WO2018028523A1 - 一体化雨感应智能恒温生态幕墙系统及控温方法 - Google Patents

一体化雨感应智能恒温生态幕墙系统及控温方法 Download PDF

Info

Publication number
WO2018028523A1
WO2018028523A1 PCT/CN2017/096089 CN2017096089W WO2018028523A1 WO 2018028523 A1 WO2018028523 A1 WO 2018028523A1 CN 2017096089 W CN2017096089 W CN 2017096089W WO 2018028523 A1 WO2018028523 A1 WO 2018028523A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
signal
chip microcomputer
opening
rainfall
Prior art date
Application number
PCT/CN2017/096089
Other languages
English (en)
French (fr)
Inventor
冯华国
Original Assignee
金粤幕墙装饰工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金粤幕墙装饰工程有限公司 filed Critical 金粤幕墙装饰工程有限公司
Publication of WO2018028523A1 publication Critical patent/WO2018028523A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/88Curtain walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/58Remote control using Internet communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air

Definitions

  • the invention relates to the field of curtain walls, in particular to an integrated rain-sensing intelligent constant temperature ecological curtain wall system and a temperature control method.
  • the curtain wall is the “outerwear” of the building. Most of the modern buildings are decorated with curtain walls.
  • the large-scale shopping malls, office buildings and other buildings have high requirements for the comfort of their internal environment. They are generally equipped with air-conditioning systems for cooling or heating, so that the indoors are kept. Constant temperature, but this also brings great air conditioning energy consumption problems.
  • the curtain wall serves as an intermediate for indoor and outdoor heat exchange and plays an important role in maintaining the constant temperature environment in the building.
  • FIG. 4 illustrates a constant temperature curtain wall in the prior art, which comprises an inner layer glass 1, an outer layer glass 2 and a middle spacer layer 3 formed therebetween.
  • the compartment 3 constitutes an air buffer layer, which reduces heat exchange between indoor and outdoor, and makes the indoor temperature relatively stable.
  • the lower part of the outer glass 2 is provided with an air inlet 21, and the upper part is provided with an air outlet 22, which can rely on natural ventilation to the middle.
  • the heat of the solar radiation in the compartment 3 is discharged to the air outlet 22, and the air inlet 21 and the air outlet 22 are opened in the summer to perform natural exhaust air cooling, and the air inlet 21 and the air outlet 22 are closed in winter, and the heat of the solar radiation is turned on.
  • the door or window enters the room to reduce the loss of indoor heat energy, thereby saving energy and air conditioning operation and maintenance costs.
  • this constant temperature curtain wall is not significant, mainly due to its passive nature, which is reflected, for example, in summer, the average temperature in the mall is 24 degrees, and the outdoor temperature can reach 37 degrees, and the temperature difference is above 10 degrees. Even if the air inlet and the air outlet of the above-mentioned constant temperature curtain wall are opened for ventilation, according to the chimney effect, although the airflow flowing in the middle spacer layer can carry away part of the heat, the airflow is still a hot airflow with a relatively high temperature, and it is difficult to make the middle interval.
  • x is the coordinate on the heat transfer surface
  • q is the heat flux density transmitted in the x direction
  • dt/dx is the temperature change rate of the object along the x direction
  • - indicates that the heat transfer direction is opposite to the temperature change rate.
  • the rate of heat transfer is proportional to the temperature difference.
  • the invention patent No. CN104453039A discloses a composite temperature-controlled curtain wall of three-layer glass structure, which has a three-layer glass curtain wall, and pre-cools or preheats the air in the inner sandwich duct through the semiconductor thermoelectric temperature control module to make the curtain wall
  • the integral active heat exchange realizes the heat insulation or heat preservation function, and the outer sandwich air passage retains the passive heat exchange technology of the natural ventilation technology, so that the indoor, the inner interlayer, the outer interlayer and the outdoor sequentially form a plurality of temperature gradients, thereby reducing the heat exchange rate and playing the role.
  • Better energy saving but still has defects.
  • the working mode is single, and no matter which work is used
  • the outer interlayer and the inner interlayer are separated by the middle partition glass, and both the outdoor and outer interlayers and the inner interlayer and the indoor chamber can only be exchanged by heat transfer, and the entire curtain wall cannot "breath", and the above two points are integrated.
  • the inner interlayer and the indoor temperature adjustment can only rely on the semiconductor thermoelectric temperature control module and the air conditioner to actively cool or heat, and the load is large.
  • the energy saving for the air conditioner is a loss, and the energy saving needs to be improved.
  • the single working mode makes the curtain wall Lack of resilience to changes in the outdoor environment. If heavy rain strikes, opening the upper and lower dampers will cause a large amount of rainwater to be poured into the outer mezzanine and impact the curtain wall structure.
  • the first object of the present invention is to provide an integrated rain-sensing intelligent constant temperature ecological curtain wall system, which has a smarter working mode, improved energy-saving effect and ability to adapt to environmental changes.
  • An integrated rain-sensing intelligent constant temperature ecological curtain wall system comprising an integrated unit module, the unit module is integrally installed on the curtain wall installation structure, the unit module comprises an inner glass and an outer glass, an inner glass and an outer layer There is a hollow compartment between the glass, the upper part of the outer glass is provided with an air outlet, and the lower part is provided with an air inlet.
  • the inner layer glass is provided with a venting opening, and the air outlet, the air inlet and the venting opening are respectively provided with an opening and closing mechanism for opening and closing;
  • the integrated rain-sensing intelligent constant temperature ecological curtain wall system further includes a single-chip microcomputer, and the single-chip microcomputer is coupled with
  • the indoor temperature sensor is set indoors and is used for detecting the indoor temperature and feeding back the indoor temperature signal Ti to the single chip microcomputer;
  • a compartment temperature sensor disposed in the hollow compartment, for detecting the temperature of the hollow compartment and feeding back the interlayer temperature signal Tm to the single chip microcomputer;
  • the outdoor temperature sensor is set outdoors, and is used for detecting the outdoor temperature and feeding back the outdoor temperature signal To to the single chip microcomputer;
  • the rain sensor is set outdoors, and is used for detecting the outdoor rainfall and feeding back the rain signal Vr to the single chip microcomputer;
  • the temperature control device is disposed on the curtain wall installation structure in the hollow compartment, controlled by the single chip microcomputer to cool or heat;
  • the driving device is disposed on the opening and closing mechanism, controlled by the single chip microcomputer to drive the opening and closing mechanism to open and close;
  • a communication device for communicating with a control panel of the air conditioning system
  • the microcontroller has an internal:
  • a state reading unit configured to learn, by the communication device, that the working state of the indoor air conditioning system is cooling or heating;
  • a rainfall comparison unit configured to compare the rainfall signal Vr with a preset safety rainfall signal Vs to obtain a rainfall comparison result
  • a cooling control unit is configured to start when the state reading unit reads that the air conditioning system is in a cooling state, send a cooling signal to the temperature control device, and compare the indoor temperature signal Ti with the interlayer temperature signal Tm, and the compartment temperature signal Tm Compared with the outdoor temperature signal To, the temperature comparison result is obtained, and the air inlet and the exhaust air are determined in combination with the rainfall comparison result and the temperature comparison result.
  • the heating control unit is configured to start when the state reading unit reads that the air conditioning system is in a heating state, send a heating signal to the temperature control device, and compare the indoor temperature signal Ti with the interlayer temperature signal Tm, and the compartment is The temperature signal Tm is compared with the outdoor temperature signal To to obtain a temperature comparison result, and the opening and closing scheme of the air inlet, the air outlet and the vent is determined in combination with the rainfall comparison result and the temperature comparison result.
  • the driving device drives the opening and closing mechanism to open and close in response to a control signal sent by the cooling control unit or the heating control unit to execute a corresponding opening and closing scheme
  • the temperature control device cools in response to the refrigeration signal and heats in response to the heating signal.
  • the temperature of the indoor, compartment and outdoor is detected by the temperature sensor, and combined with the rainfall detected by the rain sensor as the basis for judging which working mode is adopted, and the key to achieving better energy saving effect is to achieve the need.
  • the indoor and middle compartment temperatures are lowered by the air conditioning system, the temperature control device, and the chimney effect, and the relationship between Ti, Tm, and To is changed to a new state.
