WO2018028522A1 - 温度感应智能恒温生态幕墙系统及控温方法 - Google Patents

温度感应智能恒温生态幕墙系统及控温方法 Download PDF

Info

Publication number
WO2018028522A1
WO2018028522A1 PCT/CN2017/096088 CN2017096088W WO2018028522A1 WO 2018028522 A1 WO2018028522 A1 WO 2018028522A1 CN 2017096088 W CN2017096088 W CN 2017096088W WO 2018028522 A1 WO2018028522 A1 WO 2018028522A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
curtain wall
hollow layer
wall system
glass curtain
Prior art date
Application number
PCT/CN2017/096088
Other languages
English (en)
French (fr)
Inventor
冯华国
Original Assignee
金粤幕墙装饰工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金粤幕墙装饰工程有限公司 filed Critical 金粤幕墙装饰工程有限公司
Publication of WO2018028522A1 publication Critical patent/WO2018028522A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/88Curtain walls
    • E04B2/96Curtain walls comprising panels attached to the structure through mullions or transoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0075Systems using thermal walls, e.g. double window
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air

Definitions

  • the invention relates to a curtain wall system, in particular to a temperature sensing intelligent constant temperature ecological curtain wall system and a temperature control method.
  • Chinese Patent Application No. 201410748402.X discloses a three-layer glass structure composite temperature control curtain wall and a temperature control method thereof.
  • the inner glass curtain wall and the outer glass curtain wall have electric louver panes on the upper and lower ends of the invention.
  • a grid tuyere assembly ; an inner side interlayer heat exchange channel is formed between the inner glass curtain wall and the middle partitioned glass curtain wall; a separate outer interlayer heat exchange channel is formed between the outer glass curtain wall and the middle partitioned fault glass curtain wall; and the middle partition glass curtain wall
  • the semiconductor thermoelectric temperature control unit is uniformly distributed on the upper;
  • the environmental monitoring system is composed of a plurality of temperature sensors, and provides real-time temperature monitoring data of the target environment for the temperature reading module in the single-chip control module; the semiconductor thermoelectric temperature control unit is controlled by the single-chip microcomputer control module .
  • the patent discloses the working condition of the curtain wall in summer.
  • the outer glass damper When the ambient temperature is higher than 28 degrees Celsius, the outer glass damper is opened, the inner glass damper is closed, and the cooling mode is turned on.
  • the outer glass is an ordinary single-layer glass. Therefore, the heat radiation in the outer interlayer ventilation channel is strong, which will increase the temperature of the partition layer and affect the temperature of the inner interlayer air passage, so that the temperature of the inner interlayer air passage increases, and the cooling power consumption of the semiconductor increases;
  • the temperature of the inner interlayer when starting In the cooling mode, the temperature of the inner interlayer is lower than the outdoor temperature, and the external sunlight will increase the temperature of the outer interlayer, which will accelerate the heat loss under the effect of the chimney effect, especially in the case where the middle glass is a single layer of glass.
  • Air-conditioning is more susceptible to outdoor temperatures, resulting in increased cooling capacity.
  • a temperature sensing intelligent thermostat The curtain wall system comprises a split-side inner glass curtain wall and an outer glass curtain wall, wherein the inner glass curtain wall and the outer glass curtain wall are independently installed on the curtain wall structure, and the inner glass curtain wall and the outer glass curtain wall are hollow. a layer, the outer glass curtain wall portion is provided with an air outlet, and the lower portion is provided with an air inlet.
  • the temperature sensing intelligent constant temperature ecological curtain wall system further comprises a single chip, and the single chip is coupled to open or close the air outlet and The first opening and closing mechanism of the air inlet, the single chip coupled with:
  • the outdoor temperature sensor is disposed outside, and is used for detecting the outdoor temperature and outputting the temperature signal To;
  • a hollow layer sensor disposed in the hollow layer, for detecting the temperature of the hollow layer and outputting a temperature signal Tm;
  • the temperature control unit is disposed on the curtain wall installation structure in the hollow layer, and is controlled by the single-chip microcomputer to realize the cooling mode or the heating mode and combined with the opening and closing scheme of the air outlet to adjust the temperature of the hollow layer to maintain the temperature of the hollow layer at the preset temperature signal.
  • Tx the solution includes
  • decorating the curtain wall system around the building is equivalent to adding a layer of insulation layer to the building, which can effectively prevent the loss of heat in the room, because the outer glass curtain wall is double-glazed in the summer. It can effectively reduce the radiation of the sun, effectively block the outdoor heat from entering the hollow layer, thereby reducing the cooling power consumption of the hollow layer, and the arrangement of the inner glass for the single-layer glass also allows the heat in the hollow layer to pass indoors. It will not pass to the outdoor to further reduce the cooling power consumption; when the outdoor temperature is low in winter, it can effectively have better insulation effect due to the double-layer glass effect, and the greenhouse effect can be formed in the hollow layer, which can reduce the heating power consumption.
  • the hollow layer In the summer, when the air inlet and the air outlet are opened, the hollow layer can be formed into a flow of air and heat and away from the chimney effect.
  • the air enters the hollow layer from the air inlet, and the gas is heated to generate a thermal motion from bottom to top.
  • the mouth reduces the temperature of the hollow layer by the hot air in the hollow layer, and then controls the air inlet and the exhaust through the single chip microcomputer. Closed while the opening of the temperature control unit of refrigeration space layer, since it is possible to take some heat through the chimney effect, the cooling power can be further reduced.
  • the inner glass curtain wall is provided with a vent, and the vent is provided for opening or The second opening and closing mechanism that is closed.
  • the vent of the inner glass curtain wall can be opened to ventilate the room.
  • a mounting structure for mounting the curtain wall system to the building comprising a fixing base fixed to the building, a mounting frame connecting the adjacent inner glass curtain walls, and a connection mounting frame are further included
  • the first corner code between the mount and the mount is further included
  • the curtain wall system can be more conveniently installed on a building.
  • the mounting frame comprises a cross member for connection to the building, a bead for holding the glass, and an outer frame attached to the outside of the bead.
  • this method can make the curtain wall installation more simple and convenient.
  • the middle portion of the bead is connected to the beam by a bolt, and the ends of the bead are recessed toward the inner side to form a card slot, and the inner ends of the two sides of the frame are convexly formed to form a block that fits with the card slot. .
  • the central portion may be excessively stressed, causing the two ends to lift up to lower the sealing performance of the hollow layer, increasing the heat loss of the hollow layer to improve energy consumption;
  • the outer frame can be excessively stressed in the middle of the bead, the two ends of the bead are effectively prevented from rising to improve the sealing performance, thereby reducing the loss of heat of the hollow layer.
  • the temperature-sensing intelligent constant temperature ecological curtain wall system further comprises a fireproof sealing unit, and the fireproof sealing unit comprises a fireproof board sealed between the floor and the beam, and a fireproof rock wool fixed on the fireproof board.
  • the fireproof sealing unit comprises a fireproof board sealed between the floor and the beam, and a fireproof rock wool fixed on the fireproof board.
  • the building will use the chimney effect in the summer to reduce the temperature of the hollow layer, but in the event of a fire, the existence of the chimney effect is to aggravate the spread of fire, and the fireproof sealing unit is passed between the layers of the curtain wall. It can block the flame raft layer to achieve energy saving effect while improving safety performance.
