WO2018028263A1 - 照明装置及显示系统 - Google Patents

照明装置及显示系统 Download PDF

Info

Publication number
WO2018028263A1
WO2018028263A1 PCT/CN2017/084842 CN2017084842W WO2018028263A1 WO 2018028263 A1 WO2018028263 A1 WO 2018028263A1 CN 2017084842 W CN2017084842 W CN 2017084842W WO 2018028263 A1 WO2018028263 A1 WO 2018028263A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
wavelength conversion
light
conversion device
spot
Prior art date
Application number
PCT/CN2017/084842
Other languages
English (en)
French (fr)
Inventor
米麟
李屹
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Publication of WO2018028263A1 publication Critical patent/WO2018028263A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/023Mountings, adjusting means, or light-tight connections, for optical elements for lenses permitting adjustment
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/206Control of light source other than position or intensity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light

Definitions

  • the present invention relates to the field of optical technologies, and in particular, to a lighting device and the same.
  • the illumination device 100 includes an excitation light source 101, a lens 102, and a wavelength conversion device 103, and the wavelength conversion device 103 carries a fluorescent material.
  • the light emitted from the excitation light source 101 is incident on the wavelength conversion device 103 through the lens 102.
  • the lens 102 is at the A position, the spot of the excitation light on the wavelength conversion device 103 is small and the optical density is high.
  • the lens 102 is at the A' position, the spot of the excitation light on the wavelength conversion device 103 is large and the optical density is small.
  • the temperature of the fluorescent material is increased, so that the luminous efficiency of the fluorescent material is lowered, the proportion of the laser light in the emitted light is decreased, and the proportion of the excitation light not being excited is increased, so that The light is bluish.
  • the luminous efficiency of the fluorescent material is higher than that of the former, and the proportion of the laser light in the emitted light is increased, so that the emitted light is yellowish.
  • the wavelength conversion device 103 emits Lambertian-distributed light centering on the spot, and the change in the spot size causes the light to change in the subsequent optical path, which may cause the spot size in the subsequent optical path to exceed the area of the optical element, resulting in illumination or display. not effectively.
  • a lighting device comprising an excitation light source, a lens assembly, a wavelength conversion device, a linkage device, and a rear end optical component
  • the lens assembly includes at least a first lens and a second lens, and the excitation light source, the first lens, the wavelength conversion device, the second lens, and the rear optical element are sequentially in an optical path Provided that the first lens and the second lens are movably disposed in the optical path,
  • a beam section incident on the first lens forms a first spot;
  • a beam incident on the wavelength conversion device forms a second spot on the wavelength conversion device;
  • light incident on the rear end optical element is optical at the rear end Forming a third spot on the surface of the component;
  • the linkage device connecting the first lens and the second lens, when the position of one of the first lens and the second lens changes, the linkage device drives another Lens movement
  • the linkage adjusts a position of the second lens relative to the wavelength conversion device, thereby forming a light beam incident on the rear end optical element
  • the third spot is entirely on the incident face of the rear end optical element.
  • the linkage when adjusting the position of the first lens relative to the wavelength conversion device, the linkage adjusts the position of the second lens relative to the wavelength conversion device such that the size of the third spot constant.
  • the third spot is an image of light from a second spot of the wavelength conversion device on the rear optical element via the second lens.
  • the distance between the first lens and the wavelength conversion device is d 1
  • the distance between the wavelength conversion device and the second lens is d 2 , in the linkage device.
  • d 2 C 1 - C 2 d 1 , wherein C 1 and C 2 are constants greater than zero.
  • the first lens is a first convex lens
  • the second lens is a second convex lens
  • the focal length of the first convex lens is f 1
  • the focal length of the second convex lens is f 2
  • the cross-sectional diameter of the first spot is D 1
  • the cross-sectional diameter of the third spot is D 3 , and the following relationship is satisfied:
  • D 3 is the preset value.
  • the rear end optical element is a scattering device.
  • the rear end optical element is an integrator rod.
  • the wavelength conversion device is a fluorescent color wheel.
  • the illumination device further includes a position sensor, a processing module, a first driving module, and a second driving module, wherein the position sensor is configured to sense the first lens and the a position of the second lens, the processing module is connected to the position sensor, the first driving module and the second driving module, and the first driving module is configured to drive the first Moving the lens, the second driving module is configured to drive the second lens to move, when the position sensor senses a change in a position of one of the first lens and the second lens
  • the processing module performs computational processing and controls the corresponding driving module to drive another lens to move the same displacement.
  • a display system comprising the illumination device and the light modulation device described above, the illumination device being capable of emitting light of at least two different colors, the light modulation device being performed during a period in which the illumination device emits light of different colors Image modulation.
  • the illumination device and the display system having the same have a first lens disposed between the wavelength conversion device and the excitation light source, and the wavelength conversion device and the rear a second lens is disposed between the end optical elements, and the position of the first lens and the second convex lens is adjustable, when the position of the first lens is changed relative to the wavelength conversion device, the linkage
  • the device drives the second convex lens to move to a position such that the third spot formed on the surface of the rear optical path element is completely on the incident surface of the rear optical path element, thereby improving light utilization and avoiding incidence to the rear end.
  • the light beam of the optical element exceeds the incident surface of the rear optical element while ensuring stable optical path configuration of the optical transmission path in the rear optical element.
  • FIG. 1 is a schematic view of a display system according to a first embodiment of the present invention.
  • Fig. 2 is a schematic view of the lighting device shown in Fig. 1.
  • 3 is a schematic view of a wavelength conversion device.
  • FIG. 4 is a schematic view of a display system in accordance with a second embodiment of the present invention.
  • Fig. 5 is a schematic view of a lighting device of the prior art.
  • a first embodiment of the present invention provides a display system 200 including a lighting device 210 , a light modulating device 230 , and a control device 250 .
  • the display system 200 is a projection display system.
  • the display system 200 also includes necessary or non-essential structural features such as a projection lens, a projection screen, etc., in order to save space, no detailed description is provided herein.
  • the illumination device 210 is configured to output at least a first primary color light and a second primary color light in time series.
  • the light modulating device 230 is configured to receive at least the first primary color light and the second primary color light for image modulation.
  • the control device 250 is configured to control the operation of the other functional modules of the display system 200, such as the illumination device 210, the light modulation device 230, and the like.
  • the illumination device 210 can also output only monochromatic light, and then the plurality of illumination devices collectively constitute a color light source of the display system.
  • the illumination device 210 includes an excitation light source 211, a first convex lens 212, a wavelength conversion device 213, a second convex lens 214, and a rear optical element 215.
  • the excitation light source 211, the first convex lens 212, the wavelength conversion device 213, the second convex lens 214, and the rear optical element 215 are sequentially disposed in an optical path, wherein the first convex lens 212 is located in the Between the excitation light source 211 and the wavelength conversion device 213, the second convex lens 214 is located between the wavelength conversion device 213 and the rear end optical element 215.
  • the first convex lens 212 and the second convex lens 214 are movably disposed in the optical path.
  • the rear end optical element 215 is used to perform processing such as shimming, shaping, and the like.
  • the excitation light source 211 is capable of generating ultraviolet excitation light.
  • the excitation light source 211 can be a light emitting diode, a laser diode, or other solid state light source.
  • the wavelength conversion device 213 is disposed on a transmission path of the excitation light generated by the excitation light source 211, and transmits or wavelength-converts the excitation light to generate at least two different colors of primary color light.
  • the wavelength conversion device 213 is a color wheel, which includes sequentially setting in the circumferential direction.
  • the first primary color is red
  • the second primary color is blue
  • the third primary color is green.
  • the first primary color region 2131 carries a first primary color wavelength converting material to excite the first primary color light under illumination of the excitation light source 211
  • the second primary color region 2133 carries a second primary color wavelength converting material
  • the third The primary color region 2135 carries a third primary color wavelength converting material or no wavelength converting material to emit a third primary color light under illumination of the excitation light source 211.
  • the above wavelength converting material may be a phosphor, a quantum dot material, or other material that is capable of converting excitation light into a suitable color.
  • the wavelength conversion device 213 is of a transmissive type, that is, the traveling direction of the outgoing light generated by the wavelength conversion device 213 is the same as the direction of the incident light.
  • the wavelength conversion device 213 may be provided in a belt-like structure capable of reciprocating translation, or as a rotatably cylindrical structure.
  • the wavelength conversion device can also be a monochrome fluorescent color wheel or a fixed wavelength conversion device.
  • a light is generated, which can be realized by adjusting the distance between the first convex lens 212 and the wavelength conversion device 213.
  • the size of the spot incident on the wavelength conversion device 213 is adjusted to adjust the ratio of the excitation light to the laser light emitted from the wavelength conversion device 213, and the color coordinates of the emitted light are changed.
  • the beam of light emitted from the excitation light source 211 to the incident surface of the first convex lens 212 forms a first spot
  • the light beam incident on the wavelength conversion device 213 forms a second spot on the wavelength conversion device 213.
  • Light emitted from the wavelength conversion device 313 forms a third spot on the surface of the rear end optical element 215 via the second convex lens 214.
  • the third spot is an image formed by the light emitted from the wavelength conversion device 213 on the rear end optical element 215 via the second convex lens 214.
  • the illumination device 210 further includes a linkage device 216, and the linkage device 216 connects the first convex lens 212 and the second convex lens 214 to one of the first convex lens 212 and the second convex lens 214.
  • the linkage device 216 includes a drive module and a connection structure.
  • the connecting structure is connected between the first convex lens 212 and the second convex lens 214.
  • the driving module drives a position change of one of the lenses
  • the connecting structure drives the other lens to move a certain displacement.
  • the distance between the first convex lens 212 and the wavelength conversion device 213 is d 1
  • the distance between the wavelength conversion device 213 and the second convex lens 214 is d 2
  • the first convex lens is disposed.
  • D3 is the preset value.
  • the spot incident on the rear end optical element 215 is ensured, thereby avoiding the cause.
  • the rear end optical element 215 is a scattering device to improve the uniformity of light and prevent coherent light from exiting.
  • the rear end optical element 215 can ensure that the light emitted from the rear end optical element 215 has the same light distribution, and avoids the problem that the difference in the angular distribution of the outgoing light due to the difference in the maximum incident angle is large.
  • back end optical element 215 can be an integrator rod.
  • the illumination device 210 is not limited to being applied to the projection display system, It can also be applied to automotive headlight systems, stage lighting systems, surgical lighting, and the like. In such an application environment, a fixed wavelength conversion device is more preferred as an illuminant.
  • the light modulating device 230 receives the primary color light output by the illumination device 210 and performs image modulation on the primary color light.
  • the light modulated by the light modulating device 230 is projected onto a screen (not shown). It can be understood that the light modulation device 230 can be an LCD, an LCoS, a DMD, or the like.
  • the control device 250 is capable of receiving input image data and generating an optical modulation signal according to the input image data to control the light modulation device 230 to perform image modulation according to the optical modulation signal.
  • the lens in the illumination device 210 can be a lens assembly, the lens assembly is a combination of a concave lens and/or a convex lens, and a lens in the lens assembly is movably disposed in the optical path, the lens assembly Include at least a first lens and a second lens, the wavelength conversion device 213 being located between the first lens and the second lens, when adjusting a position of the first lens relative to the wavelength conversion device to adjust incident to the Adjusting a position of the second lens relative to the wavelength conversion device when the first light spot formed by the light beam of the wavelength conversion device is sized, thereby causing a light beam incident on the rear end optical element to be on the rear optical element
  • the third spot formed is entirely on the entrance face of the rear end optical element.
  • a third spot formed on the rear end optical element by a light beam incident on the rear end optical element is completely on an incident surface of the rear end optical element, that is, a cross-sectional area of the third spot is less than or equal to The entrance face of the rear optic.
  • a second embodiment of the present invention provides a display system 300 including a lighting device 310, a light modulating device 330, a control device 350, and a linkage device.
  • the display system 300 is a projection display system.
  • the display system 300 further includes necessary or non-essential structural features such as a projection lens, a projection screen, etc., and the details are not described in detail herein.
  • the illumination device 310 is configured to output at least a first primary color light and a second primary color light in time series.
  • the light modulating device 330 is configured to receive at least the first primary color light and the second primary color light for image modulation.
  • the control device 350 is configured to control the operation of the display system 300, such as the illumination device 310, the light modulation device 330, and the like.
  • the illumination device 310 includes an excitation light source 311, a first convex lens 312, a wavelength conversion device 313, a second convex lens 314, and a rear optical element 315.
  • the excitation light source 311, the first convex lens 312, the wavelength conversion device 313, the second convex lens 314, and the rear optical element 315 are sequentially disposed.
  • the first convex lens 312 is located between the excitation light source 311 and the wavelength conversion device 313, and the second convex lens 314 is located between the wavelength conversion device 313 and the rear end optical element 315.
  • the first convex lens 312 and the second convex lens 314 are movably disposed in the optical path.
  • the rear end optical element 315 is used to homogenize light.
  • the excitation light source 311 is capable of generating ultraviolet excitation light.
  • the excitation light source 311 can be a light emitting diode, a laser diode, or other solid state light source.
  • the wavelength conversion device 313 is disposed on a transmission path of the excitation light generated by the excitation light source 311, and transmits or wavelength-converts the excitation light to generate at least two different colors of primary color light.
  • the wavelength conversion device 313 is a fluorescent color wheel including a first primary color region 3131, a second primary color region 3133, and a third primary color region 3135 which are sequentially disposed in the circumferential direction.
  • the first primary color is red
  • the second primary color is blue
  • the third primary color is green.
  • the first primary color region 3131 carries a first primary color wavelength converting material to excite the first primary color light under illumination of the excitation light source 311, and the second primary color region 3133 carries a second primary color wavelength converting material, the third The primary color region 3135 carries a third primary color wavelength converting material to excite the third primary color light upon illumination by the excitation light source 311.
  • the above wavelength converting material may be a phosphor, a quantum dot material, or other material that is capable of converting excitation light into a suitable color.
  • the wavelength conversion device 313 is of a transmissive type, that is, the traveling direction of the outgoing light generated by the wavelength conversion device 313 is the same as the direction of the incident light.
  • the wavelength conversion device 313 can be provided as a strip-like structure that can be reciprocally translated, or as a rotatably cylindrical structure.
  • the beam of light emitted from the excitation light source 311 to the incident surface of the first convex lens 312 forms a first spot
  • the light beam incident on the wavelength conversion device 213 forms a second spot on the wavelength conversion device 313.
  • Light emitted from the wavelength conversion device 313 forms a third spot on the surface of the rear end optical element 315 via the second convex lens 314.
  • the third spot is an image formed by the light emitted from the second spot of the wavelength conversion device 313 on the rear end optical element 315 via the second convex lens 314.
  • the linkage device connects the first convex lens 312 and the second convex lens 314 to When the position of one of the first convex lens 312 and the second convex lens 314 changes, the position of the other lens changes accordingly.
  • the linkage device includes a position sensor 317, a processing module 318, a first driving module 319, and a second driving module 320.
  • the position sensor 317 is configured to sense the first
  • the processing module 318 is connected to the position sensor 317, the first driving module 319, and the second driving module 320, the first position of the convex lens 312 and the second convex lens 314.
  • the driving module 319 is configured to drive the first convex lens 312 to move
  • the second driving module 320 is configured to drive the second convex lens 314 to move, when the position sensor 317 senses the first convex lens
  • the processing module 318 performs a calculation process and controls the corresponding driving module to drive another lens to move the same displacement to make the incident optical to the rear end.
  • the third spot cross-sectional diameter of element 315 is constant.
  • the distance between the first convex lens 312 and the wavelength conversion device 313 is d 1
  • the distance between the wavelength conversion device 313 and the second convex lens 314 is d 2
  • the first convex lens is disposed.
  • D 3 is the preset value.
  • the rear end optical element 315 is a scattering device to improve the uniformity of light and prevent coherent light from exiting.
  • the rear end optical element 315 can ensure that the light emitted from the rear end optical element 315 has the same light distribution, and avoids the problem that the difference in the angular distribution of the outgoing light due to the difference in the maximum incident angle is large.
  • back end optical element 315 can be an integrator rod.
  • the light modulating device 330 receives the primary color light output by the illumination device 310 and performs image modulation on the primary color light.
  • the light modulated by the light modulating device 330 is projected onto a screen (not shown). It can be understood that the light modulation device 330 can be an LCD, an LCoS, a DMD, or the like.
  • the control device 350 is capable of receiving input image data and generating an optical modulation signal according to the input image data to control the light modulation device 330 to perform image modulation according to the optical modulation signal.
  • the lens in the illumination device 310 can be a lens assembly, the lens assembly is a combination of a concave lens and/or a convex lens, and a lens in the lens assembly is movably disposed in the optical path, the lens The assembly includes at least a first lens and a second lens, and the wavelength conversion device 313 is located between the first lens and the second lens, and adjusts a position of the first lens relative to the wavelength conversion device to adjust incident incidence When the size of the first spot formed by the light beam of the wavelength conversion device is adjusted, the position of the second lens relative to the wavelength conversion device is adjusted, so that the third spot formed by the light beam incident on the rear end optical element is completely The incident surface of the rear end optical element.
  • the illumination device 210, 310 and the display system 200, 300 provided by the present invention, by providing the first convex lens 212, 312 between the wavelength conversion devices 213, 313 and the excitation light sources 211, 311, and the wavelength conversion device A second convex lens 314, 315 is disposed between the rear end optical elements 215, 315, and the positions of the first convex lenses 212, 312 and the second convex lenses 214, 314 are adjustable by adjusting the When the first convex lens 212 can adjust the first spot size on the wavelength conversion devices 213, 313, the position of the second convex lenses 214, 314 is adjusted to make the third spot incident on the surface of the rear optical path elements 215, 315 The size is constant, thereby achieving the effect of changing the color coordinates without changing the distribution of the outgoing light. At the same time, the light utilization efficiency is increased and the beam incident on the rear end optical elements 215, 315 is prevented from exceeding the incident surface area of the rear end optical elements 215, 315.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Projection Apparatus (AREA)

Abstract

一种照明装置(210、310)及显示系统(200、300),照明装置(210、310)包括激发光源(211、311)、透镜组件、波长转换装置(213、313)、联动装置(216),及后端光学元件(215、315),透镜组件至少包括第一透镜(212、312)及第二透镜(214、314),第一透镜(212、312)与第二透镜(214、314)可移动地设置于光路中,入射到第一透镜(212、312)的光束截面形成第一光斑;入射到波长转换装置(213、313)的光束在波长转换装置(213、313)上形成第二光斑;入射到后端光学元件(215、315)的光在后端光学元件(215、315)表面形成第三光斑;联动装置(216)连接第一透镜(212、312)及第二透镜(214、314)。当第一透镜(212、312)相对波长转换装置(213、313)的位置改变时,联动装置(216)调节第二透镜(214、314)相对波长转换装置(213、313)的位置,进而使入射到后端光学元件(215、315)的光束形成的第三光斑完全在后端光学元件(215、315)的入射面上。

Description

照明装置及显示系统 技术领域
本发明涉及光学技术领域,特别涉及一种照明装置及具该显示系统。
背景技术
现有技术中,存在利用透镜改变入射到荧光层上的光斑的大小,从而改变荧光层上各位置的激发光密度,从而改变出射光色坐标的技术方案。
如图5所示,照明装置100包括激发光源101、透镜102和波长转换装置103,波长转换装置103上承载荧光材料。激发光源101发出的光经过透镜102入射于波长转换装置103。当透镜102位于A位置时,激发光在波长转换装置103上的光斑较小,光密度较高。当透镜102位于A’位置时,激发光在波长转换装置103上的光斑较大,光密度较小。在激光功率密度较高的情况下,所述荧光材料温度升高,使得所述荧光材料发光效率下降,出射光中的受激光比例下降,未被激发光的激发光的比例升高,使得出射光偏蓝。而当激光光路密度较小的情况下,所述荧光材料的发光效率相对前者较高,出射光中的受激光比例提高,使得出射光偏黄。通过调节透镜102的位置,可以改变波长转换装置103上光斑的大小,从而改变出射光的色坐标。
但是,波长转换装置103以所述光斑为中心发出朗伯分布的光,光斑大小的改变将导致光在后续光路中发生变化,可能导致后续光路中光斑大小超过光学元件的面积,导致照明或显示效果不佳。
发明内容
有鉴于此,有必要提供一种避免上述问题的照明装置及具该照明装置的显示系统。
一种照明装置,其包括激发光源、透镜组件、波长转换装置、联动装置、后端光学元件,
所述透镜组件至少包括第一透镜及第二透镜,所述激发光源、所述第一透镜、所述波长转换装置、所述第二透镜及所述后端光学元件于光路中依次 设置,所述第一透镜与所述第二透镜可移动地设置于所述光路中,
入射到第一透镜的光束截面形成第一光斑;入射到所述波长转换装置的光束在所述波长转换装置上形成第二光斑;入射到所述后端光学元件的光在所述后端光学元件表面形成第三光斑;
联动装置,所述联动装置连接所述第一透镜及所述第二透镜,以在所述第一透镜及所述第二透镜其中之一透镜的位置发生变化时,所述联动装置带动另一透镜移动,
当所述第一透镜相对所述波长转换装置的位置改变时,所述联动装置调节所述第二透镜相对所述波长转换装置的位置,进而使入射到所述后端光学元件的光束形成的第三光斑完全在所述后端光学元件的入射面上。
作为一种优选方案,当调节所述第一透镜相对所述波长转换装置的位置时,所述联动装置调节所述第二透镜相对所述波长转换装置的位置使所述第三光斑的尺寸大小保持不变。
作为一种优选方案,所述第三光斑为从所述波长转换装置的第二光斑的光经所述第二透镜于所述后端光学元件上成的像。
作为一种优选方案,设所述第一透镜与所述波长转换装置之间的距离为d1,设所述波长转换装置与所述第二透镜之间的距离为d2,在联动装置的作用下,d1和d2满足如下关系:
d2=C1-C2d1,其中C1和C2为大于零的常数。
作为一种优选方案,所述第一透镜为第一凸透镜,所述第二透镜为第二凸透镜,设所述第一凸透镜的焦距为f1,设所述第二凸透镜的焦距为f2,设所述第一光斑的截面直径为D1,设所述第三光斑的截面直径为D3,且满足如下关系:
Figure PCTCN2017084842-appb-000001
Figure PCTCN2017084842-appb-000002
其中D3为预设值。
作为一种优选方案,所述后端光学元件为散射装置。
作为一种优选方案,所述后端光学元件为积分棒。
作为一种优选方案,所述波长转换装置为荧光色轮。
作为一种优选方案,所述照明装置还包括位置感测器、处理模组、第一驱动模组及第二驱动模组,所述位置感测器用于感测所述第一透镜与所述第二透镜的位置,所述处理模组与所述位置感测器、所述第一驱动模组及所述第二驱动模组连接,所述第一驱动模组用于驱动所述第一透镜移动,所述第二驱动模组用于驱动所述第二透镜移动,当所述位置感测器感测到所述第一透镜与所述第二透镜其中之一透镜的位置发生变化时,所述处理模组进行计算处理并控制相应驱动模组驱动另一透镜移动相同位移。
一种显示系统,其包括上所述的照明装置及光调制装置,所述照明装置能够出射至少两种不同颜色的光,所述光调制装置在所述照明装置出射不同颜色光的时段内进行图像调制。
相对于现有技术,本发明提供的照明装置及具该照明装置的显示系统,通过在所述波长转换装置与所述激发光源之间设置第一透镜,及所述波长转换装置与所述后端光学元件之间设置一第二透镜,由于所述第一透镜及所述第二凸透镜的位置可调,当所述第一透镜的位置相对所述所述波长转换装置改变时,所述联动装置带动所述第二凸透镜移动进而的位置,以使入射到后端光路元件表面形成的第三光斑完全在所述后端光路元件入射面上,提高了光利用率,避免了入射到后端光学元件的光束超出所述后端光学元件入射面范围,同时保证了后端光学元件中光传输路径的光路形态稳定。
附图说明
图1是本发明第一实施方式的显示系统的示意图。
图2是图1所示的照明装置的示意图。
图3是波长转换装置的示意图。
图4是本发明第二实施方式的显示系统的示意图。
图5是现有技术中的照明装置的示意图。
主要元件符号说明
显示系统                     200、300
照明装置                     100、210、310
激发光源                     211、311
第一凸透镜                   212、312
波长转换装置                 213、313
第一基色区域                 2131、3131
第二基色区域                 2133、3133
第三基色区域                 2135、3135
第二凸透镜                   214、314
后端光学元件                 215、315
联动装置                     216
光调制装置                   230、330
控制装置                     250、350
位置感测器                   317
处理模组                     318
第一驱动模组                 319
第二驱动模组                 320
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
需要说明的是,在本发明中,当一个组件被认为是与另一个组件“相连” 时,它可以是与另一个组件直接相连,也可以是通过居中组件与另一个组件间接相连。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
请参阅图1,本发明第一实施方式提供一种显示系统200,其包括照明装置210、光调制装置230及控制装置250。本实施方式中,所述显示系统200为投影显示系统。当然,所述显示系统200还包括投影镜头、投影屏幕等必要或非必要的结构特征,为节省篇幅,在此不作详细赘述。
照明装置210用以依时序输出至少第一基色光及第二基色光。光调制装置230,用于接收至少所述第一基色光、所述第二基色光进行图像调制。所述控制装置250用于控制所述照明装置210、所述光调制装置230等所述显示系统200其它功能模组的工作。当然,照明装置210也可以只输出单色光,然后由多个照明装置共同构成显示系统的彩色光源。
请参阅图2,所述照明装置210包括激发光源211、第一凸透镜212、波长转换装置213、第二凸透镜214及后端光学元件215。所述激发光源211、所述第一凸透镜212、所述波长转换装置213、所述第二凸透镜214及所述后端光学元件215依次设置在光路中,其中所述第一凸透镜212位于所述激发光源211及所述波长转换装置213之间,所述第二凸透镜214位于所述波长转换装置213与所述后端光学元件215之间。所述第一凸透镜212与所述第二凸透镜214能够移动地设置于所述光路中。所述后端光学元件215用于对光进行匀光、整形等处理。
本实施方式中,所述激发光源211能够产生紫外激发光。所述激发光源211可以为发光二极管、激光二极管或其它固态光源。
所述波长转换装置213设于所述激发光源211产生的激发光的传输路径上,并对所述激发光进行透射或波长转换,以产生至少两种不同颜色的基色光。请参阅图3所示,所述波长转换装置213为色轮,其包括沿周向依次设置 的第一基色区域2131、第二基色区域2133及第三基色区域2135。本实施方式中,所述第一基色为红色,所述第二基色为蓝色,所述第三基色为绿色。
所述第一基色区域2131承载第一基色波长转换材料以在所述激发光源211的照射下激发出射第一基色光,所述第二基色区域2133承载第二基色波长转换材料,所述第三基色区域2135承载第三基色波长转换材料或不设置波长转换材料以在所述激发光源211的照射下出射第三基色光。上述波长转换材料可以是荧光粉、量子点材料或能够将激发光转换成适当颜色的受激光的其他材料。
所述波长转换装置213为透射式,即波长转换装置213产生的出射光的行进方向与入射光方向相同。
可以理解,所述波长转换装置213可以设置为能够往复平移的带状结构,或设置成能够转动地筒状结构。
可以理解,波长转换装置也可以为单色荧光色轮或者固定式波长转换装置,激发光源照射到波长转换装置后产生一种光,可以通过调节第一凸透镜212到波长转换装置213的距离来实现入射到波长转换装置213上的光斑大小,从而调节波长转换装置213出射的激发光与受激光的比例,改变出射光的色坐标。
所述激发光源211射出的光至所述第一凸透镜212的入射面的光束截面形成第一光斑,入射到所述波长转换装置213的光束在所述波长转换装置213上形成第二光斑。从所述波长转换装置313出射的光经所述第二凸透镜214在所述后端光学元件215表面形成第三光斑。所述第三光斑为从所述波长转换装置213射出的光经所述第二凸透镜214于所述后端光学元件215上成的像。
所述照明装置210还包括联动装置216,所述联动装置216连接所述第一凸透镜212及所述第二凸透镜214,以在所述第一凸透镜212及所述第二凸透镜214其中之一透镜的位置发生变化时,另一透镜的位置随之发生变化。所述联动装置216包括一驱动模组及连接结构。所述连接结构连接于所述第一凸透镜212及所述第二凸透镜214之间,所述驱动模组驱动其中之一透镜的位置变化时,所述连接结构带动另一透镜移动一定位移。
设所述第一凸透镜212与所述波长转换装置213之间的距离为d1,设所述波长转换装置213与所述第二凸透镜214之间的距离为d2,设所述第一凸透镜的焦距为f1,设所述第二凸透镜214的焦距为f2,设所述第一光斑的截面直径为D1,设所述第三光斑的截面直径为D3。在联动装置的作用下,d2与d1之间满足以下条件:
d2=C1-C2d1,其中C1和C2为大于零的常数,
Figure PCTCN2017084842-appb-000003
Figure PCTCN2017084842-appb-000004
其中D3为预设值。
推导过程如下:设第二光斑的截面直径为D2,由于第二光斑是第一光斑经第一凸透镜212汇聚后在波长转换装置213上形成,因此满足关系式:D2=(1-d1/f1)D1,由于第二光斑经第二凸透镜214作用后,在后端光学元件215表面成像为第三光斑,因此满足关系式:1/d2+1/d3=1/f2,其中d3为后端光学元件表面到第二凸透镜214的距离,而且由于相似三角形性质,D2/d2=D3/d3,由此得到上述d1与d2的关系式:
Figure PCTCN2017084842-appb-000005
在通过联动装置216的作用,使得第一凸透镜212和第二凸透镜214与波长转换装置213的距离满足该关系式的情况下,保证入射到后端光学元件215的光斑不变,从而避免了因调节照明装置21的色坐标而导致的光输出路径变形的缺陷。
所述后端光学元件215为散射装置,以改善光的均匀性,防止有相干光出射。另外,所述后端光学元件215能够确保从所述后端光学元件215出射的光具有相同的光分布,避免最大入射角度的不同产生的出射光角分布差异大的问题。
可以理解,所述后端光学元件215可以为积分棒。
可以理解,所述照明装置210并不仅限于应用在所述投影显示系统,其 还能够应用于汽车大灯系统、舞台灯光系统、手术照明灯等。该种应用环境下,更倾向于使用固定式波长转换装置作为发光体。
所述光调制装置230接收所述照明装置210输出的基色光,并对所述基色光进行图像调制。所述光调制装置230进行图像调制后的基色光投影到屏幕(图未示)上。可以理解,所述光调制装置230可以为LCD、LCoS、DMD等。
所述控制装置250能够接收输入图像数据并依据所述输入图像数据生成光调制信号,以控制所述光调制装置230依据所述光调制信号进行图像调制。
可以理解,所述照明装置210中的透镜可以为透镜组件,所述透镜组件为凹透镜及/或凸透镜的组合,所述透镜组件中的透镜能够移动地设置于所述光路中,所述透镜组件至少包括第一透镜及第二透镜,所述波长转换装置213位于所述第一透镜及第二透镜之间,当调节所述第一透镜相对所述波长转换装置的位置以调节入射到所述波长转换装置的光束形成的第一光斑的尺寸大小时,调节所述第二透镜相对所述波长转换装置的位置,进而使入射到所述后端光学元件的光束在所述后端光学元件上形成的第三光斑完全在所述后端光学元件的入射面上。入射到所述后端光学元件的光束在所述后端光学元件上形成的第三光斑完全在所述后端光学元件的入射面上,即所述第三光斑的截面面积小于或等于所述后端光学元件的入射面。
请参阅图4所示,本发明第二实施方式提供一种显示系统300,其包括照明装置310、光调制装置330、控制装置350及联动装置。本实施方式中,所述显示系统300为投影显示系统。当然,所述显示系统300还包括投影镜头、投影屏幕等必要或非必要的结构特征,为节省篇幅,在此不作详细赘述。照明装置310用以依时序输出至少第一基色光及第二基色光。光调制装置330,用于接收至少所述第一基色光、所述第二基色光进行图像调制。所述控制装置350用于控制所述照明装置310、所述光调制装置330等所述显示系统300的工作。
所述照明装置310包括激发光源311、第一凸透镜312、波长转换装置313、第二凸透镜314及后端光学元件315。所述激发光源311、所述第一凸透镜312、所述波长转换装置313、所述第二凸透镜314及所述后端光学元件315依次设置 在光路中,其中所述第一凸透镜312位于所述激发光源311及所述波长转换装置313之间,所述第二凸透镜314位于所述波长转换装置313与所述后端光学元件315之间。所述第一凸透镜312与所述第二凸透镜314能够移动地设置于所述光路中。所述后端光学元件315用于对光进行匀光。
本实施方式中,所述激发光源311能够产生紫外激发光。所述激发光源311可以为发光二极管、激光二极管或其它固态光源。
所述波长转换装置313设于所述激发光源311产生的激发光的传输路径上,并对所述激发光进行透射或波长转换,以产生至少两种不同颜色的基色光。请再次参阅图3所示,所述波长转换装置313为荧光色轮,其包括沿周向依次设置的第一基色区域3131、第二基色区域3133及第三基色区域3135。本实施方式中,所述第一基色为红色,所述第二基色为蓝色,所述第三基色为绿色。
所述第一基色区域3131承载第一基色波长转换材料以在所述激发光源311的照射下激发出射第一基色光,所述第二基色区域3133承载第二基色波长转换材料,所述第三基色区域3135承载第三基色波长转换材料以在所述激发光源311的照射下激发出射第三基色光。上述波长转换材料可以是荧光粉、量子点材料或能够将激发光转换成适当颜色的受激光的其他材料。
所述波长转换装置313为透射式,即波长转换装置313产生的出射光的行进方向与入射光方向相同。
可以理解,所述波长转换装置313可以设置为能够往复平移的带状结构,或设置成能够转动地筒状结构。
所述激发光源311射出的光至所述第一凸透镜312的入射面的光束截面形成第一光斑,入射到所述波长转换装置213的光束在所述波长转换装置313上形成第二光斑。从所述波长转换装置313出射的光经所述第二凸透镜314在所述后端光学元件315表面形成第三光斑。所述第三光斑为从所述波长转换装置313的第二光斑射出的光经所述第二凸透镜314于所述后端光学元件315上成的像。
所述联动装置连接所述第一凸透镜312及所述第二凸透镜314,以在所 述第一凸透镜312及所述第二凸透镜314其中之一透镜的位置发生变化时,另一透镜的位置随之发生变化。本实施方式中,所述联动装置包括位置感测器317、处理模组318、第一驱动模组319及第二驱动模组320,所述位置感测器317用于感测所述第一凸透镜312与所述第二凸透镜314的位置,所述处理模组318与所述位置感测器317、所述第一驱动模组319及所述第二驱动模组320连接,所述第一驱动模组319用于驱动所述第一凸透镜312移动,所述第二驱动模组320用于驱动所述第二凸透镜314移动,当所述位置感测器317感测到所述第一凸透镜312与所述第二凸透镜314其中之一透镜的位置发生变化时,所述处理模组318进行计算处理并控制相应驱动模组驱动另一透镜移动相同位移,以使入射到所述后端光学元件315的第三光斑截面直径不变。
设所述第一凸透镜312与所述波长转换装置313之间的距离为d1,设所述波长转换装置313与所述第二凸透镜314之间的距离为d2,设所述第一凸透镜的焦距为f1,设所述第二凸透镜314的焦距为f2,设所述第一光斑的截面直径为D1,设所述第三光斑的截面直径为D3。在联动装置的作用下,d2与d1之间满足以下条件:
d2=C1-C2d1,其中C1和C2为大于零的常数,
Figure PCTCN2017084842-appb-000006
Figure PCTCN2017084842-appb-000007
其中D3为预设值。
所述后端光学元件315为散射装置,以改善光的均匀性,防止有相干光出射。另外,所述后端光学元件315能够确保从所述后端光学元件315出射的光具有相同的光分布,避免最大入射角度的不同产生的出射光角分布差异大的问题。
可以理解,所述后端光学元件315可以为积分棒。
所述光调制装置330接收所述照明装置310输出的基色光,并对所述基色光进行图像调制。所述光调制装置330进行图像调制后的基色光投影到屏幕(图未示)上。可以理解,所述光调制装置330可以为LCD、LCoS、DMD等。
所述控制装置350能够接收输入图像数据并依据所述输入图像数据生成光调制信号,以控制所述光调制装置330依据所述光调制信号进行图像调制。
可以理解,所述照明装置310中的透镜可以为透镜组件,所述透镜组件为凹透镜及/或凸透镜的组合,所述透镜组件中的透镜为能够移动地设置于所述光路中,所述透镜组件至少包括第一透镜及第二透镜,所述波长转换装置313位于所述第一透镜及第二透镜之间,当调节所述第一透镜相对所述波长转换装置的位置以调节入射到所述波长转换装置的光束形成的第一光斑的尺寸大小时,调节所述第二透镜相对所述波长转换装置的位置,进而使入射到所述后端光学元件的光束形成的第三光斑完全在所述后端光学元件的入射面上。
本发明提供的照明装置210、310及显示系统200、300,通过在所述波长转换装置213、313与所述激发光源211、311之间设置第一凸透镜212、312,及所述波长转换装置213、313与所述后端光学元件215、315之间设置一第二凸透镜314、315,所述第一凸透镜212、312及所述第二凸透镜214、314的位置可调,通过调节所述第一凸透镜212能够调节所述波长转换装置213、313上的第一光斑大小时,调节所述第二凸透镜214、314的位置,以使入射到后端光路元件215、315表面的第三光斑大小不变,从而实现改变色坐标而不改变出射光分布的效果。同时,提高了光利用率,并避免了入射到后端光学元件215、315的光束超出后端光学元件215、315入射面范围。
可以理解的是,本领域技术人员还可在本发明精神内做其它变化等用在本发明的设计,只要其不偏离本发明的技术效果均可。这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。

Claims (10)

  1. 一种照明装置,其包括激发光源、透镜组件、波长转换装置、联动装置及后端光学元件,其特征在于:
    所述透镜组件至少包括第一透镜及第二透镜,所述激发光源、所述第一透镜、所述波长转换装置、所述第二透镜及所述后端光学元件于光路中依次设置,所述第一透镜与所述第二透镜可移动地设置于所述光路中,
    入射到第一透镜的光束截面形成第一光斑;入射到所述波长转换装置的光束在所述波长转换装置上形成第二光斑;入射到所述后端光学元件的光在所述后端光学元件表面形成第三光斑;
    联动装置,所述联动装置连接所述第一透镜及所述第二透镜,以在所述第一透镜及所述第二透镜其中之一透镜的位置发生变化时,所述联动装置带动另一透镜移动;
    当所述第一透镜相对所述波长转换装置的位置改变时,所述联动装置调节所述第二透镜相对所述波长转换装置的位置,进而使入射到所述后端光学元件的光束形成的第三光斑完全在所述后端光学元件的入射面上。
  2. 如权利要求1所述的照明装置,其特征在于:当调节所述第一透镜相对所述波长转换装置的位置时,所述联动装置调节所述第二透镜相对所述波长转换装置的位置使所述第三光斑的尺寸大小保持不变。
  3. 如权利要求1所述的照明装置,其特征在于:所述第三光斑为从所述波长转换装置的第二光斑的光经所述第二透镜于所述后端光学元件上成的像。
  4. 如权利要求1所述的照明装置,其特征在于:设所述第一透镜与所述波长转换装置之间的距离为d1,设所述波长转换装置与所述第二透镜之间的距离为d2,在所述联动装置的作用下,d1和d2满足如下关系:
    d2=C1-C2d1,其中C1和C2为大于零的常数。
  5. 如权利要求4所述的照明装置,其特征在于:所述第一透镜为第一凸透镜,所述第二透镜为第二凸透镜,设所述第一凸透镜的焦距为f1,设所述第二凸透镜的焦距为f2,设所述第一光斑的截面直径为D1,设所述第三光斑的截面直径为D3,且满足如下关系:
    Figure PCTCN2017084842-appb-100001
    Figure PCTCN2017084842-appb-100002
    其中D3为预设值。
  6. 如权利要求1-5任意一项所述的照明装置,其特征在于:所述后端光学元件为散射装置。
  7. 如权利要求1-5任意一项所述的照明装置,其特征在于:所述后端光学元件为积分棒。
  8. 如权利要求1-5任意一项所述的照明装置,其特征在于:所述波长转换装置为荧光色轮。
  9. 如权利要求1-5任意一项所述的照明装置,其特征在于:所述联动装置包括位置感测器、处理模组、第一驱动模组及第二驱动模组,所述位置感测器用于感测所述第一透镜与所述第二透镜的位置,所述处理模组与所述位置感测器、所述第一驱动模组及所述第二驱动模组连接,所述第一驱动模组用于驱动所述第一透镜移动,所述第二驱动模组用于驱动所述第二透镜移动,当所述位置感测器感测到所述第一透镜与所述第二透镜其中之一透镜的位置发生变化时,所述处理模组进行计算处理并控制相应驱动模组驱动另一透镜移动相同位移。
  10. 一种显示系统,其包括如权利要求1-9任意一项所述的照明装置及光调制装置,所述照明装置能够出射至少两种不同颜色的光,所述光调制装置在所述照明装置出射不同颜色光的时段内进行图像调制。
PCT/CN2017/084842 2016-08-06 2017-05-18 照明装置及显示系统 WO2018028263A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610640380.4A CN107688275B (zh) 2016-08-06 2016-08-06 照明装置及显示系统
CN201610640380.4 2016-08-06

