WO2019174583A1 - 一种同步信号块传输的方法、网络设备以及用户设备 - Google Patents

一种同步信号块传输的方法、网络设备以及用户设备 Download PDF

Info

Publication number
WO2019174583A1
WO2019174583A1 PCT/CN2019/077883 CN2019077883W WO2019174583A1 WO 2019174583 A1 WO2019174583 A1 WO 2019174583A1 CN 2019077883 W CN2019077883 W CN 2019077883W WO 2019174583 A1 WO2019174583 A1 WO 2019174583A1
Authority
WO
WIPO (PCT)
Prior art keywords
data frame
time slot
network device
channel
ssb
Prior art date
Application number
PCT/CN2019/077883
Other languages
English (en)
French (fr)
Inventor
王琪
方平
庞高昆
程勇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811013540.8A external-priority patent/CN110278599A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019174583A1 publication Critical patent/WO2019174583A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information

Definitions

  • the present application relates to communication technologies, and in particular, to a synchronization signal block transmission method, a network device, and a user equipment.
  • 5G Fifth Generation
  • the spectrum transmits data, for example, 5 GHz (Hz) and 60 GHz bands. Due to the greater attenuation of these high frequency bands, the concept of a beam is proposed in the 5G mobile communication system standard, which is transmitted by focusing power in a specific direction to improve signal coverage, that is, through beamforming (Beamforming)
  • Beamforming beamforming
  • the technique forms a directional beam to compensate for path loss at high frequencies.
  • UE user equipment
  • the 5G network device needs to perform beam sweeping. As shown in FIG.
  • the network device configuration may include N scan cycles. a data frame, where N is generally an integer greater than 20, and the network device scans all beam directions in data frame 1 of the scanning period, and the remaining data frames in the scanning period are used to transmit other data, that is, in one Synchronization Signal Block (SSB) transmission is performed for all beam directions within a fixed time period of the scanning period, where the SSB includes a synchronization signal (SS) and a physical broadcast channel (PBCH).
  • SSB Synchronization Signal Block
  • PBCH physical broadcast channel
  • the UE may obtain time synchronization with the network device and obtain basic configuration information of the network. The UE may also feed back the received signal strength of the SSB to assist the network device in selecting a suitable beam for data transmission.
  • LBT Listen-Before-Talk
  • a network device for example, a base station
  • LBT needs to be performed first in each beam direction, but there is no guarantee that the channels in each beam direction are just idle, so beam scanning cannot guarantee each time in a fixed time.
  • the SSBs in the beam direction are successfully transmitted.
  • the SSBs in some beam directions are not successfully sent to the corresponding UEs in a fixed period of one scanning period. Therefore, the UEs are required to access the network for a long time, and the UEs are in the same scanning period. The probability of accessing the network is low.
  • the embodiment of the present application provides an SSB transmission method, a network device, and a UE, which are applicable to a system for performing data transmission by using an unlicensed spectrum, so as to improve the access of the network device to the network in the same scanning period when the network device performs beam scanning.
  • the probability is not limited to a Wi-Fi connection, a Wi-Fi connection, a Wi-Fi connection, and a Wi-Fi connection.
  • the embodiments provided by the present invention include (the numbers of the embodiments provided in this section are not explicitly related to the numbers of the embodiments provided in other parts herein, only the convenience of the description in this section):
  • a method for transmitting a synchronization signal block SSB the method being applied to a communication system, wherein the communication system transmits data through an unlicensed spectrum, the method comprising:
  • the network device detects that the first channel corresponding to the first beam direction is in an occupied state in the first target period, and the network device does not send the first SSB corresponding to the first beam direction in the first target period;
  • the network device If the network device detects that the first channel is in an idle state during the second target period, the network device sends the first SSB by using the first channel in the second target period, where the first The SSB is used by the user equipment UE on the first channel to access the network, and the first target period and the second target period belong to two target periods of the network device configured in the same scanning period.
  • the network device detects power of the first channel in the first target period
  • the first channel is in an occupied state during the first target period.
  • the same scanning period comprises a time slot corresponding to a plurality of data frames
  • a time slot corresponding to one data frame comprises a plurality
  • the same scanning period includes
  • Each target period corresponds to one time slot in a time slot corresponding to one data frame
  • the first target period corresponds to an Mth time slot in a first data frame
  • the second target period corresponds to a second data frame.
  • the Mth time slot the second data frame is a data frame subsequent to the first data frame and adjacent to the first data frame
  • M is an integer greater than or equal to 1.
  • the same scanning period comprises a time slot corresponding to a plurality of data frames
  • a time slot corresponding to one data frame comprises a plurality
  • the same scanning period includes
  • Each of the target periods corresponds to one of the time slots corresponding to one data frame
  • the first target period corresponds to the Mth time slot in the first data frame
  • the first SSB is at the first The Nth of the unsent SSBs in the time slot corresponding to the data frame
  • the second target period corresponds to the Yth slot in the second data frame
  • the second data frame is after the first data frame
  • the data frame adjacent to or not adjacent to the first data frame wherein the first time slot is the first one of the time slots after the Xth time slot in the second data frame is in the first channel a time slot in the idle time, the Xth time slot is a time slot of the N-1th SSB that is not sent in the time slot corresponding to the first data frame
  • M, N, X, Y is an integer greater than or equal
  • the same scanning period comprises a time slot corresponding to a plurality of data frames, and a time slot corresponding to one data frame comprises a plurality, wherein the same scanning period includes
  • Each target period corresponds to one slot in a slot corresponding to one data frame
  • the first target period corresponds to an Mth slot in the first data frame
  • the second target period corresponds to the first slot
  • M and N are integers greater than or equal to 1
  • the Nth slot is a slot adjacent to the Mth slot and adjacent to the Mth slot.
  • the same scanning period comprises a time slot corresponding to a plurality of data frames
  • a time slot corresponding to one data frame comprises a plurality of
  • the same scanning period includes
  • Each of the target periods corresponds to one of the time slots corresponding to one data frame
  • the first target period corresponds to the last time slot in the first data frame
  • the second target period corresponds to the second data frame.
  • the first time slot in the first data frame is a data frame subsequent to the first data frame and adjacent to the first data frame.
  • a method for transmitting a synchronization signal block SSB the method being applied to a communication system, wherein the communication system transmits data through an unlicensed spectrum, the method comprising:
  • the UE monitors the first channel in the second target period, where the first SSB is the first channel to be accessed by the UE.
  • the first channel is a channel corresponding to the first beam direction;
  • the UE When the UE receives the first SSB sent by the network device through the first channel in the second target period, the UE accesses the network through the first SSB, the first target period And the second target period belongs to two target periods in the same scan period configured by the network device.
  • the same scanning period comprises a time slot corresponding to a plurality of data frames, and a time slot corresponding to one data frame comprises a plurality, wherein the same scanning period includes Each target period corresponds to one of the time slots corresponding to one data frame, and the first target period and the second target period are two time slots in the same data frame.
  • the first target period corresponds to an Mth slot in a first data frame
  • the second target period corresponds to a Nth in the first data frame.
  • the time slot, M, N is an integer greater than or equal to 1
  • the Nth time slot is a time slot subsequent to the Mth time slot and adjacent to the Mth time slot.
  • the same scanning period comprises a time slot corresponding to a plurality of data frames, and a time slot corresponding to one data frame comprises a plurality, wherein the same scanning period includes
  • Each target period corresponds to one of the time slots corresponding to one data frame, and the first target period and the second target period are two time slots in different data frames.
  • first target period corresponds to an Mth slot in a first data frame
  • second target period corresponds to an Mth slot in a second data frame.
  • the second data frame is a data frame subsequent to the first data frame and adjacent to the first data frame
  • M is an integer greater than or equal to 1.
  • the first target period corresponds to an Mth slot in the first data frame
  • the first SSB is at a time corresponding to the first data frame.
  • the Nth of the SSBs that are not sent in the slot, the second target period corresponds to the Yth slot in the second data frame, and the second data frame is after the first data frame, and the first a data frame adjacent or not adjacent to the data frame, where the Yth time slot is the first one of the time slots after the Xth time slot in the second data frame that is idle on the first channel
  • the slot X, the X-slot is that the network device successfully sends the slot of the N-1th SSB that is not sent in the time slot corresponding to the first data frame, where M, N, X, and Y are greater than An integer equal to 1.
  • first target period corresponds to a last slot in a first data frame
  • second target period corresponds to a first one in a second data frame
  • the second data frame is a data frame subsequent to the first data frame and adjacent to the first data frame.
  • a network device comprising:
  • a processing module configured to: when the network device detects that the first channel corresponding to the first beam direction is in an occupied state in the first target period, the first SSB corresponding to the first beam direction is not sent in the first target period;
  • a transceiver module configured to: if the network device detects that the first channel is in an idle state during a second target period, send the first SSB by using the first channel in the second target period, where An SSB is used for the user equipment UE on the first channel to access the network, and the first target period and the second target period belong to two target periods of the network device configured in the same scanning period.
  • processing module is specifically configured to:
  • the first channel is in an occupied state in the first target period, and the first corresponding to the first beam direction is not sent in the first target period.
  • the network device wherein the same scanning period comprises a time slot corresponding to a plurality of data frames, and a time slot corresponding to one data frame comprises a plurality of the same scanning.
  • Each target period included in the period corresponds to one time slot in a time slot corresponding to one data frame, and the first target period and the second target period are two time slots in the same data frame or are different. Two time slots in a data frame.
  • the same scanning period comprises a time slot corresponding to a plurality of data frames
  • a time slot corresponding to one data frame comprises a plurality of the same scanning period.
  • Each of the target periods includes one time slot corresponding to one data frame
  • the first target period corresponds to an Mth time slot in the first data frame
  • the second target period corresponds to the second data.
  • the Mth time slot in the frame, the second data frame is a data frame subsequent to the first data frame and adjacent to the first data frame
  • M is an integer greater than or equal to 1.
  • the same scanning period comprises a time slot corresponding to a plurality of data frames
  • a time slot corresponding to one data frame comprises a plurality of the same scanning period.
  • Each of the target periods included corresponds to one time slot in a time slot corresponding to one data frame
  • the first target period corresponds to an Mth time slot in the first data frame
  • the first SSB is in the first The Nth of the unsent SSBs in the slot corresponding to the data frame
  • the second target period corresponds to the Yth slot in the second data frame
  • the second data frame is the first data frame
  • the first Y slot is the first one of the slots after the Xth slot in the second data frame is at the first a time slot on the channel that is idle
  • the Xth time slot is a time slot for successfully transmitting the N-1th SSB that is not transmitted in the time slot corresponding to the first data frame, M, N, and X
  • the same scanning period comprises a time slot corresponding to a plurality of data frames
  • a time slot corresponding to one data frame comprises a plurality of the same scanning period.
  • Each target period included corresponds to one time slot in a time slot corresponding to one data frame
  • the first target period corresponds to an Mth time slot in the first data frame
  • the second target period corresponds to the first time period
  • M and N are integers greater than or equal to 1
  • the Nth slot is a slot adjacent to the Mth slot and adjacent to the Mth slot.
  • the same scanning period comprises a time slot corresponding to a plurality of data frames
  • a time slot corresponding to one data frame comprises a plurality of the same scanning period.
  • Each of the target periods included corresponds to one of the time slots corresponding to one data frame
  • the first target period corresponds to the last time slot in the first data frame
  • the second target period corresponds to the second data.
  • the first time slot in the frame, the second data frame is a data frame subsequent to the first data frame and adjacent to the first data frame.
  • a user equipment wherein the UE comprises:
  • a monitoring module configured to: when the user equipment UE does not receive the first SSB in the first target period, monitor the first channel in a second target period, where the first SSB is the first to be accessed by the UE The SSB corresponding to the channel, where the first channel is a channel corresponding to the first beam direction;
  • An access module configured to access the network by using the first SSB when the UE receives the first SSB sent by the network device by using the first channel in the second target period, where the A target period and the second target period belong to two target periods of the network device configuration within the same scan period.
  • the same scanning period includes a time slot corresponding to a plurality of data frames, and a time slot corresponding to one data frame includes a plurality, and the same scanning period includes Each target period corresponds to one of the time slots corresponding to one data frame, and the first target period and the second target period are two time slots in the same data frame.
  • the time slot, M, N is an integer greater than or equal to 1, and the Nth time slot is a time slot subsequent to the Mth time slot and adjacent to the Mth time slot.
  • the same scanning period includes a time slot corresponding to a plurality of data frames, and a time slot corresponding to one data frame includes a plurality, and the same scanning period includes Each target period corresponds to one of the time slots corresponding to one data frame, and the first target period and the second target period are two time slots in different data frames.
  • the second data frame is a data frame subsequent to the first data frame and adjacent to the first data frame, and M is an integer greater than or equal to 1.
  • the UE wherein the first target period corresponds to an Mth slot in a first data frame, and the first SSB is at a time corresponding to the first data frame.
  • the Nth of the SSBs that are not sent in the slot, the second target period corresponds to the Yth slot in the second data frame, and the second data frame is after the first data frame, and the first a data frame adjacent or not adjacent to the data frame, where the Yth time slot is the first one of the time slots after the Xth time slot in the second data frame that is idle on the first channel
  • the slot X, the X-slot is that the network device successfully sends the slot of the N-1th SSB that is not sent in the time slot corresponding to the first data frame, where M, N, X, and Y are greater than An integer equal to 1.
  • the second data frame is a data frame subsequent to the first data frame and adjacent to the first data frame.
  • a network device comprising: a processor, a memory, a transceiver, the processor, the memory, and the transceiver are connected by a bus, the memory storing computer instructions, the processor
  • the SSB transmission method according to any one of Embodiments 1 to 7 is implemented by executing the computer instructions.
  • a UE wherein the UE comprises: a processor, a memory, a transceiver, the processor, a memory, and a transceiver are connected by a bus, where the memory stores computer instructions, and the processor executes The computer instructions are used to implement the SSB transmission method according to any one of embodiments 8 to 14.
  • a computer program product comprising instructions, wherein when executed on a computer, the computer is caused to perform the method of any of embodiments 1-14.
  • a computer readable storage medium comprising instructions that, when executed on a computer, cause the computer to perform the method of any of embodiments 1-14.
  • a network device which has the function of implementing the behavior of the network device in any one of the foregoing embodiments 1 to 7, and the function may be implemented by using hardware or by executing corresponding software by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • a UE the UE having the function of implementing the behavior of the UE in any of the foregoing embodiments 8 to 14, the function may be implemented by using hardware, or may be implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • a chip system comprising a processor for supporting a network device to implement the functions involved in the above embodiments 1 to 7, for example, transmitting or processing data and/or information involved in the above method.
  • the chip system further includes a memory for storing necessary program instructions and data.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • a chip system comprising a processor for supporting a UE to implement the functions involved in the above embodiments 8 to 14, for example, transmitting or processing data and/or information involved in the above method.
  • the chip system further includes a memory for storing necessary program instructions and data.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the embodiments provided by the present invention further include (the numbers of the embodiments provided in this section are not clearly related to the numbers of the embodiments provided in other parts of the present text, and only the convenience of the description in this part) :
  • a synchronization signal block (SSB) transmission method for a network device using an unlicensed spectrum comprising:
  • the network device configuration can send at least two frames of the SSB, and each configuration frame is divided into several time slots; the network device monitors the channel in each time slot of the configuration frame 1, and if the channel is idle, sends an SSB, if the channel is busy, The SSB is not sent; if there is an SSB that fails to be sent in configuration frame 1, an attempt is made to send the SSB in the next frame.
  • a network device characterized in that the network device is configured to perform the method of any of embodiments 1-6.
  • a computer program product comprising a computer program, wherein the computer program, when executed on a computer, causes the computer to implement the method of any of embodiments 1-6.
  • a computer program wherein the computer program, when executed on a computer, causes the computer to implement the method of any of embodiments 1-6.
  • a computer readable storage medium having stored thereon a computer program, wherein the computer program, when executed on a computer, causes the computer to implement the method of any of embodiments 1-6 .
  • the embodiments of the present application have the following advantages:
  • the network device detects the first channel usage corresponding to the first beam direction in the first target period, when the network device detects the first target period When the first channel is in the occupied state, the network device does not send the first SSB corresponding to the first beam direction in the first target period; then the network device may continue to detect the usage of the first channel in the second target period, When the network device detects that the first channel is in an idle state, the network device may send the first SSB through the first channel in a second target period, so that the UE on the first channel accesses through the first SSB.
  • the network, the first target period and the second target period are two periods of the same scan period.
  • the target period is used as the detection period and the corresponding SSB is sent, and the target period is smaller than the scanning period in the prior art. Therefore, the time for the UE to access the network is shortened, and the probability that the UE accesses the network in the same scanning period is improved.
  • Figure 1A is a schematic view of the prior art
  • FIG. 1B is a schematic diagram of a framework of a scenario system in an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a scenario of an SSB transmission method according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of an embodiment of an SSB transmission method according to an embodiment of the present application.
  • FIG. 4 is another schematic diagram of a scenario of an SSB transmission method according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another scenario of an SSB transmission method according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another embodiment of an SSB transmission method according to an embodiment of the present application.
  • FIG. 7 is another schematic diagram of a scenario of an SSB transmission method according to an embodiment of the present application.
  • FIG. 8 is another schematic diagram of a scenario of an SSB transmission method according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a UE in an embodiment of the present application.
  • FIG. 11 is another schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 12 is another schematic structural diagram of a UE in an embodiment of the present application.
  • the embodiment of the present application provides a data processing method, a network device, and a user equipment, which are used to shorten the time when the UE accesses the network, and improve the probability that the UE accesses the network in the same scanning period.
  • FIG. 1B is a schematic diagram of a system framework of an application scenario according to an embodiment of the present disclosure.
  • the used spectrum may be adopted by other technologies, such as a wireless network. Wifi or Bluetooth, etc., may also be used by other users or operators. Therefore, before the network device sends the SSB, channel interception needs to be performed, that is, Listen-Before-Talk (LBT) is used to avoid interference to other users and systems.
  • LBT Listen-Before-Talk
  • the unlicensed spectrum It may be in the 5 GHz band or the 60 GHz band, and is not limited herein.
  • the SSB is a synchronization signal block, and is used for the UE to access the network to implement data transmission with the network device.
  • FIG. 1B is a schematic diagram of a system scenario of a 5G mobile communication system.
  • the network device may be a Next Generation Node B (gNB) in a 5G system, or may be an access point or a transmission point of a 5G access network. It may be a network device of another 5G access network, such as a micro base station, etc., which is not limited herein.
  • the UE can be a mobile phone, a tablet computer, or a computer, and is not limited herein. At present, as shown in FIG.
  • the network device detects the channel corresponding to each beam direction and the SSB corresponding to each beam direction transmits data in only one scanning period. Completed in frame 1, that is, within a fixed period of time during the scan period. Then, when the channel corresponding to the certain beam direction is in the occupied state for the fixed period of time, the network device cannot send the SSB corresponding to the beam direction to the UE to be accessed to the channel, and wait for the next scan. The channel is scanned again in the fixed period of the period, and the channel corresponding to the beam direction is determined to be sent to the UE to be accessed by the channel when the channel corresponding to the beam direction is idle within the fixed period of the next scanning period.
  • SSB is scanned again in the fixed period of the period, and the channel corresponding to the beam direction is determined to be sent to the UE to be accessed by the channel when the channel corresponding to the beam direction is idle within the fixed period of the next scanning period.
  • the network device determines that the channel corresponding to the beam direction is in the occupied state within a fixed period of time in a scanning period, the UE cannot receive the SSB corresponding to the beam direction in one scanning period, and the UE cannot be in one scan. Access the network during the period. Therefore, the foregoing method may cause the UE to access the network for a long time, and the UE has a low probability of accessing the network in one scanning period.
  • the data processing method provided by the embodiments of the present application is applicable to an unlicensed spectrum corresponding to a working when a network device uses an unlicensed spectrum for data transmission in a mobile communication system such as 2G, 3G, 4G, 5G, or 6G.
  • the process of performing channel monitoring and then sending the SSB is not limited in this application.
  • some embodiments of the present application provide an SSB transmission method, which is used to shorten the time when the UE accesses the network, and improve the probability that the UE accesses the network in the same scanning period.
  • the network device detects the first channel usage corresponding to the first beam direction in the first target period, and detects that the first channel is in the occupied state in the first target period.
  • the network device does not send the first SSB corresponding to the first beam direction in the first target period; then the network device may continue to detect the usage of the first channel in the second target period, when the network device detects the When the first channel is in the idle state, the network device may send the first SSB through the first channel in the second target period, so that the UE on the first channel accesses the network through the first SSB, the first target.
  • the period and the second target period are two periods within the same scan period. As shown in FIG. 1A, one scan period may include N data frames, and N is generally an integer greater than 20. Referring to FIG. 2, the target period may be one slot in the data frame.
  • the target period is used as the detection period to detect the channel and the SSB corresponding to the channel is transmitted, and the target period is smaller than the scanning period in the prior art, so that the time for the UE to access the network is shortened, and the UE is improved in the same scanning period. The probability of accessing the network.
  • the same scanning period may include a time slot corresponding to multiple data frames, and a time slot corresponding to one data frame includes multiple, and each target period included in the same scanning period corresponds to one data frame.
  • One of the corresponding time slots, that is, the first target period and the second target period may be one time slot of the data frame. Possible first case: the first target period and the second target period are two different time slots of the same data frame; a possible second case: the first target period and the second target period are two of different data frames Time slots.
  • the number of data frames may be configured in advance by the network device and then preset in the network device, or may be configured according to the actual situation of the network device, which is not limited herein, and is not limited herein.
  • only the data frame is configured for the network device and preset in the network device as an example.
  • the number of data frames configured by the network device according to actual conditions may be that the network device continuously configures according to actual requirements, when the data frames configured by the network device reach a preset number or one in the same scanning period. The time of the scan period has been reached, and there is still a SSB that has not been successfully transmitted in the scan period. At this time, the network device can stop configuring the data frame and re-monitor in the next scan period, which is not limited in this application.
  • the network device may scan all beam directions by means of beam scanning to monitor the power of the channel in each beam direction.
  • the power of the channel may be the amount of energy generated by the signal transmitted by the other device in the mobile communication system in which the network device is located, that is, the power size; and then the network device determines the usage state of the channel by using the power.
  • the network device may perform scanning by other means, such as channel scanning, etc. In the following embodiments, only the manner in which the network device scans all beam directions is taken as an example.
  • the network device may only listen to the channel corresponding to the direction of the beam when listening to the channel corresponding to a certain beam direction, or may monitor part or all of the beam direction corresponding to the direction of the beam.
  • the channel is not limited here.
  • the network device only listens to the channel corresponding to the beam direction when the network device is listening to the channel corresponding to the direction of the beam.
  • the network device monitors a channel corresponding to each beam direction, where the beam direction may be a fixed number, and the network device scans a corresponding beam direction in each time slot of each data frame.
  • the beam direction can also be continuously changed, that is, the number of beam directions scanned in different data frames is variable; for example, the direction of 360 degrees can be divided into four beam directions, each beam direction is 90 degrees.
  • the range may be divided into eight beam directions, and each beam direction is a range of 45 degrees, which is not limited herein, and may be divided in different data frames in the network device, that is, The number of scanned beam directions and the range of regions corresponding to the beam direction scanned in each slot of the data frame may also be different.
  • the network device monitors more in each time slot, and the network device monitors more. Subtle, then the coverage of UEs for channels corresponding to different beam directions is higher.
  • the number of beam directions is small, that is, the direction of the wide beam, and the advantage of the wide beam direction is that the range corresponding to each beam direction is large, the range of the network device listening in each time slot is large, so The efficiency with which network devices can listen in all directions.
  • the description will be made by taking only a fixed number of beam directions as an example.
  • the data frame may be divided into N time slots, where when the number of beam directions is fixed, N may be greater than or equal to the beam direction.
  • the data frames configured by the network device are different in the manner of listening to the channels in different beam directions. For example, the network device can listen in a specific time slot of each data frame, or the network device can follow the beam direction in each data frame. Listening sequentially in one beam direction, and only after determining that the SSB corresponding to the previous beam direction is successfully transmitted, can listen to the channel in the next beam direction in the next time slot of the data frame;
  • the data frames of the two monitoring modes are mixed and used, which is not limited herein. Therefore, there are various modes of monitoring when the data frames configured by the network device are listening to the channels corresponding to different beam directions.
  • Manner 1 The network device monitors a channel corresponding to a specific beam direction in a specific time slot in each data frame, that is, the network device can only listen to a channel in a specific beam direction in a specific time slot of each data frame.
  • Manner 2 The network device listens to the channel corresponding to each beam direction in a time slot in the data frame according to a preset sequence and sends the SSB corresponding to each beam direction. It is assumed that the beam direction numbers are 1, 2, 3, ... Z, only after the SSB corresponding to the beam direction X is successfully transmitted, the network device can listen to the channel corresponding to the beam direction X+1 and send the corresponding SSB, where X is an integer greater than or equal to 1 and less than Z.
  • an embodiment of the method for data processing in the embodiment of the present application is introduced.
  • the SSB corresponding to each beam direction is in a specific time slot corresponding to the SSB in each data frame. send.
  • An embodiment of the SSB transmission method in this embodiment of the present application includes:
  • the network device configures at least two data frames.
  • a network device When a network device uses an unlicensed spectrum to transmit data, it may be used by other users or operators because the spectrum used may be adopted by other technologies, such as wireless network wifi or Bluetooth. Therefore, before the network device sends a signal, channel interception needs to be performed, that is, Listen-Before-Talk (LBT) is adopted to avoid interference to other users and systems, wherein the unlicensed spectrum can be 5 GHz band. Or the 60GHz band. Therefore, the network device configures at least two data frames, where the data frame is used to transmit the SSB of the corresponding beam direction within the time of the data frame. In one scan period, the number of network device configuration data frames is not limited, and the data frame may be Arrange by number. Each data frame includes N time slots, and N is an integer greater than or equal to 1.
  • the network device detects, in the first data frame, a power of a channel corresponding to at least one beam direction.