  • the inner glass curtain wall is provided with a heat insulating structure on a side close to the indoor, and the heat insulating structure comprises a heat insulating aluminum plate, an insulating rock wool, and a locking member for fixing the heat insulating rock wool on the heat insulating aluminum plate.
  • the insulated aluminum plate is fixed to the beam by the first corner code of the L-shape.
  • the heat insulation structure is arranged on the inner glass curtain wall to further improve the heat insulation effect of the hollow layer, and the heat insulation aluminum plate has enhanced stability by connecting the beam with the L-shaped first corner code, and the heat insulation is strengthened by the locking member.
  • the rock wool is pressed against the thermal insulation aluminum plate to prevent the surface of the thermal insulation aluminum plate from arching.
  • the locking member comprises a fixing plate fixedly connected to the surface of the heat insulating aluminum plate, a locking rod fixed at one end of the fixing plate at one end and forming a hook portion through the thermal insulation rock wool, and sleeved at the hook portion for clamping Insulation rock wool locking plate.
  • the beam is sealed with a labyrinth between the fireproof panels.
  • the temperature rise causes the beam to be deformed by thermal expansion, so that the looseness between the beam and the fireproof plate causes the gap between the two to increase the sealing effect, and the labyrinth seal is used.
  • the form even when the beam is deformed, can further improve the sealing between the beam and the fireproof board because of the presence of a plurality of sealing portions, improve the heat insulating performance and improve the fireproof performance.
  • Another object of the present invention is to provide a temperature control method which has the advantage of being more energy efficient.
  • the curtain wall system actively executes three operating strategies according to different seasons, and corresponds to three system operating modes; the single chip can select the execution environment real-time monitoring drive and manual input driving. Two working modes to achieve independent temperature control operation or separate temperature control operation of the curtain wall system;
  • the three operating strategies are corresponding to three operating modes according to three seasons, and are controlled by a single-chip microcomputer to realize a cooling mode or a heating mode combined with the opening and closing of the tuyere to adjust the temperature of the hollow layer to maintain the temperature of the hollow layer.
  • a preset temperature signal Tx wherein the preset temperature signal Tx is a certain temperature value of 22-25 degrees Celsius;
  • the present invention has the following beneficial effects: the temperature-sensing intelligent constant temperature ecological curtain wall, wrapped around the building, is equivalent to wrapping a layer of insulation on the building, which can reduce the external environment to the indoor temperature.
  • the effect can effectively prevent the loss of indoor temperature in winter, so that even if the indoor temperature can be maintained at a certain temperature for a long time, it is not necessary to start the indoor air conditioner frequently; in the summer, the presence of the thermal insulation layer can block the outdoor high temperature.
  • the influence of low temperature in the room makes the indoor temperature maintain a certain temperature for a long time, and does not need to start the indoor air conditioner frequently to achieve the effect of energy saving; when the temperature control unit and the air inlet, the air outlet and the vent opening and closing are combined It can make the hollow layer reach a constant temperature and is more energy efficient.
  • the curtain wall system has also improved the fire protection unit to improve the fire safety performance while improving energy efficiency.
  • Embodiment 1 is a schematic structural view of Embodiment 1;
  • Figure 3 is a schematic view showing the structure of the column in the first, second and third embodiments
  • Figure 4 is a diagram showing the connection relationship between the beam and the fireproof board in the first, second and third embodiments
  • Figure 5 is an enlarged view of a portion A in Figure 4.
  • FIG. 6 is a schematic structural view showing the connection relationship between the column, the fixed seat and the first corner code in the first, second and third embodiments;
  • Embodiment 7 is a schematic structural view of Embodiment 2.
  • Figure 8 is a schematic structural view of Embodiment 3.
  • FIG. 9 is a schematic structural view of a third embodiment for embodying a hollow layer temperature sensor and an outdoor temperature sensor.
  • Embodiment 1 A temperature-sensing intelligent constant temperature ecological curtain wall system, comprising a mechanical part and a circuit part; wherein the mechanical part is as shown in FIG. 1 , including an inner glass curtain wall 1 , an outer glass curtain wall 2 , a mounting structure, a fireproof sealing unit 8 , and The first opening and closing structure.
  • the inner glass curtain wall 1 and the outer glass curtain wall 2 are installed around the building through a mounting structure; wherein the inner glass curtain wall 1 is a single layer of glass and the outer glass curtain wall 2 is a double glazing, between the inner glass curtain wall 1 and the outer glass curtain wall 2 A hollow layer 3 is formed and a temperature control unit is disposed on the horizontal keel or the longitudinal keel in the hollow layer 3.
  • the temperature control unit selects the inverter air conditioner 4.
  • an air outlet 22 is arranged on the upper part of the double-layer glass, and the air inlet 21 is arranged in the lower part; the air inlet 21 and the air outlet 22 are opened and closed by the first opening and closing mechanism, and the upper and lower curtain wall layers are blocked by the fireproof sealing unit 8.
  • a hollow layer temperature sensor 52 is disposed on the inner glass curtain wall 1, and an outdoor temperature sensor 51 is disposed on the outer glass curtain wall 2.
  • the circuit part of the curtain wall system, the single-chip model is AT89C51, wherein the input end is coupled to the outdoor temperature sensor 51 and the hollow layer temperature sensor 52, and the output end is coupled to the first opening and closing mechanism, the second opening and closing mechanism, and the temperature.
  • the control unit wherein the outdoor temperature sensor 51 and the hollow layer temperature sensor 52 are all of the DS18B20.
  • the thermal mode is combined with the opening and closing of the tuyere to adjust the temperature of the hollow layer 3 to maintain the temperature of the hollow layer 3 at a certain temperature value, which is equivalent to putting a constant temperature insulation layer on the building to achieve energy saving; for example, in winter, on the one hand, hollow
  • the greenhouse effect is formed in layer 3, which can reduce the power consumption of heating; on the other hand, the presence of the insulation layer can effectively prevent the loss of indoor temperature, so that even if the indoor temperature can be maintained at a certain temperature for a long time, it does not need to be regular.
  • the presence of constant temperature insulation layer can block the influence of outdoor high temperature on indoor low temperature, so that the indoor temperature can be maintained at a certain temperature for a long time, and it is not necessary to frequently activate the indoor air conditioner 4 to achieve energy saving effect;
  • the air inlet 21 and the air outlet 22 are opened, so that the hollow layer 3 forms a heat flow of the air and a chimney effect, and the air enters the hollow layer 3 from the air inlet 21, and the gas is heated to generate a heat movement from the bottom to the top.
  • the air port reduces the hot air in the hollow layer 3 by the temperature of the hollow layer 3, and then controls the air inlet 21 and the air outlet 22 to be closed by the single-chip microcomputer, and simultaneously turns on the temperature control unit to achieve cooling of the hollow layer 3, since it can be taken away by the chimney effect. A portion of the heat can further reduce cooling power consumption.
  • the outer glass curtain wall 2 is double-glazed, the solar radiation can be effectively reduced in the summer, and the outdoor heat is effectively blocked from entering the hollow layer 3, thereby reducing the cooling power consumption of the hollow layer 3, while the inner side is
  • the arrangement of the glass as a single layer of glass also allows the heat in the hollow layer 3 to be transferred indoors without further cooling to further reduce the cooling power consumption.
