WO2018028252A1 - 一种基于扫描时间块的信息传输方法及装置 - Google Patents

一种基于扫描时间块的信息传输方法及装置 Download PDF

Info

Publication number
WO2018028252A1
WO2018028252A1 PCT/CN2017/082899 CN2017082899W WO2018028252A1 WO 2018028252 A1 WO2018028252 A1 WO 2018028252A1 CN 2017082899 W CN2017082899 W CN 2017082899W WO 2018028252 A1 WO2018028252 A1 WO 2018028252A1
Authority
WO
WIPO (PCT)
Prior art keywords
scan
time block
scan time
downlink
data transmission
Prior art date
Application number
PCT/CN2017/082899
Other languages
English (en)
French (fr)
Inventor
刘星
毕峰
张峻峰
郝鹏
高波
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2019506620A priority Critical patent/JP7032380B2/ja
Priority to EP17838384.0A priority patent/EP3500004B1/en
Priority to EP23200194.1A priority patent/EP4283912A3/en
Priority to US16/323,339 priority patent/US10917887B2/en
Publication of WO2018028252A1 publication Critical patent/WO2018028252A1/zh
Priority to US17/158,916 priority patent/US11611960B2/en
Priority to JP2021186234A priority patent/JP7416748B2/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present application relates to, but is not limited to, the field of mobile communications, and in particular, to an information transmission method and apparatus based on a scan time block.
  • the transmitting end can concentrate the transmitting energy in a certain direction, and the energy is small or absent in other directions, that is, each beam has its own directivity, and each beam can only cover To a terminal in a certain direction, the transmitting end, that is, the base station needs to transmit a beam in dozens or even hundreds of directions to complete the full coverage.
  • the measurement and identification of the preliminary beam direction are performed during the initial access of the terminal to the network, and the base station side transmit beam is polled once in a time interval for the terminal to measure and identify the preferred beam or port.
  • a DL beam sweeping subframe includes a plurality of consecutive beam sweeping blocks (such as a mesh area in FIG. 1); at each beam scanning time.
  • a synchronization signal (SS, Synchronous Signal), system information (SI, System Information) may be transmitted on multiple beams or ports, and a beam/port measurement reference signal (BRS, Beam) may also be included.
  • Reference Signal The measurement of the synchronization signal, the acquisition of the system information, and the measurement of the optional measurement reference signal identify the preferred downlink transmit beam or port, and acquire the basic information of the cell, access the configuration information, and thereby access the network.
  • SS Synchronous Signal
  • SI System Information
  • BRS beam/port measurement reference signal
  • Terminal The measurement of the synchronization signal, the acquisition of the system information, and the measurement of the optional measurement reference signal identify the preferred downlink transmit beam or port, and acquire the basic information of the cell, access the configuration information, and thereby access the network.
  • the required beamforming gain also increases, which means that a more "narrow" beam is needed to cover the expected range, and the number of beams may reach tens or even
  • the number of beam scanning time blocks needs to be increased accordingly, and the total length of the beam scanning subframe will be long.
  • the direction of the transmit beam is rotated in a pre-defined order in the beam scanning sub-frame, and cannot match the different data transmission requirements of each current beam, that is, the beam direction in which data transmission is required may need to wait for the scanning sub-frame. End the reconfiguration of the data sub-frame.
  • the scanning time block continuously changes the transmission direction continuously. Will increase the hardware cost and overhead of the base station.
  • the embodiment of the invention provides a method and a device for transmitting information based on a scanning time block, which can improve the flexibility and efficiency of data beam transmission and reduce the delay of service transmission.
  • An embodiment of the present invention provides an information transmission method based on a scan time block, including: configuring part or all of a symbol of a data transmission subframe in a scan period as a scan time block; and carrying a scan signal channel in the scan time block The transmission is performed; wherein the scan signal channel refers to a signal or signal and channel that needs to be polled on all ports or beams.
  • An embodiment of the present invention further provides an information transmission apparatus based on a scan time block, comprising: a configuration module, configured to configure part or all of the symbols of the data transmission subframe in the scan period as a scan time block; and the transmission module is configured to The scan signal channel is carried within the scan time block for transmission; wherein the scan signal channel refers to a signal or signal and channel that needs to be polled for transmission on all ports or beams.
  • An embodiment of the present invention further provides an electronic device, including the foregoing information processing device based on a scan time block.
  • An embodiment of the present invention further provides an electronic device, including a processor and a memory storing the processor-executable instructions, when the instruction is executed by the processor, performing an operation of: transmitting a data sub-frame within a scan period Part or all of the symbols are configured as scan time blocks; the scan signal channel is carried within the scan time block for transmission; wherein the scan signal channel refers to signals or signals and channels that need to be polled for transmission on all ports or beams .
  • the embodiment of the present invention further provides a machine readable medium storing computer executable instructions, which are implemented by the processor to implement the above-described scan time block based information transmission method.
  • the embodiment of the invention provides a method and a device for transmitting information based on a scanning time block, and defines a new beam/port scanning resource structure, and the scanning time block is distributed and inserted into a data transmission sub-frame, that is, within a scanning period. Some or all of the symbols of the data transmission subframe are configured as scan time blocks.
  • the downlink control region in the data transmission subframe may schedule resources other than the scanning signal channel in the scanning time block to transmit data of the same port or the same beam.
  • the scanning subframe includes a reduction in the number of scanning time blocks, and the total length is reduced, which also reduces the influence of the transmission of the scanning subframe on the service transmission delay.
  • the embodiment of the present invention can support configuring a symbol other than the reserved area in the data transmission subframe as a scanning time block, so that the scanning time block does not affect the transmission of the original port control information, that is, the important information can be transmitted according to the established port. This greatly improves the stability of the system.
  • FIG. 1 is a schematic structural diagram of a continuous scan subframe in the related art
  • FIG. 2 is a flowchart of a method for transmitting information based on a scan time block according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of an internal structure of a scan time block according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a configuration of a scan time block corresponding to the first embodiment
  • FIG. 5 is a schematic diagram of a configuration of a downlink scan time block corresponding to the second embodiment
  • FIG. 6 is a schematic diagram of a configuration of another downlink scan time block corresponding to the second embodiment
  • FIG. 7 is a schematic diagram of a configuration of an uplink scan time block corresponding to the second embodiment
  • FIG. 8 is a schematic diagram of another uplink scan time block corresponding to the second embodiment.
  • FIG. 9 is a schematic diagram of a configuration of a scan time block corresponding to the third embodiment.
  • FIG. 10 is a schematic diagram showing the configuration of another scanning time block corresponding to the third embodiment.
  • FIG. 11 is a schematic diagram of a configuration of another scan time block corresponding to the third embodiment.
  • FIG. 12 is a schematic diagram of a configuration of a scan time block corresponding to the fourth embodiment
  • FIG. 13 is a schematic diagram of a configuration of a scan time block corresponding to Embodiment 5;
  • FIG. 14 is a schematic diagram of a configuration of a scan time block corresponding to Embodiment 6;
  • FIG. 15 is a schematic diagram of a configuration of a scan time block corresponding to Embodiment 7;
  • FIG. 16 is a schematic diagram of a configuration of a scan time block corresponding to Embodiment 8.
  • FIG. 17 is a schematic diagram of a configuration of a scan time block corresponding to Embodiment 9;
  • FIG. 18 is a schematic diagram showing the configuration of another scanning time block corresponding to Embodiment 9;
  • FIG. 19 is a schematic diagram of a configuration of a scan time block corresponding to Embodiment 10.
  • 20 is a schematic diagram of a mapping structure when a subcarrier spacing of a synchronization signal block corresponding to the eleventh embodiment is 240 kHz;
  • 21 is a schematic diagram of a mapping structure when a subcarrier spacing of a synchronization signal block corresponding to the eleventh embodiment is 120 kHz;
  • 22 is a schematic diagram of a mapping structure when a subcarrier spacing of a synchronization signal block corresponding to the eleventh embodiment is 30 kHz;
  • 23 is a schematic diagram of a mapping structure when a subcarrier spacing of a synchronization signal block corresponding to the eleventh embodiment is 15 kHz;
  • FIG. 24 is a schematic diagram of another mapping structure when the subcarrier spacing used by the synchronization signal block corresponding to the eleventh embodiment is 15 kHz; FIG.
  • 25 is a schematic diagram of another mapping structure when the subcarrier spacing used by the synchronization signal block corresponding to the eleventh embodiment is 240 kHz;
  • 26 is a schematic diagram of a mapping structure when a subcarrier spacing of a synchronization signal block corresponding to the twelfth embodiment is 240 kHz;
  • FIG. 27 is a schematic diagram of a synchronization signal block in Embodiment 12 spanning a 0.5 millisecond boundary
  • FIG. 28 is a schematic diagram showing a mapping structure of a synchronization signal block in Embodiment 13;
  • FIG. 29 is a schematic diagram showing a mapping structure of a synchronization signal block in Embodiment 14.
  • FIG. 30 is a schematic diagram of an information transmission apparatus based on a scan time block according to an embodiment of the present invention.
  • the sweeping time interval may also be referred to as a sweeping subframe, or a beam sweeping time interval, or a beam scanning subframe (beam).
  • Sweeping subframe a data transmission subframe may also be referred to as a data transmission time interval (Time Interval).
  • the scan time interval can be one or more consecutive data transmission subframes.
  • the sweeping time block may also be referred to as a sweeping block, or a beam sweeping time block, or a beam sweeping block.
  • the "beam” has the same meaning as the "port”, and is not distinguished here and can be used universally.
  • Embodiments of the present invention provide an information transmission method based on a scan time block. As shown in FIG. 2, the method for transmitting information based on a scan time block provided by this embodiment includes the following steps:
  • Step 201 Configure part or all of the symbols of the data transmission subframe in the scanning period as a scanning time block;
  • Step 202 Carry a scan signal channel in the scan time block for transmission
  • the scan signal channel refers to a signal or a signal and a channel that need to be polled for transmission on all ports or beams.
  • Step 201 can include configuring some or all of the symbols of one or more data transmission subframes within the scan period as one or more scan time blocks.
  • part of the symbols of one data transmission subframe in the scanning period may be configured as one or more scanning time blocks; or all symbols of one data transmission subframe in the scanning period may be configured as one or more scanning time Block; or, part or all symbols of the plurality of data transmission subframes in the scanning period may be respectively configured as one scanning time block; or, part or all symbols of the plurality of data transmission sub-frames in the scanning period may be Configured as multiple scan time blocks. That is, one or more scan time blocks may be configured in one data transmission subframe within a scan period, each scan time block occupies one or more symbols; or may be in multiple data transmission subframes within a scan period One or more scan time blocks are respectively configured, and each scan time block occupies one or more symbols.
  • step 201 may include configuring symbols other than the reserved area within one or more data transmission subframes within the scan period as one or more scan time blocks.
  • the data transmission sub-block after the scan time block is configured
  • the frame structure can be any of the following:
  • the downlink control region, the downlink scan time block, the guard interval, the uplink scan time block, and the uplink control region respectively include one or more symbols, such as orthogonal frequency division multiplexing (OFDM) symbols.
  • OFDM orthogonal frequency division multiplexing
  • the configuring, within the one or more data transmission subframes in the scanning period, symbols other than the reserved area as one or more scanning time blocks may include: one or more of the scanning periods All symbols except the reserved area in consecutive data transmission subframes are configured as scan time blocks; wherein all symbols except one of the reserved areas in one or more consecutive data transmission subframes in the scanning period are configured as After scanning the time block, the configured scan time is configured One or more consecutive data transmission subframes after the block constitute a sweeping time interval.
  • the reserved area may include one or more of the following: a downlink control area and an uplink control area.
  • the configuring some or all of the symbols of the data transmission subframe within the scan period as the scan time block may include: transmitting all symbols of one or more consecutive data transmission subframes within the scan period Configuring a scan time block; wherein, after all symbols of one or more data transmission subframes in the scan period are configured as scan time blocks, the one or more consecutive data transmission subframes after the scan time block is configured Make up a scan interval.
  • the length of the scan interval is a multiple of the length of the data transmission subframe, and is not an arbitrary amount irrelevant to the length of the data transmission subframe, so that the start of the data transmission subframe is not changed.
  • the potential location ie, the terminal can find the starting point of the subframe according to the fixed subframe length, and blindly check the control channel at the beginning of the subframe.
  • the scanning time interval is not directly related to the length of the data transmission subframe, so that after the insertion of a scanning time interval, the starting position of the data transmission subframe is no longer fixed, and the terminal needs to blindly check by the symbol. To ensure that the control channel at the beginning of the data transmission subframe is not missed. Terminal blind detection complexity is increased.
  • the configuring a part or all of the symbols of the data transmission subframe in the scanning period as the scanning time block may include: configuring only part or all of the symbols of the data transmission subframe in the scanning period as one Scanning time block; that is, only one scan time block is configured in the data transmission subframe;
  • the port or beam of the data transmission subframe is a subset or a complete set of the scan time block port or beam, after only part or all of the symbols of the data transmission subframe in the scanning period are configured as one scanning time block.
  • the scan period may refer to a time interval in which the scan signal channel is polled and transmitted once on all ports or beams, and the scan period includes a plurality of subframes.
  • the scan period is predefined as any of the following: 5 milliseconds (ms), 10 ms, 20 ms, 40 ms, 80 ms.
  • one or more scan time blocks are included in the scan period, and each scan time block transmits a scan signal channel of one or more ports, occupying one or more symbols, The transmission of the scan signal channels of all ports or beams is completed during the scan period.
  • the scan time block includes one or more of the following: a downlink scan time block and an uplink scan time block; and the scan signal channel includes one or more of the following: an uplink scan signal channel, a downlink scan Signal channel.
  • the downlink scan time block carries a downlink scan signal channel for at least one of: cell search, downlink port or beam measurement and identification, and the downlink scan signal channel includes a port or a beam corresponding to the port.
  • the uplink scan time block carries an uplink scan signal channel for at least one of: uplink access, uplink port or beam measurement and identification, and the uplink scan signal channel includes the following corresponding to the port or beam One or more of a signal or a channel: an uplink random access request signal, an uplink port measurement reference signal.
  • the scan signal channel in the scan time block is further configured to indicate time domain location information of the scan time block, where the time domain location information includes one or more of the following: a scan time block a frame, a sub-frame in which the scan time block is located, a position of the scan time block in the sub-frame; wherein a position of the scan time block in the sub-frame means that the scan time block is in the sub-frame The occupied symbol information, or offset information between the scan time block and the boundary of the subframe in which the scan time block is located.
  • the data transmission subframe may be used to transmit or receive data for one or more terminals on a particular port or beam.
  • the structure of the data transmission subframe may include any one of the following:
  • the downlink control region, the downlink data region, the guard interval, the uplink data region, and the uplink control region respectively include one or more symbols, such as an Orthogonal Frequency Division Multiplexing (OFDM) symbol. number.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the structure of the data transmission subframe includes a combination of a downlink control region and a downlink data region
  • the data transmission after the scan time block is configured
  • the subframe structure may be: a combination of a downlink control region and a downlink scan time block, or a combination of a downlink control region, a downlink scan time block, and a downlink data region;
  • the data transmission subframe structure after the scan time block is configured may be a combination of a downlink control region, a guard interval, and an uplink scan time block, or a combination of a downlink control region, a guard interval, an uplink scan time block, and an uplink data region;
  • the subframe structure may be: a combination of a downlink control region, a downlink scan time block, a guard interval, and an uplink control region, or a combination of a downlink control region, a downlink scan time block, a downlink data region, a guard interval, and an uplink control region, or a combination of a downlink control region, a downlink data region, a guard interval, an uplink scan time block, and an uplink control region, or a combination of a downlink control region, a downlink data region, a guard interval, an uplink scan time block, and an uplink control region, or a combination of a downlink control region, a downlink data region, a guard interval, an uplink control region, and an uplink scan time block;
  • the subframe structure may be: a combination of a downlink control region, a guard interval, an uplink scan time block, and an uplink control region, or a combination of a downlink control region, a guard interval, an uplink scan time block, an uplink data region, and an uplink control region;
  • the data transmission subframe structure may be: a combination of a downlink control region, a downlink scan time block, a guard interval, an uplink scan time block, and an uplink control region, or a downlink control region, a downlink scan time block, a downlink data region, and a guard interval.
  • the method of this embodiment may further include: transmitting downlink data or uplink data in the scan time block, where the downlink data or uplink data is in front of the scan time block.
  • the downlink control area within a subframe or symbol is allocated or scheduled.
  • the port or beam used by the downlink control region is a subset or a complete set of scan time block ports or beams to which the downlink data belongs.
  • the port or beam used by the downlink data or the uplink data is a subset or a complete set of the scan time block port or beam; and resources that are not occupied by the scan signal channel in the scan time block are used. .
  • the downlink data or uplink data is frequency division multiplexed with a scan signal channel within the scan time block.
  • the downlink control includes uplink scheduling information or Downlink assignment information for data transmission resources in the scanning time block.
  • the data transmission resource in the scan time block is jointly allocated and indicated with the data transmission resource in the data transmission subframe, or is independently allocated and indicated.
  • the downlink control further includes one or more of: time domain location information of a data transmission resource in the scan time block, and a frequency domain location of a data transmission resource in the scan time block. information.
  • a time domain location letter of a data transmission resource within the scan time block Interest described in any of the following ways:
  • An absolute time offset between the scan time block and the data transmission subframe in which the downlink control is located where the absolute time offset may be the number of symbols of the offset, or the absolute time of the offset;
  • the position of the scan time block in the subframe refers to the symbol information occupied by the scan time block in the subframe, or between the scan time block and the boundary of the subframe where the scan time block is located. Offset information.
  • the scan time blocks are equally spaced on the data transmission subframe.
  • the scanning time block is equally spaced on the data transmission subframe, and may include:
  • All scan time blocks in the scan period T are divided into N groups, and each set of scan time blocks is mapped on the data transmission subframe at a fixed time interval, and the adjacent scan time blocks in each group are equally spaced. ;
  • all adjacent scan time blocks are equally spaced.
  • N can be a positive integer.
  • each set of scan time blocks is mapped on the data transmission subframe at a fixed time interval, and may include: between the start boundaries of the first scan time block in the adjacent two scan time blocks.
  • the offset is fixed.
  • an offset between the start boundaries of the first scan time block within the adjacent two sets of scan time blocks is equal to a ratio of the scan periods T to N.
  • FIG. 3 is a schematic diagram of an internal structure of a scan time block according to an embodiment of the present invention.
  • 3(a) is a structural example of a downlink scanning time block
  • FIG. 3(b) is a structural example of an uplink scanning time block.
  • the downlink scan time block occupies 2 symbols, and the synchronization signal (SS) and the system information (SI) are time-division multiplexed, respectively occupying one symbol time domain resource, in the frequency domain.
  • SS synchronization signal
  • SI system information
