WO2018028475A1 - 一种v2x通信的资源选择方法和装置 - Google Patents

一种v2x通信的资源选择方法和装置 Download PDF

Info

Publication number
WO2018028475A1
WO2018028475A1 PCT/CN2017/095475 CN2017095475W WO2018028475A1 WO 2018028475 A1 WO2018028475 A1 WO 2018028475A1 CN 2017095475 W CN2017095475 W CN 2017095475W WO 2018028475 A1 WO2018028475 A1 WO 2018028475A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
energy
signal detection
unit
signal
Prior art date
Application number
PCT/CN2017/095475
Other languages
English (en)
French (fr)
Inventor
黄双红
卢有雄
杨瑾
袁明
王文焕
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018028475A1 publication Critical patent/WO2018028475A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communications, and in particular to a resource selection method and apparatus for V2X communication.
  • Vehicle networking refers to a large-scale system network for wireless communication and information exchange between car-X (X: car, road, pedestrian, Internet, etc.) in accordance with agreed communication protocols and data interaction standards. Communication through the Internet of Vehicles enables vehicles to achieve driving safety, improve traffic efficiency, and access convenience or entertainment information. Classification from wireless communication objects, vehicle networking communication includes three different types: Vehicle to Vehicle (V2V), Vehicle to Infrastructure (V2I), And Vehicle to Pedestrian (V2P), collectively referred to as V2X communication.
  • V2V Vehicle to Vehicle
  • V2I Vehicle to Infrastructure
  • V2P Vehicle to Pedestrian
  • V2X communication based on sidelink between user equipments (User Equipments, UEs for short)
  • the method is one of the implementation methods of the V2X standard, that is, the service data is not forwarded by the base station and the core network, and is directly transmitted by the source user equipment to the target user equipment through the air interface, as shown in FIG. 1 , the V2X communication method is referred to as PC5-based. V2X communication.
  • V2P communication belongs to the V2X communication category, including Pedestrian UE (P-UE) transmission signal, vehicle user equipment (Vehicle UE, V-UE for short) reception, and/or V-UE transmission signal, P-UE reception V2P is mainly to protect pedestrians or vulnerable objects from traffic accidents or potential dangers.
  • P-UE Pedestrian UE
  • V-UE vehicle user equipment
  • V-UE transmission signal V-UE reception V2P is mainly to protect pedestrians or vulnerable objects from traffic accidents or potential dangers.
  • the vehicle can continuously supply power to the V-UE, and power saving for the V-UE is not a critical requirement.
  • the handheld terminal of the P-UE there is usually no external power supply for continuous power supply during the movement.
  • the P-UE In order to enable the P-UE to operate for a long enough time, in the V2P communication system, not only the high reliability of the V2P communication but also the V2P communication is considered. Sex, but also consider the power consumption of P-UE.
  • the embodiment of the invention provides a resource selection method and device for V2X communication, so as to at least solve the problem that the power supply of the user terminal in V2X communication is limited.
  • a resource selection method for car network V2X communication including: performing signal detection and/or energy sensing on a predetermined resource set by a UE; and performing signal detection and/or energy sensing on a UE according to a signal. Determining a resource or set of resources for transmitting a wireless signal; the UE transmits the wireless signal using the determined resource or selecting a resource from the determined set of resources.
  • the predetermined resource set includes at least one of the following: a first type of predetermined resource set, a second type of predetermined resource set, The third type of predetermined resource collection; among them,
  • the first type of predetermined resource set includes at least a first type of optional resource set, and the first type of optional resource set includes a sending resource pool or a subset of the sending resource pool (where the sending resource pool or a subset thereof can be understood as being used for a resource pool or a subset thereof that transmits a signal, excluding a subset of the receiving resource pool or the receiving resource pool (here the receiving resource pool or a subset thereof may be understood as a resource pool or a subset thereof for receiving signals);
  • the second type of predetermined resource set includes at least a second type of optional resource set, and the second type of optional resource set includes a subset of the sending resource pool and/or a subset of the receiving resource pool;
  • the third type of predetermined resource set includes at least one or a group of reference resources or resource units, or at least one or more predetermined resource subsets, and the predetermined resource subset includes at least one or a group of reference resources or resource units; wherein, the reference resources Or the resource unit is the same size as the used resource or resource unit of the UE, the offset in the time domain is a positive integer number of reference periods, and there is no offset in the frequency domain, and the used resource or resource unit is used by the UE to transmit the wireless signal.
  • the resource or resource unit, the reference period is a period in which the wireless signal is transmitted by other UEs other than the UE or a preset period value.
  • the first type of optional resource set and/or the second type of optional resource set is determined by network side configuration and/or pre-configuration.
  • the signal detection comprises at least one of: denoising and/or interfering with the received signal, decoding the received signal, demodulating the received signal; and sensing the energy comprises measuring the energy of the signal and/or the power of the measured signal.
  • the result of signal detection and/or energy perception comprises at least one of the following:
  • the resource is idle, indicating that no wireless signal is received on the corresponding resource; or, the wireless signal energy is not perceived or the perceived wireless signal energy is less than the decision threshold;
  • the resource is busy, indicating that the wireless signal is received on the corresponding resource, including decoding and/or demodulating the received signal successfully, or sensing that the wireless signal energy reaches or exceeds the decision threshold;
  • the level of idle or busy resources indicates that the level value corresponds to the strength of the received signal energy on the resource.
  • the UE performs signal detection and/or energy sensing within a predetermined set of resources, including:
  • the UE performs one or more signal detection and/or energy sensing within the first type of predetermined resource set, or within the second predetermined resource set, or within the third type of predetermined resource set, according to one or more signal detections and / or energy perception to obtain signal detection and / or energy perception results.
  • the UE performs signal detection and/or energy sensing within a predetermined set of resources, including:
  • the UE performs signal energy sensing in the sensing window, where the size of the sensing window does not exceed the minimum resource unit in the time domain, and at least one sensing window is completely included in the time of each resource unit; The perceived result of the time of the resource unit.
  • the UE determines a resource or a resource set for transmitting a wireless signal according to a result of signal detection and/or energy sensing in the first type of predetermined resource set or the second type of predetermined resource set, including:
  • the result of signal detection and/or energy sensing is that the resource is idle
  • the probability of determining the probability that a corresponding resource or resource unit belongs to a resource set or for transmitting a wireless signal is determined.
  • the UE determines a resource or a resource set for transmitting the wireless signal according to a result of signal detection and/or energy sensing on the third type of predetermined resource set, including at least one of the following:
  • the UE performs signal detection and/or energy sensing, and the result of signal detection and/or energy sensing is that the resource is idle; or the UE performs multiple signal detection and/or energy sensing, and the signal detection and/or energy sensing result are resources. Idle; or, the UE performs multiple signal detection and/or energy sensing, and the partial signal detection and/or energy sensing result is that the resource is idle, and according to the result, it can be determined that there is no signal conflict in the used resource or resource unit; Based on the latest used resource or resource unit, the resource or resource unit after the offset transmission period is a resource or resource unit that transmits a wireless signal or belongs to a resource set, where the transmission period is a period in which the UE transmits a wireless signal, including a positive An integer number of reference periods;
  • the UE performs a signal detection and/or energy sensing, and the result of signal detection and/or energy sensing is that the resource is busy; or the UE performs multiple signal detection and/or energy sensing, and the signal detection and/or energy sensing results are resources. Busy; or, the UE performs multiple signal detection and/or energy sensing, and the partial signal detection and/or energy sensing result is that the resource is busy, and according to the result, it may be determined that there is a signal conflict in the used resource or resource unit; Based on the latest used resource or resource unit, the resource or resource unit after the offset transmission period is not used to transmit or not belong to the resource set, where the transmission period is a period in which the UE transmits the wireless signal, including a positive integer reference. cycle;
  • the UE determines a resource or a resource set according to the level value of the idle or busy resource, and maps to different probabilities according to different rank values, and determines to send the resource or resource unit after the latest offset resource or resource unit as the reference offset transmission period.
  • the method further includes:
  • the UE continuously occupies the same resource or resource unit in consecutive multiple transmission periods with a granularity of the transmission period as an offset within a preset effective time or before the signal detection and/or energy sensing result is updated; or
  • the UE continuously occupies the selected resource or resource unit in a plurality of consecutive transmission periods, or selects a resource for transmitting the wireless signal in the resource set, within a preset effective time or before the signal detection and/or the energy sensing result is updated. Selection methods include, but are not limited to, random selection.
  • the condition that the UE performs signal detection and/or energy sensing on the predetermined resource set comprises: the UE has data to transmit.
  • a resource selection apparatus for vehicle networking V2X communication comprising: a detection module configured to perform signal detection and/or energy sensing on a predetermined resource set; and a determining module configured to The results of signal detection and/or energy sensing determine a set of resources or resources for transmitting wireless signals; a selection module configured to use the resources or select a resource from the preferred set of resources to transmit the wireless signals.
  • the detecting module comprises at least one of the following:
  • a first detecting unit configured to perform signal detection and/or energy sensing on a first type of predetermined resource set, wherein the first type of predetermined resource set includes at least a first type of optional resource set, and the first type of optional resource set includes Send a resource pool, but does not include a receive resource pool;
  • a second detecting unit configured to perform signal detection and/or energy sensing on the second type of predetermined resource set, wherein the second type of predetermined resource set includes at least a second type of optional resource set, and the second type of optional resource set is at least A subset of the sending resource pool and/or a subset of the receiving resource pool;
  • a third detecting unit configured to perform signal detection and/or energy sensing on a third type of predetermined resource set, wherein the third type of predetermined resource set includes at least one or a group of reference resources or resource units; wherein, the reference resource or resource The unit has the same size as the used resource or resource unit of the UE, the offset in the time domain is a positive integer number of reference periods, and there is no offset in the frequency domain, and the used resource or resource unit is a resource that the UE has used to transmit the wireless signal. Or a resource unit, the reference period is a period in which the wireless signal is transmitted by a UE other than the UE or a preset period value.
  • the result of signal detection and/or energy perception comprises at least one of the following:
  • the resource is idle, indicating that no wireless signal is received on the corresponding resource; or, the wireless signal energy is not perceived or the perceived wireless signal energy is less than the decision threshold;
  • the resource is busy, indicating that the wireless signal is received on the corresponding resource, including decoding and/or demodulating the received signal successfully, or sensing that the wireless signal energy reaches or exceeds the decision threshold;
  • the level of idle or busy resources indicates that the level value corresponds to the strength of the received signal energy on the resource.
  • the first detecting unit comprises: a sensing unit configured to perform signal energy sensing in the sensing window, and the sensing result of the sensing window is used as a sensing result of the corresponding resource unit, wherein the size of the sensing window does not exceed a minimum in the time domain.
  • the time of the resource unit, at least one perception window is contained in each resource unit.
