WO2022206844A1 - 通信方法、设备和存储介质 - Google Patents

通信方法、设备和存储介质 Download PDF

Info

Publication number
WO2022206844A1
WO2022206844A1 PCT/CN2022/084088 CN2022084088W WO2022206844A1 WO 2022206844 A1 WO2022206844 A1 WO 2022206844A1 CN 2022084088 W CN2022084088 W CN 2022084088W WO 2022206844 A1 WO2022206844 A1 WO 2022206844A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing
period
interval
resource
duration
Prior art date
Application number
PCT/CN2022/084088
Other languages
English (en)
French (fr)
Inventor
卢有雄
黄双红
邢卫民
贺海港
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2022206844A1 publication Critical patent/WO2022206844A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communication, for example, to a communication method, device and storage medium.
  • NR New Radio
  • UE User Equipment
  • Embodiments of the present application provide a communication method, device, and storage medium, which achieve the purpose of energy saving on the basis of realizing the perception of multiple periodic services.
  • An embodiment of the present application provides a communication method, which is applied to a first communication node, including:
  • the resources to be sensed corresponding to the sensing period at least include: a reference resource in the resource pool; a resource obtained by offsetting one or more times of a reference resource in the resource pool according to the sensing period.
  • An embodiment of the present application provides a communication method, which is applied to a second communication node, including:
  • the sensing configuration parameter is used to enable the first communication node to sense the resource to be sensed corresponding to the sensing period at least in one sensing interval.
  • An embodiment of the present application provides a communication device, which is applied to a first communication node, including:
  • a receiver configured to preconfigure or receive the perception configuration parameter configured by the second communication node
  • a sensor configured to sense the resource to be sensed corresponding to the sensing period in at least one sensing interval according to the sensing configuration parameter
  • the resources to be sensed corresponding to the sensing period at least include: a reference resource in the resource pool; a resource obtained by offsetting one or more times a reference resource in the resource pool according to the sensing period.
  • An embodiment of the present application provides a communication device, which is applied to a second communication node, including:
  • Configurator configured to configure-aware configuration parameters
  • the transmitter is configured to send the sensing configuration parameter to the first communication node; the sensing configuration parameter is used to enable the first communication node to sense the resource to be sensed corresponding to the sensing period at least in one sensing interval.
  • Embodiments of the present application provide a communication device, including: a communication module, a memory, and one or more processors;
  • the communication module is configured to perform communication interaction between each communication node;
  • the memory configured to store one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors implement the communication method described in any one of the above embodiments.
  • An embodiment of the present application provides a storage medium, where a computer program is stored in the storage medium, and when the computer program is executed by a processor, the communication method described in any of the foregoing embodiments is implemented.
  • FIG. 1 is a flowchart of a communication method provided by an embodiment of the present application
  • FIG. 2 is a flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of the location of a resource to be sensed provided by an embodiment of the present application.
  • FIG. 4 is a schematic configuration diagram of a sensing configuration parameter provided by an embodiment of the present application.
  • FIG. 5 is a schematic configuration diagram of another sensing configuration parameter provided by an embodiment of the present application.
  • FIG. 6 is a schematic configuration diagram of another sensing configuration parameter provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of sensing by two sensing periods provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of sensing of multiple sensing time slots in a reference reference period provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of sensing of multiple sensing time slots in another reference reference period provided by an embodiment of the present application.
  • FIG. 10 is a schematic configuration diagram of still another sensing configuration parameter provided by an embodiment of the present application.
  • FIG. 11 is a schematic configuration diagram of still another sensing configuration parameter provided by an embodiment of the present application.
  • FIG. 12 is a schematic configuration diagram of still another sensing configuration parameter provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of determining a resource to be selected according to an embodiment of the present application.
  • FIG. 14 is a structural block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 15 is a structural block diagram of another communication apparatus provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • V2X vehicle-to-everything
  • SL SideLink
  • D2D UE-UE direct communication
  • UEs share a resource pool, carrier or bandwidth part (BandWidth Part) , BWP), you need to obtain available resources or a collection of available resources through sensing.
  • BWP bandwidth part
  • P-UE power-sensitive UEs, such as handheld terminals, wearable devices, and pedestrian UE (P-UE)
  • P-UE In the original Long Term Evolution (Long Term Evolution, LTE) V2X (LTE-V) system, P-UE only assumes that periodic services exist in the current carrier pool, and the service period is an integer multiple of 100ms.
  • LTE Long Term Evolution
  • LTE-V Long Term Evolution-V
  • the sensing (partial sensing) scheme is to select some candidate sensing gaps for sensing from the candidate sensing gaps (candidate sensing gaps) at intervals of 100ms.
  • the enabling sensing of the candidate sensing gaps is configured by high-level parameters through bitmaps. , and the minimum number of sensing slots allowed in the Candidate sensing gap is configured. In this way, except for the candidate sensing gap corresponding to the bitmap configured by the high-level is 0, the UE can sense the slot that needs to be sensed according to a period of 100ms.
  • NR V2X For NR V2X, in a resource pool, multiple periodic services may be allowed to be sent, and even aperiodic services may be allowed to be sent.
  • the UE needs to sense multiple periodic services in order to avoid conflicts with other UE resources as much as possible, that is, the partial sensing scheme of LTE-V is no longer applicable. Therefore, a problem that needs to be solved urgently is to enhance the partial sensing scheme to meet the sensing of multiple periodic services and to meet the energy saving requirements.
  • the embodiments of the present application provide a communication method, which achieves the purpose of energy saving on the basis of realizing the perception of multiple periodic services.
  • FIG. 1 is a flowchart of a communication method provided by an embodiment of the present application. This embodiment may be performed by the first communication node.
  • the first communication node may be the terminal side (eg, user equipment). As shown in FIG. 1 , this embodiment includes: S110 and S120.
  • S120 Sensing the resource to be sensed corresponding to the sensing period in at least one sensing interval according to the sensing configuration parameter.
  • the resources to be sensed corresponding to the sensing period at least include: a reference resource in the resource pool; a resource obtained by offsetting one or more reference resources in the resource pool according to the sensing period.
  • the first communication node may perform resource selection or Re-selection of resources, and then use the selected or re-selected resources for data transmission.
  • the first communication node senses the resource to be sensed corresponding to the sensing period according to the sensing configuration parameter in at least one sensing interval.
  • the sensing configuration parameter refers to the sensing time configured by the second communication node for the first communication node, that is, an area that needs to perform resource sensing.
  • the resource to be sensed corresponding to the sensing period may include: a reference resource in the resource pool, and a resource obtained by offsetting one or more times of a reference resource in the resource pool according to the sensing period.
  • the resource to be sensed corresponding to the sensing period may be a reference resource in the resource pool; or may be a resource obtained by shifting a reference resource in the resource pool one or more times according to the sensing period.
  • the reference resource is a resource to be selected in a resource pool; or a reference resource whose location is determined by a sensing resource according to its corresponding sensing period.
  • the resource to be sensed refers to the resource on the time slot corresponding to the sensing operation; the resource to be selected refers to the resource that is available after sensing the resource to be sensed.
  • sensing the resources to be sensed corresponding to the sensing period in at least one sensing interval according to the sensing configuration parameters including: receiving a resource selection trigger instruction, a resource reselection trigger instruction, a high-level instruction, or a partial sensing function.
  • the sensing resource corresponding to the sensing period is sensed in at least one sensing interval according to the sensing configuration parameter, and the sensing result of the resource to be selected is obtained.
  • the first communication node is configured to allow the use of the partial awareness function, or the current resource pool allows the use of the partial awareness function, or receives a resource selection trigger instruction, or a resource reselection trigger instruction, or a higher layer instructs to perform resource reselection Or select, or when part of the sensing function is enabled, the first communication node senses the sensing resource corresponding to the sensing period according to the sensing configuration parameter in at least one sensing interval to determine the availability of the resource to be selected.
  • the sensing configuration parameter includes: sensing duration of the sensing interval.
  • multiple sensing intervals may be configured in one resource pool, and a sensing duration is configured for each sensing interval, that is, the sensing duration of the sensing interval refers to the total duration of the sensing interval.
  • the unit of the perception duration may be a physical time slot, a time slot in a resource pool (ie, a logical time slot) or ms.
  • the sensing interval starts from the sub-frame number (Sub-Frame Number0, SFN0), or the direct frame number (Direct-Frame Number0, DFN0), or the first time slot in the resource pool, and the length of each sensing interval is The resource area corresponding to the duration.
  • the sensing configuration parameter further includes: a sensing interval period; wherein the sensing duration is the same as the sensing interval period.
  • multiple sensing interval periods may be configured in one resource pool.
  • the sensing duration may be the same as the sensing interval period.
  • the unit of the sensing interval period can be physical time slot; time slot in the resource pool, milliseconds ms.
  • the sensing configuration parameter further includes: an offset value of the sensing interval relative to SFN0 or DFN0; or an offset value of the sensing period relative to SFN0 or DFN0.
  • the sensing interval is a resource region corresponding to the duration of each sensing interval starting from the time slot indicated by the offset value of the sensing interval relative to SFN0 or DFN0.
  • the sensing interval is a resource region corresponding to the duration of each sensing interval starting from the time slot indicated by the offset value of the sensing period relative to SFN0 or DFN0.
  • the sensing interval may be a time slot indicated by an offset value of the sensing interval relative to SFN0 or DFN0, and the resource area corresponding to the duration of each sensing interval may also be a sensing period relative to SFN0 or DFN0 The offset value of the indicated time slot starts, and the duration of each sensing interval corresponds to the resource region.
  • the sensing configuration parameter further includes at least one of the following: a sensing period of the resource to be selected; and the sensing times in each sensing period in a sensing duration.
  • the number of sensing times in each sensing period in a sensing interval includes at least one of the following: a configuration parameter indication; a predefined value; a value determined by a priority; a value of dividing the sensing duration of the sensing interval by the sensing period to the value.
  • the sensing configuration parameter further includes: a reference sensing period.
  • the sensing interval is a resource area corresponding to the duration of a reference sensing period. In an embodiment, the sensing interval may also be a resource area corresponding to the duration of a reference sensing period.
  • the reference resource positions of sensing resources corresponding to any two sensing periods overlap in at least one time slot.
  • At least one of the sensing resources corresponding to all sensing periods has the same reference resource.
  • the periodic sensing time slots corresponding to all sensing periods are aligned at the end of the sensing interval.
  • a sensed time slot in a sensing interval is related to a time slot boundary of a sensing interval, a sensing period value, and the number of sensing times in a sensing interval corresponding to the sensing period value.
  • other configured sensing periods overlap or align with at least the resources to be sensed corresponding to the reference sensing period within a reference sensing period.
  • the sensing configuration parameters include: a sensing duration and a sensing interval period of each sensing interval in the sensing window; wherein, the sensing duration is different from the sensing interval period.
  • the sensing configuration parameter further includes: an offset value relative to SFN0 or DFN0.
  • the sensing configuration parameter further includes: an enabling indication of SideLink Discontinuous Reception (SL DRX).
  • SL DRX SideLink Discontinuous Reception
  • the sensing duration is valid within the receiving valid duration corresponding to DRX.
  • the units of the sensing duration, the reference sensing period, the sensing period, the sensing interval period, and the offset value all include one of the following units: physical time slot; time slot in the resource pool, milliseconds (ms).
  • the configured period value corresponding to the sensing period is indicated by at least one of the following:
  • the period value used for sending in the configured resource pool ; the period value used for sensing in the configured resource pool.