  • Each of the six resource blocks (RBs, Resource Blocks) can occupy different RB numbers.
  • the beam measurement reference signal (BRS) and the SS/SI frequency division multiplexing are used for terminal measurement and identification of the beam.
  • Other multiplexing methods of scanning time blocks are also possible, such as SS, SI, and BRS, time division multiplexing, or SS, SI, and BRS frequency division multiplexing, or other multiplexing methods.
  • the downlink scan time block does not necessarily include all downlink scan signal channels (ie, the synchronization signal SS, the system information SI, and the beam measurement reference signal BRS), and some downlink scan time blocks may only include some signals or channels in the downlink scan signal channel.
  • the downlink scan time block used for the initial access may only include the SS and the SI; the subsequent beam tracking may include only the BRS, and only the terminal can measure and identify the downlink beam.
  • Other forms including partial downlink scan signal channels are also possible.
  • the case where the three types of signals or channels are included is taken as an example.
  • the case where the downlink scan signal channel only includes a part of signals or channels is also within the protection scope of the present application.
  • RACH represents a random access request resource
  • BRS is an uplink beam measurement reference signal
  • the two parts of resources in FIG. 3(b) are frequency division multiplexing relationships.
  • the application does not exclude other reuse methods.
  • the uplink scan time block may also include only one of the two, such as only including the BRS, for uplink beam tracking. In the following embodiments, the case where both are included is taken as an example.
  • the uplink scan signal channel only includes a part of signals or channels, it also belongs to the protection scope of the present application.
  • the configuration of the downlink scan time block described in this embodiment is as shown in FIG. 4.
  • the structure of the data transmission subframe is described below by using a downlink control region and a downlink data region.
  • a downlink data transmission subframe In a sweeping/sync period (such as 5ms), multiple downlink (DL) data transmission subframes are used, and the ports or beams used by the downlink data transmission subframes are dynamically scheduled according to service transmission requirements. That is, when there is downlink data to be transmitted in a certain port or beam direction, a downlink data transmission subframe is configured to send downlink control and downlink data of the corresponding port.
  • DL downlink
  • the configuration of multiple scanning time blocks needs to be completed, and these scanning time blocks are used for polling transmission of all port scanning signal channels, that is, the plurality of scanning time blocks need to be completed. At least one scan signal channel is transmitted on each port or beam.
  • the scan time block carries a scan signal channel for cell search (synchronization signal), port or beam measurement and identification (such as beam measurement reference signal), and the scan signal channel includes the port or beam Corresponding to the following signals or channels: synchronization signal, system message, beam measurement reference signal.
  • the structure of the scan time block shown in FIG. 4 is only an example.
  • the scan time block occupies 2 symbols
  • the synchronization signal SS is time-division multiplexed with the system information SI, respectively occupying one symbol time domain resource, respectively in the frequency domain. It takes 6 RBs, and both can occupy different RB numbers.
  • the beam measurement reference signal BRS is frequency-division multiplexed with the SS/SI for the measurement and identification of the beam by the terminal.
  • Other multiplexing methods of scanning time blocks are also possible, such as SS, SI, and BRS, time division multiplexing, or SS, SI, and BRS frequency division multiplexing, or other multiplexing methods.
  • the scan signal channel in the scan time block is further used to indicate time domain position information of the scan time block
  • the time domain position information includes: a frame in which the scan time block is located, a sub-frame in which the scan time block is located, and a scan time block in the sub- The position in the frame.
  • the position of the scan time block in the subframe that is, which symbols in the subframe are occupied by the scan time block, and the boundary information of the subframe in which the scan time block is located is also indirectly indicated by this information.
  • the time domain location information of the scan time block is carried in the SI, that is, the frame number, the subframe number, and the scan time block in which the scan time block to which the SI belongs are included in the SI. Location information in the frame.
  • a sweeping block 2 in the following DL subframe 2 in which the SI carries the following information: the system frame number is 0001001110, the subframe number is 2, and the scan time block is in the data transmission subframe.
  • the position in the middle is the last two symbols (symbols 12, 13), and the boundary of the corresponding subframe can also be determined; for the scan time block in the last scanned sub-frame, the information carried by the SI is similar; taking the sweeping block 5 as an example
  • the system frame number is 0001001110
  • the subframe number is 5
  • the position of the scan time block in the scan subframe is the first two symbols (ie, symbols 0, 1).
  • the time domain location information of the scan time block may also be indicated by scanning other signals in the signal channel, for example, by indicating a partial time domain position information by using a synchronization signal, assuming that 1 radio frame contains 10 subframes, which may occur due to the synchronization signal.
  • the synchronization signal sequence can be divided into 10 groups, and the mapping relationship between each group of synchronization signal sequences and the subframe number is defined in advance, and the terminal further obtains the subframe number by detecting the synchronization signal;
  • the frequency domain location where the synchronization signal is located is also a possible option, for example
  • the frequency domain position of the plurality of synchronization signals is defined in each scanning time block according to the number of subframes in the radio frame, and the mapping relationship between the frequency domain location and the subframe number needs to be defined in advance, and the terminal judges the frequency domain position of the synchronization signal by using Thereby, the subframe number information is obtained. Similar to the above two methods, it can also be used to indicate the position of the scan time block in the subframe by the synchronization signal, and the frame number information.
  • the beam measurement reference signal may be used to indicate the time domain location information of the scan time block, in the same manner as the synchronization signal indicates the time domain location information, and details are not described herein again.
  • the time domain location information of the scan time block may also be indicated by any two or three of the SS/SI/BRS, for example, the SI indicates the frame number, the SS indicates the subframe number, and the BRS indicates the scan time. The position of the block in the sub-frame.
  • the frame number information is carried in the SI; the sequence grouping of the SS, each group corresponding to the subframe number; and the BRS sequence grouping, each group corresponding to the position of the scanning time block in the subframe.
  • Other ways of joint instructions are also supported.
  • the same scanning time block can transmit one or more scanning signal channels of ports or beams, that is, multiple RF chains in the same scanning time block simultaneously send scanning signal channels, and the scanning signal channel contents transmitted by different RF chains can be the same or different.
  • the scan time block includes a plurality of ports or beams (eg, ports 1 to 4), a scan signal channel that transmits a plurality of ports or beams, and a port of the downlink data transmission subframe is the plurality of ports or Part of the beam (eg port 1, 2) or all.
  • the remaining four scanning time blocks (sweeping blocks) 5 to 8 are included in the last subframe of the scanning period.
  • the remaining 4 scan time blocks, that is, all the symbols (8) of this downlink data transmission subframe are configured as scan time blocks.
  • the configuration of all scan time blocks is completed in the scan period, and the scan time blocks are dispersed in each downlink data transmission subframe.
  • resources other than the scan signal channel in the scan time block may be used to further carry downlink data, since the ports of the sweeping blocks 1 to 4 include corresponding
  • the downlink data transmission subframe is used by the downstream data transmission subframe. Therefore, the downlink control region in the downlink data transmission subframe can be used to schedule the remaining resources in the sweeping block to send downlink data.
  • the port or beam used for downlink control and downlink data is a subset or a complete set of the scan time block port or beam, but the downlink control and downlink data are not limited to use the same port or beam.
  • downlink resources (shown in the dotted portion of FIG. 4) in the sweeping block may be jointly numbered with the downlink data channel resources in the original downlink data transmission subframe, and are scheduled together, and adopt the same modulation coding. the way.
  • the original downlink data transmission resource includes 50 RBs
  • the resource that can be used for transmitting downlink data in the sweeping block has 10 RBs and 60 RBs jointly numbered, and indicates to the terminal to receive RB resources of downlink data, for example, for UE1,
  • the downlink data occupies RB3 ⁇ 4, and the downlink data of UE2 occupies RB60 ⁇ 64.
  • the time domain resources of the first 50 RBs and the last 10 RBs are not the same.
  • the last 10 RBs only have 2 symbols in the time domain. Therefore, when performing downlink scheduling, the base station needs to indicate the time domain width corresponding to the RB and the start time position of the time domain. For example, DL subframe 1 occupies 14 symbols, the downlink control area occupies 2 symbols, and the downlink data area occupies 10 symbols.
  • the sweeping block occupies 2 symbols, for UE1, the occupied RBs 3 to 4 occupy 10 symbols in the time domain, and for UE2, the occupied RBs 60 to 65 occupy 2 symbols in the time domain (symbol 12, 13), the starting point is the symbol 12 (the symbol is numbered as follows: symbol 0 to symbol 13).
  • the frequency domain location of the 10 RBs For the downlink data resources (10 RBs) in the scan time block, if the frequency domain location of the 10 RBs has been predefined by the system, it is only necessary to indicate to the UE the RB number and the time domain location described above, if If the frequency domain location of the RB is not predefined, the frequency domain location of the RB needs to be further indicated.
  • the 10 RBs are distributed at 5 RBs at both ends of the system bandwidth.
  • the mode described in this embodiment is also applicable to the configuration of the uplink scan time block.
  • the downlink scan time block shown in FIG. 4 can be replaced with the uplink scan time block, but the difference is: data.
  • the guard interval for downlink to uplink conversion needs to be reserved in front of the uplink scan time block inserted in the subframe.
  • each data transmission subframe may also be of other types during the scanning period.
  • FIG. 5(a) shows a self-contained downlink data transmission subframe, that is, a guard interval (GP) is included at the end of the subframe.
  • FIG. 6(a) shows the uplink data transmission subframe, and
  • FIG. 5(a) and FIG. 6(a) respectively refer to the case where one subframe is embodied, and the overall structure is similar to that described in the first embodiment.
  • FIG. 5(a) and FIG. 6(a) respectively refer to the case where one subframe is embodied, and the overall structure is similar to that described in the first embodiment.
  • FIG. 5(a) and FIG. 6(a) respectively refer to the case where one subframe is embodied, and the overall structure is similar to that described in the first embodiment.
  • FIG. 5(a) and FIG. 6(a) respectively refer to the case where one subframe is embodied, and the overall structure is similar to that described in the first embodiment
  • the downlink control area in the data transmission subframe can still schedule resources other than the scanning signal channel in the sweeping block, and is used to send downlink data of the same port.
  • the related manner is the same as that in the first embodiment. Let me repeat.
  • an uplink scan time block may also be configured.
  • FIG. 7 shows two configurations of configuring one uplink scan time block in the data transmission subframe structure in FIG. 5( a ).
  • the uplink scan time block may be configured in front of the uplink control or Behind.
  • FIG. 8 shows two forms of an uplink scan time block configured in the data transmission subframe structure in 6(a).
  • the uplink scan time block may be configured at the beginning, or end, of the upstream data.
  • the scanning time block is configured in the following data transmission subframe as an example, and other possible configuration manners are described.
  • two symbols are configured as a sweeping block before the downlink data.
  • the sweeping block can be configured with two symbols before the downlink control region.
  • the downlink control cannot schedule resources other than the scan signal channel in the sweeping block.
  • the sweeping block can be inserted in the middle of the downlink data symbol, that is, the sweeping block divides the downlink data area into two parts.
  • the downlink control area can still schedule resources other than the scan signal channel in the sweeping block to send downlink data.
  • the downlink data transmission resources may be jointly numbered.
  • the symbol configuration may be: 4 symbols of downlink data, 2 symbols of sweeping block, and 6 downlink data. symbol. The first four symbols are divided into 50 RBs in the frequency domain, and there are 10 RB downlink data transmission resources in the sweeping block frequency domain, and the last 6 symbols are divided into 50 RBs in the frequency domain.
  • the three-part resource is jointly numbered into 110 RB resources (RB0-RB109).
  • the base station needs to simultaneously indicate the time domain resource size and starting point of the corresponding RB, for example, RB0-RB49 and time domain 4 Symbol, starting point is symbol 0; RB50 ⁇ RB59, time domain 2 symbols, starting point is symbol 4; RB60 ⁇ RB109, time domain 6 symbols, starting point is symbol 6.
  • the sweeping time interval aggregated by the remaining sweeping blocks may be located at any position within the scan period (ie, not limited to the last subframe). .
  • the Nth data transmission subframes in the scanning period are all configured as downlink scanning time blocks to form a downlink scanning time interval.
  • Other data transmission subframes are still configured with a downlink scan time block.
  • which beams are scheduled to be sent during the scan period are considered to be known in advance, and the sweeping time interval includes which sweeping blocks can be pre-configured.
  • the configuration of the scan time block in this embodiment is also applicable to the configuration of the uplink scan time block. It is worth noting that the uplink scan time block configured in the data transmission subframe needs to be reserved for downlink to uplink conversion. Protection interval.
  • the remaining downlink scan time blocks are not limited to form one downlink scanning time interval, and one sweeping time interval may be included in one scanning period. As shown in FIG. 13, there are two scanning time intervals (sweeping). Time interval) 1 and 2, the configuration of other data transmission subframes is the same as that of the first embodiment.
  • the configuration of the scan time block in this embodiment is also applicable to the configuration of the uplink scan time block. It is worth noting that the uplink scan time block configured in the data transmission subframe needs to be reserved for downlink to uplink conversion. Protection interval.
  • a plurality of scan time blocks are configured in one or more data transmission subframes within a scan period.
  • the plurality of scan time blocks may be in a continuous configuration or a distributed configuration.
  • the port of the data transmission subframe is a subset or a complete set of one of the plurality of scan time blocks, and correspondingly, the data transmission resource in the scan time block including the data transmission subframe port may be transmitted through the data transmission subframe.
  • the downlink control area is allocated or scheduled.
  • FIG. 14 is a schematic diagram showing the configuration of a scan time block corresponding to the embodiment.
  • the downlink data transmission subframe of the block, and other downlink symbols except the downlink control region are configured as scan time blocks.
  • the two downlink data transmission subframes constitute a sweeping time interval after being configured with the scan time block.
  • the configuration in this embodiment considers that the more important areas in the data transmission subframe are reserved, and the other symbols are configured as scanning time blocks, that is, the current downlink control area has more important information (for example, the downlink control is the previous uplink data).
  • the feedback information, or scheduling information for subsequent uplink data, etc., needs to be transmitted, and therefore, the downlink control region is reserved in the data transmission subframe.
  • the reserved area in the data transmission subframe may not be restricted to the downlink control area, and other symbols may be reserved.
  • the data transmission subframes are configured according to normal requirements, and the scanning time blocks continuously occupy some symbols in a certain order. If a more important data symbol that must be reserved is encountered, the part of the symbols is skipped and continues. The remaining scan time blocks are configured in several symbols.
  • the configuration of the scan time block in this embodiment is also applicable to the configuration of the uplink scan time block. It is worth noting that the uplink scan time block configured in the data transmission subframe needs to be reserved for downlink to uplink conversion. Protection interval.
  • two consecutive downlink data transmission subframes are configured to: in the case that all the symbols except the uplink and downlink control regions are scan time blocks, the two downlink data transmission sub- The frame constitutes a sweeping time interval, where the first downlink data transmission subframe is a self-contained structure, that is, configured at the end. Upstream control area.
  • the downlink scan time block When configuring the downlink scan time block, skip the corresponding uplink control area and its previous guard interval (GP).
  • the uplink control in the first downlink data transmission subframe is only an example.
  • the uplink and downlink control regions are included in the Sweeping time interval, all of them may be reserved or selectively reserved. one or more.
  • This embodiment describes a configuration manner of an uplink scan time block.
  • two consecutive data transmission subframes are configured as a schematic diagram of a scanning time interval, and the original control region of two data transmission subframes in the scanning time interval is reserved, involving a symbol occupied by an uplink and downlink control region in a data transmission subframe, and a symbol occupied by a downlink control region in a second data transmission subframe, and configured respectively before the downlink control and the uplink scanning time block
  • the guard interval (GP) of the downlink transmission to the uplink transmission conversion in one scanning period, two consecutive data transmission subframes are configured as a schematic diagram of a scanning time interval, and the original control region of two data transmission subframes in the scanning time interval is reserved, involving a symbol occupied by an uplink and downlink control region in a data transmission subframe, and a symbol occupied by a downlink control region in a second data transmission subframe, and configured respectively before the downlink control and the uplink scanning time block
  • FIG. 17 shows the configuration of the scan time block in this embodiment.
  • the relative position of the sweeping time interval in the scanning period can be arbitrarily configured.
  • the scanning time interval is configured as the last one of the scanning periods.
  • Subframe the downlink control in the previous downlink data transmission subframe can schedule downlink data resources in the scan time block of the same port, that is, resources in the scan time block except the scan signal channel, which are indicated by arrows in FIG. This cross-subframe distributes the relationship of downlink data.
  • the port of the DL subframe X is a subset of the sweeping block 1, and the downlink control part in the DL subframe X schedules the downlink data in the downlink data transmission subframe, and also schedules the downlink data in the sweeping block 1.
  • Transfer resources In the downlink scheduling, the two parts of the resources may be separately scheduled, and the downlink allocation data in the DL subframe X is used to indicate the resource allocation, the modulation and coding mode, and the HARQ (Hybrid Automatic Repeat reQuest) process number to the UE. , new data indication (NDI), redundancy version (RV, Redundancy version) and other information.
  • the base station For downlink data allocation in scan time block 1 of the scan subframe, the base station needs to indicate the scan The time offset between the scan subframe in which the time block is located and the data transmission subframe in which the downlink control is located (eg, the number of subframes in absolute time or interval indicates the time offset, and the number of subframes is taken as an example, the interval is 5 subframes), and need to indicate to the UE the relative position of the scanning time block (sweeping block 1) in the scanning subframe, that is, which symbol resources are occupied, and the sweeping block 1 occupies the symbol 0 and the symbol 1; With the above information, the UE can find the time domain location of the sweeping block 1.
  • Frequency domain information For the downlink data resources (10 RBs) in the scan time block, if the frequency domain location of the 10 RBs has been predefined by the system, the UE only needs to indicate the RB number and the time domain location described above. That is, if the frequency domain location of the 10 RBs is not predefined, the specific frequency domain location of the RB needs to be further indicated. For example, the 10 RBs are distributed at 5 RBs at both ends of the system bandwidth.
  • the modulation and coding mode of the data transmission in the sweeping block the HARQ process number, the new data indication (NDI) (indicating whether the currently allocated downlink data resource carries new data or retransmitted data), the redundancy version (RV, Redundancy version), etc.
  • NDI new data indication
  • RV redundancy version
  • the information also needs to be indicated to the UE.
  • the configuration of the scan time block in this embodiment is also applicable to the configuration of the uplink scan time block.
  • the uplink data resource in the uplink scan time block also needs to be scheduled in the corresponding downlink control region, so that the downlink control region will include both the allocation of downlink data in the data transmission subframe and the scheduling of uplink data in the scan time block. .
  • the sweeping time interval is configured in the middle of the scan period, as shown in FIG. 18.
  • the subsequent data subframe such as DL subframe Z
  • the subsequent data subframe cannot schedule the downlink data resources in the corresponding sweeping block. Insufficient use of resources. But it is also a potential configuration.
  • FIG. 19 is a schematic diagram showing a configuration manner of a scan time block corresponding to the embodiment.
