values according to time-frequency resources of each of the N random access preambles.
  • the sending unit is further configured to send N random access responses to the terminal device, where the N random access responses are scrambled using the N RA-RNTI values, respectively.
  • the receiving unit is further configured to receive, by the terminal device, the reference signals that are sent by using the M beams on the M physical pilot resources.
  • the processing unit is further configured to determine a beam quality value of each of the M beams according to the received reference signal.
  • the processing unit is further configured to determine, according to the beam quality value of each beam, feedback information, where the feedback information includes an index of one or more of the M beams.
  • the processing unit is specifically configured to: according to the beam quality value of each beam, determine that the feedback information includes an index of one or more beams with the highest beam quality value; or according to the each beam Beam The quality value determines that the feedback information includes an index of one or more beams whose beam quality value is greater than a preset threshold.
  • the receiving unit is further configured to receive the number of available transmit beams sent by the terminal device.
  • the sending unit is further configured to determine, according to the number of available transmit beams, the number M of physical pilot resources, where M is equal to or smaller than the number of available transmit beams.
  • the processing unit may be implemented by a processor, which may be implemented by a transmitter or a transceiver, which may be implemented by a receiver or a transceiver.
  • FIG. 4 is a structural block diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 400 includes a processor 401, a memory 402, a transmitter 403, a receiver 404, and an antenna 405.
  • the terminal device 400 may also include other devices such as an input device, an output device, a battery, and the like.
  • Processor 401 can include functionality to operate one or more software programs.
  • the software program can be stored in memory 402.
  • the software instructions stored by processor 402 and memory 402 can be configured to cause the actions performed by terminal device 400.
  • processor 402 is capable of operating a connection program.
  • Memory 402 can be institutional memory, flash memory, magnetic storage devices such as hard disks, floppy disk drives, magnetic tape, and the like.
  • Memory 402 can store one or more software programs, instructions, information blocks, data, and the like.
  • the memory 402 can store instructions for performing the method performed by the terminal device in the method of FIG.
  • the processor 401 can execute the instructions stored in the memory 402 in combination with other hardware (for example, the transmitter 403, the receiver 404, and the antenna 405) to complete the steps performed by the terminal device in the method shown in FIG. 1.
  • the specific working process and beneficial effects can be seen in the figure. A description of the terminal device in the embodiment shown.
  • the memory 402 can store instructions for performing the method performed by the terminal device in the method of FIG.
  • the processor 401 can execute the instructions stored in the memory 402 in combination with other hardware (for example, the transmitter 403, the receiver 404, and the antenna 405) to complete the steps performed by the terminal device in the method shown in FIG. 3.
  • other hardware for example, the transmitter 403, the receiver 404, and the antenna 405.
  • FIG. 5 is a structural block diagram of a network side device according to an embodiment of the present application.
  • the network side device 500 shown in FIG. 5 includes a processor 501, a memory 502, and a transceiver 503.
  • Processor 501 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 501 or an instruction in a form of software.
  • the processor 501 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a random access memory (RAM), a flash memory, a read-only memory (ROM), a programmable read only memory or an electrically erasable programmable memory, a register, etc.
  • RAM random access memory
  • ROM read-only memory
  • programmable read only memory or an electrically erasable programmable memory
  • register etc.
  • processor 501 reads the instructions in memory 502 and, in conjunction with its hardware, performs the steps of the above method.
  • the memory 502 can be configured to perform network side setting in the method shown in FIG.
  • the processor 501 can execute the instructions stored in the memory 402 in combination with other hardware (for example, the transceiver 503 and the antenna 504) to complete the steps performed by the network side in the method shown in FIG. 1.
  • the specific working process and the beneficial effects can be implemented as shown in FIG. A description of the network side device in the example.
  • the memory 502 can store instructions for performing the method performed by the network side device in the method of FIG.
  • the processor 501 can execute the instructions stored in the memory 502 to complete the steps performed by the network side device in the method shown in FIG. 3 in combination with other hardware (for example, the transceiver 503).
  • other hardware for example, the transceiver 503
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) or a processor to perform all or part of the steps of the methods described in the various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Electromagnetism (AREA)
  • Probability & Statistics with Applications (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Optical Communication System (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请实施例提供跟踪波束的方法、终端设备和网络侧设备。该方法包括:终端设备确定N个第一波束参考质量值,该N个第一波束参考质量值分别对应于N个波束;该终端设备根据该N个第一波束参考质量值和该N个波束中的每个波束所属的小区,从该N个波束中选择M个波束,该M个波束属于该终端设备的驻留小区或服务小区;该终端设备将选择的M个波束指示给为该终端设备提供服务的网络侧设备。上述技术方案中,终端设备可以对能够检测到的波束进行跟踪,并将跟踪的驻留小区或服务小区的波束上报至网络侧设备,以便该网络侧设备可以从上报的波束中选择合适的波束以用于与该终端设备进行通信的波束。