  • the determining module includes: a first determining unit, when the result of the signal detection and/or the energy sensing is that the resource is idle, determining that the corresponding resource or the resource unit belongs to the resource set, or determining that the corresponding resource or the resource unit is used to send the wireless signal Or, according to the probability of the level value mapping of the resource idle or busy, the probability that the corresponding resource or resource unit belongs to the resource set or used to transmit the wireless signal is determined.
  • the determining module further comprises:
  • a second determining unit configured to perform signal detection and/or energy sensing at the third detecting unit, the result of signal detection and/or energy sensing is that the resource is idle; or performing multiple signal detection and/or energy in the third detecting unit
  • the result of perception, signal detection and/or energy perception is that the resource is idle, or the result of partial detection of signal detection and/or energy perception is that the resource is idle, and according to the result, it can be determined that there is no signal conflict in the used resource or resource unit;
  • selecting, according to the latest used resource or resource unit, the resource or resource unit after the offset transmission period is a resource or a resource unit that transmits a wireless signal or belongs to a resource set, where the sending period is a period in which the UE sends a wireless signal, Including a positive integer number of reference cycles;
  • a third determining unit configured to perform a signal detection and/or energy sensing, signal detection and/or at the third detecting unit
  • the result of the energy perception is that the resource is busy; or the signal detection and/or energy perception is performed multiple times in the third detection unit, the result of the signal detection and/or the energy perception is the resource busy; or part of the signal detection and/or energy perception
  • the result is that the resource is busy, and according to the result, it can be determined that there is a signal conflict in the used resource or resource unit; then it is determined that the resource or resource unit after the offset transmission period is not used for transmitting, based on the latest used resource or resource unit.
  • the wireless signal does not belong to the resource set, where the sending period is a period in which the UE sends the wireless signal, including a positive integer number of reference periods;
  • a fourth determining unit configured to determine a resource or a resource set according to a level value of the resource idle or busy detected by the third detecting unit and/or the energy sensing, and map to different probabilities according to different level values, and determine to use the latest one.
  • the resource or resource unit is a probability that the resource or resource unit after the period of the reference offset transmission is a resource or a resource unit that transmits the wireless signal or a probability that the resource or the resource unit does not belong to the resource set, or the probability that the resource or the resource unit belongs to or does not belong to the resource set.
  • the sending period is a period in which the UE sends a wireless signal, including a positive integer number of reference periods.
  • the UE performs signal detection and/or energy sensing on a predetermined resource set, and determines a resource or resource set for transmitting a wireless signal according to the result of signal detection and/or energy sensing, while maintaining V2P communication.
  • the power consumption efficiency of the P-UE can be improved, and the power saving purpose can be achieved.
  • FIG. 1 is a schematic structural diagram of V2X communication in the related art
  • FIG. 2 is a schematic diagram of a structure of a radio resource frame in the related art
  • FIG. 3 is a schematic diagram of a radio resource structure in the related art
  • FIG. 4 is a flowchart of a resource selection method according to an embodiment of the present invention.
  • FIG. 5 is an example of a resource selection method according to Embodiment 1 of the present invention.
  • FIG. 8 is an example of a resource selection method according to Embodiment 4 of the present invention.
  • Embodiment 9 is another example of a resource selection method according to Embodiment 4 of the present invention.
  • FIG. 10 is a structural block diagram of a resource selection apparatus according to an embodiment of the present invention.
  • Common cellular wireless communication systems can be based on CDMA (Code Division Multiplexing Access) technology, FDMA (Frequency Division Multiplexing Access), and OFDMA (Orthogonal Frequency-Frequency Multiple Access) technology.
  • SC-FDMA Single Carrier-FDMA, single carrier frequency division multiple access
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-A
  • a radio resource for communication is a form of time-frequency two-dimensional.
  • uplink and downlink communication resources are divided in units of radio frames in the time direction, and each radio frame has a length of 10 ms, including There are 10 sub-frames of length 1 ms, each of which includes two slots of length 0.5 ms, as shown in FIG.
  • each slot may include 6 or 7 OFDM or SC-FDMA symbols.
  • the resources are divided into subcarriers.
  • the smallest unit of frequency domain resource allocation is RB (Resource Block), and one PRB (Physical RB) of the corresponding physical resource. ).
  • a PRB contains 12 sub-carriers in the frequency domain, corresponding to one slot in the time domain.
  • a resource corresponding to one subcarrier on each OFDM/SC-FDMA symbol is referred to as a Resource Element (RE). As shown in Figure 3.
  • the same radio resource structure as LTE cellular communication is employed.
  • the resource selection method included in the present invention the efficiency of power consumption of the UE in V2X communication can be improved.
  • FIG. 5 is a flowchart of a resource selection method according to an embodiment of the present invention. As shown in FIG. 5, the process includes the following steps:
  • Step S402 the UE performs signal detection and/or energy sensing on the predetermined resource set.
  • Step S404 the UE determines a resource or a preferred resource set for transmitting a wireless signal according to a result of signal detection and/or energy sensing;
  • Step S406 the UE sends a wireless signal by using a resource or selecting a resource from the preferred resource set.
  • the foregoing steps enable the UE to improve the power consumption efficiency of the P-UE while maintaining the reliability of the V2P communication and the V2X communication, thereby achieving the purpose of power saving.
  • the selection of resources is performed first, followed by signal detection and/or energy sensing.
  • FIG. 5 is a schematic diagram of the resource selection method according to the first embodiment of the present invention.
  • the P-UE selects P2V (P-UE transmits V-UE reception) resource 1 in a random manner, and transmits P2V message using P2V resource 1.
  • the P-UE can also select P2V resource 1 by means of signal detection and/or energy sensing. The UE determines whether to select the P2V resource 1 according to the network side indication parameter or according to the pre-configuration parameter.
  • the period in which the P-UE transmits the P2V message is defined as the transmission period, which corresponds to the data reaching period, and is assumed to be 1 s.
  • the period defining signal detection and/or energy perception is the detection and/or perception period, assuming 100 ms.
  • the P-UE After the P2V resource 1 sends the P2V message, the P-UE performs signal detection and/or energy sensing on the detected and/or perceived resources in at least one period in a period of 100 s in one transmission period, where the detection and/or the sensing is performed.
  • the time domain offset of the perceptual resource relative to the P2V resource 1 is N times of 100 ms (N is a positive integer), and the time domain range of the detected and/or perceived resource is the same as or smaller than the P2V resource 1, and is fixed and P2V in the frequency domain.
  • Resource 1 is the same or is the full bandwidth of the system.
  • Illustrated in Figure 5 is signal detection and/or energy sensing for every 100 ms period within 1 s.
  • the P-UE can perform signal detection and/or energy sensing within a 100 ms period of a portion within 1 s, for example, signal detection and/or energy sensing within the first 100 ms after P2V resource 1 or, Signal detection and/or energy sensing is performed within any other 100 ms, or signal detection and/or energy sensing is performed within 100 ms within 1 s.
  • M is a positive integer of 1 to 10, such as the last 3 100 ms periods.
  • the UE determines or performs signal detection and/or energy-aware resources and/or resource elements, such as RRC signaling, according to network side indication parameters or according to pre-configured parameters.
  • the P-UE determines the resource for the next transmission of the P2V message according to the result of signal detection and/or energy sensing in one or more transmission periods.
  • the example in FIG. 5 is the result of signal detection and/or energy sensing within one transmission period of 1 s. Determine the resource for the next P2V message, which is P2V resource 2 in the figure.
  • the results of signal detection and/or energy sensing may include the following:
  • Resource Idle In one or more signal detections and/or energy perceptions, the result of each detection and/or energy perception is that the resource is idle. Indicates that there is no conflict between the resources selected by other UEs and the P2V resources 1 selected by the P-UE, including partial conflicts and complete conflicts;
  • Resource Part Idle/Busy In multiple signal detection and/or energy sensing, the result of partial detection and/or energy sensing is that the resource is idle, and the result of partial detection and/or energy sensing is The resources are busy. It indicates that there is a possibility that the resources selected by other UEs collide with the P2V resource 1 selected by the P-UE, and it is necessary to determine whether the P2V resource 1 actually has a conflict according to the result of the resource idleness and the distribution result of the resource busy, including partial conflict and Complete conflict
  • Resource busy In one or more signal detection and/or energy perception, the result of each detection and/or energy perception is busy for resources. Indicates that there are conflicts between the resources selected by other UEs and the P2V resources 1 selected by the P-UE, including partial collisions and complete collisions.
  • the P-UE is based on the result of signal detection and/or energy sensing. If the result is (1) the resource is idle, the P-UE does not reselect the resource, and the frequency domain resource of the P2V resource 2 is selected to be the same as the P2V resource 1, and the time domain is The P2V resource 1 is separated by one transmission period, such as 1 s; or, if the result is (2) the resource part is idle/busy, the P-UE detects and/or according to signals in one or more transmission periods before selecting the P2V resource 2 The energy perception result determines whether a resource conflict occurs if the resource is not reselected.
  • the frequency domain resource of the P2V resource 2 is reselected differently from the P2V resource 1, as shown in the example in FIG. 5, or the time domain is not separated. Equal to the transmission period, avoiding the conflict with the V2X resource 1, otherwise the resource is not re-selected; or, if the result is (3) the resource is busy, the frequency domain resource of the P2V resource 2 is reselected differently from the P2V resource 1, as shown in FIG. As shown in the example, either the time interval is not equal to the transmission period, avoiding the conflict with V2X resource 1.
  • the energy perception result may be determined according to the perceived signal energy and the decision threshold value to determine whether the resource is idle or the resource is busy. For example, if the threshold is greater than the threshold, the resource is busy, and the value is determined to be idle; or the gradation value is expressed as the degree of idle resources or busy resources.
  • the N is classified into N levels, and N may take a positive integer. For example, 1, 2, 3, 4, 5, 6, 8, 10, etc., different rank values indicate different degrees of perceived resource busyness or resource idleness.
  • the rank value can be expressed as 0, 1, 2, 3, where 0 indicates that the resource has the highest degree of idleness, 3 indicates that the resource is idle, and the representation of the busy resource can be expressed in a similar manner.
  • the P-UE may determine whether to reselect the resource according to the level value corresponding to the energy perception result. For example, if the level value is greater than or equal to 2, the resource is reselected, or according to each level value, there is a probability value of reselecting the resource, for example, The rank value is 0.
  • the probability value of the reselected resource is 5%, and the rank value is 1 corresponding to the reselection probability value of 20%.
  • 2 corresponds to 30%
  • 3 corresponds to 45%.
  • the detection and/or sensing period of 100 ms is only exemplified in this embodiment.
  • the value of the period may also be other values, such as 200 ms, 50 ms, etc., before the P-UE sends the P2V message, the signal may not be performed in each period. Detection and/or energy perception, but signal detection and/or energy perception only during certain periods or during a certain period, such as during the last cycle.
  • the method further includes conditional or unconditional signal detection and/or energy sensing. If conditional signal detection and/or energy sensing is performed, the condition includes: the UE has data to send; for example, P-UE selection. When resource 1 sends a P2V message, it performs signal detection and/or energy sensing.
  • the P-UE may only be valid for the next P2V message, or before a period of time or before the signal detection and/or energy sensing result is updated. , valid for every P2V message sent.
  • FIG. 6 is a schematic diagram of a resource selection method according to Embodiment 2 of the present invention.