  • All the sweeping blocks are aggregated into multiple subframes, that is, the scan time blocks are still combined into a scan time interval, but divided into multiple subframes. In this manner, the allocation of downlink data across subframes is also involved (as shown by the arrows in FIG. 19). ).
  • the delay of scheduling across subframes is reduced; on the other hand, the sweeping time interval is prevented from being too long, and the service data scheduling waiting delay is increased.
  • the downlink scan time block may be referred to as a sync block (SS block), and all SS blocks in the scan period are referred to as a SS burst set, and the period of the sync signal window group is the scan period.
  • SS block sync block
  • This embodiment describes a case where the SS blocks in the SS burst set are further grouped, and the adjacent SS blocks in each group are equally mapped.
  • the PBCH update period T pbch-u 80 ms, which includes 4 SS burst sets (ie, one scan period) with a period of 20 ms, and all scan times in the scan period T will be performed.
  • the duration is 0.5 ms, and the adjacent scan time blocks are equally spaced; wherein, in the case where the subcarrier spacing is 240 kHz, for example, 0.5 ms includes eight 14-symbol data transmission subframes/data transmission.
  • Slot, SS block occupies 4 symbols (including synchronization signals, physical broadcast channels, and may also contain other reference signals, control, data, etc.).
  • the SS blocks are mapped on the data transmission slots in such a way that each 14 symbol slots contain two potential SS blocks, mapped from the second symbol to the fifth symbol, and the ninth symbol to the twelfth On the symbol.
  • the above mapping structure is repeated for different time slots.
  • the SS block mapping position shown in the above-mentioned potential SS block refers to all the resources that may carry the SS block. Whether the base station actually uses the SS block on each SS block resource depends on the network requirement. When some of the SS block resources do not actually send the SS block, the resources may be configured to transmit at least one of the following: downlink control, uplink control, guard interval GP, downlink data, mini-slot, and uplink data.
  • each of the two SS blocks in each SS block (that is, within the SS burst) is separated by three symbols, that is, the two SS block time domain start boundary offsets are seven symbols.
  • each SS block does not span the slot boundary when mapping to the data transmission slot in the SS burst, thereby ensuring the flexibility of the slot configuration, and the offset between adjacent SS blocks is the same, which is beneficial to the same.
  • the terminal implements the merging between the two adjacent SS blocks; if the offset between the adjacent SS blocks is different, the terminal needs to blindly check the time domain position of the next SS block, which is given to the terminal. Implementation complexity imposes high requirements and is not conducive to merging between SS blocks.
  • This embodiment uses a 240 kHz subcarrier spacing (SCS, Subcarrier Spacing) as an example.
  • SCS subcarrier Spacing
  • the SS block uses other subcarrier spacing
  • FIG. 23 and FIG. 24 are different in that SS burst period is 5 ms or 10 ms.
  • the entire SS burst set period contains 4 SS bursts within 20 ms, and each SS burst contains 1 SS block, and the SS block can be mapped to a 7-symbol slot, or Mapping to a half-symbol of 14 symbols
  • the time-domain position of the SS block mapping can be in the first half slot (symbol 1 to symbol 4), or the second half slot (symbol 8 to Symbol 11).
  • the SS burst period is 10 ms
  • the entire SS burst set period includes 2 SS bursts within 20 ms
  • each SS burst contains 2 SS blocks.
  • the SS block occupies four consecutive symbols as an example, and the SS block can also occupy five symbols.
  • the principle of the SS block equal interval mapping is unchanged, and the specific structure is as shown in FIG. 25.
  • the SS block is mapped to the second symbol to the sixth symbol of each slot, and the ninth symbol to the thirteenth symbol, and the interval between adjacent SS blocks in the SS burst is two symbols, and the offset is Still 7 symbols.
  • This embodiment describes another case where SS blocks in the SS burst set are further grouped, and adjacent SS blocks in each group are equally mapped.
  • the offset of the adjacent SS burst between different SS burst sets is also 5 ms.
  • the adjacent SS bursts in the SS burst set are still equally spaced, but the adjacent SS bursts between the SS burst sets need not be configured as T/N (where T is the scan period and N is the SS burst number).
  • T is the scan period
  • N is the SS burst number
  • the SS burst has a duration of 0.5ms.
  • the 0.5 ms contains 8 14-symbol data transmission subframes/data transmission slots, and the SS block occupies 4 symbols (including the synchronization signal, physical
  • the broadcast channel may also contain other reference signals, controls, data, etc.).
  • the SS blocks are mapped on the data transmission slots in such a way that each 14 symbol slots contain two potential SS blocks, mapped from the second symbol to the fifth symbol, and the ninth symbol to the twelfth On the symbol.
  • the above mapping structure is repeated for different time slots.
  • the SS block mapping position shown in the above-mentioned potential SS block refers to all the resources that may carry the SS block. Whether the base station actually uses the SS block on each SS block resource depends on the network requirement. When some of the SS block resources do not actually send the SS block, the resources may be configured to transmit at least one of the following: downlink control, uplink control, guard interval GP, downlink data, mini-slot, and uplink data.
  • each of the two SS blocks in each SS block ie, within the SS burst
  • the two SS block time domain start boundary offsets are seven symbols.
  • each SS block does not span the slot boundary when mapping to the data transmission slot in the SS burst, thereby ensuring the flexibility of the slot configuration, and the offset between adjacent SS blocks in the SS burst is The same, it is advantageous for the terminal to implement the merging between two adjacent SS blocks in the SS burst when detecting the synchronization signal or the physical broadcast channel;
  • the terminal blind detection is required to determine the time domain location of the next SS block, which imposes high requirements on the implementation complexity of the terminal and is not conducive to the merging between SS blocks.
  • the SS burst has a duration of 0.5 ms.
  • the first symbol at the boundary has a relatively long CP (Cyclic Prefix) length. For example, 15 kHz, the CP length of symbol 0 and symbol 7 is approximately 5.2 us, and other symbols (1, 2, 3, 4) The length of CP of 5, 6, 8, 9, 10, 11, 12, 13) is approximately 4.7us.
  • CP Cyclic Prefix
  • the terminal will blindly check the position of the next SS block for the above two cases, introducing an additional The terminal blindly checks for complexity, so the SS burst duration can be defined here to be 0.5ms.
  • the downlink scan time block may be referred to as a sync block (SS block), and all SS blocks in the scan period are referred to as a SS burst set, and the period of the sync signal window group is the scan period.
  • SS block sync block
  • This embodiment describes the case where all adjacent SS blocks in the SS burst set are equally mapped.
  • the PBCH update period T pbch-u 80 ms, which includes four SS burst sets (ie, one scan period) with a period of 20 ms, and all scan times in the scan period T will be performed.
  • the block/SS block is configured in a centralized manner within 2ms. The case where the subcarrier spacing is 240kHz is taken as an example.
  • the 2ms includes 32 14-symbol data transmission subframes/data transmission slots, and two SSs are mapped in each slot.
  • Block, SS block occupies 4 symbols (including synchronization signals, physical broadcast channels, and may also contain other reference signals, control, data, etc.).
  • the SS blocks are mapped on the data transmission slots in such a way that each 14 symbol slots contain two potential SS blocks, mapped from the second symbol to the fifth symbol, and the ninth symbol to the twelfth On the symbol.
  • the above mapping structure is repeated in different time slots.
  • all SS blocks in the SS burst set are mapped on consecutive time slots.
  • the SS block mapping position shown in the above-mentioned potential SS block refers to all the resources that may carry the SS block. Whether the base station actually uses the SS block on each SS block resource depends on the network requirement.
  • the resources may be configured to transmit at least one of the following: downlink control, uplink control, guard interval GP, downlink data, mini-slot, and uplink data.
  • the two SS block time domain start boundary offsets are 7 symbols.
  • it can be ensured that each SS block does not span the slot boundary when mapping to the data transmission slot in the SS burst, thereby ensuring the flexibility of the slot configuration, and the offset between adjacent SS blocks is the same, which is beneficial to the same.
  • the terminal When detecting the synchronization signal or the physical broadcast channel, the terminal implements the merging between the two adjacent SS blocks; if the offset between the adjacent SS blocks is different, the terminal needs to blindly check the time domain position of the next SS block, which is given to the terminal. Implementation complexity brings high demands and is not conducive to merging between SS blocks.
  • the 240 kHz subcarrier spacing is taken as an example for description.
  • the basic feature of the mapping is that all SS blocks in the SS burst set are guaranteed to have the same offset, thereby facilitating the merging of the corresponding signal channels between the SS blocks. Similarly, It can also be obtained when the SS block is separated by other subcarriers.
  • the structure of the map is taken as an example for description.
  • the downlink scan time block may be referred to as a sync block (SS block), and all SS blocks in the scan period are referred to as a SS burst set, and the period of the sync signal window group is the scan period.
  • SS block sync block
  • This embodiment describes the case where all adjacent SS blocks are equally mapped.
  • the PBCH update period T pbch-u 80 ms, which includes 4 SS burst sets (ie, one scan period) with a period of 20 ms, and each scan period includes 20 scan time blocks.
  • these 20 SS blocks are respectively arranged in each 1ms, and the 30 kHz subcarrier spacing is shown in Fig. 29, and each SS block occupies the symbols 1 to 4 of the first slot in every millisecond.
  • the adjacent two SS blocks in the SS burst set are equally mapped in the data transmission slot, and the adjacent two SS blocks between different SS burst sets are also equally spaced.
  • the offset between any two adjacent SS blocks is the same (ie, 1 ms), which is advantageous for the terminal to implement the merging between two adjacent SS blocks when detecting the synchronization signal or the physical broadcast channel; If the offset between adjacent SS blocks is different, the terminal blind detection is required to determine the time domain location of the next SS block, which imposes high requirements on the implementation complexity of the terminal and is not conducive to the merging between SS blocks.
  • the symbols 1 to 4 of the first slot in each millisecond are described by the SS block mapping.
  • the occupied symbols of the SS block in every millisecond can be any consecutive 4 symbols, and only need to be satisfied.
  • the relative position of the SS block occupying symbols is the same every millisecond. For example, in every millisecond (ie, SS block transmission period), the SS block occupies the Mth to the M+3th symbols. It is also possible to satisfy all SS block equal interval mappings.
  • the transmission period of the SS block is 1 ms, and the transmission period may also be other values.
  • This embodiment is described by taking the 30 kHz subcarrier spacing as an example.
  • the basic feature of the mapping is that for all SS blocks, any two of them are guaranteed the same offset, thereby facilitating the merging of corresponding signal channels between the SS blocks. It is also possible to obtain a structure in which the SS block is mapped at other subcarrier intervals.
  • the scanning time block and the scanning subframe configuration manner shown in the above embodiments 1 to 10 can be Mutual combinations appear.
  • the following conditions are also supported:
  • the scan period includes both a data transmission subframe configured with one or more scan time blocks and a data transmission subframe configured with all symbols configured as scan time blocks;
  • the scan period includes the following three types of subframes: data transmission subframes configured with one or more scan time blocks; other symbols except the control region are configured as data transmission subframes of the scan time block; all symbols are configured Transmitting a sub-frame for the data of the scan time block;
  • uplink scan time blocks and downlink scan time blocks are also supported during the scan period.
  • FIG. 30 is a schematic diagram of an information transmission apparatus based on a scan time block according to an embodiment of the present invention. As shown in FIG. 30, the apparatus provided in this embodiment includes:
  • the configuration module 301 is configured to configure part or all of the symbols of the data transmission subframe in the scanning period as the scanning time block;
  • the transmitting module 302 is configured to carry the scan signal channel in the scan time block for transmission
  • the scan signal channel refers to a signal or a signal and a channel that need to be polled for transmission on all ports or beams.
  • the configuration module 301 can be configured to configure some or all of the symbols of one or more data transmission subframes within a scan period as one or more scan time blocks.
  • the configuration module 301 can be configured to configure symbols other than the reserved area within one or more data transmission subframes within the scan period as one or more scan time blocks.
  • the configured scanning time may be any of the following:
  • the downlink control region, the downlink scan time block, the guard interval, the uplink scan time block, and the uplink control region respectively include one or more symbols, such as OFDM symbols.
  • the configuration module 301 may be configured to configure all symbols except the reserved area within one or more consecutive data transmission subframes within the scan period as scan time blocks.
  • the configuration module 301 configures all symbols except the reserved area in one or more consecutive data transmission subframes in the scanning period as the scanning time block, the one after the scanning time block is configured or A plurality of consecutive data transmission subframes constitute a scan time interval.
  • the reserved area may include one or more of the following: a downlink control area and an uplink control area.
  • the configuration module 301 may be configured to configure all symbols of one or more consecutive data transmission subframes within a scan period as scan time blocks;
  • the configuration module 301 configures all the symbols of one or more consecutive data transmission subframes in the scan period as the scan time block, the one or more consecutive data transmissions after the scan time block is configured. Subframes form a scan interval.
  • the configuration module 301 may be configured to configure only part or all of the symbols of the data transmission subframe within the scanning period as one scanning time block;
  • the port or beam of the data transmission subframe is the scan time block port or beam.
  • the scan period refers to the scan signal channel at all ports or A time interval in which the polling is transmitted once on the beam, the scanning period including a plurality of subframes.
  • the scanning period is predefined as any one of the following: 5 ms, 10 ms, 20 ms, 40 ms, 80 ms.
  • the scan time block includes one or more of the following: a downlink scan time block and an uplink scan time block; and the scan signal channel includes one or more of the following: an uplink scan signal channel, a downlink scan Signal channel.
  • the downlink scan time block carries a downlink scan signal channel for at least one of: cell search, downlink port or beam measurement and identification, and the downlink scan signal channel includes the following signal corresponding to the port or beam Or one or more of the channels: a downlink synchronization signal, system information, and a downlink port measurement reference signal.
  • the uplink scan time block carries an uplink scan signal channel for at least one of: uplink access, uplink port or beam measurement and identification, and the uplink scan signal channel includes the following corresponding to the port or beam One or more of a signal or a channel: an uplink random access request signal, an uplink port measurement reference signal.
  • one or more scan time blocks are included in the scan period, each scan time block transmitting a scan signal channel of one or more ports occupying one or more symbols during the scan period The transmission of the scan signal channel of all ports or beams is completed.
  • the scan signal channel in the scan time block is further configured to indicate time domain location information of the scan time block, where the time domain location information includes one or more of the following: a scan time block a frame, a sub-frame in which the scan time block is located, a position of the scan time block in the sub-frame; wherein a position of the scan time block in the sub-frame means that the scan time block is in the sub-frame The occupied symbol information, or the offset information between the scan time block and the boundary of the subframe in which the scan time block is located.
  • the data transmission subframe is used to transmit or receive data for one or more terminals on a particular port or beam.
  • the structure of the data transmission subframe includes any one of the following:
  • the downlink control region, the downlink data region, the guard interval, the uplink data region, and the uplink control region respectively include one or more symbols, such as orthogonal frequency division multiplexing (OFDM) symbols.
  • OFDM orthogonal frequency division multiplexing
  • the transmission module 302 may be further configured to transmit downlink data or uplink data in the scan time block, where the downlink data or uplink data is in front of the scan time block.
  • the downlink control area within a subframe or symbol is allocated or scheduled.
  • the port or beam used by the downlink control region is a subset or a complete set of scan time block ports or beams to which the downlink data belongs.
  • the port or beam used by the downlink data or the uplink data is a subset or a complete set of the scan time block port or beam; and resources that are not occupied by the scan signal channel in the scan time block are used. .
  • the downlink data or uplink data is frequency division multiplexed with a scan signal channel within the scan time block.
  • the downlink control includes uplink scheduling information or downlink allocation information for data transmission resources in the scanning time block.
  • the data transmission resource in the scan time block is jointly allocated and indicated with the data transmission resource in the data transmission subframe, or is independently allocated and indicated.
  • the downlink control further includes one or more of: time domain location information of a data transmission resource in the scan time block, and a frequency domain location of a data transmission resource in the scan time block. information.
  • the time domain location information of the data transmission resource in the scan time block is described in any of the following manners:
  • An absolute time offset between the scan time block and the data transmission subframe in which the downlink control is located where the absolute time offset may be the number of symbols of the offset, or the absolute time of the offset;
  • the position of the scan time block in the subframe refers to the symbol information occupied by the scan time block in the subframe, or between the scan time block and the boundary of the subframe where the scan time block is located. Offset information.
  • the scan time blocks are equally spaced on a data transmission subframe.
  • the scanning time block is equally spaced on the data transmission subframe, and may include:
  • All scan time blocks in the scan period T are divided into N groups, and each set of scan time blocks is mapped on the data transmission subframe at a fixed time interval, and the adjacent scan time blocks in each group are equally spaced. ;
  • all adjacent scan time blocks are equally spaced.
  • each set of scan time blocks is mapped on the data transmission subframe at a fixed time interval, and may include: between the start boundaries of the first scan time block in the adjacent two scan time blocks.
  • the offset is fixed.
  • an offset between the start boundaries of the first scan time block within the adjacent two sets of scan time blocks may be equal to a ratio of the scan periods T to N.
  • an embodiment of the present invention further provides an electronic device, including the foregoing information processing apparatus based on a scan time block.
  • an embodiment of the present invention further provides an electronic device, including a processor and a memory storing the processor executable instructions, when the instructions are executed by the processor, performing the following operations: transmitting data during a scan period Part or all of the symbols of the subframe are configured as scan time blocks; the scan signal channel is carried within the scan time block for transmission; wherein the scan signal channel refers to a signal or signal that needs to be polled on all ports or beams. And channel.
  • part or all of the symbols of the data transmission subframe within the scan period are configured as scan time blocks by:
  • Some or all of the symbols of one or more data transmission subframes within the scan period are configured as one or more scan time blocks.
  • part or all of the symbols of the data transmission subframe within the scan period are configured as scan time blocks by:
  • a symbol other than the reserved area within one or more data transmission subframes within the scan period is configured as one or more scan time blocks.
  • the downlink data or the uplink data is carried in the scan time block for transmission, wherein the downlink data or the uplink data is allocated or scheduled in a downlink control region in a subframe or a symbol preceding the scan time block.
  • an embodiment of the present invention further provides a machine readable medium storing computer executable instructions, which are implemented by a processor to implement the above-described scan time block based information transmission method.
  • Such software may be distributed on a machine-readable medium, such as a computer-readable medium, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • a machine-readable medium such as a computer-readable medium, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • computer storage medium includes the volatility embodied in any method or technique for storing information, such as computer readable instructions, data structures, program modules, or other data. And non-volatile, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical disc storage, magnetic cartridge, magnetic tape, magnetic disk storage or other magnetic storage device, or may Any other medium used to store the desired information and that can be accessed by the computer.
  • communication media typically includes computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and can include any information delivery media. .
  • the embodiment of the present application provides an information transmission method and device based on a scan time block.
  • the data transmission is more flexible and easier to use under the premise of ensuring the same number of scan time blocks in the scan period (ie, without increasing the scan delay).
  • the remaining resources in the time block are scanned, thereby improving resource utilization efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Small-Scale Networks (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