Description

跟踪波束的方法、终端设备和网络侧设备
本申请要求于2016年8月10日提交中国专利局、申请号为201610651970.7、发明名称为“跟踪波束的方法、终端设备和网络侧设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及无线通信技术领域,并且更具体地,涉及跟踪波束的方法、终端设备和网络侧设备。
背景技术
随着无线通信技术的发展,频谱资源中的低频频段的逐渐饱和。在低频频段中很难找到大段连续的可用频谱。因此,通信系统使用越来越多的高频频段。根据无线空间路径损耗公式可知,路径损耗跟频率和距离成正比。当通信设备使用的频率升高后,在相同距离情况下路径损耗会增加。同时,在发射机和接收机不变的前提下,整条无线链路所能承担的最大路径损耗值是固定的。所以当通信设备使用的频率增加时,通信设备之间的有效通信距离必然减少。根据这一原理,高频率频谱的使用会导致小区覆盖范围减小。小区覆盖范围减小会导致在相同的覆盖面积要求下,需要更多的基站设备才能完成覆盖,网络部署成本增加。同时,小区覆盖范围减少会导致小区间切换频繁,这也会导致用户体验下降。
针对高频小区的覆盖范围减小问题,使用波束成形(beamforming)技术能够很好的解决。波束成形是一种多天线发射/接收技术,通过将多个天线上的信号进行合并形成窄波束获得发射/接收增益,能够有效扩大小区覆盖范围。
当前,波束成形技术仅用于数据信道。终端设备通过传统方式(例如宽波束)与网络侧设备建立通信。在通信建立后,终端设备与网络侧设备之间可以利用波束成形技术传输数据。而在高频小区中,所有信道(包括控制信道、随机接入信道等)都需要使用波束传输,所需要解决的关键问题是如何保持波束对齐,即在信道变化和终端设备移动的情况下跟踪波束。
发明内容
本申请实施例提供跟踪波束的方法、终端设备和网络侧设备,以期使用波束成形技术传输所有信道的信息。
第一方面,本申请实施例提供一种跟踪波束的方法,该方法包括:终端设备确定N个第一波束参考质量值,该N个第一波束参考质量值分别对应于N个波束,N为大于或等于1的正整数;该终端设备根据该N个第一波束参考质量值和该N个波束中的每个波束所属的小区,从该N个波束中选择M个波束,其中M为大于或等于1且小于或等于N的正整数,该M个波束属于该终端设备的驻留小区或服务小区;该终端设备将选择的M个 波束指示给为该终端设备提供服务的网络侧设备。上述技术方案中,终端设备可以对能够检测到的波束进行跟踪,并将跟踪的驻留小区或服务小区的波束上报至网络侧设备,以便该网络侧设备可以从上报的波束中选择合适的波束以用于与该终端设备进行通信的波束。
结合第一方面,在第一方面的第一种可能的实现方式中,该终端设备将选择的M个波束指示给该网络侧设备,包括:该终端设备向该网络侧设备发送第一波束跟踪消息,该第一波束跟踪消息中包括该M个波束的索引,其中该第一波束跟踪消息为介质访问控制MAC层消息。这样,该终端设备可以通过MAC层消息直接将选择的M个波束指示给该网络侧设备。
结合第一方面或第一方面的上述任一种可能的实现方式,在第一方面的第二种可能的实现方式中,该方法还包括:该终端设备在对应于第一目标波束的索引的时频资源和/或码资源上向该网络侧设备发送随机接入前导码,其中,该第一目标波束为该M个波束中第一波束参考质量值最高的波束。这样,该终端设备可以通过随机接入前导码的时频资源和/或码资源隐式地将第一波束质量值最高的波束指示给该网络侧设备,而无需通过一个额外的信令。这样,可以节省信令开销。
结合第一方面或第一方的上述任一种可能的实现方式,在第一方面的第三种可能的实现方式中,该方法还包括:该终端设备确定N个第二波束参考质量值,该N个第二波束参考质量值中的第n个第二波束参考质量值是根据该N个第一波束参考质量值中的第n个第一波束参考质量值确定的,n=1,…,N;该终端设备根据该N个第二波束参考质量值,确定第二波束跟踪消息;该终端设备将该第二波束跟踪消息发送至该网络侧设备,其中该第二波束跟踪消息为无线资源控制RRC层消息。上述技术方案中,该终端设备可以基于每个波束的多个第一波束参考质量值,确定该每个波束的第二波束参考质量值。这样,该终端设备跟踪的波束参考质量值是一段时间累积后的测量结果。此外,该第二波束跟踪消息中可以包括该N个波束所属的小区中至少一个小区的波束的索引。这样,该网络侧设备可以获取到该终端设备的驻留小区和邻区的波束质量值。在此情况下,该网络侧设备不仅可以确定该终端设备的驻留小区或服务小区的小区状况,也可以确定该终端设备可以检测到的邻区的小区状况。
结合第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,该终端设备根据该N个第二波束参考质量值,确定第二波束跟踪消息,包括:该终端设备根据该N个第二波束参考质量值、该N个波束中的每个波束所属的小区、第一预设门限和第二预设门限,确定该第二波束跟踪消息,其中,该第一预设门限大于该第二预设门限,该第二波束跟踪消息包括候选波束的索引和/或可用波束的索引,该候选波束的第二波束参考质量值大于或等于该第一预设门限,该可用波束的第二波束参考质量值小于该第一预设门限且大于或等于该第二预设门限。上述技术方案中,该终端设备直接将候选波束和/或可用波束上报至该网络侧设备,以便该网络侧设备可以从接收到的候选波束和/或可用波束中选择合适的波束与该终端设备进行通信。
结合第一方面的第四种可能的实现方式,在第一方面的第五种可能的实现方式中,该第二波束跟踪消息还包括该候选波束的第二波束参考质量值和/或该可用波束的第二波束参考质量值。
结合第一方面的第三种可能的实现方式,在第一方面的第六种可能的实现方式中,该 终端设备根据该N个第二波束参考质量值,确定第二波束跟踪消息,包括:该终端设备根据该N个第二波束参考质量值、该N个波束中的每个波束所属的小区和第三预设门限,确定该第二波束跟踪消息,其中该第二波束跟踪消息包括P个波束的索引,其中该P个波束中的每个波束的第二波束参考质量值大于或等于该第三预设门限,P为大于或等于1且小于或等于M的正整数。上述技术方案中,该终端设备可以直接将符合预设条件(即大于或等于该第三预设门限)的波束的索引上报至该网络侧设备,以便该网络侧设备可以直接从符合预设条件的波束中选择合适的波束与该终端设备进行通信。
结合第一方面的第六种可能的实现方式,在第一方面的第七种可能的实现方式中,该第二波束跟踪消息还包括该N个波束中大于该第三预设门限的第二波束参考质量值。
结合第一方面的第三种可能的实现方式,在第一方面的第八种可能的实现方式中,该终端设备根据该N个第二波束参考质量值,确定第二波束跟踪消息,包括:该终端设备根据该N个第二波束参考质量值和该N个波束中每个波束所属的小区,确定该N个波束所属小区中至少一个小区中每个小区的至少两个参考波束,该每个小区的至少两个参考波束为该每个小区中第二波束参考质量值最高的至少两个波束;该终端设备确定该第二波束跟踪消息,该第二波束跟踪消息包括确定的该每个小区的至少两个参考波束的索引。上述技术方案中,该终端设备可以直接将第二波束参考质量值最高的多个波束上报至该网络侧设备,以便该网络侧设备可以从该第二波束质量值最高的多个波束中选择可以用于与该终端设备进行通信的波束。
结合第一方面的第八种可能的实现方式,在第一方面的第九种可能的实现方式中,该第二波束跟踪消息还包括该每个小区的至少两个参考波束的第二波束参考质量值。
结合第一方面的第三种可能的实现方式,在第一方面的第十种可能的实现方式中,该终端设备根据该N个第二波束参考质量值,确定第二波束跟踪消息,包括:该终端设备根据该N个第二波束参考质量值和该N个波束中每个波束所属的小区,确定小区测量结果,该小区测量结果为该N个波束所属小区中至少一个小区中每个小区的最高的第二波束参考质量值;该终端设备确定该第二波束跟踪消息,该第二波束跟踪消息包括该小区测量结果。上述技术方案中,该终端设备可以根据波束跟踪的结果,确定小区测量结果并将测量到的小区测量结果上报至该网络侧设备,以便该网络侧设备即使获取该终端设备跟踪的小区测量结果。
结合第一方面的第三种可能的实现方式,在第一方面的第十一种可能的实现方式中,根据该N个第二波束参考质量值,确定第二波束跟踪消息,包括:该终端设备根据该N个第二波束参考质量值和该N个波束中每个波束所属的小区,确定该N个波束所属小区中至少一个小区中每个小区的至少两个参考波束,该每个小区的至少两个参考波束为该每个小区中第二波束参考质量值最高至少两个波束;该终端设备确定小区测量结果,该小区测量结果包括该每个小区的至少两个参考波束的第二波束参考质量值的平均值;该终端设备确定该第二波束跟踪消息,该第二波束跟踪消息包括该小区测量结果。上述技术方案中,该终端设备可以根据波束跟踪的结果,确定小区测量结果并将测量到的小区测量结果上报至该网络侧设备,以便该网络侧设备即使获取该终端设备跟踪的小区测量结果。
结合第一方面或第一方面的第一种可能的实现方式或第一方面的第二种可能的实现方式,在第一方面的第十二种可能的实现方式中,该方法还包括:该终端设备根据该N个 第一波束参考质量值和该N个波束中的每个波束所属的小区,确定该N个波束所属小区中至少一个小区中每个小区质量最高的第一波束参考质量值;该终端设备根据该每个小区最高的第一波束参考质量值,确定该每个小区的第二波束参考质量值;该终端设备将该每个小区的第二波束参考质量值作为小区测量结果通过RRC层消息发送至该网络侧设备。上述技术方案中,该终端设备可以根据波束跟踪的结果,确定小区测量结果并将测量到的小区测量结果上报至该网络侧设备,以便该网络侧设备即使获取该终端设备跟踪的小区测量结果。
结合第一方面或第一方面的第一种可能的实现方式或第一方面的第二种可能的实现方式,在第一方面的第十三种可能的实现方式中该方法还包括:该终端设备根据该N个第一波束参考质量值和该N个波束中的每个波束所属的小区,确定该N个波束所属小区中至少一个小区中每个小区的最高的至少两个第一波束参考质量值的平均值;该终端设备根据该每个小区的最高的至少两个第一波束参考质量值的平均值,确定该每个小区的第二波束参考质量;该终端设备将该每个小区的第二波束参考质量作为小区测量结果通过RRC层消息发送至该网络侧设备。上述技术方案中,该终端设备可以根据波束跟踪的结果,确定小区测量结果并将测量到的小区测量结果上报至该网络侧设备,以便该网络侧设备即使获取该终端设备跟踪的小区测量结果。
结合第一方面的第十种可能的实现方式至第一方面的第十三种可能的实现方式中的任一种可能的实现方式,在第一方面的第十四种可能的实现方式中,该方法还包括:该终端设备根据该小区测量结果,确定是否满足预设测量事件。上述技术方案中,该终端设备可以根据波束跟踪的结果,确定是否满足预设测量事件,以便根据确定结果选择上报的内容。
结合第一方面或第一方面的上述任一种可能的实现方式,在第一方面的第十五种可能的实现方式中,该M的取值是由该网络侧设备指示给该终端设备的。
第二方面,本申请实施例提供一种跟踪波束的方法,该方法包括:网络侧设备获取终端设备指示的M个波束,其中,该M个波束属于该终端设备的驻留小区或服务小区,M为大于或等于1的正整数;该网络侧设备从该M个波束中选择一个波束;该网络侧设备使用选择的波束向该终端设备发送下行消息。上述技术方案中,该网络侧设备可以获取到该终端设备跟踪的属于该终端设备的驻留小区或服务小区的波束。
结合第二方面,在第二方面的第一种可能的实现方式中,该网络侧设备获取终端设备指示的M个波束,包括:该网络侧设备接收该终端设备发送的第一波束跟踪消息,该第一波束跟踪消息包括该M个波束的索引,其中该第一波束跟踪消息为MAC层消息。上述技术方案中,该网络侧设备可以直接获取该终端设备指示的M个波束。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,该方法还包括:该网络侧设备接收该终端设备发送的随机接入前导码;该网络侧设备根据该随机接入前导码使用的时频资源和/或码资源,确定第一目标波束,其中该第一目标波束为该M个波束中该第一波束参考质量值最高的波束。上述技术方案中,该网络侧设备可以根据该终端设备的隐式指示确定该第一目标波束。网络侧设备无需接收额外的信令就可以确定该第一目标波束。这样,可以节省信令开销。
结合第二方面或第二方面的上述任一种可能的实现方式,在第二方面的第三种可能的 实现方式中,该方法还包括:该网络侧设备接收该终端设备发送的第二波束跟踪消息,其中该第二波束跟踪消息为RRC层消息,该第二波束跟踪消息包括候选波束的索引和/或可用波束的索引,该候选波束的第二波束参考质量值大于或等于第一预设门限,该可用波束的第二波束参考质量值小于该第一预设门限且大于或等于该第二预设门限,该第一预设门限大于该第二预设门限。上述技术方案中,该网络侧设备可以根据该终端设备发送的波束跟踪消息直接确定候选波束和/或可用波束,而无需根据预设门限自行确定候选波束和/或可用波束。这样,可以节约该网络侧设备的资源。
结合第二方面的第三种可能的实现方式,在第二方面的第四种可能的实现方式中,该第二波束跟踪消息还包括该候选波束的第二波束参考质量值和/或该可用波束的第二波束参考质量值。
结合第二方面、第二方面的第一种可能的实现方式或第二方面的第二种可能的实现方式,在第二方面的第五种可能的实现方式中,该方法还包括:该网络侧设备接收该终端设备发送的第二波束跟踪消息,其中该第二波束跟踪消息为RRC层消息,该第二波束跟踪消息中包括P个波束的索引,该P个波束中的每个波束的第二波束参考质量值大于或等于第三预设门限,P为大于或等于1且小于或等于M的正整数。上述技术方案中,该网络侧设备可以根据该终端设备发送的波束跟踪消息直接确定满足第二波束参考质量值大于或等于该第三预设门限的波束,而无需根据预设门限自行确定满足上述条件的波束。这样,可以节约该网络侧设备的资源。
结合第二方面的第五种可能的实现方式,在第二方面的第六种可能的实现方式中,该第二波束跟踪消息还包括该至少一个波束的第二波束参考质量值。
结合第二方面、第二方面的第一种可能的实现方式或第二方面的第二种可能的实现方式,在第二方面的第七种可能的实现方式中,该方法还包括:该网络侧设备接收该终端设备发送的第二波束跟踪消息,其中该第二波束跟踪消息为RRC层消息,该第二波束跟踪消息包括分别属于至少一个小区中每个小区的至少两个参考波束的索引,该每个小区的至少两个参考波束为该每个小区中第二波束参考质量值最高的至少两个波束。上述技术方案中,该网络侧设备可以根据该终端设备发送的波束跟踪消息直接确定该至少一个小区中每个小区中第二波束参考质量最高的多个波束,而无需自行确定该至少一个小区中每个小区中第二波束参考质量最高的多个波束。这样,可以节约该网络侧设备的资源。