  • the sensing period includes at least one of the following:
  • the sensing interval period is the repetition duration of the sensing interval in the time domain.
  • FIG. 2 is a flowchart of another communication method provided by an embodiment of the present application. This embodiment is applied to the second communication node.
  • the second communication node may be a base station.
  • the communication method in this embodiment includes: S210-S220.
  • S220 Send the sensing configuration parameter to the first communication node; the sensing configuration parameter is used to enable the first communication node to sense the resource to be sensed corresponding to the sensing period at least in one sensing interval.
  • the sensing configuration parameter includes one of the following: the duration of the sensing interval; the reference sensing period; the sensing period; the sensing interval period; the sensing times in each sensing period; Offset value; the offset value of the sensing period relative to SFN0 or DFN0.
  • the sensing configuration parameter includes: sensing duration of the sensing interval.
  • multiple sensing intervals may be configured in one resource pool, and a sensing duration is configured for each sensing interval, that is, the sensing duration of the sensing interval refers to the total duration of the sensing interval.
  • the unit of the perception duration may be a physical time slot, a time slot in a resource pool (ie, a logical time slot) or ms.
  • the sensing interval is a resource area corresponding to the duration of each sensing interval starting from SFN0, or the direct frame number DFN0, or the first time slot in the resource pool.
  • the sensing configuration parameter further includes: a sensing interval period; wherein the sensing duration is the same as the sensing interval period.
  • multiple sensing interval periods may be configured in one resource pool.
  • the sensing duration may be the same as the sensing interval period.
  • the unit of the sensing interval period can be physical time slot; time slot in the resource pool, milliseconds ms.
  • the sensing configuration parameter further includes: an offset value of the sensing interval relative to SFN0 or DFN0; or an offset value of the sensing period relative to SFN0 or DFN0.
  • the sensing interval is a resource region corresponding to the duration of each sensing interval starting from the time slot indicated by the offset value of the sensing interval relative to SFN0 or DFN0.
  • the sensing interval is a resource region corresponding to the duration of each sensing interval starting from the time slot indicated by the offset value of the sensing period relative to SFN0 or DFN0.
  • the sensing configuration parameter further includes at least one of the following: a sensing period; and the sensing times in each sensing period in a sensing duration.
  • the number of sensing times in each sensing period in a sensing interval includes at least one of the following: a configuration parameter indication; a predefined value; a value determined by a priority; a value of dividing the sensing duration of the sensing interval by the sensing period to the value.
  • the sensing configuration parameter further includes: a reference sensing period.
  • the sensing interval is a resource area corresponding to the duration of a reference sensing period.
  • the reference resource positions of sensing resources corresponding to any two sensing periods overlap in at least one time slot.
  • At least one of the sensing resources corresponding to all sensing periods has the same reference resource.
  • the periodic sensing time slots corresponding to all sensing periods are aligned at the end of the sensing interval.
  • a sensed time slot in a sensing interval is related to a time slot boundary of a sensing interval, a sensing period value, and the number of sensing times in a sensing interval corresponding to the sensing period value.
  • other configured sensing periods overlap or align at least with the resources to be sensed corresponding to the reference sensing period within one reference sensing period.
  • the sensing configuration parameters include: a sensing duration and a sensing interval period of each sensing interval in the sensing window; wherein, the sensing duration is different from the sensing interval period.
  • the sensing configuration parameter further includes: an offset value relative to SFN0 or DFN0.
  • the sensing configuration parameter further includes: an enabling indication of SL DRX.
  • the sensing duration is valid within the receiving valid duration corresponding to DRX.
  • the units of the sensing duration, sensing period, sensing interval period, and offset value include one of the following: physical time slot; time slot in the resource pool, milliseconds (ms).
  • the configured period value corresponding to the sensing period is indicated by at least one of the following:
  • the period value used for sending in the configured resource pool ; the period value used for sensing in the configured resource pool.
  • the sensing period includes at least one of the following:
  • the sensing interval period is the repetition duration of the sensing interval in the time domain.
  • FIG. 3 is a schematic diagram of the location of a resource to be sensed provided by an embodiment of the present application.
  • the process of determining the location of the resource to be sensed is described by taking the sensing duration as a physical time (for example, a physical time slot, or physical milliseconds) as an example.
  • a physical time for example, a physical time slot, or physical milliseconds
  • the sensing duration is described by taking the sensing duration as a physical time (for example, a physical time slot, or physical milliseconds) as an example.
  • the physical time slots slots where the candidate resources are located, or reference resources
  • the time slot to be sensed is Among them, P' reserve refers to the period value counted on the time slot in the resource pool.
  • the perception window is a time window or the number of logical slots configured before slot t n , or a time window configured before candidate resource Y;
  • the resource selection window is a time window after slot t n that meets the requirements of a Packet Delay Budget (PDB), or a time window that includes candidate resource Y.
  • PDB Packet Delay Budget
  • FIG. 4 is a schematic configuration diagram of a sensing configuration parameter provided by an embodiment of the present application.
  • This embodiment describes the configuration of the sensing configuration parameters by taking the first communication node as the UE and the sensing configuration parameters including: the sensing duration (L_duration) and the sensing interval period of the sensing duration (Sensing Duration) as an example.
  • the unit of sensing duration and sensing interval period is ms.
  • the UE is configured, pre-configured or preset for the sensing duration, and the number of slots is L_duration.
  • the sensing interval period P_duration (ms) of the Sensing Duration is configured or pre-configured.
  • the sensing duration L_duration is the same as the sensing interval period P_duration.
  • FIG. 5 is a schematic configuration diagram of another sensing configuration parameter provided by an embodiment of the present application.
  • the first communication node is the UE
  • the sensing configuration parameters include: the sensing duration of the sensing interval, the sensing interval period, and the offset value of the sensing interval relative to SFN0 or DFN0; or, the sensing duration of the sensing interval,
  • the sensing interval period and the offset value of the sensing period relative to SFN0 or DFN0 are taken as examples to describe the configuration of sensing configuration parameters.
  • the unit of the sensing duration, the sensing interval period, and the offset value is ms. As shown in FIG.
  • the UE is configured, preconfigured or preset for the sensing duration of the sensing interval, the sensing interval period, and the offset value P_offset of the sensing interval relative to SFN0 or DFN0.
  • the sensing duration is the same as the sensing interval period P_duration
  • FIG. 5 also refers to the sensing duration, sensing interval period, and sensing period relative to SFN0 for UE configuration, pre-configured or preset sensing interval. or the offset value of DFN0.
  • FIG. 6 is a schematic diagram of configuration of another sensing configuration parameter provided by an embodiment of the present application.
  • the configuration of the sensing configuration parameters is described by taking the first communication node as the UE, and the sensing configuration parameters including: a sensing period; and the sensing times in each sensing period in a sensing duration as an example.
  • the sensing configuration parameters including: a sensing period; and the sensing times in each sensing period in a sensing duration as an example.
  • P reserve_list of the resource to be sensed configure or pre-configure the sensing times in each sensing period within a sensing duration, denoted as k_Max_values.
  • a sensed time slot in one of the sensing intervals is related to a time slot boundary of one of the sensing intervals, a sensing period value, and the number of sensing times in one of the sensing intervals corresponding to the sensing period value.
  • P reserve i is the ith sensing period value
  • k is the number of sensing times or sensing occasions in a Sensing Duration corresponding to the ith sensing period value, denoted as k_Max_values, which can be indicated by configuration or obtained by calculation.
  • the UE evaluates the resource availability of the resource to be selected corresponding to the expected sensed time slot.
  • the enabling of sense duration may be indicated by configuring sense duration enable. If configured by bitmap, 1 in the bitmap indicates that the current sensing interval is enabled, that is, sensing is performed.
  • the enabling condition of a sensing interval may be determined by the SL DRX configuration.
  • a perception interval is only valid when SL DRX on-duration, even if enabled.
  • a certain Sensing Duration does not enable sensing, resulting in no sensing result in slot set Y, trigger resource reselection, or use an abnormal resource pool, or trigger pre-emption, re-evaluation, short-term sensing to solve.
  • Figures 3 to 6 illustrate the configuration process of sensing configuration parameters by taking physical time or physical time slot as an example.
  • the present embodiment takes the sensing duration as a logical time (for example, a logical time slot) as an example to describe the process of determining the location of the resource to be sensed.
  • a logical time for example, a logical time slot
  • P' reserve the counts on the logical time slots in the resource pool are converted and denoted as P' reserve
  • Fig. 3 can be regarded as the position of the to-be-sensed time slot corresponding to the to-be-sensed resource determined by each period value within a sensing duration, or within a reference sensing period.
  • the time slot to be sensed is Among them, P' reserve refers to the period value counted on the time slot in the resource pool.
  • the sensing window is a time window or the number of logical slots configured before slot t n , or a time window or the number of logical slots configured before the resource to be sensed (candidate resource) Y;
  • the resource selection window is the time window after slot t n that meets the requirements of the PDB, or the time window or the number of logical time slots including candidate resource Y.
  • This embodiment describes the configuration of the sensing configuration parameters by taking the first communication node as the UE and the sensing configuration parameters including: the sensing duration and the sensing interval period of the sensing interval as examples.
  • the unit of the sensing duration and the sensing interval period is ms.
  • the UE configures, preconfigures or presets the sensing duration, the number of slots is L_duration, and optionally, the sensing interval period P_duration (slot number) of the configured or preconfigured sensing interval.
  • the sensing duration is the same as the sensing interval period P_duration.
  • the first communication node is the UE
  • the sensing configuration parameters include: the sensing duration of the sensing interval, the sensing interval period, and the offset value of the sensing interval relative to SFN0 or DFN0; or, the sensing duration of the sensing interval,
  • the sensing interval period and the offset value of the sensing period relative to SFN0 or DFN0 are taken as examples to describe the configuration of sensing configuration parameters.
  • the units of the sensing duration, sensing interval period, and offset value are the number of slots.
  • the UE is configured, preconfigured or preset for the sensing duration of the sensing interval, the sensing interval period, and the offset value P_offset of the sensing interval relative to SFN0 or DFN0.
  • FIG. 5 also refers to the sensing duration, sensing interval period, and sensing period relative to SFN0 for UE configuration, pre-configured or preset sensing interval. or the offset value of DFN0.
  • This embodiment describes the configuration of the sensing configuration parameters by taking the first communication node as the UE and the sensing configuration parameters including: the sensing period of the resource to be selected; and the sensing times in each sensing period in a sensing duration as an example.
  • the sensing period of the resource to be selected As shown in FIG. 6 , in a resource pool, configure or pre-configure the sensing period P reserve_list of the resource to be selected, and configure or pre-configure the number of sensing times in each sensing period within a sensing duration, denoted as k_Max_values.
  • a sensed time slot in one of the sensing intervals is related to a time slot boundary of one of the sensing intervals, a sensing period value, and the number of sensing times in one of the sensing intervals corresponding to the sensing period value.
  • P'duration refers to the sensing period converted to the sensing duration in the resource pool, is the logical time slot boundary of a sensing interval (such as the last slot, or the first slot), or is slot t' y , where slot t' y can be configured.
  • P reserve i is the ith sensing period value
  • k is the number of sensing times or sensing occasions in a Sensing Duration corresponding to the ith sensing period value, denoted as k_Max_values, which can be indicated by configuration or obtained by calculation.
  • the UE evaluates the resource availability of the resource to be selected corresponding to the expected sensed time slot according to the sensing result in the sensing Duration.
