WO2019104472A1 - 系统信息更新方法、接入网设备及终端设备 - Google Patents

系统信息更新方法、接入网设备及终端设备 Download PDF

Info

Publication number
WO2019104472A1
WO2019104472A1 PCT/CN2017/113320 CN2017113320W WO2019104472A1 WO 2019104472 A1 WO2019104472 A1 WO 2019104472A1 CN 2017113320 W CN2017113320 W CN 2017113320W WO 2019104472 A1 WO2019104472 A1 WO 2019104472A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
system information
terminal device
information update
sent
Prior art date
Application number
PCT/CN2017/113320
Other languages
English (en)
French (fr)
Inventor
李振宇
韩金侠
南杨
张武荣
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2017/113320 priority Critical patent/WO2019104472A1/zh
Priority to CN201780096751.XA priority patent/CN111345080B/zh
Publication of WO2019104472A1 publication Critical patent/WO2019104472A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like

Definitions

  • the embodiments of the present invention relate to the field of wireless communications, and in particular, to a system information update method and an access network device, another system information update method and terminal device, and a wireless communication system.
  • eMTC-U The enhanced machine type communication on unlicensed spectrum (eMTC-U) technology is an important branch of the Internet of Everything technology.
  • eMTC-U is based on the evolution of Long Term Evolution (LTE) technology, and is more suitable for communication between objects and has lower cost.
  • LTE Long Term Evolution
  • the eNB when the Evolved NodeB (eNB) determines that the system information is to be updated, the eNB sends a system information update indication to the terminal equipment (Terminal Equipment) in the cell through the P-RNTI scrambled MPDCCH channel ( Directly instructed) so that the terminal device updates the system information.
  • the processing flow of a typical system information update scheme is as follows.
  • the eNB indicates that the terminal device in the RRC connection state (RRC_Connected, RRC connection state) performs RRC connection release, so that the terminal device enters the radio resource control idle state (RRC_Idle, RRC idle state); (2) when the terminal device is in the RRC idle state, The eNB transmits a system information update indication message to the terminal device in a system information update period; (3) after the next system information update period start boundary, the eNB starts to send the updated system information. Correspondingly, the terminal device receives the system information update indication message and rereads the system information in the next system information update period.
  • the eMTC-U system has the following characteristics: the system information of the reaction channel interference situation may change frequently. This feature is caused by the fact that the eMTC-U system works on the unlicensed spectrum and shares the unlicensed spectrum with other systems (such as Wi-Fi systems, Bluetooth systems, etc.), so there is mutual interference between different systems.
  • the eNB In order to identify interference conditions on the unlicensed spectrum, the eNB needs to measure the system interference level (ie, frequency point or channel measurement), and notify the terminal through system information if a certain frequency point or channel is unavailable or available. Since the channel interference level changes dynamically, the system information of the reactive channel interference situation may change frequently.
  • the system interference level ie, frequency point or channel measurement
  • the inventor further finds that at least the following problems exist in the prior art: 1) since the solution is to release the RRC connection of the terminal device, frequent changes in system information frequently cause the terminal device to perform RRC connection release and Re-accessing the cell, so the system resources will be greatly consumed; 2) Since the terminal device in the RRC idle state no longer feeds back the channel quality, the access network device can only send the system information update with the maximum number of repetitions according to the limit coverage requirement. Indicates the message and therefore will consume more system resources.
  • This document describes a system information update method and access network device, another system information update method and terminal device, and a wireless communication system to reduce system resource consumption and improve the flexibility of the access network device to send indication messages. Improve the flexibility of terminal equipment operation.
  • the embodiment of the present invention provides a system information update method, which is used to access a network device, and includes: when the terminal device is in a radio resource control RRC connection state, generating a first system information update indication message; The number of times the message is sent by the first system information update indication message is the number of times the first message is sent; and the first system information update indication of the number of times the first message is sent to the terminal device in the RRC connected state Message.
  • the base station does not require the terminal device to enter the RRC idle state, but directly informs the terminal device in the RRC connection state to update the system information.
  • This processing manner can prevent the terminal device from frequently releasing the RRC connection and re-entering the cell. Therefore, system resource consumption can be effectively reduced.
  • the terminal device can receive the system information update indication message in the RRC connection state, so the terminal device can feed back the channel quality to the base station, so that the base station can determine the repeated transmission times of the system information update indication message according to the channel quality fed back by the terminal device.
  • the base station carries the number of repeated transmissions of the message in the indication message; the processing manner is such that the base station does not need to uniformly send the same number of system information update indication messages to the terminal devices of different states according to the maximum number of transmissions configured by the system.
  • the terminal device can obtain the actual number of transmissions of the indication message, and control the subsequent operations, such as the recovery time of the service data and/or the signaling message transmission, according to the actual number of transmissions; therefore, the flexibility of the base station to send the indication message can be effectively improved. It can also effectively improve the flexibility of terminal equipment operation.
  • the method further includes: generating a second system information update indication message when the terminal device is in an RRC idle state; the second system information The number of times the message is sent by the update indication message is the number of times the second message is sent; and the second system information update indication message of the number of times of sending the second message is sent to the terminal device in the RRC idle state.
  • the method before the generating the first system information update indication message, the method further includes: receiving the a channel quality indicator (CQI) sent by the terminal device; determining the number of times the first message is sent according to the CQI.
  • CQI channel quality indicator
  • the base station needs to send an indication message according to the maximum number of transmissions configured by the system to ensure that the terminal device can correctly receive the indication message and demodulate the downlink information.
  • the terminal device in the RRC connection state can measure the channel quality CQI and feed the CQI to the base station through the uplink channel. Therefore, the base station can determine the actual number of transmissions, that is, the number of first message transmissions, through the CQI fed back by the terminal device.
  • the terminal device can only send the channel quality according to the limit coverage requirement, that is, the maximum number of times the second message is sent is the maximum number of transmissions configured by the system.
  • the number of second message transmissions is usually greater than the number of first message transmissions.
  • the base station can determine the number of times the message is sent according to the actual channel quality; therefore, the number of message transmissions can be effectively reduced, thereby further reducing system resource consumption.
  • the method further includes: sending the Suspending transmission of service data and/or signaling messages with the terminal device in a time unit of the first system information update indication message of a number of message transmissions; after the time unit, recovering and Transmission of the service data and/or the signaling message between terminal devices.
  • the base station suspends service data and/or signaling message between the terminal device in the RRC connected state in the time unit of the first system information update indication message that sends the first message transmission number. Transmitting, and the terminal device pauses between the base station and the base station in a time unit that receives the first indication message The service data and/or the signaling message is transmitted, and the terminal device determines the recovery time of the service data and/or the signaling message transmission with the base station according to the number of times of the first message transmission, and restores the base station when the recovery time is reached.
  • the processing mode is such that the terminal device in the RRC connected state can determine the recovery time of the service data and/or the signaling message transmission according to the first message sending times, the recovery time The recovery time of the service data and/or signaling message transmission determined earlier than the maximum number of transmissions configured according to the system, thereby enabling the terminal device to recover the traffic data and/or signaling message transmission with the base station as early as possible;
  • the impact on the service data and/or signaling message transmission of the terminal device in the connected state can be effectively reduced, and the terminal device can restore the service data and/or signaling message transmission at the correct time.
  • the first system The information update indication message is the downlink control information DCI
  • the direct indication flag of the DCI is a system information update indication
  • the number of times of sending the DCI message is the number of times the first message is sent.
  • the second system information update indication message is downlink control information DCI
  • the direct indication flag of the DCI is a system information update indication
  • the number of times of sending the DCI message is the number of times the second message is sent.
  • the sending, by the terminal device in the RRC connection state, the first message sending The first system information update indication message of the number of times includes: if the paging moment of the terminal device corresponds to the downlink effective time unit in a system information update period, starting to send to the terminal device at the paging moment The first system information update indication message of the first message sending number; if the paging time does not correspond to the downlink effective time unit, start at the beginning of the downlink effective time unit after the paging time The terminal device repeatedly sends an indication message.
  • the sending, by the terminal device in the RRC connection state, the first message sending The first system information update indication message of the number of times includes: a first system for transmitting a first message transmission number to the terminal device by using a Machine Type Communication Physical Down Control Channel (MPDCCH) Information update indication message.
  • MPDCCH Machine Type Communication Physical Down Control Channel
  • the method further includes: a system information update period corresponding to the first system information update indication message The updated system information is broadcast to the terminal device during the next system information update period.
  • the updated system information is broadcast to the terminal device, including: by using an anchor channel of a fixed frequency point, The terminal device broadcasts the updated system information.
  • the success rate of system information transmission can be improved.
  • an embodiment of the present invention provides an access network device, which includes a module for performing an action of an access network device in a system information update method design.
  • the modules can be software and/or hardware.
  • the access network device includes a processor and a memory configured to support the access network device to perform a corresponding function in the above described system information update method.
  • the memory is for coupling to a processor that retains program instructions and data necessary for accessing the network device.
  • an embodiment of the present invention provides a method for updating system information, including: Receiving, by the RRC connection state, the first system information update indication message that is repeatedly sent by the access network device, where the number of times the message is sent by the first system information update indication message is the number of times the first message is sent; The number of times the message is sent, determining the number of times the access network device sends the first system information update indication message.
  • the terminal device in the RRC connection state receives the indication message repeatedly sent by the base station, and indicates that the message carries the repeated number of times of sending the message, and the terminal device may determine the base station according to the repeated transmission times of the message carried in the indication message.
  • the number of times the instruction message is sent enables the terminal device to control the subsequent operations, such as the recovery time of the service data and/or signaling message transmission, according to the actual number of transmissions; therefore, the flexibility of the operation of the terminal device can be effectively improved.
  • the method further includes: when the terminal device is in an RRC idle state, receiving a second system information update indication that is repeatedly sent by the access network device a message that the number of times the message is sent by the second system information update indication message is the number of times the second message is sent; and determining, according to the number of times of sending the second message, that the access network device sends the second system information update indication message frequency.
  • the first message sending times is less than the second message sending times.
  • the method further includes: acquiring a channel quality CQI; The network device sends the CQI.
  • the method further includes: suspending the service data and/or the signaling message with the access network device in a time unit of receiving the first system information update indication message of the first message transmission times Transmitting; and determining, according to the number of times the first message is sent, a recovery time of the service data and/or the signaling message transmission; and recovering, at the recovery time, the Traffic data and/or the signaling message transmission.
  • the first system information update indication message is downlink control information DCI
  • the direct indication of the DCI The system information update indication is marked, and the number of times the message is sent by the DCI is the number of times the first message is sent.
  • the second system information update indication message is downlink control information DCI
  • the direct indication flag of the DCI is a system information update indication, and the number of times of sending the DCI message is the number of times the second message is sent.
  • the receiving, by the access network device, the first system information update indication message that is repeatedly sent includes: If the paging time corresponds to the downlink effective time unit, the terminal device starts to receive the indication message at the paging time; if the paging time does not correspond to the downlink effective time unit, the terminal device starts receiving at the time corresponding to the downlink effective subframe after the paging time. Indicate the message.
  • the receiving, by the access network device, the first system information update indication message that is repeatedly sent including: the terminal The device receives the indication message through the machine type communication physical downlink control channel MPDCCH.
  • the method further includes: receiving, by the terminal device, the access in a next system information update period Network equipment The updated system information of the broadcast; updating the system information corresponding to the terminal device side according to the updated system information.
  • the terminal device receives the updated system information by using an anchor channel of a fixed frequency point.
  • an embodiment of the present invention provides a terminal device, including a module for performing a behavior of a terminal device in a system information update method design.
  • the modules can be software and/or hardware.
  • the terminal device includes a processor and a memory, the processor being configured to support the terminal device to perform a corresponding function in the above system information update method.
  • the memory is for coupling to a processor that stores program instructions and data necessary for the terminal device.
  • an embodiment of the present invention provides a wireless communication system, where the system includes the access network device and the terminal device in the foregoing aspect.
  • an embodiment of the present invention provides a computer readable storage medium having instructions stored therein that, when run on a computer, cause the computer to perform the methods described in the above aspects.
  • an embodiment of the present invention provides a computer program product comprising instructions that, when run on a computer, cause the computer to perform the methods described in the above aspects.
  • the solution provided by the present invention can reduce system resource consumption, improve the flexibility of the access network device to send indication messages, and improve the flexibility of operation of the terminal device.
  • FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a network of a wireless communication system according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a system information update period according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a system information update process according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of service data transmission between a base station and a terminal device according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a signal transmission process between a base station and a terminal device according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of an Anchor channel period according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of interaction of a wireless communication system according to an embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of another system information update process according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of an access network device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic flowchart of still another system information update process according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of an Anchor channel cycle according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of another Anchor channel period according to an embodiment of the present invention.
  • FIG. 15 is still another schematic diagram of an Anchor channel period according to an embodiment of the present invention.
  • FIG. 16 is a schematic diagram of still another Anchor channel period according to an embodiment of the present invention.
  • the terminal device is wirelessly connected to a Radio Access Network (RAN).
  • the terminal device can access the core network (CN) through the RAN.
  • the technology described in the present invention can be applied to an Enhanced Machine Type Communication on Unlicensed Spectrum (eMTC-U) system or an Enhanced Machine Type Communication (eMTC) based on licensed spectrum. )system.
  • eMTC-U Enhanced Machine Type Communication on Unlicensed Spectrum
  • eMTC Enhanced Machine Type Communication
  • eMTC Enhanced Machine Type Communication
  • LTE Long Term Evolution
  • eMTC-U Enhanced Machine Type Communication
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • EPC Evolved Packet Core
  • the terminal device to which the present invention relates includes various devices that can perform data communication with an access network device, for example, a handheld device having a wireless communication function, an in-vehicle device, a wearable device, a computing device, or other processing connected to a wireless modem.
  • Equipment and various forms of User Equipment (UE), Mobile Station (MS), Terminal, and the like.
  • the relay relay is also a terminal device.
  • the terminal device includes, for example, a sensor, a meter, a monitor, a position tag, a drone, a tracker, a robot/machine device, and the like.
  • the terminal devices can be dispersed throughout the wireless communication network, and each terminal device can be stationary or mobile.
  • the terminal device may also be referred to as an access terminal, a terminal, a mobile station (Mobile Station, MS), a subscriber unit, a station (Station, STA), and the like.
  • the terminal device can be a cellular phone, a personal digital assistant (PDA), a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet device, a smart phone, a netbook, and a smart device.
  • PDA personal digital assistant
  • WLL wireless local loop
  • a smart device e.g., superbooks, entertainment devices (eg, music players, gaming devices, etc.), cameras, in-vehicle devices, navigation devices, drones, robots/machines, wearable devices (eg, smart watches, smart clothing, smart Wristbands, smart rings, smart bracelets, smart glasses, virtual reality goggles, etc.
  • the access network device involved in the present invention is a device deployed in a radio access network to provide a wireless communication function for a terminal device, and the access network device is an entity that communicates with the terminal device.
  • the access network device may include various forms of macro base stations, micro base stations, relay stations, access points (APs), and the like.
  • APs access points
  • the names of devices with access network device functions may be different, for example, in an LTE network, called Evolved Node Base (eNodeB), in 3G. In the network, it is called Node B and so on.
  • eNodeB Evolved Node Base
  • Node B In the network, it is called Node B and so on.
  • a base station or an eNB For convenience of description, in the present application, it is simply referred to as a base station or an eNB.
  • FIG. 2 is a schematic diagram of a network architecture of a wireless communication system according to an embodiment of the present invention, which mainly includes a core network, an access network, and a terminal device.
  • the core network EPC acts as a bearer layer and can implement functions such as voice call control.
  • the core network EPC mainly includes a Mobility Management Entity, a Serving Gateway (SGW), a Packet Data Network Gateway (PGW), and the like.
  • the access network mainly includes a base station.
  • the terminal device needs to support a system information update function or the like.
  • the 3rd Generation Partnership Project (3GPP) defines the function of system information broadcasting.
  • System information broadcasting is an important function in the LTE system, including system information generation, scheduling, and updating.
  • the terminal device By broadcasting the system message of the access network to the terminal device in the cell, the terminal device establishes a wireless connection by obtaining sufficient access information and the network.
  • the system information will not remain unchanged.
  • the terminal device side if the system information remains unchanged for a long time, the terminal device will Retrying to receive system information; if the access network side system information changes, the network side needs to notify the terminal device to update the system information.
  • the terminal device in the RRC idle state and the RRC connected state can notify the system information that the system information has been changed by paging, and needs to be re-acquired.
  • the LTE protocol stipulates that in addition to the ETWS (Earthquake and Tsunami Warning System) and CMAS (Commercial Mobile Alert System) alert messages, system information is not changeable at any time, that is, broadcast changes occur at specific points in time. Introduce the concept of system information modification period (Modification Period). For convenience of description, in the present application, it is simply referred to as an update cycle.
  • ETWS Earthquake and Tsunami Warning System
  • CMAS Common Mobile Alert System
  • the system information update cycle will be described in detail below with reference to FIG. 3.
  • time is divided into consecutive update cycles.
  • 3GPP standardizes a series of processing procedures for system information updates through protocols.
  • the system information changes during the broadcast control channel BCCH modification period (n) in a certain update period, and the base station does not immediately re-issue the new system information broadcast, but in this update period n.
  • the base station determines the paging message sending time of each terminal device according to the paging period of each terminal device, the terminal device identifier, and the like, that is, the paging moment, and the base station sends a paging message at the paging moment to notify all terminal device systems in the cell.
  • the information broadcast has changed.
  • the base station will not issue a new system information broadcast until the beginning of the next update period (update period n+1).
  • LTE defines paging messages and paging cycles (DRX cycles) in 3GPP.
  • the physical downlink control channel (PDCCH) and the physical downlink shared channel (PDSCH) corresponding to the paging message are scrambled by the paging radio network temporary identifier P-RNTI, and are transmitted through the PDSCH channel.
  • the information bits carried indicate system information updates.
  • the UE determines the paging message sending time of the terminal device according to the paging cycle, the terminal device identifier, and the like, and monitors the paging message at the paging time to determine whether the system information changes (each update period) At most, the "update period coefficient" may be monitored. If the base station sends a system information update indication when the paging moment is received, the updated system information is received in the next system information update period. In order to correctly receive the system information broadcast, the terminal device needs to identify the boundary of two adjacent update periods when the system information is changed, and starts to receive new system information when the new update period starts.
  • An embodiment of the present invention provides a system information update method, an access network device, a terminal device, and a wireless communication system.
  • the base station determines that the system information changes
  • the terminal device that directly indicates the RRC connection status in the cell performs system information update
  • the base station can determine the repeated transmission of the system information update indication message according to the channel quality fed back by the terminal device in the RRC connection state. The number of times, and the number of repeated transmissions of the message carried in the indication message.
  • the eMTC-U system has a variety of system information.
  • the system information can be transmitted through the Master Information Block (MIB), the System Information Block on Anchor (SIB-A), and the System Information Block (System). Information Blocks, SIBs).
  • MIB Master Information Block
  • SIB-A System Information Block
  • System System Information Block
  • SIBs System Information Blocks
  • the eNB sends a system information update indication to the UE, and the UE according to the indication message sent by the eNB.
  • Read SIB-A update system parameters, and judge whether it needs to be determined by the systemInfoValueTag field in SIB-A. To continue reading other SIBs.
  • System information can be sent via MIB and SIB-A, or via MIB. No matter which way you send it, one thing is the same, that is: the system information is dynamically changing, and the possibility of frequent updates.
  • the system information update scheme adopted in the eMTC system the base station first instructs the terminal device to release the RRC connection, so that the terminal device enters the RRC idle state, and then sends a direct indication message of the downlink control information DCI (such as DCI 6-2 format). That is, the terminal device is required to receive the system update indication message in the RRC idle state.
  • the system information update solution does not consider the frequent change of the system information, resulting in frequent release of the RRC connection and re-access to the cell, thereby causing the problem of consuming more system resources.
  • the access network device can only send the system information update indication message with the maximum number of repetitions according to the requirement of the limit coverage, which also leads to consumption. More system resources.
  • the base station does not require the terminal device to enter the RRC idle state, but directly informs the terminal device in the RRC connection state to update the system information.
  • This processing manner can prevent the terminal device from frequently releasing the RRC connection and re-entering the cell. Therefore, system resource consumption can be effectively reduced.
  • the base station can determine the number of repeated transmissions of the system information update indication message according to the channel quality fed back by the terminal device in the RRC connection state; this processing mode can enable the base station to determine the number of message transmissions according to the actual channel quality, thereby reducing the number of message transmissions. Therefore, the flexibility of the base station to send the indication message can be effectively improved, thereby further reducing system resource consumption.
  • the base station carries the number of repeated transmissions of the message in the indication message; this processing mode enables the terminal device to obtain the actual number of times the instruction message is sent, and the terminal device controls subsequent operations, such as service data and/or signaling messages, according to the actual number of transmissions.
  • the recovery time of the transmission, etc. therefore, the flexibility of the operation of the terminal device can be effectively improved.
  • the base station In section 401, the base station generates a first system information update indication message when it is identified that the terminal device is in the radio resource control RRC connected state.
  • the base station when the base station determines that the system information changes need to notify the terminal device to update the system information, generates a system information update indication message, where the indication message carries the number of times the indication message is sent.
  • the system information update indication message is simply referred to as an indication message or a message; and the indication message sent to the terminal device in the RRC connection state is referred to as a first system information update indication message, referred to as a first indication.
  • a message, and the number of times the first indication message is sent is referred to as a first message transmission number; and the indication message sent to the terminal device in the RRC idle state is referred to as a second system information update indication message, referred to as a second indication message, and The number of times the second indication message is sent is referred to as the number of second message transmissions.
  • the following steps may be used to determine the number of first message transmissions; 1) receiving the channel quality CQI sent by the terminal device; 2) determining the first message sending according to the CQI. frequency. Since the number of first message transmissions is determined according to the actual channel quality, the number of first message transmissions is usually less than the maximum number of message transmissions configured by the system. With this processing method, the number of times of message transmission can be reduced; therefore, system resource consumption can be effectively reduced.
  • the indication message may be Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the DCI may be carried by the downlink physical control channel PDCCH, and includes downlink control information sent by the base station to the terminal device.
  • the contents of the DCI subframe are shown in Table 3:
  • the "direct indication flag" of the DCI subframe When the "direct indication flag" of the DCI subframe is marked as 0, it indicates that the downlink control channel carries the system information update indication message, that is, the "direct indication information” is valid, and the corresponding 8-bit uses a bitmap representation manner. 4 information:
  • the contents of the DCI subframe including the number of times the message is sent are as shown in Table 5:
  • Table 5 DCI subframe content including repeated transmission times
  • the number of bits of the DCI may also be increased, and the increased number of bits is used to indicate the number of repeated transmissions of the indication message; this processing manner is such that the existing reserved field of the DCI is not occupied; therefore, the existing reservation can be Fields are used to represent other more useful information.
  • the base station first determines that the system information changes, and determines that the terminal device needs to be notified to update the system information.
  • the base station may determine whether the system information changes by means of active detection, and acquire updated system information when it detects that the system information changes.
  • the base station can periodically initiate an operation of actively detecting whether the system information changes according to the pre-configured detection period, and can also initiate active detection at any time according to the service requirement.
  • the system information of the eMTC-U system includes the interference status of the data channel, and the base station determines whether the system information changes.
  • the following manner may be adopted: before the base station prepares to send data to the terminal device, the base station first actively performs CCA on the channel multiple times. According to the CCA result, the interference of the channel is counted. If multiple CCA results show that one or some channels are occupied, the base station can limit these occupied channels within a period of time T. Use, and notify the terminal device that the channel is unavailable by means of system information update. The base station may continue to perform idle channel estimation on the channels after the time T. If the base station measures the received energy of the channel less than the threshold value in the statistical time, the channel may continue to be used and the system information is updated. The terminal device channel is again notified that it is available.
  • the base station can determine whether the system information changes by direct detection, or can determine whether the system information changes through indirect detection. For example, to determine whether the interference condition of the data channel of the eMTC-U system changes, the base station may first measure different frequency points, determine available frequency points and unavailable frequency points, when the base station operates in the frequency hopping mode. The index of the data channel can be determined according to the available frequency index.
  • the base station After the base station generates the first indication message, it can enter part 402 to notify the terminal device that the system information needs to be updated.
  • the base station sends a first system information update indication message of the first message transmission number to the terminal device in the RRC connected state.
  • the paging transmission time corresponding to the terminal device in a system information update period is first determined according to the paging cycle and the terminal device identifier. After determining the paging moment corresponding to the terminal device, the paging moment corresponding to the terminal device in the system information update period repeatedly sends an indication message to the terminal device according to the number of times the message is sent. For example, when the base station determines that the indication message is to be sent 10 times to the terminal device in the RRC connected state, the base station first generates an indication message, and the indication message includes the indication information that the number of times of the message is 10, and then repeats the indication message to the The terminal device sends 10 times.
  • the base station may send an indication message to the terminal device by using a downlink control channel, where the downlink control channel includes, but is not limited to, a PDCCH channel, an Enhanced Physical Downlink Control Channel (EPDCCH channel), and an MPDCCH channel (Narrowband Physical Downlink Control Channel, NPDCCH channel) and the like.
  • the base station sends a PDCCH including only P-RNTI scrambling to the terminal device, and indicates system information update through information bits carried in the PDCCH channel.
  • the wireless communication system is an eMTC system. Since the working scenarios of the terminal devices in the eMTC system include factories, workshops, docks, etc., these places generally have occlusion, which causes serious signal fading. In order to improve signal coverage, it is necessary to enhance the downlink. The performance of the channel or downlink signal, so it is necessary to send multiple indication messages.
  • the base station needs to send an indication message, and may only include the P-RNTI scrambled PDCCH, and indicate the system information update through the information bits carried in the PDCCH channel. With this processing method, the base station does not need to transmit multiple PDSCHs, and therefore, channel resources can be effectively saved.
  • the start time of the base station repeatedly sending the indication message to the terminal device which may be the paging time corresponding to the terminal device, that is, the start time unit of the multiple indication message sent corresponds to the time unit where the paging time is located, and the paging time needs to be Corresponds to the downlink valid time unit.
  • the time when the base station repeatedly sends the indication message to the terminal device and may be the time corresponding to the first downlink effective time unit after the time unit corresponding to the paging time, that is, the start time unit is the time unit corresponding to the paging time.
  • the first downlink valid time unit, the time unit corresponding to the paging moment is not the downlink valid time unit.
  • the base station may send a system information update indication to the terminal device in the RRC connected state.
  • the base station in a time unit in which the base station sends the multiple indication message to the terminal device in the RRC connected state, the base station will suspend the transmission of the service data and/or signaling message between the terminal device and send the indication message. Thereafter, the service data and/or signaling message transmission between the terminal device and the terminal device is resumed.
  • the time unit may be a length of time occupied by repeatedly transmitting the indication message, and may be N subframes or N time slots, where N is an integer greater than 1.
  • the base station needs to repeatedly send the DCI 8 times. If the minimum time unit of the DCI sent by the base station is 1 subframe, the base station needs to send 8 subframes, and the corresponding time length is 8 subframes. If the minimum time unit of the DCI sent by the base station is 1 time slot, the base station needs to send 8 time slots, and the corresponding time length is 8 time slots.
  • the signaling message does not include an indication message.
  • the base station suspends the transmission of the service data and/or the signaling message between the terminal device and the at least one of the following manners: 1) the base station suspends transmitting the downlink grant and the uplink grant information to the terminal device, where the downlink grant information includes the downlink PDSCH channel.
  • Control information includes control information of an uplink PUSCH channel; 2) the base station suspends transmitting a downlink PDSCH channel to the terminal device, where the PDSCH channel carries downlink service or high layer control information, where the downlink service includes but is not limited to voice
  • the service, the streaming media service, the web browsing service, the high-level control information includes RRC signaling or system broadcast information; 3) the base station suspends receiving the physical uplink shared channel (Physical Uplink Shared Channel, PUSCH channel) and/or physical uplink of the terminal device; Control channel (Physical Uplink Control Channel, PUCCH channel).
  • the terminal device also suspends service data and/or signaling message transmission with the base station during receiving the indication message, and may determine a recovery time of the signal transmission according to the number of times the first message is sent; Time, restoring traffic data and/or signaling message transmissions with the access network device.
  • the terminal device suspends the transmission of the service data and/or the signaling message between the base station and the base station, and may adopt at least one of the following methods: 1) the terminal device suspends receiving the downlink grant and the uplink grant information; 2) the terminal device pauses to receive the downlink PDSCH channel; The terminal device pauses to send the uplink PUSCH channel, and the PUSCH channel carries the uplink service or the uplink control information, where the uplink service includes but is not limited to the voice service, the streaming media service, and the web browsing service, and the uplink control information includes but is not limited to Feedback information of the downlink PDSCH channel, feedback information for the downlink quality; 4) The terminal device pauses to transmit the uplink PUCCH channel, and the PUCCH channel carries the uplink control information, where the uplink control information includes but is not limited to the feedback to the downlink PDSCH channel. Information, feedback information on downlink quality.
  • the service data transmission between the base station and the terminal device will be described in detail below with reference to FIG.
  • the base station and the terminal device perform the transmission of the service data; at the time of the subframe n, the base station repeatedly sends the system information update indication message to the terminal device through the PDCCH channel, and the N times indication message corresponds to the N in the time domain. Sub-frames; at the time of subframe n+N+1, the service data transmission is resumed between the base station and the terminal device.
  • the base station determines that the PDSCH channel needs to repeatedly transmit 8 subframes according to the coverage requirement.
  • the indication message includes the number of times the message is sent. It is assumed that the number of repetitions of the indication message sent by the base station to the device is 4 times, that is, corresponding to 4 subframes.
  • the base station starts to transmit the indication message of the four subframes through the PDCCH channel, and the service data is suspended between the base station and the terminal device in the time unit corresponding to the four subframes. And the transmission of the service data is resumed immediately after the 4 subframes.
  • the indication message does not include the number of times the message is sent. In this case, only the maximum number of transmissions of the indication message is configured by the broadcast information, and the maximum number of transmissions is assumed to be 6 times, that is, corresponding to 6 subframes, if During the PDSCH transmission process, the subframe in which the paging moment is located is encountered.
  • the base station starts the subframe where the paging moment is located, and may continuously send the indication message of 4 subframes through the PDCCH channel according to the coverage requirement, but the terminal device can only follow the
  • the maximum number of transmissions 6 is to send and receive the indication message, that is, the time corresponding to 6 subframes.
  • the transmission of the service data is suspended between the base station and the terminal device, and the transmission of the service data can be resumed only after the 6 subframes; thus, the b-picture scheme has little impact on the service, and the c-picture scheme has a great influence on the service.
  • the indication message does not include the number of times the message is sent.
  • the maximum number of times the indication message is configured according to the broadcast information is 6 times and passes through the subframe where the paging time is located.
  • the PDCCH channel continuously transmits an indication message of 6 subframes, and the terminal device also performs reception of the indication message according to the maximum number of transmissions 6.
  • the base station suspends service data and/or signaling message between the terminal device in the RRC connected state in the time unit of the first system information update indication message that sends the first message transmission number. Transmitting, and the terminal device suspends the transmission of the service data and/or the signaling message between the base station and the base station in the time unit of receiving the first indication message, and the terminal device determines the service data between the base station and the base station according to the number of times of the first message transmission.
  • this processing mode enables the terminal device in the RRC connected state to be according to the The number of times the message is sent determines the recovery time of the transmission of the service data and/or the signaling message, which is earlier than the recovery time of the service data and/or the signaling message transmission determined according to the maximum number of transmissions configured by the system, thereby causing the terminal to
  • the device can recover the service data and/or signaling message transmission with the base station as soon as possible; therefore, it can effectively reduce the situation
  • the influence of the service data and/or signaling message transmission of the terminal device in the connected state ensures that the terminal device resumes the transmission of the service data and/or the signaling message at the correct time.
  • the second system information update indication message is generated; and the second system information update indication message of the second message transmission number is sent to the terminal device in the RRC idle state.
  • the second system information update indication message may also include the number of times the message is sent, and the number of times is the number of times the second message is sent.
  • the base station needs to send an indication message according to the maximum number of transmissions configured by the system to ensure that the terminal device can correctly receive the indication message and demodulate the downlink information.
  • the terminal device in the RRC connection state can measure the channel quality CQI and feed the CQI to the base station through the channel. Therefore, the base station can determine the actual number of transmissions, that is, the number of first message transmissions, through the CQI fed back by the terminal device.
  • the base station can only send the maximum number of transmissions according to the limit coverage requirement, that is, the number of second message transmissions is the maximum number of transmissions configured by the system. It can be seen that the number of second message transmissions is usually greater than the number of first message transmissions.
  • the channel quality may be a Received Signal Strength Indicator (RSSI), a Receive Signal Received Power (RSRP), a Signal-to-Interference plus Noise Ratio (SINR), or the like.
  • the terminal device can measure the channel quality. It is assumed that the channel quality of the terminal device A is x, and the channel quality of the terminal device B is y. If the terminal device A reports x and the terminal device B reports y, the access is y. The network determines that the channel quality of the terminal device A is low, so the terminal device A is required to send a greater number of indication messages, and the access network determines that the channel quality of the terminal device B is higher, so the terminal device B is required to send a smaller number of indications. Message.
  • RSSI Received Signal Strength Indicator
  • RSRP Receive Signal Received Power
  • SINR Signal-to-Interference plus Noise Ratio
  • the solution provided by the embodiment of the present invention reduces the number of times of sending a message by sending a different number of indication messages to the terminal devices in different states. Therefore, the flexibility of the base station to send the indication message can be effectively improved, thereby further reducing system resource consumption.
  • the base station after the base station repeatedly sends the first indication message to the terminal device, the base station broadcasts the updated system information to the terminal device in the next update period of the update period corresponding to the first indication message, thereby The terminal device is enabled to establish a wireless connection by obtaining sufficient access information and the network.
  • a base station may broadcast updated system information to a terminal device through an anchor channel (Anchor channel) of a fixed frequency point, or may broadcast through a data channel of a non-anchor channel.
  • Anchor channel an anchor channel of a fixed frequency point
  • the process of broadcasting system information to the terminal device through the anchor channel of the fixed frequency point will be described in detail below with reference to FIG. Since wireless communication systems based on unlicensed spectrum operate on a shared spectrum, the data channel may be interfered by other systems.
  • the primary synchronization signal PSS, the secondary synchronization signal SSS, and the system messages MIB and SIB-A of the base station are transmitted on one or several fixed frequency channels.
  • the channel is the Anchor channel, the Anchor channel and the data channel operate at different frequency points, and the Anchor channel only transmits downlink data or only transmits downlink channels.
  • Anchor channel period In order to ensure fair use of the Anchor channel, multiple base stations periodically occupy an Anchor channel, which is called an Anchor channel period.
  • the Anchor channel period is 80 ms
  • the time that the base station occupies the Anchor channel to broadcast system information to the UE is 5 ms
  • one Anchor channel period contains one data channel.
  • the base station broadcasts system information through the Anchor channel instead of broadcasting through other data channels; this processing method can avoid the data channel being unavailable due to interference of the data channel; therefore, the synchronization signal and system can be effectively guaranteed.
  • the message was sent successfully or received.
  • the Anchor channel can be configured with one or more frequency points. Multiple frequency points are configured for the Anchor channel, so that when one of the frequency points is severely interfered, it is allowed to switch to other frequency points.
  • the base station may first perform a Clear Channel Assessment (CCA) to measure the energy condition on the current channel. If the measured energy exceeds the threshold, the channel is considered to be occupied. At this time, the data cannot be transmitted; conversely, if the measured energy is lower than the threshold, the channel is considered to be idle, and data can be transmitted at this time. In this way, time division multiplexing is implemented between the base stations to preempt the channel, thereby avoiding mutual interference caused by simultaneously transmitting data.
  • CCA Clear Channel Assessment
  • the base station identifies whether the terminal device is in an RRC connected state.
  • the base station In the 802 part, the base station generates a first system information update indication message when the terminal device is in the RRC connected state, and the message includes the first message transmission times.
  • the base station In the 802' part, the base station generates a second system information update indication message when the terminal device is in the RRC idle state, and the message includes the second message transmission number.
  • the terminal device suspends transmission of service data and/or signaling messages between the base station and the base station in a system information update period n; and, in section 803-B, in a The system information updates the paging moment corresponding to the terminal device in the period n, and the base station suspends the transmission of service data and/or signaling messages with the terminal device.
  • the base station in a time unit in which the paging time corresponding to the terminal device starts in a system information update period n, the base station repeatedly sends the indication information to the terminal device, where the length of the time unit is corresponding to the indication message for sending the number of times the message is sent. duration.
  • the terminal device receives an indication message that the base station repeatedly transmits.
  • the specific manner may be that the terminal device detects whether there is a P-RNTI scrambled PDCCH transmission, and if yes, detects whether it is a system information update indication, if it is a system information
  • the information update indication does not need to receive the PDSCH scrambled by the P-RNTI, and only needs to determine which system information needs to be re-read in the next system information update period n+1 according to the DCI content in the PDCCH.
  • the terminal device determines the recovery time of the traffic data and/or signaling message transmission based on the number of repeated transmissions.
  • the terminal device resumes service data and/or signaling message transmission with the base station at the recovery time, and in the 807-B portion, the base station resumes communication with the terminal device after repeatedly transmitting the indication message. Transaction of service data and/or signaling messages.
  • the base station after transmitting the indication message in the system information update period n, the base station broadcasts the updated system information to the terminal device in the system information update period n+1.
  • the terminal device receives the updated system information broadcast by the base station to the terminal device in the system information update period n+1.
  • the terminal device updates the system information of the terminal device side according to the received updated system information.
  • the system information update method provided by the embodiment of the present invention does not require the terminal device to enter the RRC idle state, but directly informs the terminal device in the RRC connection state to update the system information; this processing manner can be avoided.
  • the terminal device frequently releases the RRC connection and re-enters the cell; therefore, the system resource consumption can be effectively reduced.
  • the base station can determine the number of repeated transmissions of the system information update indication message according to the channel quality fed back by the terminal device in the RRC connection state; this processing mode can enable the base station to determine the number of message transmissions according to the actual channel quality, thereby reducing the number of message transmissions.
  • the flexibility of the base station to send the indication message can be effectively improved, thereby further reducing system resource consumption.
  • the base station carries the number of repeated transmissions of the message in the indication message; this processing mode enables the terminal device to obtain the actual number of times the instruction message is sent, and the terminal device controls subsequent operations, such as service data and/or signaling messages, according to the actual number of transmissions. The recovery time of the transmission, etc.; therefore, the flexibility of the operation of the terminal device can be effectively improved.
  • FIG. 9 is a flow chart showing a method for updating system information on the terminal device side involved in the above embodiment.
  • the terminal device when the terminal device is in the RRC connection state, the terminal device receives the first system information update indication message that is repeatedly sent by the base station.
  • the terminal device can receive the indication message through the downlink control channel.
  • the terminal device in the RRC connection state can monitor whether there is a P-RNTI of the terminal device on the downlink control channel in a paging moment corresponding to the terminal device in each paging cycle in a system information update period. If found, Then, the terminal device reads the corresponding indication message, and detects whether the indication message includes the indication information of the system information update.
  • the number of times the first system information update indication message includes the number of times the message is sent is the number of times the first message is sent.
  • the first system information update indication message is downlink control information DCI
  • the direct indication flag of the DCI is a system information update indication
  • the number of times of sending the DCI message is the first message transmission time. If the indication message received by the terminal device indicates that the system information is updated, the terminal device knows that the system information changes at the boundary of the next system information update period, and obtains the number of repeated transmissions of the indication message.
  • the downlink control channel includes but is not limited to a PDCCH channel, an EPDCCH channel, an MPDCCH channel, an NPDCCH channel, and the like.
  • a PDCCH channel an EPDCCH channel
  • an MPDCCH channel an MPDCCH channel
  • NPDCCH channel an NPDCCH channel
  • the base station is in the paging moment corresponding to the terminal equipment of the paging cycle in a system information update period
  • the terminal device in the connected state sends a multiple indication message.
  • the terminal device may combine the multiple indication messages to enhance the received signal power, and when the signal strength of the combined indication message reaches the signal demodulation threshold, determine whether the base station sends the system information change indication message, and obtain the first message transmission. frequency.
  • the terminal device starts to receive the indication message at the time of the subframe corresponding to the paging moment. If the base station starts to send the indication message at the time corresponding to the downlink valid subframe after the paging moment of the terminal device, the terminal device starts to receive the indication message at the time corresponding to the downlink effective subframe after the paging moment.
  • the number of first message transmissions may be determined by the base station according to the actual channel quality of the terminal device.
  • the terminal device needs to feed back the channel quality CQI to the base station.
  • the terminal device may feed back the CQI to the base station by: 1) acquiring the CQI; 2) transmitting the CQI to the access network device.
  • the terminal device determines, according to the number of times the first message is sent, the number of times the base station sends the first system information update indication message.
  • the base station carries the number of repeated transmissions of the message in the indication message, and the terminal device may determine the number of times the base station sends the first system information update indication message according to the repeated transmission times of the message carried in the indication message.
  • the terminal device in the RRC connection state receives the indication message repeatedly sent by the base station, and indicates that the message carries the repeated number of times of sending the message, and the terminal device may determine the base station according to the repeated transmission times of the message carried in the indication message.
  • the number of times the instruction message is sent enables the terminal device to control the subsequent operations, such as the recovery time of the service data and/or signaling message transmission, according to the actual number of transmissions; therefore, the flexibility of the operation of the terminal device can be effectively improved.
  • the terminal device suspends service data and/or signaling message transmission with the base station in a time unit of the first system information update indication message that the terminal device receives the first message transmission number; And determining, according to the number of times the first message is sent, a service data and/or a recovery time of the signaling message transmission; and recovering, at the recovery time, service data and/or signaling message transmission with the base station.
  • the terminal device when the terminal device is in the RRC idle state, the terminal device receives the second system information update indication message that is repeatedly sent by the base station, and the second system information update indication message includes the number of times the message is sent is the number of times the second message is sent.
  • the terminal device determines, according to the number of times the second message is sent, the number of times the base station sends the second system information update indication message.
  • the number of times the first message is sent is usually less than the number of times the second message is sent.
  • the second system information update indication message is downlink control information DCI
  • the direct indication flag of the DCI is a system information update indication
  • the number of times of sending the DCI message is the number of times the second message is sent.
  • the terminal device after receiving the system information update indication in a system information update period n, the terminal device receives the updated system information broadcasted by the base station in the next system information update period n+1, and according to the received update.
  • System information update the system information corresponding to the terminal device side.
  • each network element such as a terminal device, an access network device, etc.
  • each network element includes modules corresponding to performing respective functions.
  • modules corresponding to performing respective functions include modules corresponding to performing respective functions.
  • Those skilled in the art should appreciate that the elements and algorithm steps of the various examples described in connection with the embodiments disclosed herein can be implemented in a combination of hardware and computer software. These functions are actually hardware It is a software implementation that depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
  • Fig. 10 is a block diagram showing the design of an access network device involved in the above embodiment.
  • the access network device includes a transmitter/receiver 1001, a controller/processor 1002, a memory 1003, and a communication unit 1004.
  • the transmitter/receiver 1001 is configured to support transmission and reception of information between the access network device and the terminal device in the foregoing embodiment, and to support radio communication between the terminal device and other terminal devices.
  • the controller/processor 1002 performs various functions for communicating with the terminal device. On the uplink, the uplink signal from the terminal device is received via the antenna, is buffered by the receiver 1001, and further processed by the controller/processor 1002 to recover the service data and signaling messages transmitted by the terminal device. .
  • controller/processor 1002 On the downlink, traffic data and signaling messages are processed by controller/processor 1002 and mediated by transmitter 1001 to generate downlink signals for transmission to the terminal device via the antenna.
  • the controller/processor 1002 also performs the processes involved in the access network device of Figures 4-8 and/or other processes for the techniques described herein.
  • the memory 1003 is used to store program codes and data of the access network device.
  • the communication unit 1004 is configured to support the access network device to communicate with other network entities. For example, it is used to support communication between an access network device and other communication entities shown in FIG. 1, such as devices located in the core network EPC.
  • Figure 10 only shows a simplified design of the access network device. It will be appreciated that the access network device can include any number of transmitters, receivers, processors, controllers, memories, communication units, and the like.
  • Fig. 11 is a block diagram showing the design of the terminal device involved in the above embodiment.
  • Encoder 1106 receives the traffic data and signaling messages to be transmitted on the uplink. Encoder 1106 processes (eg, formats, codes, and interleaves) the traffic data and signaling messages. Modulator 1007 further processes (e.g., symbol maps and modulates) the encoded traffic data and signaling messages and provides output samples. Transmitter 1101 conditions (e.g., analog transforms, filters, amplifies, and upconverts, etc.) the output samples and generates an uplink signal that is transmitted via an antenna to the access network device described in the above embodiments. On the downlink, the antenna receives the downlink signal transmitted by the access network device in the above embodiment.
  • Transmitter 1101 conditions (e.g., analog transforms, filters, amplifies, and upconverts, etc.) the output samples and generates an uplink signal that is transmitted via an antenna to the access network device described in the above embodiments.
  • the antenna receives the downlink signal transmitted by the access network device in the above embodiment.
  • Receiver 1102 conditions (eg, filters, amplifies, downconverts, digitizes, etc.) the signals received from the antenna and provides input samples.
  • Demodulator 1109 processes (e.g., decouples) the input samples and provides symbol estimates.
  • the decoder 1108 processes (e.g., deinterleaves and decodes) the symbol estimate and provides decoded data and signaling messages that are sent to the UE.
  • Encoder 1106, modulator 1107, demodulator 1109, and decoder 1108 may be implemented by modem processor 1105. These units are processed according to the radio access technologies employed by the radio access network (e.g., eMTC, eMTC-U, LTE, and access technologies of other evolved systems).
  • the controller/processor 1103 performs control management on the actions of the terminal device for performing the processing performed by the UE in the above embodiment. For example, other processes for controlling the terminal device to update system information and/or the techniques described herein in accordance with the received indication message. As an example, the controller/processor 1103 is used to support the terminal device to perform the process in FIG.
  • the memory 1104 is for storing program codes and data for the terminal device.
  • the controller/processor for performing the above-mentioned functions of the access network device or the terminal device of the present invention may be a central processing unit (CPU), a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), and an on-site Programming gate arrays (FPGAs) or other programmable logic devices, transistor logic devices, hardware missing or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example comprising one or more microprocessor combinations, a DSP and a microprocessor The combination and so on.
  • FIG. 12 is a schematic flowchart diagram of still another method for updating system information in the embodiment of the present invention.
  • the base station performs an idle channel assessment on the first downlink channel for transmitting the system information update indication message in a system information update period.
  • the base station In the section 1202, if the first evaluation result corresponding to the first downlink channel is that the channel is idle, the base station generates a first sequence as a system information update indication message, and is in an RRC connected state by using the idle first downlink channel.
  • the terminal device in the idle state transmits the first sequence.
  • the first downlink channel includes a downlink channel for transmitting a system information update indication message.
  • System information is transmitted over the second downlink channel.
  • FIG. 13 is a schematic diagram showing an Anchor channel period in an embodiment of the present invention.
  • the first downlink channel includes N data channels for frequency hopping
  • the second downlink channel includes M frequency-fixed channels
  • the fixed frequency channel is also called an anchor channel.
  • the base station periodically performs channel estimation on the channel with fixed frequency, and the period is T. If the channel evaluation result is idle, the base station sends information on the channel of the fixed frequency point. If the channel evaluation result is busy, the period no longer occupies the channel. Fixed frequency point.
  • the base station performs channel estimation on one or more data channels in each period T. If the evaluation result is idle, the base station first sends a first sequence or a second sequence on the data channel, and the first sequence is used to notify the terminal device. Update system information.
  • the data channel is a subset of N data channels for frequency hopping, and the first sequence and the second sequence are used by the terminal device for presence detection.
  • the terminal device detects whether there is a first sequence transmitted by the base station as a system information update indication message; if so, in the next fixed frequency point period, the updated system information broadcast by the base station is received.
  • the base station If the first evaluation result is that the channel is idle but the base station determines that the system information does not need to be updated, the base station generates a second sequence only as a channel idle indication, and transmits the second sequence to the terminal device through the idle channel.
  • the terminal device On the terminal device side, if the terminal device detects the first sequence in a system information update period, the terminal device receives the updated system information broadcast by the base station in the next system information update period, and according to the updated system information. Update the system information corresponding to the terminal device side. If the terminal device detects the second sequence in a system information update period, the terminal device learns that it is not necessary to update the system information.
  • the result of the idle channel evaluation is a sequence (such as a Zadoff-Chu sequence), and the terminal device determines whether the base station side CCA is successful according to the sequence, and further determines whether to continue to receive subsequent information, and thus the sequence is referred to as a presence detection sequence.
  • a presence detection sequence In the prior art, if the evaluation result is idle, the base station sends a presence detection sequence to the terminal device; if it is busy, the presence detection sequence is not sent.
  • the Zadoff-Chu sequence has good cross-correlation and autocorrelation, and is widely used in LTE systems.
  • the Zadoff-Chu sequence is taken as an example to illustrate the specific use of the presence detection sequence in this scheme.
  • N ZC is the length of the Zadoff-Chu sequence
  • u is the root parameter of the Zadoff-Chu sequence
  • different Zadoff-Chu sequences can be generated by taking different u values
  • different Zadoff-Chu sequences can be generated by other methods. For example, by cyclically shifting the Zadoff-Chu sequence generated under the same u value, the scheme is not limited.
  • Zadoff-Chu sequence is sequence A
  • the Zadoff-Chu sequence generated by the root parameter u2 is sequence B. Then: when the CCA is successful, and the system information does not need to be updated, the sequence A is sent; when the CCA is successful, and the system information needs to be updated, the sequence B is sent. ; CCA failed, not sent.
  • the terminal side detects the sequence A, determines that the CCA is successful, does not need to re-read the system information; detects the sequence B, determines that the CCA is successful, needs to re-read the system information; does not detect A or B, and determines that the CCA fails.
  • the base station needs to perform CCA on both the anchor channel and the data channel, so the presence detection sequence may be sent before the anchor channel is transmitted, or may be sent before the data channel is transmitted.
  • the following describes an example of transmitting a presence detection sequence on a data channel.
  • FIG. 14 is a schematic diagram showing another Anchor channel cycle in the embodiment of the present invention.
  • the base station performs CCA before the data channel corresponding to the period n-1 of the anchor channel transmission. After the CCA succeeds, the base station determines which kind of presence detection sequence to send according to whether the system information needs to be updated in the anchor channel period n. If the system information does not need to be updated in the anchor channel period n, the corresponding data channel transmits sequence A in the anchor channel period n-1, and if the system information needs to be updated in the anchor channel period n+1, it corresponds to the anchor channel period n. The data channel transmits sequence B, and the system information update period is equal to the anchor channel transmission period.
  • the solution provided by the embodiment of the present invention by dividing the presence detection sequence into the first sequence and the second sequence, the first sequence indicating that the channel is idle and indicating that the system information needs to be updated, and the second sequence only indicating that the channel is idle without indicating system information An update is required.
  • the terminal device detects the first sequence, it is determined that the system information is to be re-read.
  • the terminal device detects the second sequence, it is determined that the system information does not need to be re-read; the processing manner is such that the multiplexable idle channel evaluation result is corresponding.
  • the sequence is used as an indication message whether the system information needs to be updated at the same time, so as to avoid additionally configuring the system information update indication message; therefore, system resources can be effectively saved.
  • the base station continuously performs idle channel estimation on the first downlink channel until the first evaluation result is that the channel is idle, and when the When the evaluation result is that the channel is idle, the base station generates a first sequence as a system information update indication message, and sends the first sequence to the terminal device in an RRC connected state or an idle state through the idle first downlink channel.
  • FIG. 15 is a schematic diagram showing another cycle of Anchor channel in the embodiment of the present invention.
  • the system information needs to be updated in the anchor channel transmission period n, and the data channel CCA in the anchor channel transmission period n-1 fails.
  • the base station needs to continue the CCA in the corresponding data channel in the anchor channel transmission period n, and the sequence B is sent after the CCA succeeds.
  • the base station needs to continue the CCA in the corresponding data channel in the anchor channel transmission period n+1, and after the CCA succeeds, the sequence B is sent until the CCA succeeds and the sequence B is transmitted, and if the subsequent anchor channel is sent in the period, if The system information does not change, and the sequence A is sent after the CCA succeeds.
  • the base station broadcasts the updated system information to the terminal device through the second downlink channel in the next system information update period.
  • the method before the base station broadcasts the updated system information, the method further includes: performing an idle channel assessment on the second downlink channel; if the second evaluation result corresponding to the second downlink channel is that the channel is not idle, continuing to pass The idle first downlink channel sends the first sequence to the terminal device until the second evaluation result is that the channel is idle, and when the second evaluation result is that the channel is idle, the second downlink channel is used.
  • the terminal device broadcasts updated system information.
  • FIG. 16 is a schematic diagram showing still another Anchor channel cycle in the embodiment of the present invention.
  • the system information needs to be updated in the anchor channel transmission period n, and the data channel CCA in the anchor channel transmission period n-1 is successful, and the sequence B is transmitted.
  • the base station fails the corresponding anchor channel CCA in the anchor channel transmission period n.
  • the base station successfully transmits the data channel CCA in the anchor channel transmission period n, the data channel in the anchor channel transmission period n needs to continue to transmit the sequence B until the next time.
  • the anchor channel CCA is successful in an anchor channel transmission period n+x, after which the base station needs to transmit the sequence A corresponding to the data channel after the anchor channel transmission period n+x+1 and the anchor channel transmission period n+x+1.
  • the steps of a method or algorithm described in connection with the present disclosure may be embodied directly in hardware, a software module executed by a processor, or a combination of both.
  • the software modules can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable hard disk, CD-ROM, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC.
  • the ASIC can be located in the user equipment.
  • the processor and the storage medium may exist as a discrete component in the user equipment.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer readable media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及无线通信技术,公开了系统信息更新方法、接入网设备和终端设备,以及一种无线通信系统。其中一种系统信息更新方法包括:在识别终端设备处于无线资源控制RRC连接状态时,生成第一系统信息更新指示消息;所述第一系统信息更新指示消息包括的消息发送次数为第一消息发送次数;向处于所述RRC连接状态的所述终端设备发送所述第一消息发送次数的所述第一系统信息更新指示消息。采用本发明提供的方法,可以降低系统资源消耗,提升接入网设备发送指示消息的灵活性,提升终端设备操作的灵活性。

Description

系统信息更新方法、接入网设备及终端设备 技术领域
本发明实施例涉及无线通信领域,尤其涉及一种系统信息更新方法和接入网设备,另一种系统信息更新方法和终端设备,以及一种无线通信系统。
背景技术
基于非授权频谱的演进型机器类型通信(Enhanced machine type communication on unlicensed spectrum,eMTC-U)技术是万物互联技术的一个重要分支。eMTC-U基于长期演进(Long Term Evolution,LTE)技术演进而来,更加适合物与物之间的通信,且具有更低的成本。
在eMTC-U系统中,当演进型基站(Evolved NodeB,eNB)确定要更新系统信息时,eNB通过P-RNTI加扰的MPDCCH信道向小区中的终端设备(Terminal Equipment)发送系统信息更新指示(直接指示),从而使终端设备更新系统信息。目前,一种典型的系统信息更新方案的处理流程如下所述。⑴eNB指示处于无线资源控制连接状态(RRC_Connected,RRC连接状态)的终端设备进行RRC连接释放,使终端设备进入无线资源控制空闲状态(RRC_Idle,RRC空闲状态);⑵当终端设备处于RRC空闲状态时,eNB在一个系统信息更新周期中向终端设备发送系统信息更新指示消息;⑶在下一个系统信息更新周期起始边界后,eNB开始发送更新的系统信息。相应的,终端设备收到系统信息更新指示消息,在下个系统信息更新周期重读系统信息。
然而,在实现本发明过程中,发明人发现eMTC-U系统具有如下特点:反应信道干扰情况的系统信息可能会频繁变化。该特点产生的原因是,由于eMTC-U系统工作在非授权频谱上,与其它系统(如Wi-Fi系统,蓝牙系统等)共享该非授权频谱,因此不同系统之间存在相互干扰的现象。为了识别非授权频谱上的干扰状况,eNB需要对系统干扰水平进行测量(即频点或信道测量),如果某个频点或信道不可用或可用,通过系统信息通知终端。由于信道干扰水平动态变化,因此反应信道干扰情况的系统信息可能会频繁变化。
基于eMTC-U系统的上述特点,发明人进一步发现现有技术中至少存在如下问题:1)由于方案要释放终端设备的RRC连接,因此系统信息的频繁变化会频繁导致终端设备进行RRC连接释放及重新接入小区,因此将极大消耗系统资源;2)由于RRC空闲状态下的终端设备不再反馈信道质量,因此接入网设备只能按照极限覆盖的需求,以最大重复次数发送系统信息更新指示消息,因此也将消耗较多的系统资源。
发明内容
本文描述了一种系统信息更新方法和接入网设备,另一种系统信息更新方法和终端设备,以及一种无线通信系统,以降低系统资源消耗,提升接入网设备发送指示消息的灵活性,提升终端设备操作的灵活性。
第一方面,本发明实施例中提供了一种系统信息更新方法,用于接入网设备,包括:在识别终端设备处于无线资源控制RRC连接状态时,生成第一系统信息更新指示消息; 所述第一系统信息更新指示消息包括的消息发送次数为第一消息发送次数;向处于所述RRC连接状态的所述终端设备发送所述第一消息发送次数的所述第一系统信息更新指示消息。
通过本发明实施例提供的方案,基站不要求终端设备进入RRC空闲状态,而是直接通知RRC连接状态的终端设备更新系统信息;这种处理方式,可避免终端设备频繁释放RRC连接及重新进入小区;因此,可以有效降低系统资源消耗。
同时,由于终端设备可在RRC连接状态下接收系统信息更新指示消息,因此终端设备可向基站反馈信道质量,进而使得基站可根据终端设备反馈的信道质量,确定系统信息更新指示消息的重复发送次数,基站在指示消息中携带消息的重复发送次数;这种处理方式,一方面使得基站无需统一按系统配置的最大发送次数向不同状态的终端设备发送相同次数的系统信息更新指示消息,另一方面使得终端设备可获取指示消息的实际发送次数,并根据实际发送次数控制后续操作,如业务数据和/或信令消息传输的恢复时间等;因此,既可以有效提升基站发送指示消息的灵活性,又可以有效提升终端设备操作的灵活性。
结合第一方面,本发明在第一方面的第一种实现方式中,所述方法还包括:在识别终端设备处于RRC空闲状态时,生成第二系统信息更新指示消息;所述第二系统信息更新指示消息包括的消息发送次数为第二消息发送次数;向处于所述RRC空闲状态的所述终端设备发送所述第二消息发送次数的所述第二系统信息更新指示消息。
结合第一方面或第一方面的第一种实现方式,本发明在第一方面的第二种实现方式中,在所述生成第一系统信息更新指示消息之前,所述方法还包括:接收所述终端设备发送的信道质量(Channel Quality Indicator,CQI);根据所述CQI确定所述第一消息发送次数。
在需要覆盖增强的场景下,极限条件下基站需要按照系统配置的最大发送次数发送指示消息,以保证终端设备能够正确接收到指示消息,从中解调出下行信息。RRC连接状态下的终端设备,可以测量信道质量CQI,并通过上行信道将CQI反馈到基站,因此基站可以通过终端设备反馈的CQI确定实际发送次数,即第一消息发送次数。对于RRC空闲状态下的终端,由于终端设备不再反馈信道质量,因此基站只能按照极限覆盖的需求,以最大发送次数发送,即第二消息发送次数为系统配置的最大发送次数。由此可见,第二消息发送次数通常大于第一消息发送次数。这种处理方式,可使基站根据实际信道质量确定消息发送次数;因此,可以有效减少消息发送次数,从而进一步降低系统资源消耗。
结合第一方面、第一方面的第一种实现方式或第一方面的第二种实现方式,本发明在第一方面的第三种实现方式中,所述方法还包括:在发送所述第一消息发送次数的所述第一系统信息更新指示消息的时间单元内,暂停与所述终端设备之间的业务数据和/或信令消息的传输;在所述时间单元后,恢复与所述终端设备之间的所述业务数据和/或所述信令消息的传输。
本发明实施例提供的方案,通过在发送第一消息发送次数的第一系统信息更新指示消息的时间单元内,基站暂停与处于RRC连接状态的终端设备之间的业务数据和/或信令消息传输,以及,终端设备在接收第一指示消息的时间单元内暂停与基站之间 的业务数据和/或信令消息传输,且终端设备根据第一消息发送次数,确定与基站之间的业务数据和/或信令消息传输的恢复时间,并在恢复时间达到时,恢复与基站之间的业务数据和/或信令消息传输;这种处理方式,使得处于RRC连接状态的终端设备可根据第一消息发送次数确定业务数据和/或信令消息传输的恢复时刻,该恢复时刻将早于根据系统配置的最大发送次数确定的业务数据和/或信令消息传输的恢复时刻,由此使得终端设备可尽早恢复与基站之间的业务数据和/或信令消息传输;因此,可以有效减少对处于连接状态的终端设备的业务数据和/或信令消息传输的影响,确保终端设备在正确的时刻恢复业务数据和/或信令消息传输。
结合第一方面、第一方面的第一种实现方式、第一方面的第二种实现方式或第三种实现方式,本发明在第一方面的第四种实现方式中,所述第一系统信息更新指示消息为下行控制信息DCI,所述DCI的直接指示标记为系统信息更新指示,所述DCI的消息发送次数为所述第一消息发送次数。所述第二系统信息更新指示消息为下行控制信息DCI,所述DCI的直接指示标记为系统信息更新指示,所述DCI的消息发送次数为所述第二消息发送次数。
结合第一方面或第一方面的上述各种实现方式,本发明在第一方面的第五种实现方式中,所述向处于所述RRC连接状态的所述终端设备发送所述第一消息发送次数的所述第一系统信息更新指示消息,包括:若在一个系统信息更新周期内所述终端设备的寻呼时刻对应下行有效时间单元,则在所述寻呼时刻开始向所述终端设备发送所述第一消息发送次数的所述第一系统信息更新指示消息;若所述寻呼时刻未对应下行有效时间单元,则在所述寻呼时刻后的下行有效时间单元的起始处开始向所述终端设备重复发送指示消息。
结合第一方面或第一方面的上述各种实现方式,本发明在第一方面的第六种实现方式中,所述向处于所述RRC连接状态的所述终端设备发送所述第一消息发送次数的所述第一系统信息更新指示消息,包括:通过机器类型通信物理下行控制信道(Machine Type Communication Physical Downl ink Control Channel,MPDCCH),向所述终端设备发送第一消息发送次数的第一系统信息更新指示消息。采用这种处理方式,可以避免发送PDSCH信道;因此,可以有效节省信道资源。
结合第一方面或第一方面的上述各种实现方式,本发明在第一方面的第七种实现方式中,还包括:在所述第一系统信息更新指示消息对应的一个系统信息更新周期的下一个系统信息更新周期内,向所述终端设备广播更新的系统信息。
结合第一方面第七种实现方式,本发明在第一方面的第八种实现方式中,所述向所述终端设备广播更新的系统信息,包括:通过固定频点的锚信道,向所述终端设备广播所述更新的系统信息。采用这种处理方式,可以提高系统信息传输的成功率。
第二方面,本发明实施例提供了一种接入网设备,其包括用于执行上述系统信息更新方法设计中接入网设备行为相对应的模块。所述模块可以是软件和/或硬件。
在一种可能的设计中,接入网设备包括处理器和存储器,所述处理器被配置为支持接入网设备执行上述系统信息更新方法中相应的功能。所述存储器用于与处理器耦合,其保存接入网设备必要的程序指令和数据。
第三方面,本发明实施例提供了一种系统信息更新方法,包括:在终端设备处于 无线资源控制RRC连接状态时,接收接入网设备重复发送的第一系统信息更新指示消息,所述第一系统信息更新指示消息包括的消息发送次数为第一消息发送次数;根据所述第一消息发送次数,确定所述接入网设备发送所述第一系统信息更新指示消息的次数。
本发明实施例提供的方案,通过RRC连接状态的终端设备接收基站重复发送的指示消息,且指示消息中携带消息的重复发送次数,终端设备可根据指示消息中携带消息的重复发送次数,确定基站发送指示消息的次数;这种处理方式,使得终端设备可根据实际发送次数控制后续操作,如业务数据和/或信令消息传输的恢复时间等;因此,可以有效提升终端设备操作的灵活性。
结合第三方面,本发明在第三方面的第一种实现方式中,所述方法还包括:在终端设备处于RRC空闲状态时,接收所述接入网设备重复发送的第二系统信息更新指示消息,所述第二系统信息更新指示消息包括的消息发送次数为第二消息发送次数;根据所述第二消息发送次数,确定所述接入网设备发送所述第二系统信息更新指示消息的次数。
结合第三方面或第三方面第一种实现方式,本发明在第三方面的第二种实现方式中,所述第一消息发送次数小于所述第二消息发送次数。
结合第三方面、第三方面第一种实现方式或第三方面第二种实现方式,本发明在第三方面的第三种实现方式中,还包括:获取信道质量CQI;向所述接入网设备发送所述CQI。
结合第三方面、第三方面第一种实现方式、第三方面第二种实现方式或第三方面的第三种实现方式,本发明在第三方面的第四种实现方式中,所述方法还包括:在接收所述第一消息发送次数的所述第一系统信息更新指示消息的时间单元内,暂停与所述接入网设备之间的所述业务数据和/或所述信令消息传输;以及,根据所述第一消息发送次数,确定所述业务数据和/或所述信令消息传输的恢复时间;在所述恢复时间,恢复与所述接入网设备之间的所述业务数据和/或所述信令消息传输。
结合第三方面或第三方面的上述各种实现方式,本发明在第三方面的第五种实现方式中,所述第一系统信息更新指示消息为下行控制信息DCI,所述DCI的直接指示标记为系统信息更新指示,所述DCI的消息发送次数为所述第一消息发送次数。所述第二系统信息更新指示消息为下行控制信息DCI,所述DCI的直接指示标记为系统信息更新指示,所述DCI的消息发送次数为所述第二消息发送次数。
结合第三方面或第三方面的上述各种实现方式,本发明在第三方面的第六种实现方式中,所述接收接入网设备重复发送的第一系统信息更新指示消息,包括:若寻呼时刻对应下行有效时间单元,则终端设备在寻呼时刻开始接收指示消息;若寻呼时刻未对应下行有效时间单元,则终端设备在寻呼时刻后的下行有效子帧对应的时刻开始接收指示消息。
结合第三方面或第三方面的上述各种实现方式,本发明在第三方面的第七种实现方式中,所述接收接入网设备重复发送的第一系统信息更新指示消息,包括:终端设备通过机器类型通信物理下行控制信道MPDCCH接收指示消息。
结合第三方面或第三方面的上述各种实现方式,本发明在第三方面的第八种实现方式中,所述方法还包括:在下一个系统信息更新周期内,终端设备接收所述接入网设备 广播的更新的系统信息;根据所述更新的系统信息,更新终端设备侧对应的系统信息。
结合第三方面或第三方面的上述各种实现方式,本发明在第三方面的第九种实现方式中,所述终端设备通过固定频点的锚信道,接收所述更新的系统信息。
第四方面,本发明实施例提供了一种终端设备,其包括用于执行上述系统信息更新方法设计中终端设备行为相对应的模块。所述模块可以是软件和/或硬件。
在一种可能的设计中,终端设备包括处理器和存储器,所述处理器被配置为支持终端设备执行上述系统信息更新方法中相应的功能。所述存储器用于与处理器耦合,其保存终端设备必要的程序指令和数据。
第五方面,本发明实施例提供了一种无线通信系统,该系统包括上述方面所述的接入网设备和终端设备。
第六方面,本发明实施例提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第七方面,本发明实施例提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
相较于现有技术,本发明提供的方案可以降低系统资源消耗,提升接入网设备发送指示消息的灵活性,提升终端设备操作的灵活性。
附图说明
图1为本发明实施例提供的应用场景示意图;
图2为本发明实施例提供的无线通信系统网络示意图;
图3为本发明实施例提供的系统信息更新周期示意图;
图4为本发明实施例提供的一种系统信息更新流程示意图;
图5为本发明实施例提供的基站与终端设备之间业务数据传输示意图;
图6为本发明实施例提供的基站与终端设备之间信号传输过程示意图;
图7为本发明实施例提供的Anchor信道周期示意图;
图8为本发明实施例提供的无线通信系统交互示意图;
图9为本发明实施例提供的另一种系统信息更新流程示意图;
图10为本发明实施例提供的接入网设备结构示意图;
图11为本发明实施例提供的终端设备结构示意图;
图12为本发明实施例提供的又一种系统信息更新流程示意图;
图13为本发明实施例提供的一种Anchor信道周期示意图;
图14为本发明实施例提供的另一种Anchor信道周期示意图;
图15为本发明实施例提供的又一种Anchor信道周期示意图;
图16为本发明实施例提供的再一种Anchor信道周期示意图。
具体实施方式
下面将结合附图,对本发明的应用场景及实施例中的技术方案做说明。
如图1所示,终端设备与无线接入网(Radio Access Network,RAN)进行无线连接, 终端设备可通过RAN接入核心网(Core Network,CN)。本发明描述的技术可以适用于基于非授权频谱的演进型机器类型通信(Enhanced Machine Type Communication on Unlicensed Spectrum,eMTC-U)系统,或基于授权频谱的演进型机器类型通信(Enhanced Machine Type Communication,eMTC)系统。此外,还可以适用于其它需要进行系统信息更新的系统,例如,长期演进(Long Term Evolution,LTE)系统,使用LTE系统后续的演进系统等等。为清楚起见,这里仅以eMTC-U系统为例进行说明。在eMTC-U系统中,演进的UMTS路面无线接入(Evolved Universal Terrestrial Radio Access Network,E-UTRAN)作为无线接入网,演进分组核心网(Evolved Packet Core,EPC)作为核心网。UE通过E-UTRAN接入EPC。
在本申请中,名词“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义。本发明所涉及到的终端设备包括可以和接入网设备进行数据通信的各种设备,例如,具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile station,MS),终端(terminal)等等。此外,中继Relay也是终端设备。
在eMTC-U系统中,终端设备包括诸如传感器、计量器、监测器、位置标签、无人机、跟踪器、机器人/机器设备等等。终端设备可以分散于整个无线通讯网络中,每一个终端设备可以是静止的,也可以是移动的。在eMTC-U系统中,终端设备还可以称为接入终端、终端、移动站(Mobile Station,MS)、用户单元、站(Station,STA)等等。终端设备可以是蜂窝电话、个人数字助理(PDA)、无线调制解调器、无线通讯设备、手持设备、膝上型计算机、无绳电话、无线本地环路(WLL)站、平板设备、智能电话、上网本、智能本、超级本、娱乐设备(例如,音乐播放器、游戏设备等等)、照相机、车载设备、导航设备、无人机、机器人/机器设备、可穿戴设备(例如,智能手表、智能服装、智能腕带、智能环、智能手环、智能眼镜、虚拟现实护目镜)等等。
本发明所涉及到的接入网设备是一种部署在无线接入网中用以为终端设备提供无线通信功能的装置,接入网设备是与终端设备进行通信的实体。所述接入网设备可以包括各种形式的宏基站,微基站,中继站,接入点(Access Point,AP)等等。在采用不同的无线接入技术的系统中,具备接入网设备功能的设备的名称可能会有所不同,例如在LTE网络中,称为演进的节点B(Evolved Node Base,eNodeB),在3G网络中,称为节点B(Node Base)等等。为方便描述,在本申请中,简称为基站或eNB。
图2示出了本发明实施例的一种无线通信系统网络架构示意图,其主要包括核心网络,接入网络以及终端设备。核心网络EPC作为承载层,能够实现语音呼叫控制等功能。所述核心网络EPC主要包括,移动性管理实体(Mobility Management Entity),服务网关(serving Gateway,SGW),分组数据网关(Packet Data Network Gateway,PGW)等等。所述接入网络主要包括基站。所述终端设备需要支持系统信息更新功能等。
在无线通信系统中,第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)定义了系统信息广播的功能。系统信息广播,是LTE系统中的一个重要功能,包括系统信息的生成、调度和更新等。通过将接入网的系统消息向小区中的终端设备进行广播,从而使终端设备通过获得足够的接入信息和网络建立起无线连接。
系统信息不会一直不变,在终端设备侧看来,如果系统信息长时间不变,终端设备会 重新尝试接收系统信息;如果接入网络侧系统信息发生改变,那么网络侧需要通知终端设备更新系统信息。对于处于RRC空闲状态和RRC连接状态的终端设备都可以通过寻呼来通知其系统信息发生了变更,需要重新获取。
但是,LTE协议规定,除了ETWS(地震和海啸报警系统)及CMAS(商业移动预警系统)告警消息外,系统信息不是随时都可变更的,即广播的变更要发生在特定的时间点,由此引入系统信息更新周期(Modification Period)的概念。为方便描述,在本申请中,简称为更新周期。
下面结合图3,对系统信息更新周期进行详细描述。在时域上,时间被划分成一个个连续的更新周期。LTE协议规定,系统信息更新周期=寻呼周期(Default Paging Cycle)*更新周期系数(Modification Period Coef),其中寻呼周期和更新周期系数在系统信息块SIB2中告知终端设备,更新周期系数取值为2,4,8,16等。也即,UE每隔一个寻呼周期的间隔接收一次寻呼,所以一个更新周期内,终端设备最多接收“更新周期系数”次寻呼。因此,更新周期系数的引入是为了防止信号差时寻呼消息丢失导致终端设备不知道基站要发生系统信息改变或者是为了增加接入网给终端设备发送的寻呼机会。
3GPP通过协议标准化了系统信息更新的一系列处理流程。由图3可见,假设在某一更新周期广播控制信道BCCH modification period(n)内系统信息发生了改变,此时基站不会立刻重新下发新的系统信息广播,而是在这个更新周期n内,基站根据各终端设备的寻呼周期、终端设备标识等参数确定各终端设备的寻呼消息发送时刻,即寻呼时刻,基站在寻呼时刻发送寻呼消息,通知小区中的所有终端设备系统信息广播发生了变更。到下一个更新周期(更新周期n+1)的起始处,基站才会下发新的系统信息广播。
3GPP中LTE定义了寻呼消息和寻呼周期(DRX周期)。寻呼消息对应的物理下行控制信道(Physical Downlink Control Channel,PDCCH)和物理下行共享信道(Physical Downl ink Shared Channel,PDSCH)通过寻呼无线网络临时标识P-RNTI加扰,并通过PDSCH信道中的携带的信息比特指示系统信息更新。
在每一个更新周期内,UE都会根据寻呼周期、终端设备标识等参数确定该终端设备的寻呼消息发送时刻,在寻呼时刻监听寻呼消息以判断系统信息是否发生变更(每个更新周期内至多可以监听“更新周期系数”次),如果在寻呼时刻监听到基站发送了系统信息更新指示,则在下一个系统信息更新周期接收更新后的系统信息。为了正确接收系统信息广播,终端设备在发现系统信息变更时,需要识别两个相邻更新周期的边界,在新的更新周期起始时,开始接收新的系统信息。
下面将基于上面所述的本发明涉及的共性方面,对本发明实施例进一步详细说明。
本发明的一个实施例提供一种系统信息更新方法,接入网设备,终端设备及无线通信系统。所述基站确定系统信息发生改变时,直接指示小区内的RRC连接状态的终端设备进行系统信息更新,且基站可根据RRC连接状态的终端设备反馈的信道质量,确定系统信息更新指示消息的重复发送次数,且在指示消息中携带消息的重复发送次数。
eMTC-U系统的系统信息有多种,系统信息可以通过主信息块(Master Information Block,MIB),锚点信道发送的信息块(System Information Block on Anchor,SIB-A),系统信息块(System Information Blocks,SIBs)承载。当锚点信道上的系统信息通过MIB和SIB-A发送时,MIB和SIB-A中可能承载的系统信息分别如表1所示:
Figure PCTCN2017113320-appb-000001
表1、MIB和SIB-A承载的系统信息
当锚点信道上的系统信息通过MIB发送时,MIB可能承载的系统信息分别如表2所示:
Figure PCTCN2017113320-appb-000002
表2、MIB承载的系统信息
以锚点信道上的系统信息通过MIB和SIB-A发送为例,当SIB-A中中任意一种系统信息需要变更时,eNB向UE发送系统信息更新指示,UE根据eNB发送的指示消息,读取SIB-A,更新系统参数,并通过SIB-A中的systemInfoValueTag字段判断是否需 要继续读取其它的SIBs。
系统信息可以通过MIB和SIB-A发送,也可以通过MIB发送。无论采用哪种方式发送,有一点是相同的,即:系统信息是动态变化的,频繁更新的可能性。
eMTC系统中采用的系统信息更新方案,基站首先指示终端设备释放RRC连接,使得终端设备进入RRC空闲状态,然后再发送下行控制信息DCI(如DCI 6-2格式)的直接指示(direct indication)消息,即要求终端设备统一在RRC空闲状态下接收系统更新指示消息,该系统信息更新方案并没有考虑系统信息频繁变化导致频繁释放RRC连接及重新接入小区,从而造成消耗较多系统资源的问题。此外,该系统信息更新方案中,由于RRC空闲状态下的终端设备不再反馈信道质量,因此接入网设备只能按照极限覆盖的需求,以最大重复次数发送系统信息更新指示消息,也导致消耗较多的系统资源。
通过本发明实施例提供的方案,基站不要求终端设备进入RRC空闲状态,而是直接通知RRC连接状态的终端设备更新系统信息;这种处理方式,可避免终端设备频繁释放RRC连接及重新进入小区;因此,可以有效降低系统资源消耗。同时,基站可根据RRC连接状态的终端设备反馈的信道质量,确定系统信息更新指示消息的重复发送次数;这种处理方式,可使基站根据实际信道质量确定消息发送次数,因而减少了消息发送次数;因此,可以有效提升基站发送指示消息的灵活性,从而进一步降低系统资源消耗。同时,基站在指示消息中携带消息的重复发送次数;这种处理方式,使得终端设备可获取指示消息的实际发送次数,终端设备根据实际发送次数控制后续操作,如业务数据和/或信令消息传输的恢复时间等;因此,可以有效提升终端设备操作的灵活性。
下面结合附图4,对本发明的实施例进行说明。
在401部分,基站在识别终端设备处于无线资源控制RRC连接状态时,生成第一系统信息更新指示消息。
本发明实施例提供的方案,在基站确定系统信息发生改变需要通知终端设备进行系统信息更新时,则生成系统信息更新指示消息,该指示消息携带指示消息的发送次数。
为方便描述,在本申请中,将系统信息更新指示消息简称为指示消息或消息;并将向RRC连接状态的终端设备发送的指示消息称为第一系统信息更新指示消息,简称为第一指示消息,且将第一指示消息的发送次数称为第一消息发送次数;并将向RRC空闲状态的终端设备发送的指示消息称为第二系统信息更新指示消息,简称为第二指示消息,且将第二指示消息的发送次数称为第二消息发送次数。
在一个示例中,基站识别到终端设备处于无线资源控制RRC连接状态时,可采用如下步骤确定第一消息发送次数;1)接收终端设备发送的信道质量CQI;2)根据CQI确定第一消息发送次数。由于第一消息发送次数是根据实际信道质量确定的,因此第一消息发送次数通常小于系统配置的最大消息发送次数。采用这种处理方式,可以减少消息发送次数;因此,可以有效降低系统资源消耗。
指示消息可以为下行控制信息(Downlink Control Information,DCI)。DCI可由下行物理控制信道PDCCH承载,包括基站发给终端设备的下行控制信息。DCI子帧包含的内容如表3所示:
直接指示的标记 1比特
直接指示信息 8比特
保留字段 x比特
表3、DCI子帧内容
当DCI子帧的“直接指示的标记”标记为0时,表示下行控制信道携带系统信息更新指示消息,即“直接指示信息”有效,其对应的8比特使用位图(bitmap)的方式表示表4的信息:
Figure PCTCN2017113320-appb-000003
表4、直接指示的信息
在一个示例中,DCI子帧的部分保留字段可用作指示消息的重复发送次数,即消息发送次数使用DCI的预留字段传输。如果保留字段为x比特,消息发送次数可占用其中n个比特,n为大于1的正整数,例如,n=2或n=3等等;这种处理方式,可以保证DCI子帧格式及长度不变,从而兼容无线通信系统的现有功能。包括消息发送次数的DCI子帧的内容如表5所示:
直接指示的标记 1比特
直接指示信息 8比特
DCI子帧消息发送次数 n比特
保留字段 (x-n)比特
表5、包括重复发送次数的DCI子帧内容
在另一个示例中,也可以增加DCI的比特数,增加的比特数用于表示指示消息的重复发送次数;这种处理方式,使得不占用DCI现有的保留字段;因此,可以将现有保留字段用于表示其它更为有用的信息。
需要说明的是,要实现本发明实施例提供的方案,基站首先要确定系统信息发生变化,并确定需要通知终端设备进行系统信息更新。在一个示例中,基站可通过主动检测的方式来确定系统信息是否发生变化,当检测到系统信息发生变化时,获取更新的系统信息。基站可以根据预先配置的检测周期,定期发起主动检测系统信息是否发生变化的操作;也可以根据业务需要在任意时刻发起主动检测。
例如,eMTC-U系统的系统信息包括数据信道的干扰状况,基站要确定该系统信息是否发生变化,可采用如下方式:在基站准备向终端设备发送数据前,基站首先主动对信道进行多次CCA,根据CCA结果统计信道的干扰情况。如果多次CCA结果均显示某一个或某一些信道被占用,基站可以限定这些被占用的信道在一段时间T之内不再 使用,并通过系统信息更新的方式通知终端设备该信道不可用。基站可以在时间T后继续对这些信道进行空闲信道评估,如果基站在统计时间内,多次测量到信道的接收能量低于门限值,则认为信道可以继续使用,并通过系统信息更新的方式再次通知终端设备信道可用。
基站可以通过直接检测方式来确定系统信息是否发生变化,也可以通过间接检测方式来确定系统信息是否发生变化。例如,要确定eMTC-U系统的数据信道的干扰状况是否发生变化时,基站可以首先对不同的频点进行测量,确定可用的频点和不可用的频点,当基站工作在跳频模式时,数据信道的索引可以根据可用频点索引决定。
基站生成第一指示消息后,就可以进入402部分,通知终端设备需要更新系统信息。
在402部分,基站向处于RRC连接状态的终端设备发送第一消息发送次数的第一系统信息更新指示消息。
基站向终端设备发送指示消息前,首先要根据寻呼周期和终端设备标识确定在一个系统信息更新周期内终端设备对应的寻呼发送时刻。在确定终端设备对应的寻呼时刻后,在该系统信息更新周期内终端设备对应的寻呼时刻,根据消息发送次数向终端设备重复发送指示消息。例如,基站确定要向处于RRC连接状态的终端设备发送10次指示消息时,基站首先要生成指示消息,并使该指示消息包括消息发送次数为10的指示信息,然后将该指示消息重复向该终端设备发送10次。
基站可通过下行控制信道向终端设备发送指示消息,下行控制信道包括但不限于PDCCH信道,增强的物理下行控制信道(Enhanced Physical Downlink Control Channel,EPDCCH信道),MPDCCH信道,(Narrowband Physical Downlink Control Channel,NPDCCH信道)等。例如,基站向终端设备发送只包含P-RNTI加扰的PDCCH,并通过PDCCH信道中携带的信息比特指示系统信息更新。
在一个示例中,无线通信系统为eMTC系统,由于eMTC系统中终端设备的工作场景包括工厂,车间,码头等,这些地方一般存在遮挡,因而导致信号衰落严重,为了提高信号覆盖范围,需要增强下行信道或下行信号的性能,因此需要发送多次指示消息。这种情况下,基站要发送指示消息,可以只包含P-RNTI加扰的PDCCH,并通过PDCCH信道中携带的信息比特指示系统信息更新。采用这种处理方式,使得基站无需发送多次PDSCH,因此,可以有效节省信道资源。
基站向终端设备重复发送指示消息的起始时刻,可以是终端设备对应的寻呼时刻,即发送的多次指示消息的起始时间单元对应于寻呼时刻所在的时间单元,该寻呼时刻需对应下行有效时间单元。基站向终端设备重复发送指示消息的起始时刻,还可以是寻呼时刻对应的时间单元之后的第一个下行有效时间单元对应的时刻,即起始时间单元为寻呼时刻对应的时间单元之后的第一个下行有效时间单元,该寻呼时刻对应的时间单元不是下行有效时间单元。
本发明实施例提供的方案,基站可向处于RRC连接状态的终端设备发送系统信息更新指示。在一个示例中,在基站向处于RRC连接状态的终端设备发送多次指示消息的时间单元内,基站将暂停与终端设备之间的业务数据和/或信令消息传输,并在发送完指示消息后,恢复与终端设备之间的业务数据和/或信令消息传输。
所述时间单元可以是重复发送多次指示消息占用的时间长度,可以为N个子帧或N个时隙,N为大于1的整数。在一个示例中,对于包含指示消息的DCI,基站要重复发送8次DCI,如果基站发送一次DCI的最小时间单位为1个子帧,则基站需要发送8个子帧,对应的时间长度为8个子帧;如果基站发送一次DCI的最小时间单位为1个时隙,则基站需要发送8个时隙,对应的时间长度为8个时隙。
所述信令消息不包括指示消息。基站暂停与终端设备之间的业务数据和/或信令消息传输,可采用如下方式的至少一个:1)基站暂停向终端设备发送下行授权和上行授权信息,所述下行授权信息包括下行PDSCH信道的控制信息,所述上行授权信息包括上行PUSCH信道的控制信息;2)基站暂停向终端设备发送下行PDSCH信道,所述PDSCH信道承载下行业务或高层控制信息,所述下行业务包括但不限于语音业务,流媒体业务,网页浏览业务,所述高层控制信息包括RRC信令或系统广播信息;3)基站暂停接收终端设备的物理上行共享信道(Physical Uplink Shared Channel,PUSCH信道)和/或物理上行控制信道(Physical Uplink Control Channel,PUCCH信道)。
相应的,终端设备在接收指示消息期间也要暂停与基站之间的业务数据和/或信令消息传输,且可根据所述第一消息发送次数,确定信号传输的恢复时间;在所述恢复时间,恢复与所述接入网设备之间的业务数据和/或信令消息传输。
终端设备暂停与基站之间的业务数据和/或信令消息传输,可采用如下方式的至少一个:1)终端设备暂停接收下行授权和上行授权信息;2)终端设备暂停接收下行PDSCH信道;3)终端设备暂停发送上行PUSCH信道,所述PUSCH信道承载上行业务或上行控制信息,所述上行业务包括但不限于语音业务,流媒体业务,网页浏览业务,所述上行控制信息包括但不限于对下行PDSCH信道的反馈信息,对下行链路质量的反馈信息;4)终端设备暂停发送上行PUCCH信道,所述PUCCH信道承载上行控制信息,所述上行控制信息包括但不限于对下行PDSCH信道的反馈信息,对下行链路质量的反馈信息。
下面结合附图5,对基站与终端设备之间的业务数据传输进行详细说明。在子帧n时刻前,基站与终端设备之间进行业务数据的传输;在子帧n时刻,基站通过PDCCH信道向终端设备重复发送系统信息更新指示消息,N次指示消息在时域上对应N个子帧;在子帧n+N+1时刻,基站与终端设备之间恢复业务数据传输。
下面结合附图6,对基站与终端设备之间的信号传输过程进行详细说明。参见图6(a),假定基站与终端设备之间为通过PDSCH信道传输的下行业务,基站根据覆盖要求确定PDSCH信道需要重复发送8个子帧。参见图6(b),其为指示消息包括消息发送次数的情况,假定基站向设备发送指示消息的重复次数为4次,即对应4个子帧,如果PDSCH发送过程中,遇到了寻呼时刻所在的子帧,基站在寻呼时刻所在的子帧开始,通过PDCCH信道连续发送4个子帧的指示消息,在这4个子帧对应的时间单元内,基站与终端设备之间暂停业务数据的传输,且在这4个子帧后立即恢复业务数据的传输。参见图6(c),其为指示消息不包括消息发送次数的情况,该情况下只是通过广播信息配置了指示消息的最大发送次数,假定最大发送次数为6次,即对应6个子帧,如果PDSCH发送过程中,遇到了寻呼时刻所在的子帧,基站在寻呼时刻所在的子帧开始,可能根据覆盖要求,通过PDCCH信道连续发送了4个子帧的指示消息,但终端设备只能按照最大发送次数6进行指示消息的发送和接收,即需在6个子帧对应的时间 单元内,基站与终端设备之间暂停业务数据的传输,且只有在这6个子帧后才能恢复业务数据的传输;由此可见,b图方案对业务影响小,c图方案对业务影响大。参见图6(d),其也为指示消息不包括消息发送次数的情况,该情况下在寻呼时刻所在的子帧开始,根据广播信息配置的指示消息的最大发送次数为6次,且通过PDCCH信道连续发送了6个子帧的指示消息,终端设备也按照最大发送次数6进行指示消息的接收。
本发明实施例提供的方案,通过在发送第一消息发送次数的第一系统信息更新指示消息的时间单元内,基站暂停与处于RRC连接状态的终端设备之间的业务数据和/或信令消息传输,以及,终端设备在接收第一指示消息的时间单元内暂停与基站之间的业务数据和/或信令消息传输,且终端设备根据第一消息发送次数,确定与基站之间的业务数据和/或信令消息传输的恢复时间,并在恢复时间达到时,恢复与基站之间的业务数据和/或信令消息传输;这种处理方式,使得处于RRC连接状态的终端设备可根据第一消息发送次数确定业务数据和/或信令消息传输的恢复时刻,该恢复时刻将早于根据系统配置的最大发送次数确定的业务数据和/或信令消息传输的恢复时刻,由此使得终端设备可尽早恢复与基站之间的业务数据和/或信令消息传输;因此,可以有效减少对处于连接状态的终端设备的业务数据和/或信令消息传输的影响,确保终端设备在正确的时刻恢复业务数据和/或信令消息传输。
在另一个示例中,在基站识别终端设备处于RRC空闲状态时,生成第二系统信息更新指示消息;并向处于RRC空闲状态的终端设备发送第二消息发送次数的第二系统信息更新指示消息。所述第二系统信息更新指示消息也可包括消息发送次数,该次数为第二消息发送次数。
在需要覆盖增强的场景下,极限条件下基站需要按照系统配置的最大发送次数发送指示消息,以保证终端设备能够正确接收到指示消息,从中解调出下行信息。RRC连接状态下的终端设备,可以测量信道质量CQI,并通过信道将CQI反馈到基站,因此基站可以通过终端设备反馈的CQI确定实际发送次数,即第一消息发送次数。对于RRC空闲状态下的终端,由于终端设备不再反馈信道质量,基站只能按照极限覆盖的需求,以最大发送次数发送,即第二消息发送次数为系统配置的最大发送次数。由此可见,第二消息发送次数通常大于第一消息发送次数。
所述信道质量,可以是接收信号能量(Received Signal Strength Indicator,RSSI),接收信号功率(Reference Signal Received Power,RSRP),信干噪比(Signal-to-Interference plus Noise Ratio,SINR)等等。终端设备可以对信道质量进行测量,假设终端设备A的信道质量为x,终端设备B的信道质量为y,如果x小于y,则当终端设备A上报x、终端设备B上报y时,接入网确定终端设备A的信道质量较低,因此要向终端设备A发送较多次数的指示消息,接入网确定终端设备B的信道质量较高,因此要向终端设备B发送较少次数的指示消息。
本发明实施例提供的方案,通过向处于不同状态的终端设备发送不同次数的指示消息,使得减少了消息发送次数;因此,可以有效提升基站发送指示消息的灵活性,从而进一步降低系统资源消耗。
在一个示例中,在基站向终端设备重复发送第一指示消息之后,基站将在第一指示消息对应的更新周期的下一个更新周期内,向终端设备广播更新的系统信息,从而 使终端设备通过获得足够的接入信息和网络建立起无线连接。
在基于非授权频谱的无线通信系统(如eMTC-U)中,基站可以通过固定频点的锚信道(Anchor信道)向终端设备广播更新的系统信息,也可以通过非锚信道的数据信道进行广播。
下面结合附图7,对通过固定频点的锚信道向终端设备广播系统信息的过程进行详细说明。由于基于非授权频谱的无线通信系统工作在共享频谱上,因此数据信道可能受到其它系统的干扰。为了减少基站和终端设备的同步时间和降低终端设备的功耗,基站的主同步信号PSS、辅同步信号SSS和系统消息MIB、SIB-A在一个或者若干个固定频点的信道进行发送。该信道即Anchor信道,Anchor信道和数据信道工作在不同的频点,Anchor信道只传下行数据或只发送下行信道。为了保证Anchor信道公平使用,多个基站周期性占用Anchor信道,该周期称为Anchor信道周期。图6中Anchor信道周期为80ms,基站占用Anchor信道向UE广播系统信息的时间为5ms,一个Anchor信道周期内包含一个数据信道。
由图7可见,基站通过Anchor信道广播系统信息,而非通过其它数据信道进行广播;这种处理方式,可以避免由数据信道受到干扰导致的数据信道不可用;因此,可以有效保证同步信号和系统信息发送成功或接收。
Anchor信道可以被配置一个或多个频点。为Anchor信道配置多个频点,使得当其中一个频点干扰严重时,可以允许切换到其它的频点。
在一个示例中,基站在向终端设备广播系统信息之前,可首先进行空闲信道评估(Clear Channel Assessment,CCA),测量当前信道上的能量情况,如果测量得到的能量超过门限,则认为信道被占用,此时不能发送数据;反之,如果测量得到的能量低于门限,则认为信道空闲,此时可以发送数据。这样,基站间就实现了时分复用对信道进行抢占,避免因同时发送数据而产生的相互干扰。
下面将结合图8对本发明的实施例作进一步说明。
在801部分,基站识别终端设备是否处于RRC连接状态。
在802部分,基站在识别终端设备处于RRC连接状态时,生成第一系统信息更新指示消息,该消息包括第一消息发送次数。
在802’部分,基站在识别终端设备处于RRC空闲状态时,生成第二系统信息更新指示消息,该消息包括第二消息发送次数。
在803-A部分,在一个系统信息更新周期n内终端设备对应的寻呼时刻,终端设备暂停与基站之间的业务数据和/或信令消息传输;以及,在803-B部分,在一个系统信息更新周期n内终端设备对应的寻呼时刻,基站暂停与终端设备之间的业务数据和/或信令消息传输。
在804部分,在一个系统信息更新周期n内终端设备对应的寻呼时刻开始的时间单元,基站向终端设备重复发送指示信息,该时间单元的长度为发送所述消息发送次数的指示消息对应的时长。
在805部分,在一个系统信息更新周期n内终端设备对应的寻呼时刻开始的时间单元,终端设备接收基站重复发送的指示消息。具体方式可为,终端设备检测是否有P-RNTI加扰的PDCCH发送,如果有,则检测是否为系统信息更新指示,如果为系统信 息更新指示,则不需要接收P-RNTI加扰的PDSCH,只需要根据PDCCH内DCI内容判断在下一个系统信息更新周期n+1需要重新读取哪些系统信息。
在806部分,终端设备根据重复发送次数确定业务数据和/或信令消息传输的恢复时刻。
在807-A部分,终端设备在恢复时刻恢复与基站之间的业务数据和/或信令消息传输,以及在807-B部分,基站在重复发送完指示消息后,恢复与终端设备之间的业务数据和/或信令消息传输。
在808部分,基站在系统信息更新周期n内发送完指示消息后,在系统信息更新周期n+1内,向终端设备广播更新的系统信息。
在809部分,终端设备在系统信息更新周期n+1内,接收基站向终端设备广播的更新的系统信息。
在810部分,终端设备根据接收到的更新的系统信息,更新终端设备侧的系统信息。
从上述实施例可以看出,本发明实施例提供的系统信息更新方法,基站不要求终端设备进入RRC空闲状态,而是直接通知RRC连接状态的终端设备更新系统信息;这种处理方式,可避免终端设备频繁释放RRC连接及重新进入小区;因此,可以有效降低系统资源消耗。同时,基站可根据RRC连接状态的终端设备反馈的信道质量,确定系统信息更新指示消息的重复发送次数;这种处理方式,可使基站根据实际信道质量确定消息发送次数,因而减少了消息发送次数;因此,可以有效提升基站发送指示消息的灵活性,从而进一步降低系统资源消耗。同时,基站在指示消息中携带消息的重复发送次数;这种处理方式,使得终端设备可获取指示消息的实际发送次数,终端设备根据实际发送次数控制后续操作,如业务数据和/或信令消息传输的恢复时间等;因此,可以有效提升终端设备操作的灵活性。
图9示出了上述实施例中所涉及的终端设备侧的系统信息更新方法的流程示意图。
在901部分,在终端设备处于无线资源控制RRC连接状态时,终端设备接收基站重复发送的第一系统信息更新指示消息。
终端设备可通过下行控制信道接收指示消息。处于RRC连接状态的终端设备在一个系统信息更新周期内的每个寻呼周期内的该终端设备对应的寻呼时刻,可监控下行控制信道上是否有该终端设备的P-RNTI,如果发现,则终端设备读取相应的指示消息,并检测指示消息是否包含了系统信息更新的指示信息。第一系统信息更新指示消息包括的消息发送次数为第一消息发送次数。
在一个示例中,所述第一系统信息更新指示消息为下行控制信息DCI,所述DCI的直接指示标记为系统信息更新指示,所述DCI的消息发送次数为所述第一消息发送次数。如果终端设备收到的指示消息指示系统信息更新,终端设备就知道系统信息在下个系统信息更新周期边界会改变,并获取到指示消息的重复发送次数。
下行控制信道包括但不限于PDCCH信道,EPDCCH信道,MPDCCH信道,NPDCCH信道等。具体的可参照上述实施例一中402部分所述,在此不再赘述。
基站在一个系统信息更新周期内的寻呼周期的终端设备对应的寻呼时刻,向处于 连接状态的终端设备发送多次指示消息。终端设备可以合并多个指示消息以增强接收到的信号功率,并在合并后的指示消息的信号强度达到信号解调门限时,判断基站是否发送了系统信息变更指示消息,并获取第一消息发送次数。
如果基站在终端设备寻呼时刻开始发送指示消息,则终端设备在寻呼时刻对应的子帧的时刻开始接收指示消息。如果基站在终端设备寻呼时刻后的下行有效子帧对应的时刻开始发送指示消息,则终端设备在寻呼时刻后的下行有效子帧对应的时刻开始接收指示消息。
第一消息发送次数可以由基站根据终端设备的实际信道质量确定。要使得基站能够根据终端设备的实际信道质量确定指示消息的发送次数,终端设备需要向基站反馈信道质量CQI。在一个示例中,终端设备可通过如下步骤向基站反馈CQI:1)获取CQI;2)向接入网设备发送CQI。
在902部分,终端设备根据所述第一消息发送次数,确定基站发送所述第一系统信息更新指示消息的次数。
基站在指示消息中携带消息的重复发送次数,终端设备可根据指示消息中携带消息的重复发送次数,确定基站发送所述第一系统信息更新指示消息的次数。
本发明实施例提供的方案,通过RRC连接状态的终端设备接收基站重复发送的指示消息,且指示消息中携带消息的重复发送次数,终端设备可根据指示消息中携带消息的重复发送次数,确定基站发送指示消息的次数;这种处理方式,使得终端设备可根据实际发送次数控制后续操作,如业务数据和/或信令消息传输的恢复时间等;因此,可以有效提升终端设备操作的灵活性。
在一个示例中,在终端设备接收所述第一消息发送次数的所述第一系统信息更新指示消息的时间单元内,终端设备暂停与基站之间的业务数据和/或信令消息传输;以及,根据所述第一消息发送次数,确定业务数据和/或所述信令消息传输的恢复时间;在所述恢复时间,恢复与基站之间的业务数据和/或信令消息传输。具体的可参照上述实施例一中相关说明,在此不再赘述。
在另一个示例中,在终端设备处于RRC空闲状态时,终端设备接收基站重复发送的第二系统信息更新指示消息,所述第二系统信息更新指示消息包括的消息发送次数为第二消息发送次数;终端设备根据所述第二消息发送次数,确定基站发送所述第二系统信息更新指示消息的次数。所述第一消息发送次数通常小于所述第二消息发送次数。具体的可参照上述实施例一中相关说明,在此不再赘述。
所述第二系统信息更新指示消息为下行控制信息DCI,所述DCI的直接指示标记为系统信息更新指示,所述DCI的消息发送次数为所述第二消息发送次数。
在一个示例中,终端设备在一个系统信息更新周期n内接收到系统信息更新指示后,将在下一个系统信息更新周期n+1内,接收基站广播的更新的系统信息,并根据接收到的更新的系统信息,更新终端设备侧对应的系统信息。
上述主要从各个网元之间交互的角度对本发明实施例提供的方案进行了介绍。可以理解的是,各个网元,例如终端设备,接入网设备等为了上限上述功能,其包含了执行各个功能相应的模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以硬件和计算机软件的结合来实现。这些功能究竟以硬件还 是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
图10示出了上述实施例中所涉及的接入网设备的设计的方框图。
接入网设备包括发射器/接收器1001,控制器/处理器1002,存储器1003以及通信单元1004。所述发射器/接收器1001用于支持接入网设备与上述实施例中的所述的终端设备之间收发信息,以及支持所述终端设备与其它终端设备之间进行无线电通信。所述控制器/处理器1002执行各种用于与终端设备通信的功能。在上行链路,来自所述终端设备的上行链路信号经由天线接收,由接收器1001进行调解,并进一步由控制器/处理器1002进行处理来恢复终端设备所发送的业务数据和信令消息。在下行链路上,业务数据和信令消息由控制器/处理器1002进行处理,并由发射器1001进行调解来产生下行链路信号,并经由天线发射给终端设备。控制器/处理器1002还执行图4至图8中涉及接入网设备的处理过程和/或用于本申请所描述的技术的其他过程。存储器1003用于存储接入网设备的程序代码和数据。通信单元1004用于支持接入网设备与其他网络实体进行通信。例如,用于支持接入网设备与图1中示出的其他通信实体间进行通信,例如位于核心网EPC中的设备等。
可以理解的是,图10仅仅示出了接入网设备的简化设计。可以理解的是,接入网设备可以包含任意数量的发射器,接收器,处理器,控制器,存储器,通信单元等。
图11示出了上述实施例中所涉及的终端设备的设计的方框图。
编码器1106接收要在上行链路上发送的业务数据和信令消息。编码器1106对业务数据和信令消息进行处理(例如,格式化、编码和交织)。调制器1007进一步处理(例如,符号映射和调制)编码后的业务数据和信令消息并提供输出采样。发射器1101调节(例如,模拟转换、滤波、放大和上变频等)该输出采样并生成上行链路信号,该上行链路信号经由天线发射给上述实施例中所述的接入网设备。在下行链路上,天线接收上述实施例中接入网设备发射的下行链路信号。接收器1102调节(例如,滤波、放大、下变频以及数字化等)从天线接收的信号并提供输入采样。解调器1109处理(例如,解耦)该输入采样并提供符号估计。解码器1108处理(例如,解交织和解码)该符号估计并提供发送给UE的已解码的数据和信令消息。编码器1106、调制器1107、解调器1109和解码器1108可以由调制解调处理器1105来实现。这些单元根据无线接入网采用的无线接入技术(例如,eMTC、eMTC-U、LTE及其他演进系统的接入技术)来进行处理。
控制器/处理器1103对终端设备的动作进行控制管理,用于执行上述实施例中由UE进行的处理。例如用于控制终端设备根据接收到的指示消息更新系统信息和/或本发明所描述的技术的其他过程。作为示例,控制器/处理器1103用于支持终端设备执行图9中的过程。存储器1104用于存储用于终端设备的程序代码和数据。
用于执行本发明上述接入网设备或终端设备功能的控制器/处理器可以是中央处理器(CPU),通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC),现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件不见或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器 的组合等等。
图12示出了本发明实施例中又一种系统信息更新方法的流程示意图。
在1201部分,若基站确定需要进行系统信息的更新,则基站在一个系统信息更新周期中,对用于发送系统信息更新指示消息的第一下行信道进行空闲信道评估。
在1202部分,若所述第一下行信道对应的第一评估结果为信道空闲,则基站生成作为系统信息更新指示消息的第一序列,并通过空闲的第一下行信道向处于RRC连接状态或空闲状态的终端设备发送所述第一序列。
所述第一下行信道包括用于传送系统信息更新指示消息的下行信道。系统信息通过第二下行信道传输。
图13示出了本发明实施例中一种Anchor信道周期示意图。所述第一下行信道包括N个用于跳频的数据信道,所述第二下行信道包括M个频点固定频点的信道,固定频点的信道又称为锚(Anchor)信道。基站在频点固定的信道上周期进行信道评估,周期为T;如果信道评估结果为空闲,则基站在固定频点的信道上发送信息,如果信道评估结果为忙,则该周期不再占用该固定频点。基站在每个周期T内,对1个或多个数据信道进行信道评估,如果评估结果为空闲,则基站首先在数据信道上发送第一序列或第二序列,第一序列用于通知终端设备进行系统信息更新。所述数据信道为N个用于跳频的数据信道的子集,所述第一序列和第二序列用于终端设备进行存在性检测。在一个固定频点周期中,终端设备检测是否具有基站发送的作为系统信息更新指示消息的第一序列;若是,则在下一个固定频点周期中,接收基站广播的更新的系统信息。
若第一评估结果为信道空闲但基站确定无需更新系统信息,则基站生成仅作为信道空闲指示的第二序列,并通过空闲信道向终端设备发送所述第二序列。
在终端设备侧,如果终端设备在一个系统信息更新周期中检测到第一序列,则终端设备将在下一个系统信息更新周期中,接收基站广播的更新的系统信息,并根据所述更新的系统信息,更新终端设备侧对应的系统信息。如果终端设备在一个系统信息更新周期中检测到第二序列,则终端设备获知无需更新系统信息。
空闲信道评估的结果为一个序列(如Zadoff-Chu序列),终端设备根据该序列判断基站侧CCA是否成功,进而确定是否继续接收后续信息,因而将该序列称为存在性检测序列。现有技术下,评估结果如果为空闲,则基站向终端设备发送存在性检测序列;如果为忙,则不发送存在性检测序列。
Zadoff-Chu序列具有较好的互相关性和自相关性,在LTE系统中有广泛的使用,下面以Zadoff-Chu序列为例,说明存在性检测序列在本方案中的具体使用。Zadoff-Chu序列的生成公式:
Figure PCTCN2017113320-appb-000004
其中,NZC为Zadoff-Chu序列长度,u为Zadoff-Chu序列的根参数;通过取不同的u值,可以生成不同的Zadoff-Chu序列,也可以通过其他方式生成不同的Zadoff-Chu序列,比如通过对相同u值下生成的Zadoff-Chu序列进行循环移位,本方案不做限制。
以不同的根参数生成不同的Zadoff-Chu序列为例,假定根参数为u1生成的 Zadoff-Chu序列为序列A,根参数u2生成的Zadoff-Chu序列为序列B,则:CCA成功,且系统信息无需更新时,发送序列A;CCA成功,且系统信息需要更新时,发送序列B;CCA失败,不发送。相应的,终端侧:检测到序列A,判断CCA成功,不需要重新读取系统信息;检测到序列B,判断CCA成功,需要重新读取系统信息;没有检测到A或B,判断CCA失败。
需要说明的是,基站在anchor信道和数据信道都需要进行CCA,因此存在性检测序列可以在anchor信道发送之前发送,也可以在数据信道发送之前发送。下面以数据信道发送存在性检测序列为例进行说明。
图14示出了本发明实施例中另一种Anchor信道周期示意图。基站在anchor信道发送周期n-1对应的数据信道之前进行CCA,CCA成功后,基站根据anchor信道周期n内系统信息是否需要更新,决定发送哪一种存在性检测序列。如果anchor信道周期n内系统信息不需要更新,则在anchor信道周期n-1内对应的数据信道发送序列A,如果anchor信道周期n+1内系统信息需要更新,则在anchor信道周期n对应的数据信道发送序列B,系统信息更新周期等于anchor信道发送周期。
本发明实施例提供的方案,通过将存在性检测序列划分为第一序列和第二序列,第一序列即指示信道空闲又指示系统信息需要更新,第二序列仅指示信道空闲而不指示系统信息需要更新,当终端设备检测到第一序列时,确定要重读系统信息,当终端设备检测到第二序列时,确定无需重读系统信息;这种处理方式,使得可复用空闲信道评估结果对应的序列,将其同时作为系统信息是否需要更新的指示消息,避免再额外配置系统信息更新指示消息;因此,可以有效节省系统资源。
在一个示例中,若所述第一评估结果为信道不空闲,则基站持续对所述第一下行信道进行空闲信道评估,直至所述第一评估结果为信道空闲为止,并当所述第一评估结果为信道空闲时,基站生成作为系统信息更新指示消息的第一序列,并通过空闲的第一下行信道向处于RRC连接状态或空闲状态的终端设备发送所述第一序列。
图15示出了本发明实施例中又一种Anchor信道周期示意图。系统信息需要在anchor信道发送周期n内更新,anchor信道发送周期n-1内的数据信道CCA失败,此时基站需要在anchor信道发送周期n内对应的数据信道继续CCA,CCA成功后发送序列B,如果周期n内CCA继续失败,基站需要在anchor信道发送周期n+1内对应的数据信道继续CCA,CCA成功后发送序列B,直至CCA成功且发送序列B,后续anchor信道发送周期内,如果系统信息不发生变化,则CCA成功后发送序列A。
在1203部分,基站在下一个系统信息更新周期中,通过第二下行信道向所述终端设备广播更新的系统信息。
在一个示例中,在基站广播更新的系统信息之前,还包括;对所述第二下行信道进行空闲信道评估;若所述第二下行信道对应的第二评估结果为信道不空闲,则持续通过所述空闲的第一下行信道向终端设备发送所述第一序列,直至所述第二评估结果为信道空闲,并当所述第二评估结果为信道空闲时,通过第二下行信道向所述终端设备广播更新的系统信息。
图16示出了本发明实施例中再一种Anchor信道周期示意图。系统信息需要在anchor信道发送周期n内更新,anchor信道发送周期n-1内的数据信道CCA成功,发送序列B, 但基站在anchor信道发送周期n内对应的anchor信道CCA失败,此时基站如果在anchor信道发送周期n内数据信道CCA成功,则anchor信道发送周期n内的数据信道需要继续发送序列B,直至下一个anchor信道发送周期n+x内anchor信道CCA成功,之后基站需要在anchor信道发送周期n+x+1内及anchor信道发送周期n+x+1之后对应的数据信道发送序列A。结合本发明公开内容所描述的方法或者算法的步骤可直接体现为硬件、由处理器执行的软件模块或两者的组合。软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于用户设备中。当然,处理器和存储介质可以作为分立组建存在于用户设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机可读介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实时方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (29)

  1. 一种系统信息更新方法,其特征在于,包括:
    在识别终端设备处于无线资源控制RRC连接状态时,生成第一系统信息更新指示消息;所述第一系统信息更新指示消息包括的消息发送次数为第一消息发送次数;
    向处于所述RRC连接状态的所述终端设备发送所述第一消息发送次数的所述第一系统信息更新指示消息。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在识别终端设备处于RRC空闲状态时,生成第二系统信息更新指示消息;所述第二系统信息更新指示消息包括的消息发送次数为第二消息发送次数;
    向处于所述RRC空闲状态的所述终端设备发送所述第二消息发送次数的所述第二系统信息更新指示消息。
  3. 根据权利要求2所述的方法,其特征在于,所述第一消息发送次数小于所述第二消息发送次数。
  4. 根据权利要求1所述的方法,其特征在于,在所述生成第一系统信息更新指示消息之前,还包括:
    接收所述终端设备发送的信道质量CQI;
    根据所述CQI确定所述第一消息发送次数。
  5. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在发送所述第一消息发送次数的所述第一系统信息更新指示消息的时间单元内,暂停与所述终端设备之间的业务数据和/或信令消息的传输;
    在所述时间单元后,恢复与所述终端设备之间的所述业务数据和/或所述信令消息的传输。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述第一系统信息更新指示消息为下行控制信息DCI,所述DCI的直接指示标记为系统信息更新指示。
  7. 根据权利要求2或3所述的方法,其特征在于,所述第二系统信息更新指示消息为下行控制信息DCI,所述DCI的直接指示标记为系统信息更新指示。
  8. 一种系统信息更新方法,其特征在于,包括:
    在终端设备处于无线资源控制RRC连接状态时,接收接入网设备重复发送的第一系统信息更新指示消息,所述第一系统信息更新指示消息包括的消息发送次数为第一消息发送次数;
    根据所述第一消息发送次数,确定所述接入网设备发送所述第一系统信息更新指示消息的次数。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    在终端设备处于RRC空闲状态时,接收所述接入网设备重复发送的第二系统信息更新指示消息,所述第二系统信息更新指示消息包括的消息发送次数为第二消息发送次数;
    根据所述第二消息发送次数,确定所述接入网设备发送所述第二系统信息更新指示消息的次数。
  10. 根据权利要求9所述的方法,其特征在于,所述第一消息发送次数小于所述 第二消息发送次数。
  11. 根据权利要求8所述的方法,其特征在于,还包括:
    获取信道质量CQI;
    向所述接入网设备发送所述CQI。
  12. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    在接收所述第一消息发送次数的所述第一系统信息更新指示消息的时间单元内,暂停与所述接入网设备之间的所述业务数据和/或所述信令消息传输;以及,根据所述第一消息发送次数,确定所述业务数据和/或所述信令消息传输的恢复时间;
    在所述恢复时间,恢复与所述接入网设备之间的所述业务数据和/或所述信令消息传输。
  13. 根据权利要求8-12任一项所述的方法,其特征在于,所述第一系统信息更新指示消息为下行控制信息DCI,所述DCI的直接指示标记为系统信息更新指示。
  14. 根据权利要求9或10所述的方法,其特征在于,所述第二系统信息更新指示消息为下行控制信息DCI,所述DCI的直接指示标记为系统信息更新指示。
  15. 一种接入网设备,其特征在于,包括:
    至少一个存储器;
    耦合到所述至少一个存储器的至少一个处理器,所述至少一个处理器配置为:在识别终端设备处于无线资源控制RRC连接状态时,生成第一系统信息更新指示消息;所述第一系统信息更新指示消息包括的消息发送次数为第一消息发送次数;向处于所述RRC连接状态的所述终端设备发送所述第一消息发送次数的所述第一系统信息更新指示消息。
  16. 根据权利要求15所述的接入网设备,其特征在于,所述至少一个处理器配置为:
    在识别终端设备处于RRC空闲状态时,生成第二系统信息更新指示消息;所述第二系统信息更新指示消息包括的消息发送次数为第二消息发送次数;
    向处于所述RRC空闲状态的所述终端设备发送所述第二消息发送次数的所述第二系统信息更新指示消息。
  17. 根据权利要求16所述的接入网设备,其特征在于,所述至少一个处理器配置为:所述第一消息发送次数小于所述第二消息发送次数。
  18. 根据权利要求15所述的接入网设备,其特征在于,所述至少一个处理器配置为:
    接收所述终端设备发送的信道质量CQI;
    根据所述CQI确定所述第一消息发送次数。
  19. 根据权利要求15所述的接入网设备,其特征在于,所述至少一个处理器配置为:
    在发送所述第一消息发送次数的所述第一系统信息更新指示消息的时间单元内,暂停与所述终端设备之间的业务数据和/或信令消息的传输;
    在所述时间单元后,恢复与所述终端设备之间的所述业务数据和/或所述信令消息的传输。
  20. 根据权利要求15-19任一项所述的接入网设备,其特征在于,所述至少一个处理器配置为:所述第一系统信息更新指示消息为下行控制信息DCI,所述DCI的直接指示标记为系统信息更新指示。
  21. 根据权利要求16或17所述的接入网设备,其特征在于,所述至少一个处理器配置为:所述第二系统信息更新指示消息为下行控制信息DCI,所述DCI的直接指示标记为系统信息更新指示。
  22. 一种终端设备,其特征在于,包括:
    至少一个存储器;
    耦合到所述至少一个存储器的至少一个处理器,所述至少一个处理器配置为:在终端设备处于无线资源控制RRC连接状态时,接收接入网设备重复发送的第一系统信息更新指示消息,所述第一系统信息更新指示消息包括的消息发送次数为第一消息发送次数;根据所述第一消息发送次数,确定所述接入网设备发送所述第一系统信息更新指示消息的次数。
  23. 根据权利要求22所述的终端设备,其特征在于,所述至少一个处理器配置为:
    在终端设备处于RRC空闲状态时,接收所述接入网设备重复发送的第二系统信息更新指示消息,所述第二系统信息更新指示消息包括的消息发送次数为第二消息发送次数;
    根据所述第二消息发送次数,确定所述接入网设备发送所述第二系统信息更新指示消息的次数。
  24. 根据权利要求23所述的终端设备,其特征在于,所述至少一个处理器配置为:所述第一消息发送次数小于所述第二消息发送次数。
  25. 根据权利要求22所述的终端设备,其特征在于,所述至少一个处理器配置为:
    获取信道质量CQI;
    向所述接入网设备发送所述CQI。
  26. 根据权利要求22所述的终端设备,其特征在于,所述至少一个处理器配置为:
    在接收所述第一消息发送次数的所述第一系统信息更新指示消息的时间单元内,暂停与所述接入网设备之间的所述业务数据和/或所述信令消息传输;以及,根据所述第一消息发送次数,确定所述业务数据和/或所述信令消息传输的恢复时间;
    在所述恢复时间,恢复与所述接入网设备之间的所述业务数据和/或所述信令消息传输。
  27. 根据权利要求22-26任一项所述的终端设备,其特征在于,所述至少一个处理器配置为:所述第一系统信息更新指示消息为下行控制信息DCI,所述DCI的直接指示标记为系统信息更新指示。
  28. 根据权利要求23或24所述的终端设备,其特征在于,所述至少一个处理器配置为:所述第二系统信息更新指示消息为下行控制信息DCI,所述DCI的直接指示标记为系统信息更新指示。
  29. 一种通信系统,其特征在于,包括:上述权利要求15-21任一项所述的接入网设备,以及上述权利要求22-28任一项所述的终端设备。
PCT/CN2017/113320 2017-11-28 2017-11-28 系统信息更新方法、接入网设备及终端设备 WO2019104472A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/113320 WO2019104472A1 (zh) 2017-11-28 2017-11-28 系统信息更新方法、接入网设备及终端设备
CN201780096751.XA CN111345080B (zh) 2017-11-28 2017-11-28 系统信息更新方法、接入网设备及终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/113320 WO2019104472A1 (zh) 2017-11-28 2017-11-28 系统信息更新方法、接入网设备及终端设备

Publications (1)

Publication Number Publication Date
WO2019104472A1 true WO2019104472A1 (zh) 2019-06-06

Family

ID=66665307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113320 WO2019104472A1 (zh) 2017-11-28 2017-11-28 系统信息更新方法、接入网设备及终端设备

Country Status (2)

Country Link
CN (1) CN111345080B (zh)
WO (1) WO2019104472A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112438058A (zh) * 2020-10-20 2021-03-02 北京小米移动软件有限公司 系统消息更新方法、设备以及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102300157A (zh) * 2010-06-25 2011-12-28 中兴通讯股份有限公司 计数请求信息的发送方法及系统
WO2016075124A1 (en) * 2014-11-13 2016-05-19 Sony Corporation Telecommunications apparatus and methods
WO2016163127A1 (en) * 2015-04-10 2016-10-13 Nec Corporation Communication system
CN106465144A (zh) * 2014-03-19 2017-02-22 交互数字专利控股公司 用于覆盖增强(ce)和非ce模式的无线发射/接收单元(wtru)的系统信息块(sib)获取方法和装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101677451B (zh) * 2008-09-19 2011-12-28 电信科学技术研究院 小区切换准备过程中节点间传递系统信息的方法和装置
CN101730256B (zh) * 2008-10-14 2012-07-25 上海摩波彼克半导体有限公司 无线蜂窝网络中实现快速随机接入过程的方法
CN101902799B (zh) * 2009-05-26 2013-04-03 电信科学技术研究院 一种系统信息发送、接收的方法及设备
CN102742181B (zh) * 2010-06-13 2014-12-10 Lg电子株式会社 在无线通信系统中对终端发送指示服务区域的计数响应消息的方法及其设备
CN106550417A (zh) * 2012-12-06 2017-03-29 电信科学技术研究院 系统信息发送、获取方法和设备
CN105812092A (zh) * 2014-12-31 2016-07-27 中兴通讯股份有限公司 重复发送处理方法、装置及节点
EP3244683A4 (en) * 2015-01-08 2018-08-15 Sharp Kabushiki Kaisha Terminal device, monitoring method, and integrated circuit
CN110475313B (zh) * 2015-11-06 2020-12-08 华为技术有限公司 系统消息传输装置、方法和可读存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102300157A (zh) * 2010-06-25 2011-12-28 中兴通讯股份有限公司 计数请求信息的发送方法及系统
CN106465144A (zh) * 2014-03-19 2017-02-22 交互数字专利控股公司 用于覆盖增强(ce)和非ce模式的无线发射/接收单元(wtru)的系统信息块(sib)获取方法和装置
WO2016075124A1 (en) * 2014-11-13 2016-05-19 Sony Corporation Telecommunications apparatus and methods
WO2016163127A1 (en) * 2015-04-10 2016-10-13 Nec Corporation Communication system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112438058A (zh) * 2020-10-20 2021-03-02 北京小米移动软件有限公司 系统消息更新方法、设备以及存储介质
CN112438058B (zh) * 2020-10-20 2024-01-05 北京小米移动软件有限公司 系统消息更新方法、设备以及存储介质

Also Published As

Publication number Publication date
CN111345080B (zh) 2021-11-30
CN111345080A (zh) 2020-06-26

Similar Documents

Publication Publication Date Title
CN110621068B (zh) 一种寻呼方法和装置
US20230247602A1 (en) User equipment, base station and wireless communication method
WO2018028456A1 (zh) 数据信道发送和接收方法、网络设备及终端
US11109439B2 (en) Communication terminal, communication method, base station, and communication system
KR20230096125A (ko) 무선 통신 시스템에서 짧은 전송 시간 간격에 의거하는 통신을 위한 방법 및 장치
US20190364539A1 (en) Data transmission processing method, user equipment, and base station
CN109076571B (zh) 一种控制信息的处理方法、基站及终端
RU2017139245A (ru) Детерминистическое поведение ue для сообщения csi/srs во время drx
EP3965479A1 (en) Method and apparatus for waking up terminal device, and network device and terminal device
EP3387769B1 (en) A radio network node and a wireless device, and methods therein
US10070420B2 (en) Mobile communication system and user terminal
CN110430616B (zh) 一种资源确定方法、相关设备及系统
WO2018137220A1 (zh) 一种信号传输方法、设备及系统
CN110809311B (zh) 用于执行部分子帧传输的方法和装置
CN110830977A (zh) D2d发现信号的发送方法、装置以及通信系统
WO2019174453A1 (zh) 信息发送的方法和装置
CN116192583A (zh) 用于信息传输和信息接收的方法和装置
CN115336356A (zh) 用于新无线电侧链路的感测测量及报告的方法及设备
EP3275109B1 (en) Methods and nodes in a wireless communication network
CN106465358B (zh) 改进的无线网络中的传输和解码的方法和装置
WO2018028675A1 (zh) 随机接入信号配置方法、装置、设备、系统和存储介质
KR20180132118A (ko) 정보 송신 방법 및 시스템, 및 디바이스
JP6754489B2 (ja) ランダムアクセスを促進する方法、ネットワークノード及び端末デバイス
CN108432305B (zh) 一种系统信息发送、更新方法及设备
WO2019104472A1 (zh) 系统信息更新方法、接入网设备及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17933812

Country of ref document: EP

Kind code of ref document: A1