  • a P-UE selects a resource in a dedicated resource pool for transmitting a P2V message, and a resource for transmitting a P2V message and a resource for transmitting a V2X message are mutually positive. cross.
  • the configuration parameters of the dedicated resource pool can be obtained through high-level configuration signaling or pre-configuration.
  • the full bandwidth resource of 10 ms in the 100 ms time domain is a P-UE dedicated resource pool subset, and the 10 P2V dedicated resource pool subsets in the 1 s range are used to select a resource to send a P2V message.
  • P-UE dedicated resource pool subset There are also other different configuration parameters.
  • the P-UE performs signal detection and/or energy sensing on the P-UE dedicated resource pool subset, determines a preferred resource set according to the signal detection and/or the energy sensing result, and the P-UE selects the resource from the preferred resource set to send the P2V message.
  • the results of signal detection and/or energy sensing include the following:
  • the resource is idle: no wireless signal is received on the resource or resource unit that performs signal detection and/or energy sensing; or, the wireless signal energy is not perceived or the perceived wireless signal energy is less than the decision threshold;
  • a wireless signal may be received on a resource or resource unit performing signal detection and/or energy sensing, including decoding and/or demodulating the received signal successfully, and/or decoding and/or demodulating the received signal. Failure; or, perceive that the wireless signal energy reaches or exceeds the decision threshold;
  • the level of idle or busy resources the strength of the received signal energy on the resource or resource unit for signal detection and/or energy sensing.
  • the P-UE determines a preferred set of resources based on determining signal detection and/or energy perception results within the window.
  • the determination window is a period of time before the P2V data arrives, and may be one or more P2V transmission periods, or may be a fixed time, such as 1s or 2s.
  • the decision window in the example of FIG. 6 is 1 s, and the preferred resource set is determined based on the signal detection and/or energy perception result within 1 s before the data arrival time.
  • Signal detection and/or energy sensing for a resource or resource unit in a P-UE dedicated resource pool subset is 1 s, and the preferred resource set is determined based on the signal detection and/or energy perception result within 1 s before the data arrival time.
  • the corresponding resource or resource unit is determined as the resource of the preferred resource set
  • the resource or the resource is estimated according to the time interval of the partial P-UE dedicated resource pool subset
  • the resource unit is a busy distribution period. If the P-UE dedicated resource pool subset of the P-UE selected resource meets the distribution period after the data arrives, the corresponding resource or the resource unit does not belong to the preferred resource set, and vice versa. If the distribution period is satisfied, the resource corresponding to the resource or the resource unit belongs to the preferred resource set; similarly, the signal detection and/or the energy perception result of the partial P-UE dedicated resource pool subset may be inferred as the resource is idle.
  • the resource or resource unit is an idle distribution period, and determines whether the resource or resource unit is a resource of a preferred resource set.
  • the signal detection and/or energy perception result of all P-UE dedicated resource pool subsets in the determination window is that the resource is busy, it is determined that the resource or resource unit is not a resource of the preferred resource set.
  • the energy sensing result may be expressed as the P-UE dedicated resource pool subset perception window corresponding to the perceived resource being resource idle or resource busy.
  • One method is to determine the sensing result by comparing the perceived signal energy value with the threshold of the decision, and determining that the signal energy value is greater than the threshold of the decision, and determining that the resource is busy; otherwise, determining that the resource is idle;
  • N can take A positive integer.
  • the P-UE1 performs energy sensing on the P-UE dedicated resource pool subset according to the subframe, and the strength of the perceived signal energy corresponds to five different levels, and the resources of the different levels corresponding to the subframe may be determined to belong to the preferred resource set.
  • the probability that the rank value 0 indicates that the resource can be determined to belong to the preferred resource set is 5%
  • the rank value 1 indicates that the corresponding probability is 10%
  • the probability corresponding to the rank value 2 is 20%, corresponding to 3
  • the probability is 30%, and the probability of 4 corresponds to 35%.
  • the method further includes conditionally or unconditionally performing signal detection and/or energy sensing. If conditional signal detection and/or energy sensing is performed, the condition includes: the UE has data to be sent; for example, the P-UE has When the P2V message is sent, signal detection and/or energy sensing is performed on the P-UE dedicated resource pool subset, and the preferred resource set is determined according to the result.
  • the preferred resource set determined by the P-UE may be valid only for the next P2V message, or may be valid for each P2V message sent for a period of time or before the signal detection and/or energy sensing result update.
  • the secondary transmit P2V messages all select resources from the preferred set of resources, including but not limited to random selection.
  • a P2V transmission and a V2X transmission shared resource pool include a transmission resource pool and a reception resource pool, and a P-UE uses a part of resources in the resource pool as a subset of the transmission resource pool.
  • the P2V message is selected only in the subset of the transmission resource pool, and the preferred resource set is determined according to the signal detection and/or the energy perception result in the subset of the transmission resource pool included in the determination window.
  • only P2V messages are sent, or P2V messages are sent preferentially.
  • some resources in the resource pool are used as a subset of the sending resource pool, and are used by all P-UEs to send P2V messages, or preferentially used by P-UEs to send P2V messages.
  • the P-UE1 performs a signal detection and/or energy sensing on a resource or resource unit in a subset of the transmission resource pool with a full bandwidth resource in a range of 10 ms in each 100 ms as a subset of the transmission resource pool.
  • the judgment window is 1 s time, and the P-UE1 determines a preferred resource set according to the result of signal detection and/or energy sensing within 1 s, and the P-UE 1 selects a resource from the preferred resource set to transmit a P2V message.
  • the subset of the sending resource pools is determined by network side configuration or pre-configuration, and the configuration parameter contents of different P-UEs may be different.
  • P-UE1 may perform signal detection and/or energy sensing within 500 ms based on a period of 100 ms, and the number of times of sensing may be 1, 2, or multiple times;
  • P-UE2 may perform signal within 1 s based on a period of 200 ms.
  • Detection and/or energy perception the number of perceptions can also be 1 time, 2 times, or multiple times.
  • the P-UE may perform signal detection and/or energy sensing on one or more subsets of the transmission resource pool, including performing signal detection and/or energy sensing on all subsets of the transmission resource pool, if multiple transmissions are performed.
  • the subset of resource pools performs signal detection and/or energy sensing, including signal detection and/or energy sensing of a plurality of subsets of transmission resource pools, either continuously or discretely.
  • the energy sensing result may be expressed as the sensing resource corresponding to the sensing window in the sending resource pool subset is the resource idle or the resource is busy.
  • One way is through the perceived signal energy The value is compared with the threshold of the decision to determine the perceived result. If the signal energy value is greater than the threshold, the resource is determined to be busy, otherwise the resource is determined to be idle.
  • a level indicating that the resource is idle or busy, and is divided into N levels according to the strength of the perceived signal energy, and N may take a positive integer.
  • Probability the rank value 0 indicates that the probability that the resource can be determined to belong to the preferred resource set is 10%
  • the rank value 1 indicates that the corresponding probability is 30%, and accordingly, the probability corresponding to the rank value 2 is 60%.
  • the sending is not performed.
  • the V2X message is sent in the subset of the resource pool, that is, the P2V message is sent preferentially in the subset of the sending resource pool.
  • the method further includes conditionally or unconditionally performing signal detection and/or energy sensing. If conditional signal detection and/or energy sensing is performed, the condition includes: the UE has data to be sent; for example, the P-UE has When the P2V message is sent, signal detection and/or energy sensing is performed on the subset of the sending resource pool, and a preferred resource set is determined according to the result.
  • the preferred resource set determined by the P-UE may be valid only for the next P2V message, or may be valid for each P2V message sent for a period of time or before the signal detection and/or energy sensing result update.
  • the secondary transmit P2V messages all select resources from the preferred set of resources, including but not limited to random selection.
  • Embodiment 4 of the present invention describes a method for selecting resources based on a perception window for performing energy sensing results.
  • the UE performs signal energy sensing in the energy perception window, and the sensing window can be set to be smaller than the system subframe length in the time domain, and each sensing window belongs to one subframe.
  • the result of the energy sensing by the UE in the sensing window includes that the resource is idle or the resource is busy, indicating that the corresponding resource of the subframe is idle or busy. For example, if the UE1 can perceive the signal energy in the sensing window, or the signal energy intensity is greater than the decision threshold, The resource-aware result corresponding to the subframe to which the sensing window belongs is considered to be busy, otherwise the resource is idle. The UE determines a preferred resource set according to the energy perception result in the determination window.
  • the sensing window does not exceed the SC-FDMA subframe range in the time domain, such as 10 us, and the P-UE1 determines the preferred resource set according to the energy sensing result in one or more sensing windows in the determining window.
  • the resource is selected from the preferred resource set.
  • the level of the perceived signal energy may be corresponding to the level of idle or busy N resources, and the UE determines whether the corresponding subframe resource can be determined as the preferred resource set according to the level value of the idle or busy resource.
  • the energy perception result corresponds to three rank values, and the corresponding rank value is 0, 1, 2, and the rank value 0 indicates the corresponding resource.
  • the idle probability is 10%, or the P-UE can determine the resource whose resource is the preferred resource set with a probability of 10%.
  • the rank value 1 indicates that the corresponding probability is 20%, and 2 indicates that the corresponding probability is 70%. .
  • the method shown in FIG. 8 does not limit the position of the sensing window in the subframe.
  • the method in this embodiment does not limit the position of the sensing window in the subframe.
  • a preferred sensing window position is the DMRS in the corresponding subframe.
  • the method further includes performing conditional or unconditional energy sensing. If the condition is used for energy sensing, the condition includes: the UE has data to send; for example, if the P-UE has a P2V message, the energy sensing window is performed. Energy perception, and a set of preferred resources is determined based on the results.
  • the preferred resource set determined by the P-UE may be valid only for the next P2V message, or may be valid for each P2V message sent for a period of time or before the signal detection and/or energy sensing result update.
  • the secondary transmit P2V messages all select resources from the preferred set of resources, including but not limited to random selection.
  • the resource selection method described in this embodiment can be used at least for a dedicated sending resource pool, and is not excluded from being applicable to a shared resource pool. Meanwhile, the above is only exemplified by the P-UE, and is also applicable to the V-UE or other UEs.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • a resource selection device for V2X communication is also provided, which is used to implement the foregoing embodiments and preferred embodiments, and has not been described again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • the apparatus includes: a detection module 10 configured to perform signal detection and/or energy sensing on a predetermined resource set;
  • the module 20 is configured to determine a resource or a preferred set of resources for transmitting the wireless signal based on the result of signal detection and/or energy sensing;
  • the selection module 30 is configured to use the resource or select a resource from the preferred set of resources to transmit the wireless signal.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the modules are located in multiple In the processor.
  • Embodiments of the present invention also provide a storage medium.
  • the storage medium may be arranged to store program code for performing the embodiments of the foregoing:
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种车联网V2X通信的资源选择方法和装置,该方法包括:UE在预定资源集合上进行信号检测和/或能量感知;UE根据信号检测和/或能量感知的结果确定用于发送无线信号的资源或资源集合;UE使用所确定的资源或从所确定的资源集合中选择资源发送无线信号。在本发明中,通过上述步骤,使得UE在保持V2P通信和V2X通信的可靠性的同时,能够提高UE的功耗效率,达到省电目的。