  • the exhaust vents can make the outdoor cold air flow into the room, and form a cold and hot flow directly with the indoor hot air, which can quickly reduce the indoor temperature; when Ti>Tm ⁇ To, at this time, when the solar radiation is weak or not, the indoor and outdoor environment changes rapidly, such as indoor equipment, the flow of people increases, the activity increases, the temperature rises, on cloudy days, the outdoor urban heat flow, The local high temperature caused by the flow of people flows.
  • the layer and the room maintain the steady state; the above includes all combinations of Ti, Tm, and To, and for the cooling mode, Ti ⁇ Tm ⁇ To, the final state when the vent, the air inlet, and the exhaust vent are in the cooling mode, and Steady state, and other conditions are transient, and it is also a necessary process in the refrigeration process with different initial conditions.
  • the temperature control device under the control of the single-chip microcomputer, the temperature control device is cooled, and the air conditioning system works together, always Ti , Tm, To to the steady state of Ti ⁇ Tm ⁇ To to establish, and whenever the combination of Ti, Tm, To changes, the microcontroller controls the drive to perform the corresponding opening and closing scheme, the entire cooling and reach the target
  • the temperature maintains the steady state process, and the multi-operation mode automatically switches according to the detection result.
  • the natural heat exchange is used to rapidly cool down, and the energy consumption of the air conditioning system is reduced to save energy.
  • the steady state is reached, the indoor, middle compartment, and outdoor temperature are reached.
  • the gradient is presented, the temperature difference between the two is small, the heat transfer rate is reduced, energy consumption is saved, and the two can only pass the glass heat transfer without direct cold and heat intersection, the temperature environment can be maintained relatively stable, and the air conditioning system is frequently reduced.
  • Start and stop to achieve energy saving while the outdoor rainfall is taken into consideration during the work mode switching.
  • the rainfall is the first priority, the rainfall exceeds the standard, the air inlet and the exhaust vent are closed, ensuring safety, adapting to changes in the external environment, and the whole system is intelligent and energy-saving; similarly, heating is the reverse process of refrigeration, and can also be deduced. Get the same beneficial effect.
  • the integrated rain-sensing intelligent constant temperature ecological curtain wall system further includes a host computer, and the single-chip microcomputer is connected to the host computer through a bus.
  • the single-chip microcomputer interacts with the information of the upper computer through the bus, and can be centrally monitored by the upper computer.
  • the opening and closing mechanism is a blind.
  • the blinds have better concealment and ornamental, and the installation is convenient.
  • the driving device includes a driving module and a motor, and a driving shaft of the motor is coupled to a rotating shaft of the louver, and the driving module is coupled and controlled by the single chip microcomputer to drive the motor to be reversed.
  • the motor is driven by the driving module to rotate forward and reverse, and the rotating shaft of the louver is rotated forward and reverse to realize the opening and closing of the vent, the air inlet and the air outlet.
  • the communication device is a wireless communication module.
  • the air conditioning control system has a wireless communication function, and obtains working state information through wireless communication, thereby reducing wiring costs.
  • the models of the indoor temperature sensor, the compartment temperature sensor, and the outdoor temperature sensor are all DS18B20.
  • the DS18B20 is small in size, suitable for installation in various environments, has strong resistance to harsh environments, and is digital output, saving analog-to-digital conversion, low hardware overhead, using a three-wire system to connect a single-chip microcomputer, simplifying the scheme, and also having Strong anti-interference ability and high precision.
  • the state reading unit is further capable of reading the working state of the air conditioning system as standby;
  • the single chip microcomputer further includes a standby control unit, configured to start when the state reading unit reads that the air conditioning system is in a standby state, and send a standby signal to the temperature control device;
  • a second object of the present invention is to provide a temperature control method with a smarter working mode, improved energy saving effect, and ability to adapt to environmental changes.
  • a temperature control method based on the above integrated rain sensing intelligent constant temperature ecological curtain wall system including
  • Step 1 detecting the indoor temperature through the indoor temperature sensor set indoors and feeding back the indoor temperature signal Ti to the single chip microcomputer;
  • the outdoor rainfall is detected by a rain sensor provided outdoors and the rain signal Vr is fed back to the single chip microcomputer;
  • Step 2 When the MCU knows that the air conditioning system is in a cooling state, it sends a cooling signal
  • Step 3 providing a temperature control device on the curtain wall installation structure in the hollow partition layer, wherein the temperature control device is cooled in response to the refrigeration signal, and is heated in response to the heating signal;
  • the driving device drives the opening and closing mechanism to open or close the vent, the air inlet, and the air vent in response to the control signal to perform a corresponding opening and closing scheme.
  • the communication device is further configured to communicate with the control panel of the air conditioning system to enable the single chip microcomputer to know that the working state of the indoor air conditioning system is standby;
  • the method further includes: when the single-chip microcomputer knows that the air-conditioning system is in the standby state, sending a standby signal to the temperature control device; and when the rain comparison result is Vr ⁇ Vs, outputting the control of simultaneously opening the vent, the air inlet, and the air outlet signal;
  • a third object of the present invention is to provide an integrated rain-sensing intelligent constant temperature ecological curtain wall system, which has a smarter working mode, improved energy-saving effect and ability to adapt to environmental changes.
  • An integrated rain-sensing intelligent constant temperature ecological curtain wall system comprising an integrated unit module, the unit module is integrally installed on the curtain wall installation structure, the unit module comprises an inner glass and an outer glass, an inner glass and an outer layer
  • the glass is a hollow partition, the upper part of the outer glass is provided with an air outlet, and the lower part is provided with an air inlet, and the feature is:
  • the air outlet and the air inlet are respectively provided with an opening and closing mechanism for opening and closing;
  • the integrated rain-sensing intelligent constant temperature ecological curtain wall system further includes a single-chip microcomputer, and the single-chip microcomputer is coupled with
  • a compartment temperature sensor disposed in the hollow compartment, for detecting the temperature of the hollow compartment and feeding back the interlayer temperature signal Tm to the single chip microcomputer;
  • the outdoor temperature sensor is set outdoors, and is used for detecting the outdoor temperature and feeding back the outdoor temperature signal To to the single chip microcomputer;
  • the rain sensor is set outdoors, and is used for detecting the outdoor rainfall and feeding back the rain signal Vr to the single chip microcomputer;
  • the driving device is disposed on the opening and closing mechanism, controlled by the single chip microcomputer to drive the opening and closing mechanism to open and close;
  • the microcontroller has an internal:
  • a rainfall comparison unit for comparing the rainfall signal Vr with a preset safety rainfall signal Vs;
  • the temperature control unit is disposed on the curtain wall installation structure in the hollow layer, and is controlled by the single-chip microcomputer to realize the cooling mode or the heating mode and combined with the air opening and closing scheme to adjust the temperature of the hollow layer to maintain the temperature of the hollow layer at the preset temperature signal Tx.
  • the single-chip microcomputer controls the opening and closing mechanism to be closed
  • the microcontroller has the following three operating strategies:
  • the present invention has the following beneficial effects: combining indoor and middle compartments and outdoor temperature, rainfall detection results, intelligently switching various working modes, and being able to utilize natural heat exchange quickly when the air conditioning system is turned on for cooling or heating. Cooling or warming up, reducing the energy consumption of the air conditioning system.
  • the indoor, middle, and outdoor layers are isolated from each other. The temperature difference between the two is kept small, and the rate of heat transfer through the glass is reduced to achieve a better constant temperature effect. Reduce the frequent start and stop of air-conditioning systems, save energy, and have better adaptability to changes in the external environment.
  • Figure 1 is a schematic cross-sectional view of an embodiment
  • FIG. 2 is a schematic diagram of a circuit part of a single chip microcomputer and a peripheral
  • Figure 3 is a system diagram of an embodiment
  • Figure 4 is a cross-sectional view of the prior art.
  • an integrated rain-sensing intelligent constant temperature ecological curtain wall system includes a mechanical part and a circuit part, a mechanical part
  • the utility model comprises an integrated unit module installed on the side of the building, the unit module comprises an inner layer glass 1 and an outer layer glass 2, and the curtain wall installation structure is composed of a transverse keel and a longitudinal keel, and the unit module is integrally installed on the curtain wall installation structure.
  • the inner glass 1 is located on the inner side
  • the outer glass 2 is located on the outer side