  • the curtain wall system actively implements three operational strategies and corresponds to three system operation modes; the single-chip microcomputer can select the execution environment real-time monitoring drive to realize the independent temperature control operation or the separate temperature control operation of the curtain wall system;
  • the three operating strategies are based on three seasonal operating conditions and are executed in three operating modes.
  • the cooling mode or the heating mode is controlled by the single-chip microcomputer and combined with the opening and closing of the tuyere to adjust the temperature of the hollow layer 3 to maintain the temperature of the hollow layer 3 in advance.
  • the temperature signal Tx is set; wherein the preset temperature signal Tx is a certain temperature value of 22-25 degrees Celsius; in this embodiment, the preset temperature signal Tx is 22 degrees Celsius.
  • Operation Strategy 3 When the outdoor temperature sensor 51 detects the ambient temperature To ⁇ 22 degrees Celsius, the single-chip microcomputer controls the first opening and closing mechanism to operate, so that the air inlet 21 and the air outlet 22 are in a closed state, and the temperature control unit is forcibly activated to perform heating.
  • the first opening and closing mechanism is a motorized blind 6 structure.
  • the mounting structure is described below with reference to FIG. 1, FIG. 3 and FIG. 6.
  • the fixing base 71 is embedded in the building wall 107, and the column 74 is mounted on the fixing base 71 through the first corner 73, and then the beam 721 is passed through
  • the two corner code 724 is mounted on the post 74.
  • the upper and lower adjacent inner glass curtain wall 1 and the outer glass curtain wall 2 are fixed by the action of the beam 721 and the bead 722; the left and right adjacent inner glass curtain wall 1 and the outer glass curtain wall 2 are realized by the action of the column 74 and the bead 722. fixed.
  • the beam 721 includes a main body 7211.
  • the top of the main body 7211 is open to form an opening.
  • the opening of the opening protrudes inwardly to form a stopper 72112.
  • the opening is covered with a cover 7212.
  • One side of the plate 7212 is provided with a hook 72121, and the other side is provided with an arcuate groove 72122.
  • the first inner side wall of the main body 7211 is provided with a first protrusion 72111 along the longitudinal direction, and the second corner 724 is provided with a first card slot 7241 which is engaged with the first protrusion 72111.
  • the central portion of the main body 7211 is convexly formed to form a connecting block, and the pressing strip 722 is fixed to the connecting block by bolts.
  • the ends of the pressing strips 722 are recessed toward the inner side to form a latching slot 7221, and the bead 722 is provided with an outer frame 723 and two outer frames 723.
  • the inner end of the side faces inwardly to form a block 7231 that cooperates with the card slot 7221.
  • a second protrusion 7232 may be disposed on the outer frame 723. When the outer frame 723 is covered on the bead 722, the second protrusion 7232 abuts against the end of the bead 722.
  • a sealing strip is provided on the end faces of the main body 7211 and the bead 722 in contact with the glass.
  • the fireproof repair unit 8 includes a fireproof board 81 that is connected to the wall 107 by one side and is sealed between the floor and the beam 721 on the other side. a fireproof rock wool 82 fixed on the fireproof board 81; a lower surface of the fireproof board 81 is provided with a first recess 811 formed by punching, and a top surface of the cover plate 7212 is provided with a first protrusion 101 matched with the first recess 811; The lower surface of the plate 81 further forms a second protrusion 812, and the upper surface of the cover plate 7212 is formed with a second recess 102 that cooperates with the second protrusion 812; this design is similar to the use of a maze between the fireproof plate 81 and the beam 721 Sealing, when a fire occurs, heat is transferred to the inside of the beam 721, so that the air inside the beam 721 is thermally expanded, so that the cover 7212 is deformed outward
  • a heat insulating structure is disposed on a side of the inner glass curtain wall 1 adjacent to the wall 107.
  • the heat insulating structure includes an insulating aluminum plate 91 connected to the beam 721 through an L-shaped connecting plate 94, and the insulating aluminum plate 91 and the wall 107 are insulated.
  • the thermal insulation rock wool 92 is filled between the thermal insulation rock wool 92 and the thermal insulation aluminum plate 91 is fixed by the locking member 93.
  • the locking member 93 specifically includes a fixing plate 933 fixedly connected to the surface of the heat insulating aluminum plate 91, a lock rod 931 and a curved locking plate 932. One end of the locking rod 931 is fixed to the other end of the fixing plate 933 and passes through the heat insulating rock. The cotton 92 forms a hook portion 9311.
  • the fire performance of the curtain wall system is further described in conjunction with FIG. 4 and FIG. 5.
  • the bolt connecting the L-shaped connecting plate 94 and the beam 721 is improved, and the stepped hole 103 penetrating the entire bolt is provided in the middle of the bolt.
  • the small diameter section of the stepped hole 103 is close to the wall 107 side, the large diameter section of the stepped hole 103 is provided with an internal thread, and a ball 104 is disposed in the stepped hole 103.
  • the diameter of the ball 104 is larger than the diameter of the small diameter section smaller than the diameter of the large diameter section.
  • the large diameter section of the stepped hole 103 is screwed to a pressure ring 105.
  • a spring 106 is disposed between the ball 104 and the pressure ring 105.
  • the ball 104 can block the stepped hole 103.
  • the air in the beam 721 is thermally expanded, and the air pressure in the beam 721 is raised, and the ball 104 is pushed out outward, so that the stepped hole 103 is opened, and the hot air is then along the stepped hole 103.
  • the direction flows, so that the force at the cover 7212 can be reduced, so that the cover 7212 does not have too much deformation, thereby further improving the fireproof plate 81 and the beam 721. Inter-tightness, improved fire resistance and insulation properties.
  • Embodiment 2 Referring to FIG. 7, the difference from Embodiment 1 is that the inner glass curtain wall is provided with a venting opening 11, and the venting opening 11 is provided with a second opening and closing mechanism for opening or closing.
  • the second opening and closing mechanism is also the electric louver 6.
  • the single-chip microcomputer controls the electric louver 6 to open the vent 11 to ventilate the room.
  • Embodiment 3 in combination with FIG. 2, FIG. 8 and FIG. 9, a temperature-sensing intelligent constant temperature ecological curtain wall system is different from the first embodiment in that the number of outdoor temperature sensors 51 is three, and one outdoor temperature sensor 51a is arranged in the row. Below the tuyere 22, the outdoor temperature sensor 51b is disposed above the air inlet 21, and the outdoor temperature sensor 51c is disposed below the air inlet 21.
  • the outdoor temperature sensor 51a, the outdoor temperature sensor 51b, and the outdoor temperature sensor 51c are all coupled to the single chip microcomputer, and the internal processing is performed by the single chip microcomputer.
  • the calculation method is that the temperature value detected by the outdoor temperature sensor 51a is multiplied by a factor of 0.5, and the outdoor temperature sensor 51b detects The temperature value is multiplied by a factor of 0.2, and the temperature value detected by the outdoor temperature sensor 51c is multiplied by 0.3, thereby obtaining a feedback output temperature signal To of the single chip microcomputer; the temperature sensor may be affected by natural wind at different positions disposed outdoors. The detected data is inaccurate, and the accuracy of the output temperature signal To can be improved by this method, thereby further saving energy.
  • the hollow layer temperature sensor 52 it is also possible to set the hollow layer temperature sensor 52 to three, wherein the hollow layer temperature sensor 52a is disposed at the top of the inner glass near the floor, and the hollow layer temperature sensors 52b, 52c are disposed on the upper and lower sides of the vent 11 to further improve energy saving. effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Atmospheric Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Load-Bearing And Curtain Walls (AREA)
  • Building Environments (AREA)