  • FIG. 7 is a schematic diagram of sensing by two sensing periods provided by an embodiment of the present application.
  • Sensing Duration (L_duration represents the sensing duration of the Sensing Duration or the number of slots, such as 100ms, or the delay requirement PDB, or a configured period value), according to the configured sensing period P reserve , for Sensing.
  • the slot range or time interval [(j-1)*L_duration,j*L_duration]
  • the slots for sensing are j*L_duration-k*P reserve .Eg: in [-100,0 ]
  • the sensing slots are t ⁇ SL_y-k*P reserve .
  • P reserve can be configured for all the period values supported by the current resource pool, or a subset thereof, or a configured period value.
  • the high layer can configure the parameter Sensing Duration Enable, wherein the i-th bit is 1, indicating that the Sensing Duration corresponding to the i-th bit needs sensing, (otherwise, no sensing is required).
  • Sensing Duration Enable There is a corresponding relationship between Sensing Duration Enable and the mapping of Sensing Duration.
  • the first bit of Sensing Duration Enable starts from the first Senisng Duration in the SFN0 or DFN0 cycle, and is mapped one by one, if the length is not enough, it can be mapped cyclically.
  • the Sensing Duration Enable bit position corresponding to Sensing Duration j is: mod(j, L_SensingDurationEnable), where L_Sensing Duration Enable is the bit length of Sensing Duration Enable.
  • Sensing Duration within a Sensing Duration, (L_duration, such as 100ms, or a delay requirement PDB (packet delay budget), or a configured period value), according to the configured sensing period P reserve , for Sensing.
  • the slot boundary of the Sensing Duration (the first slot position or the last slot position) is specified by P_offset.
  • the slot range or time interval [(j-1)*L_duration+P_offset,j*L_duration+P_offset]
  • the slots for sensing are j*L_duration+P_offset-k*P reserve .
  • the high layer can configure the parameter Sensing Duration Enable, wherein the i-th bit is 1, indicating that the Sensing Duration corresponding to the i-th bit needs sensing, (otherwise, no sensing is required).
  • Sensing Duration Enable There is a corresponding relationship between Sensing Duration Enable and the mapping of Sensing Duration.
  • the first bit of Sensing Duration Enable starts from the first Senisng Duration in the SFN0 or DFN0 cycle, and is mapped one by one, if the length is not enough, it can be mapped cyclically.
  • the Sensing Duration Enable bit position corresponding to Sensing Duration j is: mod(j, L_Sensing Duration Enable), where L_Sensing Duration Enable is the bit length of Sensing Duration Enable.
  • FIG. 8 is a schematic diagram of sensing of multiple sensing time slots in a reference reference period provided by an embodiment of the present application.
  • the configuration or pre-configuration indicates a reference sensing period (P reference ), or a default value.
  • P reference reference sensing period
  • the sensing periods of other configurations overlap or align with at least the resources to be selected or reference resources in the P reference within a period of P reference .
  • the sensing time slot corresponding to the UE or where k>0.
  • k can be configured by bitmap, when the bitmap is 1, it means it is valid, and the position where the bitmap is 1 is the value of k.
  • FIG. 9 is a schematic diagram of sensing of multiple sensing time slots in another reference reference period provided by an embodiment of the present application.
  • the first slot of configuration Y is the 0th sensing period, and the configuration or pre-configuration indicates a reference sensing period (P reference ), or a default value.
  • P reference reference sensing period
  • other configured sensing periods overlap or align at least with the resources to be sensed in P reference within one period of P reference .
  • the sensing time slot corresponding to the UE or where k>0.
  • k can be configured by bitmap, when the bitmap is 1, it means it is valid, and the position where the bitmap is 1 is the value of k.
  • the enable condition of one sensing period may be indicated by the configuration Sensing Reference Period Enable. If configured by bitmap, 1 in the bitmap indicates that the current sensing cycle is enabled, that is, sensing is performed, thereby achieving the purpose of energy saving. There is a corresponding relationship between the mapping of SensingReferencePeriodEnable and ReferencePeriod. For example, the first bit of SensingReferencePeriodEnable starts from the first ReferencePeriod in the SFN0/DFN0 cycle, and is mapped one by one, if the length is not enough, it can be mapped cyclically.
  • the SensingReferencePeriodEnable bit position corresponding to ReferencePeriod_j is: mod(j, L_SensingReferencePeriodEnable), where L_SensingReferencePeriodEnable is the bit length of SensingReferencePeriodEnable.
  • the enabling of a sensing cycle can be determined by the SL DRX configuration.
  • a ReferencePeriod is only valid when SL DRX is on-duration, even if enabled.
  • a ReferencePeriod does not have sensing enabled, resulting in no sensing result in slot set Y, trigger resource reselection, or use an abnormal resource pool, or trigger pre-emption, re-evaluation, short-term sensing to solve the problem .
  • the above P reserve value, reference period length ReferencePeriod, and P_offset can be physical time ms, or a physical slot in the wireless frame structure, or a logical slot (such as a set of UL slots) composed of a certain transmission direction in the wireless frame structure. ), or a slot in the sidelink resource pool.
  • FIG. 10 is a schematic configuration diagram of still another sensing configuration parameter provided by an embodiment of the present application.
  • a configuration method of configuring multiple sets of sensing configuration parameters can be used as an improved solution.
  • the sensing duration L_duration and the sensing interval period P_duration as an example, configure or pre-configure the sensing interval period P_duration (the duration or the number of slots) of the Sensing Duration. If the Sensing Duration is greater than P_duration, 2 Sensing Duration parts are allowed overlapping, thereby reducing the delay.
  • multiple sets of sensing configuration parameters are configured or pre-configured, and additionally, a corresponding P_offset may be configured for some or all of the Sensing Durations. If P_offset is different, there can be multiple sets of sensing results within a SensingDuration range, thereby reducing the delay.
  • FIG. 12 is a schematic configuration diagram of still another sensing configuration parameter provided by an embodiment of the present application.
  • the SensingDuration can be greater than the PDB, such as 200ms, but two sets are configured, and the offset of the second set is 100ms.
  • the 100ms PDB requirement can also be met, but the number of sensings for a periodic sensing occasion is increased, which improves reliability.
  • multiple sets of partial sensing parameters are configured or pre-configured, and additionally, a corresponding P_offset may be configured for some or all of the reference sensing periods Preference. If P_offset is different, there can be multiple sets of sensing results within a reference sensing period Preference, thereby reducing the delay.
  • the above-mentioned set of resources to be sensed, Y slots, is not necessarily continuous, and is determined by the UE implementation; the above-mentioned P reserve value, Sensing Duration length L_Sensing Duration, and P_offset can be physical time ms, or physical slot in the wireless frame structure, or It can be a logical slot (such as a set of UL slots) composed of a certain transmission direction in the radio frame structure, or a slot in the SideLink resource pool.
  • resource conflicts cannot be avoided by predicting the transmission resource location of the next cycle, but the retransmission resource location can be obtained by receiving SCI, thereby avoiding conflict with other resources.
  • the UE retransmits the conflict of resource locations.
  • FIG. 13 is a schematic diagram of determining a resource to be selected according to an embodiment of the present application.
  • a higher layer such as a medium access control (Medium Access Control, MAC) layer instructs the physical layer to start full sensing, and full sensing refers to sensing all the slots in the resource pool.
  • MAC Medium Access Control
  • sensing is still performed for the slot indicated by DRX as off duration.
  • the upper layer (such as the MAC layer) instructs the physical layer to stop full sensing.
  • the higher layer (such as the MAC layer) instructs the physical layer to stop full sensing.
  • the higher layer (such as Y slots, or y resource blocks) , and report the evaluation results to the senior management.
  • the upper layer eg, the MAC layer
  • the physical layer instructs the physical layer to report the sensing result. Implicitly instructs the physical layer to stop full sensing.
  • FIG. 14 is a structural block diagram of a communication apparatus provided by an embodiment of the present application. This embodiment is applied to the first communication node. As shown in FIG. 14 , this embodiment includes: a receiver 310 and a sensor 320 .
  • the receiver 310 is configured to preconfigure or receive the sensing configuration parameters configured by the second communication node; the sensor 320 is configured to sense resources to be sensed corresponding to the sensing period in at least one sensing interval according to the sensing configuration parameters; the sensing period
  • the corresponding resources to be sensed at least include: a reference resource in the resource pool; resources obtained by offsetting one or more times of a reference resource in the resource pool according to the sensing period.
  • the reference resource is a resource to be selected in a resource pool; or a reference resource whose location is determined by a sensing resource according to its corresponding sensing period.
  • sensing the resources to be sensed corresponding to the sensing period in at least one sensing interval according to sensing configuration parameters, including:
  • resource reselection trigger instruction In the case of receiving a resource selection trigger instruction, resource reselection trigger instruction, high-level instruction or part of the sensing function enabled, sense the sensing resources corresponding to the sensing period in at least one sensing interval according to the sensing configuration parameters, and obtain the selection to be selected. The perceived result of the resource.
  • the sensing configuration parameter includes: sensing duration of the sensing interval.
  • the sensing interval is a resource area corresponding to the duration of each sensing interval starting from the subframe number SFN0, the direct frame number DFN0, or the first time slot in the resource pool.
  • the sensing configuration parameter further includes: a sensing interval period; wherein the sensing duration is the same as the sensing interval period.
  • the sensing configuration parameter further includes: an offset value of the sensing interval relative to SFN0 or DFN0; or an offset value of the sensing period relative to SFN0 or DFN0.
  • the sensing interval is a resource region corresponding to the duration of each sensing interval starting from the time slot indicated by the offset value of the sensing interval relative to SFN0 or DFN0.
  • the sensing interval is a resource region corresponding to the duration of each sensing interval starting from the time slot indicated by the offset value of the sensing period relative to SFN0 or DFN0.
  • the sensing configuration parameter further includes at least one of the following: a sensing period of the resource to be selected; and the sensing times in each sensing period in a sensing duration.
  • the number of sensing times in each sensing period in a sensing interval includes at least one of the following: a configuration parameter indication; a predefined value; a value determined by a priority; a value of dividing the sensing duration of the sensing interval by the sensing period to the value.
  • the sensing configuration parameter further includes: a reference sensing period.
  • the sensing interval is a resource area corresponding to the duration of a reference sensing period.
  • the reference resource positions of sensing resources corresponding to any two sensing periods overlap in at least one time slot.
  • At least one of the sensing resources corresponding to all sensing periods has the same reference resource.
  • the periodic sensing time slots corresponding to all sensing periods are aligned at the end of the sensing interval.
  • a sensed time slot in a sensing interval is related to a time slot boundary of a sensing interval, a sensing period value, and the number of sensing times in a sensing interval corresponding to the sensing period value.
  • the number of sensing times in each sensing period in a sensing interval includes at least one of the following: a configuration parameter indication; a predefined value; a value determined by a priority; a value of dividing the sensing duration of the sensing interval by the sensing period to the value.
  • other configured sensing periods overlap or align at least with the resources to be sensed corresponding to the reference sensing period within one reference sensing period.
  • the sensing configuration parameters include: a sensing duration and a sensing interval period of each sensing interval in the sensing window; wherein, the sensing duration is different from the sensing interval period.
  • the sensing configuration parameter further includes: an offset value relative to SFN0 or DFN0.
  • the sensing configuration parameter further includes: an enabling indication of side-link discontinuous reception SLDRX.
  • the sensing duration is valid within the receiving valid duration corresponding to DRX.