  • a hollow compartment 3 is formed therebetween.
  • a small air conditioner 5 is installed on the lateral keel or longitudinal keel in the hollow compartment 3 for cooling or heating.
  • the upper part of the layer glass 2 is provided with an air outlet 22, the lower part is provided with an air inlet 21, the inner layer glass 1 is provided with a venting opening 11, and the air outlet 22, the air inlet 21 and the vent opening 11 are provided with louvers 4, and the louver 4
  • the rotating shaft is rotated by the motor to rotate forward and reverse to open and close.
  • the circuit portion includes a single chip microcomputer, and the single chip is connected with an indoor temperature sensor 61 mounted on the indoor wall for detecting the indoor temperature and feeding back the indoor temperature signal Ti to the single chip; installing in the hollow compartment 3 a compartment temperature sensor 62 on the curtain wall connection structure for detecting the temperature of the hollow compartment 3 and feeding back the interlayer temperature signal Tm to the single chip; an outdoor temperature sensor 63 mounted on the outdoor upper curtain wall connection structure for detecting the outdoor temperature And feeding the outdoor temperature signal To to the single-chip microcomputer; the rain sensor 64 installed on the outdoor lower curtain wall connection structure is used for detecting the outdoor rainfall and feeding the rain signal Vr to the single-chip microcomputer; the wireless communication module is used for communicating with the control panel of the air-conditioning system, In order to make the MCU know that the working state of the indoor air conditioning system is cooling or heating or standby, and the small air conditioner 5 controlled by the single chip microcomputer also performs cooling or heating or standby.
  • the temperature sensor of the model DS18B20 is used, and the rain sensor 64 can adopt the Qingsheng CG-04ABS rainfall sensor, and the model of the single chip is AT89C51.
  • the single-chip microcomputer compares the rainfall signal Vr with the preset safe rainfall signal Vs to obtain a rainfall comparison result; compares the indoor temperature signal Ti with the interlayer temperature signal Tm, and compares the interlayer temperature signal Tm with the outdoor temperature signal To to obtain a temperature comparison result; And determining the opening and closing scheme of the air inlet 21, the air outlet 22 and the vent 11 according to the rain comparison result and the temperature comparison result;
  • the driving module is a motor forward and reverse driving circuit to execute the opening and closing scheme.
  • the MCU also connects to the host computer through the RS232 bus. See Figure 3.
  • the control panel sends a control signal to the air conditioner.
  • the MCU also communicates with the control panel to know the working status of the air conditioning system, combined with temperature detection and rainfall detection.
  • the control mechanical part performs the opening and closing scheme, the temperature detection and the rainfall detection are real-time, and the real-time here has substantially a certain time interval, according to the detection interval set by the single-chip microcomputer, when the relationship between Ti, Tm, and To changes, It also changes the opening and closing scheme in real time.
  • the integrated rain-sensing intelligent constant temperature ecological curtain wall system is also a dynamic process.
  • the single-chip microcomputer establishes contact with the upper computer through the bus, and multiple single-chip microcomputers can be Centralized monitoring of the host computer makes it easier to achieve a wider range of constant temperature energy-saving controls.
  • Energy-saving principle By detecting the temperature of indoor, compartment and outdoor, combined with rainfall as the basis for judging which working mode to take, and to achieve better energy-saving effect, the key lies in the process of achieving the required indoor ambient temperature (refrigeration or In the application of non-electrical energy-driven natural heat exchange, the air conditioning system load is reduced and the temperature environment is maintained when the required indoor indoor temperature is reached, so that the air conditioning system does not start and stop frequently, thereby, because of weather, construction
  • the internal environment is changeable, so that there are various combinations of indoor, middle and outdoor layers, and for each combination, there is a corresponding energy-saving scheme.
  • the indoor ventilation effect is not good, and occurs when the middle compartment is exposed to long-term solar heat radiation.
  • the outdoor ambient temperature is lower than the indoor and middle compartments, and the vent 11 and the air inlet 21 and the exhaust vent 22 are opened at the same time.
  • a chimney effect is formed in the compartment, the hot airflow rises, and a relatively cold airflow is replenished into the middle compartment, and the temperature control device starts cooling and can enter Steps promote the chimney effect, accelerate the reduction of the temperature of the middle compartment, and the cold air also enters the room through the vent 11 to form a cold and hot flow directly with the indoor hot air, which can rapidly reduce the indoor temperature and make the indoor air conditioning system in the refrigeration process.
  • Opening the venting opening 11, the air inlet 21, and the air outlet 22 enable the outdoor cold airflow to flow into the room, and directly form a cold and heat flow with the indoor hot air, which can quickly reduce the indoor temperature; when Ti>Tm ⁇ To, at this time
  • indoor and outdoor environments change rapidly, such as indoor equipment, people's traffic increases, activity increases, and temperature rises.
  • cloudy days local urban heat flow and local traffic flow cause locality.
  • the air inlet 21 and the air outlet 22 are closed at this time to prevent the outdoor hot air from flowing into the middle partition layer, and the vent 11 is opened to make the cold air flow of the middle interval layer and the hot air flow in the room meet, thereby reducing the indoor temperature and reducing the air conditioning system.
  • the air outlet 22 prevents hot air from entering the middle partition and the room to maintain the steady state; the above includes all combinations of Ti, Tm, and To, and for the cooling mode, Ti ⁇ Tm ⁇ To, closing the vent 11, and the air inlet 21, the exhaust vent 22 is made
  • the final state and steady state in the mode, and other conditions are transient, and also the necessary process in the refrigeration process with different initial conditions. Therefore, under the control of the single-chip microcomputer, the temperature control device is cooled, and at every time When the combination mode of Ti, Tm, and To is changed, the single-chip microcomputer controls the driving device to execute the corresponding opening and closing scheme, and the whole cooling mode and the process of maintaining the target temperature are maintained, and the multiple working modes are automatically switched.
  • the natural heat exchange is used to quickly cool down. Reduce the energy consumption of the air conditioning system to save energy.
  • the indoor, middle, and outdoor temperatures show a gradient. The temperature difference between the two is small, the heat transfer rate is reduced, energy is saved, and the two can only pass the glass heat. Passing without direct hot and cold intersection, the temperature environment can be relatively stable, reduce the frequent start and stop of the air conditioning system, and achieve energy saving.
  • the outdoor rainfall is taken as a consideration, and thus the rainfall is the first priority. The rainfall exceeds the standard, and the air inlet 21 and the air outlet 22 are closed to ensure safety and adaptability to changes in the external environment. Intelligent systems, energy; likewise, the heating process is the reverse of the cooling, can be derived the same way to obtain the same technical effect.
  • An integrated rain-sensing intelligent constant temperature ecological curtain wall system comprising an integrated unit module, the unit module is integrally installed on the curtain wall installation structure, and the unit module comprises an inner glass 1 and an outer glass 2, and the inner glass 1 And outer glass 2 Between the hollow compartment 3, the upper part of the outer glass 2 is provided with an air outlet 22, and the lower part is provided with an air inlet 21, which is characterized by:
  • the air outlet 22 and the air inlet 21 are respectively provided with an opening and closing mechanism for opening and closing;
  • the integrated rain-sensing intelligent constant temperature ecological curtain wall system further includes a single-chip microcomputer, and the single-chip microcomputer is coupled with
  • a compartment temperature sensor 62 disposed in the hollow compartment 3, for detecting the temperature of the hollow compartment 3 and feeding back the interlayer temperature signal Tm to the single chip microcomputer;
  • the outdoor temperature sensor 63 is disposed outside, and is used for detecting the outdoor temperature and feeding back the outdoor temperature signal To to the single chip microcomputer;
  • the rain sensor 64 is disposed outside, and is used for detecting the outdoor rainfall and feeding back the rain signal Vr to the single chip microcomputer;
  • the driving device is disposed on the opening and closing mechanism, controlled by the single chip microcomputer to drive the opening and closing mechanism to open and close;
  • the microcontroller has an internal:
  • a rainfall comparison unit for comparing the rainfall signal Vr with a preset safety rainfall signal Vs;
  • the temperature control unit is disposed on the curtain wall installation structure in the hollow layer, and is controlled by the single-chip microcomputer to realize the cooling mode or the heating mode and combined with the air opening and closing scheme to adjust the temperature of the hollow layer to maintain the temperature of the hollow layer at the preset temperature signal Tx.
  • the single-chip microcomputer controls the opening and closing mechanism to be closed
  • the microcontroller has the following three operating strategies:

Abstract

一种一体化雨感应智能恒温生态幕墙系统,包括一体化的单元式模块,其包括内层玻璃(1)和外层玻璃(2),内层玻璃(1)和外层玻璃(2)之间为中空隔层(3),外层玻璃(2)的上部和下部分别设有排风口(22)和进风口(21),内层玻璃(1)上设有通风口(11),能够根据室内温度、中空隔层温度、室外温度和室外雨量,智能切换工作模式。还提供一种运用该幕墙系统的控温方法。由此该幕墙系统实现智能控温,降低空调系统的能耗。

Description

一体化雨感应智能恒温生态幕墙系统及控温方法 技术领域
本发明涉及幕墙领域,特别涉及一体化雨感应智能恒温生态幕墙系统及控温方法。
背景技术
幕墙是建筑的“外衣”,现代化建筑大多采用幕墙装饰,其中大型商场、办公楼等建筑对其内部环境的舒适性具有较高要求,一般都配备有空调系统进行制冷或制热,使室内保持恒温,但是这也带来了极大的空调能耗问题,幕墙作为室内和室外热交换的中间体,在建筑内恒温环境的保持中起到重要作用。
顺应上述趋势,恒温幕墙逐渐进入人们的视野,图4示意了现有技术中的一种恒温幕墙,它包括内层玻璃1、外层玻璃2以及两者之间形成的中间隔层3,中间隔层3构成空气缓冲层,减少室内外之间的热交换,使室内温度相对稳定,外层玻璃2的下部设置进风口21,上部设置排风口22,该恒温幕墙能依靠自然通风将中间隔层3中太阳辐射的热量向排风口22排出,夏季开启进风口21、排风口22,进行自然排风降温,冬季关闭进风口21、排风口22,利用太阳辐射的热量经开启的门或窗进入室内,减少室内热能的损失,从而节约能源和空调运行维修费用。
但是这种恒温幕墙的恒温和节能性并不显著,主要由于其被动性,体现为,例如夏季,商场内气温平均在24度,而室外温度可达到37度,温差在10度以上,此时即使开启上述的恒温幕墙的进风口、排风口进行通风,根据烟囱效应,虽然中间隔层中流通的气流能带走部分热量,但该气流仍为温度较高的热气流,难以使中间隔层内温度得到较大的降低,由此内层玻璃两侧的温差较大,根据热传递速率计算公式:q=-λA(dt/dx),λ为导热系数,A为传热面积,t为温度,x为在导热面上的坐标,q是沿x方向传递的热流密度,dt/dx是物体沿x方向的温度变化率,-表示热量传递方向与温度变化率方向相反,可以看出,热传递的速率与温度差成正比,此时室内外的热交换量较大,空调能耗问题依然显著,被动性地依靠自然热效应换热难以取得较好的节能效果。
公布号为CN104453039A的发明专利公开了一种三层玻璃结构的复合式温控幕墙,具有三层玻璃幕墙,通过半导体热电温控模块对内侧夹层风道中的空气进行预冷或预热,使幕墙整体主动式换热实现隔热或保温功能,外侧夹层风道保留自然通风技术被动式换热,使室内、内侧夹层、外侧夹层以及室外顺次形成多个温度梯度,降低了热交换速率,起到更好的节能效果,但是仍存在缺陷,一方面,它只有三种工作模式,并单纯依据环境温度<5度 (冬季)、>28度(夏季),以及>5度但<28度(过渡季节,即春、秋季)三个区间范围去确定采用哪种工作模式,工作模式单一,且无论采用哪种工作模式,外侧夹层和内侧夹层均由中间隔断玻璃隔断,室外、外侧夹层两者与内侧夹层、室内两者,只能通过热传递的方式热交换,幕墙整体无法“呼吸”,综合前述两点,内侧夹层以及室内的温度调节只能依靠半导体热电温控模块和空调主动制冷或制热,负荷较大,对空调节能是一种损失,节能性有待提升,另一方面,单一的工作模式使幕墙对室外环境变化缺少应变能力,如暴雨来袭,开启上下端风门将使外侧夹层内灌入大量雨水,冲击幕墙结构。
发明内容
本发明的第一目的在于提供一种一体化雨感应智能恒温生态幕墙系统,具有更智能的工作模式,提高节能效果及对环境变化应变能力。
本发明的上述第一目的是通过以下技术方案得以实现的:
一种一体化雨感应智能恒温生态幕墙系统,包括一体化的单元式模块,单元式模块在幕墙安装结构上一体式安装,单元式模块包括内层玻璃和外层玻璃,内层玻璃和外层玻璃之间为中空隔层,外层玻璃的上部设有排风口,下部设有进风口,
内层玻璃设有通风口,所述排风口、进风口、通风口均设有用于启闭的启闭机构;
所述一体化雨感应智能恒温生态幕墙系统还包括单片机,所述单片机耦接有
室内温度传感器,设置在室内,用于检测室内温度并向单片机反馈室内温度信号Ti;
隔层温度传感器,设置在中空隔层,用于检测中空隔层温度并向单片机反馈隔层温度信号Tm;
室外温度传感器,设置在室外,用于检测室外温度并向单片机反馈室外温度信号To;
雨量传感器,设置在室外,用于检测室外雨量并向单片机反馈雨量信号Vr;
温控装置,设置在中空隔层内的幕墙安装结构上,受控于单片机以制冷或制热;
驱动装置,设置在启闭机构上,受控于单片机以驱动启闭机构启闭;
通讯装置,用于与空调系统的控制面板通讯;
所述单片机内部具有:
状态读取单元,用于通过通讯装置获知室内空调系统的工作状态为制冷或制热;
雨量比较单元,用于将雨量信号Vr与预设的安全雨量信号Vs比较得到雨量比较结果;
制冷控制单元,用于在状态读取单元读取到空调系统处于制冷状态时启动,向温控装置发送制冷信号,并将室内温度信号Ti与隔层温度信号Tm比较,将隔层温度信号Tm与室外温度信号To比较,得到温度比较结果,并结合雨量比较结果和温度比较结果确定进风口、排风 口和通风口的启闭方案
Figure PCTCN2017096089-appb-000001
生成并向驱动装置发送相应的控制信号;
制热控制单元,用于在状态读取单元读取到空调系统处于制热状态时启动,向温控装置发送制热信号,并将室内温度信号Ti与隔层温度信号Tm比较,将隔层温度信号Tm与室外温度信号To比较,得到温度比较结果,并结合雨量比较结果和温度比较结果确定进风口、排风口和通风口的启闭方案
Figure PCTCN2017096089-appb-000002
生成并向驱动装置发送相应的控制信号;
所述驱动装置响应于制冷控制单元或制热控制单元发出的控制信号驱动启闭机构启闭以执行对应的启闭方案;
所述温控装置响应于制冷信号制冷,响应于制热信号制热。
采用上述技术方案,通过温度传感器检测室内、隔层、室外的温度,并结合雨量传感器检测到的雨量作为判断采取何种工作模式的依据,而要达到更好的节能效果,关键在于在达到需要的室内环境温度的过程(制冷或制热)中对非电能驱动的自然热交换的应用,降低空调系统负荷以及在达到所需室内环境温度时,维持稳定的温度环境,使空调系统不要频繁启停,由此,因为天气、建筑内环境多变,使得室内、中间隔层、室外具有多种组合情况,而针对每种组合情况,均有相应的节能方案应对,处于制冷模式时,当Ti>Tm>To,该情形通常在室内通风效果不好,且在中间隔层受到长时间太阳热辐射时发生,此时室外环境温度 相对室内、中间隔层较低,同时开启通风口以及进风口、排风口,中间隔层内形成烟囱效应,热气流上升,相对较冷的气流补充入中间隔层内,温控装置启动制冷,能进一步促进烟囱效应,加快降低中间隔层温度,同时冷气流也通过通风口进入室内,与室内热空气直接形成冷热流交汇,能迅速降低室内温度,使得室内的空调系统在制冷过程中的负荷降低,做功减少,起到节能的效果,而后,室内和中间隔层温度在空调系统、温控装置以及烟囱效应作用下降低,Ti、Tm、To的关系将变换到新的状态,此时相应的启闭方案也会改变;当Ti>Tm=To时,中间隔层温度与室内相等,此时烟囱效应难以使中间隔层降温,但是室内温度较高,开启通风口、进风口、排风口能使室外的冷气流流入室内,与室内热空气直接形成冷热流交汇,能迅速降低室内温度;当Ti>Tm<To时,此时在太阳辐射较弱或没有的情况下,而室内和室外环境变化较快,如室内设备、人流量剧增,活动增大温度升高,在阴天,室外城市热流、人流车流造成的局部性高温,此时关闭进风口、排风口,防止室外热气流流入中间隔层,开启通风口,使中间隔层的冷气流和室内的热气流交汇,降低室内温度,降低空调系统能耗;当Ti=Tm>To时,此时室内和中间隔层的温度较高,与Ti>Tm>To时同理,开启通风口、进风口、排风口;当Ti=Tm=To时,室内、中间隔层、室外气流温度接近,气流交汇难以起到节能效果,并且在空调系统和温控装置制冷作用下,温度将会较快地降低,建立新的稳态,因此关闭通风口、进风口、排风口,帮助新稳态的建立;当Ti=Tm<To时,室外温度较高,关闭进风口、排风口阻热,关闭通气口,帮助快速建立新稳态;当Ti<Tm>To时,中间隔层由于太阳热辐射呈现高于室内以及室外的温度,此时关闭通风口,避免热气流进入室内造成室内人员不适,开启进风口和排风口,通过烟囱效应使中间隔层降温;当Ti<Tm=To,关闭通风口、进风口、排风口,避免热气流进入室内;当Ti<Tm<To,关闭通风口、进风口、排风口,避免热气流进入中间隔层与室内,维持稳态;以上包括了Ti、Tm、To的所有组合方式,而对于制冷模式,Ti<Tm<To,关闭通风口、进风口、排风口为制冷模式时的终态以及稳态,而其他情况均为暂态,也是各种初始条件不一样的制冷过程中的必经过程,由此,在单片机控制下,温控装置制冷,和空调系统共同作用下,始终将Ti、Tm、To往Ti<Tm<To的稳态去建立,并且在每当Ti、Tm、To的组合方式改变时,单片机控制驱动装置执行对应的启闭方案,整个制冷以及达到目标温度维持稳态的过程,多工作模式根据检测结果,自动切换,在制冷初阶段,利用自然热交换快速降温,降低空调系统能耗以节能,达到稳态时,室内、中间隔层、室外温度呈现梯度,两两间温差较小,热传递速率得以降低,节约能耗,并且两两间只能通过玻璃热传递而没有直接的冷热交汇,温度环境可以维持相对稳定,减少空调系统的频繁启停,实现节能,同时在工作模式切换过程中,室外的雨量作为考虑因素, 