结合第二方面的第七种可能的实现方式,在第二方面的第八种可能的实现方式中,该第二波束跟踪消息还包括该每个小区中的至少两个参考波束的第二波束参考质量值。
结合第二方面、第二方面的第一种可能的实现方式或第二方面的第二种可能的实现方式,在第二方面的第九种可能的实现方式中,该方法还包括:该网络侧设备接收该终端设备发送的第二波束跟踪消息,其中该第二波束跟踪消息为RRC层消息,该第二波束跟踪消息包括小区测量结果,该小区测量结果为至少一个小区中每个小区的质量最高的第二波束参考质量值。上述技术方案中,该网络侧设备可以直接获取该终端设备上报的小区测量结果,而无需自行确定小区测量结果。这样,可以节约该网络侧设备的资源。
结合第二方面、第二方面的第一种可能的实现方式或第二方面的第二种可能的实现方式,在第二方面的第十种可能的实现方式中,该方法还包括:该网络侧设备接收该终端设备发送的第二波束跟踪消息,其中该第二波束跟踪消息为RRC层消息,该第二波束跟踪 消息包括小区测量结果,该小区测量结果包括至少一个小区中每个小区的至少两个参考波束的第二波束参考质量值的平均值,该每个小区的至少两个参考波束为该每个小区中的第二波束参考质量值最高的至少两个波束。上述技术方案中,该网络侧设备可以直接获取该终端设备上报的小区测量结果,而无需自行确定小区测量结果。这样,可以节约该网络侧设备的资源。
结合第二方面、第二方面的第一种可能的实现方式或第二方面的第二种可能的实现方式,在第二方面的第十一种可能的实现方式中,该方法还包括:该网络侧设备接收该终端设备发送的至少一个小区中每个小区的小区测量结果,其中该每个小区的小区测量结果包括该每个小区的第二波束参考质量值,该每个小区的第二波束参考质量值是根据该每个小区最高的第一波束参考质量值确定的。上述技术方案中,该网络侧设备可以直接获取该终端设备上报的小区测量结果,而无需自行确定小区测量结果。这样,可以节约该网络侧设备的资源。
结合第二方面、第二方面的第一种可能的实现方式或第二方面的第二种可能的实现方式,在第二方面的第十二种可能的实现方式中,该方法还包括:该网络侧设备接收该终端设备发送的至少一个小区中每个小区的小区测量结果,其中该每个小区的小区测量结果为该每个小区的第二波束参考质量值,该每个小区的第二波束参考质量是根据该每个小区的最高的至少两个第一波束参考质量值的平均值确定的。
结合第二方面或第二方面的上述任一种可能的实现方式,在第二方面的第十三种可能的实现方式中,该M的取值是由该网络侧设备指示给该终端设备的。
第三方面,本申请实施例提供一种跟踪波束的方法,该方法包括:终端设备使用该第一波束向网络侧设备发送波束训练请求;该终端设备根据该网络侧设备发送的波束训练响应,确定用于与该网络侧设备通信的第二波束,其中该波束训练响应包括M个物理导频资源,M为大于或等于1的正整数。上述技术方案中,该终端设备可以从多个可用波束中选择合适的波束与该网络侧设备进行通信。
结合第三方面,在第三方面的第一种可能的实现方式中,在该终端设备使用该第一波束向网络设备发送波束训练请求之前,该方法还包括:该终端设备分别使用N个波束在N个时频资源向该网络侧设备发送随机接入前导码,其中该N个时频资源中的任意两个时频资源的子帧号和/或频率资源号不同,N为大于或等于2的正整数;该终端设备接收该网络侧设备发送的至少一个随机接入响应消息;该终端设备根据该至少一个随机接入响应消息中的每个随机接入响应消息中的RA-RNTI的值从该N个波束中确定该第一波束。上述技术方案中,该终端设备可以从多个可用波束中选择出一个可以用于与网络侧设备通信的波束,以使用该波束向该网络侧设备发送请求消息。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,该终端设备根据该网络侧设备发送的波束训练响应,确定用于与该网络侧设备通信的第二波束,包括:该终端设备在该M个物理导频资源上分别使用M个波束向该网络侧设备发送参考信号;该终端设备接收该网络侧设备发送的反馈信息,该反馈信息包括该M个波束中的一个或多个波束的索引;该终端设备根据该反馈信息确定该第二波束,其中该第二波束属于该一个或多个波束。上述技术方案中,该终端设备可以对可用波束进行训练并根据该网络侧设备反馈的信息确定能够用于与该网络侧设备进行通信的波束。
结合第三方面的第三种可能的实现方式,在第三方面的第四种可能的实现方式中,在该终端设备在该M个物理层导频资源上分别使用M个波束向该网络侧设备发送参考信号之前,该方法还包括:该终端设备从多个可用波束中选择M个波束。上述技术方能中,该终端设备可以选择合适的用于训练的波束数目,以使得用于训练的波束数目等于该网络侧设备为该终端设备分配的用于训练波束的物理层导频资源。
结合第三方面或第三方面的上述任一种可能的实现方式,在第三方面的第五种可能的实现方式中,在该终端设备根据该网络侧设备发送的波束训练响应,确定用于与该网络侧设备通信的第二波束之前,该方法还包括:该终端设备将该终端设备可用发送波束数量指示给该网络侧设备。上述技术方案中,该终端设备可以将可用波束的数量发送至该网络侧设备,以便该网络侧设备根据可用波束的数量确定需要为该终端设备分配的物理层导频资源数目。
第四方面,本申请实施例提供一种跟踪波束的方法,该方法包括:网络侧设备接收终端设备发送的波束训练请求;该网络侧设备向该终端设备发送波束训练响应,该波束训练响应包括M个物理导频资源,M为大于或等于1的正整数。上述技术方案中,该网络侧设备可以向该终端设备分配用于进行波束训练的物理导频资源,以便该终端设备根据该物理导频资源选择合适的波束与该网络侧设备进行通信。
结合第四方面,在第四方面的第一种可能的实现方式中,在该网络侧设备接收终端设备发送的波束训练请求之前,该方法还包括:该网络侧设备接收该终端设备发送的N个随机接入前导码,N为大于或等于1的正整数;该网络侧设备根据该N个随机接入前导码中每个随机接入前导码的时频资源,确定N个RA-RANT值;该网络侧设备向该终端设备发送N个随机接入响应,该N个随机接入响应分别使用该N个RA-RNTI值加扰。上述技术方案中,该网络侧设备向该终端设备反馈可用的上行波束,以便该终端设备利用该上行波束向该网络侧设备发送波束训练请求。
结合第四方面或第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,该方法还包括:该网络侧设备接收该终端设备在该M个物理导频资源上分别使用M个波束发送的参考信号;该网络侧设备根据接收到的参考信号,确定该M个波束中每个波束的波束质量值;该网络侧设备根据该每个波束的波束质量值,确定反馈信息,该反馈信息包括该M个波束中的一个或多个波束的索引。上述技术方案中,该网络侧设备可以将该终端设备可以使用的用于与该网络侧设备进行通信的一个或多个波束反馈给该终端设备,以便该终端设备从该一个或多个波束中选择合适的波束与该网络侧设备进行通信。
结合第四方面的第二种可能的实现方式,在第四方面的第三种可能的实现方式中,该网络侧设备根据该为每个波束的波束质量值,确定反馈信息,包括:该网络侧设备根据该每个波束的波束质量值,确定该反馈信息包括波束质量值最高的一个或多个波束的索引;或者,该网络侧设备根据该每个波束的波束质量值,确定该反馈信息包括波束质量值大于预设阈值的一个或多个波束的索引。上述技术方案中,该网络侧设备可以直接将满足于特定条件的波束反馈给该终端设备,以使得该终端设备可以直接根须该反馈信息确定可以使用的上行波束。该终端设备无需自行确定满足该特定条件的波束。这样,可以接收该终端设备的资源。
结合第四方面或第四方面的上述任一种可能的实现方式,在第四方面的第四种可能的实现方式中,在该网络侧设备向该终端设备发送波束训练响应之前,该方法还包括:该网络侧设备接收该终端设备发送的可用发送波束数量;该网络侧设备根据该可用发送波束数量确定物理导频资源个数M,M等于或小于该可用发送波束数量。上述技术方案中,该网络侧的设备为该终端设备分配合适的物理导频资源个数,以使得该物理导频资源个数与该终端设备可用的发送波束的数量相同。
第五方面,本申请实施例提供一种终端设备,该终端设备包括用于实现第一方面或第一方面的任一种可能的实现方式的方法的各个单元。
第六方面,本申请实施例提供一种网络侧设备,该网络侧设备包括用于实现第二方面或第二方面的任一种可能的实现方式的方法的各个单元。
第七方面,本申请实施例提供一种终端设备,该终端设备包括用于实现第三方面或第三方面的任一种可能的实现方式的方法的各个单元。
第八方面,本申请实施例提供一种网络侧设备,该网络侧设备包括用于实现第四方面或第四方面的任一种可能的实现方式的方法的各个单元。
第九方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质存储用于实现第一方面或第一方面的任一种可能的实现方式的方法的指令。
第十方面,本申请实施例提供一种终端设备,该终端设备包括存储器和处理器,该存储器包括第九方面的计算机可读存储介质,该处理器用于执行该计算机可读存储介质存储的指令。
第十一方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质存储用于实现第二方面或第二方面的任一种可能的实现方式的方法的指令。
第十二方面,本申请实施例提供一种终端设备,该终端设备包括存储器和处理器,该存储器包括第十一方面的计算机可读存储介质,该处理器用于执行该计算机可读存储介质存储的指令。
第十三方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质存储用于实现第三方面或第三方面的任一种可能的实现方式的方法的指令。
第十四方面,本申请实施例提供一种终端设备,该终端设备包括存储器和处理器,该存储器包括第十三方面的计算机可读存储介质,该处理器用于执行该计算机可读存储介质存储的指令。
第十五方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质存储用于实现第四方面或第四方面的任一种可能的实现方式的方法的指令。
第十六方面,本申请实施例提供一种终端设备,该终端设备包括存储器和处理器,该存储器包括第十五方面的计算机可读存储介质,该处理器用于执行该计算机可读存储介质存储的指令。
附图说明
图1是根据本申请实施例提供的波束跟踪方法的示意性流程图。
图2是一个利用MAC CE的荷载部分反馈该M个波束的示意图。
图3是根据本申请实施例提供的另一波束跟踪的方法的示意性流程图。
图4是根据本申请实施例提供的终端设备的结构框图。
图5是根据本申请实施例提供的网络侧设备的结构框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
应理解,本申请实施例的技术方案可以应用于各种支持波束成形技术的通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、第五代(5Generation,5G)通信系统、新空口(New Radio,NR)等。
终端设备,也可以称之为用户设备(User Equipment,UE)、移动终端(Mobile Terminal,MT)、移动用户设备等,可以经无线接入网(例如,Radio Access Network,RAN)与一个或多个核心网进行通信,用户设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
网络侧设备可以是LTE中的eNB或e-NodeB,也可以是5G或NR中的基站或发射接收端点(Transmission Reception Point,TRP)本申请并不限定。
驻留小区,也可以称为服务小区或本小区。终端设备可以选择的一个小区,在该小区内监听系统消息和寻呼消息。该终端设备选择的小区即为该终端设备的驻留小区。终端设备除了所选择的驻留小区外,还可以检测到其他小区,该其他小区可以称为该终端设备的邻区。
图1是根据本申请实施例提供的波束跟踪方法的示意性流程图。
101,终端设备确定N个第一波束参考质量值,所述N个第一波束参考质量值分别对应于N个波束,N为大于或等于1的正整数。
该终端设备可以在小区搜索阶段可以确定工作频率。该终端可以在该工作频率上检测到N个波束,其中该N个波束可以属于不同的小区。例如,该N个波束中可以包括属于该终端设备的驻留小区的一个或多个波束。该N个波束中也可以包括不属于该终端设备的邻区的一个或多个波束。该终端设备可以有至少一个邻区,每个邻区都有对应的波束。本申请实施例中所称的“波束所属的小区”是指波束属于为该小区提供服务的网络侧设备在该小区中使用的波束。“小区对应的波束”是指为该小区提供服务的网络侧设备在该小区中使用的波束。例如,网络侧设备1在小区A使用波束1、波束2和波束3,网络侧设备2在小区B使用波束4、波束5和波束6。那么可以称波束1至波束3属于小区A,波束4至波束6属于小区B,小区A对应的波束为波束1至波束3,小区B对应的波束为波束4至波束6。可以理解的是,一个网络侧设备可以为一个或多个小区提供服务,也可以仅为一个小区提供服务,本申请并不限定。
该终端设备在检测到N个波束后,可以分别确定该N个波束中的每个波束的第一波束参考质量值。
可选的,在一些实施例中,每个波束的第一波束参考质量值可以是根据接收该每个波束发送的参考信号的接收功率确定的,例如,可以是参考信号接收功率(Reference Signal Received Power,RSRP),也可以是参考信号接收质量(Reference Signal Received Quality, RSRQ)等。因此,可以理解的是,该第一波束参考质量值是基于物理层测量得到的波束质量值。
可选的,在一些实施例中,每个波束的第一波束参考质量值可以根据该每个波束的历史第一波束参考质量值和当前波束质量值进行滤波确定。具体地,可以采用以下公式确定该第一波束参考质量值:
Ft=(1-a)·Ft-1+a·Mt,(公式1.1)
其中,Ft为波束在第t次测量时的第一波束参考质量值,Mt为当前波束质量,Ft-1为波束在第t-1次测量时的第一波束参考质量值,a为滤波系数。该滤波系数可以是预先设定的,也可以是网络侧设备指示给该终端设备的,本申请实施例并不限定。可以理解的是,a取值可以是0至1之间的任意数值,a取值越小则表明当前波束质量的权重越小。例如,在一些实施例中a=0.1。该当前波束质量值是基于物理层测量得到的波束质量值。例如,可以是RSRP、RSRQ。