本文公开了一种基于扫描时间块的信息传输方法及装置,所述方法包括:将扫描周期内的数据传输子帧的部分或全部符号配置为扫描时间块;将扫描信号信道承载在所述扫描时间块内进行传输;其中,所述扫描信号信道指需要在所有端口或波束上轮询发射的信号或者信号和信道。通过上述方案能提高数据波束传输的灵活性及效率,并且减少业务传输的时延。

Description

一种基于扫描时间块的信息传输方法及装置 技术领域
本申请涉及但不限于移动通信领域,尤其涉及一种基于扫描时间块的信息传输方法及装置。
背景技术
随着无线电技术的不断进步,各种各样的无线电业务大量涌现,而无线电业务所依托的频谱资源是有限的,面对人们对带宽需求的不断增加,传统的商业通信主要使用的300MHz~3GHz之间频谱资源表现出极为紧张的局面,已经无法满足未来无线通信的需求。
在未来无线通信中,将会采用比第四代(4G)通信系统所采用的载波频率更高的载波频率进行通信,比如28GHz、45GHz、70GHz等等,这种高频信道具有自由传播损耗较大,容易被氧气吸收,受雨衰影响大等缺点,严重影响了高频通信系统的覆盖性能。但是,由于高频通信对应的载波频率具有更短的波长,所以可以保证单位面积上能容纳更多的天线元素,而更多的天线元素意味着可以采用波束赋形的方法来提高天线增益,从而保证高频通信的覆盖性能。
采用波束赋形的方法后,发射端可以将发射能量集中在某一方向上,而在其它方向上能量很小或者没有,也就是说,每个波束具有自身的方向性,每个波束只能覆盖到一定方向上的终端,发射端即基站需要在几十个甚至上百个方向上发射波束才能完成全方位覆盖。相关技术中,倾向在终端初始接入网络的过程中进行初步波束方向的测量与识别,并集中在一个时间间隔内将基站侧发射波束轮询一遍,供终端测量识别优选的波束或端口。如图1所示,下行波束扫描子帧(DL beam sweeping subframe),内部包含若干个连续的波束扫描时间块(beam sweeping block)(如图1中的网格区域);在每一个波束扫描时间块内,根据基站射频链的数目,可以在多个波束或端口上发射同步信号(SS,Synchronous Signal)、系统信息(SI,System Information),还可以包括波束/端口测量参考信号(BRS,Beam Reference Signal)。终端 通过对同步信号的测量,系统信息的获取,及可选的测量参考信号的测量识别优选的下行发射波束或端口,并获取小区基本信息,接入配置信息,从而接入网络。类似的,在上行链路中,也有连续配置的扫描时间块。
在这样的过程中,随着系统运行频段的提高,所需的波束赋形增益也在增大,这意味着需要更“窄”的波束来覆盖预期的范围,波束数量可能达到几十甚至上百个,进而波束扫描时间块的数量也需要相应的增加,波束扫描子帧的总长度将会很长。又由于在波束扫描子帧内,发射波束的方向是按照预先定义的顺序轮转的,并不能匹配当前每个波束不同的数据传输需求,即可能出现有数据发送需求的波束方向需要等待扫描子帧结束再配置数据子帧。如果全波束轮询所占用的时间(波束扫描子帧)过长,会影响数据波束传输的灵活性及效率,这也增加了业务传输的时延;另外,扫描时间块连续频繁地变换发射方向,将增加基站的硬件成本与开销。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种基于扫描时间块的信息传输方法及装置,能提高数据波束传输的灵活性及效率,并且减少业务传输的时延。
本发明实施例提供一种基于扫描时间块的信息传输方法,包括:将扫描周期内的数据传输子帧的部分或全部符号配置为扫描时间块;将扫描信号信道承载在所述扫描时间块内进行传输;其中,所述扫描信号信道指需要在所有端口或波束上轮询发射的信号或者信号和信道。
本发明实施例还提供一种基于扫描时间块的信息传输装置,包括:配置模块,设置为将扫描周期内的数据传输子帧的部分或全部符号配置为扫描时间块;传输模块,设置为将扫描信号信道承载在所述扫描时间块内进行传输;其中,所述扫描信号信道指需要在所有端口或波束上轮询发射的信号或者信号和信道。
本发明实施例还提供一种电子设备,包括上述基于扫描时间块的信息传输装置。
本发明实施例还提供一种电子设备,包括处理器以及存储有所述处理器可执行指令的存储器,当所述指令被处理器执行时,执行如下操作:将扫描周期内的数据传输子帧的部分或全部符号配置为扫描时间块;将扫描信号信道承载在所述扫描时间块内进行传输;其中,所述扫描信号信道指需要在所有端口或波束上轮询发射的信号或者信号和信道。
本发明实施例还提供一种机器可读介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现上述基于扫描时间块的信息传输方法。
本发明实施例提出了一种基于扫描时间块的信息传输方法及装置,定义了新的波束/端口扫描资源结构,将扫描时间块分散配置,插入到数据传输子帧中,即将扫描周期内的数据传输子帧的部分或全部符号配置为扫描时间块。另外,数据传输子帧中的下行控制区域可以调度扫描时间块内除扫描信号信道以外的资源,发射同端口或同波束的数据。
与相关技术相比,在保证了扫描周期内相同数量的扫描时间块的前提下(即不增加扫描时延),数据传输更加灵活,更容易利用扫描时间块内剩余的资源,从而提高了资源利用效率。另外,扫描子帧包含扫描时间块的数量减少,总长度缩减,也减小了由于扫描子帧的发送对业务传输时延造成的影响。另外,本发明实施例可以支持将数据传输子帧中除保留区域以外的符号配置为扫描时间块,这样扫描时间块并不影响原有端口控制信息的发送,即可以按照既定的端口传递重要信息,这对系统的稳定性有很大的提高。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为相关技术中连续扫描子帧的结构示意图;
图2为本发明实施例提供的基于扫描时间块的信息传输方法的流程图;
图3为本发明实施例的扫描时间块的内部结构示意图;
图4为实施例一所对应的扫描时间块的配置示意图;
图5为实施例二所对应的一种下行扫描时间块的配置示意图;
图6为实施例二所对应的另一种下行扫描时间块的配置示意图;
图7为实施例二所对应的一种上行扫描时间块的配置示意图;
图8为实施例二所对应的另一种上行扫描时间块的配置示意图;
图9为实施例三所对应的一种扫描时间块的配置示意图;
图10为实施例三所对应的另一种扫描时间块的配置示意图;
图11为实施例三所对应的再一种扫描时间块的配置示意图;
图12为实施例四所对应的扫描时间块的配置示意图;
图13为实施例五所对应的扫描时间块的配置示意图;
图14为实施例六所对应的扫描时间块的配置示意图;
图15为实施例七所对应的扫描时间块的配置示意图;
图16为实施例八所对应的扫描时间块的配置示意图;
图17为实施例九所对应的一种扫描时间块的配置示意图;
图18为实施例九所对应的另一种扫描时间块的配置示意图;
图19为实施例十所对应的一种扫描时间块的配置示意图;
图20为实施例十一所对应的同步信号块采用的子载波间隔为240kHz时的一种映射结构示意图;
图21为实施例十一所对应的同步信号块采用的子载波间隔为120kHz时的映射结构示意图;
图22为实施例十一所对应的同步信号块采用的子载波间隔为30kHz时的映射结构示意图;
图23为实施例十一所对应的同步信号块采用的子载波间隔为15kHz时的一种映射结构示意图;
图24为实施例十一所对应的同步信号块采用的子载波间隔为15kHz时的另一种映射结构示意图;
图25为实施例十一所对应的同步信号块采用的子载波间隔为240kHz时的另一种映射结构示意图;
图26为实施例十二所对应的同步信号块采用的子载波间隔为240kHz时的映射结构示意图;
图27为实施例十二中的同步信号块跨越0.5毫秒边界的示意图;
图28为实施例十三中的同步信号块的映射结构示意图;
图29为实施例十四中的同步信号块的映射结构示意图;
图30为本发明实施例提供的基于扫描时间块的信息传输装置的示意图。
详述
以下结合附图对本发明实施例进行详细说明,应当理解,以下所说明的实施例仅用于说明和解释本申请,并不用于限定本申请。
需要说明的是,在本申请中,扫描时间间隔(sweeping time interval)也可以称为扫描子帧(sweeping subframe),或者,波束扫描时间间隔(beam sweeping time interval),或者波束扫描子帧(beam sweeping subframe);数据传输子帧也可以称作数据传输时间间隔(Time Interval)。扫描时间间隔可以是一个或多个连续的数据传输子帧。扫描时间块(sweeping time block)也可以称作扫描块(sweeping block),或者波束扫描时间块(beam sweeping time block),或者波束扫描块(beam sweeping block)。另外,所述“波束”与“端口”含义相同,这里不做区分,可以通用。
本发明实施例提供一种基于扫描时间块的信息传输方法。如图2所示,本实施例提供的基于扫描时间块的信息传输方法,包括以下步骤:
步骤201:将扫描周期内的数据传输子帧的部分或全部符号配置为扫描时间块;
步骤202:将扫描信号信道承载在所述扫描时间块内进行传输;
其中,所述扫描信号信道指需要在所有端口或波束上轮询发射的信号或者信号和信道。
步骤201可以包括:将扫描周期内的一个或多个数据传输子帧的部分或全部符号配置为一个或多个扫描时间块。
其中,可以将扫描周期内的一个数据传输子帧的部分符号配置为一个或多个扫描时间块;或者,可以将扫描周期内的一个数据传输子帧的全部符号配置为一个或多个扫描时间块;或者,可以将扫描周期内的多个数据传输子帧的部分符号或全部符号分别配置为一个扫描时间块;或者,可以将扫描周期内的多个数据传输子帧的部分符号或全部符号分别配置为多个扫描时间块。即,可以在扫描周期内的一个数据传输子帧中配置一个或多个扫描时间块,每个扫描时间块占用一个或多个符号;或者,可以在扫描周期内的多个数据传输子帧中分别配置一个或多个扫描时间块,每个扫描时间块占用一个或多个符号。
在示例性实施方式中,步骤201可以包括:将扫描周期内的一个或多个数据传输子帧内除保留区域以外的符号配置为一个或多个扫描时间块。
在示例性实施方式中,将扫描周期内的一个或多个数据传输子帧内除保留区域以外的符号配置为一个或多个扫描时间块后,所述配置了扫描时间块后的数据传输子帧结构可以为以下任一种:
下行控制区域与下行扫描时间块的组合;
下行控制区域、保护间隔、上行扫描时间块的组合;
下行控制区域、下行扫描时间块、保护间隔、上行控制区域的组合;
下行控制区域、保护间隔、上行扫描时间块、上行控制区域的组合;
下行控制区域、下行扫描时间块、保护间隔、上行扫描时间块、上行控制区域的组合;
其中,所述下行控制区域、下行扫描时间块、保护间隔、上行扫描时间块、上行控制区域,分别包含一个或多个符号,例如正交频分复用(OFDM)符号。
在示例性实施方式中,所述将扫描周期内的一个或多个数据传输子帧内除保留区域以外的符号配置为一个或多个扫描时间块,可以包括:将扫描周期内的一个或者多个连续的数据传输子帧内除保留区域以外的所有符号都配置为扫描时间块;其中,将扫描周期内的一个或者多个连续的数据传输子帧内除保留区域以外的所有符号都配置为扫描时间块后,所述配置了扫描时间 块后的一个或者多个连续的数据传输子帧组成一个扫描时间间隔(sweeping time interval)。
在示例性实施方式中,所述保留区域可以包括以下一种或多种:下行控制区域、上行控制区域。
在示例性实施方式中,所述将扫描周期内的数据传输子帧的部分或全部符号配置为扫描时间块,可以包括:将扫描周期内的一个或多个连续的数据传输子帧的全部符号配置为扫描时间块;其中,将扫描周期内的一个或多个数据传输子帧的全部符号配置为扫描时间块后,所述配置了扫描时间块后的一个或者多个连续的数据传输子帧组成一个扫描时间间隔。
在这种配置下,与相关技术不同的,扫描时间间隔的长度是数据传输子帧长度的倍数,而并不是任意与数据传输子帧长度无关的量,这样不会改变数据传输子帧起点的潜在位置,即终端可以按照固定子帧长度来找到子帧的起点,并在子帧起点处盲检控制信道。然而,在相关技术中,扫描时间间隔与数据传输子帧的长度并没有直接关系,这样造成插入了一个扫描时间间隔后,数据传输子帧的起点位置不再固定,终端需要按符号来盲检以保证不错过数据传输子帧起点处的控制信道。终端盲检复杂度增高。
在示例性实施方式中,所述将扫描周期内的数据传输子帧的部分或全部符号配置为扫描时间块,可以包括:将扫描周期内的数据传输子帧的部分或全部符号只配置为一个扫描时间块;即,在数据传输子帧内只配置一个扫描时间块;
其中,将扫描周期内的数据传输子帧的部分或全部符号只配置为一个扫描时间块后,所述数据传输子帧的端口或波束是所述扫描时间块端口或波束的子集或全集。
在示例性实施方式中,所述扫描周期可以指所述扫描信号信道在所有端口或波束上轮询发射一次的时间间隔,所述扫描周期内包含多个子帧。在示例性实施方式中,所述扫描周期预定义为以下任一种:5毫秒(ms)、10ms、20ms、40ms、80ms。
在示例性实施方式中,在所述扫描周期内包含一个或多个扫描时间块,每个扫描时间块发送一个或多个端口的扫描信号信道,占用一个或多个符号, 在所述扫描周期内完成所有端口或波束的扫描信号信道的发送。
在示例性实施方式中,所述扫描时间块包括以下一种或多种:下行扫描时间块、上行扫描时间块;所述扫描信号信道包括以下一种或多种:上行扫描信号信道、下行扫描信号信道。其中,所述下行扫描时间块,承载用于以下至少一项的下行扫描信号信道:小区搜索、下行端口或波束的测量与识别,所述下行扫描信号信道包含与所述端口或波束相对应的以下信号或信道中的一种或多种:下行同步信号、系统信息、下行端口测量参考信号。所述上行扫描时间块,承载用于以下至少一项的上行扫描信号信道:上行接入、上行端口或波束的测量与识别,所述上行扫描信号信道包含与所述端口或波束相对应的以下信号或信道中的一种或多种:上行随机接入请求信号、上行端口测量参考信号。
在示例性实施方式中,所述扫描时间块中的扫描信号信道还用于指示所述扫描时间块的时域位置信息,所述时域位置信息包括以下一种或多种:扫描时间块所在的帧、扫描时间块所在的子帧、扫描时间块在所述子帧中的位置;其中,所述扫描时间块在所述子帧中的位置指所述扫描时间块在所述子帧中占用的符号信息,或者,所述扫描时间块与所述扫描时间块所在子帧的边界之间的偏移(offset)信息。
在示例性实施方式中,所述数据传输子帧可以用于发送或接收特定端口或波束上一个或多个终端的数据。
在示例性实施方式中,所述数据传输子帧的结构可以包括以下任一种:
下行控制区域与下行数据区域的组合;
下行控制区域、保护间隔以及上行数据区域的组合;
下行控制区域、下行数据区域、保护间隔以及上行控制区域的组合;
下行控制区域、保护间隔、上行数据区域以及上行控制区域的组合;
下行控制区域、下行数据区域、保护间隔、上行数据区域以及上行控制区域的组合;
其中,所述下行控制区域、下行数据区域、保护间隔、上行数据区域、上行控制区域,分别包含一个或多个符号,例如正交频分复用(OFDM)符 号。
在示例性实施方式中,在数据传输子帧的结构包括下行控制区域与下行数据区域的组合时,在上述数据传输子帧中配置扫描时间块之后,所述配置了扫描时间块后的数据传输子帧结构可以为:下行控制区域与下行扫描时间块的组合,或者,下行控制区域、下行扫描时间块以及下行数据区域的组合;
在数据传输子帧的结构包括下行控制区域、保护间隔以及上行数据区域的组合时,在上述数据传输子帧中配置扫描时间块之后,所述配置了扫描时间块后的数据传输子帧结构可以为:下行控制区域、保护间隔以及上行扫描时间块的组合,或者,下行控制区域、保护间隔、上行扫描时间块以及上行数据区域的组合;
在数据传输子帧的结构包括下行控制区域、下行数据区域、保护间隔以及上行控制区域的组合时,在上述数据传输子帧中配置扫描时间块之后,所述配置了扫描时间块后的数据传输子帧结构可以为:下行控制区域、下行扫描时间块、保护间隔以及上行控制区域的组合,或者,下行控制区域、下行扫描时间块、下行数据区域、保护间隔以及上行控制区域的组合,或者,下行控制区域、下行数据区域、保护间隔、上行扫描时间块及上行控制区域的组合,或者,下行控制区域、下行数据区域、保护间隔、上行控制区域及上行扫描时间块的组合;
在数据传输子帧的结构包括下行控制区域、保护间隔、上行数据区域以及上行控制区域的组合时,在上述数据传输子帧中配置扫描时间块之后,所述配置了扫描时间块后的数据传输子帧结构可以为:下行控制区域、保护间隔、上行扫描时间块以及上行控制区域的组合,或者,下行控制区域、保护间隔、上行扫描时间块、上行数据区域以及上行控制区域的组合;
在数据传输子帧的结构包括下行控制区域、下行数据区域、保护间隔、上行数据区域以及上行控制区域的组合时,在上述数据传输子帧中配置扫描时间块之后,所述配置了扫描时间块后的数据传输子帧结构可以为:下行控制区域、下行扫描时间块、保护间隔、上行扫描时间块以及上行控制区域的组合,或者,下行控制区域、下行扫描时间块、下行数据区域、保护间隔、上行扫描时间块以及上行控制区域的组合,或者,下行控制区域、下行扫描 时间块、保护间隔、上行扫描时间块、上行数据区域以及上行控制区域的组合,或者,下行控制区域、下行扫描时间块、下行数据区域、保护间隔、上行扫描时间块、上行数据区域以及上行控制区域的组合,或者,下行控制区域、下行扫描时间块、下行数据区域、保护间隔、上行数据区域以及上行控制区域的组合,或者,下行控制区域、下行扫描时间块、保护间隔、上行数据区域以及上行控制区域的组合,或者,下行控制区域、下行数据区域、保护间隔、上行扫描时间块、上行数据区域以及上行控制区域的组合,或者,下行控制区域、下行数据区域、保护间隔、上行扫描时间块以及上行控制区域的组合。
在示例性实施方式中,本实施例的方法还可以包括:将下行数据或上行数据承载在所述扫描时间块内进行传输,其中,所述下行数据或上行数据在所述扫描时间块前面的子帧或符号内的下行控制区域中被分配或调度。
在示例性实施方式中,所述下行控制区域所采用的端口或波束是所述下行数据所属扫描时间块端口或波束的子集或全集。
在示例性实施方式中,所述下行数据或上行数据所采用的端口或波束是所述扫描时间块端口或波束的子集或全集;使用扫描时间块内未被所述扫描信号信道占用的资源。
在示例性实施方式中,所述下行数据或上行数据与所述扫描时间块内的扫描信号信道频分复用。
在示例性实施方式中,下行控制中包含对扫描时间块内数据传输资源的上行调度(Uplink scheduling)信息或者下行分配(Downlink assignment)信息。
在示例性实施方式中,所述扫描时间块内的数据传输资源,与所述数据传输子帧内的数据传输资源联合分配与指示,或者,独立分配与指示。
在示例性实施方式中,所述下行控制还包含以下一种或多种:所述扫描时间块内的数据传输资源的时域位置信息、所述扫描时间块内的数据传输资源的频域位置信息。
在示例性实施方式中,所述扫描时间块内的数据传输资源的时域位置信 息,采用以下任一种方式描述:
所述扫描时间块与所述下行控制所在数据传输子帧间的绝对时间偏移,其中,所述绝对时间偏移可以是偏移的符号数,或偏移的绝对时间;
所述扫描时间块所在子帧与所述下行控制所在数据传输子帧间的绝对时间偏移,及所述扫描时间块在所述子帧内的位置;
所述扫描时间块所在子帧的索引,及所述扫描时间块在所述子帧内的位置;
其中,所述扫描时间块在所述子帧内的位置指所述扫描时间块占用所述子帧的符号信息,或,所述扫描时间块与所述扫描时间块所在子帧的边界之间的偏移(offset)信息。
在示例性实施方式中,扫描时间块等间隔映射在数据传输子帧上。
在示例性实施方式中,所述扫描时间块等间隔映射在数据传输子帧上,可以包括:
将所述扫描周期T内的所有扫描时间块分为N组,每组扫描时间块以固定的时间间隔映射在数据传输子帧上,每组内的相邻的所述扫描时间块等间隔映射;
或者,所述扫描周期内的所有相邻的所述扫描时间块等间隔映射;
或者,所有相邻的所述扫描时间块等间隔映射。
其中,N可以为正整数。
在示例性实施方式中,所述每组扫描时间块以固定的时间间隔映射在数据传输子帧上,可以包括:相邻两组扫描时间块内的第一个扫描时间块起始边界间的偏移是固定的。
在示例性实施方式中,所述相邻两组扫描时间块内的第一个扫描时间块起始边界间的偏移等于所述扫描周期T与N的比值。
下面通过一个示例说明本实施例中的扫描时间块的结构。图3为本发明实施例的扫描时间块的内部结构示意图。其中,图3(a)为下行扫描时间块的结构示例,图3(b)为上行扫描时间块的结构示例。