  • the units of the sensing duration, the reference sensing period, the sensing period, the sensing interval period, and the offset value all include one of the following units: physical time slot slot; time slot slot in the resource pool, milliseconds ms.
  • the configured period value corresponding to the sensing period is indicated by at least one of the following:
  • the period value used for sending in the configured resource pool ; the period value used for sensing in the configured resource pool.
  • the sensing period includes at least one of the following:
  • the sensing interval period is the repetition duration of the sensing interval in the time domain.
  • the communication apparatus provided in this embodiment is set to implement the communication method of the embodiment shown in FIG. 1 , and the implementation principle and technical effect of the communication apparatus provided in this embodiment are similar, and details are not repeated here.
  • FIG. 15 is a structural block diagram of another communication apparatus provided by an embodiment of the present application. This embodiment is applied to the first communication node. As shown in FIG. 15 , this embodiment includes: a configurator 410 and a transmitter 420.
  • the configurator 410 is configured to configure the sensing configuration parameters; the transmitter 420 is configured to send the sensing configuration parameters to the first communication node; the sensing configuration parameters are used to make the first communication node at least in one sensing interval, the corresponding sensing period. Sensing resources to perceive.
  • the sensing configuration parameter includes one of the following: the duration of the sensing interval; the reference sensing period; the sensing period; the sensing interval period; the sensing times in each sensing period; Offset value; the offset value of the sensing period relative to SFN0 or DFN0.
  • the communication apparatus provided in this embodiment is set to implement the communication method of the embodiment shown in FIG. 2 , and the implementation principle and technical effect of the communication apparatus provided in this embodiment are similar, and details are not repeated here.
  • FIG. 16 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the device provided by this application includes: a processor 510 , a memory 520 and a communication module 530 .
  • the number of processors 510 in the device may be one or more, and one processor 510 is taken as an example in FIG. 16 .
  • the number of memories 520 in the device may be one or more, and one memory 520 is taken as an example in FIG. 16 .
  • the processor 510, the memory 520, and the communication module 530 of the device may be connected by a bus or in other ways, and the connection by a bus is taken as an example in FIG. 16 .
  • the device may be a terminal side (eg, user equipment).
  • the memory 520 may be configured to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the device in any embodiment of the present application (for example, the receiver 310 and the receiver 310 in the communication device). sensor 320).
  • the memory 520 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the device, and the like.
  • memory 520 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • memory 520 may further include memory located remotely from processor 510, which may be connected to the device through a network.
  • networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the communication module 530 is configured to communicate and interact with other synchronization nodes.
  • the device provided above may be configured to execute the communication method provided in any of the above embodiments and applied to the first communication node, and has corresponding functions and effects.
  • the device provided above may be configured to execute the communication method provided in any of the above embodiments and applied to the second communication node, and has corresponding functions and effects.
  • Embodiments of the present application further provide a storage medium containing computer-executable instructions, and the computer-executable instructions, when executed by a computer processor, are used to execute a communication method applied to a first communication node, the method comprising: receiving a second The sensing configuration parameters configured or preconfigured by the communication node; according to the sensing configuration parameters, the sensing resources corresponding to the sensing period are sensed within at least one sensing interval; the sensing resources corresponding to the sensing period at least include: A reference resource; a resource obtained by offsetting a reference resource in the resource pool one or more times according to the sensing period.
  • Embodiments of the present application further provide a storage medium containing computer-executable instructions, where the computer-executable instructions, when executed by a computer processor, are used to execute a communication method applied to a second communication node, the method comprising: a configuration-aware configuration parameters; sending the sensing configuration parameters to the first communication node; the sensing configuration parameters are used to enable the first communication node to sense resources to be sensed corresponding to the sensing period at least within one sensing interval.
  • user equipment encompasses any suitable type of wireless user equipment, such as mobile telephones, portable data processing devices, portable web browsers or vehicle mounted mobile stations.
  • the various embodiments of the present application may be implemented in hardware or special purpose circuits, software, logic, or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor or other computing device, although the application is not limited thereto.
  • Embodiments of the present application may be implemented by the execution of computer program instructions by a data processor of a mobile device, eg in a processor entity, or by hardware, or by a combination of software and hardware.
  • Computer program instructions may be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-dependent instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages source or object code.
  • ISA Instruction Set Architecture
  • the block diagrams of any logic flow in the figures of the present application may represent program steps, or may represent interconnected logic circuits, modules and functions, or may represent a combination of program steps and logic circuits, modules and functions.
  • Computer programs can be stored on memory.