雨量作为第一优先级,雨量超标,进风口和排风口关闭,保障安全,对外界环境的变化具有应变能力,整个系统智能、节能;同理,制热为制冷的逆过程,也能推导得到等同的有益效果。
进一步,所述一体化雨感应智能恒温生态幕墙系统还包括上位机,所述单片机通过总线连接上位机。
采用上述技术方案,单片机通过总线与上位机信息交互,可以由上位机集中监控。
进一步,所述启闭机构为百叶窗。
采用上述技术方案,百叶窗具有较好的隐蔽性和观赏性,安装较为便捷。
进一步,驱动装置包括驱动模块和电机,所述电机的驱动轴与百叶窗的转轴连接,所述驱动模块耦接并受控于单片机以驱动电机正反转。
采用上述技术方案,电机由驱动模块驱动正反转,带动百叶窗的转轴正反转,实现通风口、进风口、排风口的启闭。
进一步,通讯装置为无线通讯模块。
采用上述技术方案,空调控制系统自带无线通讯功能,通过无线通讯方式获取工作状态信息,减少布线成本。
进一步,所述室内温度传感器、隔层温度传感器、室外温度传感器的型号均为DS18B20。
采用上述技术方案,DS18B20体积小,适于各种环境安装,对恶劣环境抵抗力强,且为数字输出,节约了模数转换,硬件开销低,采用三线制连接单片机,简化方案,以及还具有抗干扰能力强,精度高的特点。
进一步,所述状态读取单元还能够读取空调系统的工作状态为待机;
所述单片机还包括待机控制单元,用于在状态读取单元读取到空调系统处于待机状态时启动,向温控装置发送待机信号;并在
当雨量比较结果为Vr<Vs时,输出同时开启通风口、进风口、排风口的控制信号;
当雨量比较结果为Vr≥Vs时,输出同时关闭通风口、进风口、排风口的控制信号。
采用上述技术方案,当空调待机时,室外环境允许下,即雨量比较结果为Vr<Vs,开启通风口、进风口、排风口以使室内外通风,有益于室内空气流通,有助于健康。
本发明的第二目的在于提供一种控温方法,具有更智能的工作模式,提高节能效果及对环境变化应变能力。
本发明的上述第二目的是通过以下技术方案得以实现的:
一种控温方法,基于上述的一体化雨感应智能恒温生态幕墙系统实现,包括
步骤一:通过设置在室内的室内温度传感器检测室内温度并向单片机反馈室内温度信号Ti;
通过设置在中空隔层的隔层温度传感器检测中空隔层温度并向单片机反馈隔层温度信号Tm;
通过设置在室外的室外温度传感器检测室外温度并向单片机反馈室外温度信号To;
通过设置在室外的雨量传感器检测室外雨量并向单片机反馈雨量信号Vr;
通过通讯装置与空调系统的控制面板通讯以使单片机获知室内空调系统的工作状态为制冷或制热;
步骤二:当单片机获知空调系统处于制冷状态时,发出制冷信号;
将室内温度信号Ti与隔层温度信号Tm比较,将隔层温度信号Tm与室外温度信号To比较,得到温度比较结果;
将雨量信号Vr与预设的安全雨量信号Vs比较得到雨量比较结果;
结合雨量比较结果和温度比较结果确定进风口、排风口和通风口的启闭方案
Figure PCTCN2017096089-appb-000003
生成并向驱动装置发送相应的控制信号;
当单片机获知空调系统处于制热状态时,发出制热信号;
将室内温度信号Ti与隔层温度信号Tm比较,将隔层温度信号Tm与室外温度信号To比较,得到温度比较结果;
将雨量信号Vr与预设的安全雨量信号Vs比较得到雨量比较结果;
结合雨量比较结果和温度比较结果确定进风口、排风口和通风口的启闭方案
Figure PCTCN2017096089-appb-000004
生成并向驱动装置发送相应的控制信号;
步骤三:通过在中空隔层内的幕墙安装结构上设置温控装置,由温控装置响应于制冷信号制冷,响应于制热信号制热;
通过驱动装置响应于控制信号驱动启闭机构开启或关闭通风口、进风口、排风口以执行对应的启闭方案。
进一步,步骤一中,还包括通过通讯装置与空调系统的控制面板通讯以使单片机获知室内空调系统的工作状态为待机;
步骤二中,还包括当单片机获知空调系统处于待机状态时,向温控装置发送待机信号;并在当雨量比较结果为Vr<Vs时,输出同时开启通风口、进风口、排风口的控制信号;
当雨量比较结果为Vr≥Vs时,输出同时关闭通风口、进风口、排风口的控制信号。
本发明的第三目的在于提供一种一体化雨感应智能恒温生态幕墙系统,具有更智能的工作模式,提高节能效果及对环境变化应变能力。
本发明的上述第三目的是通过以下技术方案得以实现的:
一种一体化雨感应智能恒温生态幕墙系统,包括一体化的单元式模块,单元式模块在幕墙安装结构上一体式安装,单元式模块包括内层玻璃和外层玻璃,内层玻璃和外层玻璃之间为中空隔层,外层玻璃的上部设有排风口,下部设有进风口,其特征是:
所述排风口、进风口均设有用于启闭的启闭机构;
所述一体化雨感应智能恒温生态幕墙系统还包括单片机,所述单片机耦接有
隔层温度传感器,设置在中空隔层,用于检测中空隔层温度并向单片机反馈隔层温度信号Tm;
室外温度传感器,设置在室外,用于检测室外温度并向单片机反馈室外温度信号To;
雨量传感器,设置在室外,用于检测室外雨量并向单片机反馈雨量信号Vr;
驱动装置,设置在启闭机构上,受控于单片机以驱动启闭机构启闭;
所述单片机内部具有:
雨量比较单元,用于将雨量信号Vr与预设的安全雨量信号Vs比较;
温控单元,设置于中空层内的幕墙安装结构上,受单片机的控制实现制冷模式或制热模式并结合风口启闭方案以实现调节中空层的温度使中空层温度维持在预设温度信号Tx,所述的方案包括
当Vr大于等于Vs时,单片机控制启闭机构关闭;
当Vr小于Vs时,单片机具有以下三种运行策略:
运行策略一、在室外温度传感器检测到环境温度To>25摄氏度且To>Tm>Tx时,单片机控制启闭机构动作,使得进风口以及排风口开启,在烟囱效应的作用下带走一部分热量以降低中空层的温度直至Tm趋于一稳定值,若Tm>Tx,则单片机控制进风口以及排风口关闭并强制启动温控单元进行制冷模式,使得Tm=Tx;
运行策略二、在室外温度传感器检测到环境温度To为22-25摄氏度时,单片机控制进风口以及排风口开启,以实现循环通风,使得Tm=Tx;
运行策略三、在室外温度传感器检测到环境温度To<22摄氏度时,单片机控制启闭机构动作,使得进风口以及排风口处于关闭状态,并启动温控单元进行制热模式,使得Tm=Tx。
综上所述,本发明具有以下有益效果:结合室内、中间隔层以及室外温度,雨量检测结果,使多种工作模式智能切换,能够在空调系统开启制冷或制热时,利用自然热交换快速降温或升温,降低空调系统能耗,在接近稳态时,室内、中间隔层、室外相互隔离,两两间保持较小的温差,降低通过玻璃热传递的速率,达到较好的恒温效果,减少空调系统的频繁启停,节约能耗,同时对外界环境变化具有较好的应变能力。
附图说明
图1是实施例的剖视示意图;
图2是单片机及外围的电路部分的原理图;
图3是实施例的系统简图;
图4是现有技术剖视图。
图中,1、内层玻璃;11、通风口;2、外层玻璃;21、进风口;22、排风口;3、中空隔层;4、百叶窗;5、小型空调;61、室内温度传感器;62、隔层温度传感器;63、室外温度传感器;64、雨量传感器。
具体实施方式
实施例一
参见图1,一种一体化雨感应智能恒温生态幕墙系统,包括机械部分和电路部分,机械部分 包括安装在建筑侧面的一体化的单元式模块,单元式模块包括内层玻璃1和外层玻璃2,由横向龙骨和纵向龙骨组成幕墙安装结构,单元式模块在幕墙安装结构上一体式安装,内层玻璃1位于内侧,外层玻璃2位于外侧,两者之间形成中空隔层3,在中空隔层3内的横向龙骨或纵向龙骨上安装有小型空调5用以制冷或制热,外层玻璃2的上部设有排风口22,下部设有进风口21,内层玻璃1设有通风口11,排风口22、进风口21、通风口11上均设有百叶窗4,百叶窗4的转轴由电机驱动转动正反转以启闭。
结合图1及图2,电路部分包括单片机,所述单片机连接有安装在室内墙体上的室内温度传感器61,用于检测室内温度并向单片机反馈室内温度信号Ti;安装在中空隔层3内的幕墙连接结构上的隔层温度传感器62,用于检测中空隔层3温度并向单片机反馈隔层温度信号Tm;安装在室外的上部幕墙连接结构上的室外温度传感器63,用于检测室外温度并向单片机反馈室外温度信号To;安装在室外的下部幕墙连接结构上的雨量传感器64,用于检测室外雨量并向单片机反馈雨量信号Vr;无线通讯模块,用于与空调系统的控制面板通讯,以使单片机获知室内空调系统的工作状态为制冷或制热或待机,并由单片机控制小型空调5相应地也执行制冷或制热或待机。
本实施例中均采用型号为DS18B20的温度传感器,雨量传感器64可采用清胜CG-04ABS雨量传感器,单片机的型号为AT89C51。
单片机将雨量信号Vr与预设的安全雨量信号Vs比较得到雨量比较结果;将室内温度信号Ti与隔层温度信号Tm比较,将隔层温度信号Tm与室外温度信号To比较,得到温度比较结果;并结合雨量比较结果和温度比较结果确定进风口21、排风口22和通风口11的启闭方案;
制冷模式:
Figure PCTCN2017096089-appb-000005
制热模式:
Figure PCTCN2017096089-appb-000006
待机模式:
Vr<Vs时,同时开启通风口11、进风口21、排风口22;
Vr≥Vs时,同时关闭通风口11、进风口21、排风口22;
并由单片机生成控制信号分别发送给设置在进风口21、排风口22、通风口11的三个驱动模块,驱动模块为电机正反转驱动电路,以执行启闭方案。
单片机还通过RS232总线连接上位机,参见图3,当室内空调系统启动时,控制面板发出控制信号给空调,同时单片机也与控制面板无线通讯获知空调系统的工作状态,并结合温度检测和雨量检测控制机械部分执行启闭方案,温度检测和雨量检测是实时的,这里的实时实质上具有一定时间间隔,依照单片机设定的检测间隔而定,在Ti、Tm、To的相互关系发生变化时,也实时改变启闭方案,在整个室内制冷过程或制热过程或待机过程中,一体化雨感应智能恒温生态幕墙系统也是动态的过程,同时单片机通过总线与上位机建立联系,多个单片机可以由上位机集中监控,使得更大范围的恒温节能控制更便捷的实现。
节能原理:通过检测室内、隔层、室外的温度,并结合雨量作为判断采取何种工作模式的依据,而要达到更好的节能效果,关键在于在达到需要的室内环境温度的过程(制冷或制热)中对非电能驱动的自然热交换的应用,降低空调系统负荷以及在达到所需室内环境温度时,维持稳定的温度环境,使空调系统不要频繁启停,由此,因为天气、建筑内环境多变,使得室内、中间隔层、室外具有多种组合情况,而针对每种组合情况,均有相应的节能方案应对,处于制冷模式时,当Ti>Tm>To,该情形通常在室内通风效果不好,且在中间隔层受到长时间太阳热辐射时发生,此时室外环境温度相对室内、中间隔层较低,同时开启通风口11以及进风口21、排风口22,中间隔层内形成烟囱效应,热气流上升,相对较冷的气流补充入中间隔层内,温控装置启动制冷,能进一步促进烟囱效应,加快降低中间隔层温度,同时冷气流也通过通风口11进入室内,与室内热空气直接形成冷热流交汇,能迅速降低室内温度,使得室内的空调系统在制冷过程中的负荷降低,做功减少,起到节能的效果,而后,室内和中间隔层温度在空调系统、温控装置以及烟囱效应作用下降低,Ti、Tm、To的关系 将变换到新的状态,此时相应的启闭方案也会改变;当Ti>Tm=To时,中间隔层温度与室内相等,此时烟囱效应难以使中间隔层降温,但是室内温度较高,开启通风口11、进风口21、排风口22能使室外的冷气流流入室内,与室内热空气直接形成冷热流交汇,能迅速降低室内温度;当Ti>Tm<To时,此时在太阳辐射较弱或没有的情况下,而室内和室外环境变化较快,如室内设备、人流量剧增,活动增大温度升高,在阴天,室外城市热流、人流车流造成的局部性高温,此时关闭进风口21、排风口22,防止室外热气流流入中间隔层,开启通风口11,使中间隔层的冷气流和室内的热气流交汇,降低室内温度,降低空调系统能耗;当Ti=Tm>To时,此时室内和中间隔层的温度较高,与Ti>Tm>To时同理,开启通风口11、进风口21、排风口22;当Ti=Tm=To时,室内、中间隔层、室外气流温度接近,气流交汇难以起到节能效果,并且在空调系统和温控装置制冷作用下,温度将会较快地降低,建立新的稳态,因此关闭通风口11、进风口21、排风口22,帮助新稳态的建立;当Ti=Tm<To时,室外温度较高,关闭进风口21、排风口22阻热,关闭通气口,帮助快速建立新稳态;当Ti<Tm>To时,中间隔层由于太阳热辐射呈现高于室内以及室外的温度,此时关闭通风口11,避免热气流进入室内造成室内人员不适,开启进风口21和排风口22,通过烟囱效应使中间隔层降温;当Ti<Tm=To,关闭通风口11、进风口21、排风口22,避免热气流进入室内;当Ti<Tm<To,关闭通风口11、进风口21、排风口22,避免热气流进入中间隔层与室内,维持稳态;以上包括了Ti、Tm、To的所有组合方式,而对于制冷模式,Ti<Tm<To,关闭通风口11、进风口21、排风口22为制冷模式时的终态以及稳态,而其他情况均为暂态,也是各种初始条件不一样的制冷过程中的必经过程,由此,在单片机控制下,温控装置制冷,并且在每当Ti、Tm、To的组合方式改变时,单片机控制驱动装置执行对应的启闭方案,整个制冷以及达到目标温度维持的过程,多工作模式自动切换,在制冷初阶段,利用自然热交换快速降温,降低空调系统能耗以节能,达到稳态时,室内、中间隔层、室外温度呈现梯度,两两间温差较小,热传递速率得以降低,节约能耗,并且两两间只能通过玻璃热传递而没有直接的冷热交汇,温度环境可以维持相对稳定,减少空调系统的频繁启停,实现节能,而在工作模式切换过程中,室外的雨量作为考虑因素,由此雨量作为第一优先级,雨量超标,进风口21和排风口22关闭,保障安全,对外界环境的变化具有应变能力,整个系统智能、节能;同理,制热为制冷的逆过程,同理也能推导得到相同的技术效果。
实施例二
一种一体化雨感应智能恒温生态幕墙系统,包括一体化的单元式模块,单元式模块在幕墙安装结构上一体式安装,单元式模块包括内层玻璃1和外层玻璃2,内层玻璃1和外层玻璃2 之间为中空隔层3,外层玻璃2的上部设有排风口22,下部设有进风口21,其特征是:
所述排风口22、进风口21均设有用于启闭的启闭机构;
所述一体化雨感应智能恒温生态幕墙系统还包括单片机,所述单片机耦接有
隔层温度传感器62,设置在中空隔层3,用于检测中空隔层3温度并向单片机反馈隔层温度信号Tm;
室外温度传感器63,设置在室外,用于检测室外温度并向单片机反馈室外温度信号To;
雨量传感器64,设置在室外,用于检测室外雨量并向单片机反馈雨量信号Vr;
驱动装置,设置在启闭机构上,受控于单片机以驱动启闭机构启闭;
所述单片机内部具有:
雨量比较单元,用于将雨量信号Vr与预设的安全雨量信号Vs比较;
温控单元,设置于中空层内的幕墙安装结构上,受单片机的控制实现制冷模式或制热模式并结合风口启闭方案以实现调节中空层的温度使中空层温度维持在预设温度信号Tx,所述的方案包括
当Vr大于等于Vs时,单片机控制启闭机构关闭;
当Vr小于Vs时,单片机具有以下三种运行策略:
运行策略一、在室外温度传感器63检测到环境温度To>25摄氏度且To>Tm>Tx时,单片机控制启闭机构动作,使得进风口21以及排风口22开启,在烟囱效应的作用下带走一部分热量以降低中空层的温度直至Tm趋于一稳定值,若Tm>Tx,则单片机控制进风口21以及排风口22关闭并强制启动温控单元进行制冷模式,使得Tm=Tx;
运行策略二、在室外温度传感器63检测到环境温度To为22-25摄氏度时,单片机控制进风口21以及排风口22开启,以实现循环通风,使得Tm=Tx;
运行策略三、在室外温度传感器63检测到环境温度To<22摄氏度时,单片机控制启闭机构动作,使得进风口21以及排风口22处于关闭状态,并启动温控单元进行制热模式,使得Tm=Tx。

Claims (10)

  1. 一种一体化雨感应智能恒温生态幕墙系统,包括一体化的单元式模块,单元式模块在幕墙安装结构上一体式安装,单元式模块包括内层玻璃和外层玻璃,内层玻璃和外层玻璃之间为中空隔层,外层玻璃的上部设有排风口,下部设有进风口,其特征是:
    内层玻璃设有通风口,所述排风口、进风口、通风口均设有用于启闭的启闭机构;
    所述一体化雨感应智能恒温生态幕墙系统还包括单片机,所述单片机耦接有
    室内温度传感器,设置在室内,用于检测室内温度并向单片机反馈室内温度信号Ti;
    隔层温度传感器,设置在中空隔层,用于检测中空隔层温度并向单片机反馈隔层温度信号Tm;
    室外温度传感器,设置在室外,用于检测室外温度并向单片机反馈室外温度信号To;
    雨量传感器,设置在室外,用于检测室外雨量并向单片机反馈雨量信号Vr;
    温控装置,设置在中空隔层内的幕墙安装结构上,受控于单片机以制冷或制热;
    驱动装置,设置在启闭机构上,受控于单片机以驱动启闭机构启闭;
    通讯装置,用于与空调系统的控制面板通讯;
    所述单片机内部具有:
    状态读取单元,用于通过通讯装置获知室内空调系统的工作状态为制冷或制热;
    雨量比较单元,用于将雨量信号Vr与预设的安全雨量信号Vs比较得到雨量比较结果;
    制冷控制单元,用于在状态读取单元读取到空调系统处于制冷状态时启动,向温控装置发送制冷信号,并将室内温度信号Ti与隔层温度信号Tm比较,将隔层温度信号Tm与室外温度信号To比较,得到温度比较结果,并结合雨量比较结果和温度比较结果确定进风口、排风口和通风口的启闭方案
    Figure PCTCN2017096089-appb-100001
    生成并向驱动装置发送相应的控制信号;
    制热控制单元,用于在状态读取单元读取到空调系统处于制热状态时启动,向温控装置发送制热信号,并将室内温度信号Ti与隔层温度信号Tm比较,将隔层温度信号Tm与室外温度信号To比较,得到温度比较结果,并结合雨量比较结果和温度比较结果确定进风口、排风 口和通风口的启闭方案
    Figure PCTCN2017096089-appb-100002
    生成并向驱动装置发送相应的控制信号;
    所述驱动装置响应于制冷控制单元或制热控制单元发出的控制信号驱动启闭机构启闭以执行对应的启闭方案;
    所述温控装置响应于制冷信号制冷,响应于制热信号制热。
  2. 根据权利要求1所述的一体化雨感应智能恒温生态幕墙系统,其特征是:所述一体化雨感应智能恒温生态幕墙系统还包括上位机,所述单片机通过总线连接上位机。
  3. 根据权利要求1所述的一体化雨感应智能恒温生态幕墙系统,其特征是:所述启闭机构为百叶窗。
  4. 根据权利要求3所述的一体化雨感应智能恒温生态幕墙系统,其特征是:驱动装置包括驱动模块和电机,所述电机的驱动轴与百叶窗的转轴连接,所述驱动模块耦接并受控于单片机以驱动电机正反转。
  5. 根据权利要求1所述的一体化雨感应智能恒温生态幕墙系统,其特征是:通讯装置为无线通讯模块。
  6. 根据权利要求1所述的一体化雨感应智能恒温生态幕墙系统,其特征是:所述室内温度传感器、隔层温度传感器、室外温度传感器的型号均为DS18B20。
  7. 根据权利要求1所述的一体化雨感应智能恒温生态幕墙系统,其特征是:所述状态读取单元还能够读取空调系统的工作状态为待机;
    所述单片机还包括待机控制单元,用于在状态读取单元读取到空调系统处于待机状态时启动,向温控装置发送待机信号;并在
    当雨量比较结果为Vr<Vs时,输出同时开启通风口、进风口、排风口的控制信号;
    当雨量比较结果为Vr≥Vs时,输出同时关闭通风口、进风口、排风口的控制信号。
  8. 一种控温方法,基于权利要求1所述的一体化雨感应智能恒温生态幕墙系统实现,其特征是:包括
    步骤一:通过设置在室内的室内温度传感器检测室内温度并向单片机反馈室内温度信号Ti;
    通过设置在中空隔层的隔层温度传感器检测中空隔层温度并向单片机反馈隔层温度信号Tm;
    通过设置在室外的室外温度传感器检测室外温度并向单片机反馈室外温度信号To;
    通过设置在室外的雨量传感器检测室外雨量并向单片机反馈雨量信号Vr;
    通过通讯装置与空调系统的控制面板通讯以使单片机获知室内空调系统的工作状态为制冷或制热;
    步骤二:当单片机获知空调系统处于制冷状态时,发出制冷信号;
    将室内温度信号Ti与隔层温度信号Tm比较,将隔层温度信号Tm与室外温度信号To比较,得到温度比较结果;
    将雨量信号Vr与预设的安全雨量信号Vs比较得到雨量比较结果;
    结合雨量比较结果和温度比较结果确定进风口、排风口和通风口的启闭方案
    Figure PCTCN2017096089-appb-100003
    生成并向驱动装置发送相应的控制信号;
    当单片机获知空调系统处于制热状态时,发出制热信号;
    将室内温度信号Ti与隔层温度信号Tm比较,将隔层温度信号Tm与室外温度信号To比较,得到温度比较结果;
    将雨量信号Vr与预设的安全雨量信号Vs比较得到雨量比较结果;
    结合雨量比较结果和温度比较结果确定进风口、排风口和通风口的启闭方案
    Figure PCTCN2017096089-appb-100004
    生成并向驱动装置发送相应的控制信号;
    步骤三:通过在中空隔层内的幕墙安装结构上设置温控装置,由温控装置响应于制冷信号制冷,响应于制热信号制热;
    通过驱动装置响应于控制信号驱动启闭机构开启或关闭通风口、进风口、排风口以执行对应的启闭方案。
  9. 根据权利要求8所述的控温方法,其特征是:步骤一中,还包括通过通讯装置与空调系统的控制面板通讯以使单片机获知室内空调系统的工作状态为待机;
    步骤二中,还包括当单片机获知空调系统处于待机状态时,向温控装置发送待机信号;并在
    当雨量比较结果为Vr<Vs时,输出同时开启通风口、进风口、排风口的控制信号;
    当雨量比较结果为Vr≥Vs时,输出同时关闭通风口、进风口、排风口的控制信号。
  10. 一种一体化雨感应智能恒温生态幕墙系统,包括一体化的单元式模块,单元式模块在幕墙安装结构上一体式安装,单元式模块包括内层玻璃和外层玻璃,内层玻璃和外层玻璃之间为中空隔层,外层玻璃的上部设有排风口,下部设有进风口,其特征是:
    所述排风口、进风口均设有用于启闭的启闭机构;
    所述一体化雨感应智能恒温生态幕墙系统还包括单片机,所述单片机耦接有
    隔层温度传感器,设置在中空隔层,用于检测中空隔层温度并向单片机反馈隔层温度信号Tm;
    室外温度传感器,设置在室外,用于检测室外温度并向单片机反馈室外温度信号To;
    雨量传感器,设置在室外,用于检测室外雨量并向单片机反馈雨量信号Vr;
    驱动装置,设置在启闭机构上,受控于单片机以驱动启闭机构启闭;
    所述单片机内部具有:
    雨量比较单元,用于将雨量信号Vr与预设的安全雨量信号Vs比较;
    温控单元,设置于中空层内的幕墙安装结构上,受单片机的控制实现制冷模式或制热模式并结合风口启闭方案以实现调节中空层的温度使中空层温度维持在预设温度信号Tx,所述的方案包括
    当Vr大于等于Vs时,单片机控制启闭机构关闭;
    当Vr小于Vs时,单片机具有以下三种运行策略:
    运行策略一、在室外温度传感器检测到环境温度To>25摄氏度且To>Tm>Tx时,单片机控制启闭机构动作,使得进风口以及排风口开启,在烟囱效应的作用下带走一部分热量以降低中空层的温度直至Tm趋于一稳定值,若Tm>Tx,则单片机控制进风口以及排风口关闭并 强制启动温控单元进行制冷模式,使得Tm=Tx;
    运行策略二、在室外温度传感器检测到环境温度To为22-25摄氏度时,单片机控制进风口以及排风口开启,以实现循环通风,使得Tm=Tx;
    运行策略三、在室外温度传感器检测到环境温度To<22摄氏度时,单片机控制启闭机构动作,使得进风口以及排风口处于关闭状态,并启动温控单元进行制热模式,使得Tm=Tx。
PCT/CN2017/096089 2016-08-09 2017-08-04 一体化雨感应智能恒温生态幕墙系统及控温方法 WO2018028523A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610648436.0A CN106284770A (zh) 2016-08-09 2016-08-09 一体化雨感应智能恒温生态幕墙系统及控温方法
CN201610648436.0 2016-08-09

Publications (1)

Publication Number Publication Date
WO2018028523A1 true WO2018028523A1 (zh) 2018-02-15

Family

ID=57667413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/096089 WO2018028523A1 (zh) 2016-08-09 2017-08-04 一体化雨感应智能恒温生态幕墙系统及控温方法

Country Status (2)

Country Link
CN (1) CN106284770A (zh)
WO (1) WO2018028523A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106284770A (zh) * 2016-08-09 2017-01-04 金粤幕墙装饰工程有限公司 一体化雨感应智能恒温生态幕墙系统及控温方法
CN106284773A (zh) * 2016-08-09 2017-01-04 金粤幕墙装饰工程有限公司 雨感应智能恒温生态幕墙系统及控温方法
CN106839242A (zh) * 2017-03-22 2017-06-13 大连理工大学 一种混合送风双层光伏幕墙系统及其控制方式
CN110641388B (zh) * 2018-06-27 2021-09-24 郑州宇通客车股份有限公司 一种车辆用电的管控方法及系统
CN108691374B (zh) * 2018-06-28 2023-12-26 浙江解放装饰工程有限公司 一种可自动调温双层幕墙

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005105732A (ja) * 2003-10-01 2005-04-21 Mitsubishi Jisho Sekkei Inc 換気機能付きカーテンウォール、およびこれを備えた建物
CN101603341A (zh) * 2009-06-23 2009-12-16 深圳市富诚科技发展有限公司 建筑结构承载的安全和经济型双层幕墙及施工工艺
CN105649242A (zh) * 2016-01-04 2016-06-08 安阳师范学院 一种双层玻璃幕墙结构和智能控制方法
CN205332381U (zh) * 2016-01-29 2016-06-22 金粤幕墙装饰工程有限公司 恒温幕墙系统
CN106284770A (zh) * 2016-08-09 2017-01-04 金粤幕墙装饰工程有限公司 一体化雨感应智能恒温生态幕墙系统及控温方法
CN106284773A (zh) * 2016-08-09 2017-01-04 金粤幕墙装饰工程有限公司 雨感应智能恒温生态幕墙系统及控温方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1321986A (en) * 1969-03-29 1973-07-04 Becker Otto Alfred Dr Thermally insulating wall units
DE2518252A1 (de) * 1975-04-24 1976-11-04 Kalinna Erwin Fa Fassade fuer gebaeude
CN1274928C (zh) * 2004-08-11 2006-09-13 曲广英 单梁双层自动幕墙
CN201050120Y (zh) * 2007-04-11 2008-04-23 朱武 一种利用太阳能辐射热供暖的房屋
CN201817940U (zh) * 2010-07-20 2011-05-04 广东金刚幕墙工程有限公司 一种内循环双层幕墙
CN104453039B (zh) * 2014-12-09 2016-09-14 中国计量学院 一种复合式温控幕墙的控温方法
CN105509162B (zh) * 2016-01-29 2018-05-29 金粤幕墙装饰工程有限公司 恒温幕墙系统
CN105821995B (zh) * 2016-03-24 2018-10-02 北京江河幕墙系统工程有限公司 一种大间隔冬夏双模式外循环呼吸式幕墙及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005105732A (ja) * 2003-10-01 2005-04-21 Mitsubishi Jisho Sekkei Inc 換気機能付きカーテンウォール、およびこれを備えた建物
CN101603341A (zh) * 2009-06-23 2009-12-16 深圳市富诚科技发展有限公司 建筑结构承载的安全和经济型双层幕墙及施工工艺
CN105649242A (zh) * 2016-01-04 2016-06-08 安阳师范学院 一种双层玻璃幕墙结构和智能控制方法
CN205332381U (zh) * 2016-01-29 2016-06-22 金粤幕墙装饰工程有限公司 恒温幕墙系统
CN106284770A (zh) * 2016-08-09 2017-01-04 金粤幕墙装饰工程有限公司 一体化雨感应智能恒温生态幕墙系统及控温方法
CN106284773A (zh) * 2016-08-09 2017-01-04 金粤幕墙装饰工程有限公司 雨感应智能恒温生态幕墙系统及控温方法

Also Published As

Publication number Publication date
CN106284770A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
WO2018028527A1 (zh) 空气质量感应智能恒温生态幕墙系统及控温方法
WO2018028528A1 (zh) 风感应智能恒温生态幕墙系统及控温方法
WO2018028525A1 (zh) 一体化风感应智能恒温生态幕墙系统及控温方法
WO2018028523A1 (zh) 一体化雨感应智能恒温生态幕墙系统及控温方法
WO2018028526A1 (zh) 雨感应智能恒温生态幕墙系统及控温方法
CN110388692B (zh) 用于近零能耗建筑的冷热源新风装置及其控制方法
WO2018028524A1 (zh) 一体化空气质量感应智能恒温生态幕墙系统及控温方法
CN104453039A (zh) 一种三层玻璃结构的复合式温控幕墙及其控温方法
CN107720498A (zh) 一种实现电梯轿厢内温度控制的方法及电梯系统
WO2018028520A1 (zh) 一体化温度感应智能恒温生态幕墙系统及控温方法
CN110307597B (zh) 一种分区控制的空调室内机、控制方法及空调机组
WO2018028522A1 (zh) 温度感应智能恒温生态幕墙系统及控温方法
CN101392563B (zh) 具有可控半导体式传热能力的节能墙壁结构
CN103015646A (zh) 一种具有新风换气功能的光伏遮阳装置
CN103471197A (zh) 通风系统及控制腔室中温度的方法
CN210267517U (zh) 用于近零能耗建筑的冷热源新风装置
CN204421273U (zh) 一种带有自动加热装置的全热交换新风机
CN110260434A (zh) 一种基于太阳能与余热回收的屋顶式空调系统
CN204370630U (zh) 一种三层玻璃结构的复合式温控幕墙
CN206337712U (zh) 通风节能墙以及空调房
JP4581604B2 (ja) 換気システム
CN207065814U (zh) 一种辐射空调的控制系统
CN201621809U (zh) 呼吸式蜗形蓄热通风器
CN207132526U (zh) 一种室内六恒舒适系统
CN106284864A (zh) 一体化空气质量感应智能恒温生态采光天棚及控温方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17838653

Country of ref document: EP

Kind code of ref document: A1