Description

一种V2X通信的资源选择方法和装置 技术领域
本发明涉及通信领域,具体而言,涉及一种V2X通信的资源选择方法和装置。
背景技术
车联网是指按照约定的通信协议和数据交互标准,在车-X(X:车、路、行人及互联网等)之间,进行无线通讯和信息交换的大系统网络。通过车联网通信可以使车辆获得行驶安全、提高交通效率以及获得便利或娱乐信息。从无线通信的对象来分类,车联网通信包括三种不同类型:车辆与车辆之间通信(Vehicle to Vehicle,简称为V2V),车辆与路边设备之间通信(Vehicle to Infrastructure,简称V2I),以及车辆与行人之间通信(Vehicle to Pedestrian,简称V2P),统称为V2X通信。
在3GPP(3rd Generation Partnership Project)组织的基于LTE(Long Term Evolution,长期演进)的V2X通信研究中,基于用户设备(User Equipment,简称为UE)之间的侧行链路(Sidelink)的V2X通信方法是V2X标准实现的方式之一,即业务数据不经过基站和核心网的转发,直接由源用户设备通过空口传输给目标用户设备,如图1所示,这种V2X通信方式简称PC5-based V2X通信。
V2P通信属于V2X通信范畴,包括行人用户设备(Pedestrian UE,简称P-UE)发送信号,车辆用户设备(Vehicle UE,简称V-UE)接收,和/或V-UE发送信号,P-UE接收,V2P主要是保护行人或易受伤害对象避免交通事故伤害或潜在危险。
在V2X通信系统中,车辆可以为V-UE持续供电,对V-UE来说省电并不是关键需求。
而在V2P通信系统中,作为P-UE的手持终端,在移动中通常没有外部电源持续供电,为了使P-UE能够工作时间足够长,在V2P通信系统中,不仅要考虑V2P通信的高可靠性,还要考虑P-UE的功耗节省。
发明内容
本发明实施例提供了一种V2X通信的资源选择方法及装置,以至少解决V2X通信中用户终端供电有限的问题。
根据本发明实施例的一个方面,提供了一种车联网V2X通信的资源选择方法,包括:UE在预定资源集合上进行信号检测和/或能量感知;UE根据信号检测和/或能量感知的结果确定用于发送无线信号的资源或资源集合;UE使用所确定的资源或从所确定的资源集合中选择资源发送无线信号。
优选地,预定资源集合包括以下至少之一:第一类预定资源集合、第二类预定资源集合、 第三类预定资源集合;其中,
第一类预定资源集合至少包括第一类可选资源集合,第一类可选资源集合包括发送资源池或发送资源池的子集(此处的发送资源池或其子集可以理解为用于发送信号的资源池或其子集),不包括接收资源池或接收资源池的子集(此处的接收资源池或其子集可以理解为用于接收信号的资源池或其子集);
第二类预定资源集合至少包括第二类可选资源集合,第二类可选资源集合包括发送资源池的子集和/或接收资源池的子集;
第三类预定资源集合至少包含一个或一组参考资源或资源单元,或者至少包含一个或多个预定资源子集,预定资源子集至少包含一个或一组参考资源或资源单元;其中,参考资源或资源单元与UE的已用资源或资源单元的大小相同,在时域的偏移为正整数个参考周期,在频域没有偏移,已用资源或资源单元为UE已经用于发送无线信号的资源或资源单元,参考周期为UE之外的其它UE发送无线信号的周期或预设的周期值。
优选地,第一类可选资源集合和/或第二类可选资源集合通过网络侧配置和/或预配置确定。
优选地,信号检测包括以下至少之一:对接收信号去噪声和/或干扰,对接收信号解码,对接收信号解调;能量感知包括:测量信号的能量和/或测量信号的功率。
优选地,信号检测和/或能量感知的结果包括以下至少之一:
资源空闲,表示在对应资源上没有接收到无线信号;或者,没有感知到无线信号能量或感知到的无线信号能量小于判决门限;
资源忙,表示在对应资源上接收到无线信号,包括对接收信号解码和/或解调成功,或,感知到无线信号能量达到或超过判决门限;
资源空闲或忙的等级,表示等级值对应资源上接收信号能量的强弱程度。
优选地,UE在预定资源集合内进行信号检测和/或能量感知,包括:
UE在第一类预定资源集合内,或在第二预定资源集合内,或在第三类预定资源集合内,进行一次或多次信号检测和/或能量感知,根据一次或多次信号检测和/或能量感知获得信号检测和/或能量感知的结果。
优选地,UE在预定资源集合内进行信号检测和/或能量感知,包括:
UE在感知窗内进行信号能量感知,其中,感知窗的大小在时域不超过最小资源单元的时间,每个资源单元的时间内至少完整地包含一个感知窗;将感知窗的感知结果作为对应资源单元的时间内的感知结果。
优选地,UE根据在第一类预定资源集合,或第二类预定资源集合内的信号检测和/或能量感知的结果确定用于发送无线信号的资源或资源集合,包括:
当信号检测和/或能量感知的结果为资源空闲时,则确定对应资源或资源单元属于资源集合,或确定对应资源或资源单元用于发送无线信号;或者,根据资源空闲或忙的等级值映射的概率确定对应资源或资源单元属于资源集合或用于发送无线信号的概率。
优选地,UE根据在第三类预定资源集合上的信号检测和/或能量感知的结果确定用于发送无线信号的资源或资源集合,包括以下至少之一:
UE进行一次信号检测和/或能量感知,信号检测和/或能量感知的结果为资源空闲;或者,UE进行多次信号检测和/或能量感知,信号检测和/或能量感知的结果均为资源空闲;或者,UE进行多次信号检测和/或能量感知,部分次数的信号检测和/或能量感知的结果为资源空闲,根据结果可以判定在已用资源或资源单元不存在信号冲突;则选择以最近一个已用资源或资源单元为基准,偏移发送周期后的资源或资源单元为发送无线信号的资源或资源单元或属于资源集合,其中,发送周期为UE发送无线信号的周期,包括正整数个参考周期;
UE进行一次信号检测和/或能量感知,信号检测和/或能量感知的结果为资源忙;或者,UE进行多次信号检测和/或能量感知,信号检测和/或能量感知的结果均为资源忙;或者,UE进行多次信号检测和/或能量感知,部分次数的信号检测和/或能量感知的结果为资源忙,根据结果可以判定在已用资源或资源单元存在信号冲突;则确定对应以最近一个已用资源或资源单元为基准,偏移发送周期后的资源或资源单元不用于发送无线信号或不属于资源集合,其中,发送周期为UE发送无线信号的周期,包括正整数个参考周期;
UE根据资源空闲或忙的等级值确定资源或资源集合,按照不同的等级值映射到不同的概率,确定以最近一个已用资源或资源单元为基准偏移发送周期后的资源或资源单元为发送无线信号的资源或资源单元的概率,或不用于发送无线信号的概率,或资源或资源单元属于或不属于资源集合的概率,其中,发送周期为UE发送无线信号的周期,包括正整数个参考周期。
优选地,所述方法还包括:
在预设的有效时间内或在信号检测和/或能量感知结果更新之前,UE以发送周期为偏移的粒度,在连续多个发送周期中持续占用相同的资源或资源单元;或者,
在预设的有效时间内或在信号检测和/或能量感知结果更新之前,UE在连续多个发送周期中持续占用已选择的资源或资源单元,或在资源集合中选择发送无线信号的资源,选择方法包括但不限于随机选择。
优选地,UE在预定资源集合上进行信号检测和/或能量感知的条件包括:UE有数据要发送。
根据本发明实施例的另一个方面,提供了一种车联网V2X通信的资源选择装置,包括:检测模块,设置为在预定资源集合上进行信号检测和/或能量感知;确定模块,设置为根据信号检测和/或能量感知的结果确定用于发送无线信号的资源或资源集合;选择模块,设置为使用资源或从优选资源集合中选择资源发送无线信号。
优选地,检测模块至少包括以下之一:
第一检测单元,设置为在第一类预定资源集合上进行信号检测和/或能量感知,其中,第一类预定资源集合至少包括第一类可选资源集合,第一类可选资源集合包含发送资源池,但不包含接收资源池;
第二检测单元,设置为在第二类预定资源集合上进行信号检测和/或能量感知,其中,第二类预定资源集合至少包括第二类可选资源集合,第二类可选资源集合至少包含发送资源池的子集和/或接收资源池的子集;
第三检测单元,设置为在第三类预定资源集合上进行信号检测和/或能量感知,其中,第三类预定资源集合至少包含一个或一组参考资源或资源单元;其中,参考资源或资源单元与UE的已用资源或资源单元的大小相同,在时域的偏移为正整数个参考周期,在频域没有偏移,已用资源或资源单元为UE已经用于发送无线信号的资源或资源单元,参考周期为UE之外的其它UE发送无线信号的周期或预设的周期值。
优选地,信号检测和/或能量感知的结果包括以下至少之一:
资源空闲,表示在对应资源上没有接收到无线信号;或者,没有感知到无线信号能量或感知到的无线信号能量小于判决门限;
资源忙,表示在对应资源上接收到无线信号,包括对接收信号解码和/或解调成功,或,感知到无线信号能量达到或超过判决门限;
资源空闲或忙的等级,表示等级值对应资源上接收信号能量的强弱程度。
优选地,第一检测单元包括:感知单元,设置为在感知窗内进行信号能量感知,并将感知窗的感知结果作为对应资源单元的感知结果,其中,感知窗的大小在时域不超过最小资源单元的时间,每个资源单元内至少完整地包含一个感知窗。
优选地,确定模块包括:第一确定单元,当信号检测和/或能量感知的结果为资源空闲时,则确定对应资源或资源单元属于资源集合,或确定对应资源或资源单元用于发送无线信号;或者,根据资源空闲或忙的等级值映射的概率确定对应资源或资源单元属于资源集合或用于发送无线信号的概率。
优选地,确定模块还包括:
第二确定单元,设置为在第三检测单元进行一次信号检测和/或能量感知,信号检测和/或能量感知的结果为资源空闲;或者在第三检测单元进行多次信号检测和/或能量感知,信号检测和/或能量感知的结果均为资源空闲,或者部分次数的信号检测和/或能量感知的结果为资源空闲,并根据结果可以判定在已用资源或资源单元不存在信号冲突;则选择以最近一个已用资源或资源单元为基准,偏移发送周期后的资源或资源单元为发送无线信号的资源或资源单元或属于资源集合,其中,发送周期为UE发送无线信号的周期,包括正整数个参考周期;
