WO2018028456A1 - 数据信道发送和接收方法、网络设备及终端 - Google Patents

数据信道发送和接收方法、网络设备及终端 Download PDF

Info

Publication number
WO2018028456A1
WO2018028456A1 PCT/CN2017/095292 CN2017095292W WO2018028456A1 WO 2018028456 A1 WO2018028456 A1 WO 2018028456A1 CN 2017095292 W CN2017095292 W CN 2017095292W WO 2018028456 A1 WO2018028456 A1 WO 2018028456A1
Authority
WO
WIPO (PCT)
Prior art keywords
data channel
terminal
network device
information
sequence
Prior art date
Application number
PCT/CN2017/095292
Other languages
English (en)
French (fr)
Inventor
吕永霞
孙伟
郭志恒
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to RU2019105478A priority Critical patent/RU2705359C1/ru
Priority to EP17838586.0A priority patent/EP3490286B1/en
Priority to EP23218882.1A priority patent/EP4362523A2/en
Priority to CA3033145A priority patent/CA3033145C/en
Priority to KR1020197006135A priority patent/KR102176395B1/ko
Priority to AU2017309925A priority patent/AU2017309925B2/en
Priority to BR112019002685-1A priority patent/BR112019002685A2/pt
Priority to JP2019506385A priority patent/JP6776506B2/ja
Publication of WO2018028456A1 publication Critical patent/WO2018028456A1/zh
Priority to US16/270,744 priority patent/US10841803B2/en
Priority to US17/085,676 priority patent/US11700532B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0042Arrangements for allocating sub-channels of the transmission path intra-user or intra-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0087Timing of allocation when data requirements change
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of communications, and in particular, to a data channel transmitting and receiving method, a network device, and a terminal.
  • the 5G system supports three major communication services, namely enhanced mobile broadband (eMBB) services, mass machine type communications (mMTC) services, ultra-high reliability and ultra-low latency communication (Ultra- Reliable and Low Latency Communications, URLLC) business.
  • the fifth generation communication system supports higher carrier frequency, larger bandwidth, more aggregated carrier numbers, more flexible subframe structure, and supports flexible subcarrier spacing and transmission time interval (TTI) length. And support more flexible resource scheduling.
  • the eMBB service requires a high transmission rate, is not very sensitive to delay, and requires high spectral efficiency and large bandwidth.
  • the mMTC service is generally a packet-insensitive packet-type service that requires a large number of connections.
  • the URLLC service is generally a burst of emergency services.
  • the URLLC data is required to be sent immediately after reaching the network device (for example, the base station).
  • the time-frequency resource for sending the URLLC data needs to be available at any time.
  • data of different services can be multiplexed into one carrier, and the multiplexing mode is Frequency Division Multiplexing (FDM) or Time Division Multiplexing (TDM).
  • FDM Frequency Division Multiplexing
  • TDM Time Division Multiplexing
  • the EMBB service can be reused by the FDM method.
  • URLLC For the URLLC service, because it is a burst of emergency services, the service is sparse. If other services are reused by FDM, resources will be wasted; if other services are reused by TDM, due to URLLC The delay requirement is very high. If the transmission time interval TTI used by other services is relatively large, there may be no available resources for transmitting URLLC data, and thus the delay requirement of the URLLC service cannot be met.
  • the URLLC data may be transmitted by using a data channel puncturing method, that is, when the URLLC data arrives at the network device, it is used in the TTI that has been used for transmitting other service data.
  • a data channel puncturing method that is, when the URLLC data arrives at the network device, it is used in the TTI that has been used for transmitting other service data.
  • Part of the symbol of the partial resource block transmits the data of the URLLC service.
  • the URLLC data is transmitted by means of data channel puncturing, and the URLLC data can be transmitted immediately when it arrives at the network device, which satisfies the delay requirement of the URLLC service.
  • data channel puncturing is used for communication, the transmission performance of data originally using the data channel resource is often affected.
  • the embodiment of the present application provides a data channel sending and receiving method, a network device, and a terminal, to adopt a data signal.
  • the channel punching mode is used for communication, the transmission performance of data transmission using the data channel resource is improved.
  • a data channel transmission and reception method In a first aspect, a data channel transmission and reception method is provided.
  • a network device sends indication information indicating that a terminal needs to detect data channel puncturing information to a terminal.
  • the terminal receives the indication information sent by the network device, and determines that the data channel puncturing information needs to be detected. Transmitting, by the network device, the data channel puncturing information for indicating a punctured resource location, the terminal receiving the data channel puncturing information, and determining a punctured resource location on the data channel .
  • the network device sends, to the terminal, indication information for indicating that the terminal needs to detect the data channel puncturing information, so that the terminal only needs to perform the data channel puncturing information detection.
  • the detection of data channel puncturing information can avoid unnecessary detection of the terminal and improve performance.
  • the network device sends the data channel puncturing information to the terminal, so that when the terminal receives the data, it can determine which data channel resource locations are not sent to the user, thereby better receiving data. , reducing the performance loss caused by data transmission being punctured.
  • the punctured resource location refers to a time domain symbol location that is punctured, and/or a resource block location that is punctured.
  • the network device may send data channel puncturing information before transmitting the data channel, or may send data channel puncturing information after transmitting the data channel, and may also send the data channel puncturing in the process of sending the data channel. information.
  • the network device may send the indication information to the terminal by using a system message or RRC signaling.
  • the indication message includes a modulation coding mode or a modulation mode used by the terminal data channel, and when the order used by the modulation coding mode or the modulation mode is less than or equal to the order threshold, the terminal needs to detect the punching. information.
  • the indication message may be sent by using first downlink control information indicating a location of the data channel resource, where the indication information includes a modulation used by the data channel in the first downlink control information.
  • the coding mode or the modulation mode where the order of the modulation coding mode or the modulation mode is less than or equal to the order threshold.
  • the network device sends the indication information by using the first downlink control information, and after receiving the indication information by using the first downlink control information, the terminal may determine that the puncturing information needs to be detected.
  • the threshold may be preset, or the network device may notify the terminal by using a notification information.
  • the preset threshold is used to indicate that the threshold is a default threshold of the network device and the terminal, and the terminal that performs communication presets the threshold, and the network device does not need to send signaling.
  • the network device sends the notification message to the terminal by using a system message or RRC signaling, and the terminal obtains the system message or the RRC signaling by using the system message or the RRC signaling.
  • the order threshold is used to indicate that the threshold is a default threshold of the network device and the terminal, and the terminal that performs communication presets the threshold, and the network device does not need to send signaling.
  • the network device sends the notification message to the terminal by using a system message or RRC signaling, and the terminal obtains the system message or the RRC signaling by using the system message or the RRC signaling.
  • the network device in the embodiment of the present application may directly indicate, by using the indication information, that the terminal needs to detect data channel puncturing information. After receiving the indication information, the terminal directly determines that the used data channel is punctured. If the terminal does not receive the indication information, it may directly determine that the used data channel is not punctured.
  • the terminal when the network device notifies the resource location used by the terminal data channel, and the resource location includes the preset punctured resource location, the terminal needs to detect the data channel puncturing information.
  • the resource location of the preset punctured refers to a frequency domain resource location that will be punctured, such as a resource block location that will be punctured, or a sub-band location that will be punctured, or may be punctured. Carrier.
  • the indication message is sent by the first downlink control information that is used to indicate the location of the data channel resource, where the indication information includes, to indicate that the data channel in the first downlink control information is to be The default resource location for the punch.
  • the preset resource location may be preset by the system or notified by system messages or high layer signaling (such as RRC signaling).
  • the network device sends the preset resource location information to the terminal by using a system message or a high layer signaling (such as RRC signaling), and the terminal acquires the preset resource location information by receiving a system message or a high layer signaling, such as RRC signaling.
  • the network device may send data channel puncturing information through the second downlink control information, and the terminal may also receive data channel puncturing information through the downlink control channel.
  • the second downlink control information in the embodiment of the present application is sent in a common search space.
  • the terminal detects the second downlink control information in the common search space, and determines the punctured resource location according to the detected second downlink control information.
  • the data channel puncturing information sent by the network device or received by the terminal including the punctured resource location, the punctured resource location, including the punctured time domain symbol location on the data channel, and / or the location of the resource block being punctured.
  • the second downlink control information in the embodiment of the present application includes all resource locations in which the data channel is punctured, that is, the information control information includes all punctured resource locations, by sending a
  • the second downlink control information may inform all the data channel puncturing information of the terminal transmitting the data using the punctured data channel.
  • the transmission data of the DCI can be reduced, and the load of the downlink control channel can be reduced.
  • the second downlink control information may be scrambled by using the set RNTI to identify that the second downlink control information is downlink control information used for sending data channel puncturing information.
  • the second downlink control information used by the RNTI to be used to indicate the data channel puncturing information in the RNTI in the embodiment of the present application may use the same number of information bits as the number of information bits in other downlink control information formats. Reduce the number of blind detections in the terminal.
  • the network device may send the data channel puncturing information by extending the other downlink control information, where the other downlink control information includes an extension bit, in addition to the bit for notifying the scheduling information.
  • the extended bit is used to indicate the data channel puncturing information.
  • the terminal receives the downlink control information, and determines, by using the extended bit, the punctured resource location.
  • other downlink control information may be extended without adding a new downlink control information format.
  • the data channel puncturing information is indicated by the manner in which the second downlink control information is used to enable data transmission in a short transmission time interval.
  • the short transmission time interval refers to a transmission time interval in which the transmission time is less than 1 ms.
  • the transmission time interval of 1 ms is 14 symbols, and the short transmission time interval may be 2 symbols, or 3 symbols, or 4 symbols. .
  • the de-enable is to indicate that the data transmission in the short transmission time interval does not need to be received.
  • the data channel in the short transmission time interval is disabled to indicate the data channel in the short transmission time interval. Being punched.
  • the data channel puncturing information may further include a sequence for indicating that the data channel is punctured, and the terminal determines whether the data channel is punctured by detecting the sequence.
  • the sequence includes a first sequence, the first sequence is located in a previous time domain symbol of a time domain symbol in which the punctured resource location is located in the data channel, and is used to indicate a time domain symbol in which the first sequence is located Start of the next time domain symbol Being punched.
  • the network device transmits data
  • the first time domain symbol of the punctured time domain symbol is inserted into the first sequence.
  • the terminal receives the data, the detection of the first sequence is performed. If the first sequence is detected, the next time domain symbol following the time domain symbol in which the first sequence is located is initially punctured, and the carried
  • the information terminal can be ignored, and the bearer information is negligible means that the carried information does not participate in data demodulation.
  • the sequence may further include a second sequence, where the second sequence is located in a next time domain symbol of a last time domain symbol in which the punctured resource location is located in the data channel, used to indicate The data channel is not punctured starting from the time domain symbol in which the second sequence is located.
  • the next time domain symbol of the last time domain symbol of the punctured resource location is inserted into the second sequence, so that the terminal can determine the second when the second sequence is detected.
  • the time domain symbol in which the sequence is located and the time domain symbol after the time domain symbol in which the second sequence is located are not punctured, and the carried information is normally received.
  • the puncturing information is indicated in a sequence manner, and the purpose of notifying the terminal to detect the puncturing information of the data channel can be achieved without adding control information and signaling.
  • a network device having a function of implementing the behavior of the network device in the first aspect described above.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the network device includes a processing unit and a sending unit, where the processing unit is configured to determine indication information for indicating that the terminal needs to detect data channel puncturing information, and determine a data channel and a data channel puncturing information.
  • the sending unit is configured to send, to the terminal, the indication information, the data channel puncturing information, and the data channel determined by the processing unit, where the data channel puncturing information is used to indicate that the punctured information is punctured
  • the resource location, the resource location in the data channel is punctured.
  • the network device includes a processor and a communication interface, the processor configured to support the network device to perform a corresponding function in the foregoing method, for example, determining to indicate that the terminal needs to detect a data channel The indication information of the hole information, and the data channel and the data channel puncturing information are determined.
  • the communication interface is configured to support transmitting, to the terminal, the indication information determined by the processing unit, the data channel puncturing information, and the data channel, and the like, and is further configured to support the network device and the terminal or Communication between other network entities.
  • the network device may further include a memory for coupling with the processor, which stores program instructions and data necessary for the first network device.
  • the network device may be a base station device.
  • the base station device may also include a transmitter/receiver for supporting communication between the base station device and the terminal described in the above method examples.
  • a terminal having a function of implementing the behavior of the terminal in the above first aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the terminal includes a receiving unit and a processing unit, wherein: the receiving unit is configured to receive indication information, data channel puncturing information, and a data channel from the network device.
  • the processing unit is configured to determine, according to the indication information received by the receiving unit, that the data channel puncturing information needs to be detected, and determine, according to the data channel puncturing information received by the receiving unit, that the received data channel is punctured Resource location.
  • the terminal includes a processor and a communication interface, and the processor is configured to support the terminal to determine, according to the indication information, that the data channel puncturing information needs to be detected, and according to the data channel
  • the hole information determines functions such as the location of the punctured resource in the received data channel
  • the communication interface being configured to receive indication information, data channel puncturing information, and a data channel from the network device.
  • the terminal may further include a memory, where the The reservoir is coupled to the processor, which stores the necessary program instructions and data for the terminal.
  • the terminal may further include a bus.
  • the communication interface, the processor and the memory can be connected to each other through a bus.
  • a communication system comprising the network device related to the second aspect and the terminal related to the third aspect.
  • a computer storage medium for storing computer software instructions for use in the network device, comprising a program involved in performing the network device of the above aspect.
  • a computer storage medium for storing computer software instructions for use in the terminal, comprising a program involved in executing the terminal in the above aspect.
  • FIG. 1 is a schematic diagram of data transmission using a data channel puncturing method
  • FIG. 2 is a flowchart of implementing a data channel sending and receiving process according to an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a base station device according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another terminal according to an embodiment of the present application.
  • the terminal cannot accurately know whether puncturing information needs to be detected, and if the puncturing information needs to be detected, the specific puncturing information cannot be accurately obtained. Therefore, when the terminal receives and decodes the data transmitted on the data channel, it cannot accurately know which data is the data that should itself receive the demodulation, and which data does not need to receive the demodulation, thereby affecting the data transmission performance.
  • the embodiment of the present application provides a data channel sending and receiving method, to notify the terminal whether the punching information needs to be detected, and to notify the specific punching information when the punching information needs to be detected, and to ensure the terminal to a certain extent. Correct decoding to reduce performance loss. For example, when the URLLC service transmission adopts the data channel puncturing mode as shown in FIG. 1 and occupies part of the symbols in the TTI that has been used for transmitting other services (eMBB services), the data channel is sent and sent through the embodiment of the present application.
  • eMBB services eMBB services
  • the receiving method can enable the terminal that is receiving the non-URLLC service in the TTI to learn the symbol occupied by the URLLC service and the resource block location, so that the terminal that is receiving the non-URLLC service knows which data is not sent to itself when decoding. This reduces performance losses to a certain extent.
  • the method for transmitting and receiving data channels is applicable to a wireless communication system capable of communicating by using a data channel puncturing method, for example, at least for a 5G communication system supporting three communication services of eMBB, mMTC, and URLLC.
  • the method for transmitting and receiving a data channel may be applied to communication between two terminals or two devices.
  • the following takes the communication between the network device and the terminal as an example.
  • the network device in the following embodiments may also be replaced by a terminal or a machine, and the terminal may also be replaced by a machine.
  • the network device involved in the embodiments of the present application may include various devices that provide communication functions for the terminal in the radio access network, and may be, for example, a base station, where the base station may include various forms of macro base stations, and Base Stations, relay stations, access points, etc.
  • the names of the base stations may be different, for example, in the future communication mobile communication system 5G, referred to as a Central Unit (CU) and a Distributed Unit (DU).
  • CU Central Unit
  • DU Distributed Unit
  • LTE Long Term Evolution
  • eNB evolved NodeB
  • Node B Node B
  • Node B Node B
  • the terminal involved in the embodiments of the present application may include various handheld devices, wireless devices, wearable devices, computing devices, or other processing devices connected to the wireless modem, and various forms of user equipment (User Equipment). , UE), mobile station (MS), terminal equipment (Terminal Equipment), and the like.
  • User Equipment User Equipment
  • UE user equipment
  • MS mobile station
  • Terminal Equipment Terminal Equipment
  • FIG. 2 is a flowchart of an implementation of a method for sending and receiving data channel puncturing information according to an embodiment of the present application. As shown in FIG. 2, the method includes:
  • the network device sends, to the terminal, indication information that is used to indicate that the terminal needs to detect data channel puncturing information.
  • S102 The terminal receives the indication information, and determines that the data channel puncturing information needs to be detected.
  • the network device sends the data channel puncturing information to the terminal, where the data channel puncturing information is used to indicate a punctured resource location.
  • S104 The terminal receives the data channel puncturing information, and determines a punctured resource location on the data channel.
  • S105 The network device sends a data channel to the terminal, where the resource location in the data channel is punctured.
  • S106 The terminal receives a data channel from the network device, and ignores information carried by the punctured resource location in the data channel.
  • the network device sends, to the terminal, indication information for indicating that the terminal needs to detect the data channel puncturing information, so that the terminal only needs to perform the data channel puncturing information detection.
  • the detection of data channel puncturing information can avoid unnecessary detection of the terminal and improve performance.
  • the network device sends the data channel puncturing information to the terminal, so that when the terminal receives the data, it can determine which data channel resource locations are not sent to the user, thereby better receiving data. , reducing the performance loss caused by data transmission being punctured.
  • the steps of the method shown in FIG. 2 in the embodiment of the present application are only for illustrative purposes, and do not limit the order of execution.
  • the execution steps of S103 and the execution steps of S105 are not limited.
  • the sequence that is, the embodiment of the present application does not limit the sequence in which the network device sends the data channel puncturing information and the data channel to the terminal, for example, the network device may send data before or after transmitting the data channel.
  • the channel puncturing information may also be used to send data channel puncturing information during the process of transmitting the data channel, which is not limited in this embodiment.
  • the network device notifies the modulation coding mode or the modulation mode used by the data channel of the terminal.
  • the terminal needs to detect the puncturing information.
  • an order threshold of a modulation coding mode or a modulation mode may be set, and when the order used by the modulation coding mode or the modulation mode is less than or equal to the order threshold, the terminal is required to detect data channel puncturing information.
  • the threshold may be preset, or the network device may notify the terminal by using the notification information.
  • the preset threshold is used to indicate that the threshold is a default threshold of the network device and the terminal, and the terminal that performs communication presets the threshold, and the network device does not need to send signaling.
  • the network device sends the notification message to the terminal by using a system message or Radio Resource Control (RRC) signaling, when the network device notifies the terminal of the order threshold by using a notification message.
  • RRC Radio Resource Control
  • the order threshold is obtained by receiving a system message or RRC signaling.
  • the network device and the base station do not punct the data channel in the modulation mode whose order is higher than the order threshold, regardless of whether the network device notifies the mode or the preset mode.
  • whether the punching information needs to be detected may be determined by determining the size between the modulation coding mode or the modulation mode and the order threshold. If the order of the modulation coding mode or the modulation mode is less than or equal to the order threshold, the terminal needs to detect the puncturing information. If the modulation coding mode or the modulation mode uses an order greater than the order threshold, the terminal does not Need to detect punch information.
  • the network device may punct the data channel that is transmitting the high modulation coding mode or the high modulation mode, for example, may occupy the partial symbol transmission URLLC service of the resource block that is transmitting the high modulation coding mode or the high modulation mode, but
  • the terminal after the data channel in the high modulation coding mode or the high modulation mode is punctured, it is generally difficult to decode successfully, so it is of little significance for the terminal to detect the puncturing information.
  • the transmission performance of the data transmission using the data channel resource when performing communication by using the data channel puncturing method can be improved, for example, the performance loss of the non-URLLC service on the data channel punctured by the URLLC service can be reduced.
  • the burden on the terminal can also be reduced, so that the terminal detects the puncturing information only when it is necessary to detect the puncturing information.
  • the network device may send the indication information by using Downlink Control Information (DCI) of the scheduling data channel.
  • DCI Downlink Control Information
  • the downlink control information of the scheduling data channel can be used to indicate the location of the data channel resource.
  • the embodiment of the present application is convenient for description, and the downlink control information indicating the location of the data channel resource can be referred to as the first downlink control information.
  • the indication information includes a modulation coding mode or a modulation mode used by the data channel in the first downlink control information, and the terminal may determine a corresponding modulation code by receiving the first downlink control information.
  • the terminal may determine an order of a modulation coding mode or a modulation mode used by using a modulation coding mode or a modulation mode, where the order of the modulation coding mode or the modulation mode is less than or equal to an order threshold, and further Need to detect punch information.
  • the network device sends the indication information to the terminal by using a system message or RRC signaling, where the indication information is used to indicate that the terminal needs to detect data channel puncturing information.
  • the network device may directly indicate, by using the indication information, that the terminal needs to detect data channel puncturing information. For different data channels, some data channels may transmit services through puncturing, and some data channels may not. Therefore, the indication information directly indicates that the terminal needs to detect puncturing information when accessing the data channel used by the network. After receiving the indication information, the terminal directly determines that the used data channel is punctured. If the terminal does not receive the indication information, it may directly determine that the used data channel is not punctured.
  • the network device notifies the resource location used by the data channel of the terminal, and when the resource location includes the preset punctured resource location, the terminal needs to detect the data channel puncturing information.
  • the resource location of the data channel refers to a frequency domain resource location occupied by the data channel, such as a resource block location occupied by the data channel, or a subband location occupied by the data channel, or Data channel Occupied carrier.
  • the preset resource location refers to a frequency domain resource location that will be punctured, such as a resource block location that will be punctured, or a subband location that will be punctured, or a carrier that will be punctured.
  • the network device may send the indication information by using the first downlink control information indicating the location of the data channel resource, where the indication information includes the data channel in the first downlink control information that is punctured.
  • the preset resource location may be preset by the system or notified by a system message or a high layer signaling (such as RRC signaling).
  • the network device sends the preset resource location information to the terminal by using a system message or a high layer signaling (such as RRC signaling), and the terminal acquires the preset resource location information by receiving a system message or a high layer signaling, such as RRC signaling.
  • the network device sends, by using the system message, the high layer signaling, or the downlink control information, the terminal to indicate that the terminal needs to detect the data channel puncturing information, so that the terminal needs to perform the puncturing information detection.
  • the detection is performed below, which can avoid unnecessary detection of the terminal and improve performance.
  • the network device sends the data channel puncturing information to the terminal, and the terminal receives the data.
  • the channel puncturing information enables the terminal to determine which data channel resource data is not sent to itself when receiving the demodulated data, thereby better receiving data and reducing performance loss caused by data transmission being punctured.
  • the following describes the implementation process of transmitting data channel puncturing information and receiving data channel puncturing information by the network device in combination with actual applications.
  • the data channel puncturing information sent by the network device or received by the terminal in the embodiment of the present application includes the punctured resource location, and the punctured resource location includes the time domain of the punctured time on the data channel. Symbol location and/or location of the resource block being punctured.
  • the network device may send the data channel puncturing information by using the downlink control information, and the terminal may also receive the data channel puncturing information by using the downlink control channel.
  • the downlink control information in the embodiment of the present application includes all resource locations in which the data channel is punctured.
  • the information control information includes all punctured resource locations, and sends a downlink control information.
  • Data channel puncturing information for all terminals transmitting data using the punctured data channel can be notified.
  • the transmission data of the DCI can be reduced, and the load of the downlink control channel can be reduced.
  • the sequence of sending the downlink control information indicating the data channel puncturing information and the sequence of transmitting the downlink data channel are not limited, for example, sending the downlink control information indicating the data channel puncturing information.
  • the symbol may be after the symbol of the downlink data channel is transmitted, or before the symbol of the downlink data channel is transmitted.
  • the network device sends the punctured resource location by using the downlink control information
  • the implementation manner of the terminal receiving the data channel puncturing information by using the downlink control information may be one or more of the following:
  • the network device notifies the data channel puncturing information of the at least one terminal by using one downlink control information.
  • the downlink control information for transmitting the data channel puncturing information may be referred to as the second downlink control information.
  • the network device may use the Radio Network Temporary Identity (RNTI) to set the value to scramble the second downlink control information, to identify that the second downlink control information is used to send data channel puncturing information.
  • RNTI Radio Network Temporary Identity
  • the setting value may be any one of FFF4 to FFFC, for example, it may be FFF5.
  • the embodiment of the present application does not limit the value of the RNTI, and may be, for example, any value that is not used from 0000 to FFFF.
  • the second downlink control information scrambled by the RNTI indicates the data channel puncturing information.
  • the second downlink control information in the embodiment of the present application is sent in a common search space.
  • the terminal detects the second downlink control information indicating the data channel puncturing information by using the RNTI in the common search space, and determines the punctured resource location according to the detected second downlink control information.
  • the second downlink control information used by the RNTI to be used to indicate the data channel puncturing information in the RNTI in the embodiment of the present application may use the same number of information bits as the number of information bits in other downlink control information formats.
  • the downlink control information is reduced, wherein the other downlink control information refers to downlink control information that is already in use, such as downlink control of the transmit data channel, which is different from the downlink control information of the transmit data channel puncturing information according to the embodiment of the present application. information.
  • the network device may send the data channel puncturing information by extending the other downlink control information, where the other downlink control information includes an extended bit, including the extended bit, for the notification of the scheduling information. Bits are used to indicate the data channel puncturing information.
  • the terminal receives the downlink control information, and determines, by using the extended bit, the punctured resource location.
  • other downlink control information may be extended without adding a new downlink control information format.
  • the data channel puncturing information is indicated by the manner in which the second downlink control information is used to enable data transmission within a short transmission time interval.
  • the short transmission time interval refers to a transmission time interval in which the transmission time is less than 1 ms.
  • the transmission time interval of 1 ms is 14 symbols, and the short transmission time interval may be 2 symbols, or 3 symbols. Or 4 symbols.
  • the de-enablement means that the data transmission in the short transmission time interval does not need to be received.
  • the data channel in the short transmission time interval is disabled to be instructed, and the short transmission time interval is indicated. The data channel is punctured.
  • a dedicated bit may be used in the downlink control information to indicate whether the data channel in the corresponding short transmission time interval is punctured.
  • the terminal may use the dedicated Dedicating a dedicated bit corresponding to whether the data channel in the short transmission time interval is punctured, determining whether the data channel in the short transmission time interval is punctured, that is, whether reception is required. If the dedicated bit indicates that the data channel in the corresponding short transmission time interval is punctured, the terminal determines that the data in the short transmission time interval is not required to be received, otherwise it is determined that the data in the short transmission time interval needs to be received. .
  • the data channel puncturing information may further include a sequence for indicating that the data channel is punctured, and the terminal determines whether the data channel is punctured by detecting the sequence.
  • a special sequence may be inserted on the data channel, and the special sequence is used to identify whether the time domain symbol needs to be punctured.
  • the special sequence may be a pseudo random sequence, a Zadoff-Chu (ZC) sequence, or other sequences.
  • the sequence is generated according to a sequence parameter, and the sequence parameter may be preset or may be notified by the network device to the terminal.
  • the notification manner may be that the network device notifies the terminal by using a system message, or the network device notifies the terminal by using RRC signaling, or the network device notifies the terminal by using downlink control information.
  • the sequence includes a first sequence, where the first sequence is located in a previous time domain symbol of a time domain symbol in which the punctured resource location is located in the data channel, to indicate the The next time domain symbol of the time domain symbol in which the first sequence is located begins to be punctured.
  • the first time domain symbol of the punctured time domain symbol is inserted into the first sequence.
  • the detection of the first sequence is performed. If the first sequence is detected, the next time domain symbol following the time domain symbol in which the first sequence is located is initially punctured, and the carried The information terminal can be ignored, and the bearer information is negligible means that the carried information does not participate in data demodulation.
  • a second sequence may be further configured, where the second sequence is located in a next time domain symbol of a last time domain symbol in which the punctured resource location is located in the data channel, and is used to indicate The data channel is not punctured from the time domain symbol in which the second sequence is located.
  • the next time domain symbol of the last time domain symbol of the punctured resource location is inserted into the second sequence, so that the terminal can determine the second when the second sequence is detected.
  • the time domain symbol in which the sequence is located and the time domain symbol after the time domain symbol in which the second sequence is located are not punctured, and the carried information is normally received.
  • the fourth manner is used to indicate the puncturing information, and the purpose of notifying the terminal to detect the data channel puncturing information can be achieved without adding control information and signaling.
  • the network device sends the data channel puncturing information to the terminal, so that the terminal receives the data channel puncturing information, so that when receiving the data, the terminal can determine which data channel resource data is not sent to the user. Therefore, the demodulation data is better received, and the performance loss due to the puncturing of the data transmission is reduced.
  • the solution provided by the embodiment of the present application is mainly introduced from the perspective of interaction between the network device and the terminal. It can be understood that, in order to implement the above functions, the network device and the terminal include corresponding hardware structures and/or software modules for performing the respective functions.
  • the embodiments of the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements of the examples and algorithm steps described in the embodiments disclosed in the application. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of the technical solutions of the embodiments of the present application.
  • FIG. 3 is a schematic structural diagram of a possible network device 100 provided by an embodiment of the present application.
  • the network device 100 may include a processing unit 101 and a sending unit 102, where the processing unit 101 is configured to perform control management on an execution action of the network device 100.
  • the processing unit 101 may be configured to support the network device 100 to perform the process S101 in FIG. 2, S103 and S105: determining indication information for indicating that the terminal needs to detect data channel puncturing information, and determining a data channel and data channel puncturing information, and sending, by the sending unit 102, the indication information, the data channel to the terminal Hole information and the data channel.
  • the processing unit 101 can also be used to support other processes by which the network device 100 performs the techniques described herein.
  • the transmitting unit 102 is configured to support communication between the network device 100 and other communicating entities, such as communications with the terminals shown in FIG. 2.
  • the network device 100 may further include a storage unit 103 for storing program codes and data of the network device.
  • the processing unit 101 can be a processor or a controller.
  • the sending unit 102 can be a communication interface, a transceiver, a transceiver circuit, etc., wherein the communication interface is a collective name and can include one or more interfaces.
  • the storage unit 103 can be a memory.
  • the network device 100 involved in the embodiment may be the network device shown in FIG. 4.
  • the network device shown in FIG. 4 may be the base station device 1000.
  • FIG. 4 shows a possible base station device 1000 in the embodiment of the present application, that is, another possible network device involved in the embodiment of the present application.
  • the base station device 1000 includes a processor 1001 and a communication interface 1002.
  • the processor 1001 may also be a controller, and is represented as "controller/processor 1001" in FIG.
  • the communication interface 1002 is configured to support transmission and reception of information between the base station device 1000 and the terminal in the foregoing embodiment, and to support radio communication between the base station device 1000 and other communication entities.
  • the processor 1001 performs various functions for communicating with the terminal, and may also implement demodulation or modulation of data in the uplink and/or downlink.
  • the base station device 1000 may further include a memory 1003 for storing program codes and data of the base station device 1000.
  • the base station device 1000 may further include a transmitter/receiver 1004.
  • the transmitter/receiver 1004 is configured to support the base station device 1000 to transmit and receive information between the terminal and the terminal described in the foregoing embodiments, and to support radio communication between the terminal and other terminals.
  • the processor 1001 can perform various functions for communicating with a terminal. For example, on the uplink, an uplink signal from the terminal is received via an antenna, demodulated by the receiver 1004 (eg, demodulating the high frequency signal into a baseband signal), and further processed by the processor 1001 to recover The service data and signaling information sent by the terminal.
  • traffic data and signaling messages are processed by the processor 1001 and modulated by the transmitter 1004 (eg, modulating the baseband signal into a high frequency signal) to generate a downlink signal and transmitted to the terminal via the antenna.
  • the above demodulation or modulation function may also be completed by the processor 1001.
  • FIG. 4 only shows a simplified design of the base station apparatus 1000.
  • the base station device 1000 can include any number of transmitters, receivers, processors, controllers, memories, communication units, etc., and all the base station devices that can implement the embodiments of the present application are protected in the embodiments of the present application. Within the scope.
  • the network device 100 and the base station device 1000 in the embodiments of the present application may be used to implement the corresponding functions of the network device in the foregoing method embodiment of the present application.
  • the embodiments of the present application are not described herein again.
  • FIG. 5 is a schematic structural diagram of a possible terminal 200 provided by an embodiment of the present application.
  • the terminal 200 includes a receiving unit 201 and a processing unit 202.
  • the processing unit 202 is configured to perform control management on the execution action of the terminal 200.
  • the processing unit 202 can be used to support the terminal 200 to perform the processes S102, S104, and S106 in FIG. 2: receiving the indication information from the network device by the receiving unit 201, The data channel puncturing information and the data channel determine, according to the indication information, that the data channel puncturing information needs to be detected, and determine the punctured resource location in the received data channel according to the data channel puncturing information.
  • the processing unit 202 can also be used to support the terminal 200 in performing other processes of the techniques described herein.
  • the receiving unit 201 is for supporting communication between the terminal 200 and other communication entities, such as communication with the network device shown in FIG. 2.
  • the terminal 200 may further include a storage unit 203 for storing program codes and data of the terminal.
  • the processing unit 202 can be a processor or a controller.
  • the receiving unit 201 can be a communication interface, a transceiver, a transceiver circuit, etc., wherein the communication interface is a collective name and can include one or more interfaces.
  • the storage unit 203 can be a memory.
  • the terminal 200 involved in the embodiment of the present application may be the terminal 2000 shown in FIG. 6.
  • FIG. 6 shows a possible terminal 2000 in the embodiment of the present application.
  • the terminal 2000 includes a processor 2001, a communication interface 2002, and a memory 2003.
  • the terminal 2000 may further include a bus 2004.
  • the processor 2001 and the memory 2003 can be connected to each other by a bus 2004; for convenience of representation, only one thick line is shown in FIG. 6, but it does not mean that there is only one bus or one type of bus.
  • FIG. 6 only shows a simplified design of the terminal 2000.
  • the terminal 2000 is not limited to the foregoing structure, and may further include a display device, an input/output interface, and the like, and all the terminals that can implement the embodiments of the present application are within the protection scope of the embodiments of the present application.
  • terminal 200 and the terminal 2000 involved in the embodiments of the present application may be used to implement the corresponding functions of the terminal in the foregoing method embodiment of the embodiment of the present application.
  • the description of the method embodiments is not described herein again.
  • the processor or controller involved in the foregoing embodiments may be a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application specific integrated circuit ( Application-Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the bus may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • embodiments of the present application can be provided as a method, system, or computer program product. Therefore, the embodiments of the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware. Moreover, embodiments of the present application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • Embodiments of the present application are described with reference to flowchart illustrations and/or block diagrams of methods, devices (systems), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据信道发送和接收的方法、网络设备及终端,网络设备向终端发送指示信息,所述指示信息用于指示所述终端需要检测数据信道打孔信息;所述网络设备向所述终端发送所述数据信道打孔信息,所述网络设备向所述终端发送数据信道,其中,所述数据信道中的所述资源位置被打孔。终端从网络设备接收所述指示检测所述数据信道打孔信息的所述指示信息,所述终端依据所述指示信息从网络设备接收所述数据信道打孔信息,并接收数据信道,其中,所述数据信道中所述被打孔的资源位置上不承载发送给所述终端的信息。通过本申请,在采用数据信道打孔方式进行通信时,使终端能够准确获知具体的打孔信息,进而提高使用该数据信道资源进行数据传输的传输性能。

Description

数据信道发送和接收方法、网络设备及终端
本申请要求在2016年08月10日提交中国专利局、申请号为201610654618.9、发明名称为"数据信道发送和接收方法、网络设备及终端"的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种数据信道发送和接收方法、网络设备及终端。
背景技术
随着通信系统的演进,第五代通信系统(5G)正在进行研究。
5G系统支持三大通信业务,分别是增强的移动宽带(enhanced Mobile BroadBand,eMBB)业务、大容量机器通信(massive Machine Type Communications,mMTC)业务,超高可靠性和超低时延通信(Ultra-Reliable and Low Latency Communications,URLLC)业务。第五代通信系统支持更高的载频,更大的带宽,更多的聚合载波数目,更灵活的子帧结构,并支持灵活的子载波间隔和传输时间间隔(Transmission Time Interval,TTI)长度,并支持更灵活的资源调度。eMBB业务,要求高的传输速率,对时延不是很敏感,要求高频谱效率和大带宽。mMTC业务一般是对时延不敏感的小包业务,要求系统支持大的连接数。URLLC业务一般是突发的紧急业务,对传速可靠性和传输时延要求很高,要求在1ms内达到99.999%的传输可靠性。对于URLLC业务,为了保证其时延要求,要求URLLC数据到达网络设备(例如基站)后就要即刻发送,换言之,需要随时有用于发送URLLC数据的时频资源。
在5G系统中,不同业务的数据可以复用在一个载波中,复用方式为频分复用(Frequency Division Multiplexing,FDM)或者时分复用(Time Division Multiplexing,TDM)。对于业务量巨大的mMTC业务,可与eMBB业务采用FDM方式复用资源。对于URLLC业务而言,由于其是突发的紧急业务,业务比较稀疏,如果与其它业务采用FDM方式复用资源,会导致资源的浪费;如果与其它业务采用TDM方式复用资源,由于URLLC的时延要求很高,如果其它业务使用的传输时间间隔TTI比较大,则可能会没有可用的资源用于传输URLLC数据,进而不能满足URLLC业务的时延要求。目前,为了保证URLLC业务的时延要求且不造成资源浪费,可以采用数据信道打孔的方式传输URLLC数据,即当URLLC数据到达网络设备时,在已经用于传输其他业务数据的TTI内,使用部分资源块的部分符号传输URLLC业务的数据。
采用数据信道打孔的方式传输URLLC数据,可以在URLLC数据到达网络设备时,即刻实现传输,满足了URLLC业务的时延要求。但是采用数据信道打孔的方式进行通信时,往往会使得原本使用该数据信道资源的数据的传输性能受到影响。
发明内容
本申请实施例提供一种数据信道发送和接收方法、网络设备及终端,以在采用数据信 道打孔方式进行通信时,提高使用该数据信道资源进行数据传输的传输性能。
第一方面,提供一种数据信道发送和接收方法,该方法中,网络设备向终端发送用于指示终端需要检测数据信道打孔信息的指示信息。终端接收网络设备发送的指示信息,并确定需要检测所述数据信道打孔信息。所述网络设备向所述终端发送用于指示被打孔的资源位置的所述数据信道打孔信息,终端接收所述数据信道打孔信息,能够确定所述数据信道上被打孔的资源位置。网络设备向所述终端发送资源位置被打孔的数据信道,所述终端从网络设备接收数据信道,忽略所述数据信道中所述被打孔的资源位置承载的信息,即不对所述被打孔的资源位置处承载的信息进行解调处理。
本申请实施例提供的数据信道的发送和接收方法,网络设备向终端发送用于指示终端需要检测数据信道打孔信息的指示信息,使得终端在需要进行数据信道打孔信息检测的情况下才去进行数据信道打孔信息的检测,能够避免终端不必要的检测,提高性能。进一步的,所述网络设备向终端发送所述数据信道打孔信息,能够使所述终端在接收数据时,可以确定哪些数据信道资源位置上的数据不是发给自己的,从而更好的接收数据,降低了由于数据传输被打孔带来的性能损失。
本申请实施例中,所述被打孔的资源位置是指被打孔的时域符号位置,和/或被打孔的资源块位置。
本申请实施例中,所述网络设备可在发送数据信道之前发送数据信道打孔信息,也可在发送数据信道之后发送数据信道打孔信息,还可在发送数据信道过程中发送数据信道打孔信息。
可选的,所述网络设备可通过系统消息或RRC信令向所述终端发送所述指示信息。
一种可能的设计中,所述指示消息中包括终端数据信道使用的调制编码方式或调制方式,所述调制编码方式或调制方式所用阶数小于等于阶数阈值时,所述终端需要检测打孔信息。
可选的,所述指示消息可通过指示所述数据信道资源位置的第一下行控制信息发送,所述指示信息中包括在所述第一下行控制信息中所述数据信道所使用的调制编码方式或调制方式,所述调制编码方式或调制方式所用阶数小于等于阶数阈值。所述网络设备通过所述第一下行控制信息发送所述指示信息,终端通过所述第一下行控制信息接收所述指示信息后,可确定需要检测打孔信息。
可选的,所述阶数阈值可以是预设的,也可以是所述网络设备通过通知信息通知给所述终端的。其中,预设所述阶数阈值,是指所述阶数阈值是网络设备和终端默认的阶数阈值,进行通信的终端预设该阶数阈值,不需要网络设备发送信令通知。其中,采用网络设备通过通知消息通知所述终端所述阶数阈值时,所述网络设备通过系统消息或RRC信令向所述终端发送所述通知消息,终端通过接收系统消息或RRC信令获取所述阶数阈值。
另一种可能的设计中,本申请实施例中网络设备可以通过指示信息直接指示终端需要检测数据信道打孔信息。终端接收到所述指示信息后,直接确定所使用的数据信道会被打孔,终端没有接收到所述指示信息情况下,可直接确定所使用的数据信道不会被打孔。
又一种可能的设计中,网络设备通知终端数据信道使用的资源位置,所述资源位置包括预设被打孔的资源位置时,所述终端需要检测数据信道打孔信息。
其中,所述预设被打孔的资源位置是指会被打孔的频域资源位置,如会被打孔的资源块位置,或者会被打孔的子带位置,或者会被打孔的载波。
可选的,所述指示消息可通过指示所述数据信道资源位置的第一下行控制信息发送,所述指示信息中包括用于指示所述第一下行控制信息中所述数据信道会被打孔的预设资源位置。
其中,所述预设资源位置,可以是系统预设的,或者通过系统消息或高层信令(如RRC信令)通知的。网络设备通过系统消息或高层信令(如RRC信令)向终端发送所述预设资源位置信息,终端通过接收系统消息或高层信令(如RRC信令)获取所述预设资源位置信息。
又一种可能的设计中,网络设备可通过第二下行控制信息发送数据信道打孔信息,终端也可通过所述下行控制信道接收数据信道打孔信息。
其中,本申请实施例中所述第二下行控制信息在公共搜索空间中发送。终端在公共搜索空间中检测所述第二下行控制信息,并依据检测到的所述第二下行控制信息确定被打孔的资源位置。
其中,网络设备发送的或者终端接收的所述数据信道打孔信息,包括被打孔的资源位置,所述被打孔的资源位置,包括所述数据信道上被打孔的时域符号位置和/或被打孔的资源块位置。
可选的,本申请实施例中所述第二下行控制信息中包括所述数据信道被打孔的全部资源位置,即所述信息控制信息中包括所有被打孔的资源位置,通过发送一个第二下行控制信息可以通知所有使用被打孔数据信道传输数据的终端的数据信道打孔信息。通过该实施方式,能够减少DCI的发送数据,降低下行控制信道的负载。
一种可能的实施方式中,所述第二下行控制信息可采用设定取值的RNTI加扰,以标识出该第二下行控制信息是用于发送数据信道打孔信息的下行控制信息。
可选的,本申请实施例中所述RNTI加扰的用于指示数据信道打孔信息的第二下行控制信息,可以采用与其他下行控制信息格式中的信息比特数目相同的信息比特数目,以降低终端盲检次数。
另一种可能的实施方式中,网络设备可通过扩展其他下行控制信息,发送数据信道打孔信息;其中,所述其他下行控制信息中除包括用于通知调度信息的比特还包括扩展比特,所述扩展比特用于指示所述数据信道打孔信息。终端接收所述下行控制信息,通过所述扩展比特,确定所述被打孔的资源位置。
本申请实施例中可通过扩展其他下行控制信息,无需增加新的下行控制信息格式。
再一种可能的实施方式中,通过第二下行控制信息去使能短传输时间间隔内的数据传输的方式指示数据信道打孔信息。
其中,所述短传输时间间隔是指传输时间小于1ms的传输时间间隔,例如,1ms的传输时间间隔是14个符号,短传输时间间隔可以是2个符号,或3个符号,或4个符号。
其中,所述去使能是指指示短传输时间间隔内的数据传输不需要接收,本申请实施例中通过指示短传输时间间隔内的数据信道去使能,指示短传输时间间隔内的数据信道被打孔。
又一种可能的实施方式中,所述数据信道打孔信息中还可包括用于指示数据信道被打孔的序列,所述终端通过检测所述序列,确定数据信道是否被打孔。
所述序列包括第一序列,所述第一序列位于所述数据信道中被打孔的资源位置所在的时域符号的前一个时域符号,用于指示所述第一序列所处时域符号的下一个时域符号开始 被打孔。网络设备发送数据时,在被打孔的时域符号的前一个时域符号插入所述第一序列。终端接收数据时,进行所述第一序列的检测,若检测到所述第一序列,则所述第一序列所在的时域符号的之后的下一个时域符号开始被打孔,所承载的信息终端可以忽略,所述承载的信息可忽略是指承载的信息不参与数据解调。
可选的,所述序列还可包括第二序列,所述第二序列位于所述数据信道中被打孔的资源位置所在的最后一个时域符号的下一个时域符号中,用于指示所述数据信道从所述第二序列所处时域符号开始不被打孔。网络设备发送数据时,在被打孔的资源位置的最后一个时域符号的下一个时域符号插入所述第二序列,使得终端在检测到所述第二序列时,能够确定所述第二序列所处时域符号以及所述第二序列所处时域符号之后的时域符号不被打孔,正常接收所承载的信息。
本申请实施例中采用序列方式指示打孔信息,能够在不增加控制信息以及信令的情况下,达到通知终端检测数据信道打孔信息的目的。
第二方面,提供一种网络设备,该网络设备具有实现上述第一方面中网络设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,所述网络设备包括处理单元和发送单元,所述处理单元用于确定用于指示终端需要检测数据信道打孔信息的指示信息,并确定数据信道以及数据信道打孔信息。所述发送单元,用于向终端发送所述处理单元确定的所述指示信息、所述数据信道打孔信息以及所述数据信道,其中,所述数据信道打孔信息用于指示被打孔的资源位置,所述数据信道中的所述资源位置被打孔。
在另一种可能的设计中,所述网络设备包括处理器和通信接口,所述处理器被配置为支持网络设备执行上述方法中相应的功能,例如,确定用于指示终端需要检测数据信道打孔信息的指示信息,并确定数据信道以及数据信道打孔信息。所述通信接口被配置为支持向终端发送所述处理单元确定的所述指示信息、所述数据信道打孔信息以及所述数据信道等功能,还被配置为支持用于支持网络设备与终端或其他网络实体之间的通信。进一步的,所述网络设备还可以包括存储器,所述存储器用于与处理器耦合,其保存第一网络设备必要的程序指令和数据。
其中,所述网络设备可以为基站设备。该基站设备还可以包括发射器/接收器,该发射器/接收器用于支持基站设备与上述方法示例中所述的终端之间进行通信。
第三方面,提供一种终端,该终端具有实现上述第一方面中终端行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,所述终端包括接收单元和处理单元,其中:所述接收单元,用于从网络设备接收指示信息、数据信道打孔信息以及数据信道。所述处理单元,用于根据所述接收单元接收的指示信息确定需要检测数据信道打孔信息,并根据所述接收单元接收的所述数据信道打孔信息确定接收的数据信道中被打孔的资源位置。
在另一种可能的设计中,所述终端包括处理器和通信接口,所述处理器被配置为支持上述终端根据指示信息确定需要检测数据信道打孔信息,并根据所述所述数据信道打孔信息确定接收的数据信道中被打孔的资源位置等功能,所述通信接口被配置为能够从网络设备接收指示信息、数据信道打孔信息以及数据信道。所述终端还可以包括存储器,所述存 储器用于与处理器耦合,其保存终端必要的程序指令和数据。
进一步的,所述终端还可以包括总线。其中,通信接口、处理器以及存储器可以通过总线相互连接。
第四方面,提供一种通信系统,该通信系统包括上述第二方面涉及的网络设备和第三方面涉及的终端。
第五方面,提供一种计算机存储介质,用于储存为上述网络设备所用的计算机软件指令,其包含用于执行上述方面网络设备所涉及的程序。
第六方面,提供一种计算机存储介质,用于储存为上述终端所用的计算机软件指令,其包含用于执行上述方面终端所涉及的程序。
附图说明
图1为采用数据信道打孔方式进行数据传输的示意图;
图2为本申请实施例提供的数据信道发送和接收过程实施流程图;
图3为本申请实施例提供的一种网络设备的结构示意图;
图4为本申请实施例提供的一种基站设备的结构示意图;
图5为本申请实施例提供的一种终端的结构示意图;
图6为本申请实施例提供的另一种终端的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例的技术方案进行详细的描述。
目前,在可采用数据信道打孔方式进行通信的应用场景下,若终端不能准确获知是否需要进行打孔信息的检测,以及在需要进行打孔信息检测情况下不能准确获知具体的打孔信息,则将使终端在对数据信道上传输的数据进行接收译码时,不能准确获知哪些数据是其本身应该接收解调的数据,哪些数据是不需要接收解调的,进而影响数据传输性能。
本申请实施例提供一种数据信道发送和接收方法,以通知终端是否需要进行打孔信息的检测,以及在需要进行打孔信息检测时通知具体的打孔信息,在一定程度上保证所述终端正确译码,以减少性能损失。例如,当URLLC业务传输采用如图1所示的数据信道打孔方式,占用已经用于传输其他业务(eMBB业务)的TTI内的部分符号时,通过本申请实施例提供的数据信道的发送和接收方法,可使得在该TTI内正在接收非URLLC业务的终端能够获知被URLLC业务占用的符号以及资源块位置,使得正在接收非URLLC业务的终端在译码时知道哪些数据不是发给自己的,从而一定程度上减少性能损失。
本申请实施例提供的数据信道的发送和接收方法适用于能够采用数据信道打孔方式进行通信的无线通信系统,例如至少可应用于支持eMBB、mMTC和URLLC三大通信业务的5G通信系统。
需要说明的是,本申请实施例提供的数据信道的发送和接收方法可以应用于两个终端或两个机器之间的通信,本申请实施例以下以网络设备与终端之间的通信为例进行说明,当然,若应用于两个终端或两个机器之间的通信,则以下实施例中的网络设备也可以被终端或机器所替代,终端也可以被机器所替代。
进一步需要说明的是,本申请实施例所涉及的网络设备可以包括各种在无线接入网中为终端提供通信功能的装置,例如可以是基站,该基站可以包括各种形式的宏基站,微基 站,中继站,接入点等等。在采用不同的无线接入技术的系统中,基站的名称可能会有所不同,例如在未来通信移动通信系统5G中称为为中央单元(Central Unit,CU)和分布式单元(Distributed Unit,DU),在长期演进(Long Term Evolution,LTE)网络中,称为演进的节点B(evolved NodeB,简称:eNB或者eNodeB),在第三代3G网络中,称为节点B(Node B)等等。
本申请实施例所涉及到的终端可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile station,MS),终端设备(Terminal Equipment)等等。
图2所示为本申请实施例提供的数据信道打孔信息的发送和接收方法一种实施流程图,如图2所示,包括:
S101:网络设备向终端发送用于指示终端需要检测数据信道打孔信息的指示信息。
S102:终端接收所述指示信息,并确定需要检测所述数据信道打孔信息。
S103:所述网络设备向所述终端发送所述数据信道打孔信息,其中,所述数据信道打孔信息用于指示被打孔的资源位置。
S104:终端接收所述数据信道打孔信息,并确定所述数据信道上被打孔的资源位置。
S105:网络设备向所述终端发送数据信道,其中,所述数据信道中的所述资源位置被打孔。
S106:所述终端从网络设备接收数据信道,忽略所述数据信道中所述被打孔的资源位置承载的信息。
本申请实施例提供的数据信道的发送和接收方法,网络设备向终端发送用于指示终端需要检测数据信道打孔信息的指示信息,使得终端在需要进行数据信道打孔信息检测的情况下才去进行数据信道打孔信息的检测,能够避免终端不必要的检测,提高性能。进一步的,所述网络设备向终端发送所述数据信道打孔信息,能够使所述终端在接收数据时,可以确定哪些数据信道资源位置上的数据不是发给自己的,从而更好的接收数据,降低了由于数据传输被打孔带来的性能损失。
需要说明的是,本申请实施例中图2所示中各方法执行步骤仅是进行示意性说明,并不限定执行的先后顺序,例如,并不限定S103的执行步骤与S105的执行步骤的先后顺序,即本申请实施例中并不限定所述网络设备向所述终端发送所述数据信道打孔信息以及数据信道的先后顺序,例如,所述网络设备可在发送数据信道之前或之后发送数据信道打孔信息,也可在发送数据信道过程中发送数据信道打孔信息,本申请实施例不作限定。
本申请实施例以下将结合实际应用,对网络设备通知终端需要检测打孔信息以及终端确定需要检测打孔信息的具体实施过程进行说明。
第一种实施方式中,网络设备通知终端数据信道使用的调制编码方式或调制方式,所述调制编码方式或调制方式所用阶数小于等于阶数阈值时,所述终端需要检测打孔信息。
当终端使用的调制编码方式(Modulation and Coding Scheme,MCS)或调制方式采用高阶调制时,若进行打孔,在存在信息损失情况下,很难恢复损失的信息,会导致数据传输失败,故,通常不会在采用高阶调制的情况下对数据信道进行打孔。故本申请实施例中可设定一调制编码方式或者调制方式的阶数阈值,调制编码方式或者调制方式所用阶数小于等于阶数阈值时,指示所述终端需要检测数据信道打孔信息。
本实施例中,所述阶数阈值可以是预设的,也可以是所述网络设备通过通知信息通知给所述终端的。其中,预设所述阶数阈值,是指所述阶数阈值是网络设备和终端默认的阶数阈值,进行通信的终端预设该阶数阈值,不需要网络设备发送信令通知。其中,采用网络设备通过通知消息通知所述终端所述阶数阈值时,所述网络设备通过系统消息或无线资源控制(Radio Resource Control,RRC)信令向所述终端发送所述通知消息,终端通过接收系统消息或RRC信令获取所述阶数阈值。
本申请实施例中无论采用网络设备通知的方式,还是预设的方式,网络设备和基站都会默认不会对阶数高于所述阶数阈值的调制方式下的数据信道打孔,故终端在接收到所述网络设备发送的调制编码方式或调制方式时,可通过判断所述调制编码方式或调制方式的阶数与所述阶数阈值之间的大小,来确定是否需要检测打孔信息,若所述调制编码方式或调制方式所用阶数小于等于阶数阈值,所述终端需要检测打孔信息,若所述调制编码方式或调制方式所用阶数大于所述阶数阈值,所述终端不需要检测打孔信息。
需要说明的是,网络设备可以对正在传输高调制编码方式或高调制方式的数据信道打孔,例如可以占用正在传输高调制编码方式或高调制方式的资源块的部分符号传输URLLC业务,但对于终端来说,高调制编码方式或高调制方式下的数据信道被打孔之后一般很难解码成功,所以终端检测打孔信息与否意义不大。
本申请实施例中,一方面可以提高采用数据信道打孔方式进行通信时,使用该数据信道资源进行数据传输的传输性能,例如可减少被URLLC业务打孔的数据信道上非URLLC业务的性能损失。另一方面也可以减少终端的负担,使得终端只在需要检测打孔信息的情况下才检测打孔信息。
本申请实施例中,所述指示信息包括终端数据信道使用的调制编码方式或调制方式时,所述网络设备可通过调度数据信道的下行控制信息(Downlink Control Information,DCI)发送所述指示信息,其中,所述调度数据信道的下行控制信息能够指示所述数据信道资源位置,本申请实施例为描述方便,可将该指示数据信道资源位置的下行控制信息称为第一下行控制信息。所述指示信息中包括所述数据信道在所述第一下行控制信息中所使用的调制编码方式或调制方式,所述终端通过接收所述第一下行控制信息,可确定相应的调制编码方式或调制方式,所述终端通过调制编码方式或调制方式可以确定所使用的调制编码方式或调制方式的阶数,所述调制编码方式或调制方式的阶数小于等于阶数阈值,进而可确定需要检测打孔信息。
第二种实施方式中,所述网络设备通过系统消息或RRC信令向所述终端发送所述指示信息,所述指示信息用于指示终端需要检测数据信道打孔信息。
本申请实施例中网络设备可以通过指示信息直接指示终端需要检测数据信道打孔信息。对于不同的数据信道,可能有的数据信道会通过打孔方式传输业务,有的数据信道则不会,所以通过指示信息直接指示终端在接入本网络使用的数据信道时需要检测打孔信息,终端接收到所述指示信息后,直接确定所使用的数据信道会被打孔,终端没有接收到所述指示信息情况下,可直接确定所使用的数据信道不会被打孔。
第三种实施方式中,网络设备通知终端数据信道使用的资源位置,所述资源位置包括预设被打孔的资源位置时,所述终端需要检测数据信道打孔信息。
本实施例中,所述数据信道的资源位置指的是所述数据信道占用的频域资源位置,如所述数据信道占用的资源块位置,或者所述数据信道占用的子带位置,或者所述数据信道 占用的载波。所述预设资源位置指的是会被打孔的频域资源位置,如会被打孔的资源块位置,或者会被打孔的子带位置,或者会被打孔的载波。
本申请实施例中网络设备可通过指示数据信道资源位置的第一下行控制信息发送所述指示信息,所述指示信息中包括所述第一下行控制信息中所述数据信道会被打孔的预设资源位置
进一步的,本实施例中,所述预设资源位置,可以是系统预设的,或者通过系统消息或高层信令(如RRC信令)通知的。网络设备通过系统消息或高层信令(如RRC信令)向终端发送所述预设资源位置信息,终端通过接收系统消息或高层信令(如RRC信令)获取所述预设资源位置信息。
本申请实施例上述三种实施方式中,网络设备通过系统消息、高层信令或者下行控制信息向终端发送用于指示终端需要检测数据信道打孔信息,使得终端在需要进行打孔信息检测的情况下才进行检测,能够避免终端不必要的检测,提高性能。
本申请实施例中,若所述指示信息指示终端需要检测数据信道打孔信息,在数据信道发生打孔时,网络设备向终端发送所述数据信道打孔信息,所述终端接收到所述数据信道打孔信息,使得终端在接收解调数据时,可以确定哪些数据信道资源的数据不是发给自己的,从而更好的接收数据,降低了由于数据传输被打孔带来的性能损失。
本申请实施例以下将结合实际应用,对网络设备发送数据信道打孔信息以及终端接收数据信道打孔信息的实施过程进行说明。
本申请实施例中网络设备发送的或者终端接收的所述数据信道打孔信息,包括被打孔的资源位置,所述被打孔的资源位置,包括所述数据信道上被打孔的时域符号位置和/或被打孔的资源块位置。
本申请实施例中,网络设备可通过下行控制信息发送数据信道打孔信息,终端也可通过所述下行控制信道接收数据信道打孔信息。
可选的,本申请实施例中所述下行控制信息中包括所述数据信道被打孔的全部资源位置,换言之所述信息控制信息中包括所有被打孔的资源位置,通过发送一个下行控制信息可以通知所有使用被打孔数据信道传输数据的终端的数据信道打孔信息。通过该实施方式,能够减少DCI的发送数据,降低下行控制信道的负载。
本申请实施例中,并不限定发送所述指示数据信道打孔信息的下行控制信息的符号与发送下行数据信道的符号的先后顺序,例如,发送所述指示数据信道打孔信息的下行控制信息的符号可以在发送下行数据信道的符号之后,也可以在发送下行数据信道的符号之前。
本申请实施例中,所述网络设备通过下行控制信息发送被打孔的资源位置,终端通过下行控制信息接收数据信道打孔信息的实施方式可以采用以下几种中的一种或者多种:
第一种实施方式中,网络设备通过一个下行控制信息通知至少一个终端所述数据信道打孔信息。
本申请实施例中为描述方便,可将发送数据信道打孔信息的下行控制信息,称为第二下行控制信息。
网络设备可采用设定取值的无线网络临时标识(Radio Network Temporary Identity,RNTI)加扰所述第二下行控制信息,以标识出该第二下行控制信息是用于发送数据信道打孔信息的下行控制信息。其中,所述设定取值可以是FFF4~FFFC中的任一值,例如可以是 FFF5。当然本申请实施例并不限定所述RNTI的取值,例如可以是从0000~FFFF中选择的任意一个未被使用的值。通过所述RNTI加扰的所述第二下行控制信息指示所述数据信道打孔信息。
本申请实施例中所述第二下行控制信息在公共搜索空间中发送。终端在公共搜索空间,用所述RNTI检测指示所述数据信道打孔信息的所述第二下行控制信息,并依据检测到的所述第二下行控制信息确定被打孔的资源位置。
可选的,本申请实施例中所述RNTI加扰的用于指示数据信道打孔信息的第二下行控制信息,可以采用与其他下行控制信息格式中的信息比特数目相同的信息比特数目,以降低终端盲检次数,其中,所述其他下行控制信息是指不同于本申请实施例涉及的发送数据信道打孔信息下行控制信息的目前已经在用的下行控制信息,例如发送数据信道的下行控制信息。
第二种实施方式中,网络设备可通过扩展其他下行控制信息,发送数据信道打孔信息;其中,所述其他下行控制信息中除包括用于通知调度信息的比特还包括扩展比特,所述扩展比特用于指示所述数据信道打孔信息。终端接收所述下行控制信息,通过所述扩展比特,确定所述被打孔的资源位置。
本申请实施例中可通过扩展其他下行控制信息,无需增加新的下行控制信息格式。
第三种实施方式中,通过第二下行控制信息去使能短传输时间间隔内的数据传输的方式指示数据信道打孔信息。
本申请实施例中,所述短传输时间间隔是指传输时间小于1ms的传输时间间隔,例如,1ms的传输时间间隔是14个符号,短传输时间间隔可以是2个符号,或3个符号,或4个符号。
本申请实施例中,所述去使能是指短传输时间间隔内的数据传输不需要接收,本申请实施例中通过指示短传输时间间隔内的数据信道去使能,指示短传输时间间隔内的数据信道被打孔。
具体的,本申请实施例中可在下行控制信息中使用专用的比特来指示对应短传输时间间隔内的数据信道是否被打孔,终端接收到所述下行控制信息后,可通过所述专用于指示对应短传输时间间隔内的数据信道是否被打孔的专用比特,确定短传输时间间隔内的数据信道是否被打孔,即是否需要接收。若所述专用比特指示对应短传输时间间隔内的数据信道被打孔,则所述终端确定不需要接收所述短传输时间间隔内的数据,否则确定需要接收所述短传输时间间隔内的数据。
第四种实施方式,所述数据信道打孔信息中还可包括用于指示数据信道被打孔的序列,所述终端通过检测所述序列,确定数据信道是否被打孔。
本申请实施例中可在数据信道上插入特殊序列,通过该特殊序列标识时域符号是否需被打孔。
需要说明的是,所述特殊序列可以是伪随机序列,也可以是Zadoff-Chu(ZC)序列,或者其它序列。所述序列根据序列参数生成,所述序列参数可以是预设的,也可以是由网络设备通知终端的。所述通知方式可以为网络设备通过系统消息通知终端,或者网络设备通过RRC信令通知终端,或者网络设备通过下行控制信息通知终端。
一种可能的实施方式中,所述序列包括第一序列,所述第一序列位于所述数据信道中被打孔的资源位置所在的时域符号的前一个时域符号,用于指示所述第一序列所处时域符号的下一个时域符号开始被打孔。
网络设备发送数据时,在被打孔的时域符号的前一个时域符号插入所述第一序列。终端接收数据时,进行所述第一序列的检测,若检测到所述第一序列,则所述第一序列所在的时域符号的之后的下一个时域符号开始被打孔,所承载的信息终端可以忽略,所述承载的信息可忽略是指承载的信息不参与数据解调。
进一步的,本申请实施例中还可设置第二序列,所述第二序列位于所述数据信道中被打孔的资源位置所在的最后一个时域符号的下一个时域符号中,用于指示所述数据信道从所述第二序列所处时域符号开始不被打孔。
网络设备发送数据时,在被打孔的资源位置的最后一个时域符号的下一个时域符号插入所述第二序列,使得终端在检测到所述第二序列时,能够确定所述第二序列所处时域符号以及所述第二序列所处时域符号之后的时域符号不被打孔,正常接收所承载的信息。
本申请实施例中采用第四种方式指示打孔信息,能够在不增加控制信息以及信令的情况下,达到通知终端检测数据信道打孔信息的目的。
本申请实施例中网络设备向终端发送数据信道打孔信息,使所述终端接收到所述数据信道打孔信息,使得终端在接收数据时,可以确定哪些数据信道资源的数据不是发给自己的,从而更好的接收解调数据,降低了由于数据传输被打孔带来的性能损失。
上述主要从网络设备和终端交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,网络设备、终端为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本申请中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的技术方案的范围。
本申请实施例可以根据上述方法示例对网络设备和终端进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图3示出了本申请实施例提供的一种可能的网络设备100的结构示意图。网络设备100可包括处理单元101和发送单元102,其中所述处理单元101用于对网络设备100的执行动作进行控制管理,例如处理单元101可用于支持网络设备100执行图2中的过程S101、S103和S105:确定用于指示终端需要检测数据信道打孔信息的指示信息,并确定数据信道以及数据信道打孔信息,通过所述发送单元102向终端发送所述指示信息、所述数据信道打孔信息以及所述数据信道。当然,所述处理单元101还可用于支持网络设备100执行本文所描述的技术的其它过程。发送单元102用于支持网络设备100与其他通信实体的通信,例如与图2中示出的终端之间的通信。网络设备100还可以包括存储单元103,用于存储网络设备的程序代码和数据。
其中,处理单元101可以是处理器或控制器。发送单元102可以是通信接口、收发器、收发电路等,其中,通信接口是统称,可以包括一个或多个接口。存储单元103可以是存储器。
当处理单元101为处理器,发送单元102为通信接口,存储单元103为存储器时,本申 请实施例所涉及的网络设备100可以为图4所示的网络设备。其中,所述图4所示的网络设备可以是基站设备1000。
图4示出了本申请实施例一种可能的基站设备1000,即示出了本申请实施例涉及的另一种可能的网络设备。参阅图4所示,该基站设备1000包括:处理器1001和通信接口1002。其中,处理器1001也可以为控制器,图4中表示为“控制器/处理器1001”。所述通信接口1002用于支持基站设备1000与上述实施例中的所述的终端之间收发信息,以及支持所述基站设备1000与其他通信实体之间进行无线电通信。所述处理器1001执行各种用于与终端通信的功能,还可实现对上行链路和/或下行链路中的数据进行解调或调制。
基站设备1000还可以包括存储器1003,存储器1003用于存储基站设备1000的程序代码和数据。
进一步的,基站设备1000还可以包括发射器/接收器1004。所述发射器/接收器1004用于支持基站设备1000与上述实施例中所述的终端之间收发信息,以及支持所述终端与其他终端之间进行无线电通信。所述处理器1001可以执行各种用于与终端通信的功能。例如,在上行链路,来自所述终端的上行链路信号经由天线接收,由接收器1004进行解调(例如将高频信号解调为基带信号),并进一步由处理器1001进行处理来恢复终端所发送到业务数据和信令信息。在下行链路上,业务数据和信令消息由处理器1001进行处理,并由发射器1004进行调制(例如将基带信号调制为高频信号)来产生下行链路信号,并经由天线发射给终端。需要说明的是,上述解调或调制的功能也可以由处理器1001完成。
可以理解的是,图4仅仅示出了基站设备1000的简化设计。在实际应用中,基站设备1000可以包含任意数量的发射器,接收器,处理器,控制器,存储器,通信单元等,而所有可以实现本申请实施例的基站设备都在本申请实施例的保护范围之内。
进一步可以理解的是,本申请实施例涉及的网络设备100和基站设备1000,可用于实现本申请实施例上述方法实施例中网络设备的相应功能,故对于本申请实施例描述不够详尽的地方,可参阅相关方法实施例的描述,本申请实施例在此不再赘述。
在采用集成的单元的情况下,图5示出了本申请实施例提供的一种可能的终端200的结构示意图。终端200包括接收单元201和处理单元202。其中所述处理单元202用于对终端200的执行动作进行控制管理,例如处理单元202可用于支持终端200执行图2中的过程S102、S104和S106:通过接收单元201从网络设备接收指示信息、数据信道打孔信息以及数据信道,根据所述指示信息确定需要检测数据信道打孔信息,并根据所述数据信道打孔信息确定接收的数据信道中被打孔的资源位置。当然,所述处理单元202还可用于支持终端200执行本文所描述的技术的其它过程。接收单元201用于支持终端200与其他通信实体的通信,例如与图2中示出的网络设备之间的通信。终端200还可以包括存储单元203,用于存储终端的程序代码和数据。
其中,处理单元202可以是处理器或控制器。接收单元201可以是通信接口、收发器、收发电路等,其中,通信接口是统称,可以包括一个或多个接口。存储单元203可以是存储器。
当处理单元202为处理器,接收单元201为通信接口,存储单元203为存储器时,本申请实施例所涉及的终端200可以为图6所示的终端2000。
图6示出了本申请实施例一种可能的终端2000,终端2000包括处理器2001、通信接口2002和存储器2003。可选的,终端2000还可以包括总线2004。其中,通信接口2002、处理 器2001以及存储器2003可以通过总线2004相互连接;为便于表示,图6中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
可以理解的是,图6仅仅示出了终端2000的简化设计。在实际应用中,终端2000并不限于上述结构,例如还可以包括显示设备、输入输出接口等,而所有可以实现本申请实施例的终端都在本申请实施例的保护范围之内。
进一步可以理解的是,本申请实施例涉及的终端200和终端2000,可用于实现本申请实施例上述方法实施例中终端的相应功能,故对于本申请实施例描述不够详尽的地方,可参阅相关方法实施例的描述,本申请实施例在此不再赘述。
需要说明的是,本申请实施例上述涉及的处理器或控制器可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。总线可以是外设部件互连标准(Peripheral Component Interconnect,简称PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,简称EISA)总线等。所述总线1004可以分为地址总线、数据总线、控制总线等。
本领域内的技术人员应明白,本申请实施例可提供为方法、系统、或计算机程序产品。因此,本申请实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。

Claims (45)

  1. 一种数据信道发送方法,其特征在于,包括:
    网络设备向终端发送指示信息,其中,所述指示信息用于指示所述终端需要检测数据信道打孔信息;
    所述网络设备向所述终端发送所述数据信道打孔信息,其中,所述数据信道打孔信息用于指示被打孔的资源位置;以及
    所述网络设备向所述终端发送数据信道,其中,所述数据信道中的所述资源位置被打孔。
  2. 如权利要求1所述的方法,其特征在于,所述网络设备向所述终端发送指示信息,包括:
    所述网络设备通过第一下行控制信息向所述终端发送所述指示信息;
    其中,所述第一下行控制信息用于指示所述数据信道的资源位置,所述指示信息为所述第一下行控制信息中所述数据信道使用的调制编码方式或调制方式。
  3. 如权利要求2所述的方法,其特征在于,所述调制编码方式或调制方式的阶数小于等于阶数阈值。
  4. 如权利要求3所述的方法,其特征在于,所述阶数阈值为预设的;或者
    所述阶数阈值为所述网络设备通过通知消息发送给所述终端的,其中,所述通知消息为系统消息或者无线资源控制RRC信令。
  5. 如权利要求1所述的方法,其特征在于,所述网络设备向终端发送指示信息,包括:
    所述网络设备通过第一下行控制信息向所述终端发送所述指示信息;
    其中,所述第一下行控制信息用于指示所述数据信道的资源位置,所述指示信息中包括所述第一下行控制信息中所述数据信道会被打孔的预设资源位置。
  6. 如权利要求1所述的方法,其特征在于,所述网络设备向所述终端发送所述指示信息,包括:
    所述网络设备通过系统消息或无线资源控制RRC信令向所述终端发送所述指示信息。
  7. 如权利要求1至6中任一项所述的方法,其特征在于,所述网络设备向所述终端发送所述数据信道打孔信息,包括:
    所述网络设备通过第二下行控制信息向所述终端发送所述数据信道打孔信息,其中,所述第二下行控制信息在公共搜索空间中发送。
  8. 如权利要求1至6中任一项所述的方法,其特征在于,
    所述数据信道打孔信息为第一序列,所述第一序列用于指示所述数据信道被打孔的资源位置。
  9. 如权利要求8所述的方法,其特征在于,所述第一序列位于所述数据信道中所述被打孔的资源位置所在的时域符号的前一个时域符号中;
    所述第一序列用于指示所述第一序列所处时域符号的下一个时域符号开始被打孔。
  10. 如权利要求9所述的方法,其特征在于,还包括:
    所述网络设备向所述终端发送第二序列,其中,所述第二序列用于指示所述数据信道从所述第二序列所处的时域符号开始不被打孔;
    所述第二序列位于所述数据信道中所述被打孔的资源位置所在的最后一个时域符号的下一个时域符号中。
  11. 一种数据信道接收方法,其特征在于,包括:
    终端从网络设备接收指示信息,其中,所述指示信息用于指示所述终端需要检测数据信道打孔信息;
    所述终端依据所述指示信息从所述网络设备接收所述数据信道打孔信息,其中,所述数据信道打孔信息用于指示被打孔的资源位置;以及
    所述终端从所述网络设备接收数据信道,其中,所述数据信道中所述被打孔的资源位置上不承载发送给所述终端的信息。
  12. 如权利要求11所述的方法,其特征在于,所述终端从所述网络设备接收指示信息,包括:
    所述终端通过第一下行控制信息从所述网络设备接收所述指示信息;
    其中,所述第一下行控制信息用于指示所述数据信道的资源位置,所述指示信息为所述第一下行控制信息中所述数据信道使用的调制编码方式或调制方式。
  13. 如权利要求12所述的方法,其特征在于,所述调制编码方式或调制方式的阶数小于等于阶数阈值。
  14. 如权利要求13所述的方法,其特征在于,所述阶数阈值为预设的;或者
    所述阶数阈值为所述终端通过所述网络设备发送的通知消息获取的,其中,所述通知消息为系统消息或者无线资源控制RRC信令。
  15. 如权利要求11所述的方法,其特征在于,所述终端从所述网络设备接收指示信息,包括:
    所述终端通过第一下行控制信息从网络设备接收所述指示信息;
    其中,所述第一下行控制信息用于指示所述数据信道的资源位置,所述指示信息中包括所述数据信道的预设资源位置。
  16. 如权利要求11所述的方法,其特征在于,所述终端从所述网络设备接收所述指示信息,包括:
    所述终端通过系统消息或无线资源控制RRC信令,从所述网络设备接收所述指示信息。
  17. 如权利要求11至16任一项所述的方法,其特征在于,所述终端依据所述指示信息从所述网络设备接收所述数据信道打孔信息,包括:
    所述终端通过第二下行控制信息从所述网络设备接收所述数据信道打孔信息,其中,所述第二下行控制信息在公共搜索空间中发送。
  18. 如权利要求11至16任一项所述的方法,其特征在于,所述数据信道打孔信息为第一序列,所述第一序列用于指示所述数据信道被打孔的资源位置。
  19. 如权利要求18所述的方法,其特征在于,所述第一序列位于所述数据信道中所述被打孔的资源位置所在的时域符号的前一个时域符号中;
    所述第一序列用于指示所述第一序列所处时域符号的下一个时域符号开始被打孔。
  20. 如权利要求19所述的方法,其特征在于,所述方法还包括:
    所述终端接收网络设备发送的第二序列,其中,所述第二序列用于指示所述数据信道从所述第二序列所处的时域符号开始不被打孔;
    所述第二序列位于所述数据信道中所述被打孔的资源位置所在的最后一个时域符号的下一个时域符号中。
  21. 一种网络设备,其特征在于,包括处理单元和发送单元,其中:
    所述处理单元,用于确定用于指示终端需要检测数据信道打孔信息的指示信息,并确定数据信道以及数据信道打孔信息;
    所述发送单元,用于向终端发送所述处理单元确定的所述指示信息、所述数据信道打孔信息以及所述数据信道,其中,所述数据信道打孔信息用于指示被打孔的资源位置,所述数据信道中的所述资源位置被打孔。
  22. 如权利要求21所述的网络设备,其特征在于,所述发送单元,具体采用如下方式向所述终端发送指示信息:
    通过第一下行控制信息向所述终端发送所述指示信息;
    其中,所述第一下行控制信息用于指示所述数据信道的资源位置,所述指示信息为所述第一下行控制信息中所述数据信道使用的调制编码方式或调制方式。
  23. 如权利要求22所述的网络设备,其特征在于,所述调制编码方式或调制方式的阶数小于等于阶数阈值。
  24. 如权利要求23所述的网络设备,其特征在于,所述阶数阈值为预设的;或者
    所述阶数阈值为所述网络设备通过通知消息发送给所述终端的,其中,所述通知消息为系统消息或者无线资源控制RRC信令。
  25. 如权利要求21所述的网络设备,其特征在于,所述发送单元,采用如下方式向所述终端发送所述指示信息:
    通过第一下行控制信息向所述终端发送所述指示信息;
    其中,所述第一下行控制信息用于指示所述数据信道的资源位置,所述指示信息中包括所述数据信道的预设资源位置。
  26. 如权利要求21所述的网络设备,其特征在于,所述发送单元,采用如下方式向终端发送所述指示信息:
    通过系统消息或无线资源控制RRC信令向所述终端发送所述指示信息。
  27. 如权利要求21至26任一项所述的网络设备,其特征在于,所述发送单元,采用如下方式向所述终端发送所述数据信道打孔信息:
    所述网络设备通过第二下行控制信息向所述终端发送所述数据信道打孔信息,其中,所述第二下行控制信息在公共搜索空间中发送。
  28. 如权利要求21至26任一项所述的网络设备,其特征在于,
    所述数据信道打孔信息为第一序列,所述第一序列用于指示所述数据信道被打孔的资源位置。
  29. 如权利要求28所述的网络设备,其特征在于,所述第一序列位于所述数据信道中所述被打孔的资源位置所在的时域符号的前一个时域符号中;
    所述第一序列用于指示所述第一序列所处时域符号的下一个时域符号开始被打孔。
  30. 如权利要求29所述的网络设备,其特征在于,所述发送单元,还用于:
    向所述终端发送第二序列,其中,所述第二序列用于指示所述数据信道用于指示所述第二序列所处的时域符号开始不被打孔;
    所述第二序列位于所述数据信道中所述被打孔的资源位置所在的最后一个时域符号 的下一个时域符号中。
  31. 一种终端,其特征在于,包括接收单元和处理单元,其中:
    所述接收单元,用于从网络设备接收指示信息、数据信道打孔信息以及数据信道,所述指示信息用于指示所述终端需要检测数据信道打孔信息,所述数据信道打孔信息用于指示被打孔的资源位置,所述数据信道中所述被打孔的资源位置上不承载发送给所述终端的信息;
    所述处理单元,用于根据所述接收单元接收的指示信息确定需要检测数据信道打孔信息,并根据所述接收单元接收的所述数据信道打孔信息确定接收的数据信道中被打孔的资源位置。
  32. 如权利要求31所述的终端,其特征在于,所述接收单元,采用如下方式从网络设备接收指示信息:
    通过第一下行控制信息从网络设备接收所述指示信息;
    其中,所述第一下行控制信息用于指示所述数据信道的资源位置,所述指示信息为所述第一下行控制信息中所述数据信道使用的调制编码方式或调制方式。
  33. 如权利要求32所述的终端,其特征在于,所述调制编码方式或调制方式的阶数小于等于阶数阈值。
  34. 如权利要求33所述的终端,其特征在于,
    所述阶数阈值为预设的;或者
    所述阶数阈值为所述终端通过所述网络设备发送的通知消息获取的,其中,所述通知消息为系统消息或者无线资源控制RRC信令。
  35. 如权利要求31所述的终端,其特征在于,所述接收单元,采用如下方式从网络设备接收指示信息:
    通过第一下行控制信息从网络设备接收所述指示信息;
    其中,所述第一下行控制信息用于指示所述数据信道的资源位置,所述指示信息中包括所述数据信道的预设资源位置。
  36. 如权利要求31所述的终端,其特征在于,所述接收单元,采用如下方式从网络设备接收指示信息:
    通过系统消息或无线资源控制RRC信令,从网络设备接收所述指示信息。
  37. 如权利要求31至36任一项所述的终端,其特征在于,所述接收单元,采用如下方式从网络设备接收数据信道打孔信息:
    通过第二下行控制信息从所述网络设备接收所述数据信道打孔信息,其中,所述第二下行控制信息在公共搜索空间中发送。
  38. 如权利要求31至36任一项所述的终端,其特征在于,所述数据信道打孔信息为第一序列,所述第一序列用于指示所述数据信道被打孔的资源位置。
  39. 如权利要求38所述的终端,其特征在于,所述第一序列位于所述数据信道中所述被打孔的资源位置所在的时域符号的前一个时域符号中;
    所述第一序列用于指示所述第一序列所处时域符号的下一个时域符号开始被打孔。
  40. 如权利要求39所述的终端,其特征在于,所述接收单元,还用于:
    接收网络设备发送的第二序列;
    其中,所述第二序列用于指示所述数据信道从所述第二序列所处的时域符号开始不被 打孔;
    所述第二序列位于所述数据信道中所述被打孔的资源位置所在的最后一个时域符号的下一个时域符号中。
  41. 一种可读存储介质,其特征在于,所述可读存储介质中存储程序,所述程序在执行时,权1至20中任一项所述的方法步骤被执行。
  42. 一种数据信道发送装置,其特征在于,包括:
    与程序指令相关的硬件,所述硬件用于执行权1至10中任一项所述的方法步骤。
  43. 一种数据信道接收装置,其特征在于,包括:
    与程序指令相关的硬件,所述硬件用于执行权11至20中任一项所述的方法步骤。
  44. 一种网络设备,其特征在于,包括:
    处理器和存储器,所述存储器用于存储程序,所述处理器用于执行所述程序,所述程序在执行时,能够实现权1至10中任一项所述的方法。
  45. 一种终端,其特征在于,包括:
    处理器和存储器,所述存储器用于存储程序,所述处理器用于执行所述程序,所述程序在执行时,能够实现权11至20中任一项所述的方法。
PCT/CN2017/095292 2016-08-10 2017-07-31 数据信道发送和接收方法、网络设备及终端 WO2018028456A1 (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
RU2019105478A RU2705359C1 (ru) 2016-08-10 2017-07-31 Способы отправки и приема канала данных, сетевое устройство и терминал
EP17838586.0A EP3490286B1 (en) 2016-08-10 2017-07-31 Data channel sending and receiving method, network device and terminal
EP23218882.1A EP4362523A2 (en) 2016-08-10 2017-07-31 Data channel sending and receiving methods, network device, and terminal
CA3033145A CA3033145C (en) 2016-08-10 2017-07-31 Data channel sending and receiving methods, network device, and terminal
KR1020197006135A KR102176395B1 (ko) 2016-08-10 2017-07-31 데이터 채널 송신 및 수신 방법, 네트워크 디바이스 및 단말기
AU2017309925A AU2017309925B2 (en) 2016-08-10 2017-07-31 Data channel sending and receiving method, network device and terminal
BR112019002685-1A BR112019002685A2 (pt) 2016-08-10 2017-07-31 métodos de envio e recebimento de canal de dados, dispositivo de rede, terminal, aparelho e mídia legível por computador
JP2019506385A JP6776506B2 (ja) 2016-08-10 2017-07-31 データチャネルの送信及び受信方法、ネットワークデバイス及び端末
US16/270,744 US10841803B2 (en) 2016-08-10 2019-02-08 Data channel sending and receiving methods, network device, and terminal
US17/085,676 US11700532B2 (en) 2016-08-10 2020-10-30 Data channel sending and receiving methods, network device, and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610654618.9A CN107734506B (zh) 2016-08-10 2016-08-10 数据信道发送和接收方法、网络设备及终端
CN201610654618.9 2016-08-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/270,744 Continuation US10841803B2 (en) 2016-08-10 2019-02-08 Data channel sending and receiving methods, network device, and terminal

Publications (1)

Publication Number Publication Date
WO2018028456A1 true WO2018028456A1 (zh) 2018-02-15

Family

ID=61162724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/095292 WO2018028456A1 (zh) 2016-08-10 2017-07-31 数据信道发送和接收方法、网络设备及终端

Country Status (10)

Country Link
US (2) US10841803B2 (zh)
EP (2) EP3490286B1 (zh)
JP (1) JP6776506B2 (zh)
KR (1) KR102176395B1 (zh)
CN (2) CN107734506B (zh)
AU (1) AU2017309925B2 (zh)
BR (1) BR112019002685A2 (zh)
CA (1) CA3033145C (zh)
RU (1) RU2705359C1 (zh)
WO (1) WO2018028456A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11044745B2 (en) 2016-09-30 2021-06-22 Huawei Technologies Co., Ltd. Wireless communication method and device to reduce receiving performance loss from resource allocation

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107734676B (zh) * 2016-08-12 2021-06-08 中兴通讯股份有限公司 一种数据传输的方法和装置
KR102156668B1 (ko) * 2016-11-16 2020-09-17 주식회사 케이티 차세대 무선망에서 하향링크 신호를 송수신하는 방법 및 그 장치
US20180249486A1 (en) * 2017-02-27 2018-08-30 Qualcomm Incorporated Indication channel techniques for low latency wireless communications
EP3444987A1 (en) * 2017-08-17 2019-02-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Punctured/on-demand control information for flexible/full duplex communication
US10965505B2 (en) 2018-04-05 2021-03-30 Qualcomm Incorporated Flexible waveform synthesis in NR-SS
CN108923899B (zh) * 2018-06-04 2021-11-30 珠海市魅族科技有限公司 数据占用指示方法及装置、网络侧设备和终端设备
CN111107658B (zh) * 2018-10-26 2022-03-11 大唐移动通信设备有限公司 一种信息传输方法、终端设备及网络设备
CN111107632B (zh) * 2018-10-26 2022-08-05 大唐移动通信设备有限公司 一种数据传输方法及其装置
WO2020164114A1 (zh) * 2019-02-15 2020-08-20 华为技术有限公司 一种通信方法和装置
CN113395143B (zh) * 2020-03-12 2023-06-27 华为技术有限公司 数据传输方法及设备、芯片系统、计算机可读存储介质
GB2618065A (en) * 2022-04-19 2023-11-01 Nokia Technologies Oy Monitoring a channel with punctured resource elements in telecommunications systems
CN115486023A (zh) * 2022-08-10 2022-12-16 北京小米移动软件有限公司 一种传输方法及其装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1635803A (zh) * 2003-12-26 2005-07-06 北京三星通信技术研究有限公司 利用打孔方式传输应答信号的方法
CN101123599A (zh) * 2006-08-11 2008-02-13 华为技术有限公司 数据传输方法及数据传输系统和装置
CN101132204A (zh) * 2006-08-21 2008-02-27 北京三星通信技术研究有限公司 上行调度指配的传输方法及设备
US20120082079A1 (en) * 2010-10-04 2012-04-05 Qualcomm Incorporated Discontinuous transmission (dtx) signaling in uplink data channel

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100703215B1 (ko) * 2006-02-20 2007-04-09 삼성전기주식회사 저전력 무선통신기기 및 저전력 무선통신 방법
CN101335726B (zh) * 2008-07-22 2012-02-15 华为技术有限公司 一种发送前向控制信道信息的方法及基站
CN101873601A (zh) 2009-04-27 2010-10-27 松下电器产业株式会社 在无线通信系统中设置参考信号的方法以及系统
CN101951639B (zh) * 2010-08-31 2013-11-06 华为技术有限公司 一种数据传输方法、终端、基站及系统
US20130343315A1 (en) * 2011-02-11 2013-12-26 Nokia Siemens Networks Oy Signalling a Muting Pattern to a User Equipment for Time Domain Enhanced Inter-Cell Interference Coordination
KR20130020487A (ko) * 2011-08-19 2013-02-27 주식회사 팬택 제어 정보 전송 방법 및 장치와 이를 이용한 데이터 수신 방법 및 장치
US9241328B2 (en) * 2011-10-12 2016-01-19 Lg Electronics Inc. Data transceiving method and apparatus for same
GB2490430B (en) 2012-05-11 2013-08-28 Renesas Mobile Corp Method,apparatus and computer program for controlling a user equipment
US9686772B2 (en) 2012-08-01 2017-06-20 Qualcomm Incorporated Methods and apparatus for coordinated multipoint (CoMP) communications
US10159052B2 (en) 2012-08-03 2018-12-18 Qualcomm Incorporated Method and apparatus for sounding reference signal triggering and power control for coordinated multi-point operations
EP2997783B1 (en) * 2013-04-16 2020-01-01 Telefonaktiebolaget LM Ericsson (publ) Method and radio node for transmitting downlink signals
US11432305B2 (en) * 2014-05-19 2022-08-30 Qualcomm Incorporated Apparatus and method for synchronous multiplexing and multiple access for different latency targets utilizing thin control
US9883485B2 (en) * 2015-01-08 2018-01-30 Qualcomm Incorporated Evolved multimedia broadcast multicast service on enhanced component carriers
US10104683B2 (en) * 2015-02-06 2018-10-16 Qualcomm Incorporated Parallel low latency awareness
US11129152B2 (en) * 2016-02-04 2021-09-21 Lg Electronics Inc. Method and user equipment for receiving dowlink control information, and method and base station for transmitting dowlink control information
US10333674B2 (en) * 2016-02-26 2019-06-25 Lg Electronics Inc. Method and apparatus for transmitting uplink control information in a wireless communication system
KR102458074B1 (ko) * 2016-03-31 2022-10-24 삼성전자 주식회사 이동 통신 시스템에서 이종 서비스 제공 방법 및 장치
US10455558B2 (en) * 2016-05-13 2019-10-22 Qualcomm Incorporated Handling for interruption due to carrier switching and carrier switching capability indication
KR102473313B1 (ko) * 2016-06-08 2022-12-02 삼성전자 주식회사 이동 통신 시스템에서 이종 서비스의 제어 정보를 제공하는 방법 및 장치
US10469104B2 (en) * 2016-06-14 2019-11-05 Qualcomm Incorporated Methods and apparatus for compactly describing lifted low-density parity-check (LDPC) codes
US10805913B2 (en) * 2016-06-17 2020-10-13 Lg Electronics Inc. Method and user equipment for receiving donwlink signal, method and base station for transmitting downlink signal
US10462739B2 (en) * 2016-06-21 2019-10-29 Samsung Electronics Co., Ltd. Transmissions of physical downlink control channels in a communication system
US10848266B2 (en) * 2016-07-01 2020-11-24 Lg Electronics Inc. Data reception method and device, and data transmission method and device
EP3955687B1 (en) * 2016-07-13 2023-06-21 Samsung Electronics Co., Ltd. Terminal, base station and corresponding methods
KR102355797B1 (ko) * 2016-08-09 2022-01-26 삼성전자 주식회사 무선 셀룰라 통신 시스템에서 채널 전송 방법 및 장치
US11431441B2 (en) * 2016-08-10 2022-08-30 Idac Holdings, Inc. Priority-based channel coding for control information

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1635803A (zh) * 2003-12-26 2005-07-06 北京三星通信技术研究有限公司 利用打孔方式传输应答信号的方法
CN101123599A (zh) * 2006-08-11 2008-02-13 华为技术有限公司 数据传输方法及数据传输系统和装置
CN101132204A (zh) * 2006-08-21 2008-02-27 北京三星通信技术研究有限公司 上行调度指配的传输方法及设备
US20120082079A1 (en) * 2010-10-04 2012-04-05 Qualcomm Incorporated Discontinuous transmission (dtx) signaling in uplink data channel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11044745B2 (en) 2016-09-30 2021-06-22 Huawei Technologies Co., Ltd. Wireless communication method and device to reduce receiving performance loss from resource allocation

Also Published As

Publication number Publication date
JP2019525620A (ja) 2019-09-05
CA3033145A1 (en) 2018-02-15
CN109561433B (zh) 2020-03-20
BR112019002685A2 (pt) 2019-05-14
KR102176395B1 (ko) 2020-11-09
EP3490286A4 (en) 2019-07-31
EP3490286B1 (en) 2024-01-24
CN107734506B (zh) 2023-12-08
AU2017309925B2 (en) 2020-04-09
US20210120428A1 (en) 2021-04-22
US20190200235A1 (en) 2019-06-27
EP4362523A2 (en) 2024-05-01
CN109561433A (zh) 2019-04-02
JP6776506B2 (ja) 2020-10-28
CA3033145C (en) 2023-09-26
RU2705359C1 (ru) 2019-11-07
US10841803B2 (en) 2020-11-17
AU2017309925A1 (en) 2019-02-21
KR20190038599A (ko) 2019-04-08
CN107734506A (zh) 2018-02-23
US11700532B2 (en) 2023-07-11
EP3490286A1 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
WO2018028456A1 (zh) 数据信道发送和接收方法、网络设备及终端
US11363575B2 (en) Uplink information sending method and apparatus and uplink information receiving method and apparatus
CN110167159B (zh) 一种通信方法、装置以及系统
US20210176017A1 (en) HARQ Feedback Method And Apparatus
WO2017117819A1 (zh) 数据传输方法及装置
WO2017132910A1 (zh) 一种随机接入的方法、装置、基站及ue
US11259277B2 (en) Data sending and receiving method and apparatus to improve reliability of data transmission in a V2X communications system
US11375479B2 (en) Data transmission method, communications device, and network device
CN110313205B (zh) 一种通信方法及设备
WO2019104472A1 (zh) 系统信息更新方法、接入网设备及终端设备
WO2017167001A1 (zh) 资源调度方法、终端设备及系统
CN109479216B (zh) 传输上行数据的方法、网络侧设备和终端设备
WO2018191868A1 (zh) 一种指示子帧配置的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838586

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019506385

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3033145

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017309925

Country of ref document: AU

Date of ref document: 20170731

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197006135

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017838586

Country of ref document: EP

Effective date: 20190219

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019002685

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112019002685

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190208