  • the memory may be of any type suitable for the local technical environment and may be implemented using any suitable data storage technology, such as, but not limited to, Read-Only Memory (ROM), Random Access Memory (RAM), optical Memory devices and systems (Digital Video Disc (DVD) or Compact Disk (CD)), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor may be of any type suitable for the local technical environment, such as, but not limited to, a general purpose computer, a special purpose computer, a microprocessor, a Digital Signal Processing (DSP), an Application Specific Integrated Circuit (ASIC) ), programmable logic devices (Field-Programmable Gate Array, FPGA) and processors based on multi-core processor architecture.
  • a general purpose computer such as, but not limited to, a general purpose computer, a special purpose computer, a microprocessor, a Digital Signal Processing (DSP), an Application Specific Integrated Circuit (ASIC) ), programmable logic devices (Field-Programmable Gate Array, FPGA) and processors based on multi-core processor architecture.
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文公开一种通信方法、设备和存储介质。该通信方法包括:预配置或接收第二通信节点配置的感知配置参数;按照所述感知配置参数至少在一个感知区间内对感知周期所对应的待感知资源进行感知;所述感知周期所对应的待感知资源至少包括以下之一:资源池内一个参考资源;按照感知周期对资源池内的一个参考资源进行一次或多次偏移后的资源。

Description

通信方法、设备和存储介质 技术领域
本申请涉及通信领域,例如涉及一种通信方法、设备和存储介质。
背景技术
对于新空口(New Radio,NR)V2X,在一个资源池内,可以允许多个周期性业务的发送,甚至允许非周期业务的发送。在此种场景下,用户设备(User Equipment,UE)需要对多个周期性业务都进行感知(sensing),才能尽可能地避免与其他UE资源的冲突。因此,如何满足对多个周期性业务的sensing,以及能够满足节能要求,是一个亟待解决的问题。
发明内容
本申请实施例提供一种通信方法、设备和存储介质,在实现了对多个周期性业务进行感知的基础上,达到了节能的目的。
本申请实施例提供一种通信方法,应用于第一通信节点,包括:
预配置或接收第二通信节点配置的感知配置参数;
按照所述感知配置参数至少在一个感知区间内对感知周期所对应的待感知资源进行感知;
所述感知周期所对应的待感知资源至少包括:资源池内一个参考资源;按照感知周期对资源池内的一个参考资源进行一次或多次偏移后的资源。
本申请实施例提供一种通信方法,应用于第二通信节点,包括:
配置感知配置参数;
将所述感知配置参数发送至第一通信节点;所述感知配置参数用于使第一通信节点至少在一个感知区间内对感知周期所对应的待感知资源进行感知。
本申请实施例提供一种通信装置,应用于第一通信节点,包括:
接收器,配置为预配置或接收第二通信节点配置的感知配置参数;
感知器,配置为按照所述感知配置参数至少在一个感知区间内对感知周期所对应的待感知资源进行感知;
所述感知周期所对应的待感知资源至少包括:资源池内一个参考资源;按 照感知周期对资源池内的一个参考资源进行一次或多次偏移后的资源。
本申请实施例提供一种通信装置,应用于第二通信节点,包括:
配置器,配置为配置感知配置参数;
发送器,配置为将所述感知配置参数发送至第一通信节点;所述感知配置参数用于使第一通信节点至少在一个感知区间内对感知周期所对应的待感知资源进行感知。
本申请实施例提供一种通信设备,包括:通信模块,存储器,以及一个或多个处理器;
所述通信模块,配置为在各个通信节点之间进行通信交互;
所述存储器,配置为存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述任一实施例所述的通信方法。
本申请实施例提供一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述任一实施例所述的通信方法。
附图说明
图1是本申请实施例提供的一种通信方法的流程图;
图2是本申请实施例提供的另一种通信方法的流程图;
图3是本申请实施例提供的一种待感知资源的位置示意图;
图4是本申请实施例提供的一种感知配置参数的配置示意图;
图5是本申请实施例提供的另一种感知配置参数的配置示意图;
图6是本申请实施例提供的又一种感知配置参数的配置示意图;
图7是本申请实施例提供的一种被两个感知周期进行感知的示意图;
图8是本申请实施例提供的一种基准参考周期内多个感知时隙的感知示意图;
图9是本申请实施例提供的另一种基准参考周期内多个感知时隙的感知示意图;
图10是本申请实施例提供的再一种感知配置参数的配置示意图;
图11是本申请实施例提供的再一种感知配置参数的配置示意图;
图12是本申请实施例提供的再一种感知配置参数的配置示意图;
图13是本申请实施例提供的一种确定待选择资源的示意图;
图14是本申请实施例提供的一种通信装置的结构框图;
图15是本申请实施例提供的另一种通信装置的结构框图;
图16是本申请实施例提供的一种通信设备的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行说明。以下结合实施例附图对本申请进行描述,所举实例仅用于解释本申请。
车对外界的信息交换(Vehicle to everything,V2X)通信、旁链路(SideLink,SL)通信、UE与UE直接通信(D2D)中,UE在共享使用一个资源池、载波或带宽部分(BandWidth Part,BWP)时,需要通过sensing获得可用资源或可用资源集合。而对于功耗敏感的UE,如手持终端,可穿戴设备,pedestrian UE(P-UE),需要考虑节能方案。在原来长期演进((Long Term Evolution,LTE)V2X(LTE-V)系统中,P-UE仅假设当前载波池内存在周期性业务,且业务周期为100ms的整数倍。因此,LTE-V的部分感知(partial sensing)方案是从以100ms为间隔的候选感知间隙(candidate sensing gap)中,选择部分candidate sensing gap进行sensing。其中candidate sensing gap的使能sensing由高层参数通过比特位(bitmap)方式配置,并且配置了Candidate sensing gap内的允许的最小sensing slot数量。此方式下,除了高层配置的bitmap为0对应的candidate sensing gap外,UE按照100ms的周期对需要sensing的slot进行sensing即可。
对于NR V2X,在一个资源池内,可能允许多个周期性业务发送,甚至允许非周期业务的发送。此种场景下,UE需要对多个周期性业务都进行sensing,才能尽可能地避免与其他UE资源的冲突,即LTE-V的partial sensing方案不再适用。因此,一个需要亟待解决的问题是增强partial sensing方案,以满足对多个周期性业务的sensing,并能够满足节能要求。
有鉴于此,本申请实施例提供一种通信方法,在实现了对多个周期性业务进行感知的基础上,达到了节能的目的。
在一实施例中,图1是本申请实施例提供的一种通信方法的流程图。本实施例可以由第一通信节点执行。其中,第一通信节点可以为终端侧(比如,用户设备)。如图1所示,本实施例包括:S110和S120。
S110、预配置或接收第二通信节点配置的感知配置参数。
S120、按照感知配置参数至少在一个感知区间内对感知周期所对应的待感知资源进行感知。
感知周期所对应的待感知资源至少包括:资源池内一个参考资源;按照感知周期对资源池内的一个参考资源进行一次或多次偏移后的资源。
在实施例中,第一通信节点在接收到第二通信节点配置的感知配置参数之后,或者,第一通信节点预配置感知配置参数之后,第一通信节点可以通过部分感知的方式进行资源选择或资源重选,然后利用选择或重选的资源进行数据传输。当然,第一通信节点至少在一个感知区间内按照感知配置参数对感知周期所对应的待感知资源进行感知。其中,感知配置参数,指的是第二通信节点对第一通信节点配置的感知时间,即需要进行资源感知的区域。
在实施例中,感知周期所对应的待感知资源可以包括:资源池内的一个参考资源,以及按照感知周期对资源池内的一个参考资源进行一次或多次偏移后的资源。在实施例中,感知周期所对应的待感知资源可以为资源池内的一个参考资源;也可以为按照感知周期对资源池内的一个参考资源进行一次或多次偏移后得到的资源。
在一实施例中,参考资源为一个资源池内的待选择资源;或一个感知资源按照其对应的感知周期确定其位置的参考资源。在实施例中,待感知资源,指的是需要做感知操作所对应时隙上的资源;待选择资源指的是对待感知资源进行感知之后,推测是否可用的资源。
在一实施例中,按照感知配置参数至少在一个感知区间内对感知周期所对应的待感知资源进行感知,包括:在接收到资源选择触发指令、资源重选触发指令、高层指示或部分感知功能使能的情况下,按照感知配置参数至少在一个感知区间内对感知周期所对应的感知资源进行感知,获得对待选择资源的感知结果。在实施例中,在第一通信节点被配置允许使用部分感知功能,或者当前资源池允许使用部分感知功能,或者接收到资源选择触发指令,或者资源重选触发指令,或者高层指示进行资源重选或选择,或者部分感知功能使能的情况下,第一通信节点至少在一个感知区间内按照感知配置参数对感知周期所对应的感知资源进行感知,以确定待选择资源的可用性。
在一实施例中,感知配置参数,包括:感知区间的感知持续时长。在实施例中,在一个资源池内可以配置多个感知区间,并对每个感知区间配置感知持续时长,即感知区间的感知持续时长指的是感知区间的总时长。在实际操作过程中,感知持续时长的单位可以为物理时隙、资源池内时隙(即逻辑时隙)或ms。
在一实施例中,感知区间为从子帧号(Sub-Frame Number0,SFN0)、或直接帧号(Direct-Frame Number0,DFN0),或资源池内第一个时隙开始,每个感知区间的持续时长所对应的资源区域。
在一实施例中,感知配置参数,还包括:感知区间周期;其中,感知持续时长与感知区间周期的时长相同。在实施例中,在一个资源池内可以配置多个感知区间周期。感知持续时长可以与感知区间周期的时长相同。感知区间周期的单位可以为物理时隙;资源池内时隙,毫秒ms。
在一实施例中,感知配置参数,还包括:感知区间相对于SFN0或DFN0的偏移值;或感知周期相对于SFN0或DFN0的偏移值。
在一实施例中,感知区间为从感知区间相对于SFN0或DFN0的偏移值指示的时隙开始,每个感知区间的持续时长所对应的资源区域。
在一实施例中,感知区间为从感知周期相对于SFN0或DFN0的偏移值指示的时隙开始,每个感知区间的持续时长所对应资源区域。在实施例中,感知区间可以为从感知区间相对于SFN0或DFN0的偏移值指示的时隙开始,每个感知区间的持续时长所对应的资源区域,也可以为感知周期相对于SFN0或DFN0的偏移值指示的时隙开始,每个感知区间的持续时长所对应资源区域。
在一实施例中,感知配置参数,还包括以下至少之一:待选择资源的感知周期;一个感知持续时长中每个感知周期内的感知次数。
在一实施例中,一个感知区间中每个感知周期内的感知次数,包括以下至少之一:配置参数指示;预定义数值;优先级确定的数值;感知区间的感知持续时长除以感知周期值得到的值。
在一实施例中,感知配置参数,还包括:基准感知周期。
在一实施例中,感知区间为一个基准感知周期的时长所对应的一个资源区域。在实施例中,感知区间还可以为一个基准感知周期的时长所对应的一个资源区域。
在一实施例中,在一个感知区间内,对于配置的感知周期,任意两个感知周期所对应的感知资源的参考资源位置至少在一个时隙上存在重叠。
在一实施例中,在一个感知区间内,对于配置的感知周期,所有感知周期所对应的感知资源中至少有一个相同的参考资源。
在一实施例中,在一个感知区间内,所有感知周期所对应的周期性感知时隙在感知区间的末尾对齐。
在一实施例中,一个感知区间内的被感知时隙与一个感知区间的时隙边界、感知周期值以及感知周期值对应的在一个感知区间内的感知次数有关。
在一实施例中,对于一个基准感知周期所对应的待感知资源集合,其它配置的感知周期在一个基准感知周期内至少与基准感知周期所对应的待感知资源 重叠或对齐。
在一实施例中,感知配置参数,包括:感知窗中每个感知区间的感知持续时长和感知区间周期;其中,感知持续时长与感知区间周期的时长不相同。
在一实施例中,感知配置参数,还包括:相对于SFN0或DFN0的偏移值。
在一实施例中,感知配置参数,还包括:旁链路非连续接收(SideLink Discontinuous Reception,SL DRX)的使能指示。
在一实施例中,在SL DRX使能的情况下,感知持续时长在DRX所对应的接收有效时长内有效。
在一实施例中,感知持续时长、基准感知周期、感知周期,感知区间周期,以及偏移值的单位均包括下述之一:物理时隙;资源池内时隙,毫秒(ms)。
在一实施例中,感知周期对应的配置的周期值由以下至少之一指示:
配置的资源池内用于发送的周期值;配置的资源池内用于感知的周期值。
在一实施例中,感知周期包括以下至少之一:
配置的周期值所对应的时长;配置的周期值所对应的物理时隙slot数;配置的周期值所对应折算的属于资源池内的时隙slot数量。
在一实施例中,感知区间周期为感知区间在时域上的重复时长。
在一实施例中,图2是本申请实施例提供的另一种通信方法的流程图。本实施例应用于第二通信节点。示例性地,第二通信节点可以为基站。如图2所示,本实施例中的通信方法包括:S210-S220。
S210、配置感知配置参数。
S220、将感知配置参数发送至第一通信节点;感知配置参数用于使第一通信节点至少在一个感知区间内对感知周期所对应的待感知资源进行感知。
在一实施例中,感知配置参数,包括下述之一:感知区间的持续时长;基准感知周期;感知周期;感知区间周期;每个感知周期内的感知次数;感知区间相对于SFN0或DFN0的偏移值;感知周期相对于SFN0或DFN0的偏移值。