Abstract

一种温度智能恒温生态幕墙系统,包括内侧玻璃幕墙(1)、外侧玻璃幕墙(2)、温控单元及环境监测系统,内侧玻璃幕墙(1)以及外侧玻璃幕墙(2)之间形成独立的中空层(3),温控单元连接在中空层(3)内,在内侧玻璃幕墙(1)上以及外侧玻璃幕墙(2)设置风口。还提供一种运用该幕墙系统的控温方法。由此实现了智能控温,在降低耗能的同时尽可能的让中空层(3)温度维持在一恒定值。

Description

温度感应智能恒温生态幕墙系统及控温方法 技术领域
本发明涉及幕墙系统,特别涉及一种温度感应智能恒温生态幕墙系统及控温方法。
背景技术
随着生活水平的提高,人们对办公场所的舒适性要求也不断提高。如何在满足舒适性的基础上,尽量降低空调系统的运行成本,一直是困扰着建筑行业的严峻问题。调查显示:公共场所的冷源提供仍广泛使用集中式空调满负荷运行,造成能源的大量浪费,而且一般为离空调排风口越近,温度越低,使人不舒服,容易使人产生空调病。
另外,尽管市场上已开始利用呼吸式通风幕墙替代传统窗户作为围护结构,也的确能通过自然通风的被动式散热方式带走一定量的太阳辐射热,但通风效果受到环境、建筑尺寸因素的限制,实际带走热量有限。
中国专利申请号为201410748402.X,公开了一种三层玻璃结构的复合式温控幕墙及其控温方法,该发明中的内侧玻璃幕墙、外侧玻璃幕墙的上端和下端均装有电动百叶窗格栅风口组件;内侧玻璃幕墙与中间隔断层玻璃幕墙之间形成独立的内侧夹层换热通道;外侧玻璃幕墙与中间隔断层玻璃幕墙之间形成独立的外侧夹层换热通道;在中间隔断层玻璃幕墙上均布有半导体热电温控单元;环境监测系统由多个温度传感器组成,为单片机控制模块中的温度读取模块提供目标环境的实时温度监测数据;半导体热电温控单元受控于单片机控制模块。
该专利中公开了此种幕墙在夏季的工况,当环境温度高于28摄氏度时,外侧玻璃风门打开,内侧玻璃风门关闭,并开启制冷模式,首先,由于其外侧玻璃是普通的单层玻璃因此在外侧夹层通风道里面热辐射较强,就会使得隔断层温度升高进而影响内侧夹层通风道的温度,使得内侧夹层通风道的温度升高,增加半导体的制冷功耗;其次,当开始制冷模式的时候,内夹层的温度小于室外温度,外界阳光的照射会使得外夹层温度升高,在烟囱效应的作用下会加速热量的损失,尤其是中间玻璃为单层玻璃的情况下内夹层冷气更加容易被室外的温度影响,造成制冷功能的增加。
发明内容
本发明的目的一是提供一种温度感应智能恒温生态幕墙系统,其具有更为节能的优点。
本发明的上述技术目的是通过以下技术方案得以实现的:一种温度感应智能恒温生 态幕墙系统,包括分体式设置的内侧玻璃幕墙、外侧玻璃幕墙,所述的内侧玻璃幕墙与外侧玻璃幕墙分别独立的安装在幕墙结构上,所述的内侧玻璃幕墙以及外侧玻璃幕墙之间形成中空层,所述的外侧玻璃幕墙上部设有排风口,下部设有进风口,所述的温度感应智能恒温生态幕墙系统还包括单片机,所述的单片机耦接有用于开启或关闭排风口以及进风口的第一启闭机构,所述的单片机耦接有:
室外温度传感器,设置于室外,用于检测室外的温度并输出温度信号To;
中空层传感器,设置于中空层,用于检测中空层温度并输出温度信号Tm;
温控单元,设置于中空层内的幕墙安装结构上,受单片机的控制实现制冷模式或制热模式并结合风口启闭的方案以实现调节中空层的温度使中空层温度维持在预设温度信号Tx,所述的方案包括
运行策略一、在室外温度传感器检测到环境温度To>25摄氏度时,当To>Tm>Tx时,单片机控制第一启闭机构动作,使得进风口以及排风口开启,在烟囱效应的作用下带走一部分热量以降低中空层的温度直至Tm趋于一稳定值,若Tm>Tx,则单片机控制进风口以及排风口关闭并强制启动温控单元进行制冷模式,使得Tm=Tx;
运行策略二、在室外温度传感器检测到环境温度To为22-25摄氏度时,单片机控制进风口以及排风口处于常开状态,以实现循环通风,使得Tm=Tx;
运行策略三、在室外温度传感器检测到环境温度To<22摄氏度时,单片机控制第一启闭机构动作,使得进风口以及排风口处于关闭状态,并强制启动温控单元进行制热模式,使得Tm=Tx。
通过采用上述技术方案,将该幕墙系统装饰在建筑物的周围,就相当于给建筑物增加了一层保温层,可以有效防止室内热量的散失,由于外侧玻璃幕墙为双层玻璃,在夏天的时候可以有效减小太阳的辐射,有效阻隔室外热量进入到中空层内,进而降低中空层的制冷功耗,同时内侧玻璃为单层玻璃的设置也使得中空层内的热量的往室内传递,而不会往室外传递进一步降低制冷功耗;在冬天室外温度较低的时候,由于双层玻璃的作用也可以有效具有更好的保温效果,中空层内形成温室效应,可以降低制热的功耗;夏天的时候当打开进风口以及排风口时,可以使得中空层形成空气流动热压远离以及烟囱效应,空气从进风口进入中空层,气体受热而产生由下向上的热运动,由排气口把中空层内的热气降低中空层的温度,随后通过单片机控制进风口以及排风口关闭,同时开启温控单元对中空层实现制冷,由于可以通过烟囱效应先带走一部分热量,因此可以进一步降低制冷功耗。
作为优选的,所述的内侧玻璃幕墙设有通风口,所述的通风口上设有用于开启或者 关闭的第二启闭机构。
通过采用上述技术方案,当室外温度合适的时候可以打开内侧玻璃幕墙的通风口对室内进行换气。
作为优选的,还包括用于将幕墙系统安装到建筑物上的安装结构,所述的安装结构包括固定于建筑物上的固定座、连接相邻内侧玻璃幕墙之间的安装框以及连接安装框与固定座之间的第一角码。
通过采用上述技术方案,可以更为方便的将该幕墙系统安装在建筑物上。
作为优选的,所述的安装框包括用于与建筑物连接的横梁、用于夹持玻璃的压条以及连接在压条外部的外框。
通过采用上述技术方案,这种方式可以使得幕墙安装更加简单方便。
作为优选的,所述的压条中部通过螺栓与横梁连接,所述压条两侧的端面向内凹陷形成卡槽,所述外框两侧的内端面向内凸出形成与卡槽配合的卡块。
通过采用上述技术方案,压条通过螺栓拧紧的过程中,可能会使中部过度受力而导致两端翘起降低中空层的密封性能,增加中空层热量的散失提高耗能;而当压条两端卡在外框可以在压条中部过度受力时有效防止压条两端翘起以提高密封性能,从而减小中空层热量的散失。
作为优选的,该温度感应智能恒温生态幕墙系统还包括防火封修单元,所述的防火封修单元包括密封连接在楼板与横梁之间的防火板、固定在防火板上的防火岩棉。
通过采用上述技术方案,该建筑物在夏天的时候会利用了烟囱效应以降低中空层的温度,但是一旦发生火灾时由于有烟囱效应的存在就是加剧火势蔓延,在幕墙层间通过防火封修单元可以阻隔火焰窜层在达到节能效果的同时以提高安全性能。
作为优选的,所述的内侧玻璃幕墙靠近室内的一侧设有保温结构,所述的保温结构包括保温铝板、保温岩棉以及用于将保温岩棉固定在保温铝板上的锁紧件,所述的保温铝板通过L型的第一角码与横梁固接。
通过采用上述技术方案,在内侧玻璃幕墙上设置保温结构可以进一步提高中空层的保温效果,保温铝板通过L型第一角码的方式与横梁连接具有加强的稳定性,而通过锁紧件将保温岩棉压紧在保温铝板上可以防止保温铝板表面拱起。