第三确定单元,设置为在第三检测单元进行一次信号检测和/或能量感知,信号检测和/或 能量感知的结果为资源忙;或者在第三检测单元进行多次信号检测和/或能量感知,信号检测和/或能量感知的结果均为资源忙;或者部分次数的信号检测和/或能量感知的结果为资源忙,并根据结果可以判定在已用资源或资源单元存在信号冲突;则确定对应以最近一个已用资源或资源单元为基准,偏移发送周期后的资源或资源单元不用于发送无线信号或不属于资源集合,其中,发送周期为UE发送无线信号的周期,包括正整数个参考周期;
第四确定单元,设置为根据第三检测单元所检测和/或能量感知的资源空闲或忙的等级值确定资源或资源集合,按照不同的等级值映射到不同的概率,确定以最近一个已用资源或资源单元为基准偏移发送周期后的资源或资源单元为发送无线信号的资源或资源单元的概率或不用于发送无线信号的概率,或资源或资源单元属于或不属于资源集合的概率,其中,发送周期为UE发送无线信号的周期,包括正整数个参考周期。
在本发明上述实施例中,UE在预定资源集合上进行信号检测和/或能量感知,并根据信号检测和/或能量感知的结果确定用于发送无线信号的资源或资源集合,在保持V2P通信和V2X通信的可靠性的同时,能够提高P-UE的功耗效率,达到省电目的。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是相关技术中V2X通信的架构示意图;
图2是相关技术中无线资源帧结构的示意图;
图3是相关技术中无线资源结构的示意图;
图4是根据本发明实施例的资源选择方法流程图;
图5是根据本发明实施例一的资源选择方法的一个示例;
图6是根据本发明实施例二的资源选择方法的一个示例;
图7是根据本发明实施例三的资源选择方法的一个示例;
图8是根据本发明实施例四的资源选择方法的一个示例;
图9是根据本发明实施例四的资源选择方法的另一个示例;
图10是根据本发明实施例的资源选择装置结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本发明所述的技术适用于蜂窝无线通信系统或网络。常见的蜂窝无线通信系统可以基于CDMA(Code Division Multiplexing Access,码分多址)技术、FDMA(Frequency Division Multiplexing Access,频分多址)技术、OFDMA(Orthogonal-FDMA,正交频分多址)技术、SC-FDMA(Single Carrier-FDMA,单载波频分多址)技术,等。例如,3GPP(3rd Generation Partnership Project)LTE(Long Term Evolution,长期演进)/LTE-A(LTE-Advanced,高级长期演进)蜂窝通信系统下行链路(或称为前向链路)基于OFDMA技术,上行链路(或称为反向链路)基于SC-FDMA多址技术。
在OFDMA/SC-FDMA系统中,用于通信的无线资源(Radio Resource)是时-频两维的形式。例如,对于LTE/LTE-A系统来说,上行和下行链路的通信资源在时间方向上都是以无线帧(radio frame)为单位划分,每个无线帧(radio frame)长度为10ms,包含10个长度为1ms的子帧(sub-frame),每个子帧包括长度为0.5ms的两个时隙(slot),如图2所示。而根据循环前缀(Cyclic Prefix,CP)的配置不同,每个时隙可以包括6个或7个OFDM或SC-FDMA符号。
在频率方向,资源以子载波(subcarrier)为单位划分,具体在通信中,频域资源分配的最小单位是RB(Resource Block,资源块),对应物理资源的一个PRB(Physical RB,物理资源块)。一个PRB在频域包含12个子载波(sub-carrier),对应于时域的一个时隙(slot)。每个OFDM/SC-FDMA符号上对应一个子载波的资源称为资源单元(Resource Element,RE)。如图3所示。
本发明描述的各种实施例中,采用与LTE蜂窝通信相同的无线资源结构。通过本发明包含的资源选择方法,可以使V2X通信中UE提高功耗的效率。
在本实施例中提供了一种V2X通信的资源选择法,图5是根据本发明实施例的资源选择方法流程图,如图5所示,该流程包括如下步骤:
步骤S402,UE在预定资源集合上进行信号检测和/或能量感知;
步骤S404,UE根据信号检测和/或能量感知的结果确定用于发送无线信号的资源或优选资源集合;
步骤S406,UE使用资源或从优选资源集合中选择资源发送无线信号。
在本实施例中,通过上述步骤,使得UE在保持V2P通信和V2X通信的可靠性的同时,能够提高P-UE的功耗效率,达到省电目的。
以下结合具体的实施例进一步进行说明。
实施例一
在本实施例中,是先进行资源的选择,然后再进行信号检测和/或能量感知。
本实施例以V2X通信中P-UE的资源选择为例进行说明,图5是本发明实施例一的资源选择方法示意图。
如图5所示,P-UE通过随机方式选择P2V(P-UE发送V-UE接收)资源1,并使用P2V资源1发送P2V消息。除了随机选择,P-UE还可以通过信号检测和/或能量感知的方式选择P2V资源1。UE根据网络侧指示参数确定或者根据预配置参数确定采用哪种方式选择P2V资源1。
为了方便描述,定义P-UE发送P2V消息的周期为发送周期,与数据达到周期相对应,假设为1s。定义信号检测和/或能量感知的周期为检测和/或感知周期,假设为100ms。
P-UE在P2V资源1发送P2V消息后,在一个发送周期1s内,以100ms为周期,在至少一个周期内对检测和/或感知资源进行信号检测和/或能量感知,其中检测和/或感知资源相对P2V资源1的时域偏移为100ms的N倍(N为正整数),检测和/或感知资源的时域范围与P2V资源1相同或小于P2V资源1,频域上固定与P2V资源1相同或为系统全带宽。
图5中示例的是在1s内的每个100ms周期内都进行信号检测和/或能量感知。除此以外,P-UE还可以在1s内部分的100ms周期内进行信号检测和/或能量感知,比如,在P2V资源1之后的第一个100ms内进行信号检测和/或能量感知,或者,其它的任意一个100ms内进行信号检测和/或能量感知,或者,在1s内选择M个100ms内进行信号检测和/或能量感知,M为1~10的正整数,比如最后3个100ms周期。UE根据网络侧指示参数确定或者根据预配置参数确定进行信号检测和/或能量感知的次数,和/或信号检测和/或能量感知的资源和/或资源单元,比如RRC信令。
P-UE根据一个或多个发送周期内信号检测和/或能量感知的结果确定下一次发送P2V消息的资源,图5中示例是通过一个发送周期1s内的信号检测和/或能量感知的结果确定下一次发送P2V消息的资源,也就是图中的P2V资源2。
在本实施例中,信号检测和/或能量感知的结果可包括以下几种:
(1)资源空闲:在一次或多次信号检测和/或能量感知中,每一次检测和/或能量感知的结果都为资源空闲。表示没有其他UE选择的资源与该P-UE选择的P2V资源1存在冲突,包括部分冲突和完全冲突;
(2)资源部分空闲/忙:在多次信号检测和/或能量感知中,有部分次数的检测和/或能量感知的结果为资源空闲,同时部分次数的检测和/或能量感知的结果为资源忙。表示有其他UE选择的资源与该P-UE选择的P2V资源1存在冲突的可能,需要根据资源空闲的结果和资源忙的结果的分布情况来确定P2V资源1是否真正存在冲突,包括部分冲突和完全冲突;
(3)资源忙:在一次或多次信号检测和/或能量感知中,每一次检测和/或能量感知的结果都为资源忙。表示有其他UE选择的资源与该P-UE选择的P2V资源1存在冲突,包括部分冲突和完全冲突。
P-UE根据信号检测和/或能量感知的结果,如果结果为(1)资源空闲,则P-UE不重新选择资源,选择P2V资源2的频域资源与P2V资源1相同,时域上与P2V资源1之间相隔一个发送周期,比如1s;或者,如果结果为(2)资源部分空闲/忙,则P-UE根据选择P2V资源2之前一个或多个发送周期中的信号检测和/或能量感知结果,判断出如果不重新选择资源,是否会出现资源冲突,如果是则重新选择P2V资源2的频域资源与P2V资源1不同,如图5中示例所示,或者时域上相隔不等于发送周期,避开与V2X资源1的冲突,否则不重新选择资源;或者,如果结果为(3)资源忙,则重新选择P2V资源2的频域资源与P2V资源1不同,如图5中示例所示,或者时域上相隔不等于发送周期,避开与V2X资源1的冲突。
需要说明的是,如果是P-UE根据信号能量感知结果选择资源,能量感知的结果可以根据感知到信号能量与判决门限值比较来确定是资源空闲或资源忙。比如大于判决门限则判定为资源忙,反之则判定为资源空闲;或者等级值方式表示为资源空闲或资源忙的程度,比如根据感知到信号能量的强弱分成N个等级,N可以取正整数,例如1,2,3,4,5,6,8,10等,不同的等级值表示感知结果的资源忙或资源空闲的不同程度。
例如,N=4时,等级值可以表示为0,1,2,3,其中0表示资源空闲程度最高,3表示资源空闲程度最低,资源忙的表示方式可以按照类似的方式表达。P-UE可以根据能量感知结果对应的等级值来确定是否重新选择资源,比如等级值大于等于2则重新选择资源,或者,根据对应每个等级值,都有一个重新选择资源的概率值,比如,等级值为0对应重新选择资源的概率值为5%,等级值为1对应重选概率值为20%,相应地,2对应30%,3对应45%。
100ms的检测和/或感知周期只是本实施例举例说明,周期的取值还可以是其它值,比如200ms,50ms等,P-UE在发送P2V消息之前,也可以不是在每个周期都进行信号检测和/或能量感知,而是只在某些周期内或者某一个周期内进行信号检测和/或能量感知,比如在最后一个周期内。
在本实施例中,还包括有条件或无条件地进行信号检测和/或能量感知,如果有条件进行信号检测和/或能量感知,则条件包括:UE有数据要发送;比如,P-UE选择了资源1发送了P2V消息,则进行信号检测和/或能量感知。
本实施例中,P-UE确定发送P2V消息的资源或者重选发送P2V消息的资源后,可以仅仅对下一次发送P2V消息有效,或者在一段时间内或信号检测和/或能量感知结果更新之前,对每一次发送P2V消息有效。
实施例二
图6是本发明实施例二的资源选择方法的示意图,如图6所示,P-UE在专用资源池选择资源用于发送P2V消息,发送P2V消息的资源与发送V2X消息的资源为相互正交。专用资源池的配置参数可以通过高层配置信令或预配置获得。