在一实施例中,感知配置参数,包括:感知区间的感知持续时长。在实施例中,在一个资源池内可以配置多个感知区间,并对每个感知区间配置感知持续时长,即感知区间的感知持续时长指的是感知区间的总时长。在实际操作过程中,感知持续时长的单位可以为物理时隙、资源池内时隙(即逻辑时隙)或ms。
在一实施例中,感知区间为从SFN0、或直接帧号DFN0,或资源池内第一 个时隙开始,每个感知区间的持续时长所对应的资源区域。
在一实施例中,感知配置参数,还包括:感知区间周期;其中,感知持续时长与感知区间周期的时长相同。在实施例中,在一个资源池内可以配置多个感知区间周期。感知持续时长可以与感知区间周期的时长相同。感知区间周期的单位可以为物理时隙;资源池内时隙,毫秒ms。
在一实施例中,感知配置参数,还包括:感知区间相对于SFN0或DFN0的偏移值;或感知周期相对于SFN0或DFN0的偏移值。
在一实施例中,感知区间为从感知区间相对于SFN0或DFN0的偏移值指示的时隙开始,每个感知区间的持续时长所对应的资源区域。
在一实施例中,感知区间为从感知周期相对于SFN0或DFN0的偏移值指示的时隙开始,每个感知区间的持续时长所对应资源区域。
在一实施例中,感知配置参数,还包括以下至少之一:感知周期;一个感知持续时长中每个感知周期内的感知次数。
在一实施例中,一个感知区间中每个感知周期内的感知次数,包括以下至少之一:配置参数指示;预定义数值;优先级确定的数值;感知区间的感知持续时长除以感知周期值得到的值。
在一实施例中,感知配置参数,还包括:基准感知周期。
在一实施例中,感知区间为一个基准感知周期的时长所对应的一个资源区域。
在一实施例中,在一个感知区间内,对于配置的感知周期,任意两个感知周期所对应的感知资源的参考资源位置至少在一个时隙上存在重叠。
在一实施例中,在一个感知区间内,对于配置的感知周期,所有感知周期所对应的感知资源中至少有一个相同的参考资源。
在一实施例中,在一个感知区间内,所有感知周期所对应的周期性感知时隙在感知区间的末尾对齐。
在一实施例中,一个感知区间内的被感知时隙与一个感知区间的时隙边界、感知周期值以及感知周期值对应的在一个感知区间内的感知次数有关。
在一实施例中,对于一个基准感知周期所对应的待感知资源集合,其它配置的感知周期在一个基准感知周期内至少与基准感知周期所对应的待感知资源重叠或对齐。
在一实施例中,感知配置参数,包括:感知窗中每个感知区间的感知持续时长和感知区间周期;其中,感知持续时长与感知区间周期的时长不相同。
在一实施例中,感知配置参数,还包括:相对于SFN0或DFN0的偏移值。
在一实施例中,感知配置参数,还包括:SL DRX的使能指示。
在一实施例中,在SL DRX使能的情况下,感知持续时长在DRX所对应的接收有效时长内有效。
在一实施例中,感知持续时长、感知周期,感知区间周期,以及偏移值的单位均包括下述之一:物理时隙;资源池内时隙,毫秒(ms)。
在一实施例中,感知周期对应的配置的周期值由以下至少之一指示:
配置的资源池内用于发送的周期值;配置的资源池内用于感知的周期值。
在一实施例中,感知周期包括以下至少之一:
配置的周期值所对应的时长;配置的周期值所对应的物理时隙slot数;配置的周期值所对应折算的属于资源池内的时隙slot数量。
在一实施例中,感知区间周期为感知区间在时域上的重复时长。
在实施例中,对感知配置参数的解释见上述实施例中的描述,在此不再赘述。
在一实施例中,图3是本申请实施例提供的一种待感知资源的位置示意图。本实施例以感知持续时长为物理时间(比如,物理时隙,或者物理毫秒ms)为例,对待感知资源的位置确定过程进行说明。如图3所示,为了保证在Y个slot中的候选资源,被多个P reserve值为周期进行感知,即多个P reserve值感知过的物理时隙(候选资源所在的slot,或参考资源所在的slot)是重叠的。图3可以看做是一个感知持续时长内,或者一个基准感知周期内,各个周期值确定的待感知资源所对应待感知时隙的位置。其中,待感知时隙为
Figure PCTCN2022084088-appb-000001
其中,P’ reserve指的是在资源池内时隙上计数的周期值。
在图3中,感知窗为slot t n之前配置的一个时间窗或逻辑slot数量,或者待选择资源(candidate resource)Y之前配置的一个时间窗;
资源选择窗为slot t n之后的,满足包延迟预算(Packet Delay Budget,PDB)要求的时间窗,或为包含candidate resource Y的时间窗。
图4是本申请实施例提供的一种感知配置参数的配置示意图。本实施例以第一通信节点为UE,以及感知配置参数包括:感知区间(Sensing Duration)的感知持续时长(L_duration)和感知区间周期为例,对感知配置参数的配置进行说明。其中,感知持续时长和感知区间周期的单位为ms。如图4所示,对UE配置、预配置或预设感知持续时长,其slot数量为L_duration,可选地,配置或 预配置Sensing Duration的感知区间周期P_duration(ms)。其中,感知持续时长L_duration与感知区间周期P_duration的时长相同。
图5是本申请实施例提供的另一种感知配置参数的配置示意图。本实施例以第一通信节点为UE,以及感知配置参数包括:感知区间的感知持续时长、感知区间周期,以及感知区间相对于SFN0或DFN0的偏移值;或者,感知区间的感知持续时长、感知区间周期,以及感知周期相对于SFN0或DFN0的偏移值为例,对感知配置参数的配置进行说明。其中,感知持续时长、感知区间周期以及偏移值的单位为ms。如图5所示,对UE配置、预配置或预设感知区间的感知持续时长、感知区间周期,以及感知区间相对于SFN0或DFN0的偏移值P_offset。当然,在感知持续时长与感知区间周期P_duration的时长相同的情况下,图5也指的是对UE配置、预配置或预设感知区间的感知持续时长、感知区间周期,以及感知周期相对于SFN0或DFN0的偏移值。
图6是本申请实施例提供的又一种感知配置参数的配置示意图。本实施例以第一通信节点为UE,以及感知配置参数包括:感知周期;一个感知持续时长中每个感知周期内的感知次数为例,对感知配置参数的配置进行说明。如图6所示,在一个资源池内,配置或预配置待感知资源的感知周期P reserve_list,以及配置或预配置一个感知持续时长内每个感知周期内的感知次数,记为k_Max_values。例如,配置一个感知持续时长内所有感知周期内的感知次数为1;又如,配置感知周期P reserve1内的感知次数为1,配置感知周期P reserve2内的感知次数为2……;或者,预定义感知次数,比如,默认所有感知周期的感知次数为1;感知周期P reserve1的感知次数=floor(L_duration/P reserve1);或通过bitmap方式指示哪几个occasion被感知过。
例如,以slot y为参考点,在一个感知持续时长内(L_duration=100ms),即slot[t y-100,t y]范围内,感知的时隙为
Figure PCTCN2022084088-appb-000002
如图6所示。
在一实施例中,一个所述感知区间内的被感知时隙与一个所述感知区间的时隙边界、感知周期值以及感知周期值对应的在一个所述感知区间内的感知次数有关。为了保证Y个可能的待选择资源所在的时隙在一个感知区间内是被多个P reserve values感知过,需要满足:
Figure PCTCN2022084088-appb-000003
被感知过。其中,
Figure PCTCN2022084088-appb-000004
为一个感知区间的时隙边界(如最后一个slot,或第一个slot),或为sloty,其中slot y可以配置。P reserve i为第i个感知周期值;k为第i个感知周期值对应的在一个Sensing Duration内的sensing次数或sensing occasion,记为 k_Max_values,可以由配置指示,或根据计算得到。
UE根据感知区间内的sensing结果,评估期望被感知时隙所对应待选择资源的资源可用性。
在实施例中,感知持续时长的使能可以由配置感知持续时长使能指示。如由bitmap配置,bitmap中为1的表示当前感知区间使能,即进行sensing。
在实施例中,一个感知区间的使能情况可以由SL DRX配置决定。一个感知区间仅在SL DRX on-duration时有效,即使能。
在实施例中,如果某个Sensing Duration由于没有使能sensing,导致slot set Y没有sensing结果,则触发资源重选,或使用异常资源池,或触发pre-emption、re-evaluation、short-term sensing来解决。
图3-图6以物理时间或物理时隙为例,对感知配置参数的配置过程进行说明。
在一实施例中,本实施例以感知持续时长为逻辑时间(比如,逻辑时隙)为例,对待感知资源的位置确定过程进行说明。如图3所示,为了保证在Y个slot中的候选资源,被多个P reserve值为周期进行感知(在资源池内逻辑时隙上的计数进行折算,记为P’ reserve),即多个P reserve值感知过的物理时隙是重叠的。图3可以看做是一个感知持续时长内,或者一个基准感知周期内,各个周期值确定的待感知资源所对应待感知时隙的位置。其中,待感知时隙为
Figure PCTCN2022084088-appb-000005
其中,P’ reserve指的是在资源池内时隙上计数的周期值。
在图3中,感知窗为slot t n之前配置的一个时间窗或逻辑slot数量,或者待感知资源(candidate resource)Y之前配置的一个时间窗或逻辑时隙数量;
资源选择窗为slot t n之后的,满足PDB要求的时间窗,或为包含candidate resource Y的时间窗或逻辑时隙数量。
本实施例以第一通信节点为UE,以及感知配置参数包括:感知区间的感知持续时长和感知区间周期为例,对感知配置参数的配置进行说明。其中,感知持续时长和感知区间周期的单位为ms。如图4所示,对UE配置、预配置或预设感知持续时长,其slot数量为L_duration,可选地,配置或预配置感知区间的感知区间周期P_duration(slot数)。其中,感知持续时长与感知区间周期P_duration的时长相同。
本实施例以第一通信节点为UE,以及感知配置参数包括:感知区间的感知持续时长、感知区间周期,以及感知区间相对于SFN0或DFN0的偏移值;或者, 感知区间的感知持续时长、感知区间周期,以及感知周期相对于SFN0或DFN0的偏移值为例,对感知配置参数的配置进行说明。其中,感知持续时长、感知区间周期以及偏移值的单位为slot数。如图5所示,对UE配置、预配置或预设感知区间的感知持续时长、感知区间周期,以及感知区间相对于SFN0或DFN0的偏移值P_offset。当然,在感知持续时长与感知区间周期P_duration的时长相同的情况下,图5也指的是对UE配置、预配置或预设感知区间的感知持续时长、感知区间周期,以及感知周期相对于SFN0或DFN0的偏移值。
本实施例以第一通信节点为UE,以及感知配置参数包括:待选择资源的感知周期;一个感知持续时长中每个感知周期内的感知次数为例,对感知配置参数的配置进行说明。如图6所示,在一个资源池内,配置或预配置待选择资源的感知周期P reserve_list,以及配置或预配置一个感知持续时长内每个感知周期内的感知次数,记为k_Max_values。例如,配置一个感知持续时长内所有感知周期内的感知次数为1;又如,配置感知周期P reserve1内的感知次数为1,配置感知周期P reserve2内的感知次数为2……;或者,预定义感知次数,比如,默认所有感知周期的感知次数为1;感知周期P reserve1的感知次数=floor(L_duration/P reserve1);或通过bitmap方式指示哪几个occasion被感知过。
例如,以slot y为参考点,在一个感知持续时长内(L_duration=100ms),即slot[t y-100,t y]范围内,感知的时隙为
Figure PCTCN2022084088-appb-000006
如图6所示。
在一实施例中,一个所述感知区间内的被感知时隙与一个所述感知区间的时隙边界、感知周期值以及感知周期值对应的在一个所述感知区间内的感知次数有关。为了保证Y个期望被感知时隙在一个Sensing Duration内是被多个P reserve values sensed,需要满足:
Figure PCTCN2022084088-appb-000007
被sensing过。其中,P'duration指的是折算到资源池内的感知持续时长内的感知周期,
Figure PCTCN2022084088-appb-000008
为一个感知区间的逻辑时隙边界(如最后一个slot,或第一个slot),或为slot t' y,其中slot t’ y可以配置。P reserve i为第i个感知周期值;k为第i个感知周期值对应的在一个Sensing Duration内的sensing次数或sensing occasion,记为k_Max_values,可以由配置指示,或根据计算得到。
UE根据sensing Duration内的sensing结果,评估期望被感知时隙所对应待选择资源的资源可用性。
在一实施例中,图7是本申请实施例提供的一种被两个感知周期进行感知 的示意图。在一个Sensing Duration内(L_duration表示Sensing Duration的感知持续时长或slot数量,如100ms,或时延要求PDB,或配置的一个周期值),根据配置的sensing周期P reserve,对
Figure PCTCN2022084088-appb-000009
进行sensing。在第j个Sensing Duration内,slot范围或时间区间[(j-1)*L_duration,j*L_duration],其进行sensing的slots为j*L_duration-k*P reserve.E.g.:在[-100,0]范围内,sensing的slots为t^SL_y-k*P reserve。如图7所示,每个100ms,都有一组Y slots,同时被100ms和40ms的周期sensing过。在实施例中,在无法预知n时刻到来时,任意一个感知区间内都能保证有资源以sensing周期被sensing过。其中,P reserve可以为当前资源池所配置的支持的所有周期值,或配置为其子集,或配置的周期值。
在实施例中,为了进一步节能,高层可配置参数Sensing Duration Enable,其中第i位bit为1,表示第i位对应的Sensing Duration需要sensing,(否则,不需要sensing)。其中Sensing Duration Enable与Sensing Duration的映射存在对应关系,如Sensing Duration Enable的第一个bit自SFN0或DFN0循环周期内第一个Senisng Duration开始,一一映射,长度不够可以循环映射。如Sensing Duration j对应的Sensing Duration Enable bit位置为:mod(j,L_SensingDurationEnable),其中L_Sensing Duration Enable为Sensing Duration Enable的bit长度。
在一实施例中,在一个Sensing Duration内,(L_duration,如100ms,或时延要求PDB(packet delay budget),或配置的一个周期值),根据配置的sensing周期P reserve,对
Figure PCTCN2022084088-appb-000010