如图3(a)所示,在这个示例中,下行扫描时间块占用2个符号,同步信号(SS)与系统信息(SI)时分复用,分别占用一个符号的时域资源,频域上分别占6个资源块(RB,Resource Block),两者也可以占用不同的RB数量。波束测量参考信号(BRS)与SS/SI频分复用,用于终端对波束的测量与识别。扫描时间块的其他复用方式也是可以的,例如SS、SI、BRS均时分复用,或者SS、SI、BRS均频分复用,或者其他复用方式。另外,下行扫描时间块中未必包含全部的下行扫描信号信道(即同步信号SS、系统信息SI、波束测量参考信号BRS),有些下行扫描时间块可能只包含下行扫描信号信道中的部分信号或信道,例如用于初始接入的下行扫描时间块可以只包含SS和SI;用于后续波束跟踪(beam tracking)可以只包含BRS,仅支持终端对下行波束的测量识别即可。其他包含部分下行扫描信号信道的形式也是可能的。下面的实施例中,以三类信号或信道均包含的情况为例进行说明,当下行扫描信号信道只包含部分信号或信道的情况也属于本申请的保护范围。
如图3(b)所示的上行扫描时间块中,RACH表示随机接入请求资源,BRS为上行波束测量参考信号,图3(b)中两部分资源为频分复用关系,然而,本申请也不排除其他的复用方式。另外,上行扫描时间块内也可以只包含两者中任一个,如只包含BRS,用于上行波束跟踪。下面的实施例中以两者均包含的情况为例进行说明,当上行扫描信号信道只包含部分信号或信道时也属于本申请的保护范围。
下面通过多个实施例对本申请进行详细描述。
实施例一
本实施例描述的下行扫描时间块的配置结构如图4所示,本实施例中,数据传输子帧的结构以下行控制区域加下行数据区域为例说明。
在一个扫描或同步周期(sweeping/sync period)(如5ms)内,包含多个下行(DL)数据传输子帧,这些下行数据传输子帧所使用的端口或波束是按照业务传输需求动态调度的,即当某一端口或波束方向上有下行数据要传输时,配置一个下行数据传输子帧用于发送对应端口的下行控制与下行数据。
在这个扫描周期内,需要完成多个扫描时间块的配置,这些扫描时间块用于所有端口扫描信号信道的轮询发送,即所述多个扫描时间块内需要完成 在每个端口或波束上发射至少一次扫描信号信道。
其中,所述扫描时间块,承载了用于小区搜索(同步信号)、端口或波束的测量与识别(如波束测量参考信号)的扫描信号信道,所述扫描信号信道包含与所述端口或波束相对应的以下信号或信道中:同步信号、系统消息、波束测量参考信号。图4所示扫描时间块的结构只是一个示例,在这个示例中,扫描时间块占用2个符号,同步信号SS与系统信息SI时分复用,分别占用一个符号的时域资源,频域上分别占6个RB,两者也可以占用不同的RB数量。波束测量参考信号BRS与SS/SI频分复用,用于终端对波束的测量与识别。扫描时间块的其他复用方式也是可以的,例如SS、SI、BRS均时分复用,或者SS、SI、BRS均频分复用,或者其他复用方式。
扫描时间块中的扫描信号信道还用于指示这个扫描时间块的时域位置信息,时域位置信息包括:扫描时间块所在的帧、扫描时间块所在的子帧、扫描时间块在所述子帧中的位置。扫描时间块在子帧中的位置,即所述扫描时间块占用了子帧内的哪些符号,通过这个信息也间接指示了所述扫描时间块所在子帧的边界信息。本实施例中,在SI中承载了扫描时间块的时域位置信息,即在SI中包含了SI所属的扫描时间块所在的帧号、子帧号、以及扫描时间块在所述数据传输子帧中的位置信息。以下行子帧(DL subframe)2中的扫描时间块(sweeping block)2为例,其中的SI承载了以下信息:系统帧号为0001001110,子帧号为2,扫描时间块在数据传输子帧中的位置为最后两个符号(符号12、13),相应的子帧的边界也可以确定;对于末尾扫描子帧内的扫描时间块,SI承载的信息是类似的;以sweeping block 5为例,其中的SI中指示:系统帧号为0001001110,子帧号为5,扫描时间块在扫描子帧中的位置为前两个符号(即符号0、1)。
扫描时间块的时域位置信息还可以通过扫描信号信道内的其他信号来指示,例如,通过同步信号来指示部分时域位置信息,假设1个无线帧中包含10个子帧,由于同步信号可能出现在任何一个子帧中,因此可以将同步信号序列分为10组,预先定义了每组同步信号序列与子帧号的映射关系,终端通过对同步信号的检测进一步得出子帧号;除了上述通过序列资源的区分来指示子帧号的方式以外,同步信号所在的频域位置也是一个可能的选项,例如 按无线帧中子帧的数量在每个扫描时间块中定义多个同步信号的频域位置,频域位置与子帧号的映射关系需要预先定义,终端通过对同步信号频域位置的判断,从而得到子帧号信息。与上述两种方式类似的,也可以用于通过同步信号指示扫描时间块在子帧中的位置,以及帧号信息。
类似的,还可以用波束测量参考信号(BRS)来指示扫描时间块的时域位置信息,具体方式与同步信号指示时域位置信息的方式相同,这里不再赘述。
另外,扫描时间块的时域位置信息,还可以通过SS/SI/BRS三者中任意两者或三者联合来指示,例如,通过SI指示帧号,SS指示子帧号,BRS指示扫描时间块在子帧中的位置。在示例性实施方式中,SI中承载帧号信息;SS的序列分组,每组对应于子帧号;BRS序列分组,每组对应于扫描时间块在子帧中的位置。其他联合指示的方式也是支持的。
同一个扫描时间块可以发送一个或多个端口或波束的扫描信号信道,即同一扫描时间块内多个射频链同时发送扫描信号信道,不同的射频链发送的扫描信号信道内容,可以相同也可以不同。
如图4所示,在整个扫描周期内,有四个下行数据传输子帧(DL subframe)1~4,在每个下行数据传输子帧的末尾(两个符号)配置了一个扫描时间块,下行数据传输子帧的端口是这个扫描时间块端口的子集或全集。在示例性实施方式中,所述扫描时间块包含多个端口或波束(例如端口1至4),发送多个端口或波束的扫描信号信道,下行数据传输子帧的端口是上述多个端口或波束的部分(例如端口1、2)或全部。
于本实施例中,由于只调度了4个下行数据传输子帧,而扫描时间块有8个,剩余4个扫描时间块(sweeping block)5~8,在扫描周期的最后一个子帧内包含上述剩余的4个扫描时间块,即这个下行数据传输子帧的全部符号(8个)被配置为扫描时间块。
这样,在扫描周期内完成了所有扫描时间块的配置,且扫描时间块分散在每个下行数据传输子帧中。
在示例性实施方式中,对于扫描时间块内除扫描信号信道以外的其他资源可以用于进一步承载下行数据,由于sweeping block 1~4的端口包含对应 下行数据传输子帧所采用的端口,因此,下行数据传输子帧内的下行控制区域可以用于调度sweeping block内剩余的资源发送下行数据。下行控制与下行数据所采用的端口或波束均是所述扫描时间块端口或波束的子集或全集,但下行控制与下行数据不限制使用相同的端口或波束。
在示例性实施方式中,sweeping block内的下行资源(如图4中点状部分所示)可以与原下行数据传输子帧中的下行数据信道资源联合编号,一起调度,并且采用相同的调制编码方式。例如,原下行数据传输资源内包含50个RB,sweeping block内可以用于传输下行数据的资源有10个RB,60个RB联合编号,并指示给终端接收下行数据的RB资源,例如对于UE1,其下行数据占用RB3~4,UE2下行数据占用RB60~64。值得注意的是,前50个RB与后10个RB的时域资源并不相同,后10个RB只有时域只占2个符号。因此,基站在做下行调度时,需要指示RB对应的时域宽度,以及时域起始位置,如DL subframe 1共占14个符号,下行控制区域占用2个符号,下行数据区域占用10个符号,sweeping block占用2个符号,则对于UE1,其占用的RB3~4,在时域上占用10个符号,对于UE2,其占用的RB60~65,在时域上占用2个符号(符号12、13),起点为符号12(符号按如下编号:符号0~符号13)。
对于扫描时间块内的下行数据资源(10个RB),如果系统已经预定义了这10个RB的频域位置,则只需向UE指示RB编号及上面所述的时域位置即可,如果系统没有预定义10个RB的频域位置,则还需进一步指示RB的频域位置,例如,这10个RB分布在系统带宽的两端各5个RB。
此外,本实施例所述的方式也适用于对上行扫描时间块的配置,需要注意的是,相应的可以将图4所示的下行扫描时间块置换为上行扫描时间块,但区别在于:数据子帧内插入的上行扫描时间块前面需要预留下行到上行转换的保护间隔。
实施例二
在实施例一中,以下行数据传输子帧为例进行描述,然而,在扫描周期内,每个数据传输子帧也可以是其他类型。图5(a)所示为自包含结构(self-contained)的下行数据传输子帧,即子帧末尾包含保护间隔(GP)及 上行控制区域;图6(a)所示为上行数据传输子帧,图5(a)和图6(a)分别指体现了一个子帧的情况,整体结构与实施例一中描述相似。在这两种数据传输子帧下,分别考虑如何配置扫描时间块,如图5(b)所示,将数据传输子帧的下行部分末尾两个符号配置为下行sweeping block 1;或者,将下行控制之后,下行数据之前配置两个符号为下行sweeping block 1。如图6(b)所示,可以将下行控制之后,下行数据之前配置两个符号为下行sweeping block 1。在这两种子帧结构下,数据传输子帧内的下行控制区域仍然可以调度sweeping block内除扫描信号信道以外的资源,用来发送同端口的下行数据,相关方式与实施例一相同,这里不再赘述。
在本实施例所给出的如图5(a)和图6(a)所示的数据子帧结构下,也可以配置上行扫描时间块。图7所示为图5(a)中的数据传输子帧结构下配置了一个上行扫描时间块的两种配置形式,在示例性实施方式中,上行扫描时间块可以配置在上行控制的前面或后面。
图8所示为6(a)中的数据传输子帧结构下配置了一个上行扫描时间块的两种形式。在示例性实施方式中,上行扫描时间块可以配置在上行数据的开端,或结尾处。
实施例三
本实施例仍然以下行数据传输子帧中配置扫描时间块为例,描述其他可能的配置方式。
如图9所示,可以将下行数据传输子帧中下行控制之后,下行数据之前配置两个符号为sweeping block。
如图10所示,可以将sweeping block配置在下行控制区域之前的两个符号,但这种方式下,下行控制无法调度sweeping block内的除扫描信号信道以外的资源。
如图11所示,可以将sweeping block插入到下行数据符号的中间,即sweeping block将下行数据区域分为两个部分。下行控制区域仍然可以调度sweeping block内除扫描信号信道以外的资源发送下行数据。与实施例一相似的,下行数据传输资源可以联合编号分配,例如,在图11所示的结构下,符号配置可以为:下行数据4个符号,sweeping block 2个符号,下行数据6个 符号。前4个符号频域上分为50个RB,sweeping block频域上有10个RB的下行数据传输资源,后6个符号频域上分为50个RB。将三部分资源联合编号为110个RB资源(RB0~RB109),基站在向终端分配下行数据资源时,需要同时指示对应RB的时域资源大小及起点,例如,RB0~RB49,时域4个符号,起点为符号0;RB50~RB59,时域2个符号,起点为符号4;RB60~RB109,时域6个符号,起点为符号6。
实施例四
于本实施例中,在实施例一中类似的配置下,由剩余sweeping block聚合成的扫描时间间隔(sweeping time interval),可以位于扫描周期内的任意位置(即不限制在最后一个子帧)。如图12所示,扫描周期内的第N个数据传输子帧被全部配置为下行扫描时间块,形成一个下行扫描时间间隔(sweeping time interval)。其他数据传输子帧仍然配置了一个下行扫描时间块。这种情况下,扫描周期内调度了哪些波束发送数据认为是预先已知的,sweeping time interval包含哪些sweeping block才可以预先配置好。
此外,扫描周期内也可以存在不配置扫描时间块的数据传输子帧。
本实施例所述的扫描时间块的配置方式,同样适用于上行扫描时间块的配置,值得注意的是,数据传输子帧中配置的上行扫描时间块之前需要预留用于下行到上行转换的保护间隔。
实施例五
基于实施例一中的配置,不限制剩余下行扫描时间块构成1个下行扫描时间间隔,一个扫描周期内也可以包含多个sweeping time interval,如图13所示,存在两个扫描时间间隔(sweeping time interval)1与2,其他数据传输子帧的配置与实施例一相同。
本实施例所述的扫描时间块的配置方式,同样适用于上行扫描时间块的配置,值得注意的是,数据传输子帧中配置的上行扫描时间块之前需要预留用于下行到上行转换的保护间隔。
此外,上述实施例一到五所述的方法中,在数据传输子帧中只配置了一个扫描时间块,当每个数据传输子帧中配置多个扫描时间块的方式也是支持 的,即在扫描周期内的一个或多个数据传输子帧中配置多个扫描时间块。这多个扫描时间块可以是连续配置或分散配置。数据传输子帧的端口是上述多个扫描时间块之一端口的子集或全集,相应的,对于包含数据传输子帧端口的扫描时间块内的数据传输资源,可以通过数据传输子帧中的下行控制区域进行分配或调度。
实施例六
图14所示为本实施例对应的扫描时间块配置示意图。
于本实施例中,共有10个扫描时间块,分别插入到两个数据传输子帧中,本实施例中以下行数据传输子帧为例,DL subframe 1和DL subframe 2为被配置了扫描时间块的下行数据传输子帧,除下行控制区域以外的其他下行符号均被配置成了扫描时间块。两个下行数据传输子帧在被配置了扫描时间块之后,组成了一个扫描时间间隔(sweeping time interval)。本实施例中的配置方式考虑了数据传输子帧中比较重要的区域进行保留,将其他符号配置成扫描时间块,即当前下行控制区域有比较重要的信息(例如,下行控制是对前面上行数据的反馈信息,或对后面上行数据的调度信息等)需要发送,因此,在数据传输子帧中保留下行控制区域。
与本实施例类似的,也可以不限制数据传输子帧中被保留的区域一定是下行控制区域,也可以是其他符号被保留。在这种方式下,数据传输子帧按正常需求配置,扫描时间块按一定的顺序连续占用一些符号,如果遇到较为重要、必须预留的数据符号,则跳过这部分符号,继续在后面的若干符号中配置剩余的扫描时间块。
本实施例所述的扫描时间块的配置方式,同样适用于上行扫描时间块的配置,值得注意的是,数据传输子帧中配置的上行扫描时间块之前需要预留用于下行到上行转换的保护间隔。
实施例七
如图15所示,与实施例六类似的,连续两个下行数据传输子帧被配置为:除了上下行控制区域以外的其他所有符号都是扫描时间块的情况,这两个下行数据传输子帧构成一个扫描时间间隔(sweeping time interval),这里的第一个下行数据传输子帧是一个自包含结构(self-contained),即末尾配置了 上行控制区域。配置下行扫描时间块时,把相应的上行控制区域及其前面保护间隔(GP)跳过。
本实施例中上行控制在第一个下行数据传输子帧只是一个示例,在这种配置方式下,只要Sweeping time interval范围内如果包含上下行控制区域,均可以全部保留,或者选择性地预留一个或多个。
实施例八
本实施例描述了一种上行扫描时间块的配置方式。如图16所示,在一个扫描周期内,连续两个数据传输子帧被配置为一个扫描时间间隔的示意图,扫描时间间隔内的两个数据传输子帧的原有控制区域被保留,涉及第一个数据传输子帧中的上下行控制区域所占的符号,及第二个数据传输子帧中的下行控制区域所占的符号,并在下行控制与上行扫描时间块之前分别配置了用于下行传输到上行传输转换的保护间隔(GP)。
实施例九
图17所示为本实施例中扫描时间块的配置方式。
所有sweeping block聚合成一个sweeping time interval的情况,sweeping time interval在扫描周期内的相对位置可以任意配置,在示例性实施方式中,如图17所示,将扫描时间间隔配置为扫描周期的最后一个子帧。这种情况下,前面的下行数据传输子帧内的下行控制可以调度同端口的扫描时间块内的下行数据资源,即扫描时间块内除扫描信号信道以外的资源,图17中用箭头指示了这种跨子帧分配下行数据的关系。
在示例性实施方式中,DL subframe X的端口是sweeping block 1的子集,DL subframe X中的下行控制部分调度本下行数据传输子帧内的下行数据以外,还调度sweeping block 1中的下行数据传输资源。下行调度中可以将这两部分资源分别调度,对于DL subframe X内的下行数据采用常规的分配方式向UE指示资源分配、调制编码方式、HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号、新数据指示(NDI)、冗余版本(RV,Redundancy version)等信息。
对于扫描子帧的扫描时间块1中的下行数据分配,基站需要指示所述扫 描时间块所在的扫描子帧与所述下行控制所在数据传输子帧间的时间偏移(如以绝对时间或间隔的子帧数量来指示这个时间偏移量,以子帧数量为例,间隔5个子帧),并且需要向UE指示所述扫描时间块(sweeping block 1)在所述扫描子帧内的相对位置,即占用的是哪些符号资源,sweeping block 1占用符号0、符号1;通过上述信息,UE可以找到sweeping block 1的时域位置。
频域信息:对于扫描时间块内的下行数据资源(10个RB),如果系统已经预定义了这10个RB的频域位置,则只需向UE指示RB编号及上面所述的时域位置即可,如果系统没有预定义10个RB的频域位置,则还需进一步指示RB的具体频域位置,例如,这10个RB分布在系统带宽的两端各5个RB。
sweeping block内数据传输的调制编码方式、HARQ进程号、新数据指示(NDI)(指示当前分配的下行数据资源内承载的是新数据还是重传数据)、冗余版本(RV,Redundancy version)等信息也需要指示给UE。
本实施例所述的扫描时间块的配置方式,同样适用于上行扫描时间块的配置。对上行扫描时间块内上行数据资源的同样需要前面对应的下行控制区域来调度,这样下行控制区域将既包含对数据传输子帧内下行数据的分配,又包含对扫描时间块内上行数据的调度。
上面提到sweeping time interval配置在扫描周期中间的情况,如图18所示,这种情况下有个缺点是后面的数据子帧(如DL subframe Z)无法调度对应sweeping block内的下行数据资源,资源利用不充分。但也是一种潜在的配置方式。
实施例十
图19所示为本实施例所对应的扫描时间块的配置方式示意图。
所有sweeping block聚合成多个子帧,即,扫描时间块仍然组合成扫描时间间隔,但分为多个子帧,这种方式下,同样涉及跨子帧下行数据的分配(如图19中箭头所示)。与实施例九所示的结构相比,一方面,跨子帧调度的延迟减小;另一方面,避免sweeping time interval过长,增加业务数据调度等待延迟。
实施例十一
典型地,下行扫描时间块可以称为同步信号块(SS block),扫描周期内的所有SS block称为一个同步信号窗组(SS burst set),同步信号窗组的周期即为扫描周期。本实施例描述,将SS burst set内SS block进一步分组,且每组内相邻SS block等间隔映射的情况。
本实施例中,如图20所示,PBCH更新周期Tpbch-u=80ms,其中包含4个周期为20ms的SS burst set(即一个扫描周期),将所述扫描周期T内的所有扫描时间块分为N组(本实施例中N=4),每组扫描时间块称为一个同步信号窗(SS burst),同步信号窗内包含一个或多个SS block,以固定的时间间隔映射在数据传输子帧上,这里时间间隔为20ms/4=5ms,及相邻两组扫描时间块起始边界间的时域偏移为5ms;每组内的扫描时间块映射在连续的数据传输子帧上,持续时间为0.5ms,且相邻的所述扫描时间块等间隔映射;其中,以子载波间隔为240kHz的情况为例,0.5ms包含8个14符号的数据传输子帧/数据传输时隙(slot),SS block占用4个符号(其中包含同步信号,物理广播信道,还可能包含其他参考信号,控制,数据等)。采用如下方式将SS blocks映射在数据传输时隙上:每个14个符号时隙包含两个潜在SS block,分别映射在第2个符号到第5个符号,及第9个符号到第12个符号上。不同时隙重复上述映射结构。上面提到潜在的SS block指图中所示的SS block映射位置为所有可能承载SS block的资源,基站在每一个SS block资源上是否实际用于发送SS block取决于网络需求。当其中部分SS block资源没有实际发送SS block时,这些资源可以配置成传输以下至少之一:下行控制,上行控制,保护间隔GP,下行数据,迷你时隙(mini-slot),上行数据。在上述映射方式下,在每组SS block内(即SS burst内)相邻两个SS block间均间隔3个符号,即两个SS block时域起点边界偏移为7个符号。这样的映射方式下,可以保证SS burst内,每个SS block向数据传输slot映射时均不跨slot边界,从而保证slot配置的灵活性,且相邻SS block间的偏移均相同,有利于终端在检测同步信号或物理广播信道时,实现相邻两个SS block间的合并;如果相邻SS block间偏移不同,需要终端盲检确定下一个SS block的时域位置,这给终端的实现复杂度带来很高的要求,并且不利于SS block 间的合并。
本实施例以240kHz子载波间隔(SCS,Subcarrier Spacing)为例进行描述,类似的,当SS block采用其他子载波间隔时,对应的结构如图21至图24所示。其中,图21为SCS=120kHz时的结构,图22为SCS=30kHz时的结构,图23和图24为SCS=15kHz时的结构,图23和图24的区别在于SS burst周期为5ms还是10ms,相应的,当SS burst周期为5ms时,整个SS burst set周期20ms内包含4个SS burst,且每个SS burst内包含1个SS block,SS block可以向一个7符号时隙映射,也可以向半个14符号的时隙映射,当SS block向14符号时隙映射时,SS block映射的时域位置可以在前半时隙(符号1至符号4),或后半时隙(符号8至符号11)。两个潜在位置中选择其中之一即可,但需要保证所有SS burst内,SS block的相对位置是相同的,例如每个SS burst内SS block均占用位置1(即符号1至符号4)。而图24的结构中,SS burst周期为10ms,整个SS burst set周期20ms内包含2个SS burst,且每个SS burst内包含2个SS block。
本实施例中,以SS block占用连续的4个符号为例进行描述,SS block也可以占用5个符号,此时,SS block等间隔映射的原则不变,具体结构如图25所示。此时,SS block分别映射在每个slot的第2个符号到第6个符号,及第9个符号到第13个符号上,SS burst内相邻SS block的间隔为两个符号,偏移仍为7个符号。
实施例十二
本实施例描述,将SS burst set内SS block进一步分组,且每组内相邻SS block等间隔映射的另一种情况。
如图26所示,与实施例十一的区别在于:实施例十一中4个SS burst在SS burst PBCH内均匀分布,即相邻SS burst的偏移为20ms/4=5ms,这种配置下,不同SS burst set间相邻SS burst的偏移也同样是5ms。本实施例中,仍然保持SS burst set内相邻SS burst等间隔,但SS burst set间的相邻SS burst并不需要配置为T/N(其中T为扫描周期,N为SS burst数量)。本实施例的配置下,SS burst set内的SS block相对集中的被映射。
其中,相邻两个SS burst的第一个SS block起始边界间的偏移为1ms, SS burst的持续时间为0.5ms。SS burst内部,仍然以子载波间隔为240kHz的情况为例,0.5ms包含8个14符号的数据传输子帧/数据传输时隙(slot),SS block占用4个符号(其中包含同步信号,物理广播信道,还可能包含其他参考信号,控制,数据等)。采用如下方式将SS blocks映射在数据传输时隙上:每个14个符号时隙包含两个潜在SS block,分别映射在第2个符号到第5个符号,及第9个符号到第12个符号上。不同时隙重复上述映射结构。上面提到潜在的SS block指图中所示的SS block映射位置为所有可能承载SS block的资源,基站在每一个SS block资源上是否实际用于发送SS block取决于网络需求。当其中部分SS block资源没有实际发送SS block时,这些资源可以配置成传输以下至少之一:下行控制,上行控制,保护间隔GP,下行数据,迷你时隙(mini-slot),上行数据。在上述映射方式下,在每组SS block内(即SS burst内)相邻两个SS block间均间隔3个符号,即两SS block时域起点边界偏移为7个符号。这样的映射方式下,可以保证SS burst内,每个SS block向数据传输slot映射时均不跨slot边界,从而保证slot配置的灵活性,且SS burst内的相邻SS block间的偏移均相同,有利于终端在检测同步信号或物理广播信道时,实现SS burst内相邻两个SS block间的合并;
如果相邻SS block间偏移不同,需要终端盲检确定下一个SS block的时域位置,这给终端的实现复杂度带来很高的要求,并且不利于SS block间的合并。
另外,本实施例中,SS burst的持续时间为0.5ms,这样的配置有一个额外的好处,即在新一代无线通信系统中,存在多种子载波间隔,在每一种子载波间隔下,0.5ms边界处的第一个符号拥有相对更长的CP(Cyclic Prefix,循环前缀)长度,以15kHz为例,符号0及符号7的CP长度近似为5.2us,其他符号(1、2、3、4、5、6、8、9、10、11、12、13)的CP长度近似为4.7us,当SS burst长度超过0.5ms时,如图27所示,必然会出现SS burst跨越0.5ms边界,这样在两个SS block之间既可能是三个短CP符号,也可能是一个长CP及两个短CP符号,终端将针对上述两种情况盲检下一个SS block的位置,引入了额外的终端盲检复杂度,因此,这里可以定义SS burst持续时间为0.5ms。
实施例十三
典型地,下行扫描时间块可以称为同步信号块(SS block),扫描周期内的所有SS block称为一个同步信号窗组(SS burst set),同步信号窗组的周期即为扫描周期。本实施例描述,SS burst set内所有相邻SS block等间隔映射的情况。
本实施例中,如图28所示,PBCH更新周期Tpbch-u=80ms,其中包含4个周期为20ms的SS burst set(即一个扫描周期),将所述扫描周期T内的所有扫描时间块/SS block集中配置2ms内;其中,以子载波间隔为240kHz的情况为例,2ms包含32个14符号的数据传输子帧/数据传输时隙(slot),每个slot内映射两个SS block,SS block占用4个符号(其中包含同步信号,物理广播信道,还可能包含其他参考信号,控制,数据等)。采用如下方式将SS blocks映射在数据传输时隙上:每个14个符号时隙包含两个潜在SS block,分别映射在第2个符号到第5个符号,及第9个符号到第12个符号上。不同时隙重复上述映射结构,本实施例中,同步信号窗组(SS burst set)内的所有SS block映射在连续的时隙上。上面提到潜在的SS block指图中所示的SS block映射位置为所有可能承载SS block的资源,基站在每一个SS block资源上是否实际用于发送SS block取决于网络需求。当其中部分SS block资源没有实际发送SS block时,这些资源可以配置成传输以下至少之一:下行控制,上行控制,保护间隔GP,下行数据,迷你时隙(mini-slot),上行数据。在上述映射方式下,在2ms内任意相邻两个SS block间均间隔3个符号,即两个SS block时域起点边界偏移为7个符号。这样的映射方式下,可以保证SS burst内,每个SS block向数据传输slot映射时均不跨slot边界,从而保证slot配置的灵活性,且相邻SS block间的偏移均相同,有利于终端在检测同步信号或物理广播信道时,实现相邻两个SS block间的合并;如果相邻SS block间偏移不同,需要终端盲检确定下一个SS block的时域位置,这给终端的实现复杂度带来很高的要求,并且不利于SS block间的合并。
本实施例以240kHz子载波间隔为例进行描述,映射的基本特征为:SS burst set内的所有SS block均保证一个相同的偏移量,从而便于SS block间对应信号信道的合并,类似的,也可以得到SS block采用其他子载波间隔时 映射的结构。
实施例十四
典型地,下行扫描时间块可以称为同步信号块(SS block),扫描周期内的所有SS block称为一个同步信号窗组(SS burst set),同步信号窗组的周期即为扫描周期。本实施例描述,所有相邻SS block等间隔映射的情况。
本实施例中,如图29所示,PBCH更新周期Tpbch-u=80ms,其中包含4个周期为20ms的SS burst set(即一个扫描周期),每个扫描周期内包含20个扫描时间块/SS block,将这20个SS block分别配置在每个1ms内,图29中所示意为30kHz子载波间隔下,每个SS block占用每毫秒内第一个slot的符号1到4。这样SS burst set内相邻两个SS block等间隔映射在数据传输slot内,且不同的SS burst set间的相邻两个SS block也是等间隔映射的。
这样的映射方式下,可以保证任意两个相邻SS block间的偏移均相同(即1ms),有利于终端在检测同步信号或物理广播信道时,实现相邻两个SS block间的合并;如果相邻SS block间偏移不同,需要终端盲检确定下一个SS block的时域位置,这给终端的实现复杂度带来很高的要求,并且不利于SS block间的合并。
本实施例中,以SS block映射在每毫秒内第一个slot的符号1到4为例进行描述,SS block在每毫秒内的占用的符号可以是任意的连续4个符号,仅需满足在每毫秒内SS block占用符号的相对位置相同即可。例如,在每毫秒(即SS block传输周期)内,SS block均占用第M到第M+3个符号。同样可以满足所有SS block等间隔映射。本实施例中,以SS block的传输周期为1ms为例,该传输周期也可以是其他值。
本实施例以30kHz子载波间隔为例进行描述,映射的基本特征为:对于所有SS block,任意两个间均保证一个相同的偏移量,从而便于SS block间对应信号信道的合并,类似的,也可以得到SS block采用其他子载波间隔时映射的结构。
实施例十五
上述实施例一至十中所示的扫描时间块、扫描子帧的配置方式,可以相 互组合出现。例如以下情况也是支持的:
1、扫描周期内既包含配置了一个或多个扫描时间块的数据传输子帧,又包含除了控制区域以外的其他符号都配置为扫描时间块的数据传输子帧;
2、扫描周期内既包含配置了一个或多个扫描时间块的数据传输子帧,又包含全部符号都配置为扫描时间块的数据传输子帧;
3、扫描周期内既包含除了控制区域以外的其他符号都配置为扫描时间块的数据传输子帧,又包含全部符号都配置为扫描时间块的数据传输子帧;
4、扫描周期内包含如下三类子帧:配置了一个或多个扫描时间块的数据传输子帧;除了控制区域以外的其他符号都配置为扫描时间块的数据传输子帧;全部符号都配置为扫描时间块的数据传输子帧;
此外,扫描周期内同时配置了不同形式的上行扫描时间块和下行扫描时间块也是支持的。
图30为本发明实施例提供的基于扫描时间块的信息传输装置的示意图。如图30所示,本实施例提供的装置,包括:
配置模块301,设置为将扫描周期内的数据传输子帧的部分或全部符号配置为扫描时间块;
传输模块302,设置为将扫描信号信道承载在所述扫描时间块内进行传输;
其中,所述扫描信号信道指需要在所有端口或波束上轮询发射的信号或者信号和信道。
在示例性实施方式中,所述配置模块301可以设置为将扫描周期内的一个或多个数据传输子帧的部分或全部符号配置为一个或多个扫描时间块。
在示例性实施方式中,所述配置模块301可以设置为将扫描周期内的一个或多个数据传输子帧内除保留区域以外的符号配置为一个或多个扫描时间块。
在示例性实施方式中,在所述配置模块301将扫描周期内的一个或多个数据传输子帧内除保留区域以外的符号配置为一个或多个扫描时间块后,所述配置了扫描时间块后的数据传输子帧结构可以为以下任一种:
下行控制区域与下行扫描时间块的组合;
下行控制区域、保护间隔、上行扫描时间块的组合;
下行控制区域、下行扫描时间块、保护间隔、上行控制区域的组合;
下行控制区域、保护间隔、上行扫描时间块、上行控制区域的组合;
下行控制区域、下行扫描时间块、保护间隔、上行扫描时间块、上行控制区域的组合;
其中,所述下行控制区域、下行扫描时间块、保护间隔、上行扫描时间块、上行控制区域,分别包含一个或多个符号,例如OFDM符号。
在示例性实施方式中,所述配置模块301可以设置为将扫描周期内的一个或者多个连续的数据传输子帧内除保留区域以外的所有符号都配置为扫描时间块,
其中,在所述配置模块301将扫描周期内的一个或者多个连续的数据传输子帧内除保留区域以外的所有符号都配置为扫描时间块后,所述配置了扫描时间块后的一个或者多个连续的数据传输子帧组成一个扫描时间间隔。
在示例性实施方式中,所述保留区域可以包括以下一种或多种:下行控制区域、上行控制区域。
在示例性实施方式中,所述配置模块301可以设置为将扫描周期内的一个或多个连续的数据传输子帧的全部符号配置为扫描时间块;
其中,在所述配置模块301将扫描周期内的一个或多个连续的数据传输子帧的全部符号配置为扫描时间块后,所述配置了扫描时间块后的一个或者多个连续的数据传输子帧组成一个扫描时间间隔。
在示例性实施方式中,所述配置模块301可以设置为将扫描周期内的数据传输子帧的部分或全部符号只配置为一个扫描时间块;
其中,在所述配置模块301将扫描周期内的数据传输子帧的部分或全部符号只配置为一个扫描时间块后,所述数据传输子帧的端口或波束是所述扫描时间块端口或波束的子集或全集。
在示例性实施方式中,所述扫描周期指所述扫描信号信道在所有端口或 波束上轮询发射一次的时间间隔,所述扫描周期内包含多个子帧。可选地,所述扫描周期预定义为以下任一种:5ms、10ms、20ms、40ms、80ms。
在示例性实施方式中,所述扫描时间块包括以下一种或多种:下行扫描时间块、上行扫描时间块;所述扫描信号信道包括以下一种或多种:上行扫描信号信道、下行扫描信号信道。所述下行扫描时间块,承载用于以下至少一项的下行扫描信号信道:小区搜索、下行端口或波束的测量与识别,所述下行扫描信号信道包含与所述端口或波束相对应的以下信号或信道中的一种或多种:下行同步信号、系统信息、下行端口测量参考信号。所述上行扫描时间块,承载用于以下至少一项的上行扫描信号信道:上行接入、上行端口或波束的测量与识别,所述上行扫描信号信道包含与所述端口或波束相对应的以下信号或信道中的一种或多种:上行随机接入请求信号、上行端口测量参考信号。
在示例性实施方式中,在所述扫描周期内包含一个或多个扫描时间块,每个扫描时间块发送一个或多个端口的扫描信号信道,占用一个或多个符号,在所述扫描周期内完成所有端口或波束的扫描信号信道的发送。
在示例性实施方式中,所述扫描时间块中的扫描信号信道还用于指示所述扫描时间块的时域位置信息,所述时域位置信息包括以下一种或多种:扫描时间块所在的帧、扫描时间块所在的子帧、扫描时间块在所述子帧中的位置;其中,所述扫描时间块在所述子帧中的位置指所述扫描时间块在所述子帧中占用的符号信息,或者,所述扫描时间块与所述扫描时间块所在子帧的边界之间的偏移信息。
在示例性实施方式中,所述数据传输子帧用于发送或接收特定端口或波束上一个或多个终端的数据。
所述数据传输子帧的结构包括以下任一种:
下行控制区域与下行数据区域的组合;
下行控制区域、保护间隔以及上行数据区域的组合;
下行控制区域、下行数据区域、保护间隔以及上行控制区域的组合;
下行控制区域、保护间隔、上行数据区域以及上行控制区域的组合;
下行控制区域、下行数据区域、保护间隔、上行数据区域以及上行控制区域的组合;
其中,所述下行控制区域、下行数据区域、保护间隔、上行数据区域、上行控制区域,分别包含一个或多个符号,例如正交频分复用(OFDM)符号。
关于在上述数据传输子帧配置扫描时间块后的结构如前述方法实施例所述,故于此不再赘述。
在示例性实施方式中,所述传输模块302还可以设置为将下行数据或上行数据承载在所述扫描时间块内进行传输,其中,所述下行数据或上行数据在所述扫描时间块前面的子帧或符号内的下行控制区域中被分配或调度。
在示例性实施方式中,所述下行控制区域所采用的端口或波束是所述下行数据所属扫描时间块端口或波束的子集或全集。
在示例性实施方式中,所述下行数据或上行数据所采用的端口或波束是所述扫描时间块端口或波束的子集或全集;使用扫描时间块内未被所述扫描信号信道占用的资源。
在示例性实施方式中,所述下行数据或上行数据与所述扫描时间块内的扫描信号信道频分复用。
在示例性实施方式中,下行控制中包含对扫描时间块内数据传输资源的上行调度信息或者下行分配信息。
在示例性实施方式中,所述扫描时间块内的数据传输资源,与所述数据传输子帧内的数据传输资源联合分配与指示,或者,独立分配与指示。
在示例性实施方式中,所述下行控制还包含以下一种或多种:所述扫描时间块内的数据传输资源的时域位置信息、所述扫描时间块内的数据传输资源的频域位置信息。
在示例性实施方式中,所述扫描时间块内的数据传输资源的时域位置信息,采用以下任一种方式描述:
所述扫描时间块与所述下行控制所在数据传输子帧间的绝对时间偏移,其中,所述绝对时间偏移可以是偏移的符号数,或偏移的绝对时间;
所述扫描时间块所在子帧与所述下行控制所在数据传输子帧间的绝对时间偏移,及所述扫描时间块在所述子帧内的位置;
所述扫描时间块所在子帧的索引,及所述扫描时间块在所述子帧内的位置;
其中,所述扫描时间块在所述子帧内的位置指所述扫描时间块占用所述子帧的符号信息,或,所述扫描时间块与所述扫描时间块所在子帧的边界之间的偏移信息。
在示例性实施方式中,所述扫描时间块等间隔映射在数据传输子帧上。
在示例性实施方式中,所述扫描时间块等间隔映射在数据传输子帧上,可以包括:
将所述扫描周期T内的所有扫描时间块分为N组,每组扫描时间块以固定的时间间隔映射在数据传输子帧上,每组内的相邻的所述扫描时间块等间隔映射;
或者,所述扫描周期内的所有相邻的所述扫描时间块等间隔映射;
或者,所有相邻的所述扫描时间块等间隔映射。
在示例性实施方式中,所述每组扫描时间块以固定的时间间隔映射在数据传输子帧上,可以包括:相邻两组扫描时间块内的第一个扫描时间块起始边界间的偏移是固定的。
在示例性实施方式中,所述相邻两组扫描时间块内的第一个扫描时间块起始边界间的偏移可以等于所述扫描周期T与N的比值。
关于上述装置的处理流程同上述方法实施例所述,故于此不再赘述。
此外,本发明实施例还提供一种电子设备,包括上述的基于扫描时间块的信息传输装置。
此外,本发明实施例还提供一种电子设备,包括处理器以及存储有所述处理器可执行指令的存储器,当所述指令被处理器执行时,执行如下操作:将扫描周期内的数据传输子帧的部分或全部符号配置为扫描时间块;将扫描信号信道承载在所述扫描时间块内进行传输;其中,所述扫描信号信道指需要在所有端口或波束上轮询发射的信号或者信号和信道。
在示例性实施方式中,当所述指令被处理器执行时,通过以下方式将扫描周期内的数据传输子帧的部分或全部符号配置为扫描时间块:
将扫描周期内的一个或多个数据传输子帧的部分或全部符号配置为一个或多个扫描时间块。
在示例性实施方式中,当所述指令被处理器执行时,通过以下方式将扫描周期内的数据传输子帧的部分或全部符号配置为扫描时间块:
将扫描周期内的一个或多个数据传输子帧内除保留区域以外的符号配置为一个或多个扫描时间块。
在示例性实施方式中,当所述指令被处理器执行时,还执行如下操作:
将下行数据或上行数据承载在所述扫描时间块内进行传输,其中,所述下行数据或上行数据在所述扫描时间块前面的子帧或符号内的下行控制区域中被分配或调度。
关于上述电子设备的处理流程可以参照前述方法实施例所述,故于此不再赘述。
此外,本发明实施例还提供一种机器可读介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现上述基于扫描时间块的信息传输方法。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在机器可读介质(比如,计算机可读介质)上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性 和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上显示和描述了本申请的基本原理和主要特征和本申请的优点。本申请不受上述实施例的限制,上述实施例和说明书中描述的只是说明本申请的原理,在不脱离本申请精神和范围的前提下,本申请还会有各种变化和改进,这些变化和改进都落入要求保护的本申请范围内。
工业实用性
本申请实施例提供一种基于扫描时间块的信息传输方法及装置,在保证了扫描周期内相同数量的扫描时间块的前提下(即不增加扫描时延),数据传输更加灵活,更容易利用扫描时间块内剩余的资源,从而提高了资源利用效率。