作为优选的,所述的锁紧件包括与固定连接在保温铝板表面的固定板、一端固定于固定板另一端穿过保温岩棉形成钩部的锁杆以及套设在钩部用于夹紧保温岩棉的锁紧板。
通过采用上述技术方案,通过该方式将保温岩棉固定在保温铝板上更为方便。
作为优选的,所述的横梁与防火板之间迷宫密封。
通过采用上述技术方案,在下层发生火灾时,温度升高会使得横梁受热膨胀往外变形,从而使得横梁与防火板之间松动致使两者之间的间隙增大影响密封效果,而采用迷宫密封的形式,即使在横梁变形的时候,因为有多个密封部的存在也能进一步提高横梁与防火板之间的密封性,提高保温性能的同时提高防火性能。
本发明的目的二是提供一种控温方法,其具有更为节能的优点。
本发明的上述技术目的二是通过以下技术方案得以实现的:按季节不同,幕墙系统主动执行三种运行策略,并对应三种系统运行模式;单片机可选择执行环境实时监测驱动和手动输入驱动的两种工作模式,实现对幕墙系统的自主温控操作或单独温控操作;
所述的三种运行策略依据三种季节工况对应执行三种运行模式,受单片机的控制实现制冷模式或制热模式并结合风口启闭的以实现调节中空层的温度使中空层温度维持在预设温度信号Tx;其中预设温度信号Tx为22-25摄氏度的某一温度值;
运行策略一、在室外温度传感器检测到环境温度To>25摄氏度时,当To>Tm>Tx时,单片机控制第一启闭机构动作,使得进风口以及排风口开启,在烟囱效应的作用下带走一部分热量以降低中空层的温度直至Tm趋于一稳定值,若Tm>Tx,则单片机控制进风口以及排风口关闭并强制启动温控单元进行制冷模式,使得Tm=Tx;
运行策略二、在室外温度传感器检测到环境温度To为22-25摄氏度时,单片机控制进风口以及排风口处于常开状态,以实现循环通风,使得Tm=Tx;
运行策略三、在室外温度传感器检测到环境温度To<22摄氏度时,单片机控制第一启闭机构动作,使得进风口以及排风口处于关闭状态,并强制启动温控单元进行制热模式,使得Tm=Tx。
综上所述,本发明具有以下有益效果:该温度感应智能恒温生态幕墙,包裹在建筑物的四周,就相当于给建筑物裹上了一层保温层,可以减小外界环境对室内温度的影响,在冬季时可以有效防止室内温度的散失,使得即使室内温度能长时间维持在某一温度,而不需要经常性的启动室内空调;在夏季的时候有保温层的存在可以阻隔室外高温对室内低温的影响,使得室内温度能长期保持在某一温度,不需要频繁的启动室内空调,以达到节能的效果;当通过温控单元以及进风口、排风口以及通风口启闭结合的方式,可以使得中空层达到恒温更为节能。该幕墙系统还改进了防火封修单元,在提高节能效果的同时还提高了防火安全性能。
附图说明
图1为实施例一的结构示意图;
图2为实施例的电路控制图;
图3是实施例一、二、三中用于体现立柱的结构示意图;
图4是实施例一、二、三中用于体现横梁、防火板之间的连接关系;
图5为图4中A部放大图;
图6为图实施例一、二、三中用于体现立柱、固定座以及第一角码连接关系的结构示意图;
图7为实施例二的结构示意图;
图8为实施例三的结构示意图;
图9为实施例三中用于体现中空层温度传感器以及室外温度传感器的结构示意图。
图中,1、内侧玻璃幕墙;11、通风口;2、外侧玻璃幕墙;21、进风口;22、排风口;3、中空层;4、空调;51、室外温度传感器;51a、室外温度传感器;51b、室外温度传感器;51c、室外温度传感器;52、中空层温度传感器;52a、中空层温度传感器;52b、中空层温度传感器;52c、中空层温度传感器;6、电动百叶窗;71、固定座;721、横梁;7211、主体;72111、第一凸块;72112、挡块;7212、盖板;72121、卡钩;72122、弧形槽;722、压条;7221、卡槽;723、外框;7231、卡块;7232、第二凸块;724、第二角码;7241、第一卡槽;73、第一角码;74、立柱;8、防火封修单元;81、防火板;811、第一凹陷;812、第二凸起;82、防火岩棉;91、保温铝板;92、保温岩棉;93、锁紧件;931、锁杆;9311、钩部;932、锁紧板;933、固定板;94、连接板;101、第一凸起;102、第二凹陷;103、台阶孔;104、滚珠;105、压环;106、弹簧;107、墙体。
具体实施方式
以下结合附图对本发明作进一步详细说明。
实施例1:一种温度感应智能恒温生态幕墙系统,包括机械部分以及电路部分;其中机械部分如图1所示,包括内侧玻璃幕墙1、外侧玻璃幕墙2、安装结构、防火封修单元8以及第一启闭结构。
内侧玻璃幕墙1以及外侧玻璃幕墙2通过安装结构安装在建筑物周围;其中,内侧玻璃幕墙1为单层玻璃而外侧玻璃幕墙2则为双层玻璃,内侧玻璃幕墙1以及外侧玻璃幕墙2之间形成一个中空层3并在中空层3内的横向龙骨或者是纵向龙骨上设置温控单元,在本实施例中温控单元选用变频空调4。另外在双层玻璃上部设有排风口22,下部设置进风口21;进风口21以及排风口22通过第一启闭机构实现开启以及关闭,上下幕墙层间通过防火封修单元8阻隔。
在内侧玻璃幕墙1上设置一个中空层温度传感器52,在外侧玻璃幕墙2上设置一个室外温度传感器51。
参见图2所示,该幕墙系统的电路部分,单片机型号为AT89C51其中输入端耦接室外温度传感器51以及中空层温度传感器52,输出端耦接第一启闭机构、第二启闭机构以及温控单元,其中室外温度传感器51以及中空层温度传感器52的型号均为DS18B20。
结合图1以及图2对本实施例的节能原理做以下说明,在建筑物装修的时候,将该温度感应智能恒温生态幕墙系统装饰在建筑物的四周,然后通过受单片机的控制实现制冷模式或制热模式并结合风口启闭的以实现调节中空层3的温度使中空层3温度维持在某一温度值,相当于给建筑物裹上恒温保温层以实现节能;比如在冬季时,一方面中空层3内形成温室效应,可以降低制热的功耗;另一方面由于保温层的存在可以有效防止室内温度的散失,使得即使室内温度能长时间维持在某一温度,而不需要经常性的启动室内空调4。
在夏季的时候,一方面有恒温保温层的存在可以阻隔室外高温对室内低温的影响,使得室内温度能长期保持在某一温度,不需要频繁的启动室内空调4,以达到节能的效果;另一方面打开进风口21以及排风口22,可以使得中空层3形成空气流动热压远离以及烟囱效应,空气从进风口21进入中空层3,气体受热而产生由下向上的热运动,由排气口把中空层3内的热气降低中空层3的温度,随后通过单片机控制进风口21以及排风口22关闭,同时开启温控单元对中空层3实现制冷,由于可以通过烟囱效应先带走一部分热量,因此可以进一步降低制冷功耗。
更为重要的是由于外侧玻璃幕墙2为双层玻璃,在夏天的时候可以有效减小太阳的辐射,有效阻隔室外热量进入到中空层3内,进而降低中空层3的制冷功耗,同时内侧玻璃为单层玻璃的设置也使得中空层3内的热量的往室内传递,而不会往室外传递进一步降低制冷功耗。
具体说明,按季节不同,幕墙系统主动执行三种运行策略,并对应三种系统运行模式;单片机可选择执行环境实时监测驱动,实现对幕墙系统的自主温控操作或单独温控操作;
三种运行策略依据三种季节工况对应执行三种运行模式,受单片机的控制实现制冷模式或制热模式并结合风口启闭的以实现调节中空层3的温度使中空层3温度维持在预设温度信号Tx;其中预设温度信号Tx为22-25摄氏度的某一温度值;本实施例中预设温度信号Tx取22摄氏度。
运行策略一、在室外温度传感器51检测到环境温度To>25摄氏度时,当To>Tm> Tx时,单片机控制第一启闭机构动作,使得进风口21以及排风口22开启,在烟囱效应的作用下带走一部分热量以降低中空层3的温度直至Tm趋于一稳定值,若Tm>Tx,则单片机控制进风口21以及排风口22关闭并强制启动温控单元进行制冷模式,使得Tm=Tx;
运行策略二、在室外温度传感器51检测到环境温度To为22-25摄氏度时,单片机控制进风口21以及排风口22处于常开状态,以实现循环通风,使得Tm=Tx;
运行策略三、在室外温度传感器51检测到环境温度To<22摄氏度时,单片机控制第一启闭机构动作,使得进风口21以及排风口22处于关闭状态,并强制启动温控单元进行制热模式,使得Tm=Tx。
该实施例中第一启闭机构为电动百叶窗6结构。
结合图1、图3以及图6对安装结构做以下说明,固定座71嵌在建筑物墙体107内,将立柱74通过第一角码73安装在固定座71上,然后将横梁721通过第二角码724安装在立柱74上。
上下相邻内侧玻璃幕墙1以及外侧玻璃幕墙2之间通过横梁721以及压条722的作用实现固定;左右相邻的内侧玻璃幕墙1以及外侧玻璃幕墙2之间通过立柱74与以及压条722的作用实现固定。
参见图4对横梁721的具体结构做以下说明,横梁721包括主体7211,主体7211的顶部敞开形成开口,开口的口沿出向内凸出形成挡块72112,开口上盖合有盖板7212,盖板7212一侧设有卡钩72121,另一侧设有弧形槽72122。
主体7211两内侧壁沿长度方向设有第一凸块72111,第二角码724上设有与第一凸块72111卡接的第一卡槽7241。
将横梁721分成两个部分,可以先把所有立柱74都安装在建筑物外墙上,然后再安装横梁721,在安装横梁721时先把主体7211预固定在立柱74上,然后通过开口处将第二角码724放入到主体7211内,使得第二角码724在第一凸块72111以及第一卡槽7241的作用下竖直方向相对固定,然后通过螺栓将第二角码724固定在立柱74上,将盖板7212的弧形槽72122放入其中一个挡块72112中,然后通过卡钩72121与另一挡块72112卡接。如此设计就不需要一根立柱74再一根横梁721地安装,可以提高幕墙的安装效率。
主体7211的中部凸出形成连接块,压条722通过螺栓与连接块固定,其中压条722两侧的端面向内凹陷形成卡槽7221,并在压条722上设有一个外框723,外框723两侧的内端面向内凸出形成与卡槽7221配合的卡块7231。
当压条722通过螺栓拧紧的过程中,会使压条722的中部过度受力而导致两端翘起 而当压条722两端卡在外框723可以在压条722中部过度受力时有效防止压条722两端翘起以提高密封性能,从而减小中空层3热量的散失。此外为了进一步防止压条722两端翘起可以在外框723上设有第二凸块7232,当外框723盖合在压条722上时,第二凸块7232与压条722端部抵接。
为了增强中空层3的密封性能,在主体7211与压条722与玻璃接触的端面上均设有密封条。
参见图4所示,对防火封修单元8做以下具体说明;防火封修单元8包括一侧通过螺栓连接在墙体107上另一侧密封连接在楼板与横梁721之间的防火板81,固定在防火板81上的防火岩棉82;防火板81的下表面设有通过冲压形成的第一凹陷811,盖板7212上表面设有与第一凹陷811配合的第一凸起101;防火板81的下表面还形成第二凸起812,盖板7212的上表面形成有与第二凸起812配合的第二凹陷102;此种设计就类似于防火板81与横梁721之间采用迷宫密封,当发生火灾时,热量会经传递到横梁721的内部,从而使得横梁721内部空气受热膨胀从而会使得盖板7212往外变形向外凸出,此时就会使得第一凸起101更加牢固的嵌在第一凹陷811内,同样第二凸起812也会更好的嵌在第二凹陷102内,以解决盖板7212变形所导致的密封性问题,从而提高该幕墙的防火性能。
参见图4所示,内侧玻璃幕墙1靠近墙体107的一侧设有保温结构,保温结构包括保温铝板91,其通过L型的连接板94连接在横梁721上,保温铝板91与墙体107之间填充保温岩棉92,保温岩棉92通过锁紧件93固定在保温铝板91上。
其中锁紧件93的具体为包括与固定连接在保温铝板91表面的固定板933、锁杆931以及弧形的锁紧板932,锁杆931的一端固定于固定板933另一端穿过保温岩棉92形成钩部9311。
结合图4以及图5对该幕墙系统的防火性能做进一步说明为了提高该幕墙的防火性能,对连接L型连接板94与横梁721的螺栓进行改进,螺栓中部设贯穿整个螺栓的台阶孔103,台阶孔103的小径段靠近墙体107侧,台阶孔103的大径段设有内螺纹,在台阶孔103内设有一个滚珠104,滚珠104的直径大于小径段的直径小于大径段的直径,台阶孔103大径段螺纹连接一个压环105,滚珠104与压环105之间设有一根弹簧106,弹簧106处于自然状态或者是略微压缩状态时,滚珠104可将台阶孔103堵住。当发生火灾时,会使得横梁721中的空气受热膨胀,横梁721内气压升高,会把滚珠104向外顶出,使得台阶孔103打开,这时热空气就会在沿着台阶孔103的方向流动,从而使得可以减小盖板7212处的受力,使盖板7212不至于有太大的变形量,从而进一步提高防火板81与横梁721之 间的密封性,提高防火性能以及保温性能。
实施例二、参见图7所示,与实施例1的区别在于,内侧玻璃幕墙设有通风口11,通风口11上设有用于开启或者关闭的第二启闭机构。第二启闭机构同样为电动百叶窗6当室外温度传感器51检测到室外温度信号To与预设温度Tx相等时,单片机控制电动百叶窗6将通风口11打开,对室内进行换气。
实施例三、结合图2、图8以及图9,一种温度感应智能恒温生态幕墙系统,与实施例一的区别在于:室外温度传感器51数量为3个,其中一个室外温度传感器51a设置在排风口22的下方,室外温度传感器51b设置在进风口21的上方,室外温度传感器51c设置在进风口21的下方。
室外温度传感器51a、室外温度传感器51b、室外温度传感器51c、均耦接在单片机上,单片机内部进行运算,运算方式为室外温度传感器51a检测到的温度值乘以系数0.5,室外温度传感器51b检测到的温度值乘以系数0.2,室外温度传感器51c检测到的温度值乘以0.3,从而得出单片机反馈输出温度信号To;由于设置在室外的在不同位置会受到自然风的影响从而会导致温度传感器检测的数据不准确,通过该方式可以提高输出温度信号To的准确性,进而可以更进一步节能效果。
此外,还可以将中空层温度传感器52设置为3个,其中中空层温度传感器52a设置在内玻璃靠近楼层的顶部,中空层温度传感器52b、52c设置在通风口11的上下两侧以进一步提高节能效果。
本具体实施例仅仅是对本发明的解释,其并不是对本发明的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本发明的权利要求范围内都受到专利法的保护。

Claims (10)

  1. 一种温度感应智能恒温生态幕墙系统,包括分体式设置的内侧玻璃幕墙(1)、外侧玻璃幕墙(2),所述的内侧玻璃幕墙(1)与外侧玻璃幕墙(2)分别独立的安装在幕墙结构上,所述的内侧玻璃幕墙(1)以及外侧玻璃幕墙(2)之间形成中空层(3),其特征在于:所述的内侧玻璃幕墙(1)为单层玻璃,外侧玻璃幕墙(2)为双层玻璃,所述的外侧玻璃幕墙(2)上部设有排风口(22),下部设有进风口(21),所述的温度感应智能恒温生态幕墙系统还包括单片机,所述的单片机耦接有:
    第一启闭机构,用于控制排风口(22)以及进风口(21)的启闭;
    室外温度传感器(51),设置于室外,用于检测室外的温度并输出温度信号To;
    中空层(3)传感器,设置于中空层(3),用于检测中空层(3)温度并输出温度信号Tm;
    温控单元,设置于中空层(3)内的幕墙安装结构上,受单片机的控制实现制冷模式或制热模式并结合风口启闭方案以实现调节中空层(3)的温度使中空层(3)温度维持在预设温度信号Tx,所述的方案包括
    运行策略一、在室外温度传感器(51)检测到环境温度To>25摄氏度时,当To>Tm>Tx时,单片机控制第一启闭机构动作,使得进风口(21)以及排风口(22)开启,在烟囱效应的作用下带走一部分热量以降低中空层(3)的温度直至Tm趋于一稳定值,若Tm>Tx,则单片机控制进风口(21)以及排风口(22)关闭并强制启动温控单元进行制冷模式,使得Tm=Tx;
    运行策略二、在室外温度传感器(51)检测到环境温度To为22-25摄氏度时,单片机控制进风口(21)以及排风口(22)处于常开状态,以实现循环通风,使得Tm=Tx;
    运行策略三、在室外温度传感器(51)检测到环境温度To<22摄氏度时,单片机控制第一启闭机构动作,使得进风口(21)以及排风口(22)处于关闭状态,并强制启动温控单元进行制热模式,使得Tm=Tx。
  2. 根据权利要求1所述的一种温度感应智能恒温生态幕墙系统,其特征是:所述的内侧玻璃幕墙(1)设有通风口(11),所述的通风口(11)上设有用于开启或者关闭的第二启闭机构。
  3. 根据权利要求1所述的一种温度感应智能恒温生态幕墙系统,其特征是:还包括用于将幕墙系统安装到建筑物上的安装结构,所述的安装结构包括固定于建筑物上的固定座(71)、连接相邻内侧玻璃幕墙(1)之间的安装框以及连接安装框与固定座(71)之间的第一角码(73)。
  4. 根据权利要求3所述的一种温度感应智能恒温生态幕墙系统,其特征是:所述的安装框 包括用于与建筑物连接的横梁(721)、用于夹持玻璃的压条(722)以及连接在压条(722)外部的外框(723)。
  5. 根据权利要求4所述的一种温度感应智能恒温生态幕墙系统,其特征是:所述的压条(722)中部通过螺栓与横梁(721)连接,所述压条(722)两侧的端面向内凹陷形成卡槽(7221),所述外框(723)两侧的内端面向内凸出形成与卡槽(7221)配合的卡块(7231)。
  6. 根据权利要求3所述的一种温度感应智能恒温生态幕墙系统,其特征是:该温度感应智能恒温生态幕墙系统还包括防火封修单元(8),所述的防火封修单元包括密封连接在楼板与横梁(721)之间的防火板(81)、固定在防火板(81)上的防火岩棉(82)。
  7. 根据权利要求3所述的一种温度感应智能恒温生态幕墙系统,其特征是:所述的内侧玻璃幕墙(1)靠近室内的一侧设有保温结构,所述的保温结构包括保温铝板(91)、保温岩棉(92)以及用于将保温岩棉(92)固定在保温铝板(91)上的锁紧件(93),所述的保温铝板(91)通过L型的连接板(94)第一角码(73)与横梁(721)固接。
  8. 根据权利要求7所述的一种温度感应智能恒温生态幕墙系统,其特征是:所述的锁紧件(93)包括与固定连接在保温铝板(91)表面的固定板(933)、一端固定于固定板(933)另一端穿过保温岩棉(92)形成钩部(9311)的锁杆(931)以及套设在钩部(9311)用于夹紧保温岩棉(92)的锁紧板(932)。
  9. 根据权利要求7所述的一种温度感应智能恒温生态幕墙系统,其特征是:所述的横梁(721)与防火板(81)之间迷宫密封。
  10. 一种控温方法,其运用了如权利要求1至9任意一项所述的温度感应智能恒温生态幕墙系统;其特征是:
    按季节不同,幕墙系统主动执行三种运行策略,并对应三种系统运行模式;单片机可选择执行环境实时监测驱动和手动输入驱动的两种工作模式,实现对幕墙系统的自主温控操作或单独温控操作;
    所述的三种运行策略依据三种季节工况对应执行三种运行模式,受单片机的控制实现制冷模式或制热模式并结合风口启闭的以实现调节中空层(3)的温度使中空层(3)温度维持在预设温度信号Tx;其中预设温度信号Tx为22-25摄氏度的某一温度值;
    运行策略一、在室外温度传感器(51)检测到环境温度To>25摄氏度时,当To>Tm>Tx时,单片机控制第一启闭机构动作,使得进风口(21)以及排风口(22)开启,在烟囱效应的作用下带走一部分热量以降低中空层(3)的温度直至Tm趋于一稳定值,若Tm>Tx,则单片机控制进风口(21)以及排风口(22)关闭并强制启动温控单元进行制冷模式,使得 Tm=Tx;
    运行策略二、在室外温度传感器(51)检测到环境温度To为22-25摄氏度时,单片机控制进风口(21)以及排风口(22)处于常开状态,以实现循环通风,使得Tm=Tx;
    运行策略三、在室外温度传感器(51)检测到环境温度To<22摄氏度时,单片机控制第一启闭机构动作,使得进风口(21)以及排风口(22)处于关闭状态,并强制启动温控单元进行制热模式,使得Tm=Tx。
PCT/CN2017/096088 2016-08-09 2017-08-04 温度感应智能恒温生态幕墙系统及控温方法 WO2018028522A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610648266.6 2016-08-09
CN201610648266.6A CN106088425A (zh) 2016-08-09 2016-08-09 温度感应智能恒温生态幕墙系统及控温方法

Publications (1)

Publication Number Publication Date
WO2018028522A1 true WO2018028522A1 (zh) 2018-02-15

Family

ID=57456202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/096088 WO2018028522A1 (zh) 2016-08-09 2017-08-04 温度感应智能恒温生态幕墙系统及控温方法

Country Status (2)

Country Link
CN (1) CN106088425A (zh)
WO (1) WO2018028522A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110204040A (zh) * 2019-06-13 2019-09-06 江苏吉隆环保科技有限公司 一种便于连接的mbr膜内衬管
CN110234088A (zh) * 2018-03-06 2019-09-13 上海建材集团节能环保科技有限公司 一种幕墙监控传输方法
CN110274747A (zh) * 2019-06-14 2019-09-24 浙江大学 一种容积可调的廊道式双层幕墙风洞试验模型装置
CN112798518A (zh) * 2021-03-10 2021-05-14 深圳市建设工程质量检测中心 用于隐框玻璃幕墙的老化装置及老化方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106088425A (zh) * 2016-08-09 2016-11-09 金粤幕墙装饰工程有限公司 温度感应智能恒温生态幕墙系统及控温方法
CN109989508A (zh) * 2017-12-30 2019-07-09 长沙星纳气凝胶有限公司 一种呼吸式气凝胶玻璃幕墙
CN108316526A (zh) * 2018-04-04 2018-07-24 苏州柯利达装饰股份有限公司 一种单元幕墙系统
CN110107022A (zh) * 2019-04-04 2019-08-09 淮阴工学院 一种具有调温功能的节能预制保温外墙及其控制方法
CN110616825B (zh) * 2019-10-18 2021-05-28 安徽建筑大学城市建设学院 一种环保框架式夏季通风降温和冬季辐射保暖预制墙

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005105732A (ja) * 2003-10-01 2005-04-21 Mitsubishi Jisho Sekkei Inc 換気機能付きカーテンウォール、およびこれを備えた建物
CN1793540A (zh) * 2005-12-26 2006-06-28 蔡伯中 保温铝板轻质墙体
CN101603341A (zh) * 2009-06-23 2009-12-16 深圳市富诚科技发展有限公司 建筑结构承载的安全和经济型双层幕墙及施工工艺
CN104453039A (zh) * 2014-12-09 2015-03-25 中国计量学院 一种三层玻璃结构的复合式温控幕墙及其控温方法
CN204728536U (zh) * 2015-05-29 2015-10-28 北京雅点聚美广告策划有限公司 幕墙
CN106088425A (zh) * 2016-08-09 2016-11-09 金粤幕墙装饰工程有限公司 温度感应智能恒温生态幕墙系统及控温方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1218332A (en) * 1968-05-22 1971-01-06 Otto Alfred Becker Improvements in and relating to wall units with insulation
JP2002021234A (ja) * 2000-07-12 2002-01-23 Ykk Architectural Products Inc カーテンウォールの換気ユニット
CN201296986Y (zh) * 2008-09-28 2009-08-26 广州市设计院 智能型内呼吸双道玻璃幕墙
CN201301509Y (zh) * 2008-10-29 2009-09-02 北京江河幕墙股份有限公司 钢铝复合结构型外通风双层幕墙
CN201381581Y (zh) * 2009-04-12 2010-01-13 闫海超 墙体保温复合板
CN201817940U (zh) * 2010-07-20 2011-05-04 广东金刚幕墙工程有限公司 一种内循环双层幕墙
CN202380616U (zh) * 2011-12-29 2012-08-15 北京东方泰洋装饰工程有限公司 一种双层幕墙系统
CN102691369A (zh) * 2012-06-08 2012-09-26 天津住宅集团建材科技有限公司 一种隔热幕墙
CN203499058U (zh) * 2013-07-01 2014-03-26 北京江河幕墙系统工程有限公司 一种幕墙层间防火结构
CN204983199U (zh) * 2015-09-30 2016-01-20 山东瑞京建筑科技有限公司 建筑模板用螺纹组件及相应的建筑模板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005105732A (ja) * 2003-10-01 2005-04-21 Mitsubishi Jisho Sekkei Inc 換気機能付きカーテンウォール、およびこれを備えた建物
CN1793540A (zh) * 2005-12-26 2006-06-28 蔡伯中 保温铝板轻质墙体
CN101603341A (zh) * 2009-06-23 2009-12-16 深圳市富诚科技发展有限公司 建筑结构承载的安全和经济型双层幕墙及施工工艺
CN104453039A (zh) * 2014-12-09 2015-03-25 中国计量学院 一种三层玻璃结构的复合式温控幕墙及其控温方法
CN204728536U (zh) * 2015-05-29 2015-10-28 北京雅点聚美广告策划有限公司 幕墙
CN106088425A (zh) * 2016-08-09 2016-11-09 金粤幕墙装饰工程有限公司 温度感应智能恒温生态幕墙系统及控温方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110234088A (zh) * 2018-03-06 2019-09-13 上海建材集团节能环保科技有限公司 一种幕墙监控传输方法
CN110204040A (zh) * 2019-06-13 2019-09-06 江苏吉隆环保科技有限公司 一种便于连接的mbr膜内衬管
CN110274747A (zh) * 2019-06-14 2019-09-24 浙江大学 一种容积可调的廊道式双层幕墙风洞试验模型装置
CN112798518A (zh) * 2021-03-10 2021-05-14 深圳市建设工程质量检测中心 用于隐框玻璃幕墙的老化装置及老化方法

Also Published As

Publication number Publication date
CN106088425A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
WO2018028522A1 (zh) 温度感应智能恒温生态幕墙系统及控温方法
WO2018028520A1 (zh) 一体化温度感应智能恒温生态幕墙系统及控温方法
WO2018028521A1 (zh) 智能恒温生态幕墙系统及控温方法
KR200446074Y1 (ko) 친환경 에너지 절약형 자동제어 창호 시스템
WO2018028528A1 (zh) 风感应智能恒温生态幕墙系统及控温方法
WO2018028525A1 (zh) 一体化风感应智能恒温生态幕墙系统及控温方法
WO2018028523A1 (zh) 一体化雨感应智能恒温生态幕墙系统及控温方法
CN106761187A (zh) 一种建筑双层节能窗结构及方法
WO2018028526A1 (zh) 雨感应智能恒温生态幕墙系统及控温方法
WO2018028519A1 (zh) 一体化智能恒温生态幕墙系统及控温方法
CN106065679A (zh) 太阳能智能恒温生态幕墙系统及控温方法
CN101392563B (zh) 具有可控半导体式传热能力的节能墙壁结构
CN201176831Y (zh) 一种外遮阳装置
CN106088424A (zh) 一体化太阳能智能恒温生态幕墙系统及控温方法
WO2008028349A1 (fr) Mur-rideau comprenant un espace libre et procédé de construction
JP5926711B2 (ja) 暖房システム
CN105821987A (zh) 一种蜂巢式对流通风外墙保温装置
CN205530674U (zh) 一种太阳能驱动幕墙与地下空间结合的隔热通风采光系统
CN203052871U (zh) 与窗户相结合卧式机组空调装置
CN205776938U (zh) 节能型智能内循环双层单元幕墙
CN102220830A (zh) 全气候节能呼吸窗及温度控制方法
CN207377368U (zh) 适用于被动式低能耗建筑的嵌装式折叠滑动百叶窗结构
CN102518374A (zh) 具有通风口控制结构的全气候节能呼吸窗
CN203879306U (zh) 系统推拉窗
CN207377433U (zh) 适用于被动式低能耗建筑的外挂推拉滑动式百叶窗结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17838652

Country of ref document: EP

Kind code of ref document: A1