进行sensing。其中Sensing Duration的slot边界(第一个slot位置或最后一个slot位置)由P_offset指定。在第j个Sensing Duration内,slot范围或时间区间[(j-1)*L_duration+P_offset,j*L_duration+P_offset],其进行sensing的slots为j*L_duration+P_offset-k*P reserve
在实施例中,为了进一步节能,高层可配置参数Sensing Duration Enable,其中第i位bit为1,表示第i位对应的Sensing Duration需要sensing,(否则,不需要sensing)。其中Sensing Duration Enable与Sensing Duration的映射存在对应关系,如Sensing Duration Enable的第一个bit自SFN0或DFN0循环周期内第一个Senisng Duration开始,一一映射,长度不够可以循环映射。如Sensing Duration j对应的Sensing Duration Enable bit位置为:mod(j,L_Sensing Duration Enable),其中L_Sensing Duration Enable为Sensing Duration Enable的bit长度。
在一实施例中,对于一个基准感知周期所对应的待选择资源集合,其它配置的感知周期在一个基准感知周期内至少与基准感知周期所对应的待选择资源 重叠或对齐。示例性地,图8是本申请实施例提供的一种基准参考周期内多个感知时隙的感知示意图。配置Y的第一个slot之前为第1个感知周期,并且,配置或预配置指示一个基准感知周期(P reference),或默认值。对于一个P reference内的待选择资源集合(记为slot set Y),其他配置的sensing周期在一个周期P reference内至少与P reference内的待选择资源或参考资源重叠或对齐。
S1、确定基准感知周期P reference的感知时隙
Figure PCTCN2022084088-appb-000011
j>0。
S2、在基准感知周期内(比如,k×P others≤P reference),UE对应的感知时隙:
Figure PCTCN2022084088-appb-000012
Figure PCTCN2022084088-appb-000013
其中,k>0。
在实施例中,k可以由bitmap配置,bitmap为1时表示有效,bitmap为1的位置为k的值。k也可以由配置指定,如k=1,或[1,2]。k也可以由规则确定:k=1,2,...k_max;k_max=floor(P reference/P others),或由k_Max_values指示;其中,P others为P reserve_list中除了P reference之外的其他周期值。(k-1)是考虑一般假设P others<P reference。对于P others>P reference,可以假设P others是P reference的倍数,或者假设sensing时不用考虑。
在一实施例中,对于一个基准感知周期所对应的待感知资源集合,其它配置的感知周期在一个基准感知周期内至少与基准感知周期所对应的待感知资源重叠或对齐。示例性地,图9是本申请实施例提供的另一种基准参考周期内多个感知时隙的感知示意图。配置Y的第一个slot之前为第0个感知周期,并且,配置或预配置指示一个基准感知周期(P reference),或默认值。对于一个P reference内的待感知资源集合(记为slot set Y),其他配置的sensing周期在一个周期P reference内至少与P reference内的待感知资源重叠或对齐。
S1、确定基准感知周期P reference的感知时隙
Figure PCTCN2022084088-appb-000014
j>=0。
S2、在基准感知周期内(比如,k×P others≤P reference),UE对应的感知时隙:
Figure PCTCN2022084088-appb-000015
Figure PCTCN2022084088-appb-000016
其中,k>0。
在实施例中,k可以由bitmap配置,bitmap为1时表示有效,bitmap为1的位置为k的值。k也可以由配置指定,如k=1,或[1,2]。k也可以由规则确定:k=1,2,...k_max;k_max=floor(P reference/P others),或由k_Max_values指示;其中,P others为P reserve_list中除了P reference之外的其他周期值。(k-1)是考虑一般假设P others<P reference。对于P others>P reference,可以假设P others是P reference的倍数,或者假设 sensing时不用考虑。
在实施例中,一个sensing周期的使能情况可以由配置Sensing Reference Period Enable指示。如由bitmap配置,bitmap中为1的表示当前sensing周期使能,即进行sensing,从而达到了节能的目的。其中SensingReferencePeriodEnable与ReferencePeriod的映射存在对应关系,如SensingReferencePeriodEnable的第一个bit自SFN0/DFN0循环周期内第一个ReferencePeriod开始,一一映射,长度不够可以循环映射。如ReferencePeriod_j对应的SensingReferencePeriodEnable bit位置为:mod(j,L_SensingReferencePeriodEnable),其中L_SensingReferencePeriodEnable为SensingReferencePeriodEnable的bit长度。
可选地:一个sensing周期的使能情况可以由SL DRX配置决定。一个ReferencePeriod仅在SL DRX on-duration时有效,即使能。
可选地:如果某个ReferencePeriod由于没有使能sensing,导致slot set Y没有sensing结果,则触发资源重选,或使用异常资源池,或触发pre-emption、re-evaluation、short-term sensing来解决。
上述P reserve值、参考周期长度ReferencePeriod、P_offset,可以为物理时间ms,也可以为无线帧结构中的物理slot,也可以是无线帧结构中的某一传输方向组成的逻辑slot(如UL slots集合),或sidelink资源池内的slot。
在一实施例中,图10是本申请实施例提供的再一种感知配置参数的配置示意图。在实施例中,为了平衡时延和可靠性,可以通过配置多套感知配置参数的配置方式作为一个改进型方案。
如图10所示,配置感知持续时长L_duration和感知区间周期P_duration为例,配置或预配置Sensing Duration的感知区间周期P_duration(时长或slot数),如果Sensing Duration大于P_duration,则允许2个Sensing Duration部分重叠,从而可以减小时延。
配置或预配置Sensing Duration的周期P_duration(时长或slot数),配置或预配置Sensing Duration,其中,Sensing Duration大于P_duration,其中P_duration的大小决定可感知资源集合Set Y在时域的密度或周期。
在一实施例中,配置或预配置多套感知配置参数(partial sensing),额外地,可以给其中部分或全部Sensing Duration配置对应的P_offset。如果P_offset不同,在一个SensingDuration范围内可以有多组sensing结果,从而可以减小时延。
图11是本申请实施例提供的再一种感知配置参数的配置示意图。如图11所示,配置了2套partial sensing参数,分别对应的sensing slot集合为Y1,Y2,其中Y1+Y2=Y。
图12是本申请实施例提供的再一种感知配置参数的配置示意图。例如,SensingDuration可以大于PDB,如200ms,但配置2套,其中第2套的offset为100ms,结果也是可以满足100ms PDB要求,但一个periodic sensing occasion的sensing次数增加,提高了可靠性。如图12所示,上半部分与下半部分存在100ms的offset。
在一实施例中,配置或预配置多套partial sensing参数,额外地,可以给其中部分或全部基准感知周期Preference配置对应的P_offset。如果P_offset不同,在一个基准感知周期Preference范围内可以有多组sensing结果,从而可以减小时延。
如图11所示,配置了2套partial sensing参数,分别对应的sensing slot集合为Y1,Y2,其中Y1+Y2=Y。
上述的待感知资源集合Y slots不一定是连续的,由UE实现决定;上述P reserve值、Sensing Duration长度L_Sensing Duration、P_offset,可以为物理时间ms,也可以为无线帧结构中的物理slot,也可以是无线帧结构中的某一传输方向组成的逻辑slot(如UL slots集合),或SideLink资源池内的slot。
在一实施例中,对于非周期业务,由于数据传输没有周期性,因此无法通过预测下个周期的传输资源位置来避免资源冲突,但可以通过接收SCI,获知重传资源位置,从而避免与其他UE重传资源位置的冲突。
图13是本申请实施例提供的一种确定待选择资源的示意图。如图13所示,在n1时刻,高层(如媒体接入控制(Medium Access Control,MAC)层)指示物理层开始进行full sensing,full sensing是指对所述资源池内的所有slot都进行感知。可选地,full sensing过程中,对于DRX指示为off duration的slot仍然进行sensing感知。
在n2时刻,高层(如MAC层)指示物理层停止full sensing。可选地,根据slot区间[n1,n2]slot,或时间区间[n1,n2]ms的full sensing的感知情况,对高层指示的资源集合(如Y个slots,或y个资源块)进行评估,并上报评估结果给高层。
另一方法,在n2时刻,高层(如MAC层)指示物理层进行感知结果的上报。隐含指示物理层停止full sensing。
在一实施例中,图14是本申请实施例提供的一种通信装置的结构框图。本实施例应用于第一通信节点。如图14所示,本实施例包括:接收器310和感知器320。
接收器310,配置为预配置或接收第二通信节点配置的感知配置参数;感知 器320,配置为按照感知配置参数至少在一个感知区间内对感知周期所对应的待感知资源进行感知;感知周期所对应的待感知资源至少包括:资源池内一个参考资源;按照感知周期对资源池内的一个参考资源进行一次或多次偏移后的资源。
在一实施例中,参考资源为一个资源池内的待选择资源;或一个感知资源按照其对应的感知周期确定其位置的参考资源。
在一实施例中,按照感知配置参数至少在一个感知区间内对感知周期所对应的待感知资源进行感知,包括:
在接收到资源选择触发指令、资源重选触发指令、高层指示或部分感知功能使能的情况下,按照感知配置参数至少在一个感知区间内对感知周期所对应的感知资源进行感知,获得对待选择资源的感知结果。
在一实施例中,感知配置参数,包括:感知区间的感知持续时长。
在一实施例中,感知区间为从子帧号SFN0、或直接帧号DFN0,或资源池内第一个时隙开始,每个感知区间的持续时长所对应的资源区域。
在一实施例中,感知配置参数,还包括:感知区间周期;其中,感知持续时长与感知区间周期的时长相同。
在一实施例中,感知配置参数,还包括:感知区间相对于SFN0或DFN0的偏移值;或感知周期相对于SFN0或DFN0的偏移值。
在一实施例中,感知区间为从感知区间相对于SFN0或DFN0的偏移值指示的时隙开始,每个感知区间的持续时长所对应的资源区域。
在一实施例中,感知区间为从感知周期相对于SFN0或DFN0的偏移值指示的时隙开始,每个感知区间的持续时长所对应资源区域。
在一实施例中,感知配置参数,还包括以下至少之一:待选择资源的感知周期;一个感知持续时长中每个感知周期内的感知次数。
在一实施例中,一个感知区间中每个感知周期内的感知次数,包括以下至少之一:配置参数指示;预定义数值;优先级确定的数值;感知区间的感知持续时长除以感知周期值得到的值。
在一实施例中,感知配置参数,还包括:基准感知周期。
在一实施例中,感知区间为一个基准感知周期的时长所对应的一个资源区域。
在一实施例中,在一个感知区间内,对于配置的感知周期,任意两个感知周期所对应的感知资源的参考资源位置至少在一个时隙上存在重叠。
在一实施例中,在一个感知区间内,对于配置的感知周期,所有感知周期所对应的感知资源中至少有一个相同的参考资源。
在一实施例中,在一个感知区间内,所有感知周期所对应的周期性感知时隙在感知区间的末尾对齐。
在一实施例中,一个感知区间内的被感知时隙与一个感知区间的时隙边界、感知周期值以及感知周期值对应的在一个感知区间内的感知次数有关。
在一实施例中,一个感知区间中每个感知周期内的感知次数,包括以下至少之一:配置参数指示;预定义数值;优先级确定的数值;感知区间的感知持续时长除以感知周期值得到的值。
在一实施例中,对于一个基准感知周期所对应的待感知资源集合,其它配置的感知周期在一个基准感知周期内至少与基准感知周期所对应的待感知资源重叠或对齐。
在一实施例中,感知配置参数,包括:感知窗中每个感知区间的感知持续时长和感知区间周期;其中,感知持续时长与感知区间周期的时长不相同。
在一实施例中,感知配置参数,还包括:相对于SFN0或DFN0的偏移值。
在一实施例中,感知配置参数,还包括:旁链路非连续接收SL DRX的使能指示。
在一实施例中,在SL DRX使能的情况下,感知持续时长在DRX所对应的接收有效时长内有效。
在一实施例中,感知持续时长、基准感知周期、感知周期,感知区间周期,以及偏移值的单位均包括下述之一:物理时隙slot;资源池内时隙slot,毫秒ms。
在一实施例中,感知周期对应的配置的周期值由以下至少之一指示:
配置的资源池内用于发送的周期值;配置的资源池内用于感知的周期值。
在一实施例中,感知周期包括以下至少之一:
配置的周期值所对应的时长;配置的周期值所对应的物理时隙slot数;配置的周期值所对应折算的属于资源池内的时隙slot数量。
在一实施例中,感知区间周期为感知区间在时域上的重复时长。
本实施例提供的通信装置设置为实现图1所示实施例的通信方法,本实施例提供的通信装置实现原理和技术效果类似,此处不再赘述。
在一实施例中,图15是本申请实施例提供的另一种通信装置的结构框图。本实施例应用于第一通信节点。如图15所示,本实施例包括:配置器410和发 送器420。
配置器410,配置为配置感知配置参数;发送器420,配置为将感知配置参数发送至第一通信节点;感知配置参数用于使第一通信节点至少在一个感知区间内对感知周期所对应的感知资源进行感知。
在一实施例中,感知配置参数,包括下述之一:感知区间的持续时长;基准感知周期;感知周期;感知区间周期;每个感知周期内的感知次数;感知区间相对于SFN0或DFN0的偏移值;感知周期相对于SFN0或DFN0的偏移值。
本实施例提供的通信装置设置为实现图2所示实施例的通信方法,本实施例提供的通信装置实现原理和技术效果类似,此处不再赘述。