Claims (45)

  1. 一种基于扫描时间块的信息传输方法,包括:
    将扫描周期内的数据传输子帧的部分或全部符号配置为扫描时间块;
    将扫描信号信道承载在所述扫描时间块内进行传输;
    其中,所述扫描信号信道指需要在所有端口或波束上轮询发射的信号或者信号和信道。
  2. 根据权利要求1所述的方法,其中,所述将扫描周期内的数据传输子帧的部分或全部符号配置为扫描时间块,包括:将扫描周期内的一个或多个数据传输子帧的部分或全部符号配置为一个或多个扫描时间块。
  3. 根据权利要求1所述的方法,其中,所述将扫描周期内的数据传输子帧的部分或全部符号配置为扫描时间块,包括:将扫描周期内的一个或多个数据传输子帧内除保留区域以外的符号配置为一个或多个扫描时间块。
  4. 根据权利要求3所述的方法,其中,将扫描周期内的一个或多个数据传输子帧内除保留区域以外的符号配置为一个或多个扫描时间块后,所述配置了扫描时间块后的数据传输子帧结构为以下任一种:
    下行控制区域与下行扫描时间块的组合;
    下行控制区域、保护间隔、上行扫描时间块的组合;
    下行控制区域、下行扫描时间块、保护间隔、上行控制区域的组合;
    下行控制区域、保护间隔、上行扫描时间块、上行控制区域的组合;
    下行控制区域、下行扫描时间块、保护间隔、上行扫描时间块、上行控制区域的组合;
    其中,所述下行控制区域、下行扫描时间块、保护间隔、上行扫描时间块、上行控制区域,分别包含一个或多个符号。
  5. 根据权利要求3所述的方法,其中,所述将扫描周期内的一个或多个数据传输子帧内除保留区域以外的符号配置为一个或多个扫描时间块,包括:将扫描周期内的一个或者多个连续的数据传输子帧内除保留区域以外的所有符号都配置为扫描时间块;
    其中,将扫描周期内的一个或者多个连续的数据传输子帧内除保留区域以外的所有符号都配置为扫描时间块后,所述配置了扫描时间块后的一个或者多个连续的数据传输子帧组成一个扫描时间间隔。
  6. 根据权利要求3至5任一项所述的方法,其中,所述保留区域包括以下一种或多种:下行控制区域、上行控制区域。
  7. 根据权利要求1所述的方法,其中,所述将扫描周期内的数据传输子帧的部分或全部符号配置为扫描时间块,包括:将扫描周期内的一个或多个连续的数据传输子帧的全部符号配置为扫描时间块;
    其中,将扫描周期内的一个或多个连续的数据传输子帧的全部符号配置为扫描时间块后,所述配置了扫描时间块后的一个或者多个连续的数据传输子帧组成一个扫描时间间隔。
  8. 根据权利要求1所述的方法,其中,所述将扫描周期内的数据传输子帧的部分或全部符号配置为扫描时间块,包括:将扫描周期内的数据传输子帧的部分或全部符号只配置为一个扫描时间块;
    其中,将扫描周期内的数据传输子帧的部分或全部符号只配置为一个扫描时间块后,所述数据传输子帧的端口或波束是所述扫描时间块端口或波束的子集或全集。
  9. 根据权利要求1所述的方法,其中,所述扫描周期指所述扫描信号信道在所有端口或波束上轮询发射一次的时间间隔,所述扫描周期内包含多个子帧。
  10. 根据权利要求9所述的方法,其中,所述扫描周期预定义为以下任一种:5毫秒ms、10ms、20ms、40ms、80ms。
  11. 根据权利要求1所述的方法,其中,所述扫描时间块包括以下一种或多种:下行扫描时间块、上行扫描时间块;所述扫描信号信道包括以下一种或多种:上行扫描信号信道、下行扫描信号信道。
  12. 根据权利要求11所述的方法,其中,所述下行扫描时间块,承载用于以下至少一项的下行扫描信号信道:小区搜索、下行端口或波束的测量与识别,所述下行扫描信号信道包含与所述端口或波束相对应的以下信号或信 道中的一种或多种:下行同步信号、系统信息、下行端口测量参考信号。
  13. 根据权利要求11所述的方法,其中,所述上行扫描时间块,承载用于以下至少一项的上行扫描信号信道:上行接入、上行端口或波束的测量与识别,所述上行扫描信号信道包含与所述端口或波束相对应的以下信号或信道中的一种或多种:上行随机接入请求信号、上行端口测量参考信号。
  14. 根据权利要求1所述的方法,其中,在所述扫描周期内包含一个或多个扫描时间块,每个扫描时间块发送一个或多个端口的扫描信号信道,占用一个或多个符号,在所述扫描周期内完成所有端口或波束的扫描信号信道的发送。
  15. 根据权利要求1所述的方法,其中,所述扫描时间块中的扫描信号信道还用于指示所述扫描时间块的时域位置信息,所述时域位置信息包括以下一种或多种:扫描时间块所在的帧、扫描时间块所在的子帧、扫描时间块在所述子帧中的位置。
  16. 根据权利要求1所述的方法,其中,所述数据传输子帧用于发送或接收特定端口或波束上一个或多个终端的数据。
  17. 根据权利要求1所述的方法,其中,所述数据传输子帧的结构包括以下任一种:
    下行控制区域与下行数据区域的组合;
    下行控制区域、保护间隔以及上行数据区域的组合;
    下行控制区域、下行数据区域、保护间隔以及上行控制区域的组合;
    下行控制区域、保护间隔、上行数据区域以及上行控制区域的组合;
    下行控制区域、下行数据区域、保护间隔、上行数据区域以及上行控制区域的组合;
    其中,所述下行控制区域、下行数据区域、保护间隔、上行数据区域、上行控制区域,分别包含一个或多个符号。
  18. 根据权利要求1所述的方法,所述方法还包括:将下行数据或上行数据承载在所述扫描时间块内进行传输,其中,所述下行数据或上行数据在所述扫描时间块前面的子帧或符号内的下行控制区域中被分配或调度。
  19. 根据权利要求18所述的方法,其中,所述下行控制区域所采用的端口或波束是所述下行数据所属扫描时间块端口或波束的子集或全集。
  20. 根据权利要求18所述的方法,其中,所述下行数据或上行数据所采用的端口或波束是所述扫描时间块端口或波束的子集或全集;使用扫描时间块内未被所述扫描信号信道占用的资源。
  21. 根据权利要求18所述的方法,其中,所述下行数据或上行数据与所述扫描时间块内的扫描信号信道频分复用。
  22. 根据权利要求18所述的方法,其中,下行控制中包含对扫描时间块内数据传输资源的上行调度信息或者下行分配信息。
  23. 根据权利要求22所述的方法,其中,所述扫描时间块内的数据传输资源,与所述数据传输子帧内的数据传输资源联合分配与指示,或者,独立分配与指示。
  24. 根据权利要求22所述的方法,其中,所述下行控制还包含以下一种或多种:所述扫描时间块内的数据传输资源的时域位置信息、所述扫描时间块内的数据传输资源的频域位置信息。
  25. 根据权利要求24所述的方法,其中,所述扫描时间块内的数据传输资源的时域位置信息,采用以下任一种方式描述:
    所述扫描时间块与所述下行控制所在数据传输子帧间的绝对时间偏移,其中,所述绝对时间偏移可以是偏移的符号数,或偏移的绝对时间;
    所述扫描时间块所在子帧与所述下行控制所在数据传输子帧间的绝对时间偏移,及所述扫描时间块在所述子帧内的位置;
    所述扫描时间块所在子帧的索引,及所述扫描时间块在所述子帧内的位置。
  26. 根据权利要求15或25所述的方法,其中,所述扫描时间块在所述子帧内的位置指所述扫描时间块占用所述子帧的符号信息,或,所述扫描时间块与所述扫描时间块所在子帧的边界之间的偏移offset信息。
  27. 根据权利要求1所述的方法,其中,所述扫描时间块等间隔映射在数据传输子帧上。
  28. 根据权利要求27所述的方法,其中,所述扫描时间块等间隔映射在数据传输子帧上,包括:
    将所述扫描周期T内的所有扫描时间块分为N组,每组扫描时间块以固定的时间间隔映射在数据传输子帧上,每组内的相邻的所述扫描时间块等间隔映射;
    或者,所述扫描周期内的所有相邻的所述扫描时间块等间隔映射;
    或者,所有相邻的所述扫描时间块等间隔映射。
  29. 根据权利要求28所述的方法,其中,所述每组扫描时间块以固定的时间间隔映射在数据传输子帧上,包括:相邻两组扫描时间块内的第一个扫描时间块起始边界间的偏移是固定的。
  30. 根据权利要求29所述的方法,其中,所述相邻两组扫描时间块内的第一个扫描时间块起始边界间的偏移等于所述扫描周期T与N的比值。
  31. 一种基于扫描时间块的信息传输装置,包括:
    配置模块,设置为将扫描周期内的数据传输子帧的部分或全部符号配置为扫描时间块;
    传输模块,设置为将扫描信号信道承载在所述扫描时间块内进行传输;其中,所述扫描信号信道指需要在所有端口或波束上轮询发射的信号或者信号和信道。
  32. 根据权利要求31所述的装置,其中,所述配置模块,设置为将扫描周期内的一个或多个数据传输子帧的部分或全部符号配置为一个或多个扫描时间块。
  33. 根据权利要求31所述的装置,其中,所述配置模块设置为将扫描周期内的一个或多个数据传输子帧内除保留区域以外的符号配置为一个或多个扫描时间块。
  34. 根据权利要求33所述的装置,其中,在所述配置模块将扫描周期内的一个或多个数据传输子帧内除保留区域以外的符号配置为一个或多个扫描时间块后,所述配置了扫描时间块后的数据传输子帧结构为以下任一种:
    下行控制区域与下行扫描时间块的组合;
    下行控制区域、保护间隔、上行扫描时间块的组合;
    下行控制区域、下行扫描时间块、保护间隔、上行控制区域的组合;
    下行控制区域、保护间隔、上行扫描时间块、上行控制区域的组合;
    下行控制区域、下行扫描时间块、保护间隔、上行扫描时间块、上行控制区域的组合;
    其中,所述下行控制区域、下行扫描时间块、保护间隔、上行扫描时间块、上行控制区域,分别包含一个或多个符号。
  35. 根据权利要求33所述的装置,其中,所述配置模块设置为将扫描周期内的一个或者多个连续的数据传输子帧内除保留区域以外的所有符号都配置为扫描时间块,
    其中,所述配置模块将扫描周期内的一个或者多个连续的数据传输子帧内除保留区域以外的所有符号都配置为扫描时间块后,所述配置了扫描时间块后的一个或者多个连续的数据传输子帧组成一个扫描时间间隔。
  36. 根据权利要求33至35任一项所述的装置,其中,所述保留区域包括以下一种或多种:下行控制区域、上行控制区域。
  37. 根据权利要求31所述的装置,其中,所述配置模块设置为将扫描周期内的一个或多个连续的数据传输子帧的全部符号配置为扫描时间块;
    其中,所述配置模块将扫描周期内的一个或多个连续的数据传输子帧的全部符号配置为扫描时间块后,所述配置了扫描时间块后的一个或者多个连续的数据传输子帧组成一个扫描时间间隔。
  38. 根据权利要求31所述的装置,其中,所述配置模块设置为将扫描周期内的数据传输子帧的部分或全部符号只配置为一个扫描时间块;
    其中,所述配置模块将扫描周期内的数据传输子帧的部分或全部符号只配置为一个扫描时间块后,所述数据传输子帧的端口或波束是所述扫描时间块端口或波束的子集或全集。
  39. 根据权利要求31所述的装置,其中,所述扫描时间块包括以下一种或多种:下行扫描时间块、上行扫描时间块;所述扫描信号信道包括以下一种或多种:上行扫描信号信道、下行扫描信号信道;
    所述下行扫描时间块,承载用于以下至少一项的下行扫描信号信道:小区搜索、下行端口或波束的测量与识别,所述下行扫描信号信道包含与所述端口或波束相对应的以下信号或信道中的一种或多种:下行同步信号、系统信息、下行端口测量参考信号;
    所述上行扫描时间块,承载用于以下至少一项的上行扫描信号信道:上行接入、上行端口或波束的测量与识别,所述上行扫描信号信道包含与所述端口或波束相对应的以下信号或信道中的一种或多种:上行随机接入请求信号、上行端口测量参考信号。
  40. 根据权利要求31所述的装置,其中,所述扫描时间块中的扫描信号信道还用于指示所述扫描时间块的时域位置信息,所述时域位置信息包括以下一种或多种:扫描时间块所在的帧、扫描时间块所在的子帧、扫描时间块在所述子帧中的位置。
  41. 根据权利要求31所述的装置,其中,所述传输模块,还设置为将下行数据或上行数据承载在所述扫描时间块内进行传输,其中,所述下行数据或上行数据在所述扫描时间块前面的子帧或符号内的下行控制区域中被分配或调度。
  42. 根据权利要求31所述的装置,其中,所述扫描时间块等间隔映射在数据传输子帧上。
  43. 一种电子设备,包括根据权利要求31至42中任一项所述的基于扫描时间块的信息传输装置。
  44. 一种电子设备,包括处理器以及存储有所述处理器可执行指令的存储器,当所述指令被处理器执行时,执行如权利要求1至30中任一项所述的基于扫描时间块的信息传输方法的步骤。
  45. 一种机器可读介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现权利要求1至30中任一项所述的基于扫描时间块的信息传输方法。
PCT/CN2017/082899 2016-08-12 2017-05-03 一种基于扫描时间块的信息传输方法及装置 WO2018028252A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019506620A JP7032380B2 (ja) 2016-08-12 2017-05-03 走査時間ブロックに基づく情報伝送方法および装置
EP17838384.0A EP3500004B1 (en) 2016-08-12 2017-05-03 Information transmission method and device based on sweeping block
EP23200194.1A EP4283912A3 (en) 2016-08-12 2017-05-03 Information transmission method and device based on sweeping block
US16/323,339 US10917887B2 (en) 2016-08-12 2017-05-03 Information transmission method and device based on sweeping block
US17/158,916 US11611960B2 (en) 2016-08-12 2021-01-26 Information transmission method and device based on sweeping block
JP2021186234A JP7416748B2 (ja) 2016-08-12 2021-11-16 走査時間ブロックに基づく情報伝送方法および装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610669806.9A CN107734683B (zh) 2016-08-12 2016-08-12 一种信息传输方法、电子设备及计算机可读存储介质
CN201610669806.9 2016-08-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/323,339 A-371-Of-International US10917887B2 (en) 2016-08-12 2017-05-03 Information transmission method and device based on sweeping block
US17/158,916 Continuation US11611960B2 (en) 2016-08-12 2021-01-26 Information transmission method and device based on sweeping block