可选的,介质访问控制(Media Access Control,MAC)层也可以基于物理层的测量结果进行滤波,并基于此滤波进行上报,即第一波束参考质量值为MAC层滤波后的结果。
102,该终端设备根据该N个该第一波束参考质量值和该N个波束中每个波束所属的小区,从该N个波束中选择M个波束,其中M为大于或等于1且小于或等于N的正整数,该M个波束属于该终端设备的驻留小区。
可选的,在一些实施例中,该终端设备可以从该N个波束中确定出属于该驻留小区的至少一个波束,然后从该至少一个波束中确定该第一波束参考质量值最高的M个波束。M的取值可以是预先设定好的,也可以是该网络侧设备指示给该终端设备的。可以理解的是,若该终端设备确定出的属于该驻留小区的波束数目少于预设值或网络侧设备指示的值,则该M个波束为该终端设备确定出的属于该驻留小区的所有波束。
可选的,在一些实施例中,该终端设备可以从该N个波束中确定出属于该驻留小区的至少一个波束,然后从该至少一个波束中确定出大于该第一波束参考质量值一个预设门限一个或多个波束。该预设门限可以是预设的,也可以是网络侧设备指示给该终端设备的。
可选的,在一些实施例中,该终端设备可以从该N个波束中确定出属于该驻留小区的至少一个波束,然后从该至少一个波束中确定出大于该第一波束参考质量值一个预设门限一个或多个波束。该终端设备可以从该第一波束参考质量值大于该预设门限的一个或多个波束中确定出该第一波束参考质量值最高的M个波束。该预设门限可以是预设的,也可以是网络侧设备指示给该终端设备的。M的取值可以是预先设定好的,也可以是该网络侧设备指示给该终端设备的。可以理解的是,若该终端设备确定出的属于该驻留小区的且第一波束参考质量值大于该预设门限的波束数目少于预设值或网络侧设备指示的值,则该M个波束为该终端设备确定出的属于该驻留小区的且该第一波束参考质量值大于该预设门限的所有波束。
103,该终端设备将选择的M个波束指示给为该终端设备提供服务的网络侧设备。
该终端设备检测到的每个波束都有一个对应的索引,该终端设备可以通过将确定的M个波束的索引发送给该网络侧设备,以指示该网络侧设备该终端设备选择的M个波束。该网络侧设备可以根据接收到的波束的索引,确定出该终端设备选择的波束。该终端设备可以显示地指示该M个波束的索引,也可以隐式地指示该M个波束的索引。
可选的,在一些实施例中,该终端设备可以显示地指示该M个波速的索引。具体地,该终端设备可以向该网络侧设备发送第一波束跟踪消息,该波束跟踪消息中包括该M个波束的索引,其中该第一波束跟踪消息为介质访问控制(Media Access Control,MAC)层消息。这样,该终端设备可以通过MAC层消息直接将选择的M个波束指示给该网络侧设备。
具体地,该第一波束跟踪消息可以通过MAC控制元素(Control Element,CE)的荷载部分将该M个波束的索引反馈给该网络侧设备。图2是一个利用MAC CE的荷载部分反馈该M个波束的示意图。如图2所示,M的个数为4。单个波束索引占用的比特(bit)数目可以为6。若该终端设备确定出符合条件的M的数目小于4,则其他位置使用无效值填充。可以理解的是,若待上报的波束的数目超出一个MAC CE能够携带的波束数目,则该终端设备可以通过多个MAC CE将该M个波束的索引发送至该网络侧设备。
进一步,该第一波束跟踪消息中波束的索引的顺序可以根据每个波束的第一波束参考质量值确定。例如,该MAC CE的荷载部分中,该M个波束的索引中的第一个波束索引为该第一波束参考质量值最高的波束的索引,第二个波束索引为该第一波束参考质量值第二高的波束的索引,以此类推。这样,该网络侧设备可以根据该波束跟踪消息中波束的索引的顺序,确定出波束的第一波束参考质量值的顺序,从而可以确定出第一波束参考质量值最高的波束。
可选的,在一些实施例中,该终端设备还可以将该M个波束的测量结果发送至该网络侧设备。例如该终端设备可以通过该第一波束跟踪消息将该M个波束中每个波束的第一波束参考质量值发送至该网络侧设备。再如,该终端设备也可以利用其它消息来携带该M个波束中每个波束的第一波束参考质量值。
可选的,在另一些实施例中,该终端设备可以隐式地指示该M个波束的索引。例如,若M值为1,则该终端设备可以在该波束对应的时频和/或码资源上向该网络侧设备发送随机接入前导码,以便将该一个波束指示给该网络侧设备。具体过程可以与步骤104类似。该一个波束可以为该终端设备检测到的该终端设备的驻留小区中该第一波束参考质量值最高的波束。这样,该终端设备可以通过随机接入前导码的时频资源和/或码资源隐式地将一个波束指示给该网络侧设备,而无需通过一个额外的信令。这样,可以节省信令开销。
上述技术方案中,终端设备可以对能够检测到的波束进行跟踪,并将跟踪的驻留小区的波束上报至网络侧设备,以便该网络侧设备可以从上报的波束中选择合适的波束以用于与该终端设备进行通信的波束。该网络侧设备可以从该终端设备指示的M个波束中选择一个或者多个波束。该网络侧设备可以使用选择的波束向该终端设备发送下行消息。
在一些实施例中,该方法还可以包括步骤104。
104,该终端设备在对应于第一目标波束的索引的时频资源和/或码资源上向该网络侧设备发送随机接入前导码,其中,该第一目标波束为该M个波束中该第一波束参考质量值最高的波束。该网络侧设备可以根据接收到的随机接入前导码的时频资源和/或码资源,确定该终端设备检测到的属于该终端设备的驻留小区的该第一波束参考质量值最高的波束。这样,该终端设备可以直接将第一波束参考质量值最高的波束指示给该网络侧设备。该网络侧设备也可以直接确定第一波束参考质量值最高的波束。同时,在指示过程中无需使用额外的信令,从而可以节省信道资源。
可选的,在一些实施例中,每个随机接入前导码的时频资源对应一个波束的索引。该终端设备可以根据该第一目标波束的索引确定对应的时频资源,在该时频资源上向该网络侧设备发送该随机接入前导码。这样,该网络侧设备在接收到随机接入前导码后,可以直接根据接收该随机接入前导码的时频资源确定出该终端设备在该终端设备的驻留小区的第一波束参考质量值最高的波束的索引。
可选的,在一些实施例中,每个随机接入前导码的时频资源对应一组波束的索引。同一个时频资源上不同的码资源对应于不同的波束。例如,总的可用前导码个数为64,那么每个波束可以对应8个前导码。例如,频率f1,子帧1,前导码1至8对应于波束1的索引;频率f1,子帧1,前导码9至16对应于波束2的索引,依次类推。这样,该终端设备可以根据该第一目标波束的索引确定对应的时频资源和码资源,并在该时频资源和码资源上向该网络侧设备发送随机接入前导码。该网络侧设备在接收到随机接入前导码后,可以直接根据接收该随机接入前导码的时频资源和码资源确定出该终端设备在该终端设备的驻留小区的第一波束参考质量值最高的波束的索引。
可选的,在一些实施例中,上述波束的索引与时频资源、码资源的对应关系可以是预设的。例如,可以规定每个随机接入时频资源内,将K个可用的前导码分成L组,每组中的前导码个数为K/L个,对应的波束的索引为0到L-1。可选的,在另一些实施例中,分组数目L可以是该网络侧设备指示给该终端设备的。例如,该网络侧设备可以在系统消息或无线资源控制(Radio Resource Control,RRC)层消息中将分组数目L指示给该终端设备。这样,可以保证对于不同波束个数和前导码个数的适应性。可选的,在另一些实施例中,该网络侧设备还可以进一步指示时频资源和波束组的对应关系。例如,在一个子帧内配置3个频率资源,每个频率资源对应一个波束组。频率资源1对应波束组1,频率资源2对应波束组2,频率资源3对应波束组3,每个波束组中的前导码对应S/3个波束,其中S为总的波束个数。小区内的下行波束个数,及各波束和随机接入前导码的对应关系可由协议规定,或是由系统广播消息指示终端设备。
在一些实施例中,该终端设备可以先将该第一目标波束指示给该网络侧设备,然后再将该M个波束指示给该网络侧设备。在另一些实施例中,该终端设备可以先将该M个波束指示给该网络侧设备,再将该第一目标波束指示给该网络侧设备。
该网络侧设备在获取到了该终端设备上报的M个波束后,可以根据该M个波束选择与该终端设备进行通信的波束。例如,该网络侧设备可以选择该M个波束中一个波束作为目标波束与该终端设备进行通信。该网络侧设备也可以选择该M个波束中的多个波束作为目标波束与该终端设备进行通信。该网络侧设备可以使用该目标波束向该终端设备传输所有信道的信息。该终端设备也可以检测该网络侧设备是否在该目标波束上向该终端设备发送信息。该目标波束可以是根据预设规则确定的,例如,该目标波束可以是该M个波束中第一波束质量最高的一个或多个波束。
该终端设备除了可以基于物理层的波束质量跟踪属于驻留小区中的波束外,还可以基于RRC层的波束质量对该终端设备的驻留小区和/或邻区的波束进行跟踪。具体跟踪方法可以参见步骤105至步骤107,或者,步骤108至步骤110,或者步骤111至步骤113。
105,该终端设备确定N个第二波束参考质量值,该N个第二波束参考质量值中的第n个第二波束参考质量值是根据该N个第一波束参考质量值中的第n个第一波束参考质量 值确定的,n=1,…,N。
可选的,在一些实施例中,对于该N个波束中的第n个波束,该终端设备可以直接根据该第n个波束的第一波束参考质量值确定该第n个波束的第二波束参考质量值。
具体地,该终端设备可以采用以下公式确定该第二波束参考质量值:
Qt=(1-a)·Qt-1+a·qt,(公式1.2)
其中,Qt为该终端设备获取到滤波后的第二波束参考质量值,qt为当前的第一波束参考质量值,Qt-1为该终端该波束的历史第二波束参考质量值,a为滤波系数。该滤波系数可以是预先设定的,也可以是网络侧设备指示给该终端设备的,本申请实施例并不限定。可以理解的是,a取值可以是0至1之间的任意数值,a取值越小则表明当前波束质量的权重越小。例如,在一些实施例中a=0.1。
可选的,在一些实施例中,可以设定一个预设门限,如果一个波束的第一波束参考质量值大于该预设门限,则可以根据该波束的第一波束参考质量值确定该波束的第二波束参考质量值;如果一个波束的一次第一波束参考质量值小于该预设门限,则可以停止对该波束进行滤波确定该波束的第二波束参考质量值。可选的,可以设定一个检测周期。该检测周期外的第一波束参考质量值并不影响该检测周期内的滤波过程。如果一个波束在该检测周期内的所有第一波束参考质量值均大于该预设门限,但是该波束在该检测周期外的一个第一波束参考质量值小于该预设门限,则仍可以确定对应于该检测周期的该波束的第二波束参考质量值。如果一个波束在该检测周期内的一个第一波束参考质量值小于该预设门限,则停止对该波束的第一波束参考质量值进行滤波。在此情况下,该终端设备可以在该波束的第一波束参考质量值大于该预设门限时,重新启动检测周期。
106,该终端设备根据该N个第二波束参考质量值,确定第二波束跟踪消息。
可选的,在一些实施例中,该终端设备根据该N个第二波束参考质量值,确定第二波束跟踪消息,包括:该终端设备根据该N个第二波束参考质量值、该N个波束中的每个波束所属的小区、第一预设门限和第二预设门限,确定该第二波束跟踪消息,其中,该第一预设门限大于该第二预设门限,该第二波束跟踪消息包括候选波束的索引和/或可用波束的索引,该候选波束的第二波束参考质量值大于或等于该第一预设门限,该可用波束的第二波束参考质量值小于该第一预设门限且大于或等于第二预设门限。进一步,在一些实施例中,该第二波束跟踪消息还可以包括该候选波束和/或可用波束的第二波束参考质量值。上述技术方案中,该终端设备直接将候选波束和/或可用波束上报至该网络侧设备,以便该网络侧设备可以从接收到的候选波束和/或可用波束中选择合适的波束与该终端设备进行通信。
该终端设备可以根据波束对应的导频信息判断波束所属的小区。导频信息是一个参考信号,该参考信号是根据小区标识生成的。该第二波束跟踪消息中可以包括该N个波束所属的小区中至少一个小区的波束的索引。在一些实施例中,该至少一个小区可以包括该终端设备的驻留小区。
该候选波束和可用波束可以是该N个波束所属的所有小区中每个小区的候选波束和可用波束,也可以是该N个波束所属的所有小区中的一个或多个小区的候选波束和可用波束。例如,假设该N个波束分别属于小区1(假设小区1为该终端设备的驻留小区)、小区2和小区3。该终端设备可以仅确定小区1的候选波束和可用波束。该终端设备还可 以确定小区1、小区2和小区3中任意两个或全部的候选波束和可用波束。
可以理解的是,在一些情况下,一个或多个小区中可以仅包括候选波束和可用波束中的一个。在另一些情况下,一个或多个小区可以包括候选波束和可用波束。
该网络侧设备可以根据该候选波束和可用波束选择合适的波束与该终端设备进行通信。
可选的,在一些实施例中,该终端设备根据该N个第二波束参考质量值,确定第二波束跟踪消息,包括:该终端设备根据该N个第二波束参考质量值、该N个波束中的每个波束所属的小区和第三预设门限,确定该第二波束跟踪消息,其中该第二波束跟踪消息包括该该N个波束中第二波束参考质量值大于或等于该第三预设门限波束的索引。进一步,在一些实施例中,该第二波束跟踪消息还可以包括该N个波束中大于或等于该第三预设门限的第二波束参考质量值。上述技术方案中,该终端设备可以直接将符合预设条件(即大于或等于该第三预设门限)的波束的索引上报至该网络侧设备,以便该网络侧设备可以直接从符合预设条件的波束中选择合适的波束与该终端设备进行通信。可选的,在一些实施例中,该第二波束跟踪消息包括P个波束的索引,该P个波束中的每个波束的第二波束参考质量值大于或等于该第三预设门限,其中P为大于或等于1且小于或等于M的正整数。换句话说,若该终端设备确定符合该预设条件的波束的数目大于或等于M,则该终端设备上报M个波束的索引。若该终端设备确定符合该预设条件的波束的数目不大于M,则上报全部符合该预设条件的波束的索引。
在一些实施例中,该第三预设门限可以等于该第一预设门限。在一些实施例中,该第三预设门限可以等于该第二预设门限。在一些实施例中,该第三预设门限也可以不等于该第一预设门限或该第二预设门限,例如该第三预设门限可以大于该第二预设门限且小于该第一预设门限。
类似的,该第二波束跟踪消息中包括的波束的索引可以是该N个波束所属的所有小区中的至少一个小区中满足第二波束参考质量值大于该第三预设门限的波束的索引。该第二波束跟踪消息中包括的波束的索引也可以是该N个波束所属的所有小区中满足第二波束参考质量值大于该第三预设门限的波束的索引。