在图6的示例中,在每100ms时域中含有10ms的全带宽资源为P-UE专用资源池子集,1s范围内的10个P2V专用资源池子集,用于选择资源发送P2V消息。P-UE专用资源池子集 还可以有其它不同的配置参数。
P-UE对P-UE专用资源池子集进行信号检测和/或能量感知,根据信号检测和/或能量感知结果确定优选资源集合,P-UE从优选资源集合中选择资源发送P2V消息。
在本实施例中,信号检测和/或能量感知的结果包括以下几种:
(1)资源空闲:进行信号检测和/或能量感知的资源或资源单元上没有接收到无线信号;或者,没有感知到无线信号能量或感知到的无线信号能量小于判决门限;
(2)资源忙:进行信号检测和/或能量感知的资源或资源单元上可以接收到无线信号,包括对接收信号解码和/或解调成功,和/或对接收信号解码和/或解调失败;或,感知到无线信号能量达到或超过判决门限;
(3)资源空闲或忙的等级:进行信号检测和/或能量感知的资源或资源单元上接收信号能量的强弱程度。
P-UE根据判断窗内信号检测和/或能量感知结果来确定优选资源集合。其中,判断窗是P2V数据到达之前的一段时间,可以是一个或多个P2V发送周期,也可以是一个固定时间,比如1s或2s。
例如,图6示例中的判断窗为1s,根据数据到达时刻之前的1s内信号检测和/或能量感知结果确定优选资源集合。针对P-UE专用资源池子集中某一资源或资源单元的信号检测和/或能量感知:
如果在判断窗内所有P-UE专用资源池子集的信号检测和/或能量感知结果都为资源空闲,则将对应资源或资源单元确定为优选资源集合的资源;
或者,如果在判断窗内只有部分P-UE专用资源池子集的信号检测和/或能量感知结果为资源忙,则根据这些部分P-UE专用资源池子集的时间间隔,推测出所述资源或资源单元为忙的分布周期,如果数据到达时刻之后P-UE选择资源的P-UE专用资源池子集满足该分布周期,则确定对应资源或资源单元不属于优选资源集合的资源,反之,如果不满足该分布周期,则确定对应资源或资源单元属于优选资源集合的资源;类似地,也可以根据部分P-UE专用资源池子集的信号检测和/或能量感知结果为资源空闲的情况来推测出所述资源或资源单元为空闲的分布周期,并确定所述资源或资源单元是否为优选资源集合的资源。
或者,如果在判断窗内的所有P-UE专用资源池子集的信号检测和/或能量感知结果为资源忙,则确定所述资源或资源单元不是优选资源集合的资源。
如果P-UE根据信号能量感知结果确定优选资源集合,能量感知的结果可以表示为P-UE专用资源池子集中感知窗对应的感知资源为资源空闲或资源忙。一种方式是通过感知到的信号能量值与判决门限比较确定感知结果,感知到信号能量值大于判决门限则判定为资源忙,否则判定为资源空闲;
或者表示为资源空闲或忙的等级,根据感知到信号能量的强弱分成N个等级,N可以取 正整数。例如P-UE1对P-UE专用资源池子集按照子帧进行能量感知,根据感知的信号能量的强弱对应到5个不同等级,不同等级对应所述子帧的资源可被确定属于优选资源集合的概率,等级值0表示所述资源可被确定属于优选资源集合的概率为5%,等级值1表示对应的概率为10%,相应地,等级值2对应的概率为20%,3对应的概率为30%,4对应的概率为35%。
在本实施例中,还包括有条件或无条件地进行信号检测和/或能量感知,如果有条件进行信号检测和/或能量感知,则条件包括:UE有数据要发送;比如,P-UE有P2V消息发送,则对P-UE专用资源池子集进行信号检测和/或能量感知,并根据结果确定优选资源集合。
本实施例中,P-UE确定的优选资源集合,可以仅仅对下一次发送P2V消息有效,或者在一段时间内或信号检测和/或能量感知结果更新之前,对每一次发送P2V消息有效,每次发送P2V消息都从该优选资源集合中选择资源,选择方法包括但不限于随机选择。
实施例三
图7是本发明实施例三的资源选择方法的示意图,P2V传输与V2X传输共享资源池,包括发送资源池和接收资源池,某一个P-UE将资源池内的部分资源作为发送资源池子集,只在发送资源池子集内选择资源发送P2V消息,在判断窗所包含的所述发送资源池子集内根据信号检测和/或能量感知结果确定优选资源集合。在所述发送资源池子集内,只发送P2V消息,或者优先发送P2V消息。
或者,将资源池内的部分资源作为发送资源池子集,用于所有P-UE发送P2V消息专用,或优先用于P-UE发送P2V消息。
例如,如图7所示,P-UE1以每个100ms内10ms范围的全带宽资源作为发送资源池子集,对发送资源池子集中的资源或资源单元进行信号检测和/或能量感知。判断窗为1s时间,P-UE1根据1s内信号检测和/或能量感知的结果,确定优选资源集合,P-UE1从优选资源集合中选择资源发送P2V消息。
所述发送资源池子集通过网络侧配置或预配置确定,不同P-UE的配置参数内容可以不同。比如,P-UE1可以基于100ms的周期在500ms内进行信号检测和/或能量感知,感知的次数可以是1次,2次,或多次;P-UE2可以基于200ms的周期在1s内进行信号检测和/或能量感知,感知的次数也可以是1次,2次,或多次。
在本实施例中,P-UE可以对一个或多个发送资源池子集进行信号检测和/或能量感知,包括对所有发送资源池子集进行信号检测和/或能量感知,如果是对多个发送资源池子集进行信号检测和/或能量感知,包括连续地或离散地对多个发送资源池子集进行信号检测和/或能量感知。
如果P-UE根据信号能量感知结果确定优选资源集合,能量感知的结果可以表示为发送资源池子集中感知窗对应的感知资源为资源空闲或资源忙。一种方式是通过感知到的信号能量 值与判决门限比较确定感知结果,感知到信号能量值大于判决门限则判定为资源忙,否则判定为资源空闲;
或者表示为资源空闲或忙的等级,根据感知到信号能量的强弱分成N个等级,N可以取正整数。例如P-UE1对发送资源池子集按照子帧进行能量感知,根据感知的信号能量的强弱对应到N=3个不同等级,不同等级对应所述子帧的资源被确定为属于优选资源集合的概率,等级值0表示所述资源可被确定为属于优选资源集合的概率为10%,等级值1表示对应的概率为30%,相应地,等级值2对应的概率为60%。
或者,对于V-UE而言,不在所述发送资源池子集中发送V2X消息,或对所述发送资源池进行检测,如果检测结果为所述发送资源池中有P2V消息发送,则不在所述发送资源池子集中发送V2X消息,即在所述发送资源池子集中P2V消息优先发送。
在本实施例中,还包括有条件或无条件地进行信号检测和/或能量感知,如果有条件进行信号检测和/或能量感知,则条件包括:UE有数据要发送;比如,P-UE有P2V消息发送,则对所述发送资源池子集进行信号检测和/或能量感知,并根据结果确定优选资源集合。
本实施例中,P-UE确定的优选资源集合,可以仅仅对下一次发送P2V消息有效,或者在一段时间内或信号检测和/或能量感知结果更新之前,对每一次发送P2V消息有效,每次发送P2V消息都从该优选资源集合中选择资源,选择方法包括但不限于随机选择。
实施例四
本发明实施例四描述的是基于感知窗进行能量感知结果选择资源的方法。UE在能量感知窗进行信号能量感知,感知窗在时域可以设置为小于系统子帧长度,每个感知窗都属于一个子帧。
UE在感知窗进行能量感知的结果包括资源空闲或资源忙,表示了所在子帧对应资源空闲或忙的情况,比如,如果UE1在感知窗能感知到信号能量,或信号能量强度大于判决门限,则认为该感知窗所属的子帧对应的资源感知结果为资源忙,否则为资源空闲。UE根据判断窗内的能量感知结果确定优选资源集合。
例如,如图8所示,感知窗在时域不超过SC-FDMA子帧范围,比如10us,P-UE1根据判断窗内一个或多个感知窗中的能量感知结果确定优选资源集合,在选择资源时从优选资源集合中选择资源。
对于感知结果的表示,还可以根据感知到的信号能量的强度对应到N个资源空闲或忙的等级,UE根据资源空闲或忙的等级值来确定对应的子帧资源是否可以确定为优选资源集合的资源,或者以一定的概率确定为优选资源集合的资源。
例如,能量感知结果对应到3个等级值,对应等级值为0,1,2,等级值0表示对应资源 的空闲概率为10%,或者说P-UE可以以10%的概率确定对应资源为优选资源集合的资源,相应地,等级值1表示对应的概率为20%,2表示对应的概率为70%。
图8所示示意没有限定感知窗在子帧中的位置,本实施例所述的方法对感知窗在子帧中的位置不作限定,一种优选的感知窗位置为对应子帧中发送DMRS(Demodulation Reference Signal,解调参考信号)的SC-FDMA符号位置,如图9所示的示例。
在本实施例中,还包括有条件或无条件地进行能量感知,如果有条件进行能量感知,则条件包括:UE有数据要发送;比如,P-UE有P2V消息发送,则在能量感知窗进行能量感知,并根据结果确定优选资源集合。
本实施例中,P-UE确定的优选资源集合,可以仅仅对下一次发送P2V消息有效,或者在一段时间内或信号检测和/或能量感知结果更新之前,对每一次发送P2V消息有效,每次发送P2V消息都从该优选资源集合中选择资源,选择方法包括但不限于随机选择。
本实施例描述的资源选择方法至少可以用于专用发送资源池,不排除适用于共享资源池。同时,上述仅仅以P-UE举例说明,对于V-UE或其它UE同样适用。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
在本实施例中还提供了一种V2X通信的资源选择装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图10是根据本发明实施例的V2X通信的资源选择装置的结构框图,如图10所示,该装置包括:检测模块10,设置为在预定资源集合上进行信号检测和/或能量感知;确定模块20,设置为根据信号检测和/或能量感知的结果确定用于发送无线信号的资源或优选资源集合;选择模块30,设置为使用资源或从优选资源集合中选择资源发送无线信号。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述模块分别位于多个处理器中。
本发明的实施例还提供了一种存储介质。在本实施例中,该存储介质可以被设置为存储用于执行前文中的实施例的程序代码:
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化和组合。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进、组合等,均应包含在本发明的保护范围之内。