  • the network device can monitor the power of the channel corresponding to each beam direction in the first data frame in one scanning period, where the first data frame is configured for the network device. Transmitting the SSB of the corresponding beam direction in the time of the data frame, and listening to the power of the channel corresponding to the specific beam direction in a specific time slot of the first data frame; the power of the channel of the at least one beam direction is at least one beam.
  • the channel corresponding to the direction is the energy value generated by the signal transmitted by other users or devices through the channel corresponding to the beam direction, and the power is used to indicate the usage of the channel corresponding to the beam direction. The following is an example. As shown in FIG.
  • the data frame is divided into four time slots, and four beam directions are used.
  • a specific time slot of each data frame detects and transmits an SSB corresponding to a specific beam direction.
  • the network device is The first time slot in the data frame 1 detects the power of the channel corresponding to the first beam direction, and the second time slot of the data frame 1 detects the power of the channel corresponding to the second beam direction.
  • the data frame includes N time slots.
  • the network device can detect the power of the channel corresponding to the partial beam direction in the first data frame; not all the beams in the same data frame.
  • the channel corresponding to the direction is detected, and the channels in all beam directions can be detected by at least two data frames, and the specific time slots in the specific data frame are monitored by the channel in a specific beam direction.
  • FIG. 4 data frame 1 and data frame 3 can only listen to the channel of the first beam direction and the channel of the second beam direction, while data frame 2 and data frame 4 can only be monitored.
  • the channel in the fourth beam direction and the channel in the third beam direction that is, a specific time slot in a particular data frame, can only listen to channels in a particular beam direction.
  • FIG. 4 is a scheme for listening to channels in all beam directions in the same data frame and listening through at least two data frames
  • FIG. 4 is merely an example.
  • 4 The channel corresponding to scanning all beam directions in the same data frame is applicable to the case where the number of divided beam directions is large. For example, when the total number of beam directions is eight, each specific data frame can be monitored.
  • the channel in the three beam directions may also be the channel corresponding to the four beam directions in each specific data frame, and the interval length of each of the two types of data frames is not limited, as long as Ensure that the two data types of the same type are in the same scan cycle.
  • a network device monitors a channel.
  • a plurality of specific time slots may be used to monitor a specific beam direction, that is, cyclically listening to channels in different beam directions in a data frame.
  • 5 Illustrate the monitoring mode. It should be noted that FIG. 5 is only for explaining the monitoring mode. In the actual application, the monitoring mode may be more, and is not limited herein. Referring to FIG. 5, in FIG. 5, 8 time slots are included in the data frame 1, and there are four beam directions to be scanned, and the channel corresponding to the first beam direction is scanned in the first time slot of the data frame 1, the data.
  • the second time slot of the frame 1 scans the channel corresponding to the second beam direction, and sequentially scans to the channel corresponding to the fourth beam direction; when the network device determines the second beam direction in the second time slot of the data frame 1 When the channel is in the occupied state, the data frame 1 can continue to listen to the channel corresponding to the second beam direction in the sixth time slot of the data frame 1; and when the network device determines the first time in the first time slot of the data frame 1, If the channel in the beam direction is idle, the network device sends the SSB corresponding to the beam direction in the first time slot through the channel corresponding to the first beam direction, so the fifth time slot of the data frame 1 does not need to be performed.
  • the fifth time slot of the data frame 1 can be used for transmitting other data, etc., and the channel network devices in other beam directions are also monitored according to such a monitoring mode, which are not specifically described.
  • the power of the channel corresponding to each beam direction is related to the type of the unlicensed spectrum used by the communication system in which the current network device is located, and the size of the area corresponding to each beam direction.
  • different unlicensed spectrums and power regions corresponding to different beam directions have different powers.
  • the larger the range of regions corresponding to the beam direction the higher the power will be.
  • the network device is pre-configured with the power corresponding to the channel corresponding to each beam direction.
  • the network device detects the channel corresponding to the specific beam direction only in the specific time slot of the data frame, that is, in the actual application, the network device side and the UE side may preset rules, that is, enable the UE to be based on the current
  • the location of the beam determines the direction of the beam, and when the network device detects the channel corresponding to the direction of the beam in the specific time slot in the data frame, the UE only listens to the channel corresponding to the beam direction in the specific time slot.
  • the other channel in the data frame does not listen to the channel corresponding to the beam direction. Therefore, the UE can be used to monitor the channel only in a specific time slot, thereby reducing the power consumption of the UE for monitoring the channel and improving the endurance of the UE.
  • the network device determines, in the Mth time slot of the first data frame, that the first channel in the first beam direction is in an occupied state.
  • the network device detects the power of the channel corresponding to each beam direction in a specific time slot of the first data frame, and the network device can determine the usage of the channel corresponding to each beam direction in the process of detecting.
  • the network device monitors the power of the channel corresponding to the specific beam direction in a specific time slot of the first data frame. When the network device determines that the power of the channel corresponding to the corresponding beam direction is less than a preset threshold in the corresponding time slot of the first data frame, Then, the network device sends the SSB of the corresponding beam direction, where the SSB may include the number of the beam direction, and the network device records the SSB that has been sent out.
  • the network device may determine the first channel corresponding to the first beam direction. In an occupied state, where M is an integer greater than or equal to 1.
  • the UE of the first channel corresponding to the first beam direction may start listening to the first channel in the Mth slot of the first data frame, and the other slots in the first data frame are not monitored. Channel, so the UE only needs to listen to the channel in a specific time slot, which greatly reduces the power lost by the UE listening channel compared to the prior art.
  • the network device there are multiple beam directions monitored by the network device in the first data frame.
  • only the first beam direction is taken as an example, and the specific transmission manner in other beam directions is used. Both can refer to the transmission mode in the first beam direction.
  • the second beam direction detected by the second time slot of the first data frame of the network device is taken as an example.
  • the network device detects the second time in the second time slot of the data frame 1.
  • the power of the channel corresponding to the direction of the beam wherein the power of the channel corresponding to the second beam direction is an energy value generated by another user or device transmitting a signal through the channel, and the usage of the channel is indicated by power.
  • the network device detects that the channel corresponding to the second beam direction is in the occupied state in the second time slot of the data frame 1, and the network device does not in the second time slot of the data frame 1.
  • the network device continues to detect the channel corresponding to the second beam direction in the second time slot of the data frame 2, as shown in FIG. 2, in the second of the data frame 2 In the time slot, the network device detects that the channel is in an idle state, and the network device sends the SSB corresponding to the second beam direction in the second time slot of the data frame 2.
  • the network device does not send the first SSB corresponding to the first beam direction in the Mth time slot of the first data frame.
  • the network device detects the first channel corresponding to the first beam direction in the Mth slot of the first data frame, and when the network device detects that the first channel is in the occupied state, the network device is in the first data frame.
  • the M slot does not transmit the first SSB corresponding to the first beam direction.
  • the network device detects that the channel corresponding to the second beam direction is in the occupied state in the second time slot of the data frame 1, and the network device does not send in the second time slot of the data frame 1.
  • the SSB corresponding to the second beam direction is the occupied state in the second time slot of the data frame
  • the network device determines, in an Mth slot of the second data frame, that the first channel corresponding to the first beam direction is in an idle state.
  • the network device detects that the first channel corresponding to the first beam direction is in an occupied state in the Mth slot of the first data frame, and the network device may continue to detect the power of the first channel in the Mth slot of the second data frame.
  • the network device determines that the power of the first channel is less than a preset threshold in the Mth slot of the second data frame, the network device may determine that the first channel is in an idle state, where M is an integer greater than or equal to 1.
  • M is an integer greater than or equal to 1.
  • the SSB corresponding to the corresponding beam direction that has been successfully sent in the first data frame may not detect the channel corresponding to the corresponding beam direction in the corresponding time slot of the second data frame, and then the second data.
  • the corresponding time slot in the frame can be used to transmit other data, or no operation is performed, which is not limited herein.
  • the network device determines that the channel corresponding to the second beam direction is occupied in the second time slot of the data frame 1, and then the second time slot of the network device in the data frame 2 Continuing to detect the power of the channel corresponding to the second beam direction, and then the network device determines that the power is less than a preset threshold in the second time slot of the data frame 2; then, the network device is in the second time of the data frame 2
  • the slot can determine that the channel corresponding to the second beam direction is in an idle state.
  • the network device sends the first SSB to the UE on the first channel by using the first channel in the Mth slot of the second data frame.
  • the network device may send the first SSB to the UE on the first channel through the first channel in the Mth slot of the second data frame.
  • the first data frame and the second data frame are two data frames of the same scanning period configured by the network device, and the second data frame is a data frame that is adjacent to the first data frame and adjacent to the first data frame, where M is an integer greater than or equal to 1.
  • the UE on the first channel monitors the first channel only in the Mth time slot of each data frame in this embodiment, and the UE may not listen to the channel in other time slots of the data frame, so the UE only It is only necessary to listen to the channel in the Mth slot of each data frame to obtain the corresponding SSB, which can reduce the power consumption of the UE.
  • the network device in FIG. 2 determines that the channel corresponding to the second beam direction is in an idle state, and then the network device sends the second beam in the second time slot of the data frame 2.
  • the SSB corresponding to the direction it should be noted that the data frame 1, the data frame 2, and the data frame 3 are three data frames in the same beam scanning period; secondly, when the network device still does not send all the beam directions in the data frame 3 In the corresponding SSB, the network device can continue to monitor the channel corresponding to the corresponding beam direction in the data frame 4 until the data frame pre-configured by the network device is used or reaches a beam scanning period.
  • the UE accesses the network according to the first SSB.
  • the UE may access the network according to the first SSB. Specifically, the UE may obtain access network information, such as available resources of the network, such as frequency and time, according to the first SSB, and then initiate random access according to the access network information.
  • access network information such as available resources of the network, such as frequency and time
  • the network device when the network device detects that the first channel corresponding to the first beam direction is in the occupied state in the Mth slot of the first data frame, then the network device is in the Mth of the first data frame.
  • the slot does not send the first SSB corresponding to the first beam direction, and then the network device continues to detect the first channel in the Mth slot of the second data frame, when the network device detects in the Mth slot of the second data frame
  • the network device sends the first SSB in the Mth slot of the second data frame, so that the UE on the first channel accesses the network through the first SSB, the first data.
  • the frame and the second data frame are two data frames in the same scan period.
  • the duration of the data frame is used as the detection period and the corresponding SSB is sent, and the duration of the data frame is much smaller than the scanning period in the prior art. Therefore, the time for the UE to access the network is shortened, and the UE is accessed in the same scanning period. The probability of the network.
  • the method may further include the following steps:
  • the network device determines, in the Mth time slot of the third data frame, that the first channel corresponding to the first beam direction is in an occupied state.
  • the UE can determine the basic configuration information of the network device by using the first SSB, so the UE only needs to listen to the first channel in a specific time slot of the data frame and receive the first SSB corresponding to the first beam direction. This can reduce the power consumption of the UE listening channel.
  • the network device detects that the power of the first channel is greater than a preset threshold in the Mth slot of the third data frame, the network device may determine that the first channel is in the occupied state in the Mth slot of the third data frame.
  • the UE continues to monitor the first channel in the Mth time slot of the fourth data frame, where the third data frame, the fourth data frame, the first data frame, and the second data frame are not in the same beam scanning period.
  • the scan period in which the third data frame and the fourth data frame are located is two scan periods adjacent to the scan period in which the first data frame is located.
  • the network device does not send the first SSB in the Mth time slot of the third data frame.
  • the network device determines that the first channel corresponding to the first beam direction of the Mth slot of the third data frame is in an occupied state, and the network device does not send the first SSB in the Mth time slot of the third data frame.
  • the network device determines, in the Mth time slot of the fourth data frame, that the first channel corresponding to the first beam direction is in an idle state.
  • the network device continues to detect the power of the first channel in the Mth time slot of the fourth data frame.
  • the network device may determine the first time in the Mth time slot of the fourth data frame.
  • One channel is in an idle state, wherein the fourth data frame and the third data frame are data frames in the same scanning period.
  • the network device sends the first SSB to the UE on the first channel by using the first channel in an Mth time slot of the fourth data frame.
  • the network device may pass the first channel to the UE on the first channel in the Mth time slot of the fourth data frame. Send the first SSB.
  • the UE synchronizes with the network according to the first SSB.
  • the UE may obtain network configuration information according to the first SSB, adjust its clock according to the network configuration information, and implement a process of synchronizing with the network.
  • an embodiment of the SSB transmission method in the embodiment of the present application is introduced.
  • the SSB corresponding to each beam direction is sent in a preset sequence in a time slot of a data frame.
  • Another embodiment of the SSB transmission method in the embodiment of the present application includes:
  • the network device configures at least two data frames.
  • the step 601 is similar to the step 301 in the foregoing FIG. 3, and details are not described herein again.
  • the network device detects, in the first data frame, a power of a channel in at least one beam direction.
  • the network device can detect the power of the channel corresponding to each beam direction in the first data frame in one scanning period, where the first data frame is configured for the network device
  • the SSB of the corresponding beam direction is transmitted in the duration of the data frame, and the network device detects the power of the channel corresponding to each beam direction in the time slot in the data frame according to a preset sequence, and determines the power of the channel corresponding to the beam direction when the network device determines the power of the channel corresponding to the beam direction.
  • the SSB corresponding to the beam direction is sent; if the beam direction number is 1, 2, 3, ..., Z, the network device can only use the beam after the SSB corresponding to the beam direction X is successfully sent.
  • the channel of direction X+1 is detected and the corresponding SSB is transmitted, where X is an integer greater than or equal to 1 and less than Z.
  • the network device monitors the power of the channel corresponding to the first beam direction in the first time slot of the data frame 1, and FIG. 7 shows the first time slot in the data frame 1. It may be determined that the channel corresponding to the first beam direction is in an idle state, and the network device sends the SSB corresponding to the first beam direction in the first time slot of the data frame 1; then the second device of the network device in the data frame 1 The time slot monitors the power of the channel corresponding to the second beam direction. It can be seen from FIG. 7 that the second time slot of the data frame 1 can determine that the channel corresponding to the second beam direction is in an occupied state, and then the network device is in the data.
  • the third time slot of the frame 1 continues to detect the power of the channel corresponding to the second beam direction. It can be seen from FIG. 7 that in the third time slot of the data frame 1, the channel corresponding to the second beam direction can be determined to be in an idle state. Then, the network device sends the SSB corresponding to the second beam direction in the third time slot of the data frame 1; then the network device detects the channel corresponding to the third beam direction in the fourth time slot of the data frame 1, from FIG. 7. It is known that the network device monitors the channel corresponding to the third beam direction until the second time slot of the data frame 2 determines that the channel corresponding to the third beam direction is in an idle state, and the third beam direction is correspondingly The SSB is sent out.
  • the network device detects the channel corresponding to each beam direction in the time slot of the data frame according to a preset sequence until all SSBs corresponding to the beam direction are successfully sent out, or until within one scanning period.
  • the data frame configured by the network device stops when it is used up.
  • the data frame 1, the data frame 2, and the data frame 3 are all data frames configured by the network device in the same period.
  • the network device determines, in a last time slot of the first data frame, that the first channel corresponding to the first beam direction is in an occupied state.
  • the network device detects the channel corresponding to the beam direction in the first data frame.
  • the network device determines that the power of the first channel corresponding to the first beam direction is greater than a preset threshold in the last time slot of the first data frame
  • the network is The device may determine, in the last time slot of the first data frame, that the first channel corresponding to the first beam direction is in an occupied state. The following is illustrated in FIG. 7. In FIG. 7, the network device can determine that the channel corresponding to the third beam direction is in the occupied state in the fourth time slot of the data frame 1, and the fourth time slot is the last one of the data frame 1. Time slot.
  • the network device there are multiple beam directions monitored by the network device in the first data frame.
  • only the first beam direction is taken as an example, and the specific transmission manner in other beam directions is used. Both can refer to the transmission mode of the first beam direction.
  • the network device does not send the first SSB corresponding to the first beam direction in a last time slot of the first data frame.
  • the network device detects the channel corresponding to each beam direction according to the number sequence of the beam direction in the time slot of the first data frame, and assumes that the beam direction number is 1, 2, 3...Z, only when the X-th beam direction After the corresponding SSB is successfully transmitted, the network device can listen to the channel in the X+1th beam direction, where X is an integer greater than or equal to 1 and less than Z. Therefore, the network device detects, in the first data frame, the channel of each beam direction according to the number order of the beam direction, when the network device determines the first beam direction corresponding to the last time slot of the first data frame.
  • the network device When the first channel is in the occupied state, the network device does not send the first SSB corresponding to the first beam direction in the last time slot of the first data frame. For example, as shown in FIG. 7, the network device detects a channel corresponding to the second beam direction in the second time slot of the data frame 2, and the network device determines the channel corresponding to the second beam direction in the second time slot. In the occupied state, the network device continues to detect the channel corresponding to the second beam direction in the third time slot of the data frame 1, and determines that the network device is in the idle state when the channel corresponding to the second beam direction is in an idle state.
  • the third time slot of frame 1 transmits the SSB corresponding to the second beam direction; then the network device continues to detect the channel corresponding to the third beam direction in the fourth time slot of data frame 1, when the network device can determine The channel corresponding to the third beam direction is in an occupied state, so the network device does not transmit the SSB corresponding to the third beam direction in the fourth time slot of the data frame 1.
  • the network device determines that the first channel is in an idle state in a first time slot of the second data frame.
  • the network device does not send the first SSB corresponding to the first beam direction in the last time slot of the first data frame, and the network device continues to detect the first beam direction corresponding to the first time slot of the second data frame.
  • the power of the first channel when the network device detects that the power of the first channel is less than a preset threshold in the first time slot of the second data frame, the network device may determine the first time slot in the second data frame.
  • the first channel in a beam direction is in an idle state, where the first data frame and the second data frame are two data frames configured by the network device in the same scanning period, and after the second data frame is the first data frame, And the data frame adjacent to the first data frame is used to transmit the SSB corresponding to the beam direction. For example, as shown in FIG.
  • the network device continues to detect the channel corresponding to the third beam direction in the first time slot of the data frame 2, and when the network device detects that the power of the channel corresponding to the third beam direction is greater than the pre- If the threshold is set, the network device still does not send the SSB corresponding to the third beam direction, and continues to detect the channel corresponding to the third beam direction in the second time slot of the data frame 2, when the third is detected.
  • the network device may determine that the channel corresponding to the third beam direction is in an idle state.
  • the network device sends the first SSB through the first channel in a first time slot of the second data frame.
  • the network device After the first time slot of the second data frame determines that the first channel corresponding to the first beam direction is in an idle state, the network device sends the first SSB through the first channel in the first time slot of the second data frame. Soing that the UE on the first channel receives the first SSB. It should be noted that, after all the SSBs corresponding to the beam directions that are not successfully transmitted in the first data frame are successfully transmitted in the second data frame, if the corresponding configured time slots are not used in the second data frame, Then, these time slots can be used to transmit data, and no operation can be performed, which is not limited herein. For example, as shown in FIG.
  • the network device since the channel corresponding to the fourth beam direction is detected to be occupied in the last slot in the data frame 2, the network device continues in the first slot of the data frame 3. Detecting a channel corresponding to the fourth beam direction, and when the network device detects that the channel corresponding to the fourth beam direction is in an idle state, transmitting a channel corresponding to the fourth beam direction to the fourth beam direction UE.
  • the UE accesses the network by using the first SSB.
  • Step 607 is similar to step 307 in FIG. 3 above, and details are not described herein again.
  • the method may further include the following steps:
  • the network device determines, in the Mth time slot of the third data frame, that the first channel corresponding to the first beam direction is in an occupied state.
  • the configuration information of the network can be obtained. Therefore, the channel corresponding to the first beam direction can be monitored in the corresponding time slot of the data frame and the corresponding SSB can be received, so that the UE can monitor the channel. Power consumption.
  • the network device may monitor the power of the first channel in the Mth time slot of the third data frame. When the network device determines that the power is greater than a preset threshold, the network device may determine the first time in the Mth time slot of the third data frame.
  • the first channel corresponding to a beam direction is in an occupied state; wherein M is an integer greater than or equal to 1.
  • the network device In the M-1th slot of the third data frame, the network device has successfully sent the SSB corresponding to the other beam direction before the first beam direction, and the network device uses the Mth time slot of the third data frame. The power of the first channel corresponding to the first beam direction is monitored.
  • the third data frame and the first data frame and the second data frame belong to data frames in different scanning periods.
  • the network device determines, in the M+1 time slot of the third data frame, that the first channel corresponding to the first beam direction is in an idle state.
  • the network device continues to monitor the power of the first channel corresponding to the first beam direction in the M+1th slot of the third data frame.
  • the network device may determine The first channel corresponding to the first beam direction is in an idle state in the M+1th slot of the third data frame.
  • the network device sends the first SSB through the first channel in the M+1 time slot of the third data frame.
  • the network device determines that the first channel is in an idle state in the M+1th slot of the third data frame, and the network device may send the first SSB through the first channel in the M+1th slot of the third data frame.
  • the UE synchronizes with the network according to the first SSB.
  • the step 611 is similar to the step 312 in the foregoing FIG. 3, and details are not described herein again.
  • the network device when the network device detects that the first channel corresponding to the first beam direction is in the occupied state in the last time slot of the first data frame, then the network device is in the last one of the first data frame.
  • the slot does not transmit the first SSB corresponding to the first beam direction, and then the network device continues to scan the first channel in the first time slot of the second data frame, when the network device is in the first of the second data frame.
  • the network device sends the first SSB in the first time slot of the second data frame, so that the UE on the first channel accesses the network through the first SSB, where
  • the first data frame and the second data frame are two time slots of two data frames in different data frames, and the second data frame is subsequent to the first data frame and adjacent to the first data frame.
  • the duration of one time slot of the data frame is used as the detection period and the corresponding SSB is sent, and the time slot of the data frame is much smaller than the scanning period in the prior art, so that the time for the UE to access the network is shortened, and the UE is improved.
  • the probability of accessing the network during the same scanning period is used as the detection period and the corresponding SSB is sent, and the time slot of the data frame is much smaller than the scanning period in the prior art, so that the time for the UE to access the network is shortened, and the UE is improved.
  • the step 601 to the step 611 are to monitor the first time slot corresponding to the first beam direction in the last time slot of the first data frame, and in the last time slot of the first data frame.
  • the first target period may correspond to the Mth slot of the first data frame
  • the first SSB is The Nth of the SSBs that are not sent in the time slot corresponding to the first data frame
  • the second target period corresponds to the Yth time slot of the second data frame, where the second data frame is after the first data frame
  • the Yth slot is the first time slot in the time slot after the Xth time slot in the second data frame that is idle on the first channel
  • the Xth slot is a slot in which the N-1th SSB that is not transmitted in the slot corresponding to the first data frame is successfully transmitted
  • M, N, X, and Y are integers greater than or equal to 1
  • the manner in which the network device monitors the first data frame and the second data frame is the second mode described above.
  • the network device monitors the channel corresponding to the third beam direction in the fourth time slot of the data frame 1, and the network device is in the data frame.
  • the fourth time slot of 1 determines that the channel corresponding to the third beam direction is in an occupied state, and then the network device continues to monitor the channel corresponding to the third beam direction in the first time slot of the data frame 2, when When the first time slot of the data frame 3 determines that the channel corresponding to the third beam direction is in the occupied state, the network device continues to monitor the channel corresponding to the third beam direction in the second time slot of the data frame 2 .
  • the channel corresponding to the third beam direction is detected to be in an idle state, and then the network device sends the third time slot in the second time slot of the data frame 2.
  • the SSB corresponding to the beam direction.
  • the first target period can be understood as the fourth time slot of data frame 1
  • the second target period is the second time slot of data frame 2
  • the SSB that is not sent by the network device in the data frame 1 includes the SSB corresponding to the third beam direction and the SSB corresponding to the fourth beam direction
  • the second time slot of the data frame 2 can be understood as the data.
  • the time slot in which the channel corresponding to the third beam direction is in the idle state after the first time slot of the frame 2, that is, the second time slot of the data frame 2 can be understood as the aforementioned second data frame.
  • the first time slot of the data frame 2, and the first time slot of the second data frame can be understood as the Xth time slot of the second data frame mentioned above.
  • the network device has succeeded in the first beam direction.
  • the corresponding SSB and the SSB corresponding to the second beam direction are sent out.
  • only data frame 1 and data frame 2 are adjacent to two data frames.
  • data frame 1 and data frame 2 may be two data frames that are not adjacent, as long as the two data frames.
  • the data frame belongs to two data frames of the same scanning period.
  • the manner in which the network device monitors the channels in different beam directions may be combined with the first mode and the second mode, that is, the network device is first.
  • a specific time slot in the data frame listens for a channel in a specific beam direction, and then the network device monitors the channel in the beam direction corresponding to the unsent SSB in the first data frame in the time slot of the second data frame in a preset order.
  • the network device determines, in the Mth time slot in the first data frame, that the first channel corresponding to the first beam direction is in an occupied state, and the first beam direction is
  • the corresponding first SSB is the Nth of the SSBs that are not sent in the time slot corresponding to the first data frame, and the network device detects that the first channel is in the idle state in the Yth slot in the second data frame.
  • the network device sends the first SSB in the Yth slot of the second data frame, where the second data frame is a data frame that is adjacent to the first data frame and is not adjacent to the first data frame,
  • the Yth slot is the first slot in the slot after the Xth slot in the second data frame that is idle on the first channel, and the Xth slot is successfully transmitted in the first data frame.
  • the time slot of the N-1th SSB that is not transmitted in the time slot, M, N, X, and Y are integers greater than or equal to 1, wherein the network device listens to a specific beam direction in a specific time slot of the first data frame.
  • the channel is transmitted in the second data frame in the above manner.
  • the SSB that is not sent in the time slot corresponding to the first data frame is used as an example of the SSB corresponding to the first SSB and the second beam direction, that is, the first time is detected in the Mth slot of the first data frame.
  • the first channel corresponding to a beam direction is in an occupied state
  • the channel corresponding to the second beam direction is determined to be in an occupied state in the M+1th slot of the first data frame, and the network device may determine that the first data frame is not sent.
  • the SSB is a second SSB corresponding to the first SSB and the second beam direction, where the number of the second beam direction is after the number of the first beam direction; wherein the first data frame includes N time slots, and N is greater than or equal to An integer of 1.
  • the channels in other beam directions may be occupied.
  • the operation process performed by the network device is similar.
  • an example in which the channels in the two beam directions are occupied is taken as an example.
  • the network device can then listen to the first channel in a first time slot in the second data frame, where the first data frame and the second data frame are two data frames in the same beam scanning period, because in the second In the data frame, the beam direction corresponding to the SSB that is not sent in the first data frame is monitored according to the number sequence of the beam direction, and the number of the first beam direction is smaller than the number of the second beam direction, so the network device is in the second.
  • the first time slot in the data frame first monitors the power of the first channel corresponding to the first beam direction, and the network device determines that the channel corresponding to the first beam direction is in the idle state in the first time slot of the second data frame.
  • the network device may send the first SSB corresponding to the first beam direction in the first time slot of the second data frame; when the network device determines that the first channel is in the occupied state in the first time slot of the second data frame When the network device does not send the first SSB in the first time slot of the second data frame, the network device continues to detect the first channel in the second time slot of the second data frame until the second channel When the first channel is detected to be in an idle state in the Xth time slot of the frame, the network device sends the first SSB in the Xth time slot of the second data frame; where X is an integer greater than 1, and then The network device starts to detect the channel corresponding to the second beam direction in the X+1th slot of the second data frame.
  • the specific process is similar to the detection process of the channel corresponding to the first beam direction, and details are not described herein.
  • the listening period of the first channel corresponding to the first beam direction is the Mth slot of the first data frame to the Yth of the second data frame.
  • the time slot, since the first data frame and the second data frame are two data frames in the same scanning period, the listening period of the first channel corresponding to the first beam direction of the network device is much smaller than one scanning period, thus shortening
  • the time when the UE accesses the network improves the probability that the UE accesses the network in the same scanning period.
  • the network device listens to the channel corresponding to the specific beam direction in a specific time slot of the data frame
  • the UE can be set to listen to the channel in the beam direction in which the first data frame is in a specific time slot. This can reduce the power consumption of the UE for monitoring the channel and improve the endurance of the UE.
  • the network device determines that the channel corresponding to the second beam direction is in the occupied state and the fourth time slot in the data frame 1 is determined in the second time slot in the data frame 1.
  • the channel corresponding to the four beam directions is in an occupied state; then the network device listens to the channel corresponding to the second beam direction in the first time slot of the data frame 2, and the network device determines in the first time slot of the data frame 2
  • the channel corresponding to the second beam direction is in an occupied state; the network device continues to listen to the channel corresponding to the second beam direction in the second time slot of the data frame 2, when the network device determines the second in the data frame 2
  • the time slot determines that the channel corresponding to the second beam direction is in an idle state, and the network device sends the SSB corresponding to the second beam direction; because the second time slot of the network device data frame 2 determines the second beam direction.
  • the corresponding channel is in an idle state.
  • the network device can monitor the channel corresponding to the fourth beam direction in the third time slot of the data frame 1 in the third time slot of the data frame 3, as shown in FIG.
  • the network device determines that the channel corresponding to the fourth beam direction is in the occupied state in the third time slot in the data frame 3 and the fourth time slot in the data frame 4, so the network device is in the data frame 3 A time slot continues to monitor the channel corresponding to the fourth beam direction.
  • FIG. 1 the third time slot of the data frame 1 in the third time slot of the data frame 3
  • the network device determines that the channel corresponding to the fourth beam direction is in the occupied state in the third time slot in the data frame 3 and the fourth time slot in the data frame 4, so the network device is in the data frame 3 A time slot continues to monitor the channel corresponding to the fourth beam direction.
  • the channel corresponding to the fourth beam direction is determined to be in an idle state in the first time slot of the data frame 3, so the network device is The first time slot of the data frame 3 transmits the SSB corresponding to the fourth beam direction; wherein, the data frame 1, the data frame 2, and the data frame 3 are data frames in the same scanning period, and The data frame 1, the data frame 2, and the data frame 3 may be adjacent data frames as shown in FIG. 8, or may be non-adjacent data frames, which is not limited in this application.
  • the first target period and the second target period may be two consecutive time slots of the same data frame; referring to FIG. 7, it can be seen from FIG. 7 that the network device detects the second time slot of the data frame 1 The channel corresponding to the second beam direction is in an occupied state, and the network device does not send the SSB corresponding to the second beam direction in the second time slot of the data frame 1; then the network device is in the third of the data frame 1 The time slots continue to detect the channel corresponding to the second beam direction. As can be seen from FIG.
  • the detection period of the channel for the second beam direction can be understood as the duration of one time slot of the data frame 1.
  • the second case: the first target period and the second target period may be two discontinuous time slots of the same data frame; referring to FIG. 5, in FIG. 5, the network device monitors in the second time slot of the data frame 1 Channels corresponding to the two beam directions, and the network device determines, in the second time slot of the data frame 1, that the channel corresponding to the second beam direction is in an occupied state; the network device is in the sixth time slot of the data frame 1 Listening to the channel corresponding to the second beam direction again, as shown in FIG.
  • the network device determines that the channel corresponding to the second beam direction is in an idle state in the sixth time slot of the data frame 1, the network device is Sending the SSB corresponding to the second beam direction to the channel corresponding to the second beam direction; therefore, the monitoring of the channel corresponding to the second beam direction may be understood as the first target period being the data frame.
  • the second time slot of 1, the second target period is the sixth time slot of the data frame 1, that is, the first target period and the second target period are two discontinuous time slots of the same data frame, and this Two discontinuous times
  • the duration of the gap interval is determined by the configuration of the data frame.
  • an embodiment of the network device in the embodiment of the present application includes:
  • the processing module 901 is configured to detect, in the first target period, that the first channel corresponding to the first beam direction is in an occupied state, and not transmitting the first SSB corresponding to the first beam direction in the first target period;
  • the transceiver module 902 is configured to: if the processing module 901 detects that the first channel is in an idle state in the second target period, send the first SSB through the first channel in the second target period, where the first SSB is used.
  • the UE on the first channel accesses the network, and the first target period and the second target period belong to two target periods of the network device configured in the same scanning period.
  • processing module 901 is specifically configured to:
  • the first channel is in an occupied state in the first target period, and the first SSB corresponding to the first beam direction is not sent in the first target period.
  • the same scanning period includes a time slot corresponding to multiple data frames, and a time slot corresponding to one data frame includes multiple, and each target period included in the same scanning period corresponds to one data frame respectively.
  • One time slot in the time slot, the first target period and the second target period are two time slots in the same data frame or two time slots in different data frames.
  • the same scanning period includes a time slot corresponding to multiple data frames, and a time slot corresponding to one data frame includes multiple, and each target period included in the same scanning period corresponds to a time corresponding to one data frame.
  • a time slot in the slot the first target period corresponds to an Mth slot in the first data frame
  • the second target period corresponds to an Mth slot in the second data frame
  • the second data frame is the first After the data frame and the data frame adjacent to the first data frame
  • M is an integer greater than or equal to 1.
  • the same scanning period includes a time slot corresponding to multiple data frames, and a time slot corresponding to one data frame includes multiple, and each target period included in the same scanning period corresponds to one data frame respectively.
  • One time slot in the time slot, the first target period corresponds to the Mth time slot in the first data frame, and the first SSB is the Nth in the SSS that is not sent in the time slot corresponding to the first data frame.
  • the second target period is corresponding to the Yth slot in the second data frame, where the second data frame is a data frame that is adjacent to or not adjacent to the first data frame, and
  • the first time slot is the first time slot in the time slot after the Xth time slot in the second data frame that is idle on the first channel, and the Xth time slot is successfully sent in the first data frame.
  • the time slots of the N-1th SSB that are not transmitted in the corresponding time slots, M, N, X, and Y are integers equal to or greater than one.
  • the same scanning period includes a time slot corresponding to multiple data frames, and a time slot corresponding to one data frame includes multiple, and each target period included in the same scanning period corresponds to one data frame respectively.
  • a time slot in the time slot the first target period corresponds to the Mth time slot in the first data frame
  • the second target period corresponds to the Nth time slot in the first data frame, where M and N are greater than or equal to An integer of 1, the Nth slot is a slot subsequent to the Mth slot and adjacent to the Mth slot.
  • the same scanning period includes a time slot corresponding to multiple data frames, and a time slot corresponding to one data frame includes multiple, and each target period included in the same scanning period corresponds to one data frame respectively.
  • a time slot in the time slot the first target period corresponds to a last time slot in the first data frame
  • the second target period corresponds to a first time slot in the second data frame, where the second data frame is A data frame subsequent to the first data frame and adjacent to the first data frame.
  • the processing module 901 detects the first channel usage corresponding to the first beam direction in the first target period, and the processing module 901 detects the first target period.
  • the processing module 901 does not send the first SSB corresponding to the first beam direction in the first target period; then the processing module 901 can continue to detect the use of the first channel in the second target period.
  • the transceiver module 902 can send the first SSB through the first channel in the second target period, so that the UE on the first channel passes the first An SSB accesses the network, and the first target period and the second target period are two periods of the same scan period.
  • the target period is used as the detection period and the corresponding SSB is sent, and the target period is smaller than the scanning period in the prior art. Therefore, the time for the UE to access the network is shortened, and the probability that the UE accesses the network in the same scanning period is improved.
  • an embodiment of the UE in the embodiment of the present application includes:
  • the monitoring module 1001 is configured to: if the UE does not receive the first SSB in the first target period, monitor the first channel in the second target period, where the first SSB is corresponding to the first channel to be accessed by the UE.
  • SSB the first channel is a channel corresponding to the first beam direction;
  • the access module 1002 is configured to: when the UE receives the first SSB sent by the network device by using the first channel in the second target period, accessing the network by using the first SSB, the first target period and the The second target period belongs to two target periods of the network device configured within the same scan period.
  • the same scanning period includes a time slot corresponding to multiple data frames, and a time slot corresponding to one data frame includes multiple, and each target period included in the same scanning period corresponds to one data frame respectively.
  • One time slot in the time slot, the first target period and the second target period being two time slots in the same data frame.
  • the first target period corresponds to the Mth slot in the first data frame
  • the second target period corresponds to the Nth slot in the first data frame
  • M and N are integers greater than or equal to 1.
  • the Nth time slot is a time slot subsequent to the Mth time slot and adjacent to the Mth time slot.
  • the same scanning period includes a time slot corresponding to multiple data frames, and a time slot corresponding to one data frame includes multiple, and each target period included in the same scanning period corresponds to one data frame respectively.
  • One time slot in the time slot, the first target period and the second target period being two time slots in different data frames.
  • the first target period corresponds to the Mth slot in the first data frame
  • the second target period corresponds to the Mth slot in the second data frame
  • the second data frame is the first data frame.
  • M is an integer greater than or equal to 1.
  • the first target period corresponds to an Mth slot in the first data frame, where the first SSB is the Nth of the SSBs that are not sent in the time slot corresponding to the first data frame
  • the second target period corresponds to a Yth slot in the second data frame, where the second data frame is a data frame that is adjacent to or not adjacent to the first data frame, and the first Y
  • the time slot is the first time slot in the time slot after the Xth time slot in the second data frame that is idle on the first channel, and the Xth time slot is successfully sent by the network device in the first data.
  • the time slot of the N-1th SSB that is not transmitted in the slot corresponding to the frame, and M, N, X, and Y are integers equal to or greater than 1.
  • the first target period corresponds to a last slot in the first data frame
  • the second target period corresponds to a first slot in the second data frame
  • the second data frame is the first data frame.
  • the network device detects the first channel usage corresponding to the first beam direction in the first target period, and the listening module 1001 monitors the first target period.
  • a first channel when the network device detects that the first channel is in an occupied state in a first target period, then the network device does not send the first SSB corresponding to the first beam direction in the first target period;
  • the network device may continue to detect the usage of the first channel in the second target period, and the listening module 1001 monitors the first channel in the second target period.
  • the network device may The first SSB is sent through the first channel in the second target period, and the access module 1002 accesses the network through the first SSB, and the first target period and the second target period are two periods of the same scanning period.
  • the target period is used as the detection period and the corresponding SSB is sent, and the target period is smaller than the scanning period in the prior art. Therefore, the time for the UE to access the network is shortened, and the probability that the UE accesses the network in the same scanning period is improved.
  • the present application further provides a network device 1100.
  • a network device in this embodiment of the present application includes:
  • processor 1101 a processor 1101, a memory 1102, an input and output device 1103, and a bus 1104;
  • the processor 1101, the memory 1102, and the input/output device 1103 are respectively connected to a bus 1104, where the computer instruction is stored in the memory;
  • the processor 1101 is configured to detect, in the first target period, that the first channel corresponding to the first beam direction is in an occupied state, and not transmitting the first SSB corresponding to the first beam direction in the first target period;
  • the input and output device 1103 is configured to: if the processor 1101 detects that the first channel is in an idle state in the second target period, send the first SSB through the first channel in the second target period, where the first SSB is used by the first SSB.
  • the UE on the first channel accesses the network, and the first target period and the second target period belong to two target periods of the network device configured in the same scanning period.
  • the processor 1101 is specifically configured to:
  • the first channel is in an occupied state in the first target period, and the first SSB corresponding to the first beam direction is not sent in the first target period.
  • the same scanning period includes a time slot corresponding to multiple data frames, and a time slot corresponding to one data frame includes multiple, and each target period included in the same scanning period corresponds to one data respectively.
  • One of the time slots corresponding to the frame, the first target period and the second target period are two time slots in the same data frame or two time slots in different data frames.
  • the same scanning period includes a time slot corresponding to multiple data frames, and a time slot corresponding to one data frame includes multiple, and each target period included in the same scanning period corresponds to one data frame respectively.
  • One time slot of the corresponding time slot, the first target period corresponds to the Mth time slot in the first data frame, and the second target period corresponds to the Mth time slot in the second data frame, the second data frame
  • M is an integer greater than or equal to 1.
  • the same scanning period includes a time slot corresponding to multiple data frames, and a time slot corresponding to one data frame includes multiple, and each target period included in the same scanning period corresponds to one data respectively.
  • the Nth, the second target period corresponds to the Yth slot in the second data frame, and the second data frame is after the first data frame and adjacent to or not adjacent to the first data frame a data frame, where the Yth slot is the first slot in the slot after the Xth slot in the second data frame that is idle on the first channel, and the Xth slot is successfully sent.
  • the slots of the N-1th SSB that are not transmitted in the slot corresponding to the first data frame, M, N, X, and Y are integers greater than or equal to 1.
  • the same scanning period includes a time slot corresponding to multiple data frames, and a time slot corresponding to one data frame includes multiple, and each target period included in the same scanning period corresponds to one data respectively.
  • a time slot in a time slot corresponding to the frame the first target period corresponds to an Mth time slot in the first data frame
  • the second target period corresponds to an Nth time slot in the first data frame
  • N is an integer greater than or equal to 1
  • the Nth time slot is a time slot subsequent to the Mth time slot and adjacent to the Mth time slot.
  • the same scanning period includes a time slot corresponding to multiple data frames, and a time slot corresponding to one data frame includes multiple, and each target period included in the same scanning period corresponds to one data respectively.
  • a time slot in a time slot corresponding to the frame, the first target period corresponds to a last time slot in the first data frame, and the second target period corresponds to a first time slot in the second data frame, the second The data frame is a data frame subsequent to the first data frame and adjacent to the first data frame.
  • the embodiment of the present invention further provides a UE, where the UE may be a terminal device, as shown in FIG. 12, for the convenience of description, only parts related to the embodiment of the present invention are shown, and specific technical details are not disclosed, please refer to The method part of the embodiment of the invention.
  • the terminal device may be any terminal device including a mobile phone, a tablet computer, a PDA (Personal Digital Assistant), a POS (Point of Sales), an in-vehicle computer, and the terminal device is used as a mobile phone as an example:
  • FIG. 12 is a block diagram showing a partial structure of a mobile phone related to a terminal device provided by an embodiment of the present invention.
  • the mobile phone includes: a radio frequency (RF) circuit 1110, a memory 1120, an input unit 1130, a display unit 1140, a sensor 1150, an audio circuit 1160, a wireless fidelity (WiFi) module 1170, and a processor 1180. And power supply 1190 and other components.
  • RF radio frequency
  • the RF circuit 1110 can be used for receiving and transmitting signals during and after receiving or transmitting information, in particular, after receiving the downlink information of the base station, and processing it to the processor 1180; in addition, transmitting the designed uplink data to the base station.
  • RF circuit 1110 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a Low Noise Amplifier (LNA), a duplexer, and the like.
  • LNA Low Noise Amplifier
  • RF circuitry 1110 can also communicate with the network and other devices via wireless communication.
  • the above wireless communication may use any communication standard or protocol, including but not limited to Global System of Mobile communication (GSM), General Packet Radio Service (GPRS), Code Division Multiple Access (Code Division). Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), Long Term Evolution (LTE), E-mail, Short Messaging Service (SMS), and the like.
  • GSM Global System of Mobile communication
  • GPRS General Packe
  • the memory 1120 can be used to store software programs and modules, and the processor 1180 executes various functional applications and data processing of the mobile phone by running software programs and modules stored in the memory 1120.
  • the memory 1120 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.), and the like; the storage data area may be stored according to Data created by the use of the mobile phone (such as audio data, phone book, etc.).
  • memory 1120 can include high speed random access memory, and can also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the input unit 1130 can be configured to receive input numeric or character information and to generate key signal inputs related to user settings and function controls of the handset.
  • the input unit 1130 may include a touch panel 1131 and other input devices 1132.
  • the touch panel 1131 also referred to as a touch screen, can collect touch operations on or near the user (such as the user using a finger, a stylus, or the like on the touch panel 1131 or near the touch panel 1131. Operation), and drive the corresponding connecting device according to a preset program.
  • the touch panel 1131 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 1180 is provided and can receive commands from the processor 1180 and execute them.
  • the touch panel 1131 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 1130 may also include other input devices 1132.
  • other input devices 1132 may include, but are not limited to, one or more of a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and the like.
  • the display unit 1140 can be used to display information input by the user or information provided to the user as well as various menus of the mobile phone.
  • the display unit 1140 may include a display panel 1141.
  • the display panel 1141 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the touch panel 1131 can cover the display panel 1141. After the touch panel 1131 detects a touch operation thereon or nearby, the touch panel 1131 transmits to the processor 1180 to determine the type of the touch event, and then the processor 1180 according to the touch event. The type provides a corresponding visual output on the display panel 1141.
  • touch panel 1131 and the display panel 1141 are used as two independent components to implement the input and input functions of the mobile phone in FIG. 12, in some embodiments, the touch panel 1131 and the display panel 1141 may be integrated. Realize the input and output functions of the phone.
  • the handset may also include at least one type of sensor 1150, such as a light sensor, motion sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor, wherein the ambient light sensor may adjust the brightness of the display panel 1141 according to the brightness of the ambient light, and the proximity sensor may close the display panel 1141 and/or when the mobile phone moves to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in all directions (usually three axes). When it is stationary, it can detect the magnitude and direction of gravity.
  • the mobile phone can be used to identify the gesture of the mobile phone (such as horizontal and vertical screen switching, related Game, magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tapping), etc.; as for the mobile phone can also be configured with gyroscopes, barometers, hygrometers, thermometers, infrared sensors and other sensors, no longer Narration.
  • the gesture of the mobile phone such as horizontal and vertical screen switching, related Game, magnetometer attitude calibration
  • vibration recognition related functions such as pedometer, tapping
  • the mobile phone can also be configured with gyroscopes, barometers, hygrometers, thermometers, infrared sensors and other sensors, no longer Narration.
  • An audio circuit 1160, a speaker 1161, and a microphone 1162 can provide an audio interface between the user and the handset.
  • the audio circuit 1160 can transmit the converted electrical data of the received audio data to the speaker 1161, and convert it into a sound signal output by the speaker 1161; on the other hand, the microphone 1162 converts the collected sound signal into an electrical signal, and the audio circuit 1160 After receiving, it is converted into audio data, and then processed by the audio data output processor 1180, transmitted to the other mobile phone via the RF circuit 1110, or outputted to the memory 1120 for further processing.
  • WiFi is a short-range wireless transmission technology.
  • the mobile phone can help users to send and receive emails, browse web pages and access streaming media through the WiFi module 1170, which provides users with wireless broadband Internet access.
  • FIG. 12 shows the WiFi module 1170, it can be understood that it does not belong to the essential configuration of the mobile phone, and may be omitted as needed within the scope of not changing the essence of the invention.
  • the processor 1180 is a control center for the handset, which connects various portions of the entire handset using various interfaces and lines, by executing or executing software programs and/or modules stored in the memory 1120, and invoking data stored in the memory 1120, The phone's various functions and processing data, so that the overall monitoring of the phone.
  • the processor 1180 may include one or more processing units; preferably, the processor 1180 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, an application, and the like.
  • the modem processor primarily handles wireless communications. It will be appreciated that the above described modem processor may also not be integrated into the processor 1180.
  • the handset also includes a power source 1190 (such as a battery) that powers the various components.
  • a power source can be logically coupled to the processor 1180 via a power management system to manage functions such as charging, discharging, and power management through the power management system.
  • the mobile phone may further include a camera, a Bluetooth module, and the like, and details are not described herein again.
  • the processor 1180 included in the terminal device further has the following functions:
  • the first channel is monitored in the second target period, where the first SSB is the SSB corresponding to the first channel to be accessed by the UE, the first channel a channel corresponding to the first beam direction;
  • the first target period and the second target period belong to the network by using the first SSB to access the network. Two target cycles of the device configuration within the same scan cycle.
  • the same scanning period includes a time slot corresponding to multiple data frames, and a time slot corresponding to one data frame includes multiple, and each target period included in the same scanning period corresponds to one data frame respectively.
  • One of the corresponding time slots, the first target period and the second target period are two slots in the same data frame.
  • the first target period corresponds to an Mth slot in the first data frame
  • the second target period corresponds to an Nth slot in the first data frame
  • M and N are greater than or equal to 1
  • An integer of the Nth time slot is a time slot subsequent to the Mth time slot and adjacent to the Mth time slot.
  • the first target period corresponds to an Mth slot in the first data frame
  • the second target period corresponds to an Nth slot in the first data frame
  • M and N are greater than or equal to 1
  • An integer of the Nth time slot is a time slot subsequent to the Mth time slot and adjacent to the Mth time slot.
  • the same scanning period includes a time slot corresponding to multiple data frames, and a time slot corresponding to one data frame includes multiple, and each target period included in the same scanning period corresponds to one data respectively.
  • One of the time slots corresponding to the frame, the first target period and the second target period being two time slots in different data frames.
  • the first target period corresponds to an Mth slot in a first data frame
  • the second target period corresponds to an Mth slot in a second data frame
  • M is an integer greater than or equal to 1.
  • the first target period corresponds to an Mth slot in the first data frame, where the first SSB is in an SSB that is not sent in a time slot corresponding to the first data frame.
  • the Nth, the second target period corresponds to the Yth slot in the second data frame, where the second data frame is a data frame that is adjacent to or not adjacent to the first data frame.
  • the first time slot is the first time slot in the time slot after the Xth time slot in the second data frame that is idle on the first channel, and the Xth time slot is successfully sent by the network device.
  • the slots of the N-1th SSB that are not transmitted in the slot corresponding to the first data frame, M, N, X, and Y are integers equal to or greater than 1.
  • the first target period corresponds to a last slot in the first data frame
  • the second target period corresponds to a first slot in the second data frame
  • the second data frame is a data frame subsequent to the first data frame and adjacent to the first data frame
  • the chip when the network device or the UE is a chip in the terminal, the chip includes: a processing unit and a communication unit, and the processing unit may be, for example, a processor, and the communication unit may be, for example, an input/ Output interface, pin or circuit.
  • the processing unit may execute computer executed instructions stored by the storage unit to cause the chip within the terminal to execute the SSB transmission method of any of the above embodiments.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located outside the chip in the terminal, such as a read-only memory (read) -only memory, ROM) or other types of static storage devices, random access memory (RAM), etc. that can store static information and instructions.
  • the processor mentioned in any of the above may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific intergrated circuit (ASIC), or one or more for controlling the above.
  • CPU central processing unit
  • ASIC application-specific intergrated circuit
  • a program-implemented integrated circuit of the SSB transmission method in the embodiment may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific intergrated circuit (ASIC), or one or more for controlling the above.
  • a program-implemented integrated circuit of the SSB transmission method in the embodiment may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific intergrated circuit (ASIC), or one or more for controlling the above.
  • a program-implemented integrated circuit of the SSB transmission method in the embodiment may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific intergrated circuit (ASIC), or one or more for controlling the above.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • wire eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be stored by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • a computer readable storage medium A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种SSB传输方法、网络设备以及用户设备,用于采用非授权频谱进行数据传输的系统,以提高网络设备在做波束扫描时,UE能在同一个扫描周期内接入网络的概率。本申请实施例方法包括:网络设备在第一目标周期检测到第一波束方向所对应的第一信道处于占用状态,则所述网络设备在所述第一目标周期不发送所述第一波束方向对应的第一SSB;若所述网络设备在第二目标周期检测到所述第一信道处于空闲状态,则所述网络设备在所述第二目标周期通过所述第一信道发送所述第一SSB,所述第一SSB用于所述第一信道上的用户设备UE接入网络,所述第一目标周期和所述第二目标周期属于所述网络设备配置的在同一扫描周期内的两个目标周期。

Description

一种同步信号块传输的方法、网络设备以及用户设备
本申请要求于2018年8月31日提交中国国家知识产权局、申请号为201811013540.8、申请名称为“一种同步信号块传输的方法、网络设备以及用户设备”的中国专利申请的优先权,以于及2018年3月13日提交中国专利局、申请号为201810202667.8、申请名称为“一种同步信号块传输的方法”的中国专利申请的优先权,它们的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术,尤其涉及一种同步信号块传输方法、网络设备以及用户设备。
背景技术
随着互联网技术的快速发展,用户对数据通信的质量提出了更高的要求,为了提供更大的带宽和更高的数据速率,在5G(Fifth Generation)移动通信系统中引入了非授权(unlicensed)频谱进行传输数据,例如,5G赫兹(Hz)和60GHz频段。由于这些高频频段具有更大的衰减,5G移动通信系统标准中提出波束(beam)的概念,通过将功率集中在某一特定方向上进行发射以提高信号覆盖范围,也即通过波束成形(Beamforming)技术形成具有方向性的波束来补偿高频段下的路径损耗。为了能够实现对所有方向上的用户设备(User Equipment(UE))的覆盖,5G网络设备需要进行波束扫描(beam sweeping),如图1A所示,网络设备配置的一个扫描周期内可以包括N个数据帧,其中,N一般为大于20的整数,网络设备在该扫描周期的数据帧1中对所有波束方向进行扫描,而该扫描周期中其余的数据帧用于传输其他数据,也即在一个扫描周期内的某个固定时间内完成对所有波束方向上的同步信号块(Synchronization Signal Block(SSB))发送,其中SSB包括同步信号(SS)和物理广播信道(Physical Broadcast Channel(PBCH))。UE在接收到SSB后,可以取得与网络设备的时间同步,并且获得网络的基本配置信息。UE也可以反馈接收到的SSB的信号强度,以辅助网络设备选择合适的波束进行数据传输。
当使用非授权频谱进行数据传输时,由于所用频谱可能会被其他技术所采用,如Wi-Fi或蓝牙等,也可能被其他用户和运营商使用,因此在发送信号前需要执行信道监听,也就是采用先听后说(Listen-Before-Talk(LBT)),以避免对其他用户和系统的干扰。当监听到信道空闲时,可以立即发送信号,或者选择持续监听一段时间,当发现信道持续空闲则发送信号;当监听到信道被占用时,则继续监听信道。当网络设备(如,基站)执行波束扫描时,在每个波束方向上首先需要执行LBT,然而并不能保证每个波束方向上的信道都正好空闲,因此波束扫描无法保证在固定时间内每个波束方向上的SSB都成功发送。进而,导致有些波束方向上的SSB未能在一个扫描周期内的固定时间内成功发送给对应的UE,因此,导致这些UE接入网络的耗时较长,导致这些UE在同一个扫描周期内接入网络概率较低。
发明内容
本申请实施例提供了一种SSB传输方法、网络设备以及UE,适用于采用非授权频谱进行数据传输的系统,以提高网络设备在做波束扫描时,UE能在同一个扫描周期内接入网络的概率。
一方面,本发明提供的实施例包括(本部分提供的各实施例的编号与本文其他部分提供的各实施例的编号并无明确的对应关系,仅为了此部分在表述上的方便):
1.一种同步信号块SSB传输方法,其特征在于,所述方法应用于通信系统,所述通信系统通过非授权频谱传输数据,所述方法包括:
网络设备在第一目标周期检测到第一波束方向所对应的第一信道处于占用状态,则所述网络设备在所述第一目标周期不发送所述第一波束方向对应的第一SSB;
若所述网络设备在第二目标周期检测到所述第一信道处于空闲状态,则所述网络设备在所述第二目标周期通过所述第一信道发送所述第一SSB,所述第一SSB用于所述第一信道上的用户设备UE接入网络,所述第一目标周期和所述第二目标周期属于所述网络设备配置的在同一扫描周期内的两个目标周期。
2.根据实施例1所述的方法,其特征在于,所述网络设备在第一目标周期检测到第一波束方向上所对应的第一信道处于占用状态包括:
所述网络设备在所述第一目标周期检测所述第一信道的功率;
若所述第一信道的功率大于预设阈值,则在所述第一目标周期所述第一信道处于占用状态。
3.根据实施例1或2所述的方法,其特征在于,所述同一扫描周期包括多个数据帧所对应的时隙,一个数据帧所对应的时隙包括多个,所述同一扫描周期内包括的每个目标周期分别对应一个数据帧所对应的时隙中的一个时隙,所述第一目标周期和所述第二目标周期为同一数据帧中的两个时隙或为不同数据帧中的两个时隙。
4.根据实施例3所述的方法,其特征在于,所述同一扫描周期包括多个数据帧所对应的时隙,一个数据帧所对应的时隙包括多个,所述同一扫描周期内包括的每个目标周期分别对应一个数据帧所对应的时隙中的一个时隙,所述第一目标周期对应第一数据帧中的第M时隙,所述第二目标周期对应第二数据帧中的第M时隙,所述第二数据帧为所述第一数据帧之后、且与所述第一数据帧相邻的数据帧,M为大于等于1的整数。
5.根据实施例3所述的方法,其特征在于,所述同一扫描周期包括多个数据帧所对应的时隙,一个数据帧所对应的时隙包括多个,所述同一扫描周期内包括的每个目标周期分别对应一个数据帧所对应的时隙中的一个时隙,所述第一目标周期对应第一数据帧中的第M时隙,所述第一SSB为在所述第一数据帧所对应的时隙中未发送的SSB中的第N个,所述第二目标周期对应第二数据帧中的第Y时隙,所述第二数据帧为所述第一数据帧之后、且与所述第一数据帧相邻或不相邻的数据帧,所述第Y时隙为所述第二数据帧中第X时隙后的时隙中首个在所述第一信道上处于空闲的一个时隙,所述第X时隙为成功发送了在所述第一数据帧所对应的时隙中未发送的第N-1个SSB的时隙,M、N、X、Y为大于等于1的整数。
6.根据实施例3所述的方法,其特征在于,所述同一扫描周期包括多个数据帧所 对应的时隙,一个数据帧所对应的时隙包括多个,所述同一扫描周期内包括的每个目标周期分别对应一个数据帧所对应的时隙中的一个时隙,所述第一目标周期对应第一数据帧中的第M时隙,所述第二目标周期对应所述第一数据帧中的第N时隙,M、N为大于等于1的整数,所述第N时隙为所述第M时隙后、且与所述第M时隙相邻的一个时隙。
7.根据实施例3所述的方法,其特征在于,所述同一扫描周期包括多个数据帧所对应的时隙,一个数据帧所对应的时隙包括多个,所述同一扫描周期内包括的每个目标周期分别对应一个数据帧所对应的时隙中的一个时隙,所述第一目标周期对应第一数据帧中的最后一个时隙,所述第二目标周期对应第二数据帧中的第1个时隙,所述第二数据帧为所述第一数据帧之后、且与所述第一数据帧相邻的数据帧。
8、一种同步信号块SSB传输方法,其特征在于,所述方法应用于通信系统,所述通信系统通过非授权频谱传输数据,所述方法包括:
若用户设备UE在第一目标周期内未接收到第一SSB,则所述UE在第二目标周期监听所述第一信道,所述第一SSB为所述UE待接入的第一信道所对应的SSB,所述第一信道为第一波束方向所对应的信道;
当所述UE在所述第二目标周期内接收到网络设备通过所述第一信道发送的所述第一SSB时,所述UE通过所述第一SSB接入网络,所述第一目标周期和所述第二目标周期属于所述网络设备配置的在同一扫描周期内的两个目标周期。
9、根据实施例8所述的方法,其特征在于,所述同一扫描周期包括多个数据帧所对应的时隙,一个数据帧所对应的时隙包括多个,所述同一扫描周期内包括的每个目标周期分别对应一个数据帧所对应的时隙中的一个时隙,所述第一目标周期和所述第二目标周期为同一数据帧中的两个时隙。
10、根据实施例9所述的方法,其特征在于,所述第一目标周期对应第一数据帧中的第M时隙,所述第二目标周期对应所述第一数据帧中的第N时隙,M、N为大于等于1的整数,所述第N时隙为所述第M时隙后、且与所述第M时隙相邻的一个时隙。
11、根据实施例8所述的方法,其特征在于,所述同一扫描周期包括多个数据帧所对应的时隙,一个数据帧所对应的时隙包括多个,所述同一扫描周期内包括的每个目标周期分别对应一个数据帧所对应的时隙中的一个时隙,所述第一目标周期和所述第二目标周期为不同数据帧中的两个时隙。
12、根据实施例11所述的方法,其特征在于,所述第一目标周期对应第一数据帧中的第M时隙,所述第二目标周期对应第二数据帧中的第M时隙,所述第二数据帧为所述第一数据帧之后、且与所述第一数据帧相邻的数据帧,M为大于等于1的整数。
13、根据实施例11所述的方法,其特征在于,所述第一目标周期对应第一数据帧中的第M时隙,所述第一SSB为在所述第一数据帧所对应的时隙中未发送的SSB中的第N个,所述第二目标周期对应第二数据帧中的第Y时隙,所述第二数据帧为所述第一数据帧之后、且与所述第一数据帧相邻或不相邻的数据帧,所述第Y时隙为所述第二数据帧中第X时隙后的时隙中首个在所述第一信道上处于空闲的一个时隙,所述第X时隙为所述网络设备成功发送了在所述第一数据帧所对应的时隙中未发送的第N-1个SSB的时隙,M、N、X、Y大于等于1的整数。
14、根据实施例11所述的方法,其特征在于,所述第一目标周期对应第一数据帧中的最后一个时隙,所述第二目标周期对应第二数据帧中的第一个时隙,所述第二数据帧为所述第一数据帧之后,且与所述第一数据帧相邻的数据帧。
15、一种网络设备,其特征在于,所述网络设备包括:
处理模块,用于网络设备在第一目标周期检测到第一波束方向所对应的第一信道处于占用状态,则在所述第一目标周期不发送所述第一波束方向对应的第一SSB;
收发模块,用于若所述网络设备在第二目标周期检测到所述第一信道处于空闲状态,则在所述第二目标周期通过所述第一信道发送所述第一SSB,所述第一SSB用于所述第一信道上的用户设备UE接入网络,所述第一目标周期和所述第二目标周期属于所述网络设备配置的在同一扫描周期内的两个目标周期。
16、根据实施例15所述的网络设备,其特征在于,所述处理模块具体用于:
在所述第一目标周期检测所述第一信道的功率;
若所述第一信道的功率大于预设阈值,则在所述第一目标周期所述第一信道处于占用状态,则在所述第一目标周期不发送所述第一波束方向对应的第一SSB。
17、根据实施例15或16所述的网络设备,其特征在于,所述同一扫描周期包括多个数据帧所对应的时隙,一个数据帧所对应的时隙包括多个,所述同一扫描周期内包括的每个目标周期分别对应一个数据帧所对应的时隙中的一个时隙,所述第一目标周期和所述第二目标周期为同一数据帧中的两个时隙或为不同数据帧中的两个时隙。
18、根据实施例17所述的网络设备,其特征在于,所述同一扫描周期包括多个数据帧所对应的时隙,一个数据帧所对应的时隙包括多个,所述同一扫描周期内包括的每个目标周期分别对应一个数据帧所对应的时隙中的一个时隙,所述第一目标周期对应第一数据帧中的第M时隙,所述第二目标周期对应第二数据帧中的第M时隙,所述第二数据帧为所述第一数据帧之后、且与所述第一数据帧相邻的数据帧,M为大于等于1的整数。
19、根据实施例17所述的网络设备,其特征在于,所述同一扫描周期包括多个数据帧所对应的时隙,一个数据帧所对应的时隙包括多个,所述同一扫描周期内包括的每个目标周期分别对应一个数据帧所对应的时隙中的一个时隙,所述第一目标周期对应第一数据帧中的第M时隙,所述第一SSB为在所述第一数据帧所对应的时隙中未发送的SSB中的第N个,所述第二目标周期对应第二数据帧中的第Y时隙,所述第二数据帧为所述第一数据帧之后、且与所述第一数据帧相邻或不相邻的数据帧,所述第Y时隙为所述第二数据帧中第X时隙后的时隙中首个在所述第一信道上处于空闲的一个时隙,所述第X时隙为成功发送了在所述第一数据帧所对应的时隙中未发送的第N-1个SSB的时隙,M、N、X、Y为大于等于1的整数。
20、根据实施例17所述的网络设备,其特征在于,所述同一扫描周期包括多个数据帧所对应的时隙,一个数据帧所对应的时隙包括多个,所述同一扫描周期内包括的每个目标周期分别对应一个数据帧所对应的时隙中的一个时隙,所述第一目标周期对应第一数据帧中的第M时隙,所述第二目标周期对应所述第一数据帧中的第N时隙,M、N为大于等于1的整数,所述第N时隙为所述第M时隙后、且与所述第M时隙相邻的一个时隙。
21、根据实施例17所述的网络设备,其特征在于,所述同一扫描周期包括多个数据帧所对应的时隙,一个数据帧所对应的时隙包括多个,所述同一扫描周期内包括的每个目标周期分别对应一个数据帧所对应的时隙中的一个时隙,所述第一目标周期对应第一数据帧中的最后一个时隙,所述第二目标周期对应第二数据帧中的第1个时隙,所述第二数据帧为所述第一数据帧之后、且与所述第一数据帧相邻的数据帧。
22、一种用户设备UE,其特征在于,所述UE包括:
监听模块,用于若用户设备UE在第一目标周期内未接收到第一SSB,则在第二目标周期监听所述第一信道,所述第一SSB为所述UE待接入的第一信道所对应的SSB,所述第一信道为第一波束方向所对应的信道;
接入模块,用于当所述UE在所述第二目标周期内接收到网络设备通过所述第一信道发送的所述第一SSB时,通过所述第一SSB接入网络,所述第一目标周期和所述第二目标周期属于所述网络设备配置的在同一扫描周期内的两个目标周期。
23、根据实施例22所述的UE,其特征在于,所述同一扫描周期包括多个数据帧所对应的时隙,一个数据帧所对应的时隙包括多个,所述同一扫描周期内包括的每个目标周期分别对应一个数据帧所对应的时隙中的一个时隙,所述第一目标周期和所述第二目标周期为同一数据帧中的两个时隙。
24、根据实施例23所述的UE,其特征在于,所述第一目标周期对应第一数据帧中的第M时隙,所述第二目标周期对应所述第一数据帧中的第N时隙,M、N为大于等于1的整数,所述第N时隙为所述第M时隙后、且与所述第M时隙相邻的一个时隙。
25、根据实施例22所述的UE,其特征在于,所述同一扫描周期包括多个数据帧所对应的时隙,一个数据帧所对应的时隙包括多个,所述同一扫描周期内包括的每个目标周期分别对应一个数据帧所对应的时隙中的一个时隙,所述第一目标周期和所述第二目标周期为不同数据帧中的两个时隙。
26、根据实施例25所述的UE,其特征在于,所述第一目标周期对应第一数据帧中的第M时隙,所述第二目标周期对应第二数据帧中的第M时隙,所述第二数据帧为所述第一数据帧之后、且与所述第一数据帧相邻的数据帧,M为大于等于1的整数。
27、根据实施例25所述的UE,其特征在于,所述第一目标周期对应第一数据帧中的第M时隙,所述第一SSB为在所述第一数据帧所对应的时隙中未发送的SSB中的第N个,所述第二目标周期对应第二数据帧中的第Y时隙,所述第二数据帧为所述第一数据帧之后、且与所述第一数据帧相邻或不相邻的数据帧,所述第Y时隙为所述第二数据帧中第X时隙后的时隙中首个在所述第一信道上处于空闲的一个时隙,所述第X时隙为所述网络设备成功发送了在所述第一数据帧所对应的时隙中未发送的第N-1个SSB的时隙,M、N、X、Y大于等于1的整数。
28、根据实施例25所述的UE,其特征在于,所述第一目标周期对应第一数据帧中的最后一个时隙,所述第二目标周期对应第二数据帧中的第一个时隙,所述第二数据帧为所述第一数据帧之后,且与所述第一数据帧相邻的数据帧。
29、一种网络设备,其特征在于,所述网络设备包括:处理器、存储器、收发器,所述处理器、存储器以及收发器通过总线连接,所述存储器存储有计算机指令,所述处理器通过执行所述计算机指令用于实现如实施例1至实施例7任一项所述的SSB传 输方法。
30、一种UE,其特征在于,所述UE包括:处理器、存储器、收发器,所述处理器、存储器以及收发器通过总线连接,所述存储器存储有计算机指令,所述处理器通过执行所述计算机指令用于实现如实施例8至实施例14任一项所述的SSB传输方法。
31、一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得所述计算机执行如实施例1至14中任一项所述的方法。
32、一种计算机可读存储介质,其特征在于,包括指令,当所述指令在计算机上运行时,使得计算机执行如实施例1至14中任一项所述的方法。
33、一种网络设备,该网络设备具有实现上述实施例1至7任一实施例中网络设备行为的功能,该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能对应的模块。
34、一种UE,该UE具有实现上述实施例8至14任一实施例中UE行为的功能,该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能对应的模块。
35、一种芯片系统,该芯片系统包括处理器,用于支持网络设备实现上述实施例1至7中所涉及的功能,例如,例如发送或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
36、一种芯片系统,该芯片系统包括处理器,用于支持UE实现上述实施例8至14中所涉及的功能,例如,例如发送或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
另一方面,本发明提供的实施例还包括(本部分提供的各实施例的编号与本文其他部分提供的各实施例的编号并无明确的对应关系,仅为了此部分在表述上的方便):
1.一种同步信号块(SSB)传输方法,应用于使用非授权频谱的网络设备,其特征在于,包括:
网络设备配置能发送SSB的至少两个帧,每个配置帧被分成若干个时隙;网络设备在配置帧1的每个时隙监听信道,若信道空闲,则发送一个SSB,若信道忙,则不发送该SSB;如果在配置帧1中有未能发送的SSB,则尝试在下一个帧中尝试发送SSB。
2.根据实施例1所述的方法,其特征在于,所述监听的信道包括该SSB对应的波束方向。
3.根据实施例1或2所述的方法,其特征在于,每个波束方向上的SSB只在每个配置帧中的特定时隙发送,若在其对应时隙无法发送,则等待下一个配置帧的对应时隙再尝试发送,直到配置帧用完或者所有SSB发送完为止。
4.根据实施例1-3任一所述的方法,其特征在于,若配置帧中对应位置的SSB已成功发送,则该配置帧中剩下的时隙可进行正常的数据传输,或者不传输任何数据。
5.根据实施例1或2所述的方法,其特征在于,在所有配置帧中,按顺序发送每个波束对应的SSB,波束编号为1,2,…,M,仅当波束m对应的SSB成功发送后,才可以发送波束m+1对应的SSB,其中1≤m<M,直到所有波束对应的SSB都成功发送或配置帧已用完。
6.根据实施例1、2和5任一所述的方法,其特征在于,若所有的波束对应的SSB都已经成功发送,则剩余的配置帧可以进行正常的数据传输,或者不传输任何数据。
7.一种网络设备,其特征在于,所述网络设备被配置为执行如实施例1-6任一所述的方法。
8.一种计算机程序产品,包括计算机程序,其特征在于,该计算机程序在某一计算机上执行时,将会使所述计算机实现实施例1-6任一所述的方法。
9.一种计算机程序,其特征在于,该计算机程序在某一计算机上执行时,将会使所述计算机实现实施例1-6任一所述的方法。
10.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该计算机程序在某一计算机上执行时,将会使所述计算机实现实施例1-6任一所述的方法。
从以上技术方案可以看出,本申请实施例具有以下优点:
经由上述技术方案可知,在使用非授权频谱的通信系统中,网络设备在第一目标周期检测第一波束方向所对应的第一信道使用情况,当该网络设备在第一目标周期内检测到该第一信道处于占用状态时,那么该网络设备在该第一目标周期不发送该第一波束方向所对应的第一SSB;然后网络设备可以在第二目标周期继续检测第一信道的使用情况,当网络设备检测到该第一信道处于空闲状态时,那么网络设备可以在第二目标周期通过该第一信道发送该第一SSB,从而实现在第一信道上的UE通过该第一SSB接入网络,该第一目标周期和第二目标周期为同一扫描周期的两个周期。以该目标周期作为检测周期并发送对应的SSB,而该目标周期小于现有技术中的扫描周期,所以缩短了UE接入网络的时间,提高了UE在同一扫描周期内接入网络的概率。
附图说明
图1A为现有技术的一个示意图;
图1B为本申请实施例中的一种场景系统框架示意图;
图2为本申请实施例SSB传输方法的一个场景示意图;
图3为本申请实施例中SSB传输方法的一个实施例示意图;
图4为本申请实施例中SSB传输方法的另一个场景示意图;
图5为本申请实施例中SSB传输方法的另一个场景示意图;
图6为本申请实施例中SSB传输方法的另一个实施例示意图;
图7为本申请实施例中SSB传输方法的另一个场景示意图;
图8为本申请实施例中SSB传输方法的另一个场景示意图;
图9为本申请实施例中网络设备的一个结构示意图;
图10为本申请实施例中UE的一个结构示意图;
图11为本申请实施例中网络设备的另一个结构示意图;
图12为本申请实施例中UE的另一个结构示意图。
具体实施方式
本申请实施例提供了一种数据处理方法、网络设备以及用户设备,用于缩短UE接入网络的时间,提高了UE在同一扫描周期内接入网络的概率。
请参阅图1B,图1B为本申请实施例提供的一种应用场景系统框架示意图,在网络设备使用非授权频谱与UE进行传输数据时,由于所用频谱可能会被其他技术所采用,例如无线网络wifi或者蓝牙等,也可能被其他用户或者运营商所使用。因此,在该网络设备发送SSB之前需要执行信道监听,即采用先听后说(Listen-Before-Talk,LBT),以避免对其他用户和系统带来干扰,需要说明的是,该非授权频谱可以为5GHz频段或者60GHz频段等,具体此处不做限定。其中,SSB为同步信号块,用于UE接入网络实现与网络设备进行数据传输。图1B为5G移动通信系统的一种系统场景示意图,网络设备可以为5G系统中的下一代基站(gNB,Next Generation Node B),也可以是5G接入网的接入点或者传输点,还可以是其他5G接入网的网络设备,例如微基站等,具体此处不做限定。UE可以为手机、平板电脑或者电脑等,具体此处不做限定。目前,如图1A所示,在使用非授权频谱的通信系统中,网络设备对每个波束方向所对应的信道的检测以及每个波束方向所对应的SSB的发送只在一个扫描周期内的数据帧1内完成,即在该扫描周期内的某个固定时间段内完成。那么当该某个波束方向所对应的信道在该固定时间段内处于占用状态时,此时网络设备无法将该波束方向所对应的SSB发送给待接入该信道的UE,得等到下一个扫描周期的该固定时间段内再次扫描该信道,且当在下个扫描周期的该固定时间段内确定该波束方向所对应的信道空闲时才能向待接入该信道的UE发送该波束方向所对应的SSB。若网络设备在一个扫描周期内该固定时间段内确定该波束方向所对应的信道处于占用状态,则UE在一个扫描周期内都无法接收到该波束方向所对应的SSB,导致UE无法在一个扫描周期内接入网络。因此,上述方法会导致UE接入网络的耗时较长,导致UE在一个扫描周期内接入网络概率较低。
需要说明的是,本申请各实施例提供的该数据处理方法适用于在2G、3G、4G、5G或6G等移动通信系统中网络设备使用非授权频谱进行数据传输时,对应工作的非授权频谱下进行信道监听再发送SSB的过程,具体本申请不做限定。
有鉴于此,本申请一些实施例提供了一种SSB传输方法,用于缩短UE接入网络的时间,提高了UE在同一扫描周期内接入网络的概率。在使用非授权频谱的通信系统中,网络设备在第一目标周期检测第一波束方向所对应的第一信道使用情况,当该网络设备在第一目标周期内检测到该第一信道处于占用状态时,那么该网络设备在该第一目标周期不发送该第一波束方向所对应的第一SSB;然后网络设备可以在第二目标周期继续检测第一信道的使用情况,当网络设备检测到该第一信道处于空闲状态时,那么网络设备可以在第二目标周期通过该第一信道发送该第一SSB,从而实现在第一信道上的UE通过该第一SSB接入网络,该第一目标周期和第二目标周期为同一扫描周期内的两个周期。如图1A所示,一个扫描周期可以包括N个数据帧,且N一般大于20的整数。请参阅图2所示,目标周期可以是数据帧中的一个时隙。因此,以该目标周期作为检测周期来检测信道并发送信道对应的SSB,而该目标周期小于现有技术中的扫描周期,所以缩短了UE接入网络的时间,提高了UE在同一扫描周期内接入网络的概率。
本申请的一些实施例中,同一扫描周期可以包括多个数据帧所对应的时隙,一个数据帧所对应的时隙包括多个,同一扫描周期内包括的每个目标周期分别对应一个数据帧所对应的时隙中的一个时隙,即第一目标周期和第二目标周期可以为数据帧的一 个时隙。可能的第一种情况:第一目标周期和第二目标周期为同一数据帧的两个不同时隙;可能的第二种情况:第一目标周期和第二目标周期为不同数据帧中的两个时隙。
本申请的一些实施例中,数据帧的个数可以是网络设备提前配置然后预设于网络设备中的,也可以为网络设备根据实际情况再进行配置,具体此处不做限定,在后续的实施例中,仅以数据帧为网络设备配置并预设于网络设备中为例进行说明。需要说明的是,数据帧的个数以网络设备根据实际情况来配置的方案可以是网络设备不断地根据实际需求配置,当在同一扫描周期内网络设备配置的数据帧达到预设个数或者一个扫描周期的时间已达到且在该扫描周期内还存在未发送成功的SSB,那么此时网络设备可以停止配置数据帧,在下一个扫描周期重新监听,本申请对此不做限定。
本申请的一些实施例中,网络设备可以通过波束(beam)扫描的方式对所有波束方向进行扫描,监听每个波束方向的信道的功率。其中,信道的功率可以为在该网络设备所处的移动通信系统中,其他设备使用该信道发送信号所产生的能量大小,即功率大小;然后网络设备通过该功率来确定信道的使用状态。除此之外,网络设备可以通过其他方式进行扫描,例如信道扫描等;在后续的实施例中,仅以网络设备对所有波束方向进行扫描的方式为例进行说明。
本申请的一些实施例中,网络设备在监听某个波束方向所对应的信道时可以是只监听该波束方向所对应的信道,也可以是监听包含该波束方向的部分或者全部波束方向所对应的信道,具体此处不做限定,在后续的实施例中仅以网络设备在监听某个波束方向所对应的信道时,网络设备只监听该波束方向所对应的信道为例进行说明。
本申请的一些实施例中,网络设备对每个波束方向所对应的信道进行监听,其中,该波束方向可以为固定个数,网络设备在每一个数据帧的每个时隙扫描对应的波束方向;该波束方向也可以不断地改变,即在不同的数据帧中扫描的波束方向的个数可变;例如,可以将360度的方向划分为四个波束方向,每个波束方向为90度区域范围,也可以是将360度的方向划分为八个波束方向,每个波束方向为45度的区域范围,具体此处不做限定,在网络设备中不同数据帧中可以划分的方式不同,即扫描的波束方向的个数以及在数据帧的每个时隙中扫描的波束方向对应的区域范围也可以不同。
当波束方向的个数较多时,即窄波束方向,而窄波束方向的优点在于每个波束方向的范围较小,那么网络设备在每个时隙中监听的范围越小,网络设备监听得更细微,那么对不同波束方向所对应的信道的UE的覆盖率就越高。当波束方向的个数较少时,即宽波束方向,而宽波束方向的优点在于每个波束方向所对应的范围较大,所以网络设备在每个时隙中监听的范围较大,所以提高了网络设备对所有方向进行监听的效率。在后续的实施例中,仅以波束方向的个数为固定个数为例进行说明。
本申请实施例中,数据帧可以分为N个时隙,其中,当波束方向的个数固定时,N可以大于等于该波束方向。网络设备配置的数据帧在对不同波束方向上的信道的监听的方式不同,例如,网络设备可以在每个数据帧的特定时隙监听,也可以是网络设备在每个数据帧按照波束方向的顺序一个个波束方向进行监听,只有确定前一个波束方向所对应的SSB发送成功之后,才能在该数据帧的下一个时隙中监听下一个波束方向上的信道;还可以是在前面所述的这两种监听方式的数据帧混合使用,具体此处不做限定。因此,网络设备配置的数据帧在对不同波束方向所对应的信道进行监听时的监 听方式有多种,下面通过举例说明:
方式一:网络设备在每个数据帧中的特定时隙监听特定波束方向所对应的信道,也就是网络设备在每个数据帧的特定时隙只能监听特定波束方向的信道。
方式二:网络设备按照预设顺序在数据帧中的时隙监听每个波束方向所对应的信道并发送每个波束方向所对应的SSB;假设波束方向编号为1,2,3,...Z,仅当波束方向X所对应的SSB发送成功之后,网络设备才可以对波束方向X+1所对应的信道进行监听并发送对应的SSB,其中X为大于等于1且小于Z的整数。
下面结合具体的实施例对上述各种方式进行说明。
请参阅图3,介绍本申请实施例通过方式一数据处理的方法实施例,且在本实施例中,每个波束方向所对应的SSB在每个数据帧中与该SSB对应的特定时隙中发送。本申请实施例中SSB传输方法的一个实施例包括:
301、网络设备配置至少两个数据帧。
在网络设备使用非授权频谱进行传输数据时,由于所用频谱可能会被其他技术所采用,例如无线网络wifi或者蓝牙等,也可以被其他用户或者运营商所使用。因此,在该网络设备发送信号前需要执行信道监听,即采用先听后说(Listen-Before-Talk,LBT),以避免对其他用户和系统带来干扰,其中,非授权频谱可以为5GHz频段或者60GHz频段。因此,网络设备配置至少两个数据帧,该数据帧用于在该数据帧的时间内传输对应波束方向的SSB,在一个扫描周期内,网络设备配置数据帧的个数不限定,数据帧可以按照编号进行排列。其中,每个数据帧包括N个时隙,N为大于等于1的整数。
302、网络设备在第一数据帧中检测至少一个波束方向所对应的的信道的功率。
网络设备配置了相应的数据帧之后,网络设备可以在一个扫描周期内的第一数据帧中监听每个波束方向所对应的信道的功率,其中,该第一数据帧为该网络设备配置的用于在该数据帧的时间内传输对应波束方向的SSB,且在该第一数据帧的特定时隙监听特定波束方向所对应的信道的功率;该至少一个波束方向的信道的功率为至少一个波束方向所对应的信道在其他用户或者设备通过该波束方向所对应的信道发送信号产生的能量值,通过功率来指示该波束方向所对应的信道的使用情况。下面通过举例进行说明,如图2所示,数据帧分为四个时隙,有四个波束方向,每个数据帧的特定时隙检测并发送特定波束方向所对应的SSB;例如网络设备在数据帧1中的第一个时隙检测第一个波束方向所对应的的信道的功率,在数据帧1的第二个时隙检测第二个波束方向所对应的信道的功率。
另外,数据帧包括N个时隙,当N小于波束方向的个数时,此时网络设备在第一数据帧中可以检测部分波束方向所对应的信道的功率;不在同一数据帧中对所有波束方向所对应的信道进行检测,可以通过至少两个数据帧对所有波束方向上的信道进行检测,且特定数据帧中的特定时隙监听特定波束方向上的信道。下面通过图4进行举例说明,在图4中,数据帧1和数据帧3只能监听第一个波束方向的信道和第二个波束方向的信道,而数据帧2和数据帧4只能监听第四个波束方向上的信道和第三个波束方向上的信道,即特定数据帧中的特定时隙只能监听特定波束方向上的信道。
需要说明的是,图4为针对不在同一数据帧中扫描所有波束方向上的信道,而通 过至少两个数据帧进行监听的方案,图4仅仅是一种举例说明,在实际应用中,针对图4不在同一数据帧中扫描所有波束方向所对应的信道适用于当划分的波束方向的个数较多的情况,例如当波束方向的总个数为八个时,可以每个特定数据帧监听其中的三个波束方向上的信道,也可以是每个特定数据帧中监听其中的四个波束方向所对应的信道等,并且每两个同种类型的数据帧进行传输的间隔时长不限定,只要保证这两个同种类型的数据帧在同一个扫描周期中即可。
下面举例说明另一种网络设备监听信道的方式,在每个数据帧中可以有多个特定时隙监听特定波束方向,即在一个数据帧中按照顺序循环监听不同波束方向的信道,下面通过图5进行说明这种监听方式,需要说明的是,图5仅仅是为了说明该监听方式,在实际应用当中通过该监听方式可以有更多,具体此处不做限定。下面请参阅图5,在图5中数据帧1中包括8个时隙,需要扫描的波束方向有四个,在数据帧1的第一时隙扫描第一个波束方向所对应的信道,数据帧1的第二时隙扫描第二个波束方向所对应的信道,依次扫描至第四波束方向所对应的信道;当网络设备在数据帧1的第二时隙确定第二个波束方向所对应的信道处于占用状态时,此时数据帧1可以在数据帧1的第六时隙继续监听第二个波束方向所对应的信道;而当网络设备在数据帧1的第一时隙确定第一个波束方向上的信道空闲,那么网络设备在第一时隙通过第一波束方向所对应的信道发送该波束方向所对应的SSB,那么在数据帧1的第五时隙则不需要进行,该数据帧1的第五时隙可以用于传输其他数据等,对于其他波束方向上的信道网络设备也是按照这样的监听方式进行监听,具体不再一一说明。
需要说明的是,每个波束方向所对应的信道的功率的大小与当前网络设备所处的通信系统所采用的非授权频谱的类型相关,还与该每个波束方向所对应的区域范围的大小相关,不同的非授权频谱和不同的波束方向所对应的区域范围所对应的功率不同,一般情况下,波束方向所对应的区域范围越大,则功率会相应的增加。例如,假设当前通信系统所采用的非授权频谱为5GHz频段,波束方向为90度,那么网络设备预设有对应每个波束方向所对应的信道的功率。
本实施例中,网络设备只在数据帧的特定时隙中检测特定波束方向所对应的信道,即在实际应用中,网络设备侧和UE侧可以预先设定规则,即使得UE能够根据当前所处的位置确定其所在的波束方向,并在网络设备在数据帧中的特定时隙检测其所在的波束方向所对应的信道时,UE只在该特定时隙中监听该波束方向所对应的信道,而在该数据帧的其他时隙则不监听该波束方向所对应的信道。所以,通过本方案可以使得UE在只在特定时隙监听信道,从而降低UE侧用于监听信道的功耗,提高UE的续航能力。
303、网络设备在该第一数据帧的第M时隙确定该第一波束方向上的第一信道处于占用状态。
网络设备在第一数据帧的特定时隙检测每个波束方向所对应的信道的功率,那么网络设备在检测的过程中可以确定每个波束方向所对应的信道的使用情况。网络设备在第一数据帧的特定时隙监听特定波束方向所对应的信道的功率,当网络设备在第一数据帧的对应时隙确定对应的波束方向所对应的信道的功率小于预设阈值,则网络设备发送该对应的波束方向的SSB,其中,该SSB中可以包含有该波束方向的编号,用 于网络设备记录已发送出去的SSB。当网络设备在第一数据帧的第M时隙确定该第一波束方向所对应的第一信道的功率大于预设阈值时,此时网络设备可以确定该第一波束方向所对应的第一信道处于占用状态,其中M为大于等于1的整数。而此时在第一波束方向所对应的第一信道的UE可以在该第一数据帧的第M时隙开始监听该第一信道,而在该第一数据帧中的其他时隙则不监听信道,所以UE只需特定时隙监听信道即可,相比于现有技术,大大降低了UE监听信道所损耗的功率。
需要说明的是,网络设备在第一数据帧当中监听的波束方向有多个,在图3所示的实施例中仅以第一波束方向为例进行说明,在其他波束方向上的具体传输方式都可以参考第一波束方向上的传输方式。
下面参阅图2,以网络设备第一数据帧的第二个时隙检测的波束方向为第二个波束方向为例进行说明,网络设备在数据帧1的第二个时隙检测该第二个波束方向所对应的信道的功率,其中,该第二波束方向所对应的信道的功率为其他用户或者设备通过该信道发送信号产生的能量值,通过功率来指示该信道的使用情况。例如,从图2可知,网络设备在数据帧1的第二个时隙中检测到该第二个波束方向所对应的信道处于占用状态,则网络设备在数据帧1的第二个时隙不发送该第二个波束方向所对应的SSB,那么网络设备在数据帧2的第二个时隙继续检测该第二个波束方向所对应的信道,从图2可知,在数据帧2的第二个时隙中,网络设备检测到该信道处于空闲状态,则该网络设备在数据帧2的第二个时隙发送该第二个波束方向所对应的SSB。
304、网络设备在该第一数据帧的第M时隙不发送该第一波束方向所对应的第一SSB。
网络设备在第一数据帧的第M时隙检测该第一波束方向所对应的第一信道,当该网络设备检测到该第一信道处于占用状态时,网络设备在该第一数据帧的第M时隙不发送该第一波束方向所对应的第一SSB。例如,图2中,网络设备在数据帧1的第二个时隙中检测到该第二个波束方向所对应的信道处于占用状态,则网络设备在数据帧1的第二个时隙不发送该第二个波束方向所对应的SSB。
305、网络设备在第二数据帧的第M时隙确定该第一波束方向所对应的第一信道处于空闲状态。
网络设备在第一数据帧的第M时隙检测到第一波束方向所对应的第一信道处于占用状态,那么网络设备可以在第二数据帧的第M时隙继续检测该第一信道的功率,当网络设备在第二数据帧的第M时隙确定该第一信道的功率小于预设阈值时,网络设备可以确定该第一信道处于空闲状态,其中M为大于等于1的整数。需要说明的是,在第一数据帧中已成功发送出去的对应波束方向所对应的SSB,在第二数据帧的对应时隙中可以不检测该对应波束方向所对应的信道,那么第二数据帧中的对应时隙可以用来传输其他数据,或者不做任何操作,具体此处不做限定。
下面举例再说明,如图2所示,网络设备在数据帧1的第二个时隙确定第二个波束方向所对应的信道被占用,那么网络设备在数据帧2中的第二个时隙继续检测该第二波束方向所对应的信道的功率,然后网络设备在数据帧2的第二个时隙中确定该功率小于预设阈值;那么此时网络设备在数据帧2的第二个时隙可以确定该第二个波束方向所对应的信道处于空闲状态。
306、网络设备在第二数据帧的第M时隙通过该第一信道向该第一信道上的UE发送第一SSB。
网络设备可以在第二数据帧的第M时隙通过该第一信道向第一信道上的UE发送第一SSB。其中,第一数据帧和第二数据帧为网络设备配置的同一扫描周期的两个数据帧,第二数据帧为在第一数据帧之后,并且与第一数据帧相邻的数据帧,其中M为大于等于1的整数。另外,该第一信道上的UE在该实施例中,仅在每个数据帧的第M时隙监听该第一信道,而在数据帧的其他时隙该UE可以不监听信道,所以UE只需要在每个数据帧的第M时隙监听信道来获取对应的SSB即可,这样可以降低UE的功耗。
例如,图2中网络设备在数据帧2的第二个时隙确定第二个波束方向所对应的信道处于空闲状态,那么网络设备在数据帧2的第二个时隙发送该第二个波束方向所对应的SSB;需要说明的是,该数据帧1、数据帧2以及数据帧3为同一波束扫描周期内的三个数据帧;其次,当网络设备在数据帧3仍未发送所有波束方向对应的SSB时,网络设备可以在数据帧4继续监听对应的波束方向所对应的信道,直到网络设备预先配置的数据帧使用完或达到一个波束扫描周期的时间。
307、UE根据该第一SSB接入网络。
UE接收到网络设备发送的第一SSB之后,UE可以根据该第一SSB接入网络。具体可以是UE根据该第一SSB获取接入网络信息,例如网络的可用资源,如频率和时间等,然后根据该接入网络信息发起随机接入。
本申请实施例中,当网络设备在第一数据帧的第M时隙检测到该第一波束方向所对应的第一信道处于占用状态时,那么网络设备在该第一数据帧的第M时隙不发送该第一波束方向所对应的第一SSB,然后网络设备在第二数据帧的第M时隙继续检测该第一信道,当该网络设备在第二数据帧的第M时隙检测到该第一信道处于空闲状态时,网络设备在该第二数据帧的第M时隙发送该第一SSB,从而实现第一信道上的UE通过该第一SSB接入网络,该第一数据帧和第二数据帧为同一扫描周期中的两个数据帧。以数据帧的时长作为检测周期并发送对应的SSB,而该数据帧的时长远小于现有技术中的扫描周期,所以缩短了UE接入网络的时间,提高了UE在同一扫描周期内接入网络的概率。
在一些实施例中,所述方法还可以包括如下步骤:
308、网络设备在第三数据帧的第M时隙确定在该第一波束方向所对应的第一信道处于占用状态。
UE接入网络之后,UE通过第一SSB可以确定网络设备的基本配置信息,所以UE只需要在数据帧的特定时隙监听该第一信道并接收该第一波束方向所对应的第一SSB,这样可以降低UE监听信道的功耗。网络设备在第三数据帧的第M时隙检测到在该第一信道的功率大于预设阈值时,那么网络设备在第三数据帧的第M时隙可以确定在该第一信道处于占用状态,那么UE会在第四数据帧的该第M时隙继续监听该第一信道,其中,第三数据帧、第四数据帧与第一数据帧、第二数据帧不为同一波束扫描周期内,且第三数据帧和第四数据帧所位于的扫描周期与第一数据帧所在的扫描周期是相邻的两个扫描周期。
309、网络设备在第三数据帧的第M时隙不发送该第一SSB。
网络设备确定了在第三数据帧的第M时隙第一波束方向所对应的第一信道处于占用状态,那么网络设备在第三数据帧的第M时隙不发送该第一SSB。
310、网络设备在第四数据帧的第M时隙确定该第一波束方向所对应的第一信道处于空闲状态。
网络设备在第四数据帧的第M时隙继续检测该第一信道的功率,当网络设备检测到该功率小于预设阈值时,网络设备可以在第四数据帧的第M时隙确定该第一信道处于空闲状态,其中第四数据帧与第三数据帧为同一扫描周期内的数据帧。
311、网络设备在第四数据帧的第M时隙通过该第一信道向该第一信道上的UE发送该第一SSB。
网络设备在第四数据帧的第M时隙确定该第一信道处于空闲状态时,此时网络设备可以在第四数据帧的第M时隙通过该第一信道向该第一信道上的UE发送第一SSB。
312、UE根据该第一SSB与网络同步。
UE接收到网络设备的发送的第一SSB之后,UE可以根据该第一SSB获取网络配置信息,根据该网络配置信息调整其时钟,实现与网络同步的过程。
请参阅图6,介绍本申请实施例通过方式二SSB传输方法实施例,且在本实施例中,每个波束方向所对应的SSB在数据帧的时隙中按照预设顺序发送。本申请实施例中SSB传输方法的另一个实施例包括:
601、网络设备配置至少两个数据帧。
步骤601与前述图3中的步骤301类似,具体此处不再赘述。
602、网络设备在第一数据帧中检测至少一个波束方向上的信道的功率。
网络设备配置了相应的数据帧之后,网络设备可以在一个扫描周期内的第一数据帧检测每个波束方向所对应的信道的功率,其中,该第一数据帧为网络设备配置的用于在该数据帧的时长内传输对应波束方向的SSB,且网络设备按照预设顺序在数据帧中的时隙检测每个波束方向所对应的信道的功率,当网络设备确定对应波束方向的信道的功率小于预设阈值时,发送该波束方向所对应的SSB;假设波束方向编号为1,2,3,...Z,仅当波束方向X所对应的SSB发送成功之后,网络设备才可以对波束方向X+1的信道进行检测并发送对应的SSB,其中X为大于等于1且小于Z的整数。
下面通过举例进行说明,如图7所示,网络设备在数据帧1的第一个时隙监听第一个波束方向所对应的信道的功率,图7可知在数据帧1的第一个时隙可以确定该第一个波束方向所对应的信道处于空闲状态,网络设备在数据帧1的第一个时隙发送第一个波束方向所对应的SSB;然后网络设备在数据帧1的第二个时隙监听第二个波束方向所对应的信道的功率,从图7可知在数据帧1的第二个时隙可以确定该第二个波束方向所对应的信道处于占用状态,然后网络设备在数据帧1的第三时隙继续检测第二个波束方向所对应的信道的功率,从图7可知在数据帧1的第三个时隙可以确定第二个波束方向所对应的信道处于空闲状态,那么网络设备在数据帧1的第三个时隙发送第二个波束方向所对应的SSB;然后网络设备在数据帧1的第四时隙检测第三个波束方向所对应的信道,从图7可知,网络设备监听第三个波束方向所对应的信道,直到数据帧2的第二个时隙才确定第三波束方向所对应的信道处于空闲状态,此时才将第三个波束方向所对应的SSB发送出去。即在本实施例中,网络设备按照预设顺序在 数据帧的时隙检测各波束方向所对应的信道,直到所有波束方向所对应的SSB都成功发送出去为止,或者直到在一个扫描周期内,网络设备配置的数据帧使用完才停止。其中,数据帧1、数据帧2和数据帧3都为同一周期内网络设备配置的数据帧。
603、网络设备在第一数据帧的最后一个时隙确定该第一波束方向所对应的第一信道处于占用状态。
网络设备在第一数据帧中检测对应波束方向的信道,当网络设备在第一数据帧的最后一个时隙确定第一波束方向所对应的第一信道的功率大于预设阈值时,此时网络设备可以在第一数据帧的最后一个时隙确定该第一波束方向所对应的第一信道处于占用状态。下面通过图7进行说明,图7中网络设备在数据帧1的第四个时隙可以确定第三个波束方向所对应的信道处于占用状态,而第四个时隙为数据帧1的最后一个时隙。
需要说明的是,网络设备在第一数据帧当中监听的波束方向有多个,在图6所示的实施例中仅以第一波束方向为例进行说明,在其他波束方向上的具体传输方式都可以参考第一波束方向的传输方式。
604、网络设备在第一数据帧的最后一个时隙不发送该第一波束方向所对应的第一SSB。
网络设备在第一数据帧的时隙中按照波束方向的编号顺序对每个波束方向所对应的信道进行检测,假设波束方向编号为1,2,3...Z,仅当第X波束方向所对应的SSB发送成功之后,网络设备才可以对第X+1波束方向的信道进行监听,其中X为大于等于1且小于Z的整数。因此,网络设备在第一数据帧中按照波束方向的编号顺序对每个波束方向的信道进行检测的过程,当网络设备确定了在第一数据帧的最后一个时隙第一波束方向所对应的第一信道处于占用状态时,网络设备在第一数据帧的最后一个时隙不发送该第一波束方向所对应的第一SSB。例如,从图7可知,网络设备在数据帧2的第二个时隙检测第二个波束方向所对应的信道,网络设备在该第二个时隙确定该第二个波束方向所对应的信道处于占用状态,然后网络设备在数据帧1的第三个时隙继续检测该第二波束方向所对应的信道,确定该第二个波束方向所对应的信道处于空闲状态时,网络设备才在数据帧1的第三个时隙发送第二个波束方向所对应的SSB;然后网络设备在数据帧1的第四个时隙中继续检测第三个波束方向所对应的信道,当网络设备可以确定第三波束方向所对应的信道处于占用状态,所以网络设备在数据帧1的第四个时隙不发送该第三个波束方向所对应的SSB。
605、网络设备在第二数据帧的第一个时隙确定该第一信道处于空闲状态。
网络设备在第一数据帧的最后一个时隙未发送出第一波束方向所对应的第一SSB,那么网络设备在第二数据帧的第一个时隙继续检测该第一波束方向所对应的第一信道的功率,当该网络设备在第二数据帧第一个时隙检测到该第一信道的功率小于预设阈值时,网络设备可以在第二数据帧的第一个时隙确定第一波束方向的第一信道处于空闲状态,其中,第一数据帧和第二数据帧为同一扫描周期内的网络设备配置的两个数据帧,并且第二数据帧为该第一数据帧之后,并且与该第一数据帧相邻的数据帧,用于传输波束方向所对应的SSB。例如,从图7可知,网络设备在数据帧2的第一个时隙继续检测该第三个波束方向所对应的信道,当网络设备检测到第三个波束方向所对 应的信道的功率大于预设阈值,那么网络设备仍然不发送该第三个波束方向所对应的SSB,在数据帧2的第二个时隙继续检测该第三个波束方向所对应的信道,当检测到该第三个波束方向所对应的信道的功率小于预设阈值时,网络设备可以确定该第三个波束方向所对应的信道处于空闲状态。
606、网络设备在第二数据帧的第一个时隙通过该第一信道发送第一SSB。
网络设备在第二数据帧的第一时隙确定该第一波束方向所对应的第一信道处于空闲状态之后,网络设备在第二数据帧的第一时隙通过该第一信道发送第一SSB,以使得在第一信道上的UE接收该第一SSB。需要说明的是,在第二数据帧中将在第一数据帧中未成功发送的波束方向所对应的SSB全部发送成功之后,如果第二数据帧中还有对应配置的时隙未使用时,那么此时这些时隙可以用来传输数据,也可以不做任何操作,具体此处不做限定。例如,如图7所示,由于在数据帧2中的最后一个时隙检测到该第四个波束方向所对应的信道处于占用状态,因此,网络设备在数据帧3的第一个时隙继续检测该第四个波束方向所对应的信道,当网络设备检测到该第四个波束方向所对应的信道处于空闲状态时,发送第四波束方向所对应的SSB至第四波束方向所对应的信道的UE。
607、UE通过第一SSB接入网络。
步骤607与前述图3中的步骤307类似,具体此处不再赘述。
在一些实施例中,所述方法还可以包括如下步骤:
608、网络设备在第三数据帧的第M时隙确定该第一波束方向所对应的第一信道处于占用状态。
UE通过第一SSB接入网络之后,可以获取到网络的配置信息,因此,可以在数据帧的对应时隙监听该第一波束方向所对应的信道并接收对应的SSB,这样可以降低UE监听信道的功耗。网络设备可以在第三数据帧的第M时隙监听该第一信道的功率,当网络设备确定该功率大于预设阈值时,网络设备在该第三数据帧的第M时隙可以确定该第一波束方向所对应的第一信道处于占用状态;其中,M为大于等于1的整数。在第三数据帧第M-1时隙时,网络设备已经将在将第一波束方向之前的其他波束方向所对应的SSB成功发送出去,该网络设备使用该第三数据帧的第M时隙监听该第一波束方向上所对应的第一信道的功率。其中,该第三数据帧与第一数据帧和第二数据帧属于不同扫描周期内的数据帧。
609、网络设备在第三数据帧的第M+1时隙确定该第一波束方向所对应的第一信道处于空闲状态。
网络设备在第三数据帧的第M+1时隙继续监听该第一波束方向所对应的第一信道的功率,当该网络设备确定该功率小于预设阈值时,此时该网络设备可以确定在第三数据帧的第M+1时隙该第一波束方向所对应的第一信道处于空闲状态。
610、网络设备在第三数据帧的第M+1时隙通过该第一信道发送第一SSB。
网络设备在第三数据帧的第M+1时隙确定该第一信道处于空闲状态,那么网络设备在第三数据帧的第M+1时隙可以通过该第一信道发送第一SSB。
611、UE根据该第一SSB与网络同步。
步骤611与前述图3中的步骤312类似,具体此处不再赘述。
本申请实施例中,当网络设备在第一数据帧的最后一个时隙检测到该第一波束方向所对应的第一信道处于占用状态时,那么网络设备在该第一数据帧的最后一个时隙不发送该第一波束方向所对应的第一SSB,然后网络设备在第二数据帧的第一个时隙继续扫描该第一信道,当该网络设备在第二数据帧的第一个时隙检测到该第一信道处于空闲状态时,网络设备在该第二数据帧的第一个时隙发送该第一SSB,从而实现第一信道上的UE通过该第一SSB接入网络,该第一数据帧和第二数据帧为不同数据帧中的两个数据帧两个时隙,并且该第二数据帧在第一数据帧之后,且与该第一数据帧相邻。以该数据帧的一个时隙的时长作为检测周期并发送对应的SSB,而该数据帧的时隙远小于现有技术中的扫描周期,所以缩短了UE接入网络的时间,提高了UE在同一扫描周期内接入网络的概率。
针对上述对方式二的数据传输方式,步骤601至步骤611为针对第一波束方向所对应的第一信道在第一数据帧的最后一个时隙监听,并且在第一数据帧的最后一个时隙内该第一信道处于占用状态,然后在第二数据帧的第一个时隙继续监听该第一信道的过程。而针对方式二的监听方式,当该第一目标周期和第二目标周期为不同数据帧的两个时隙时,第一目标周期可以对应第一数据帧的第M时隙,第一SSB为在第一数据帧所对应的时隙中未发送的SSB中的第N个,第二目标周期对应第二数据帧的第Y时隙,其中,第二数据帧为该第一数据帧之后,且与该第一数据帧相邻或者不相邻的数据帧,第Y时隙是在第二数据帧中第X时隙之后的时隙中首个在第一信道上处于空闲的一个时隙,该第X时隙为成功发送了在第一数据帧所对应的时隙中未发送的第N-1个SSB的时隙,M、N、X、Y为大于等于1的整数,并且,网络设备在第一数据帧和第二数据帧的监听方式为上述所述的方式二。
下面通过举例进行说明,请参阅图7,针对第三个波束方向所对应的信道,网络设备在数据帧1的第四个时隙监听第三个波束方向所对应的信道,网络设备在数据帧1的第四个时隙确定该第三个波束方向所对应的信道处于占用状态,那么网络设备在数据帧2的第一个时隙继续监听该第三个波束方向所对应的信道,当在数据帧3的第一个时隙确定该第三个波束方向所对应的信道处于占用状态时,那么网络设备在数据帧2的第二个时隙继续监听该第三个波束方向所对应的信道。从图7可知,在数据帧2的第二个时隙检测到该第三个波束方向所对应的信道处于空闲状态,那么此时网络设备在数据帧2的第二个时隙发送该第三个波束方向所对应的SSB。
因此,在上述示例中,该第一目标周期可以理解为数据帧1的第四个时隙,该第二目标周期为数据帧2的第二个时隙,而在数据帧1的第四个时隙时,网络设备在数据帧1中未发送的SSB包括第三个波束方向所对应的SSB和第四个波束方向所对应的SSB,数据帧2的第二个时隙可以理解为在数据帧2的第一个时隙之后首先在该第三个波束方向所对应的信道处于空闲状态的时隙,即数据帧2的第二个时隙可以理解为上述所说的第二数据帧的第Y时隙,而数据帧2的第一个时隙可以理解为上述所说的第二数据帧的第X时隙,在第X时隙时,网络设备已经成功将第一个波束方向所对应的SSB和第二个波束方向所对应的SSB发送出去。在图7中,仅以数据帧1和数据帧2为相邻的两个数据帧,在实际应用中,数据帧1和数据帧2可以是不相邻的两个数据帧,只要这两个数据帧属于同一扫描周期的两个数据帧即可。
上述详细介绍了方式一和方式二的技术方案,本申请实施例中,网络设备在对不同波束方向上的信道的监听方式还可以是将方式一和方式二进行结合,即网络设备在第一数据帧中的特定时隙监听特定波束方向上的信道,然后网络设备按照预设顺序在第二数据帧的时隙监听在第一数据帧中未发送的SSB所对应的波束方向的信道。
下面对将方式一和方式二进行结合的方案进行描述,网络设备在第一数据帧中的第M时隙确定第一波束方向所对应的第一信道处于占用状态,该第一波束方向所对应的第一SSB为在第一数据帧所对应的时隙中未发送的SSB中的第N个,网络设备在第二数据帧中的第Y时隙检测到该第一信道处于空闲状态,那么网络设备在第二数据帧的第Y时隙发送该第一SSB,其中,第二数据帧为该第一数据帧之后,且与该第一数据帧相邻或者不相邻的数据帧,第Y时隙是在第二数据帧中第X时隙之后的时隙中首个在第一信道上处于空闲的一个时隙,该第X时隙为成功发送了在第一数据帧所对应的时隙中未发送的第N-1个SSB的时隙,M、N、X、Y为大于等于1的整数,其中,网络设备在第一数据帧的特定时隙监听特定波束方向所对应的信道,而在第二数据帧中是按照上述方式二进行传输。
下面以在第一数据帧所对应的时隙中未发送的SSB为第一SSB和第二波束方向所对应的SSB为例进行说明,即在第一数据帧的第M时隙检测到该第一波束方向所对应的第一信道处于占用状态,在第一数据帧的第M+1时隙确定第二波束方向所对应的信道处于占用状态,那么网络设备可以确定在第一数据帧未发送的SSB为第一SSB和第二波束方向所对应的第二SSB,其中第二波束方向的编号在第一波束方向的编号之后;其中,第一数据帧包括N个时隙,N为大于等于1的整数。需要说明的是,在第一数据帧中还可能有其他波束方向上的信道处于占用状态,在实际应用中,当有三个以上的波束方向的信道处于占用状态时,网络设备执行的操作过程类似。这里仅以两个波束方向上的信道处于占用状态为例进行说明。
那么网络设备可以在第二数据帧中的第一个时隙来监听该第一信道,其中,第一数据帧和第二数据帧为同一波束扫描周期内的两个数据帧,因为在第二数据帧中是按照波束方向的编号顺序对在第一数据帧中未发送的SSB所对应的波束方向进行监听的,第一波束方向的编号小于第二波束方向的编号,所以网络设备在第二数据帧中的第一个时隙先监听第一波束方向所对应的第一信道的功率,当网络设备在第二数据帧的第一个时隙确定第一波束方向所对应的信道处于空闲状态,那么网络设备可以在第二数据帧的第一个时隙发送第一波束方向所对应的第一SSB;当网络设备在第二数据帧的第一个时隙确定该第一信道处于占用状态时,网络设备在第二数据帧的第一个时隙不发送该第一SSB,那么网络设备在第二数据帧的第二个时隙继续检测该第一信道,直到在第二数据帧的第X个时隙中检测到该第一信道处于空闲状态时,此时网络设备在第二数据帧的第X个时隙发送该第一SSB;其中X为大于1的整数,然后网络设备在第二数据帧的第X+1时隙才开始对第二波束方向所对应的信道进行检测,具体的过程与第一波束方向所对应的信道的检测过程类似,具体不再赘述。
本申请实施例中,以方式一和方式二进行结合的方案中,对于第一波束方向所对应的第一信道的监听周期为第一数据帧的第M时隙至第二数据帧的第Y时隙,由于第一数据帧和第二数据帧为同一扫描周期中的两个数据帧,所以网络设备对第一波束方 向所对应的第一信道的监听周期远小于一个扫描周期,因此缩短了UE接入网络的时间,提高了UE在同一扫描周期内接入网络的概率。其次,在方式一和方式二进行结合的方案中,由于在第一数据帧是以方式一的形式进行波束扫描,即网络设备在数据帧的特定时隙监听特定波束方向所对应的信道,因此,UE可以设置为只在第一数据帧特定时隙监听其所处的波束方向的信道,这样能够减少UE用于监听信道的功耗,提高UE的续航能力。
下面结合图8对方式一和方式二进行结合的方案进行举例说明。请参阅图8,在图8中可知,网络设备在数据帧1中的第二个时隙确定第二个波束方向所对应的信道处于占用状态以及在数据帧1的第四个时隙确定第四个波束方向所对应的信道处于占用状态;那么网络设备在数据帧2的第一个时隙监听第二个波束方向所对应的信道,且网络设备在数据帧2的第一个时隙确定该第二波束方向所对应的信道处于占用状态;网络设备继续在数据帧2的第二个时隙中监听第二个波束方向所对应的信道,当网络设备确定在数据帧2的第二个时隙确定第二个波束方向所对应的信道处于空闲状态,则网络设备发送该第二个波束方向所对应的SSB;因为网络设备数据帧2的第二个时隙确定了第二个波束方向所对应的信道处于空闲状态,因此,网络设备在数据帧3的第三个时隙可以在数据帧1的第三个时隙监听第四个波束方向所对应的信道,从图8可知,网络设备在数据帧3中的第三个时隙和数据帧4的第四个时隙都确定该第四个波束方向所对应的信道处于占用状态,所以网络设备在数据帧3中的第一个时隙继续监听该第四个波束方向所对应的信道,从图8可知,在数据帧3的第一个时隙确定该第四波束方向所对应的信道处于空闲状态,所以网络设备在数据帧3的第一时隙发送该第四个波束方向所对应的SSB;其中,需要说明的是,该数据帧1、数据帧2和数据帧3为同一扫描周期内的数据帧,另外,数据帧1、数据帧2和数据帧3可以为如图8所示相邻的数据帧,也可以是不相邻的数据帧,具体本申请不做限定。
下面针对本申请一些实施例中第一目标周期和第二目标周期为同一数据帧的不同时隙的这种情况通过举例进行说明:
第一种情况:第一目标周期和第二目标周期可以为同一数据帧的两个连续时隙;请参阅图7,从图7可知,在数据帧1的第二个时隙网络设备检测到该第二个波束方向所对应的信道处于占用状态,则网络设备在数据帧1的第二个时隙不发送该第二个波束方向所对应的SSB;然后网络设备在数据帧1的第三个时隙继续检测该第二个波束方向所对应的信道,从图7可知,在数据帧1的第三个时隙中确定该第二个波束方向所对应的信道处于空闲状态,那么网络设备在数据帧1的第三个时隙发送该第二个波束方向所对应的SSB。所以针对方式二的数据处理方法,对于第二个波束方向的信道的检测周期可以理解为数据帧1的一个时隙的时长。
第二种情况:第一目标周期和第二目标周期可以为同一数据帧的两个不连续时隙;请参阅图5,在图5中网络设备在数据帧1的第二个时隙监听第二个波束方向所对应的信道,且该网络设备在数据帧1的第二个时隙确定该第二个波束方向所对应的信道处于占用状态;网络设备在数据帧1的第六个时隙再次监听该第二个波束方向所对应的信道,从图5可知,该网络设备在数据帧1的第六个时隙确定该第二个波束方向所对应的信道处于空闲状态,该网络设备在向该第二个波束方向所对应的信道发送该第 二个波束方向所对应的SSB;因此,针对第二个波束方向所对应的信道的监听,可以理解为该第一目标周期为该数据帧1的第二个时隙,该第二目标周期为该数据帧1的第六个时隙,即第一目标周期和第二目标周期为同一数据帧的两个不连续的时隙,且这两个不连续的时隙间隔的时长具体由数据帧的配置方式来决定。
可以理解的是,在图1A、图2、图4、图5、图7和图8所示的附图中,数据帧的长度在视觉上看到的长度不同,但实际上表达的都是一个数据帧的长度。
上面对本申请实施例中的SSB传输方法进行了描述,下面对本申请实施例中的网络设备进行描述,请参阅图9,本申请实施例中网络设备的一个实施例包括:
处理模块901,用于在第一目标周期检测到第一波束方向所对应的第一信道处于占用状态,则在该第一目标周期不发送该第一波束方向对应的第一SSB;
收发模块902,用于若处理模块901在第二目标周期检测到该第一信道处于空闲状态,则在该第二目标周期通过该第一信道发送所述第一SSB,该第一SSB用于该第一信道上的UE接入网络,该第一目标周期和该第二目标周期属于该网络设备配置的在同一扫描周期内的两个目标周期。
本实施例中,处理模块901具体用于:
在该第一目标周期检测该第一信道的功率;
若该第一信道的功率大于预设阈值,则在该第一目标周期该第一信道处于占用状态,则在该第一目标周期不发送该第一波束方向对应的第一SSB。
本实施例中,同一扫描周期包括多个数据帧所对应的时隙,一个数据帧所对应的时隙包括多个,该同一扫描周期内包括的每个目标周期分别对应一个数据帧所对应的时隙中的一个时隙,该第一目标周期和该第二目标周期为同一数据帧中的两个时隙或为不同数据帧中的两个时隙。
本实施例中,同一扫描周期包括多个数据帧所对应的时隙,一个数据帧所对应的时隙包括多个,同一扫描周期内包括的每个目标周期分别对应一个数据帧所对应的时隙中的一个时隙,该第一目标周期对应第一数据帧中的第M时隙,该第二目标周期对应第二数据帧中的第M时隙,该第二数据帧为该第一数据帧之后、且与该第一数据帧相邻的数据帧,M为大于等于1的整数。
本实施例中,同一扫描周期包括多个数据帧所对应的时隙,一个数据帧所对应的时隙包括多个,该同一扫描周期内包括的每个目标周期分别对应一个数据帧所对应的时隙中的一个时隙,该第一目标周期对应第一数据帧中的第M时隙,该第一SSB为在该第一数据帧所对应的时隙中未发送的SSB中的第N个,该第二目标周期对应第二数据帧中的第Y时隙,该第二数据帧为该第一数据帧之后、且与该第一数据帧相邻或不相邻的数据帧,该第Y时隙为该第二数据帧中第X时隙后的时隙中首个在该第一信道上处于空闲的一个时隙,该第X时隙为成功发送了在该第一数据帧所对应的时隙中未发送的第N-1个SSB的时隙,M、N、X、Y为大于等于1的整数。
本实施例中,同一扫描周期包括多个数据帧所对应的时隙,一个数据帧所对应的时隙包括多个,该同一扫描周期内包括的每个目标周期分别对应一个数据帧所对应的时隙中的一个时隙,该第一目标周期对应第一数据帧中的第M时隙,该第二目标周期对应所述第一数据帧中的第N时隙,M、N为大于等于1的整数,该第N时隙为所述第 M时隙后、且与该第M时隙相邻的一个时隙。
本实施例中,同一扫描周期包括多个数据帧所对应的时隙,一个数据帧所对应的时隙包括多个,该同一扫描周期内包括的每个目标周期分别对应一个数据帧所对应的时隙中的一个时隙,该第一目标周期对应第一数据帧中的最后一个时隙,该第二目标周期对应第二数据帧中的第1个时隙,该第二数据帧为该第一数据帧之后、且与该第一数据帧相邻的数据帧。
本申请实施例中,在使用非授权频谱的通信系统中,处理模块901在第一目标周期检测第一波束方向所对应的第一信道使用情况,当处理模块901在第一目标周期内检测到该第一信道处于占用状态时,那么处理模块901在该第一目标周期不发送该第一波束方向所对应的第一SSB;然后处理模块901可以在第二目标周期继续检测第一信道的使用情况,当处理模块901检测到该第一信道处于空闲状态时,那么收发模块902可以在第二目标周期通过该第一信道发送该第一SSB,从而实现在第一信道上的UE通过该第一SSB接入网络,该第一目标周期和第二目标周期为同一扫描周期的两个周期。以该目标周期作为检测周期并发送对应的SSB,而该目标周期小于现有技术中的扫描周期,所以缩短了UE接入网络的时间,提高了UE在同一扫描周期内接入网络的概率。
上面对本申请实施例中的SSB传输方法进行了描述,下面对本申请实施例中的UE进行描述,请参阅图10,本申请实施例中UE的一个实施例包括:
监听模块1001,用于若UE在第一目标周期内未接收到第一SSB,则在第二目标周期监听该第一信道,该第一SSB为该UE待接入的第一信道所对应的SSB,该第一信道为第一波束方向所对应的信道;
接入模块1002,用于当该UE在该第二目标周期内接收到网络设备通过所述第一信道发送的第一SSB时,通过该第一SSB接入网络,该第一目标周期和该第二目标周期属于该网络设备配置的在同一扫描周期内的两个目标周期。
本实施例中,同一扫描周期包括多个数据帧所对应的时隙,一个数据帧所对应的时隙包括多个,该同一扫描周期内包括的每个目标周期分别对应一个数据帧所对应的时隙中的一个时隙,该第一目标周期和该第二目标周期为同一数据帧中的两个时隙。
本实施例中,该第一目标周期对应第一数据帧中的第M时隙,该第二目标周期对应第一数据帧中的第N时隙,M、N为大于等于1的整数,该第N时隙为该第M时隙后、且与该第M时隙相邻的一个时隙。
本实施例中,同一扫描周期包括多个数据帧所对应的时隙,一个数据帧所对应的时隙包括多个,该同一扫描周期内包括的每个目标周期分别对应一个数据帧所对应的时隙中的一个时隙,该第一目标周期和该第二目标周期为不同数据帧中的两个时隙。
本实施例中,该第一目标周期对应第一数据帧中的第M时隙,该第二目标周期对应第二数据帧中的第M时隙,该第二数据帧为该第一数据帧之后、且与该第一数据帧相邻的数据帧,M为大于等于1的整数。
本实施例中,该第一目标周期对应第一数据帧中的第M时隙,该第一SSB为在所述第一数据帧所对应的时隙中未发送的SSB中的第N个,该第二目标周期对应第二数据帧中的第Y时隙,该第二数据帧为该第一数据帧之后、且与该第一数据帧相邻或不 相邻的数据帧,该第Y时隙为该第二数据帧中第X时隙后的时隙中首个在该第一信道上处于空闲的一个时隙,该第X时隙为该网络设备成功发送了在该第一数据帧所对应的时隙中未发送的第N-1个SSB的时隙,M、N、X、Y大于等于1的整数。
本实施例中,该第一目标周期对应第一数据帧中的最后一个时隙,该第二目标周期对应第二数据帧中的第一个时隙,该第二数据帧为该第一数据帧之后,且与该第一数据帧相邻的数据帧。
本申请实施例中,在使用非授权频谱的通信系统中,网络设备在第一目标周期检测第一波束方向所对应的第一信道使用情况,而此时监听模块1001在第一目标周期监听该第一信道,当该网络设备在第一目标周期内检测到该第一信道处于占用状态时,那么该网络设备在该第一目标周期不发送该第一波束方向所对应的第一SSB;然后网络设备可以在第二目标周期继续检测第一信道的使用情况,而监听模块1001在第二目标周期监听该第一信道,当网络设备检测到该第一信道处于空闲状态时,那么网络设备可以在第二目标周期通过该第一信道发送该第一SSB,而接入模块1002通过该第一SSB接入网络,该第一目标周期和第二目标周期为同一扫描周期的两个周期。以该目标周期作为检测周期并发送对应的SSB,而该目标周期小于现有技术中的扫描周期,所以缩短了UE接入网络的时间,提高了UE在同一扫描周期内接入网络的概率。
本申请还提供一种网络设备1100,请参阅图11,本申请实施例中网络设备一个实施例包括:
处理器1101、存储器1102、输入输出设备1103以及总线1104;
处理器1101、存储器1102、输入输出设备1103分别与总线1104相连,该存储器中存储有计算机指令;
处理器1101,用于在第一目标周期检测到第一波束方向所对应的第一信道处于占用状态,则在该第一目标周期不发送该第一波束方向对应的第一SSB;
输入输出设备1103,用于若处理器1101在第二目标周期检测到该第一信道处于空闲状态,则在该第二目标周期通过该第一信道发送所述第一SSB,该第一SSB用于该第一信道上的UE接入网络,该第一目标周期和该第二目标周期属于该网络设备配置的在同一扫描周期内的两个目标周期。
一种可能的实现方式中,该处理器1101具体用于:
在该第一目标周期检测该第一信道的功率;
若在该第一信道的功率大于预设阈值,则在该第一目标周期该第一信道处于占用状态,则在该第一目标周期不发送该第一波束方向对应的第一SSB。
另一种可能的实现方式中,同一扫描周期包括多个数据帧所对应的时隙,一个数据帧所对应的时隙包括多个,该同一扫描周期内包括的每个目标周期分别对应一个数据帧所对应的时隙中的一个时隙,该第一目标周期和该第二目标周期为同一数据帧中的两个时隙或为不同数据帧中的两个时隙。
另一种可能的实现方式中,同一扫描周期包括多个数据帧所对应的时隙,一个数据帧所对应的时隙包括多个,同一扫描周期内包括的每个目标周期分别对应一个数据帧所对应的时隙中的一个时隙,该第一目标周期对应第一数据帧中的第M时隙,该第二目标周期对应第二数据帧中的第M时隙,该第二数据帧为该第一数据帧之后、且与 该第一数据帧相邻的数据帧,M为大于等于1的整数。
另一种可能的实现方式中,同一扫描周期包括多个数据帧所对应的时隙,一个数据帧所对应的时隙包括多个,该同一扫描周期内包括的每个目标周期分别对应一个数据帧所对应的时隙中的一个时隙,该第一目标周期对应第一数据帧中的第M时隙,该第一SSB为在该第一数据帧所对应的时隙中未发送的SSB中的第N个,该第二目标周期对应第二数据帧中的第Y时隙,该第二数据帧为该第一数据帧之后、且与该第一数据帧相邻或不相邻的数据帧,该第Y时隙为该第二数据帧中第X时隙后的时隙中首个在该第一信道上处于空闲的一个时隙,该第X时隙为成功发送了在该第一数据帧所对应的时隙中未发送的第N-1个SSB的时隙,M、N、X、Y为大于等于1的整数。
另一种可能的实现方式中,同一扫描周期包括多个数据帧所对应的时隙,一个数据帧所对应的时隙包括多个,该同一扫描周期内包括的每个目标周期分别对应一个数据帧所对应的时隙中的一个时隙,该第一目标周期对应第一数据帧中的第M时隙,该第二目标周期对应所述第一数据帧中的第N时隙,M、N为大于等于1的整数,该第N时隙为所述第M时隙后、且与该第M时隙相邻的一个时隙。
另一种可能的实现方式中,同一扫描周期包括多个数据帧所对应的时隙,一个数据帧所对应的时隙包括多个,该同一扫描周期内包括的每个目标周期分别对应一个数据帧所对应的时隙中的一个时隙,该第一目标周期对应第一数据帧中的最后一个时隙,该第二目标周期对应第二数据帧中的第1个时隙,该第二数据帧为该第一数据帧之后、且与该第一数据帧相邻的数据帧。
本发明实施例还提供了一种UE,该UE可以为终端设备,如图12所示,为了便于说明,仅示出了与本发明实施例相关的部分,具体技术细节未揭示的,请参照本发明实施例方法部分。该终端设备可以为包括手机、平板电脑、PDA(Personal Digital Assistant,个人数字助理)、POS(Point of Sales,销售终端)、车载电脑等任意终端设备,以终端设备为手机为例:
图12示出的是与本发明实施例提供的终端设备相关的手机的部分结构的框图。参考图12,手机包括:射频(Radio Frequency,RF)电路1110、存储器1120、输入单元1130、显示单元1140、传感器1150、音频电路1160、无线保真(wireless fidelity,WiFi)模块1170、处理器1180、以及电源1190等部件。本领域技术人员可以理解,图12中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图12对手机的各个构成部件进行具体的介绍:
RF电路1110可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,给处理器1180处理;另外,将设计上行的数据发送给基站。通常,RF电路1110包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(Low Noise Amplifier,LNA)、双工器等。此外,RF电路1110还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(Global System of Mobile communication,GSM)、通用分组无线服务(General Packet Radio Service,GPRS)、码分多址(Code Division Multiple Access,CDMA)、宽带码分多址(Wideband Code Division Multiple Access, WCDMA)、长期演进(Long Term Evolution,LTE)、电子邮件、短消息服务(Short Messaging Service,SMS)等。
存储器1120可用于存储软件程序以及模块,处理器1180通过运行存储在存储器1120的软件程序以及模块,从而执行手机的各种功能应用以及数据处理。存储器1120可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器1120可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元1130可用于接收输入的数字或字符信息,以及产生与手机的用户设置以及功能控制有关的键信号输入。具体地,输入单元1130可包括触控面板1131以及其他输入设备1132。触控面板1131,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1131上或在触控面板1131附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板1131可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器1180,并能接收处理器1180发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1131。除了触控面板1131,输入单元1130还可以包括其他输入设备1132。具体地,其他输入设备1132可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元1140可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单。显示单元1140可包括显示面板1141,可选的,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板1141。进一步的,触控面板1131可覆盖显示面板1141,当触控面板1131检测到在其上或附近的触摸操作后,传送给处理器1180以确定触摸事件的类型,随后处理器1180根据触摸事件的类型在显示面板1141上提供相应的视觉输出。虽然在图12中,触控面板1131与显示面板1141是作为两个独立的部件来实现手机的输入和输入功能,但是在某些实施例中,可以将触控面板1131与显示面板1141集成而实现手机的输入和输出功能。
手机还可包括至少一种传感器1150,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板1141的亮度,接近传感器可在手机移动到耳边时,关闭显示面板1141和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频电路1160、扬声器1161,传声器1162可提供用户与手机之间的音频接口。 音频电路1160可将接收到的音频数据转换后的电信号,传输到扬声器1161,由扬声器1161转换为声音信号输出;另一方面,传声器1162将收集的声音信号转换为电信号,由音频电路1160接收后转换为音频数据,再将音频数据输出处理器1180处理后,经RF电路1110以发送给比如另一手机,或者将音频数据输出至存储器1120以便进一步处理。
WiFi属于短距离无线传输技术,手机通过WiFi模块1170可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图12示出了WiFi模块1170,但是可以理解的是,其并不属于手机的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。
处理器1180是手机的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器1120内的软件程序和/或模块,以及调用存储在存储器1120内的数据,执行手机的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器1180可包括一个或多个处理单元;优选的,处理器1180可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1180中。
手机还包括给各个部件供电的电源1190(比如电池),优选的,电源可以通过电源管理系统与处理器1180逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
尽管未示出,手机还可以包括摄像头、蓝牙模块等,在此不再赘述。
在本申请实施例中,该终端设备所包括的处理器1180还具有以下功能:
若UE在第一目标周期内未接收到第一SSB,则在第二目标周期监听该第一信道,该第一SSB为该UE待接入的第一信道所对应的SSB,该第一信道为第一波束方向所对应的信道;
当该UE在该第二目标周期内接收到网络设备通过所述第一信道发送的第一SSB时,通过该第一SSB接入网络,该第一目标周期和该第二目标周期属于该网络设备配置的在同一扫描周期内的两个目标周期。
一种可能的实现方式中,同一扫描周期包括多个数据帧所对应的时隙,一个数据帧所对应的时隙包括多个,该同一扫描周期内包括的每个目标周期分别对应一个数据帧所对应的时隙中的一个时隙,该第一目标周期和该第二目标周期为同一数据帧中的两个时隙。
另一种可能的实现方式中,该第一目标周期对应第一数据帧中的第M时隙,该第二目标周期对应第一数据帧中的第N时隙,M、N为大于等于1的整数,该第N时隙为该第M时隙后、且与该第M时隙相邻的一个时隙。
另一种可能的实现方式中,该第一目标周期对应第一数据帧中的第M时隙,该第二目标周期对应第一数据帧中的第N时隙,M、N为大于等于1的整数,该第N时隙为该第M时隙后、且与该第M时隙相邻的一个时隙。
另一种可能的实现方式中,同一扫描周期包括多个数据帧所对应的时隙,一个数据帧所对应的时隙包括多个,该同一扫描周期内包括的每个目标周期分别对应一个数 据帧所对应的时隙中的一个时隙,该第一目标周期和该第二目标周期为不同数据帧中的两个时隙。
另一种可能的实现方式中,该第一目标周期对应第一数据帧中的第M时隙,该第二目标周期对应第二数据帧中的第M时隙,该第二数据帧为该第一数据帧之后、且与该第一数据帧相邻的数据帧,M为大于等于1的整数。
另一种可能的实现方式中,该第一目标周期对应第一数据帧中的第M时隙,该第一SSB为在所述第一数据帧所对应的时隙中未发送的SSB中的第N个,该第二目标周期对应第二数据帧中的第Y时隙,该第二数据帧为该第一数据帧之后、且与该第一数据帧相邻或不相邻的数据帧,该第Y时隙为该第二数据帧中第X时隙后的时隙中首个在该第一信道上处于空闲的一个时隙,该第X时隙为该网络设备成功发送了在该第一数据帧所对应的时隙中未发送的第N-1个SSB的时隙,M、N、X、Y大于等于1的整数。
另一种可能的实现方式中,该第一目标周期对应第一数据帧中的最后一个时隙,该第二目标周期对应第二数据帧中的第一个时隙,该第二数据帧为该第一数据帧之后,且与该第一数据帧相邻的数据帧。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在另一种可能的设计中,当该网络设备或者UE为终端内的芯片时,芯片包括:处理单元和通信单元,所述处理单元例如可以是处理器,所述通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使该终端内的芯片执行上述实施例中任意一项的SSB传输方法。可选地,所述存储单元为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述终端内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific intergrated circuit,ASIC),或一个或多个用于控制上述实施例中的SSB传输方法的程序执行的集成电路。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘 Solid State Disk(SSD))等。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (13)

  1. 一种同步信号块SSB传输方法,其特征在于,所述方法应用于通信系统,所述通信系统通过非授权频谱传输数据,所述方法包括:
    网络设备在第一目标周期检测到第一波束方向所对应的第一信道处于占用状态,则所述网络设备在所述第一目标周期不发送所述第一波束方向对应的第一SSB;
    若所述网络设备在第二目标周期检测到所述第一信道处于空闲状态,则所述网络设备在所述第二目标周期通过所述第一信道发送所述第一SSB,所述第一SSB用于所述第一信道上的用户设备UE接入网络,所述第一目标周期和所述第二目标周期属于所述网络设备配置的在同一扫描周期内的两个目标周期。
  2. 根据权利要求1所述的方法,其特征在于,所述网络设备在第一目标周期检测到第一波束方向上所对应的第一信道处于占用状态包括:
    所述网络设备在所述第一目标周期检测所述第一信道的功率;
    若所述第一信道的功率大于预设阈值,则在所述第一目标周期所述第一信道处于占用状态。
  3. 根据权利要求1或2所述的方法,其特征在于,所述同一扫描周期包括多个数据帧所对应的时隙,一个数据帧所对应的时隙包括多个,所述同一扫描周期内包括的每个目标周期分别对应一个数据帧所对应的时隙中的一个时隙,所述第一目标周期和所述第二目标周期为同一数据帧中的两个时隙或为不同数据帧中的两个时隙。
  4. 根据权利要求3所述的方法,其特征在于,所述同一扫描周期包括多个数据帧所对应的时隙,一个数据帧所对应的时隙包括多个,所述同一扫描周期内包括的每个目标周期分别对应一个数据帧所对应的时隙中的一个时隙,所述第一目标周期对应第一数据帧中的第M时隙,所述第二目标周期对应第二数据帧中的第M时隙,所述第二数据帧为所述第一数据帧之后、且与所述第一数据帧相邻的数据帧,M为大于等于1的整数。
  5. 根据权利要求3所述的方法,其特征在于,所述同一扫描周期包括多个数据帧所对应的时隙,一个数据帧所对应的时隙包括多个,所述同一扫描周期内包括的每个目标周期分别对应一个数据帧所对应的时隙中的一个时隙,所述第一目标周期对应第一数据帧中的第M时隙,所述第一SSB为在所述第一数据帧所对应的时隙中未发送的SSB中的第N个,所述第二目标周期对应第二数据帧中的第Y时隙,所述第二数据帧为所述第一数据帧之后、且与所述第一数据帧相邻或不相邻的数据帧,所述第Y时隙为所述第二数据帧中第X时隙后的时隙中首个在所述第一信道上处于空闲的一个时隙,所述第X时隙为成功发送了在所述第一数据帧所对应的时隙中未发送的第N-1个SSB的时隙,M、N、X、Y为大于等于1的整数。
  6. 根据权利要求3所述的方法,其特征在于,所述同一扫描周期包括多个数据帧所对应的时隙,一个数据帧所对应的时隙包括多个,所述同一扫描周期内包括的每个目标周期分别对应一个数据帧所对应的时隙中的一个时隙,所述第一目标周期对应第一数据帧中的第M时隙,所述第二目标周期对应所述第一数据帧中的第N时隙,M、N为大于等于1的整数,所述第N时隙为所述第M时隙后、且与所述第M时隙相邻的一个时隙。
  7. 根据权利要求3所述的方法,其特征在于,所述同一扫描周期包括多个数据帧所对应的时隙,一个数据帧所对应的时隙包括多个,所述同一扫描周期内包括的每个目标周期分别对应一个数据帧所对应的时隙中的一个时隙,所述第一目标周期对应第一数据帧中的最后一个时隙,所述第二目标周期对应第二数据帧中的第1个时隙,所述第二数据帧为所述第一数据帧之后、且与所述第一数据帧相邻的数据帧。
  8. 一种同步信号块SSB传输方法,其特征在于,所述方法应用于通信系统,所述通信系统通过非授权频谱传输数据,所述方法包括:
    若用户设备UE在第一目标周期内未接收到第一SSB,则所述UE在第二目标周期监听所述第一信道,所述第一SSB为所述UE待接入的第一信道所对应的SSB,所述第一信道为第一波束方向所对应的信道;
    当所述UE在所述第二目标周期内接收到网络设备通过所述第一信道发送的所述第一SSB时,所述UE通过所述第一SSB接入网络,所述第一目标周期和所述第二目标周期属于所述网络设备配置的在同一扫描周期内的两个目标周期。
  9. 根据权利要求8所述的方法,其特征在于,所述同一扫描周期包括多个数据帧所对应的时隙,一个数据帧所对应的时隙包括多个,所述同一扫描周期内包括的每个目标周期分别对应一个数据帧所对应的时隙中的一个时隙,所述第一目标周期和所述第二目标周期为同一数据帧中的两个时隙或为不同数据帧中的两个时隙。
  10. 一种网络设备,其特征在于,所述网络设备包括:
    处理模块,用于网络设备在第一目标周期检测到第一波束方向所对应的第一信道处于占用状态,则在所述第一目标周期不发送所述第一波束方向对应的第一SSB;
    收发模块,用于若所述网络设备在第二目标周期检测到所述第一信道处于空闲状态,则在所述第二目标周期通过所述第一信道发送所述第一SSB,所述第一SSB用于所述第一信道上的用户设备UE接入网络,所述第一目标周期和所述第二目标周期属于所述网络设备配置的在同一扫描周期内的两个目标周期。
  11. 一种用户设备UE,其特征在于,所述UE包括:
    监听模块,用于若用户设备UE在第一目标周期内未接收到第一SSB,则在第二目标周期监听所述第一信道,所述第一SSB为所述UE待接入的第一信道所对应的SSB,所述第一信道为第一波束方向所对应的信道;
    接入模块,用于当所述UE在所述第二目标周期内接收到网络设备通过所述第一信道发送的所述第一SSB时,通过所述第一SSB接入网络,所述第一目标周期和所述第二目标周期属于所述网络设备配置的在同一扫描周期内的两个目标周期。
  12. 一种网络设备,其特征在于,所述网络设备包括:处理器、存储器、收发器,所述处理器、存储器以及收发器通过总线连接,所述存储器存储有计算机指令,所述处理器通过执行所述计算机指令用于实现如权1至权7任一项所述的SSB传输方法。
  13. 一种UE,其特征在于,所述UE包括:处理器、存储器、收发器,所述处理器、存储器以及收发器通过总线连接,所述存储器存储有计算机指令,所述处理器通过执行所述计算机指令用于实现如权8至权9任一项所述的SSB传输方法。
PCT/CN2019/077883 2018-03-13 2019-03-12 一种同步信号块传输的方法、网络设备以及用户设备 WO2019174583A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810202667.8 2018-03-13
CN201810202667 2018-03-13
CN201811013540.8 2018-08-31
CN201811013540.8A CN110278599A (zh) 2018-03-13 2018-08-31 一种同步信号块传输的方法、网络设备以及用户设备

Publications (1)

Publication Number Publication Date
WO2019174583A1 true WO2019174583A1 (zh) 2019-09-19

Family

ID=67907324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077883 WO2019174583A1 (zh) 2018-03-13 2019-03-12 一种同步信号块传输的方法、网络设备以及用户设备

Country Status (1)

Country Link
WO (1) WO2019174583A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023007473A1 (en) * 2021-07-30 2023-02-02 Lenovo (Singapore) Pte. Ltd. Beam association for a fixed frame period

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105338568A (zh) * 2015-09-25 2016-02-17 宇龙计算机通信科技(深圳)有限公司 非授权频谱上的lte的传输方法及装置
US20160330678A1 (en) * 2015-05-07 2016-11-10 Electronics And Telecommunications Research Institute Method and device for transmitting and receiving discovery reference signal through channel of unlicensed frequency band
CN107528682A (zh) * 2017-09-20 2017-12-29 宇龙计算机通信科技(深圳)有限公司 参考信号的发送方法及装置
CN107734683A (zh) * 2016-08-12 2018-02-23 中兴通讯股份有限公司 一种基于扫描时间块的信息传输方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160330678A1 (en) * 2015-05-07 2016-11-10 Electronics And Telecommunications Research Institute Method and device for transmitting and receiving discovery reference signal through channel of unlicensed frequency band
CN105338568A (zh) * 2015-09-25 2016-02-17 宇龙计算机通信科技(深圳)有限公司 非授权频谱上的lte的传输方法及装置
CN107734683A (zh) * 2016-08-12 2018-02-23 中兴通讯股份有限公司 一种基于扫描时间块的信息传输方法及装置
CN107528682A (zh) * 2017-09-20 2017-12-29 宇龙计算机通信科技(深圳)有限公司 参考信号的发送方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023007473A1 (en) * 2021-07-30 2023-02-02 Lenovo (Singapore) Pte. Ltd. Beam association for a fixed frame period

Similar Documents

Publication Publication Date Title
EP3624404B1 (en) Method and device for establishing wireless communication connection
US11539593B2 (en) Activation method for bandwidth part and related products
WO2017080378A1 (zh) 一种授权频谱辅助接入方法,网络设备及终端设备
CN112533232B (zh) 一种节能信号监听时刻的确定方法、配置方法及相关设备
RU2736110C1 (ru) Способ и устройство передачи служебных сигналов
EP3806538A1 (en) Cell management method, trigger condition configuration method, terminal device, and network side device
CN110401981B (zh) 一种信道接入方法、用户设备、基站及相关设备
US11089539B2 (en) Data processing method, terminal, and base station
WO2018103584A1 (zh) 一种小区确定的方法、相关设备以及系统
EP3952489A1 (en) Ssb transmission indication method and apparatus, terminal, device, and medium
EP3706486A1 (en) Random access method and user terminal
CN110278599A (zh) 一种同步信号块传输的方法、网络设备以及用户设备
CN111836266A (zh) Srs的发送方法、配置方法、终端及网络侧设备
WO2018201391A1 (zh) 同步信号块的定时方法及相关产品
CN106851784B (zh) 网络扫描方法与终端设备
WO2019174583A1 (zh) 一种同步信号块传输的方法、网络设备以及用户设备
CN112634885A (zh) 一种跨局域网的语音唤醒方法和装置
WO2017049930A1 (zh) 一种资源使用方法及终端
WO2019000365A1 (zh) 数据传输方法及相关产品
WO2019095218A1 (zh) 终端上报能力的方法及相关产品
CN111436138A (zh) 信号传输方法、设备及系统
CN117527771B (zh) 音频传输方法、装置、存储介质及电子设备
CN111240650B (zh) 一种数据分页的方法、装置及移动终端
WO2019024104A1 (zh) 数据处理方法及相关设备
RU2775830C1 (ru) Способ и устройство указания передачи блока ssb, оконечное устройство, сетевое устройство и носитель информации

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19767756

Country of ref document: EP

Kind code of ref document: A1