Publications (1)

Publication Number Publication Date
WO2018028263A1 true WO2018028263A1 (zh) 2018-02-15

Family

ID=61151984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084842 WO2018028263A1 (zh) 2016-08-06 2017-05-18 照明装置及显示系统

Country Status (2)

Country Link
CN (1) CN107688275B (zh)
WO (1) WO2018028263A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111856698A (zh) * 2020-08-19 2020-10-30 新思考电机有限公司 驱动结构、驱动装置及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1675936A (zh) * 2002-08-15 2005-09-28 汤姆森特许公司 用于液晶投影器的偏振转换系统以及校准其的方法
US20070296925A1 (en) * 2006-06-27 2007-12-27 Chi-Wei Huang Illumination system and projection system
CN102722072A (zh) * 2011-12-25 2012-10-10 深圳市光峰光电技术有限公司 投影显示装置
CN105404087A (zh) * 2015-12-29 2016-03-16 海信集团有限公司 一种荧光转换系统及投影光源
CN205350946U (zh) * 2015-12-16 2016-06-29 深圳市绎立锐光科技开发有限公司 一种光源系统及照明系统
CN205982968U (zh) * 2016-08-06 2017-02-22 深圳市绎立锐光科技开发有限公司 照明装置及显示系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4374906B2 (ja) * 2003-05-26 2009-12-02 ソニー株式会社 光変調装置及びその光学調整方法、投射型表示装置
JP4427737B2 (ja) * 2004-04-22 2010-03-10 ソニー株式会社 照明装置及び画像生成装置
JP4534602B2 (ja) * 2004-05-31 2010-09-01 株式会社日立製作所 投射型映像表示装置
JP2006162757A (ja) * 2004-12-03 2006-06-22 Fujinon Corp 撮影レンズ
JP2007171859A (ja) * 2005-12-26 2007-07-05 Sharp Corp プロジェクタ
JP5225005B2 (ja) * 2008-02-08 2013-07-03 三菱電機株式会社 光ピックアップ装置及び光ディスク装置
CN101988630B (zh) * 2009-07-31 2013-01-09 深圳市光峰光电技术有限公司 舞台灯光照明系统及其提供高亮度白光的方法
TWI425202B (zh) * 2010-07-22 2014-02-01 Univ China Sci & Tech Infrared lens penetration measurement device
JP6536039B2 (ja) * 2015-01-22 2019-07-03 セイコーエプソン株式会社 投射光学系及び投射型画像表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1675936A (zh) * 2002-08-15 2005-09-28 汤姆森特许公司 用于液晶投影器的偏振转换系统以及校准其的方法
US20070296925A1 (en) * 2006-06-27 2007-12-27 Chi-Wei Huang Illumination system and projection system
CN102722072A (zh) * 2011-12-25 2012-10-10 深圳市光峰光电技术有限公司 投影显示装置
CN205350946U (zh) * 2015-12-16 2016-06-29 深圳市绎立锐光科技开发有限公司 一种光源系统及照明系统
CN105404087A (zh) * 2015-12-29 2016-03-16 海信集团有限公司 一种荧光转换系统及投影光源
CN205982968U (zh) * 2016-08-06 2017-02-22 深圳市绎立锐光科技开发有限公司 照明装置及显示系统

Also Published As

Publication number Publication date
CN107688275B (zh) 2023-10-13
CN107688275A (zh) 2018-02-13

Similar Documents

Publication Publication Date Title
US10379431B2 (en) Projection apparatus and illumination system having wavelength conversion modules
US20180080627A1 (en) Light sources system and projection device using the same
US10061188B2 (en) Illumination system and projection apparatus having reflection cover
US9910346B2 (en) Illumination system and projection apparatus
US8573779B2 (en) Lighting device with plural light sources illuminating distinct regions of integrator
US11249379B2 (en) Illumination system and projection apparatus
US9429829B2 (en) Illumination system and projection apparatus
US10831087B2 (en) Illumination system and projection apparatus
US10331022B2 (en) Light source module and projection apparatus
US20130088689A1 (en) Light source module and projection apparatus
JP2020024429A (ja) 発光装置及び投影表示デバイス
WO2014102907A1 (ja) 光源装置、プロジェクターおよび画像変調素子の照明方法
CN110389486B (zh) 光源装置及显示设备
US20150323156A1 (en) Light source device
US20190253676A1 (en) Illumination system and projection apparatus
US11153545B2 (en) Projection device and illumination system thereof
US20160223736A1 (en) Apparatus for display systems
WO2018028263A1 (zh) 照明装置及显示系统
CN111722462A (zh) 照明系统及投影装置
WO2021008332A1 (zh) 光源系统与显示设备
TWI481948B (zh) 光投影系統
US11841612B2 (en) Illumination system and projection device
US20200393747A1 (en) Light source apparatus and image projection apparatus
JP2008281811A (ja) 画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17838395

Country of ref document: EP

Kind code of ref document: A1