Claims (17)

  1. 一种车联网V2X通信的资源选择方法,包括:
    UE在预定资源集合上进行信号检测和/或能量感知;
    所述UE根据信号检测和/或能量感知的结果确定用于发送无线信号的资源或资源集合;
    所述UE使用所述资源或从所述资源集合中选择资源发送无线信号。
  2. 根据权利要求1所述的资源选择方法,其中,所述预定资源集合包括以下至少之一:第一类预定资源集合、第二类预定资源集合、第三类预定资源集合;其中,
    所述第一类预定资源集合至少包括第一类可选资源集合,所述第一类可选资源集合包括发送资源池或发送资源池的子集,不包括接收资源池或接收资源池的子集;
    所述第二类预定资源集合至少包括第二类可选资源集合,所述第二类可选资源集合包括发送资源池的子集和/或接收资源池的子集;
    所述第三类预定资源集合至少包含一个或一组参考资源或资源单元,或者至少包含一个或多个预定资源子集,所述预定资源子集至少包含一个或一组参考资源或资源单元;其中,所述参考资源或资源单元与所述UE的已用资源或资源单元的大小相同,在时域的偏移为正整数个参考周期,在频域没有偏移,所述已用资源或资源单元为所述UE已经用于发送无线信号的资源或资源单元,所述参考周期为所述UE之外的其它UE发送无线信号的周期或预设的周期值。
  3. 根据权利要求2述的资源选择方法,其中,所述第一类可选资源集合和/或第二类可选资源集合通过网络侧配置和/或预配置确定。
  4. 根据权利要求1述的资源选择方法,其中,所述信号检测和/或能量感知的结果包括以下至少之一:
    资源空闲,表示在对应资源上没有接收到无线信号;或者,没有感知到无线信号能量或感知到的无线信号能量小于判决门限;
    资源忙,表示在对应资源上接收到无线信号,包括对接收信号解码和/或解调成功,或,感知到无线信号能量达到或超过判决门限;
    资源空闲或忙的等级,表示等级值对应资源上接收信号能量的强弱程度。
  5. 根据权利要求2所述的资源选择方法,其中,UE在预定资源集合内进行信号检测和/或能量感知,包括:
    所述UE在所述第一类预定资源集合内,或在所述第二预定资源集合内,或在所述第三类预定资源集合内,进行一次或多次信号检测和/或能量感知,根据一次或多次信号检测和/或能量感知获得信号检测和/或能量感知的结果。
  6. 根据权利要求1所述的资源选择方法,其中,所述UE在预定资源集合内进行信号检测和/或能量感知,包括:
    所述UE在感知窗内进行信号能量感知,其中,所述感知窗的大小在时域不超过最小资源单元的时间,每个资源单元的时间内至少完整地包含一个所述感知窗;
    将所述感知窗的感知结果作为对应资源单元的时间内的感知结果。
  7. 根据权利要求5所述的资源选择方法,其中,所述UE根据在所述第一类预定资源集合,或所述第二类预定资源集合内的信号检测和/或能量感知的结果确定用于发送无线信号的资源或资源集合,包括:
    当信号检测和/或能量感知的结果为资源空闲时,则确定对应资源或资源单元属于资源集合,或确定对应资源或资源单元用于发送无线信号;或者,根据资源空闲或忙的等级值映射的概率确定对应资源或资源单元属于所述资源集合或用于发送无线信号的概率。
  8. 根据权利要求5所述的资源选择方法,其中,所述UE根据在所述第三类预定资源集合上的信号检测和/或能量感知的结果确定用于发送无线信号的资源或资源集合,包括以下至少之一:
    所述UE进行一次信号检测和/或能量感知,信号检测和/或能量感知的结果为资源空闲;或者,所述UE进行多次信号检测和/或能量感知,信号检测和/或能量感知的结果均为资源空闲;或者,所述UE进行多次信号检测和/或能量感知,部分次数的信号检测和/或能量感知的结果为资源空闲,根据结果可以判定在所述已用资源或资源单元不存在信号冲突;则选择以最近一个已用资源或资源单元为基准,偏移发送周期后的资源或资源单元为发送无线信号的资源或资源单元或属于所述资源集合,其中,所述发送周期为所述UE发送无线信号的周期,包括正整数个所述参考周期;
    所述UE进行一次信号检测和/或能量感知,信号检测和/或能量感知的结果为资源忙;或者,所述UE进行多次信号检测和/或能量感知,信号检测和/或能量感知的结果均为资源忙;或者,所述UE进行多次信号检测和/或能量感知,部分次数的信号检测和/或能量感知的结果为资源忙,根据结果可以判定在所述已用资源或资源单元存在信号冲突;则确定对应以最近一个已用资源或资源单元为基准,偏移发送周期后的资源或资源单元不用于发送无线信号或不属于所述资源集合,其中,所述发送周期为所述UE发送无线信号的周期,包括正整数个所述参考周期;
    所述UE根据资源空闲或忙的等级值确定资源或资源集合,按照不同的等级值映射到不同的概率,确定以最近一个所述已用资源或资源单元为基准偏移发送周期后的资源或资源单元为发送无线信号的资源或资源单元的概率或不用于发送所述无线信号的概率,或所述资源或资源单元属于或不属于所述资源集合的概率,其中,所述发送周期为所述UE发送无线信号的周期,包括正整数个所述参考周期。
  9. 根据权利要求1至8任一项所述的资源选择方法,其中,所述方法还包括:
    在预设的有效时间内或在信号检测和/或能量感知结果更新之前,所述UE以所述发送周期为偏移的粒度,在连续多个发送周期中持续占用相同的资源或资源单元;或者,
    在预设的有效时间内或在信号检测和/或能量感知结果更新之前,所述UE在连续多个发送周期中持续占用已选择的资源或资源单元,或在所述资源集合中选择发送无线信号的资源,选择方法包括但不限于随机选择。
  10. 根据权利要求1所述的资源选择方法,其中,所述UE在预定资源集合上进行信号检测和/或能量感知的条件包括:所述UE有数据要发送。
  11. 一种车联网V2X通信的资源选择装置,包括:
    检测模块,设置为在预定资源集合上进行信号检测和/或能量感知;
    确定模块,设置为根据信号检测和/或能量感知的结果确定用于发送无线信号的资源或资源集合;
    选择模块,设置为使用所述资源或从所述优选资源集合中选择资源发送无线信号。
  12. 根据权利要求11所述的资源选择装置,其中,所述检测模块至少包括以下之一:
    第一检测单元,设置为在第一类预定资源集合上进行信号检测和/或能量感知,其中,第一类预定资源集合至少包括第一类可选资源集合,所述第一类可选资源集合包含发送资源池,但不包含接收资源池;
    第二检测单元,设置为在第二类预定资源集合上进行信号检测和/或能量感知,其中,所述第二类预定资源集合至少包括第二类可选资源集合,所述第二类可选资源集合至少包含发送资源池的子集和/或接收资源池的子集;
    第三检测单元,设置为在第三类预定资源集合上进行信号检测和/或能量感知,其中,所述第三类预定资源集合至少包含一个或一组参考资源或资源单元;其中,所述参考资源或资源单元与所述UE的已用资源或资源单元的大小相同,在时域的偏移为正整数个参考周期,在频域没有偏移,所述已用资源或资源单元为所述UE已经用于发送无线信号的资源或资源单元,所述参考周期为所述UE之外的其它UE发送无线信号的周期或预设的周期值。
  13. 根据权利要求11所述的资源选择装置,其中,所述信号检测和/或能量感知的结果包括以下至少之一:
    资源空闲,表示在对应资源上没有接收到无线信号;或者,没有感知到无线信号能量或感知到的无线信号能量小于判决门限;
    资源忙,表示在对应资源上接收到无线信号,包括对接收信号解码和/或解调成功,或,感知到无线信号能量达到或超过判决门限;
    资源空闲或忙的等级,表示等级值对应资源上接收信号能量的强弱程度。
  14. 根据权利要求11所述的资源选择装置,其中,所述第一检测单元包括:
    感知单元,设置为在感知窗内进行信号能量感知,并将所述感知窗的感知结果作为对应资源单元的感知结果,其中,所述感知窗的大小在时域不超过最小资源单元的时间,每个资源单元内至少完整地包含一个所述感知窗。
  15. 根据权利要求12所述的资源选择装置,其中,所述确定模块包括:
    第一确定单元,当信号检测和/或能量感知的结果为资源空闲时,则确定对应资源或资源单元属于资源集合,或确定对应资源或资源单元用于发送无线信号;或者,根据资源空闲或忙的等级值映射的概率确定对应资源或资源单元属于所述资源集合或用于发送无线信号的概率。
  16. 根据权利要求15所述的资源选择装置,其中,所述确定模块还包括:
    第二确定单元,设置为在所述第三检测单元进行一次信号检测和/或能量感知,信号检测和/或能量感知的结果为资源空闲;或者在所述第三检测单元进行多次信号检测和/或能量感知,信号检测和/或能量感知的结果均为资源空闲,或者部分次数的信号检测和/或能量感知的结果为资源空闲,并根据结果可以判定在所述已用资源或资源单元不存在信号冲突;则选择以最近一个已用资源或资源单元为基准,偏移发送周期后的资源或资源单元为发送无线信号的资源或资源单元或属于所述资源集合,其中,所述发送周期为所述UE发送无线信号的周期,包括正整数个所述参考周期;
    第三确定单元,设置为在所述第三检测单元进行一次信号检测和/或能量感知,信号检测和/或能量感知的结果为资源忙;或者在所述第三检测单元进行多次信号检测和/或能量感知,信号检测和/或能量感知的结果均为资源忙;或者部分次数的信号检测和/或能量感知的结果为资源忙,并根据结果可以判定在所述已用资源或资源单元存在信号冲突;则确定对应以最近一个已用资源或资源单元为基准,偏移发送周期后的资源或资源单元不用于发送无线信号或不属于所述资源集合,其中,所述发送周期为所述UE发送无线信号的周期,包括正整数个所述参考周期;
    第四确定单元,设置为根据所述第三检测单元所检测和/或能量感知的资源空闲或忙的等级值确定资源或资源集合,按照不同的等级值映射到不同的概率,确定以最近一个所述已用资源或资源单元为基准偏移发送周期后的资源或资源单元为发送无线信号的资源或资源单元的概率或不用于发送所述无线信号的概率,或所述资源或资源单元属于或不属于所述资源集合的概率,其中,所述发送周期为所述UE发送无线信号的周期,包括正整数个所述参考周期。
  17. 一种计算机可读存储介质,存储有计算机程序,当所述计算机程序被运行时,执行权利要求1至10中任一项所述的方法。
PCT/CN2017/095475 2016-08-11 2017-08-01 一种v2x通信的资源选择方法和装置 WO2018028475A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610665882.2A CN107734649A (zh) 2016-08-11 2016-08-11 一种v2x通信的资源选择方法和装置
CN201610665882.2 2016-08-11

Publications (1)

Publication Number Publication Date
WO2018028475A1 true WO2018028475A1 (zh) 2018-02-15

Family

ID=61162696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/095475 WO2018028475A1 (zh) 2016-08-11 2017-08-01 一种v2x通信的资源选择方法和装置

Country Status (2)

Country Link
CN (1) CN107734649A (zh)
WO (1) WO2018028475A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112261613A (zh) * 2020-10-15 2021-01-22 大唐高鸿数据网络技术股份有限公司 一种资源选择的处理方法、装置及终端
CN113099413A (zh) * 2021-04-02 2021-07-09 之江实验室 一种用于确定感知时隙的周期值的选取方法
WO2022194263A1 (zh) * 2021-03-19 2022-09-22 华为技术有限公司 一种通信方法及通信装置
WO2022206844A1 (zh) * 2021-03-30 2022-10-06 中兴通讯股份有限公司 通信方法、设备和存储介质
WO2023088299A1 (zh) * 2021-11-19 2023-05-25 维沃移动通信有限公司 感知信号传输处理方法、装置及相关设备

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10609601B2 (en) * 2016-03-16 2020-03-31 Sony Corporation Wireless telecommunications system, terminal device, infrastructure equipment, integrated circuitry and methods
CN110381607B (zh) * 2018-04-13 2021-05-07 维沃移动通信有限公司 一种控制方法及终端
US11419128B2 (en) * 2018-08-01 2022-08-16 Panasonic Intellectual Property Corporation Of America User equipment and communication methods
CN111294942B (zh) * 2019-03-29 2023-04-18 展讯半导体(南京)有限公司 感知窗口长度的确定、发送方法及装置、存储介质、终端、基站
CN111867075B (zh) * 2019-04-30 2023-11-21 华为技术有限公司 侧行链路的传输资源的处理方法和装置
CN110415560B (zh) * 2019-08-07 2020-10-27 腾讯科技(深圳)有限公司 基于车联网系统的资源量估计方法、碰撞预测方法及装置
CN113498177A (zh) * 2020-04-01 2021-10-12 维沃移动通信有限公司 资源选择方法、终端及网络侧设备
CN115150900A (zh) * 2021-03-30 2022-10-04 维沃移动通信有限公司 资源的处理方法及装置、终端和可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103997788A (zh) * 2013-02-18 2014-08-20 中兴通讯股份有限公司 用于设备到设备通信的设备发现方法及用户设备、网络侧设备
CN104902455A (zh) * 2014-03-06 2015-09-09 中兴通讯股份有限公司 一种d2d通信的设备发现方法及装置
CN105101431A (zh) * 2014-05-07 2015-11-25 中兴通讯股份有限公司 一种设备到设备通信方法、装置及系统
US20160142968A1 (en) * 2014-11-14 2016-05-19 Industrial Technology Research Institute Communication devices and method of controlling discovery signal communication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103997788A (zh) * 2013-02-18 2014-08-20 中兴通讯股份有限公司 用于设备到设备通信的设备发现方法及用户设备、网络侧设备
CN104902455A (zh) * 2014-03-06 2015-09-09 中兴通讯股份有限公司 一种d2d通信的设备发现方法及装置
CN105101431A (zh) * 2014-05-07 2015-11-25 中兴通讯股份有限公司 一种设备到设备通信方法、装置及系统
US20160142968A1 (en) * 2014-11-14 2016-05-19 Industrial Technology Research Institute Communication devices and method of controlling discovery signal communication

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112261613A (zh) * 2020-10-15 2021-01-22 大唐高鸿数据网络技术股份有限公司 一种资源选择的处理方法、装置及终端
CN112261613B (zh) * 2020-10-15 2022-09-06 大唐高鸿智联科技(重庆)有限公司 一种资源选择的处理方法、装置及终端
WO2022194263A1 (zh) * 2021-03-19 2022-09-22 华为技术有限公司 一种通信方法及通信装置
WO2022206844A1 (zh) * 2021-03-30 2022-10-06 中兴通讯股份有限公司 通信方法、设备和存储介质
CN113099413A (zh) * 2021-04-02 2021-07-09 之江实验室 一种用于确定感知时隙的周期值的选取方法
CN113099413B (zh) * 2021-04-02 2023-04-07 之江实验室 一种用于确定感知时隙的周期值的选取方法
WO2023088299A1 (zh) * 2021-11-19 2023-05-25 维沃移动通信有限公司 感知信号传输处理方法、装置及相关设备

Also Published As

Publication number Publication date
CN107734649A (zh) 2018-02-23

Similar Documents

Publication Publication Date Title
WO2018028475A1 (zh) 一种v2x通信的资源选择方法和装置
CN109792590B (zh) 用户装置以及信号发送方法
JP6936232B2 (ja) ランダムアクセス方法および装置
WO2017133446A1 (zh) 车联网中的v2x通信方法及装置
CN106470485B (zh) 一种无线资源选择方法及终端设备
US9445438B2 (en) Systems and methods for fast initial network link setup
US9814085B2 (en) Systems and methods for fast initial network link setup
US9338732B2 (en) Systems and methods for fast initial network link setup
US8873494B2 (en) Systems and methods for fast initial network link setup
EP3355636A1 (en) Vehicle to everything service sending method and apparatus, and resource configuration method and apparatus
US9210689B2 (en) Method and apparatus for efficient communication of safety messages for a group of user equipments
WO2018177109A1 (zh) 数据传输方法、装置、终端及存储介质
CN107105000B (zh) V2x通信方法及装置
US9402243B2 (en) Systems and methods for fast initial network link setup
US9271317B2 (en) Systems and methods for fast initial network link setup
WO2014100932A1 (zh) 资源竞争的方法、利用资源竞争的方法及其装置
US9191977B2 (en) Systems and methods for fast initial network link setup
CN112953692A (zh) 用于解决冲突信号的方法和设备
WO2017063697A1 (en) Method and network node for managing harq attempts parameter for d2d links
CN111585716A (zh) 一种无线通信中的方法和装置
KR20240027681A (ko) 페이징 조기 표시 반복을 위한 기법들

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838605

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17838605

Country of ref document: EP

Kind code of ref document: A1