可选的,在一些实施例中,该终端设备根据该N个第二波束参考质量值,确定该第二波束跟踪消息,包括:该终端设备根据该N个第二波束参考质量值和该N个波束中每个波束所属的小区,确定该N个波束所属的小区中至少一个小区中每个小区的至少两个参考波束,该每个小区的至少两个参考波束为该每个小区中该第二波束参考质量值最高的两个波束。该终端设备确定该第二波束跟踪消息,该第二波束跟踪消息包括确定的该每个小区的至少两个参考波束的索引。进一步,在一些实施例中,该第二波束跟踪消息中还可以包括该每个小区的至少两个参考波束的第二波束参考质量值。可选的,在一些实施例中,需要确定的参考波束的数目可以是协议规定的,也可以是由基站配置给该终端设备的。上述技术方案中,该终端设备可以直接将第二波束参考质量值最高的多个波束上报至该网络侧设备,以便该网络侧设备可以从该第二波束质量值最高的多个波束中选择可以用于与该终端设备进行通信的波束。
类似的,该第二波束跟踪消息中包括的波束的索引可以是该N个波束所属的所有小区中的至少一个小区中的至少两个参考波束的索引。该第二波束跟踪消息中包括的波束的 索引也可以是该N个波束所属的所有小区中每个小区的至少两个参考波束的索引。
上述实施例中,该第二波束跟踪消息中除了包括波束的索引外,还可以包括波束的第二波束参考质量值。可以理解的是,若该第二波束跟踪消息中包括分别属于多个小区的波束的索引,则该第二波束跟踪消息中还可以包括用于指示波束所属小区的信息。
进一步,若该第二波束跟踪消息中包括一个小区的多个波束的索引,则该多个波束的索引的顺序可以根据波束的第二波束参考质量值确定。例如,第一个波束的索引对应的波束的第二波束参考质量值最高,第二个波束的索引对应的波束的第二波束参考质量值第二高,以此类推。这样,该网络侧设备可以根据接收到的波束的索引的顺序确定每个小区中波束的第二波束参考质量值顺序。
可选的,在另一些实施例中,该终端设备可以根据该N个第二波束参考质量值,确定小区测量结果,并确定该第二波束跟踪消息包括该小区测量结果。通过上报小区测量结果,可以使得该网络侧设备对波束进行小区级跟踪。
可选的,在一些实施例中,该小区测量结果可以为该N个波束所属小区中至少一个小组中每个小区的质量最高的第二波束参考质量值。
例如,假设该N个波束分别属于小区1(假设小区1为该终端设备的驻留小区)、小区2和小区3。该终端设备可以确定小区1中第二波束参考质量值最高的第二波束参考质量值作为小区1的小区测量结果。该终端设备还可以确定小区2的最高的第二波束参考质量值作为小区2的小区测量结果。该终端设备还可以确定小区3的最高的第二波束参考质量值作为小区3的小区测量结果。该小区测量结果可以包括小区1、小区2和小区3的小区测量结果
可选的,在另一些实施例中,该小区测量结果可以是该N个波束所属小区中至少一个小区中每个小区的至少两个参考波束的第二波束参考质量值的平均值,其中该每个小区的至少两个参考波束为该每个小区中该第二波束参考质量值最高的至少两个波束。需要确定的参考波束的数目可以是协议规定的,也可以是由网络侧设备配置给该终端设备的。
例如,假设该N个波束分别属于小区1(假设小区1为该终端设备的驻留小区)、小区2和小区3。该终端设备可以确定小区1中第二波束参考质量值最高的三个第二波束参考质量值的平均值作为小区1的小区测量结果。该终端设备还可以确定小区2的最高的三个第二波束参考质量值的平均值作为小区2的小区测量结果。该终端设备还可以确定小区3的最高的三个第二波束参考质量值的平均值作为小区3的小区测量结果。该小区测量结果可以包括小区1、小区2和小区3的小区测量结果。该平均值可以是算数平均值,也可以是几何平均值等,本申请实施例并不限定。
可选的,在一些实施例中,该第二波束跟踪消息还可以包括该N个第二波束参考质量值以及该N个波束的索引。这样,该网络侧设备可以根据该N个第二波束参考质量值确定出特定结果。例如,该网络侧设备可以根据该第一预设门限和该第二预设门限,确定出候选波束和/或可用波束。可以理解的是,该网络侧设备也可以确定出该N个波束所属的小区中的至少一个小区的候选波束和/或可用波束。再如,该网络侧设备可以该第三预设门限,确定出该第二波束参考质量值高于该第三预算门限的波束。又如,该网络侧设备可以确定每个小区中第二波束参考质量最高的多个波束。又如,该网络侧设备可以确定出小区测量结果。该网络侧设备确定上述特定结果的具体过程与终端设备确定相同的特定结果的 具体过程类似,在此就不必赘述。
107,该终端设备将该第二波束跟踪消息发送至该网络侧设备,其中该第二波束跟踪消息为RRC层消息。
上述技术方案中,该终端设备可以基于每个波束的多个第一波束参考质量值,确定该每个波束的第二波束参考质量值。这样,该终端设备跟踪的波束参考质量值是一段时间累积后的测量结果。此外,该第二波束跟踪消息中可以包括该N个波束所属的小区中至少一个小区的波束的索引。这样,该网络侧设备可以获取到该终端设备的驻留小区和邻区的波束质量值。在此情况下,该网络侧设备不仅可以确定该终端设备的驻留小区的小区状况,也可以确定该终端设备可以检测到的邻区的小区状况。
可选的,在一些实施例中,该终端设备可以周期性地将该第二波束跟踪消息发送至该网络侧设备。发送周期可以是预设的,也可以该网络侧设备指示给该终端设备的。
可选的,在一些实施例中,该终端设备还可以在满足预设测量事件的情况下将该第二波束跟踪消息发送至该网络侧设备。具体地,该终端设备可以将基于波束的小区测量结果用于该判断预设测量事件是否满足。在满足该预设测量事件的情况下,该终端设备可以将该第二波束跟踪消息发送至该网络侧设备。该终端设备还可以同时上报该预设测量事件。该预设测量事件可以包括以下的一种或多种,该终端设备的驻留小区的小区测量结果小于该终端设备的一个邻区的小区测量结果一个预设偏置;该终端设备的驻留小区的小区测量结果小于一个预设门限;该终端设备的邻区的小区测量结果大于一个预设门限值等。上述预设测量事件件以及预设测量事件中使用的预设偏置、预设门限值可以是该终端设备预设的,也可以是该网络侧设备指示给该终端设备的。上述技术方案中,该终端设备可以根据波束跟踪的结果,确定是否满足预设测量事件,以便根据确定结果选择上报的内容。
除了通过步骤105至步骤107将该小区测量结果发送至该网络侧设备,该终端设备还可以通过步骤108至110确定出小区测量结果并将小区测量结果发送至该网络侧设备。
108,该终端设备根据该N个第一波束参考质量值和该N个波束中每个波束所属的小区,确定该N个波束所属小区中至少一个小区中每个小区质量最高的第一波束参考质量值。
109,该终端设备根据该每个小区质量最高的第一波束参考质量值,确定该每个小区的第二波束参考质量值。该第二波束参考质量值也可以采用公式1.2确定,在此就不必赘述。
110,该终端设备将该每个小区的该第二波束参考质量值通过RRC层消息发送至该网络侧设备。该每个小区的第二波束参考质量值即为该每个小区的小区测量结果。
上述技术方案中,该终端设备可以根据波束跟踪的结果,确定小区测量结果并将测量到的小区测量结果上报至该网络侧设备,以便该网络侧设备即使获取该终端设备跟踪的小区测量结果。
可选的,在一些实施例中,该终端设备还可以在满足预设测量事件的情况下将该第二波束跟踪消息发送至该网络侧设备。具体地,该终端设备可以将基于波束的小区测量结果用于该判断预设测量事件是否满足。在满足该预设测量事件的情况下,该终端设备可以将该第二波束跟踪消息发送至该网络侧设备。该终端设备还可以同时上报该预设测量事件。预设测量事件的具体内容与步骤107相同,在此就不必赘述。
可选的,在一些实施例中,该终端设备可以周期性地将该每个小区的第二波束参考质量值发送至该网络侧设备。发送周期可以是预设的,也可以该网络侧设备指示给该终端设备的。
在另一些实施例中,该终端设备还可以通过步骤111至113确定出小区测量结果并将小区测量结果发送至该网络侧设备。
111,该终端设备根据N个该第一波束参考质量值和该N个波束中的每个波束所属的小区,确定该N个波束所属小区中至少一个小区中每个小区的该第一波束参考质量值最高的至少两个波束的平均值。
112,该终端设备根据该每个小区的该第一波束参考质量值最高的至少两个波束的平均值,确定该每个小区的第二波束参考质量值。
113,该终端设备该每个小区的将该第二波束参考质量值通过RRC层消息发送至该网络侧设备。该每个小区的第二波束参考质量值即为该每个小区的小区测量结果。
上述技术方案中,该终端设备可以根据波束跟踪的结果,确定小区测量结果并将测量到的小区测量结果上报至该网络侧设备,以便该网络侧设备即使获取该终端设备跟踪的小区测量结果。
可选的,在一些实施例中,该终端设备还可以在满足预设测量事件的情况下将该第二波束跟踪消息发送至该网络侧设备。具体地,该终端设备可以将基于波束的小区测量结果用于该判断预设测量事件是否满足。在满足该预设测量事件的情况下,该终端设备可以将该第二波束跟踪消息发送至该网络侧设备。该终端设备还可以同时上报该预设测量事件。预设测量事件的具体内容与步骤107相同,在此就不必赘述。
可选的,在一些实施例中,该终端设备可以周期性地将该每个小区的第二波束参考质量值发送至该网络侧设备。发送周期可以是预设的,也可以该网络侧设备指示给该终端设备的。
可以理解的是,上述实施例中的步骤编号(即101至113)仅是为了帮助更好地对实施例进行描述,而并非是对步骤顺序的限定。例如,步骤104可以在步骤103之后执行,也可以在步骤103之前执行。步骤105至步骤107、步骤108至步骤110和步骤111至步骤113可以在步骤104之后执行,也可以在步骤103之后执行。此外,为了简洁描述,图1中仅示出了步骤101至步骤103。
图3是根据本申请实施例提供的另一波束跟踪的方法的示意性流程图。
301,终端设备使用第一波束向网络侧设备发送波束训练请求。
可选的,在一些实施例中,该终端设备可以通过以下方式确定该第一波束:该终端设备分别使用N个波束在N个时频资源向该网络侧设备发送随机接入前导码,其中该N个时频资源中的任意两个时频资源的子帧号和/或频率资源号不同,N为大于或等于2的正整数;该终端设备接收该网络侧设备发送的至少一个随机接入响应消息;该终端设备根据该至少一个随机接入响应消息中的每个随机接入响应消息中的RA-RANTI的值从该N个波束中确定第一波束。这样,该终端设备可以从多个可用波束中选择出一个可以用于与网络侧设备通信的波束,以使用该波束向该网络侧设备发送请求消息。
具体地,该网络侧设备在接收到该终端设备发送的随机接入前导码后,可以根据该随机接入前导码的时频资源确定随机接入-无线网络临时标识(Random Access-Radio Network  Temporary Identifier,RA-RNTI)的值。RA-RNTI的值满足一下公式:
RA-RNTI=1+t_id+10*f_id,(公式1.3)
其中,RA-RNTI为RA-RNTI的值,t_id为子帧号,f_id为频率资源号。
该网络侧设备发送的随机接入响应消息使用确定的RA-RNTI值加扰。这样,该终端设备可以通过对随机接入响应消息解扰确定该N个波束中一个或多个可以波束可以用于发送上行信息。
可选的,在一些实施例中,该终端设备仅接收到该网络侧设备发送的一个随机接入响应消息。在此情况下,该终端设备根据该RA-RNTI值对随机接入响应消息进行解扰,确定一个发送前导码时的时频资源。由于时频资源与波束是一一对应的,该终端设备可以确定与该时频资源对应的波束为该第一波束。
可选的,在另一些实施例中,该终端设备可以接收到该网络侧设备发送的多个随机接入响应消息。在此情况下,该终端设备可以对接收到的第一个随机接入响应消息的RA-RNTI值进行解扰,确定一个时频资源,并确定与该时频资源对应的波束为该第一波束。该终端设备还可以对接收到的任一个随机接入响应消息的RA-RNTI值进行解扰,确定一个时频资源,并确定与该时频资源对应的波束为该第一波束。
可选的,在一些实施例中,该第一波束可以是该终端设备能够使用的任一个波束。
302,该终端设备根据该网络侧设备发送的波束训练响应,确定与该网络侧设备通信的第二波束,其中,该波束训练响应包括M个物理导频资源,M为大于或等于1的正整数。
上述技术方案中,该终端设备可以从多个可用波束中选择合适的波束与该网络侧设备进行通信。
可选的,在一些实施例中,该终端设备可以在该M个物理层导频资源上分别使用M个波束向该网络侧设备发送参考信号;该终端设备接收该网络侧设备发送的反馈信息,该反馈信息包括该M个波束中的一个或多个波束的索引;该终端设备根据给反馈信息确定该第二波束,其中该第二波束属于该一个或多个波束。上述技术方案中,该终端设备可以对可用波束进行训练并根据该网络侧设备反馈的信息确定能够用于与该网络侧设备进行通信的波束。
该网路侧设备在接收到参考信号后,可以根据接收到的参考信号确定出该M个波束中每个波束的波束质量值。该网络侧设备根据确定的每个波束的波束质量值,确定该反馈信息,该反馈信息可以包括该M个波束中波束质量值最高的一个或多个波束的索引。或者,该反馈信息可以包括波束质量值大于一个预设阈值的一个或多个波束的索引。
可选的,在一些实施例中,该终端设备可以根据该M个物理导频资源,确定第一物理导频资源,并在该第一物理导频资源上使用至少一个波束向该网络侧设备发送参考信号,其中该第一物理导频资源为该终端设备接收该网络侧设备发送的信息时使用的物理层导频资源对应的物理层导频资源;该终端设备接收该网络侧设备发送的反馈信息,该反馈信息包括该至少一个波束中的一个或多个波束的索引;该终端设备根据给反馈信息确定该第二波束,其中该第二波束属于该一个或多个波束。该反馈信息可以是通过专用的物理层资源发送至该终端设备,也可以是通过MAC层消息或RRC层消息发送给该终端设备,本申请实施例并不限定。该波束质量值可以是RSRP、RSRQ等,也可以是利用公式1.1滤波 的到的波束质量值,本申请实施例并不限定。
可选的,在一些实施例中,该终端设备可用发送波束数量可能小于物理导频资源数量M。在此情况下,在该终端设备在所述M个物理层导频资源上分别使用M个波束向该网络侧设备发送参考信号之前,该终端设备还可以从多个可用波束中选择M个波束。该终端设备可以随机选择M个波束,也可以选择根据接收到的随机接入响应消息中的RA-RNTI值确定的M个波束。上述技术方能中,该终端设备可以选择合适的用于训练的波束数目,以使得用于训练的波束数目等于该网络侧设备为该终端设备分配的用于训练波束的物理层导频资源。
该网络侧设备配置的导频资源可以是周期配置的,该导频资源也可以是离散配置的。该导频资源包括解调参考信号(Demodulation Reference Signal,DMRS)、探测参考信号(Sounding Reference Signal,SRS)等。该网络侧设备配置的导频资源包括第一标识,该第一标识用于指示该导频资源为用于波束训练的导频资源。
可选的,在一些实施例中,在该终端设备根据该网络侧设备发送的波束训练响应,确定用于与该网络侧设备通信的第二波束之前,该终端设备可以将该终端设备可用发送波束数量指示给该网络侧设备。该终端设备可用发送波束数量可以由该波束训练请求携带。该网络侧设备可以根据该可用发送波束数量确定物理导频资源个数M。物理导频资源个数M可以等于或小于该可用发送波束数量。上述技术方案中,该终端设备可以将可用波束的数量发送至该网络侧设备,以便该网络侧设备根据可用波束的数量确定需要为该终端设备分配的物理层导频资源数目。
本申请实施例还提供一种终端设备。该终端设备包括处理单元和发送单元。
处理单元,用于确定N个第一波束参考质量值,该N个第一波束参考质量值分别对应于N个波束,N为大于或等于1的正整数。
处理单元,还用于根据该N个第一波束参考质量值和该N个波束中的每个波束所属的小区,从该N个波束中选择M个波束,其中M为大于或等于1且小于或等于N的正整数,该M个波束属于该终端设备的驻留小区。
发送单元,用于将选择的M个波束指示给为该终端设备提供服务的网络侧设备。
可选的,在一些实施方式中,发送单元,具体用于向该网络侧设备发送第一波束跟踪消息,该第一波束跟踪消息中包括该M个波束的索引,其中该第一波束跟踪消息为介质访问控制MAC层消息。
可选的,在一些实施方式中,发送单元,还用于在对应于第一目标波束的索引的时频资源和/或码资源上向该网络侧设备发送随机接入前导码,其中,该第一目标波束为该M个波束中第一波束参考质量值最高的波束。
可选的,在一些实施方式中,处理单元,还用于确定N个第二波束参考质量值,该N个第二波束参考质量值中的第n个第二波束参考质量值是根据该N个第一波束参考质量值中的第n个第一波束参考质量值确定的,n=1,…,N。处理单元,还用于根据该N个第二波束参考质量值,确定第二波束跟踪消息。发送单元,还用于将该第二波束跟踪消息发送至该网络侧设备,其中该第二波束跟踪消息为无线资源控制RRC层消息。
可选的,在一些实施方式中,处理单元,具体用于根据该N个第二波束参考质量值、该N个波束中的每个波束所属的小区、第一预设门限和第二预设门限,确定该第二波束跟 踪消息,其中,该第一预设门限大于该第二预设门限,该第二波束跟踪消息包括候选波束的索引和/或可用波束的索引,该候选波束的第二波束参考质量值大于或等于该第一预设门限,该可用波束的第二波束参考质量值小于该第一预设门限且大于或等于该第二预设门限。
可选的,在一些实施方式中,处理单元,具体用于根据该N个第二波束参考质量值、该N个波束中的每个波束所属的小区和第三预设门限,确定该第二波束跟踪消息,其中该第二波束跟踪消息包括该N个波束中第二波束参考质量值大于或等于该第三预设门限波束的索引。
可选的,在一些实施方式中,处理单元,具体用于根据该N个第二波束参考质量值和该N个波束中每个波束所属的小区,确定该N个波束所属小区中至少一个小区中每个小区的至少两个参考波束,该每个小区的至少两个参考波束为该每个小区中第二波束参考质量值最高的至少两个波束;确定该第二波束跟踪消息,该第二波束跟踪消息包括确定的该每个小区的至少两个参考波束的索引。
可选的,在一些实施方式中,处理单元,具体用于根据该N个第二波束参考质量值和该N个波束中每个波束所属的小区,确定小区测量结果并确定该第二波束跟踪消息,该小区测量结果为该N个波束所属小区中至少一个小区中每个小区的最高的第二波束参考质量值,该第二波束跟踪消息包括该小区测量结果。
可选的,在一些实施方式中,处理单元,具体用于根据该N个第二波束参考质量值和该N个波束中每个波束所属的小区,确定该N个波束所属小区中至少一个小区中每个小区的至少两个参考波束,该每个小区的至少两个参考波束为该每个小区中第二波束参考质量值最高至少两个波束;确定小区测量结果,该小区测量结果包括该每个小区的至少两个参考波束的第二波束参考质量值的平均值;确定该第二波束跟踪消息,该第二波束跟踪消息包括该小区测量结果。
可选的,在一些实施方式中,处理单元,还用于根据该N个第一波束参考质量值和该N个波束中的每个波束所属的小区,确定该N个波束所属小区中至少一个小区中每个小区质量最高的第一波束参考质量值;处理单元,还用于根据该每个小区最高的第一波束参考质量值,确定该每个小区的第二波束参考质量值;发送单元,还用于将该每个小区的第二波束参考质量值作为小区测量结果通过RRC层消息发送至该网络侧设备。
可选的,在一些实施方式中,处理单元,还用于根据该N个第一波束参考质量值和该N个波束中的每个波束所属的小区,确定该N个波束所属小区中至少一个小区中每个小区的最高的至少两个第一波束参考质量值的平均值;处理单元,还用于根据该每个小区的最高的至少两个第一波束参考质量值的平均值,确定该每个小区的第二波束参考质量;发送单元,还用于将该每个小区的第二波束参考质量作为小区测量结果通过RRC层消息发送至该网络侧设备。
可选的,在一些实施方式中,处理单元,还用于根据该小区测量结果,确定是否满足预设测量事件。
可选的,在一些实施方式中,该终端设备还包括接收单元,用于接收该网络侧设备指示的M的取值。
可选的,在一些实施例中,该处理单元可以由处理器实现,该发送单元可以由发送器 或收发器实现,该接收单元可以由接收器或收发器实现。
本申请实施例还提供一种网络侧设备的结构框图。该网络侧设备包括接收单元、处理单元和发送单元。
接收单元,用于获取终端设备指示的M个波束,其中,该M个波束属于该终端设备的驻留小区,M为大于或等于1的正整数。
处理单元,用于从该M个波束中选择一个波束。
发送单元,用于使用选择的波束向该终端设备发送下行消息。
可选的,在一些实施方式中,接收单元,具体用于接收该终端设备发送的第一波束跟踪消息,该第一波束跟踪消息包括该M个波束的索引,其中该第一波束跟踪消息为MAC层消息。
可选的,在一些实施方式中,接收单元,还用于接收该终端设备发送的随机接入前导码。处理单元,还用于根据该随机接入前导码使用的时频资源和/或码资源,确定第一目标波束,其中该第一目标波束为该M个波束中该第一波束参考质量值最高的波束。
可选的,在一些实施方式中,接收单元,还用于接收该终端设备发送的第二波束跟踪消息,其中该第二波束跟踪消息为RRC层消息,该第二波束跟踪消息包括候选波束的索引和/或可用波束的索引,该候选波束的第二波束参考质量值大于或等于第一预设门限,该可用波束的第二波束参考质量值小于该第一预设门限且大于或等于该第二预设门限,该第一预设门限大于该第二预设门限。
可选的,在一些实施方式中,接收单元,还用于接收该终端设备发送的第二波束跟踪消息,其中该第二波束跟踪消息为RRC层消息,该第二波束跟踪消息中包括至少一个波束的索引,该至少一个波束的第二波束参考质量值大于或等于第三预设门限波束。
可选的,在一些实施方式中,接收单元,还用于接收该终端设备发送的第二波束跟踪消息,其中该第二波束跟踪消息为RRC层消息,该第二波束跟踪消息包括分别属于至少一个小区中每个小区的至少两个参考波束的索引,该每个小区的至少两个参考波束为该每个小区中第二波束参考质量值最高的至少两个波束。
可选的,在一些实施方式中,接收单元,还用于接收该终端设备发送的第二波束跟踪消息,其中该第二波束跟踪消息为RRC层消息,该第二波束跟踪消息包括小区测量结果,该小区测量结果为至少一个小区中每个小区的质量最高的第二波束参考质量值。
可选的,在一些实施方式中,接收单元,还用于接收该终端设备发送的第二波束跟踪消息,其中该第二波束跟踪消息为RRC层消息,该第二波束跟踪消息包括小区测量结果,该小区测量结果包括至少一个小区中每个小区的至少两个参考波束的第二波束参考质量值的平均值,该每个小区的至少两个参考波束为该每个小区中的第二波束参考质量值最高的至少两个波束。
可选的,在一些实施方式中,接收单元,还用于接收该终端设备发送的至少一个小区中每个小区的小区测量结果,其中该每个小区的小区测量结果包括该每个小区的第二波束参考质量值。
可选的,在一些实施方式中,该接收单元,还用于接收该终端设备发送的第二波束跟踪消息,其中该第二波束跟踪消息为RRC层消息,该第二波束跟踪消息包括小区测量结果,该小区测量结果包括至少一个小区中每个小区的第二波束参考质量,该每个小区的第 二波束参考质量是根据该每个小区的至少两个第一波束参考质量值的平均值确定的。
可选的,在一些实施方式中,该发送单元,还用于将M的取值发送至该终端设备。
可选的,在一些实施例中,该处理单元可以由处理器实现,该发送单元可以由发送器或收发器实现,该接收单元可以由接收器或收发器实现。
本申请实施例还提供一种终端设备。该终端设备包括发送单元、接收单元和处理单元。
发送单元,用于使用该第一波束向网络侧设备发送波束训练请求。
接收单元,用于接收该网络侧设备发送的波束训练响应。
处理单元,用于根据该波束训练响应,确定用于与该网络侧设备通信的第二波束,其中该波束训练响应包括M个物理导频资源,M为大于或等于1的正整数。
可选的,在一些实施方式中,发送单元,还用于分别使用N个波束在N个时频资源向该网络侧设备发送随机接入前导码,其中该N个时频资源中的任意两个时频资源的子帧号和/或频率资源号不同,N为大于或等于2的正整数。接收单元,还用于接收该网络侧设备发送的至少一个随机接入响应消息。处理单元,还用于根据该至少一个随机接入响应消息中的每个随机接入响应消息中的RA-RNTI的值从该N个波束中确定该第一波束。
可选的,在一些实施方式中,发送单元,还用于在该M个物理导频资源上分别使用M个波束向该网络侧设备发送参考信号。接收单元,还用于接收该网络侧设备发送的反馈信息,该反馈信息包括该M个波束中的一个或多个波束的索引。处理单元,具体用于根据该反馈信息确定该第二波束,其中该第二波束属于该一个或多个波束。
可选的,在一些实施方式中,处理单元,还用于从多个可用波束中选择M个波束。
可选的,在一些实施方式中,发送单元,还用于将该终端设备可用发送波束数量指示给该网络侧设备。
可选的,在一些实施例中,该处理单元可以由处理器实现,该发送单元可以由发送器或收发器实现,该接收单元可以由接收器或收发器实现。
本申请实施例还提供一种网络侧设备。该网络侧设备包括接收单元、处理单元和发送单元。
接收单元,用于接收终端设备发送的波束训练请求。
处理单元,用于确定波束训练响应,该波束训练响应包括M个物理导频资源,M为大于或等于1的正整数。
发送单元,用于向该终端设备发送该波束训练响应。
可选的,在一些实施例方式中,接收单元,还用于接收该终端设备发送的N个随机接入前导码,N为大于或等于1的正整数。处理单元,还用于根据该N个随机接入前导码中每个随机接入前导码的时频资源,确定N个RA-RANT值。发送单元,还用于向该终端设备发送N个随机接入响应,该N个随机接入响应分别使用该N个RA-RNTI值加扰。
可选的,在一些实施方式中,接收单元,还用于接收该终端设备在该M个物理导频资源上分别使用M个波束发送的参考信号。处理单元,还用于根据接收到的参考信号,确定该M个波束中每个波束的波束质量值。处理单元,还用于根据该每个波束的波束质量值,确定反馈信息,该反馈信息包括该M个波束中的一个或多个波束的索引。
可选的,在一些实施方式中,处理单元,具体用于根据该每个波束的波束质量值,确定该反馈信息包括波束质量值最高的一个或多个波束的索引;或者根据该每个波束的波束 质量值,确定该反馈信息包括波束质量值大于预设阈值的一个或多个波束的索引。
可选的,在一些实施方式中,接收单元,还用于接收该终端设备发送的可用发送波束数量。发送单元,还用于根据该可用发送波束数量确定物理导频资源个数M,M等于或小于该可用发送波束数量。
可选的,在一些实施例中,该处理单元可以由处理器实现,该发送单元可以由发送器或收发器实现,该接收单元可以由接收器或收发器实现。
图4是根据本申请实施例提供的终端设备的结构框图。如图4所示,终端设备400包括处理器401、存储器402、发射机403、接收机404和天线405。
可以理解的是,尽管并未示出,终端设备400还可以包括其他装置,例如输入装置、输出装置、电池等。
处理器401可以包括操作一个或多个软件程序的功能。该软件程序可以存储在存储器402中。通常,处理器402和存储器402所存储的软件指令可以被配置为使终端设备400执行的动作。例如,处理器402能够操作连接程序。存储器402可以是制度存储器、闪存存储器、磁性存储设备,例如硬盘、软盘驱动器、磁带等等。存储器402可以存储一个或多个软件程序、指令、信息块、数据等等。
可选的,在一些实施例中,存储器402可以存储用于执行如图1所示方法中终端设备执行的方法的指令。处理器401可以执行存储器402中存储的指令结合其他硬件(例如发射机403、接收机404和天线405)完成如图1所示方法中终端设备执行的步骤,具体工作过程和有益效果可以参见图1所示实施例中终端设备的描述。
可选的,在另一些实施例中,存储器402可以存储用于执行如图3所示方法中终端设备执行的方法的指令。处理器401可以执行存储器402中存储的指令结合其他硬件(例如发射机403、接收机404和天线405)完成如图3所示方法中终端设备执行的步骤,具体工作过程和有益效果可以参见图3所示实施例中终端设备的描述。
图5是根据本申请实施例提供的网络侧设备的结构框图。如图5所示的网络侧设备500包括处理器501、存储器502和收发器503。
上述本申请实施例揭示的方法可以应用于处理器501中,或者由处理器501实现。处理器501可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器501中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器501可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器502,处理器501读取存储器502中的指令,结合其硬件完成上述方法的步骤。
可选的,在一些实施例中,存储器502可以存储用于执行如图1所示方法中网络侧设 备执行的方法的指令。处理器501可以执行存储器402中存储的指令结合其他硬件(例如收发器503和天线504)完成如图1所示方法中网络侧执行的步骤,具体工作过程和有益效果可以参见图1所示实施例中网络侧设备的描述。
可选的,在另一些实施例中,存储器502可以存储用于执行如图3所示方法中网络侧设备执行的方法的指令。处理器501可以执行存储器502中存储的指令结合其他硬件(例如收发器503)完成如图3所示方法中网络侧设备执行的步骤,具体工作过程和有益效果可以参见图3所示实施例中网络侧设备的描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内,因此本申请的保护范围应以权利要求的保护范围为准。

Claims (30)

  1. 一种跟踪波束的方法,其特征在于,所述方法包括:
    终端设备确定N个第一波束参考质量值,所述N个第一波束参考质量值分别对应于N个波束,N为大于或等于1的正整数;
    所述终端设备根据所述N个第一波束参考质量值和所述N个波束中的每个波束所属的小区,从所述N个波束中选择M个波束,其中M为大于或等于1且小于或等于N的正整数,所述M个波束属于所述终端设备的驻留小区或服务小区;
    所述终端设备将选择的M个波束指示给为该终端设备提供服务的网络侧设备。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备在对应于第一目标波束的索引的时频资源和/或码资源上向所述网络侧设备发送随机接入前导码,其中,所述第一目标波束为所述M个波束中第一波束参考质量值最高的波束。
  3. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述N个第一波束参考质量值和所述N个波束中的每个波束所属的小区,确定所述N个波束所属小区中至少一个小区中每个小区的最高的至少两个第一波束参考质量值的平均值;
    所述终端设备根据所述每个小区的最高的至少两个第一波束参考质量值的平均值,确定所述每个小区的第二波束参考质量;
    所述终端设备将所述每个小区的第二波束参考质量作为小区测量结果通过RRC层消息发送至所述网络侧设备。
  4. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述N个第一波束参考质量值和所述N个波束中的每个波束所属的小区,确定所述N个波束所属小区中至少一个小区中每个小区质量最高的第一波束参考质量值;
    所述终端设备根据所述每个小区最高的第一波束参考质量值,确定所述每个小区的第二波束参考质量值;
    所述终端设备将所述每个小区的第二波束参考质量值作为小区测量结果通过RRC层消息发送至所述网络侧设备。
  5. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述终端设备确定N个第二波束参考质量值,所述N个第二波束参考质量值中的第n个第二波束参考质量值是根据所述N个第一波束参考质量值中的第n个第一波束参考质量值确定的,n=1,…,N;
    所述终端设备根据所述N个第二波束参考质量值,确定第二波束跟踪消息;
    所述终端设备将所述第二波束跟踪消息发送至所述网络侧设备,其中所述第二波束跟踪消息为无线资源控制RRC层消息。
  6. 如权利要求5所述的方法,其特征在于,所述终端设备根据所述N个第二波束参考质量值,确定第二波束跟踪消息,包括:
    所述终端设备根据所述N个第二波束参考质量值、所述N个波束中的每个波束所属的小区和第三预设门限,确定所述第二波束跟踪消息,其中所述第二波束跟踪消息包括P个波束的索引,所述P个波束中的每个波束的第二波束参考质量值大于或等于所述第三预设门限,P为大于或等于1且小于或等于M的正整数。
  7. 如权利要求5所述的方法,其特征在于,所述终端设备根据所述N个第二波束参考质量值,确定第二波束跟踪消息,包括:
    所述终端设备根据所述N个第二波束参考质量值和所述N个波束中每个波束所属的小区,确定所述N个波束所属小区中至少一个小区中每个小区的至少两个参考波束,所述每个小区的至少两个参考波束为所述每个小区中第二波束参考质量值最高的至少两个波束;
    所述终端设备确定所述第二波束跟踪消息,所述第二波束跟踪消息包括确定的所述每个小区的至少两个参考波束的索引。
  8. 如权利要求3或4所述的方法,其特征在于,所述方法还包括:所述终端设备根据所述小区测量结果,确定是否满足预设测量事件。
  9. 如权利要求1至8中任一项所述的方法,其特征在于,所述M的取值是由所述网络侧设备指示给所述终端设备的。
  10. 一种跟踪波束的方法,其特征在于,所述方法包括:
    网络侧设备获取终端设备指示的M个波束,其中,所述M个波束属于所述终端设备的驻留小区或服务小区,M为大于或等于1的正整数;
    所述网络侧设备从所述M个波束中选择一个波束;
    所述网络侧设备使用选择的波束向所述终端设备发送下行消息。
  11. 如权利要求10所述的方法,其特征在于,所述方法还包括:
    所述网络侧设备接收所述终端设备发送的随机接入前导码;
    所述网络侧设备根据所述随机接入前导码使用的时频资源和/或码资源,确定第一目标波束,其中所述第一目标波束为所述M个波束中该第一波束参考质量值最高的波束。
  12. 如权利要求10或11所述的方法,其特征在于,所述方法还包括:所述网络侧设备接收所述终端设备发送的至少一个小区中每个小区的小区测量结果,其中所述每个小区的小区测量结果为所述每个小区的第二波束参考质量值,所述每个小区的第二波束参考质量是根据所述每个小区的最高的至少两个第一波束参考质量值的平均值确定的。
  13. 如权利要求10或11所述的方法,其特征在于,所述方法还包括:所述网络侧设备接收所述终端设备发送的至少一个小区中每个小区的小区测量结果,其中所述每个小区的小区测量结果包括所述每个小区的第二波束参考质量值,所述每个小区的第二波束参考质量值是根据所述每个小区最高的第一波束参考质量值确定的。
  14. 如权利要求10或11所述的方法,其特征在于,所述方法还包括:
    所述网络侧设备接收所述终端设备发送的第二波束跟踪消息,其中所述第二波束跟踪消息为RRC层消息,所述第二波束跟踪消息中包括P个波束的索引,所述P个波束中的每个波束的第二波束参考质量值大于或等于第三预设门限,P为大于或等于1且小于或等于M的正整数。
  15. 如权利要求10或11所述的方法,其特征在于,所述方法还包括:
    所述网络侧设备接收所述终端设备发送的第二波束跟踪消息,其中所述第二波束跟踪消息为RRC层消息,所述第二波束跟踪消息包括分别属于至少一个小区中每个小区的至少两个参考波束的索引,所述每个小区的至少两个参考波束为所述每个小区中第二波束参考质量值最高的至少两个波束。
  16. 如权利要求10至15中任一项所述的方法,其特征在于,所述M的取值是由所述网络侧设备指示给所述终端设备的。
  17. 一种终端设备,其特征在于,所述终端设备包括:
    处理单元,用于确定N个第一波束参考质量值,所述N个第一波束参考质量值分别对应于N个波束,N为大于或等于1的正整数;
    所述处理单元,还用于根据所述N个第一波束参考质量值和所述N个波束中的每个波束所属的小区,从所述N个波束中选择M个波束,其中M为大于或等于1且小于或等于N的正整数,所述M个波束属于所述终端设备的驻留小区或服务小区;
    发送单元,用于将选择的M个波束指示给为该终端设备提供服务的网络侧设备。
  18. 如权利要求17所述的终端设备,其特征在于,所述发送单元,还用于在对应于第一目标波束的索引的时频资源和/或码资源上向所述网络侧设备发送随机接入前导码,其中,所述第一目标波束为所述M个波束中第一波束参考质量值最高的波束。
  19. 如权利要求17或18所述的终端设备,其特征在于,所述处理单元,还用于根据所述N个第一波束参考质量值和所述N个波束中的每个波束所属的小区,确定所述N个波束所属小区中至少一个小区中每个小区的最高的至少两个第一波束参考质量值的平均值;
    所述处理单元,还用于根据所述每个小区的最高的至少两个第一波束参考质量值的平均值,确定所述每个小区的第二波束参考质量;
    所述发送单元,还用于将所述每个小区的第二波束参考质量作为小区测量结果通过RRC层消息发送至所述网络侧设备。
  20. 如权利要求17或18所述的终端设备,其特征在于,所述处理单元,还用于根据所述N个第一波束参考质量值和所述N个波束中的每个波束所属的小区,确定所述N个波束所属小区中至少一个小区中每个小区质量最高的第一波束参考质量值;
    所述处理单元,还用于根据所述每个小区最高的第一波束参考质量值,确定所述每个小区的第二波束参考质量值;
    所述发送单元,还用于将所述每个小区的第二波束参考质量值作为小区测量结果通过RRC层消息发送至所述网络侧设备。
  21. 如权利要求17或18所述的终端设备,其特征在于,
    所述处理单元,还用于确定N个第二波束参考质量值,所述N个第二波束参考质量值中的第n个第二波束参考质量值是根据所述N个第一波束参考质量值中的第n个第一波束参考质量值确定的,n=1,…,N;
    所述处理单元,还用于根据所述N个第二波束参考质量值,确定第二波束跟踪消息;
    所述发送单元,还用于将所述第二波束跟踪消息发送至所述网络侧设备,其中所述第二波束跟踪消息为无线资源控制RRC层消息。
  22. 如权利要求21所述的终端设备,其特征在于,所述处理单元,具体用于根据所 述N个第二波束参考质量值、所述N个波束中的每个波束所属的小区和第三预设门限,确定所述第二波束跟踪消息,其中所述第二波束跟踪消息包括P个波束的索引,所述P个波束中的每个波束的第二波束参考质量值大于或等于所述第三预设门限,P为大于或等于1且小于或等于M的正整数。
  23. 如权利要求21所述的终端设备,其特征在于,所述处理单元,具体用于根据所述N个第二波束参考质量值和所述N个波束中每个波束所属的小区,确定所述N个波束所属小区中至少一个小区中每个小区的至少两个参考波束,所述每个小区的至少两个参考波束为所述每个小区中第二波束参考质量值最高的至少两个波束;
    确定所述第二波束跟踪消息,所述第二波束跟踪消息包括确定的所述每个小区的至少两个参考波束的索引。
  24. 如权利要求19或20所述的终端设备,其特征在于,所述处理单元,还用于根据所述小区测量结果,确定是否满足预设测量事件。
  25. 一种网络侧设备,其特征在于,所述网络侧设备包括:
    接收单元,用于获取终端设备指示的M个波束,其中,所述M个波束属于所述终端设备的驻留小区或服务小区,M为大于或等于1的正整数;
    处理单元,用于从所述M个波束中选择一个波束;
    发送单元,用于使用选择的波束向所述终端设备发送下行消息。
  26. 如权利要求25所述的网络侧设备,其特征在于,所述接收单元,还用于接收所述终端设备发送的随机接入前导码;
    所述处理单元,还用于根据所述随机接入前导码使用的时频资源和/或码资源,确定第一目标波束,其中所述第一目标波束为所述M个波束中该第一波束参考质量值最高的波束。
  27. 如权利要求25或26所述的网络侧设备,其特征在于,所述接收单元,还用于接收所述终端设备发送的至少一个小区中每个小区的小区测量结果,其中所述每个小区的小区测量结果为所述每个小区的第二波束参考质量值,所述每个小区的第二波束参考质量是根据所述每个小区的最高的至少两个第一波束参考质量值的平均值确定的。
  28. 如权利要求25或26所述的网络侧设备,其特征在于,所述接收单元,还用于接收所述终端设备发送的至少一个小区中每个小区的小区测量结果,其中所述每个小区的小区测量结果包括所述每个小区的第二波束参考质量值,所述每个小区的第二波束参考质量值是根据所述每个小区最高的第一波束参考质量值确定的。
  29. 如权利要求25或26所述的网络侧设备,其特征在于,所述接收单元,还用于接收所述终端设备发送的第二波束跟踪消息,其中所述第二波束跟踪消息为RRC层消息,所述第二波束跟踪消息包括P个波束的索引,所述P个波束中的每个波束的第二波束参考质量值大于或等于第三预设门限,P为大于或等于1且小于或等于M的正整数。
  30. 如权利要求25或26所述的网络侧设备,其特征在于,所述接收单元,还用于接收所述终端设备发送的第二波束跟踪消息,其中所述第二波束跟踪消息为RRC层消息,所述第二波束跟踪消息包括分别属于至少一个小区中每个小区的至少两个参考波束的索引,所述每个小区的至少两个参考波束为所述每个小区中第二波束参考质量值最高的至少两个波束。
PCT/CN2017/096725 2016-08-10 2017-08-10 跟踪波束的方法、终端设备和网络侧设备 WO2018028618A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019507177A JP6896061B2 (ja) 2016-08-10 2017-08-10 ビームトラッキング方法、端末装置、及びネットワーク側装置
EP17838748.6A EP3493423B1 (en) 2016-08-10 2017-08-10 Method for beam tracking, terminal device and network side device
BR112019002698A BR112019002698A2 (pt) 2016-08-10 2017-08-10 método de rastreamento de feixe, dispositivo de terminal, dispositivo de lado de rede, sistema de comunicações, meio de armazenamento legível por computador e aparelho
AU2017311078A AU2017311078A1 (en) 2016-08-10 2017-08-10 Beam tracking method, terminal device, and network-side device
US16/271,214 US11233558B2 (en) 2016-08-10 2019-02-08 Beam tracking method, terminal device, and network-side device
AU2020256361A AU2020256361B2 (en) 2016-08-10 2020-10-14 Communications method, terminal device, network-side device, apparatus, and computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610651970.7A CN107733497B (zh) 2016-08-10 2016-08-10 跟踪波束的方法、终端设备和网络侧设备
CN201610651970.7 2016-08-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/271,214 Continuation US11233558B2 (en) 2016-08-10 2019-02-08 Beam tracking method, terminal device, and network-side device

Publications (1)

Publication Number Publication Date
WO2018028618A1 true WO2018028618A1 (zh) 2018-02-15

Family

ID=61162748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/096725 WO2018028618A1 (zh) 2016-08-10 2017-08-10 跟踪波束的方法、终端设备和网络侧设备

Country Status (7)

Country Link
US (1) US11233558B2 (zh)
EP (1) EP3493423B1 (zh)
JP (1) JP6896061B2 (zh)
CN (2) CN107733497B (zh)
AU (2) AU2017311078A1 (zh)
BR (1) BR112019002698A2 (zh)
WO (1) WO2018028618A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10700752B2 (en) * 2016-01-14 2020-06-30 Samsung Electronics Co., Ltd. System, method, and apparatus of beam-tracking and beam feedback operation in a beam-forming based system
WO2018231121A1 (en) * 2017-06-16 2018-12-20 Telefonaktiebolaget Lm Ericsson (Publ) Radio network node, wireless device and methods performed therein beam measuring for cell quality derivation
EP4284098A3 (en) * 2017-08-01 2024-03-27 Telefonaktiebolaget LM Ericsson (publ) A method, base station and a user equipment for selecting a set of beams to be monitored by said ue
US10700753B2 (en) * 2018-02-07 2020-06-30 Qualcomm Incorporated Reporting variation of beam quality for beam management
CN110381603B (zh) * 2018-04-13 2021-05-04 中国移动通信有限公司研究院 一种随机接入方法及终端
AU2018432105A1 (en) 2018-07-13 2021-02-11 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for indicating beam failure recovery, device, and storage medium
CN110753400A (zh) * 2018-07-24 2020-02-04 索尼公司 用户设备、电子设备、无线通信方法和存储介质
CN110912665B (zh) * 2018-09-18 2021-04-20 华为技术有限公司 数据传输的方法和装置
CN111385824B (zh) * 2018-12-29 2022-06-10 成都华为技术有限公司 一种信息传输方法、网络设备、终端设备及存储介质
US11528630B2 (en) * 2019-06-25 2022-12-13 Qualcomm Incorporated Methods and apparatus to facilitate layer 1 user equipment (UE) filtering for millimeter wave frequencies
CN112235837B (zh) * 2019-07-15 2022-07-12 华为技术有限公司 一种切换方法以及通信装置
CN111833612A (zh) * 2020-07-30 2020-10-27 合肥智企达信息科技有限公司 智能交通系统中的图像预警信息的传输方法及系统
US11963188B2 (en) * 2020-09-21 2024-04-16 Samsung Electronics Co., Ltd. System and method for beam tracking in a 5G new radio mmWave user equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015126130A1 (ko) * 2014-02-19 2015-08-27 삼성전자 주식회사 우선 순위를 갖는 송신 빔 인덱스 선택 및 할당 방법 및 장치
CN104955061A (zh) * 2014-03-28 2015-09-30 华为技术有限公司 波束选择方法及基站
CN105556869A (zh) * 2015-05-12 2016-05-04 瑞典爱立信有限公司 用于波束选择的方法和设备
CN105790886A (zh) * 2014-12-24 2016-07-20 中兴通讯股份有限公司 数据包发送、接收方法、装置、基站及终端

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8520537B2 (en) * 2008-08-08 2013-08-27 Futurewei Technologies, Inc. System and method for synchronized and coordinated beam switching and scheduling in a wireless communications system
US8538482B2 (en) * 2009-05-14 2013-09-17 Lg Electronics Inc. Apparatus and method for transmitting CoMP feedback information
WO2013176529A1 (en) * 2012-05-25 2013-11-28 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving reference signal in mobile communcation system using beamforming
CN103688474B (zh) * 2013-09-27 2018-06-05 华为技术有限公司 通信方法、基站和用户设备
CN105723639B (zh) * 2013-11-27 2018-06-01 瑞典爱立信有限公司 用于分别发送和检测同步信号和相关联的信息的网络节点、无线设备及其中的方法
JP6121931B2 (ja) 2014-03-20 2017-04-26 株式会社Nttドコモ 移動通信システム、基地局、およびユーザ装置
CN105207705A (zh) * 2014-06-23 2015-12-30 北京三星通信技术研究有限公司 有源天线系统中的参考信号收发方法及设备
JP6548720B2 (ja) * 2014-08-24 2019-07-24 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてビームフォーミングのための重み決定方法及びそのための装置
KR102363547B1 (ko) * 2014-11-26 2022-02-17 삼성전자주식회사 빔포밍을 이용한 통신 방법 및 장치
US9907093B2 (en) * 2014-12-29 2018-02-27 Electronics And Telecommunications Research Institute Method and apparatus for random access in communications system
US10700752B2 (en) * 2016-01-14 2020-06-30 Samsung Electronics Co., Ltd. System, method, and apparatus of beam-tracking and beam feedback operation in a beam-forming based system
KR102461619B1 (ko) * 2016-02-12 2022-11-02 삼성전자주식회사 무선 통신 시스템에서의 빔 포밍 장치 및 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015126130A1 (ko) * 2014-02-19 2015-08-27 삼성전자 주식회사 우선 순위를 갖는 송신 빔 인덱스 선택 및 할당 방법 및 장치
CN104955061A (zh) * 2014-03-28 2015-09-30 华为技术有限公司 波束选择方法及基站
CN105790886A (zh) * 2014-12-24 2016-07-20 中兴通讯股份有限公司 数据包发送、接收方法、装置、基站及终端
CN105556869A (zh) * 2015-05-12 2016-05-04 瑞典爱立信有限公司 用于波束选择的方法和设备

Also Published As

Publication number Publication date
AU2020256361A1 (en) 2020-11-12
EP3493423A4 (en) 2019-07-03
JP2019525643A (ja) 2019-09-05
JP6896061B2 (ja) 2021-06-30
BR112019002698A2 (pt) 2019-05-28
EP3493423B1 (en) 2023-10-04
CN107733497B (zh) 2020-09-29
AU2017311078A1 (en) 2019-02-28
CN107733497A (zh) 2018-02-23
US20190238210A1 (en) 2019-08-01
CN110417450B (zh) 2021-08-03
AU2020256361B2 (en) 2022-08-11
US11233558B2 (en) 2022-01-25
EP3493423A1 (en) 2019-06-05
CN110417450A (zh) 2019-11-05

Similar Documents

Publication Publication Date Title
WO2018028618A1 (zh) 跟踪波束的方法、终端设备和网络侧设备
US11405932B2 (en) Method and apparatus for power control of wireless communications
US20230344584A1 (en) Secondary cell activation method, access network device, and communications apparatus and system
US10574304B2 (en) Method, system and apparatus of beam selection
CN105830483B (zh) 波束配置方法、基站及用户设备
US20170195033A1 (en) Terminal, Base Station, Base Station Controller, and Millimeter-Wave Cellular Communication Method
EP3668194A1 (en) Random access power control method and apparatus, and communication system
WO2016184401A1 (en) Method and apparatus of enhanced paging
US20190058518A1 (en) Beam based communication device and access point
US10952168B2 (en) Method for transmitting downlink control signal and apparatus
US10813084B2 (en) Wireless communications method and system, base station, and user equipment
EP3580973B1 (en) Methods and apparatuses for random access transmission
WO2018229555A2 (en) Beam refinement and collision avoidance
WO2020034059A1 (en) Random access preamble transmission
CN114007213B (zh) 干扰协调处理方法及相关设备
US11445436B2 (en) Cell selection and resource allocation thresholds
US20220303963A1 (en) Signal allocation in a carrier
JP5893205B2 (ja) ポータブル・ロング・ターム・エボリューション・ローカル・エリア・ネットワーク間干渉に関わるセル間干渉検出
KR20150008317A (ko) 반송파 집적 동작시 동시 전송 방식 적용을 위한 셀 구성 변경 방법 및 그 방법을 수행하는 이동 통신 시스템과 디지털 신호 처리 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838748

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019507177

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017311078

Country of ref document: AU

Date of ref document: 20170810

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017838748

Country of ref document: EP

Effective date: 20190301

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019002698

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112019002698

Country of ref document: BR

Free format text: APRESENTE O COMPLEMENTO DO TEXTO EM PORTUGUES, ADAPTADO A NORMA VIGENTE, DO PEDIDO CONFORME DEPOSITO INTERNACIONAL INICIAL (RELATORIO DESCRITIVO E DESENHO, SE HOUVER), CONFORME DETERMINA A RESOLUCAO INPI PR NO 77/2013 DE 18/03/2013, ART. 5O E 7O.

REG Reference to national code

Ref country code: BR

Ref legal event code: B01Y

Ref document number: 112019002698

Country of ref document: BR

Kind code of ref document: A2

Free format text: ANULADA A PUBLICACAO CODIGO 1.5 NA RPI NO 2523 DE 14/05/2019 POR TER SIDO INDEVIDA.

ENP Entry into the national phase

Ref document number: 112019002698

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190208