Publications (1)

Publication Number Publication Date
WO2018028252A1 true WO2018028252A1 (zh) 2018-02-15

Family

ID=61162640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/082899 WO2018028252A1 (zh) 2016-08-12 2017-05-03 一种基于扫描时间块的信息传输方法及装置

Country Status (5)

Country Link
US (2) US10917887B2 (zh)
EP (2) EP4283912A3 (zh)
JP (2) JP7032380B2 (zh)
CN (2) CN113395146B (zh)
WO (1) WO2018028252A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190319826A1 (en) * 2016-10-14 2019-10-17 Zte Corporation Method of configuring symbols and device using the same and method of demodulating data and device using the same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11057934B2 (en) * 2016-08-25 2021-07-06 Qualcomm Incorporated Initial access procedure using preconfigured resources
CN107872415B (zh) * 2016-09-23 2022-07-15 中兴通讯股份有限公司 一种数据传输方法及装置
US11082095B2 (en) * 2017-01-25 2021-08-03 Asustek Computer Inc. Method and apparatus for triggering a beam state information report in a wireless communication system
KR102519923B1 (ko) * 2017-02-06 2023-04-11 모토로라 모빌리티 엘엘씨 동기화 신호 블록 송신 및 수신
JP7083841B2 (ja) * 2017-03-24 2022-06-13 オッポ広東移動通信有限公司 情報伝送方法、端末装置とネットワーク装置
CN110574447B (zh) * 2017-06-15 2022-04-01 Lg 电子株式会社 用于发送和接收同步信号块的方法及其设备
CN109150465B (zh) * 2017-06-16 2020-10-09 电信科学技术研究院 同步信号块指示确定方法、装置、基站、终端及存储介质
CN109728892B (zh) * 2017-08-11 2020-02-14 华为技术有限公司 一种物理资源块prb网格的指示方法及设备
WO2019174583A1 (zh) * 2018-03-13 2019-09-19 华为技术有限公司 一种同步信号块传输的方法、网络设备以及用户设备
KR102569149B1 (ko) * 2018-07-17 2023-08-21 지티이 코포레이션 신호 및 채널 정보를 송신하기 위한 방법, 장치 및 시스템
SG11202102691PA (en) * 2018-09-18 2021-04-29 Guangdong Oppo Mobile Telecommunications Corp Ltd Signal transmission method and apparatus and computer storage medium
EP3993476A4 (en) * 2019-06-27 2023-01-18 Ntt Docomo, Inc. TERMINAL
WO2021009821A1 (ja) * 2019-07-12 2021-01-21 株式会社Nttドコモ 端末

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105027524A (zh) * 2013-03-06 2015-11-04 三星电子株式会社 在使用波束成形的无线通信系统中发送和接收上行链路随机接入信道时隙的方法和装置
WO2016049840A1 (en) * 2014-09-30 2016-04-07 Telefonaktiebolaget L M Ericsson (Publ) Access nodes and beamforming method for receiving and transmitting signals in wireless communication network

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101425991A (zh) * 2007-11-02 2009-05-06 大唐移动通信设备有限公司 一种广播信息的传输方法和装置
ES2355999B1 (es) * 2008-09-08 2012-02-27 FUNDACIó PRIVADA CENTRE TECNOLÒGIC DE TELECOMUNICACIONS DE CATALUNYA Método de demodulación y sincronización en sistemas de banda ultra ancha.
US8923197B2 (en) * 2011-06-01 2014-12-30 Samsung Electronics Co., Ltd. Methods and apparatus to transmit and receive synchronization signal and system information in a wireless communication system
WO2013085335A1 (ko) * 2011-12-07 2013-06-13 엘지전자 주식회사 무선 통신 시스템에서 하향링크 제어 채널 송수신 방법 및 장치
US9749935B2 (en) * 2012-03-09 2017-08-29 Samsung Electronics Co., Ltd. Methods and apparatus for cell scanning in system with large number of antennas
US9491654B2 (en) * 2012-06-24 2016-11-08 Lg Electronics Inc. Method and apparatus for reporting channel state information in wireless communication system
CN104782200B (zh) * 2012-11-15 2019-04-05 瑞典爱立信有限公司 用于保护相邻无线电基站的控制信道的设备及方法
US10003446B2 (en) * 2013-07-08 2018-06-19 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data in a communication system using beamforming
GB201317461D0 (en) * 2013-10-02 2013-11-13 Imagination Tech Ltd Satellite scanning
US10547418B2 (en) * 2014-06-10 2020-01-28 Qualcomm Incorporated Coordinated operations of millimeter wavelength wireless access networks
US9872258B1 (en) * 2015-01-14 2018-01-16 Sprint Spectrum L.P. Dynamic control of uplink transmission power attenuation based on roaming status
US10652760B2 (en) * 2015-07-08 2020-05-12 Qualcomm Incorporated Multi-user multiplexing frame structure for eMTC
US11191061B2 (en) * 2016-04-19 2021-11-30 Qualcomm Incorporated Beam reference signal based narrowband channel measurement and CQI reporting
US10887035B2 (en) * 2016-06-01 2021-01-05 Qualcomm Incorporated Time division multiplexing of synchronization channels
CN110036677B (zh) * 2016-07-20 2023-09-26 艾普拉控股有限公司 使用波束成形和选择的无线电设备的移动性
US10819482B2 (en) * 2016-08-24 2020-10-27 Qualcomm Incorporated Sounding reference signal enhancements
CN114828223A (zh) * 2016-09-30 2022-07-29 中兴通讯股份有限公司 寻呼消息的发送、检测方法、装置、设备和存储介质
US11229047B2 (en) * 2018-04-06 2022-01-18 Qualcomm Incorporated Transport block repetition handling for downlink and uplink transmissions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105027524A (zh) * 2013-03-06 2015-11-04 三星电子株式会社 在使用波束成形的无线通信系统中发送和接收上行链路随机接入信道时隙的方法和装置
WO2016049840A1 (en) * 2014-09-30 2016-04-07 Telefonaktiebolaget L M Ericsson (Publ) Access nodes and beamforming method for receiving and transmitting signals in wireless communication network

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA ET AL.: "Support for Beam Based Common Control Plane, R1-165364", 3GPP TSG-RAN WG1#85, 27 May 2016 (2016-05-27), XP051096653 *
SAMSUNG: "Framework for Beamformed Access, R1-164013", 3GPP TSG RAN WG1#85, 27 May 2016 (2016-05-27), XP051090295 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190319826A1 (en) * 2016-10-14 2019-10-17 Zte Corporation Method of configuring symbols and device using the same and method of demodulating data and device using the same
US10833906B2 (en) * 2016-10-14 2020-11-10 Zte Corporation Method of configuring symbols and device using the same and method of demodulating data and device using the same

Also Published As

Publication number Publication date
EP3500004A4 (en) 2020-03-25
EP3500004B1 (en) 2023-11-01
JP7416748B2 (ja) 2024-01-17
EP4283912A2 (en) 2023-11-29
EP3500004A1 (en) 2019-06-19
CN113395146B (zh) 2023-03-14
CN107734683B (zh) 2021-02-12
US20210227539A1 (en) 2021-07-22
US20190254026A1 (en) 2019-08-15
US11611960B2 (en) 2023-03-21
CN107734683A (zh) 2018-02-23
JP2019531621A (ja) 2019-10-31
JP2022023233A (ja) 2022-02-07
JP7032380B2 (ja) 2022-03-08
US10917887B2 (en) 2021-02-09
CN113395146A (zh) 2021-09-14
EP4283912A3 (en) 2023-12-27

Similar Documents

Publication Publication Date Title
WO2018028252A1 (zh) 一种基于扫描时间块的信息传输方法及装置
US10117238B2 (en) Mobile communications system, network element and method for resource allocation on a virtual carrier for machine-type communications with a narrow band EPDCCH
JP6875413B2 (ja) サウンディング参照信号の伝送方法、伝送装置および端末
CN111756488B (zh) 用于发射和接收侧行链路harq反馈信息的方法和装置
CN110447287B (zh) 用于操作无线通信设备或无线电接入节点的方法和设备
KR102031031B1 (ko) 무선 통신 시스템에서 시분할 복식 프레임 구성 정보 송수신 방법 및 장치
CN111416700A (zh) 传送侧链路harq反馈信息的方法和装置
EP2891374B1 (en) Mobile communications device and method for resource allocation on a virtual carrier for machine-type communications with a narrow band epdcch
CN111756515B (zh) 发射和接收用于侧链路信道状态信息获取的参考信号的方法和装置
EP2355567A1 (en) Method and device for enabling multi-carriers aggregation transmission
US8811239B2 (en) Communication method and device
CN110636622B (zh) 一种无线通信中的方法和装置
EP2753005A1 (en) Data transmission method and device
CN105099631A (zh) 一种处理灵活双工的方法和设备
EP3518451B1 (en) Data transmission method and device
CN110972274B (zh) 时域资源分配方法及装置
CN110856256A (zh) 一种用于无线通信中的方法和装置
CN110546990B (zh) 速率匹配的指示方法、装置、设备及存储介质
CN116368911A (zh) 在无线通信系统中发送物理上行链路控制信道的方法、装置和系统
CN101409929A (zh) 一种通信方法和装置
CN101400146A (zh) 一种扩大覆盖范围的方法、装置和系统
CN109219128B (zh) 基于帧结构的通信方法、装置和帧结构
CN101415232B (zh) 一种扩大覆盖范围的方法、装置和系统
KR102510400B1 (ko) 무선 통신 시스템에서 상향링크 제어 정보를 송수신하고 랜덤 액세스를 요청하기 위한 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838384

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019506620

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017838384

Country of ref document: EP

Effective date: 20190312