图16是本申请实施例提供的一种通信设备的结构示意图。如图16所示,本申请提供的设备,包括:处理器510、存储器520和通信模块530。该设备中处理器510的数量可以是一个或者多个,图16中以一个处理器510为例。该设备中存储器520的数量可以是一个或者多个,图16中以一个存储器520为例。该设备的处理器510、存储器520和通信模块530可以通过总线或者其他方式连接,图16中以通过总线连接为例。在该实施例中,该设备为可以为终端侧(比如,用户设备)。
存储器520作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请任意实施例的设备对应的程序指令/模块(例如,通信装置中的接收器310和感知器320)。存储器520可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等。此外,存储器520可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器520可进一步包括相对于处理器510远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
通信模块530,配置为用于与其它同步节点进行通信交互。
在通信设备为第一通信节点的情况下,上述提供的设备可设置为执行上述任意实施例提供的应用于第一通信节点的通信方法,具备相应的功能和效果。
在通信设备为第二通信节点的情况下,上述提供的设备可设置为执行上述任意实施例提供的应用于第二通信节点的通信方法,具备相应的功能和效果。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种应用于第一通信节点的通信方法, 该方法包括:接收第二通信节点配置或预配置的感知配置参数;按照所述感知配置参数至少在一个感知区间内对感知周期所对应的待感知资源进行感知;所述感知周期所对应的待感知资源至少包括:资源池内一个参考资源;按照感知周期对资源池内的一个参考资源进行一次或多次偏移后的资源。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种应用于第二通信节点的通信方法,该方法包括:配置感知配置参数;将所述感知配置参数发送至第一通信节点;所述感知配置参数用于使第一通信节点至少在一个感知区间内对感知周期所对应的待感知资源进行感知。
术语用户设备涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disk,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。

Claims (31)

  1. 一种通信方法,应用于第一通信节点,包括:
    预配置或接收第二通信节点配置的感知配置参数;
    按照所述感知配置参数在至少一个感知区间内对感知周期所对应的待感知资源进行感知;
    所述感知周期所对应的待感知资源至少包括以下之一:资源池内一个参考资源;按照感知周期对资源池内的一个参考资源进行至少一次偏移后的资源。
  2. 根据权利要求1所述的方法,其中,所述参考资源为一个资源池内的待选择资源;或一个感知资源按照所述一个感知资源对应的感知周期确定所述一个感知资源的位置的参考资源。
  3. 根据权利要求1所述的方法,其中,所述按照所述感知配置参数至少在一个感知区间内对感知周期所对应的待感知资源进行感知,包括:
    在接收到资源选择触发指令、资源重选触发指令、高层指示或部分感知功能使能的情况下,按照所述感知配置参数至少在一个感知区间内对感知周期所对应的待感知资源进行感知。
  4. 根据权利要求1所述的方法,其中,所述感知配置参数,包括:感知区间的感知持续时长。
  5. 根据权利要求1所述的方法,其中,所述至少一个感知区间为从子帧号SFN0、或直接帧号DFN0,或资源池内第一个时隙开始,每个感知区间的持续时长所对应的资源区域。
  6. 根据权利要求4所述的方法,其中,所述感知配置参数,还包括:感知区间周期;其中,所述感知持续时长与所述感知区间周期的时长相同。
  7. 根据权利要求1所述的方法,其中,所述感知配置参数,包括:感知区间相对于SFN0或DFN0的偏移值;或感知周期相对于SFN0或DFN0的偏移值。
  8. 根据权利要求7所述的方法,其中,所述至少一个感知区间为从感知区间相对于SFN0或DFN0的偏移值指示的时隙开始,每个感知区间的持续时长所对应的资源区域。
  9. 根据权利要求7所述的方法,其中,所述至少一个感知区间为从感知周期相对于SFN0或DFN0的偏移值指示的时隙开始,每个感知区间的持续时长所对应资源区域。
  10. 根据权利要求1所述的方法,其中,所述感知配置参数,包括以下至少之一:感知周期;一个感知持续时长中每个感知周期内的感知次数。
  11. 根据权利要求1所述的方法,其中,一个感知区间中每个感知周期内的感知次数,包括以下至少之一:配置参数指示;预定义数值;优先级确定的数值;感知区间的感知持续时长除以感知周期值得到的值。
  12. 根据权利要求1所述的方法,其中,所述感知配置参数,包括:基准感知周期。
  13. 根据权利要求1所述的方法,其中,所述感知区间为一个基准感知周期的时长所对应的一个资源区域。
  14. 根据权利要求4-13中任一项所述的方法,其中,在一个感知区间内,对于配置的感知周期,每两个感知周期所对应的感知资源的参考资源位置至少在一个时隙上存在重叠。
  15. 根据权利要求4-13中任一项所述的方法,其中,在一个感知区间内,对于配置的感知周期,所有感知周期所对应的感知资源中至少有一个相同的参考资源。
  16. 根据权利要求4-13中任一项所述的方法,其中,在一个感知区间内,所有感知周期所对应的周期性感知时隙在所述一个感知区间的末尾对齐。
  17. 根据权利要求4-13中任一项所述的方法,其中,一个感知区间内的被感知时隙与所述一个感知区间的时隙边界、感知周期值以及感知周期值对应的在所述一个感知区间内的感知次数有关。
  18. 根据权利要求12所述的方法,其中,对于一个基准感知周期所对应的待感知资源集合,其它配置的感知周期在所述一个基准感知周期内所对应的待感知资源至少与所述一个基准感知周期所对应的待感知资源重叠或对齐。
  19. 根据权利要求1所述的方法,其中,所述感知配置参数,包括:感知窗中每个感知区间的感知持续时长和感知区间周期;其中,所述感知持续时长与所述感知区间周期的时长不相同。
  20. 根据权利要求19所述的方法,其中,所示感知配置参数,包括两套或两套以上。
  21. 根据权利要求19所述的方法,其中,所述感知配置参数,还包括:相对于SFN0或DFN0的偏移值。
  22. 根据权利要求4、12或19所述的方法,其中,所述感知配置参数,还包括:旁链路非连续接收SL DRX的使能指示。
  23. 根据权利要求22所述的方法,其中,在所述SL DRX使能的情况下,所述感知持续时长在DRX所对应的接收有效时长内有效。
  24. 根据权利要求1、4、6、7、10、12、19或21所述的方法,其中,感知持续时长、基准感知周期、感知周期、感知区间周期,以及偏移值的单位均包括下述之一:物理时隙;资源池内时隙,毫秒。
  25. 根据权利要求1所述的方法,其中,所述感知周期对应的配置的周期值由以下至少之一指示:
    配置的资源池内用于发送的周期值;
    配置的资源池内用于感知的周期值。
  26. 根据权利要求1所述的方法,其中,所述感知周期包括以下至少之一:
    配置的周期值所对应的时长;
    配置的周期值所对应的物理时隙数;
    配置的周期值所对应折算的属于资源池内的时隙数量。
  27. 根据权利要求6或19所述的方法,其中,所述感知区间周期为感知区间在时域上的重复时长。
  28. 一种通信方法,应用于第二通信节点,包括:
    配置感知配置参数;
    将所述感知配置参数发送至第一通信节点;所述感知配置参数用于使所述第一通信节点在至少一个感知区间内对感知周期所对应的待感知资源进行感知。
  29. 根据权利要求28所述的方法,其中,所述感知配置参数,包括下述之一:感知区间的持续时长;基准感知周期;感知周期;感知区间周期;每个感知周期内的感知次数;感知区间相对于子帧号SFN0或直接帧号DFN0的偏移值;感知周期相对于SFN0或DFN0的偏移值。
  30. 一种通信设备,包括:通信模块,存储器,以及至少一个处理器;
    所述通信模块,配置为在多个通信节点之间进行通信交互;
    所述存储器,配置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如上述权利要求1-27或28-29中任一项所述的通信方法。
  31. 一种存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现如上述权利要求1-27或28-29中任一项所述的通信方法。
PCT/CN2022/084088 2021-03-30 2022-03-30 通信方法、设备和存储介质 WO2022206844A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110343406.XA CN115150769A (zh) 2021-03-30 2021-03-30 通信方法、设备和存储介质
CN202110343406.X 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022206844A1 true WO2022206844A1 (zh) 2022-10-06

Family

ID=83403578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084088 WO2022206844A1 (zh) 2021-03-30 2022-03-30 通信方法、设备和存储介质

Country Status (2)

Country Link
CN (1) CN115150769A (zh)
WO (1) WO2022206844A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018028475A1 (zh) * 2016-08-11 2018-02-15 中兴通讯股份有限公司 一种v2x通信的资源选择方法和装置
CN108112036A (zh) * 2016-11-25 2018-06-01 普天信息技术有限公司 车联网资源的感知方法、终端及基站
CN111246426A (zh) * 2020-01-16 2020-06-05 北京展讯高科通信技术有限公司 辅链路通信的资源选择方法及通信装置
CN112512008A (zh) * 2020-10-16 2021-03-16 中兴通讯股份有限公司 通信资源选择方法、装置、电子设备和存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018028475A1 (zh) * 2016-08-11 2018-02-15 中兴通讯股份有限公司 一种v2x通信的资源选择方法和装置
CN108112036A (zh) * 2016-11-25 2018-06-01 普天信息技术有限公司 车联网资源的感知方法、终端及基站
CN111246426A (zh) * 2020-01-16 2020-06-05 北京展讯高科通信技术有限公司 辅链路通信的资源选择方法及通信装置
CN112512008A (zh) * 2020-10-16 2021-03-16 中兴通讯股份有限公司 通信资源选择方法、装置、电子设备和存储介质

Also Published As

Publication number Publication date
CN115150769A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
WO2021032194A1 (zh) Sidelink的drx配置方法和设备
US11849426B2 (en) Systems and methods for sharing a resource pool in sidelink communications
WO2019148489A1 (zh) 一种资源预留方法及装置、计算机存储介质
US11804928B2 (en) Data transmission method, device and computer storage medium
WO2022152294A1 (zh) 通信方法、设备和存储介质
EP4376449A2 (en) Wireless communication method and communication apparatus
US20230232327A1 (en) Data transmission processing method, apparatus, user equipment and storage medium
EP4280743A1 (en) Method and device for determining channel occupancy time, first communication node and storage medium
US20230030664A1 (en) Communication method and apparatus
US20230319950A1 (en) Consideration of Active Reception Status in Resource Selection for D2D Communication
CN115209558A (zh) 一种侧行链路的传输方法及装置
WO2022206844A1 (zh) 通信方法、设备和存储介质
EP4346303A1 (en) Resource reselection method and apparatus, device, and storage medium
WO2023015507A1 (zh) 省电方法、装置、设备及可读存储介质
WO2021228163A1 (zh) 确定资源的方法、装置及系统
CN116210341A (zh) 用于管理侧行传输的方法和设备
EP4311356A1 (en) Sidelink transmission method and apparatus
WO2023071407A1 (zh) 一种通信方法及设备
US20240121805A1 (en) Communication method and device
US20230371005A1 (en) Communication Method, Apparatus, and System
US20240023069A1 (en) Methods and apparatuses for sidelink control information reception
US20240134715A1 (en) Resource reselection method and apparatus, device, and storage medium
JP2024516124A (ja) サイドリンク通信のための方法および装置
KR20230164086A (ko) 데이터 재전송 방법 및 관련 장치
CN117813781A (zh) 信号发送方法、信号接收方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE