CN111416700A - 传送侧链路harq反馈信息的方法和装置 - Google Patents

传送侧链路harq反馈信息的方法和装置 Download PDF

Info

Publication number
CN111416700A
CN111416700A CN202010010092.7A CN202010010092A CN111416700A CN 111416700 A CN111416700 A CN 111416700A CN 202010010092 A CN202010010092 A CN 202010010092A CN 111416700 A CN111416700 A CN 111416700A
Authority
CN
China
Prior art keywords
psfch
pssch
information
sidelink
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010010092.7A
Other languages
English (en)
Other versions
CN111416700B (zh
Inventor
朴奎镇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KT Corp
Original Assignee
KT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190161978A external-priority patent/KR20200085643A/ko
Application filed by KT Corp filed Critical KT Corp
Publication of CN111416700A publication Critical patent/CN111416700A/zh
Application granted granted Critical
Publication of CN111416700B publication Critical patent/CN111416700B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开的实施例涉及用于传送侧链路混合自动重传请求(HARQ)反馈信息的方法和装置。提供了一种接收机用户设备(UE)的方法,所述方法包括:接收关于物理侧链路反馈信道(PSFCH)资源集的配置信息;从发射机UE接收物理侧链路共享信道(PSSCH);基于预先配置的标识信息,确定PSFCH资源集中的用于响应于PSSCH而传送HARQ反馈信息的PSFCH资源,以及使用该PSFCH资源来传送HARQ反馈信息。

Description

传送侧链路HARQ反馈信息的方法和装置
本申请要求2019年1月4日在韩国知识产权局提交的韩国专利申请No.10-2019-0001402和2019年12月6日在韩国知识产权局提交的韩国专利申请No.10-2019-0161978的优先权权益,其公开内容通过引用其整体而并入本文。
技术领域
本公开涉及用于在下一代/5G无线电接入网络(以下称为新无线电,“NR”)中传送侧链路HARQ反馈信息的方法和装置。
背景技术
最近,第3代合作伙伴计划(3GPP)批准了“关于新无线接入技术的研究(Study onNew Radio Access Technology)”,其是用于研究下一代/5G无线电接入技术(以下称为“新无线电”或“NR”)的研究项目。在关于新无线电接入技术的研究的基础上,无线电接入网络工作组1(RAN WG1)一直在讨论用于新无线电(NR)的帧结构、信道编码和调制、波形、多址接入方法等等。要求将NR设计为:不仅提供与长期演进(LTE)/LTE-高级(LTE-Advanced)相比而言改进的数据传输速率,而且还满足具体的和特定的使用场景中的各种要求。
建议将增强型移动宽带(eMBB)、大规模机器类型通信(mMTC)以及超可靠和低延时(latency)通信(URLLC)作为NR的代表性使用场景。为了满足各个场景的要求,要求将NR设计为具有与LTE/LTE-高级相比而言的灵活的帧结构。
由于对数据速率、延时、可靠性、覆盖范围等的要求彼此不同,因此需要一种用于基于与其他(例如,子载波间隔、子帧、传输时间间隔(TTI)等)不同的参数集(numerology)来高效地多路复用(multiplex)无线电资源单元的方法,作为通过构成任何NR系统的频带高效地满足每个使用场景要求的方法。
作为开发此类项目的一个方面,需要一种设计,其用于通过侧链路传送用于数据发送和数据接收的HARQ ACK/NACK反馈信息,该侧链路是用户设备(以下称为“用户设备”或“UE”)之间用于在NR中提供V2X服务的无线电链路,即NR侧链路。
发明内容
本公开的至少一个目的是提供用于分配用于在NR中传送侧链路HARQ反馈信息的无线电资源的特定方法和装置。
根据本公开的一个方面,提供了一种用于接收机用户设备(UE)传送混合自动重传请求(HARQ)反馈信息的方法,该方法包括:接收关于PSFCH资源集的配置信息,从发射机UE接收物理侧链路共享信道(PSSCH),基于预先配置的标识信息,确定PSFCH资源集中的用于响应于PSSCH而传送HARQ反馈信息的物理侧链路反馈信道(PSFCH)资源,以及使用PSFCH资源传送HARQ反馈信息。
根据本公开的另一方面,提供了一种用于发射机用户设备(UE)接收混合自动重传请求(HARQ)反馈信息的方法,该方法包括:向接收机UE传送PSSCH,以及使用PSFCH资源集中的基于预先配置的标识信息而确定的PSFCH资源,来接收响应于PSSCH的HARQ反馈信息。
根据本公开的又另一方面,提供一种用于传送混合自动重传请求(HARQ)反馈信息的接收机用户设备(UE),该接收机UE包括:接收机,其接收关于PSFCH资源集的配置信息,并从发射机UE接收PSSCH;控制器,其基于预先配置的标识信息,确定PSFCH资源集中的用于响应于PSSCH而传送HARQ反馈信息的PSFCH资源;以及发射机,其使用PSFCH资源来传送HARQ反馈信息。
根据本公开的又一方面,提供了一种用于接收混合自动重传请求(HARQ)反馈信息的发射机用户设备(UE),该发射机UE包括:发射机,其向接收机UE传送PSSCH;以及接收机,其使用PSFCH资源集中的基于预先配置的标识信息而确定的PSFCH资源来接收响应于PSSCH的HARQ反馈信息。
根据本公开的实施例,可以提供用于传送侧链路HARQ反馈信息的方法和装置,以使得能够在NR中分配用于传送侧链路HARQ反馈信息的无线电资源。
附图说明
通过以下结合附图的详细描述,本公开的上述和其他方面、特征和优点将更加明显,在附图中:
图1是示意性地示出了根据本公开实施例的NR无线通信系统的视图;
图2是示意性地示出了根据本公开实施例的NR系统的结构的视图;
图3是用于解释根据本公开实施例的无线电接入技术所支持的资源网格的视图;
图4是用于解释根据本公开实施例的无线电接入技术所支持的带宽部分的视图;
图5是示出了根据本公开实施例的无线电接入技术中的同步信号块的示例的视图;
图6是用于解释根据本公开实施例的无线电接入技术中的随机接入过程的视图;
图7是用于解释CORESET的视图;
图8是用于解释用于V2X通信的各种场景的视图;
图9(A)是示出了执行侧链路通信的第一UE(UE1)和第二UE(UE2)的视图,以及图9(B)是示出了UE的资源池的示例的视图;
图10是用于解释在V2X中捆绑(bundle)和传送HARQ反馈信息的方法的视图;
图11示出了V2X传输资源池的类型;
图12是示出根据本公开实施例的不同子载波间隔(SCS)之间的符号级对准的示例的视图;
图13是示意性示出可以应用本公开的实施例的带宽部分的视图;
图14是示出根据本公开实施例的接收机UE传送侧链路HARQ反馈信息所通过的过程的流程图;
图15是示出根据本公开实施例的发射机UE接收侧链路HARQ反馈信息所通过的过程的流程图;
图16是示出根据本公开实施例的接收机UE的框图;和
图17是示出根据本公开实施例的发射机UE的框图。
具体实施方式
在下文中,将参考所附说明性附图详细描述本公开的一些实施例。在附图中,在整个附图中相同的附图标记用于表示相同的元件,即使它们在不同的附图中示出。此外,在本公开的以下描述中,当对本文并入的配置和已知功能的详细描述可能使本公开的主题相当不清楚时,将省略该详细描述。当使用如本文提到的表述“包括”、“具有”、“包含”等时,除非使用了表述“仅”,否则可以添加任何其他部件。当以单数表示元件时,除非明确地对该元件做出特别说明,否则该元件可以覆盖复数形式。
此外,当描述本公开的组件时,本文可以使用诸如第一、第二、A、B、(A)、(B)等的术语。这些术语中的每一个都不用于限定相应组件的本质、顺序或序列,而仅用于将相应组件与一个或多个其他组件区分开。
在描述组件之间的位置关系时,如果两个或更多个组件被描述为彼此“连接”、“组合”或“耦合”,则应该理解的是,两个或更多个组件可以彼此直接“连接”、“组合”或“耦合”,并且两个或更多个组件可以在其中间“插入”另一组件的情况下彼此“连接”、“组合”或“耦合”。在这种情况下,另一组件可以包括在彼此“连接”、“组合”或“耦合”的两个或更多个组件中的至少一个组件中。
在描述一系列操作方法或制造方法中,例如,使用“在……之后”、“继……之后”、“下一个”、“在……之前”等的表述也可以包含不连续执行操作或过程的情况,除非在表述中使用了“立即”或“直接”。
本文提到的组件或与其对应的信息(例如,级别等等)的数值可以被解释为包括由各种因素(例如,过程因素、内部或外部影响、噪声等)引起的误差范围,即使没有提供对其明确的描述。
本说明书中的无线通信系统是指使用无线电资源提供诸如语音服务和数据服务的各种通信服务的系统。无线通信系统可以包括用户设备(UE)、基站、核心网络等。
下面公开的实施例可以应用于使用各种无线电接入技术的无线通信系统。例如,实施例可以应用于各种无线电接入技术,诸如码分多址(CDMA)、频分多址(FDMA)、时分多址(TDMA)、正交频分多址(OFDMA)、单载波频分多址(SC-FDMA)、非正交多址(NOMA)等等。另外,无线电接入技术可以指由各种通信组织(诸如3GPP、3GPP2、WiFi、蓝牙、IEEE、ITU等等)建立的各代通信技术和特定的接入技术。例如,CDMA可以被实现为诸如通用陆地无线电接入(UTRA)或CDMA2000的无线技术。TDMA可以被实现为诸如全球移动通信系统(GSM)/通用分组无线电服务(GPRS)/用于GSM演进的增强数据速率(EDGE)的无线技术。OFDMA可以被实现为诸如IEEE(电气和电子工程师协会)802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802-20、演进型UTRA(E-UTRA)等等的无线技术。IEEE 802.16m是IEEE 802.16e的演进,IEEE 802.16m提供与基于IEEE 802.16e的系统的后向兼容性。UTRA是通用移动电信系统(UMTS)的一部分。3GPP(第三代合作伙伴计划)LTE(长期演进)是使用演进型UMTS陆地无线电接入(E-UTRA)的E-UMTS(演进型UMTS)的一部分,其在下行链路中采用OFDMA而在上行链路中采用SC-FDMA。如上所述,实施例可以应用于已经发起或商业化的无线电接入技术,并且可以应用于正在开发或将来要开发的无线电接入技术中。
在说明书中使用的UE必须被解释为广义,其表示包括在无线通信系统中与基站通信的无线通信模块的设备。例如,UE包括WCDMA、LTE、NR、HSPA、IMT-2020(5G或新无线电)等中的用户设备(UE),GSM中的移动站,用户终端(UT),订户站(SS),无线设备等。另外,UE可以是便携式用户设备,诸如智能电话,或者可以是车辆,在车辆中包括无线通信模块的设备,以及根据其使用类型在V2X通信系统中的设备等。在机器类型通信(MTC)系统的情况下,UE可以指MTC终端、M2M终端或URLLC终端,其采用能够执行机器类型通信的通信模块。
本说明书中的基站或小区是指通过网络与UE通信并且包含各种覆盖区域的端点,诸如节点B(Node-B)、演进型节点B(eNB)、g节点-B(gNode-B)、低功率节点(LPN)、扇区、站点、各种类型的天线、基站收发机系统(BTS)、接入点、点(例如发射点、接收点或发射/接收点)、中继节点、兆小区、宏小区、微小区、微微小区、毫微微小区、远程无线电头(RRH)、无线电单元(RU)、小小区等。另外,小区可以用作包括频域中的带宽部分(BWP)的含义。例如,服务小区可以指UE的有效BWP。
上面列出的各种小区设置有控制一个或多个小区的基站,并且基站可以被解释为两个含义。基站可以是1)用于提供与无线区域相关的兆单元、宏小区、微小区、微微小区、毫微微小区或小小区的设备,或者基站可以是2)无线区域本身。在以上描述1)中,基站可以是由相同实体控制并提供预定的无线区域的设备,或彼此交互并协作地配置无线区域的所有设备。例如,基站可以是根据无线区域的配置方法的点、发射/接收点、发射点、接收点等。在以上描述2)中,基站可以是无线区域,其中可以使用户设备(UE)向其他UE或相邻基站发射数据和从其他UE或相邻基站接收数据。
在本说明书中,小区可以指从发射/接收点传送的信号的覆盖范围、具有从发射/接收点(或发射点)传送的信号的覆盖范围的分量载波,或者发射/接收点本身。
上行链路(UL)是指从UE向基站传送数据的方案,并且下行链路(DL)是指从基站向UE传送数据的方案。下行链路可以意为从多个发射/接收点到UE的通信或通信路径,并且上行链路可以意为从UE到多个发送/接收点的通信或通信路径。在下行链路中,发射机可以是多个发射/接收点的一部分,并且接收机可以是UE的一部分。另外,在上行链路中,发射机可以是UE的一部分,并且接收机可以是多个发射/接收点的一部分。
上行链路和下行链路通过诸如物理下行链路控制信道(PDCCH)和物理上行链路控制信道(PUCCH)的控制信道发射和接收控制信息。上行链路和下行链路通过诸如物理下行链路共享信道(PDSCH)和物理上行链路共享信道(PUSCH)的数据信道发射和接收数据。在下文中,通过诸如PUCCH、PUSCH、PDCCH、PDSCH等的信道发射和接收信号可以被表示为“发射和接收PUCCH、PUSCH、PDCCH、PDSCH等”。
为了清楚起见,以下描述将集中于3GPP LTE/LTE-A/NR(新无线电)通信系统,但是本公开的技术特征不限于相应的通信系统。
在研究4G(第4代)通信技术之后,3GPP已经在开发5G(第5代)通信技术以满足ITU-R的下一代无线电接入技术的要求。具体而言,通过改进LTE-高级技术,3GPP正在开发作为5G通信技术的以便符合ITU-R的要求的LTE-Apro和与4G通信技术完全不同的新NR通信技术。LTE-Apro和NR都是指5G通信技术。在下文中,除非指定了特定的通信技术,否则将基于NR描述5G通信技术。
考虑到典型的4G LTE场景中的卫星、汽车、新的垂直行业(verticals)等已经在NR中定义了各种操作场景,以支持服务方面的增强型移动宽带(eMBB)场景、大型机器类型通信(mMTC)场景(其中UE以高的UE密度分布在广泛的区域,从而要求低数据速率和异步连接)、以及要求高响应性和可靠性并支持高速移动性的超可靠性和低延时(URLLC)场景。
为了满足这种场景,NR公开了一种采用新的波形和帧结构技术、低延时技术、超高频带(mmWave)支持技术和前向兼容提供技术的无线通信系统。特别地,NR系统在灵活性方面具有各种技术变化,以便提供前向兼容性。下面将参考附图描述NR的主要技术特征。
<NR系统的概述>
图1是示意性地示出了本实施例可应用于的NR系统的视图。
参考图1,NR系统被划分为5G核心网络(5GC)和NG-RAN部分,并且NG-RAN包括提供用户平面(SDAP/PDCP/RLC/MAC/PHY)和用户设备(UE)控制平面(RRC)协议端的gNB和ng-eNB。gNB或gNB和ng-eNB通过Xn接口彼此连接。gNB和ng-eNB分别通过NG接口连接到5GC。5GC可以被配置为包括用于管理控制平面的接入和移动性管理功能(AMF)(诸如UE连接和移动性控制功能),以及控制用户数据的用户平面功能(UPF)。NR支持6GHz以下的频段(频率范围1:FR1)和等于或大于6GHz的频段(频率范围2:FR2)。
gNB表示向UE提供NR用户平面和控制平面协议端的基站,并且ng-eNB表示向UE提供E-UTRA用户平面和控制平面协议端的基站。本说明书中描述的基站应该被理解为包含gNB和ng-eNB。然而,根据需要,基站也可以用于指彼此分离的gNB或ng-eNB。
<NR波形、参数集和帧结构>
NR使用CP-OFDM波形,该CP-OFDM波形使用循环前缀进行下行链路传输,并使用CP-OFDM或DFT-s-OFDM进行上行链路传输。OFDM技术易于与多输入多输出(MIMO)方案相结合,并允许以高频效率使用低复杂度的接收机。
由于上述三种场景对NR中的数据速率、延迟(delay)率、覆盖范围等有彼此不同的要求,因此需要通过组成NR系统的频带高效地满足每种场景的要求。为此,已经提出了一种用于基于多个不同参数集高效地多路复用无线电资源的技术。
具体地,基于子载波间隔和循环前缀(CP)来确定NR传输参数集,并且,如下面表1中所示,“μ”被用作2的指数值,从而在15kHz的基础上以指数方式变化。
表1
Figure BDA0002356824930000081
如上面表1中所示,NR可以具有根据子载波间隔的五种类型的参数集。这不同于是4G通信技术之一的LTE,其中子载波间隔固定为15kHz。具体地,在NR中,用于数据传输的子载波间隔是15、30、60或120kHz,并且用于同步信号传输的子载波间隔是15、30、120或240kHz。另外,扩展CP仅应用于60kHz的子载波间隔。在NR中的帧结构中定义包括10个子帧(每个子帧具有1ms的相同长度)并具有10ms的长度的帧。一帧可以被划分为5ms的半帧,并且每个半帧包括5个子帧。在子载波间隔为15kHz的情况下,一个子帧包括一个时隙,以及每个时隙包括14个OFDM符号。图2是用于解释本实施例可以应用于的NR系统中的帧结构的视图。
参考图2,时隙包括14个OFDM符号,其在正常CP的情况下是固定的,但是时域中的时隙的长度可以根据子载波间隔而变化。例如,在参数集具有15kHz的子载波间隔的情况下,时隙被配置为具有与子帧的长度相同的1ms的长度。另一方面,在参数集具有30kHz的子载波间隔的情况下,时隙包括14个OFDM符号,但是一个子帧可以包括两个时隙,每个时隙具有0.5ms的长度。也就是说,可以使用固定的时间长度来定义子帧和帧,并且可以将时隙定义为使得时隙的时间长度根据子载波间隔而变化的符号的数量。
NR将调度的基本单元定义为时隙,并且还引入微时隙(或子时隙或基于非时隙的调度),从而减少无线电段的传输延迟。如果使用宽的子载波间隔,则一个时隙的长度与其成反比地缩短,从而减少了无线电段中的传输延迟。微时隙(或子时隙)旨在高效地支持URLLC场景,并且微时隙可以在2个、4个或7个符号单元中调度。
另外,与LTE不同,NR将上行链路和下行链路资源分配定义为一个时隙中的符号级别。为了减少HARQ延迟,已经定义了能够在传输时隙中直接传送HARQACK/NACK的时隙结构。这种时隙结构被称为“自包含结构”,将对其进行描述。
NR被设计为支持总共256个时隙格式,并且在3GPP Rel-15中使用其62个时隙格式。另外,NR通过各种时隙的组合支持构成FDD或TDD帧的公共帧结构。例如,NR支持i)其中时隙的所有符号被配置用于下行链路的时隙结构,ii)其中所有符号被配置用于上行链路的时隙结构,以及iii)其中下行链路符号和上行链路符号混合的时隙结构。此外,NR支持被调度为分发到一个或多个时隙的数据传输。因此,基站可以使用时隙格式指示符(SFI)向UE通知时隙是下行链路时隙、上行链路时隙还是灵活时隙。基站可以通过使用SFI指示通过UE特定的RRC信令所配置的表的索引来通知时隙格式。此外,基站可以通过下行链路控制信息(DCI)动态地指示时隙格式,或者可以通过RRC信令静态地或准静态地指示时隙格式。
<NR的物理资源>
关于NR中的物理资源,考虑了天线端口、资源网格、资源元件、资源块、带宽部分等。
天线端口被定义为从在同一天线端口上携带另一符号的另一信道推断在天线端口上携带符号的信道。如果可以从在另一天线端口上携带符号的另一信道推断出在天线端口上携带符号的信道的大范围的属性,则两个天线端口可以具有准共定位(quasi-co-located)或准共址(quasi-co-location)(QC/QCL)关系。大范围的属性包括延迟扩展、多普勒扩展、频移、平均接收功率和接收定时中的至少一个。
图3是用于解释本实施例可应用于的无线电接入技术所支持的资源网格的视图。
参考图3,资源网格可以根据各自的参数集存在,这是因为NR支持同一载波中的多个参数集。另外,资源网格可以根据天线端口、子载波间隔和传输方向而存在。
资源块包括12个子载波,并且仅定义在频域中。另外,资源元素包括一个OFDM符号和一个子载波。因此,如图3所示,可以根据子载波间隔改变一个资源块的大小。此外,在NR中定义用作资源块网格、公共资源块和虚拟资源块的公共参考点的“点A”。
图4是用于解释本实施例可应用于的无线电接入技术所支持的带宽部分的视图。
与载波带宽固定为20MHz的LTE不同,根据NR中的子载波间隔,最大载波带宽被配置为50MHz至400MHz。因此,不假设所有UE都使用整个载波带宽。因此,如图4所示,可以在NR中的载波带宽内指定带宽部分(BWP),使得UE可以使用带宽部分(BWP)。另外,带宽部分可以与一个参数集相关联,可以包括连续的公共资源块的子集,并且可以随时间动态地激活。UE在上行链路和下行链路中的每一者中具有多达四个带宽部分,并且UE在给定的时间期间使用激活的带宽部分来发射和接收数据。
在成对频谱的情况下,上行链路和下行链路带宽部分被独立配置。在不成对频谱的情况下,为了防止下行链路操作和上行链路操作之间的不必要的频率重新调谐,下行链路带宽部分和上行链路带宽部分被成对配置从而共享中心频率。
<NR中的初始接入>
在NR中,UE执行小区搜索和随机接入过程,以便接入基站并与基站通信。
小区搜索是UE使用从基站传送的同步信号块(SSB)与相应基站的小区同步并获取物理层小区ID和系统信息的过程。
图5是示出了本实施例可应用于的无线电接入技术中的同步信号块的示例的视图。
参考图5,SSB包括主同步信号(PSS)和辅同步信号(SSS)(其占用一个符号和127个子载波)以及跨越三个OFDM符号和240个子载波的PBCH。
UE在时域和频域中监视SSB,从而接收SSB。
在5ms内最多可以传送64次SSB。在5ms的时间内通过不同的传输波束传送多个SSB,并且假设基于用于传输的特定波束每20ms传送一次SSB,UE执行检测。随着频带增加,在5ms内可以用于SSB传输的波束数量可以增加。例如,可以在3GHz或更低的频带下传送多达4个SSB波束,并且可以在3到6GHz的频带下传送多达8个SSB波束。另外,可以在6GHz或更高的频带下使用多达64个不同的波束来传送SSB。
一个时隙包括两个SSB,以及根据子载波间隔来确定时隙中的起始符号和重复次数,如下所述。
与典型的LTE系统中的SS不同,不在载波带宽的中心频率下传送SSB。也就是说,也可以在除了系统频带的中心之外的频率下传送SSB,以及在支持宽带操作的情况下可以在频域中传送多个SSB。因此,UE使用同步栅格监视SSB,所述同步栅格是用于监视SSB的候选频率位置。在NR中新定义了载波栅格和同步栅格,所述载波栅格和同步栅格是初始连接的信道的中心频率位置信息,并且同步栅格可以支持UE的快速SSB搜索,这是因为其频率间隔被配置为比载波栅格的频率间隔更宽。
UE可以通过SSB的PBCH获取MIB。MIB(主信息块)包括UE接收网络广播的剩余最小系统信息(RMSI)的最小信息。另外,PBCH可以包括关于时域中第一DM-RS符号的位置的信息、UE监视SIB1的信息(例如,SIB1参数集信息、与SIB1 CORESET相关的信息、搜索空间信息、与PDCCH相关的参数信息等)、公共资源块和SSB之间的偏移信息(载波中的绝对SSB的位置经由SIB1传送)等。SIB1参数集信息还应用于在随机接入过程中用于UE在完成小区搜索过程之后访问基站的一些消息。例如,SIB1的参数集信息可以应用于用于随机接入过程的消息1至4中的至少一个。
上述RMSI可以意为SIB1(系统信息块1),并且在小区中周期性地(例如,160ms)广播SIB1。SIB1包括UE执行初始随机接入过程所需的信息,并且通过PDSCH周期性地传送SIB1。为了接收SIB1,UE必须接收用于SIB1传输的参数集信息和用于通过PBCH调度SIB1的CORESET(控制资源集)信息。UE在CORESET中使用SI-RNTI识别SIB1的调度信息,并根据调度信息获取PDSCH上的SIB1。可以周期性地传送除SIB1之外的剩余SIB,或者可以根据UE的请求传送剩余SIB。
图6是用于解释本实施例可应用于的无线电接入技术中的随机接入过程的视图。
参考图6,如果完成了小区搜索,则UE将用于随机接入的随机接入前导码传送到基站。通过PRACH传送随机接入前导码。具体地,通过PRACH将随机接入前导码周期性地传送到基站,所述PRACH包括重复的特定时隙中的连续无线电资源。通常,当UE进行到小区的初始接入时执行基于竞争的随机接入过程,并且当UE执行用于波束故障恢复(BFR)的随机接入时,执行基于非竞争的随机接入过程。
UE接收对所传送的随机接入前导码的随机接入响应。随机接入响应可以包括随机接入前导码标识符(ID)、UL授权(上行链路无线电资源)、临时C-RNTI(临时小区—无线电网络临时标识符)和TAC(时间对准命令)。由于一个随机接入响应可以包括一个或多个UE的随机接入响应信息,因此可以包括随机接入前导码标识符,从而指示所包括的UL授权、临时C-RNTI和TAC有效的UE。随机接入前导码标识符可以是基站接收到的随机接入前导码的标识符。可以包括TAC作为UE用于调整上行链路同步的信息。随机接入响应可以由PDCCH上的随机接入标识符(即随机接入无线电网络临时标识符(RA-RNTI))指示。
一旦接收到有效的随机接入响应,UE处理在随机接入响应中包括的信息,并执行到基站的经调度的传输。例如,UE应用TAC并存储临时C-RNTI。另外,UE使用UL授权向基站传送存储在UE的缓冲器中的数据或新生成的数据。在这种情况下,用于识别UE的信息必须包括在数据中。
最后,UE接收下行链路消息以用于解决竞争。
<NR CORESET>
NR中的下行链路控制信道在长度为1到3个符号的CORESET(控制资源集)中传送,以及下行链路控制信道传送上行链路/下行链路调度信息、SFI(时隙格式索引)、TPC(传送功率控制)信息等。
如上所述,NR已经引入了CORESET的概念以确保系统的灵活性。CORESET(控制资源集)是指下行链路控制信号的时频资源。UE可以使用CORESET时频资源中的一个或多个搜索空间来解码控制信道候选者。CORESET特定的QCL(准共址)假设被配置并用于以下目的:提供关于模拟波束方向的特性的信息,以及关于延迟扩展、多普勒扩展、多普勒频移和平均延迟(这些是现有的QCL呈现的特性)的信息。
图7是用于解释CORESET的视图。
参考图7,CORESET可以在单个时隙中的载波带宽内以各种形式存在,并且CORESET可以在时域中包括最多3个OFDM符号。另外,CORESET被定义为多达频域中的载波带宽的六个资源块的倍数。
通过MIB指定(例如指示、分配)作为初始带宽部分的一部分的第一CORESET,从而从网络接收另外的配置信息和系统信息。在与基站建立连接之后,UE可以通过RRC信令接收和配置一条或多条CORESET信息。
<LTE侧链路>
在用于提供设备到设备的通信和车辆到任何东西(V2X)(特别是车辆到车辆(V2V))的服务的LTE系统中,已经开发了用于设备之间直接通信(即侧链路)的无线电协议和无线电信道的设计。
关于侧链路,已经定义了用于在无线电侧链路发射端和无线电侧链路接收端之间同步的同步信号(PSSS/SSSS),以及用于发射/接收与此相关的侧链路主信息块(MIB)的物理侧链路广播信道(PSBCH)。此外,已经对用于发射/接收发现信息的物理侧链路发现信道(PSDCH)、用于发射/接收侧链路控制信息(SCI)的物理侧链路控制信道(PSCCH)和用于发射/接收侧链路数据的物理侧链路共享信道(PSSCH)进行了设计。
为了为侧链路分配无线电资源,已经开发了两种模式,即基站分配无线电资源的模式1和UE从无线电资源池中选择和分配无线电资源的模式2。此外,为了满足LTE系统中的V2X场景,需要另外开发相关技术。
在这样的环境中,3GPP已经导出了与Rel-14中的车辆识别/检测相关的27个服务场景,并且根据道路状况确定了关键性能要求。另外,3GPP已经导出了25个服务场景,诸如从Rel-14演进的车辆队列、高级驾驶、远程驾驶、扩展传感器等,并且确定了Rel-15中的6个性能要求。
为了满足这种性能要求,已经进行了开发以改进基于典型的D2D通信开发出的侧链路技术的性能,从而满足V2X的要求。特别地,为了应用于C-V2X(蜂窝-V2X),用于改进侧链路的物理层的设计以适应高速环境的技术、资源分配技术、同步技术可以被选为进一步的研究项目。
下面描述的侧链路意为在3GPP的Rel-12之后的D2D通信中和在Rel-14之后的和V2X通信中使用的链路,并且每个信道、同步信号和资源的术语使用平等的术语进行描述,而没有根据D2D通信的要求、Rel-14和Rel-15中V2X通信的要求被不同地定义。这是为了便于描述和易于理解,并且在需要时,将通过集中于满足V2X场景要求的侧链路相对于Rel-12/13中的D2D通信的侧链路的差异来进行讨论。因此,下面讨论的与侧链路相关的术语被分类为D2D通信、V2X通信和C-V2X通信,仅用于它们之间的比较和易于理解;因此,这种术语不限于特定场景。
<资源分配>
图8是用于解释用于V2X通信的各种场景的视图。
参考图8,V2X设备(表示为车辆;然而,可以由诸如用户设备(UE)等的其他设备替换)可以位于基站(eNB、gNB或ng-eNB)的覆盖范围内,或位于基站的覆盖范围之外。例如,可以在基站的覆盖范围内的UE(例如,UE N-1、UE G-1、UE X)之间执行通信,或者可以在基站的覆盖范围内的UE与基站的覆盖范围之外的UE(例如,UE N-1、UE N-2)之间执行通信。可替换地,可以在基站的覆盖范围之外的UE(例如,UE G-1、UE G-2)之间执行通信。
在这样的各种场景中,需要分配无线电资源以使相应的UE能够使用侧链路执行通信。对无线电资源的分配包括基站处理对无线电资源的分配的方法和UE自己选择和分配无线电资源的方法。
具体地,在D2D中,为了使UE能够分配资源,定义了两种模式,即,基站干预资源的选择和管理的集中式模式(模式1),和UE随机选择预先配置的资源中的一个或多个的分布式模式(模式2)。类似于D2D,定义了其他模式,诸如,基站干预C-V2X中的资源的选择和管理的模式(模式3),以及车辆直接选择V2X中的资源的模式(模式4)。在模式3中,基站向发射机UE提供对调度分配(SA)池资源区域和分配给它的数据池资源区域的调度。
图9(A)示出了执行侧链路通信的第一UE(UE 1)和第二UE(UE 2),以及图9(B)示出了UE使用的资源池的示例。
参考图9,基站被表示为eNB,然而,可以是如上所述的gNB或ng-eNB。此外,UE被表示为移动终端,然而,可以根据场景或情况以各种方式应用车辆、基础设施等。
在图9(A)中,发射机UE(UE 1)可以选择与包括资源集的资源池内的特定资源相对应的资源单元,并使用该资源单元传送侧链路信号。接收机UE(UE 2)可以被配置有允许UE1在其上传送信号的资源池,并且检测来自UE 1的传输信号。
如果UE 1在基站的覆盖范围内,也就是说可用于从基站接收服务或信号,则基站可以向UE 1提供资源池。如果UE 1在基站的覆盖范围之外,也就是说不可用于从基站接收服务或信号,则可以将资源池确定为由另一UE预先配置或提供的一个或多个资源。通常,资源池由多个资源单元组成,并且每个UE可以选择一个或多个资源单元并使用所选择的一个或多个资源单元来传送侧链路信号。
参考图9(B),将整个频率资源划分为NF个频率资源,并将整个时间资源划分为NT个时间资源。因此,可以定义总共NF*NT个资源单元。在这种情况下,可以表示在NT子帧的周期重复相应的资源池。特别地,一个资源单元可以被配置为周期性地和重复地提供,如图9(B)所示。
可以根据特定标准将资源池分类为多种类型。例如,可以根据在每个资源池上传送的侧链路信号的内容将资源池分类为多种类型。作为一个示例,可以对侧链路信号的内容进行分类,并且可以为每个内容配置单独的资源池。调度分配(SA)、侧链路信道、发现信道等可以是侧链路信号的内容的示例。
SA可以是包括信息的信号,所述信息诸如用于由发射机UE传送后续侧链路数据信道的资源的位置、解调数据信道所需的调制和编码方案(MCS)、MIMO传输方案、定时提前(TA)等。该信号也可以通过在相同的资源单元上与侧链路数据多路复用来被传送。在这种情况下,SA资源池可以意为通过与侧链路数据多路复用而在其上传送SA的资源池。
应用于V2X通信的FDM方案可能导致时间延迟,直到在SA资源已被分配为减少之后分配数据资源为止。例如,可以考虑在一个子帧中在时域中分离控制信道资源和数据信道资源的非相邻方案,和在一个子帧中连续分配控制信道和数据信道的相邻方案等。
当侧链路数据与SA一起被多路复用并在同一资源单元上被传送时,可以通过用于侧链路数据信道的资源池来传送与SA信息仅在形式上不同的侧链路数据信道。换句话说,用于在SA资源池内的一个或多个单独的资源单元上传送SA信息的资源元件仍可用于在侧链路数据信道资源池中传送侧链路数据。发现信道可以是用于使发射机UE能够传送信息(诸如发射机UE的ID等)以及使相邻UE能够发现发射机UE的消息的资源池。即使当侧链路信号的内容相等时,也可以根据侧链路信号的发射和/或接收特性使用不同的资源池。
例如,即使在同一侧链路数据信道或发现消息的情况下,根据确定侧链路信号的传输定时(例如,是在接收同步参考信号时传送侧链路信号还是在通过根据接收同步参考信号的时间应用特定TA来传送侧链路信号)的方法、或者分配资源(例如,基站是否专用于将信号传送到发射机UE的资源或者发射机UE是否自己选择用于传送池中的信号的资源)的方法、信号格式(例如,在一个子帧中每个侧链路信号占用的符号的数量、用于传送一个侧链路信号的子帧的数量)、来自基站的信号强度、侧链路UE的传输功率强度等,可以使用不同的资源池。
<同步信号>
如上所述,V2X通信UE可以位于基站的覆盖范围之外。即使在这种情况下,也需要执行使用侧链路的通信。为此,对位于基站的覆盖范围之外的UE重要的是实现同步。
在下文中,将基于以上描述来描述实现侧链路通信中(特别是在车辆之间、车辆与UE之间或车辆与通信网络之间的通信中)的时间和频率同步的方法。
D2D通信利用侧链路同步信号(SLSS),该侧链路同步信号是从基站传送的用于UE之间的时间同步的同步信号。在C-V2X中,另外可以考虑卫星系统(全球导航卫星系统(GNSS))以提高同步性能。在这种情况下,优先级可以给予同步建立,或者基站可以指示关于优先级的信息。例如,当确定其传输同步时,UE选择从基站直接传送的同步信号作为最高优先级,并且当UE在基站的覆盖范围之外时,UE与从基站的覆盖范围内的另一UE传送的作为更高优先级的SLSS同步。
由于安装在车辆中的无线终端(在下文中为了便于描述,也可以被称为UE)或者安装在车辆中的UE具有较少的电池消耗问题并且可以使用卫星信号,诸如用于导航目的的GPS,卫星信号可以用于配置UE之间的时间或频率同步。卫星信号也可以包括全球定位系统(GPS)、全球导航卫星系统(GLONAS)、伽利略、北斗等。
侧链路同步信号可以包括主侧链路同步信号(PSSS)、辅侧链路同步信号(SSSS)等。PSSS可以包括具有预先配置长度的Zadoff-chu序列、类似于PSS的结构、从PSS改变的结构或者重复PSS的结构。与DL PSS不同,可以使用不同的Zadoff-chu根索引(例如26、37)。SSSS可以包括M序列、类似于SSS的结构、从SSS改变的结构或者重复SSS的结构。在UE与基站同步的情况下,SRN用作基站,并且SLSS用作PSS或SSS。
与DL的PSS/SSS不同,PSSS/SSSS使用UL子载波映射方法。物理侧链路同步信道(PSSCH)可以是用于传送系统信息(例如,与SLSS有关的信息、双工模式(DM)、TDD UL/DL配置、与资源池有关的信息、与SLSS相关的应用类型、子帧偏移、广播信息等)的信道,所述系统信息是在发射/接收侧链路信号之前UE需要首先识别的基本信息。可以在与SLSS相同的或其之后的子帧上传送PSSCH。DM-RS可以用于PSSCH的解调。
SRN可以是用于传送SLSS或PSSCH的节点。SLSS可以是特定序列的形式,并且PSSCH可以是表示特定信息的序列或者是在已经执行预定义的信道编码之后的码字的形式。这里,基站或特定的侧链路UE可以用作SRN。在部分网络覆盖范围或网络覆盖范围之外的情况下,UE可以用作SRN。
当需要时,SLSS可以例如通过多跳(multi-hop)被中继,以用于与覆盖范围之外的UE进行侧链路通信。在下面的描述中,中继同步信号包括,在接收同步信号时以单独的格式传送侧链路同步信号,以及直接中继基站的同步信号。像这样,由于中继了侧链路同步信号,因此可以执行覆盖范围内的UE和覆盖范围外的UE之间的直接通信。
<NR侧链路>
如上所述,与基于LTE系统的V2X不同,需要开发基于NR的V2X技术以满足如在自动驾驶中的复杂要求。
根据本公开的实施例,通过将NR的帧结构、参数集、信道发射/接收过程等应用于NR V2X,可以在更多样化的环境中提供灵活的V2X服务。为此,有必要开发诸如基站和UE之间的资源共享技术、侧链路载波聚合技术(CA)、用于由行人保持的UE的部分感测技术、短传输时间间隔(sTTI)等的技术。
在NR V2X中,已确定支持单播或组播,以及在LTE V2X中使用的广播。在这种情况下,还已经确定将目标组ID用于单播或组播,但是已确定稍后讨论是否使用源ID。
此外,由于已确定支持用于QOS的HARQ,因此已确定HARQ进程ID包括在控制信息中。在LTE HARQ中,在已经传送DL之后的4个子帧之后传送用于HARQ的PUCCH。在NR HARQ中,对于反馈定时,可以使用DCI格式1_0或1_1PUCCH中的PUCCH资源指示符或响应于PDSCH的HARQ反馈定时指示符(PDSCH到HARQ反馈定时指示符)来指示PUCCH资源和反馈定时。
图10是用于解释在V2X中捆绑和传送HARQ反馈信息的方法的视图;
参考图10,在LTE V2X中,不传送单独的HARQ ACK/NACK信息从而减少系统开销,并且一旦根据发射机UE为了数据传输安全性的判断,就允许数据被重传。然而,在NR V2X中,就数据传输稳定性而言,可以传送HARQ ACK/NACK信息,并且在这种情况下,可以通过捆绑和传送相应信息来减少开销。
也就是说,当发射机UE UE1向接收机UE UE2传送三个数据传输,并然后接收机UE响应于该传输而生成HARQ ACK/NACK信息时,可以将HARQ ACK/NACK信息捆绑并通过PSCCH传送。图10示出了通过PSCCH传送HARQ ACK/NACK。然而,HARQ ACK/NACK可以通过单独的信道或另一信道传送,并且捆绑后的HARQ信息可以被配置有3比特或更少。
在3GHz或更低的频率范围的FR1中,已经讨论了15kHz、30kHz、60kHz和120kHz作为候选子载波间隔(SCS)。在超过3GHz的频率范围的FR2中,已经讨论了30kHz、60kHz、120kHz和240kHz作为候选子载波间隔(SCS)。在NR V2X中,可以支持小于14个符号的微时隙(例如,2/4/7个符号)作为最小调度的单位。
已经讨论了DM-RS、PT-RS、CSI-RS、SRS和AGC训练信号作为RS的候选。
如图11所示,对于PSCCH和相关联的PSSCH的多路复用而讨论了以下四个选项。选项2类似于在LTE V2X中PSCCH和PSSCH的多路复用。
同步机制
NR V2X侧链路同步可以包括一个或多个侧链路同步信号和PSBCH,并且侧链路源可以包括除GNSS之外的UE和/或gNB。
资源分配
可以为NR V2X侧链路通信定义至少两个侧链路资源分配模式,即模式3和模式4。在模式3中,基站调度UE用于侧链路传输而使用的一个或多个侧链路资源。在模式4中,UE确定由基站配置的一个或多个侧链路资源或一个或多个预先配置的侧链路资源内的一个或多个资源。
模式4可以覆盖以下资源分配子模式。也就是说,UE可以自动选择用于传输的侧链路资源,帮助为一个或多个其他UE选择侧链路资源,被配置有为侧链路传输配置的授权,或者调度一个或多个其他UE的侧链路传输。
V2X资源池(感测和选择窗口)
V2X UE可以通过预定义(或用信号通知)的资源池传送消息(或信道)。资源池可以意为预定义的用于使UE能够执行V2X操作(或者在能够执行V2X操作的UE中)的一个或多个资源。在这种情况下,可以根据时间-频率来定义资源池。V2X传输资源池可以被定义为各种类型。
图11示出了V2X传输资源池的类型。
参考图11(A),V2X传输资源池#A可以是其上仅允许部分感测的资源池。以规律的间隔半静态地保留由部分感测选择的V2X传输资源。
参考图11(B),V2X传输资源池#B可以是其上仅允许随机选择的资源池。在V2X传送资源池#B中,UE不执行部分感测,并且可以在选择窗口中随机选择V2X传输资源。
作为一个示例,与其上仅允许部分感测的资源池不同,在其上仅允许随机选择的资源池中,所选择的资源可以被配置/发信号通知为不是半静态保留的。为了UE在V2X传输资源池上执行V2X消息传输操作,基站可以使UE不执行感测操作(基于调度分配解码/能量测量)。
尽管未在图1中示出,也可以使用部分感测和随机选择两者在其上都可用的资源池。基站可以向UE通知可以通过部分感测和随机选择中的任一者选择V2X资源。
在本说明书中,频率、帧、子帧、资源、资源块、区域、带、子带、控制信道、数据信道、同步信号、各种参考信号、各种信号或者与NR(新无线电)有关的各种消息可以被解释为当前或过去使用的含义或将来要使用的各种含义。
NR(新无线电)
与LTE/LTE-高级相比,要求将NR设计为:不仅提供改进的数据传输速率,而且还满足每个具体和特定的使用场景的各种QoS要求。特别地,增强型移动宽带(EmB)、大规模机器类型通信(mMTC)和超可靠低延迟通信(URLLC)被定义为NR的代表性使用场景。为了满足每种使用场景的要求,要求将NR设计为具有与LTE/LTE-高级相比而言的灵活的帧结构。
由于每个使用场景对数据速率、延时、覆盖范围等有不同的要求,因此需要一种高效地多路复用基于参数集(例如,子载波间隔(SCS)、子帧、传输时间间隔(TTI)等)的彼此不同的无线电资源单元的方法,作为通过提供给NR系统的频带高效地满足根据使用场景的要求的解决方案。
为此,已经讨论了i)通过一个NR载波基于TDM、FDM或TDM/FDM来多路复用具有彼此不同的子载波间隔(SCS)值的参数集的方法,以及ii)在时域中配置调度单元时支持一个或多个时间单位的方法。在这方面,在NR中,给出了子帧的定义作为时域结构的一种类型。另外,作为用于定义相应子帧持续时间的参考参数集,单个子帧持续时间被定义为具有基于15kHz子载波间隔(SCS)的正常CP开销的14个OFDM符号,像LTE一样。因此,NR的子帧具有1ms的持续时间。
与LTE不同,由于NR的子帧是绝对参考持续时间,因此可以将时隙和微时隙定义为用于实际的UL/DL数据调度的时间单位。在这种情况下,无论参数集如何,组成时隙的OFDM符号的数量(y的值)被定义为y=14。
因此,时隙可以由14个符号组成。根据相应时隙的传输方向,所有符号可以用于DL传输或UL传输,或者符号可以在DL部分+间隙+UL部分的配置中使用。
此外,已经将微时隙定义为由比参数集(或SCS)中的时隙更少的符号构成,并且因此,可以基于微时隙为UL/DL数据发射或接收配置短时域调度间隔。而且,可以通过时隙聚合为UL/DL数据发射或接收配置长时域调度间隔。
特别地,在发射或接收延时关键数据(诸如URLLC)的情况下,当基于具有小的SCS值(例如15kHz)的参数集基于在帧结构中定义的1ms(14个符号)基于时隙来执行调度时,可能难以满足延时要求。为此,可以定义由比时隙更少的OFDM符号构成的微时隙,并从而可以基于微时隙来执行对诸如URLLC的延时关键数据的调度。
如上所述,还预期:通过以TDM和/或FDM方式多路复用具有不同SCS值的参数集而在一个NR载波中支持具有不同SCS值的参数集,基于由参数集定义的时隙(或微时隙)的长度,根据延时要求来调度数据。例如,如图12所示,当SCS为60kHz时,符号长度减小到SCS为15kHz的符号长度的约1/4。因此,当一个时隙由14个OFDM符号构成时,基于15kHz的时隙长度是1ms,而基于60kHz的时隙长度减少到约0.25ms。
因此,由于在NR中定义了彼此不同的SCS或彼此不同的TTI长度,因此开发了用于满足URLLC和eMBB中的每一者的要求的技术。
<带宽部分;BWP>
典型的LTE系统支持任何LTC CC(分量载波)的可扩展带宽操作。也就是说,根据频率部署场景,LTE提供商可以在配置单个LTE CC时配置最小1.4MHz到最大20MHz的带宽,并且普通的LTE UE支持用于单个LTE CC的20MHz带宽的发射/接收能力。
然而,NR被设计为能够通过单个宽带NR CC支持具有不同发射/接收带宽能力的NR的UE。因此,需要配置包括NR CC的细分带宽的一个或多个带宽部分(BWP),如图13所示,从而通过为各个UE配置和激活不同的带宽部分而支持灵活的和更宽的带宽操作。
具体地,可以通过在NR中根据UE配置的单个服务小区来配置一个或多个带宽部分,并且UE被定义为激活一个下行链路(DL)带宽部分和一个上行链路(UL)带宽部分,从而将其用于相应的服务小区中的上行链路/下行链路数据发射/接收。另外,在UE(即,应用CA的UE)中配置多个服务小区的情况下,UE还被定义为在每个服务小区中激活一个下行链路带宽部分和/或一个上行链路带宽部分,从而通过利用相应服务小区的无线电资源,将一个下行链路宽带部分和/或一个上行链路宽带部分用于上行链路/下行链路数据发射/接收。
具体地,可以在服务小区中定义用于UE的初始接入过程的初始带宽部分;可以通过专用RRC信令为每个UE配置一个或多个UE特定带宽部分,并且可以为每个UE定义用于回退操作的默认带宽部分。
可以进行定义,使得根据UE的能力和服务小区中带宽部分的配置来同时激活和使用多个下行链路和/或上行链路带宽部分。然而,在NR rel-15中进行了定义,使得在UE中一次仅激活和使用一个下行链路(DL)带宽部分和一个上行链路(UL)带宽部分。
LTE侧链路
在LTE系统中,为了提供设备到设备的直接通信和车辆到任何东西(V2X)(特别是车辆到车辆(V2V))的服务,已经开发了用于侧链路(其是UE之间的直接链路)的发射/接收的无线电协议和无线电信道的设计。关于侧链路,已经定义了作为用于在无线电侧链路发射端和无线电侧链路接收端之间同步的信号的PSSS/SSSS和与此相关的用于发射/接收侧链路主信息块(MIB)的物理侧链路广播信道(PSBCH)。此外,对用于发射/接收发现信息的物理侧链路发现信道(PSDCH)、用于发射/接收侧链路控制信息(SCI)的物理侧链路控制信道(PSCCH)和用于发射/接收侧链路数据的物理侧链路共享信道(PSSCH)进行了设计。
一种分配HARQ ACK/NACK反馈资源的方法
根据用于NR中定义的UE的HARQ ACK/NACK反馈的PUCCH资源分配方法,基站为UE配置包括一个或多个PUCCH资源的PUCCH资源集,并使用DCI的ACK资源指示符(ARI)信息区域指示响应于PDSCH传输的HARQ ACK/NACK反馈的PUCCH资源信息。在这种情况下,针对为相应的UE配置的每个UL BWP来配置PUCCH资源集,并且根据UL BWP的HARQ ACK/NACK的有效载荷大小来配置单独的PUCCH资源集。
在下文中,参考附图具体讨论传送侧链路HARQ反馈信息的方法。
在本文中,术语“接收机UE”是指基于侧链路通信接收PSCCH和与该PSCCH相对应的PSSCH的UE。术语“发射机UE”在本文中是指基于侧链路通信传送PSCCH和与该PSCCH相对应的PSSCH的UE。
本文中的讨论将基本上基于这样的场景给出,在该场景中,接收机UE基于侧链路向发射机UE传送HARQ ACK/NACK反馈信息。然而,在不脱离本公开的精神和范围的情况下,本公开的实施例可以基本上等同地应用于接收机UE向基站传送HARQ ACK/NACK反馈信息的场景。
图14是示出根据本公开实施例的接收机UE传送侧链路HARQ反馈信息所通过的过程的流程图。
参考图14,在步骤S1400,接收机UE可以接收关于侧链路反馈信道(物理侧链路反馈信道(PSFCH))资源集的配置信息。
当基于侧链路通信接收到PSSCH时,接收机UE可以传送对应于接收到的PSSCH的HARQ ACK/NACK反馈信息。也就是说,PSFCH资源集或PSFCH资源池可以被配置用于响应于PSSCH接收来传送HARQ ACK/NACK反馈信息。可以利用时域资源分配信息和频率资源分配信息来配置关于PSFCH资源集或PSFCH资源池的配置信息。在本公开中,使用和描述了资源集和资源池;然而,在不脱离本公开的精神和范围的情况下,在下文中,这两个术语可以作为彼此基本相等的含义或功能来应用。
可以由基站通过小区特定的或UE特定的更高层信令来配置或预先配置关于PSFCH资源集或PSFCH资源池的配置信息。可替选地,关于PSFCH资源集或PSFCH资源池的配置信息可以由发射机UE或调度机UE配置,然后通过侧链路无线电信道(诸如,PSDCH、PSCCH、PSSCH等)传送到接收机UE。
在一个实施例中,可以基于PUCCH格式来配置PSFCH资源的PSFCH格式。也就是说,PSFCH结构可以被配置为重用在NR中定义的PUCCH结构(诸如PUCCH格式1、2、3、4或5),或者PSCCH结构。
在一个实施例中,PSFCH资源池可以独立于PSCCH或PSSCH资源池配置来配置。在这种情况下,PSFCH资源池的RRC参数可以与PSCCH或PSSCH资源池配置的RRC参数分开配置,然后通过更高层信令明确配置。应当注意,这仅仅是一个示例;因此,本公开的实施例不限于此。PSFCH资源池的RRC参数可以预先配置。
在另一个实施例中,PSFCH资源池可以被配置为与PSCCH或PSSCH资源池配置相关联。在这种情况下,任何PSCCH或PSSCH资源池配置信息可以包括关于相关联的PSFCH资源池的配置信息。也就是说,任何PSCCH或PSSCH资源池配置信息可以包括用于指示相应资源池的时域资源分配信息的时隙分配信息。具体地,用于分配其上配置了PSCCH或PSSCH资源池的一个或多个侧链路时隙的周期配置信息、时隙偏移信息等可以包括在PSCCH或PSSCH资源池配置信息中。
在这种情况下,其上配置了每个PSSCH或PSCCH资源池的侧链路时隙和其上配置了与用于配置PSSCH或PSCCH资源池的时隙相对应的PSFCH资源池的侧链路时隙之间的定时间隙相关信息可以被包括作为关于PSFCH资源池的配置信息。在一个实施例中,当其上配置了PSSCH资源池的侧链路时隙和其上配置了与PSSCH资源池相关联的PSFCH资源池的侧链路时隙一一对应时,对应的定时间隙配置信息可以是PSSCH和PSFCH之间的直接时隙间隙信息。也就是说,当对应的定时间隙配置值为K,并且UE在时隙#n中接收到PSSCH时,UE可以在与定时间隙配置值对应的K个时隙之后使用时隙#n+K的PSFCH资源池传送HARQACK/NACK反馈。
在另一个实施例中,当其上配置了PSSCH资源池的侧链路时隙和其上配置了相关联的PSFCH资源池的侧链路时隙处于N对一的对应关系(N是大于1的整数)时,在对应的PSSCH资源池和相关联的PSFCH资源池之间的定时间隙配置信息可能要求最小时隙间隙信息。也就是说,当对应的定时间隙配置值为M时,对于响应于从任何UE接收到PSSCH而进行的HARQ ACK/NACK反馈,接收机UE可以在距对应时隙的最小M个时隙之后使用第一PSFCH资源池来传送HARQACK/NACK反馈信息。也就是说,当在用于其上配置了PSCCH或PSSCH资源池的侧链路时隙的N个侧链路时隙周期中配置PSFCH资源池时,M值和对应的N值可以通过更高层信令来配置,或者预先配置,或者可以根据对应的N值来定义M值。
在这种情况下,当UE在时隙#n中接收到PSSCH时,UE可以使用时隙#(n+M)的PSFCH资源池传送HARQ ACK/NACK反馈。可替换地,UE可以在时隙#(n+M-1)之后使用第一PSFCH资源池传送HARQ ACK/NACK反馈。
可以使用配置的PSFCH资源池来分配用于允许接收机UE响应于PSSCH接收而执行HARQ ACK/NACK反馈的PSFCH资源。此时,PSFCH资源池中的PSFCH资源分配信息可以被显式地发信号通知或隐式地发信号通知。
在一个实施例中,PSFCH资源集可以被配置为允许接收机UE响应于PSSCH接收而执行HARQ ACK/NACK反馈。PSFCH资源集可以由基站配置,然后通过小区特定的或UE特定的更高层信令传送,或者由发射机UE或调度机UE配置,并通过侧链路无线电信道(诸如PSDCH、PSCCH、PSSCH等)传送。
可以使用所配置的PSFCH资源集来分配用于允许任何UE响应于PSSCH接收来执行HARQ ACK/NACK反馈的PSFCH资源。此时,PSFCH资源集中的PSFCH资源分配信息可以被显式地发信号通知或隐式地发信号通知。
返回参考图14,在步骤S1410,当从发射机UE接收到侧链路数据信道(物理侧链路共享信道(PSSCH))时,在步骤S1420,接收机UE可以基于某些标识信息来确定用于响应于PSFCH资源集中的PSSCH而传送HARQ反馈信息的PSFCH资源。
在一个实施例中,可以隐式地发信号通知包括在PSFCH资源池或PSFCH资源集中的多个PSFCH中的PSFCH资源,该PSFCH资源将用于允许接收机UE响应于PSSCH接收而执行HARQACK/NACK反馈。在这种情况下,PSFCH资源可以根据已经执行PSCCH或PSSCH传输所通过的子信道的子信道索引来分配。
在一个实施例中,当基于组播执行PSSCH传输时,如果多个接收机UE共享由一个隐式信令提供的一个或多个PSFCH,则在多个接收UE之间存在用于HARQACK/NACK反馈的PSFCH传输资源冲突的可能性。为了防止这种冲突,可以关于分配PSFCH资源来应用UE特定的偏移,以允许侧链路UE执行HARQACK/NACK反馈。接收机UE可以通过将UE特定的偏移值(例如,为每个UE设置的)应用于由基站、侧链路发射机UE或侧链路调度机UE隐式地发信号通知的PSFCH资源信息,来导出用于HARQ ACK/NACK反馈的最终PSFCH资源。
在一个实施例中,基站可以通过UE特定的更高层信令、MAC CE信令、L1控制信令等为每个UE设置UE特定的PSFCH偏移值。在另一个实施例中,当建立组播会话时,UE特定的PSFCH偏移值可以由基站、侧链路发射机UE或侧链路调度机UE设置,然后传送到相应的UE。在又一个实施例中,当分配基于组播的PSSCH资源时,可以通过PDCCH或PSCCH将UE特定的PSFCH偏移值传送到对应的UE。
在又一个实施例中,UE特定的PSFCH偏移值可以根据每个UE ID等来隐式地设置。例如,可以根据对应的UE的C-RNTI来导出UE特定的PSFCH偏移值。在又一个实施例中,定义了用于侧链路发送/接收的UE ID,并且结果是,可以导出对应的UE特定的PSFCH偏移值。在这种情况下,用于对应的侧链路发送/接收的UE ID可以是更高层的UE ID,其是在组播数据传输中包括接收机UE的组的组ID(成员ID),或者可以是作为对应的单播或组播数据传输目标的目的地ID的形式,或者是作为发射机UE的标识符的源ID的形式。可替选地,用于对应的侧链路发送/接收的UE ID可以是侧链路物理层ID,或者用于PSCCH接收的类似ID,诸如S1-RNTI。
用于侧链路发送/接收的UE ID可以由基站设置,然后通过UE特定的更高层信令来分配,或者由侧链路发射机UE或侧链路调度机UE设置,然后通过诸如PSDCH、PSCCH、PSSCH等侧链路无线电信道传送。每个侧链路UE的UE特定的PSFCH偏移信息可以被传送到组播PSSCH发射机UE。具体而言,基站可以通过更高层信令或MAC CE信令将每个接收机UE的UE特定的PSFCH偏移信息传送到组播PSSCH发射机UE,或者调度机UE通过侧链路无线电信道将该UE特定的PSFCH偏移信息传送到对应的组播PSSCH发射机UE。
在一个实施例中,是否应用UE特定的PSFCH偏移可以关于响应于PSSCH接收而为HARQ ACK/NACK反馈分配PSFCH资源来另外指示。也就是说,关于允许接收机UE响应于对应的PSSCH接收而导出用于HARQ ACK/NACK反馈的PSFCH资源,可以被配置为基站、侧链路发射机UE或侧链路调度机UE来指示是否应用配置的UE特定的PSFCH偏移值。
是否应用对应的UE特定的PSFCH偏移可以通过被包括在DCI或SCI中用于传送任何PSSCH资源分配信息而在PDCCH或PSCCH上指示。在这种情况下,在一个实施例中,用于指示是否应用了对应的UE特定的PSFCH偏移的信息区域可以被包括在包括用于PSSCH的资源分配信息的DCI格式或SCI格式中。
在另一个实施例中,当传送包括PSSCH分配信息的DCI格式或SCI格式时,是否应用UE特定的PSFCH偏移可以根据在CRC中加扰的RNTI、传送DCI格式或SCI格式所通过的搜索空间/CORESET、PSCCH资源池等而被隐式地指示。
在另一个实施例中,是否应用UE特定的PSFCH偏移,可以通过更高层信令为接收机UE半静态地配置。在另一个实施例中,是否应用UE特定的PSFCH偏移可以通过MAC CE信令激活或去激活。
返回参考图14,在步骤S1420,接收机UE可以使用PSFCH资源传送HARQ反馈信息。
接收机UE可以使用确定的PSFCH资源来传送所接收的PSSCH的HARQ ACK/NACK反馈信息。在这种情况下,接收机UE可以将HARQ ACK/NACK反馈信息传送到已经传送了PSSCH的基站或发射机UE。
根据以上描述,可以提供用于传送侧链路HARQ反馈信息的方法和装置,以使得能够在NR中分配用于传送侧链路HARQ反馈信息的无线电资源。
图15是示出根据本公开实施例的发射机UE接收侧链路HARQ反馈信息所通过的过程的流程图。
参考图15,在步骤S1500,发射机UE可以向接收机UE传送物理侧链路共享信道(PSSCH)。
当基于侧链路通信来传送PSSCH时,发射机UE可以从接收机UE接收对应于所传送的PSSCH的HARQ ACK/NACK反馈信息。也就是说,PSFCH资源集或PSFCH资源池可以被配置用于响应于PSSCH接收来传送HARQ ACK/NACK反馈信息。可以利用时域资源分配信息和频率资源分配信息来配置关于PSFCH资源集或PSFCH资源池的配置信息。
基站可以通过小区特定的或UE特定的更高层信令来配置或预先配置关于PSFCH资源集或PSFCH资源池的配置信息。可替选地,关于PSFCH资源集或PSFCH资源池的配置信息可以由发射机UE或调度机UE配置,然后通过侧链路无线电信道(诸如,PSDCH、PSCCH、PSSCH等)传送到接收机UE。
在一个实施例中,当关于PSFCH资源集或PSFCH资源池的配置信息被发射机UE配置并然后被传送时,图15的过程可以进一步包括发射机UE传送关于侧链路反馈信道(物理侧链路反馈信道(PSFCH))资源集的配置信息的操作。
在一个实施例中,PSFCH资源池可以以独立于PSCCH或PSSCH资源池配置的形式来配置。在这种情况下,PSFCH资源池的RRC参数可以与PSCCH/PSSCH资源池的RRC参数分开配置,并通过更高层信令明确配置。应当注意,这仅仅是一个示例;因此,本公开的实施例不限于此。PSFCH资源池的RRC参数可以预先配置。
在另一个实施例中,PSFCH资源池可以被配置为与PSCCH或PSSCH资源池配置相关联。在这种情况下,PSCCH或PSSCH资源池配置信息可以包括关于相关联的PSFCH资源池的配置信息。也就是说,任何PSCCH或PSSCH资源池配置信息可以包括用于指示相应资源池的时域资源分配信息的时隙分配信息。具体地,用于分配其上配置了PSCCH或PSSCH资源池的一个或多个侧链路时隙的周期配置信息、时隙偏移信息等可以包括在PSCCH或PSSCH资源池配置信息中。
在这种情况下,其上配置了每个PSSCH或PSCCH资源池的侧链路时隙和其上配置了与用于配置PSSCH或PSCCH资源池的时隙相对应的PSFCH资源池的侧链路时隙之间的定时间隙相关信息可以被包括作为关于PSFCH资源池的配置信息。在一个实施例中,当其上配置了PSSCH资源池的侧链路时隙和其上配置了与PSSCH资源池相关联的PSFCH资源池的侧链路时隙一一对应时,对应的定时间隙配置信息可以是PSSCH和PSFCH之间的直接时隙间隙信息。也就是说,当对应的定时间隙配置值为K,并且UE在时隙#n中接收到PSSCH时,UE可以在对应于定时间隙配置值的K个时隙之后使用时隙#(n+K)的PSFCH资源池传送HARQ ACK/NACK反馈。
可替代地,当其上配置了PSSCH资源池的侧链路时隙和其上配置了相关联的PSFCH资源池的侧链路时隙处于N对一的对应关系(N是大于1的整数)时,在对应的PSSCH资源池和相关联的PSFCH资源池之间的定时间隙配置信息可能要求最小时隙间隙信息。也就是说,当对应的定时间隙配置值为M时,对于响应于从任何UE接收到PSSCH而进行的HARQ ACK/NACK反馈,接收机UE可以在距对应时隙的最小M个时隙之后使用第一PSFCH资源池来传送HARQACK/NACK反馈信息。也就是说,当在用于其上配置了PSCCH或PSSCH资源池的侧链路时隙的N个侧链路时隙周期中配置PSFCH资源池时,M值和对应的N值可以通过更高层信令来配置,或者预先配置,或者可以根据对应的N值来定义任何M值。
在这种情况下,当UE在时隙#n中接收到PSSCH时,UE可以使用时隙#(n+M)的PSFCH资源池传送HARQ ACK/NACK反馈。可替换地,UE可以在时隙#(n+M-1)之后使用第一PSFCH资源池传送HARQ ACK/NACK反馈。
可以使用配置的PSFCH资源池来分配用于允许接收机UE响应于PSSCH接收而执行HARQ ACK/NACK反馈的PSFCH资源。此时,PSFCH资源池中的PSFCH资源分配信息可以被显式地发信号通知或隐式地发信号通知。
在一个实施例中,PSFCH资源集可以被配置为允许接收机UE响应于PSSCH接收而执行HARQ ACK/NACK反馈。PSFCH资源集可以由基站配置,然后通过小区特定的或UE特定的更高层信令传送,或者由发射机UE或调度机UE配置,并通过侧链路无线电信道(诸如PSDCH、PSCCH、PSSCH等)传送。
可以使用所配置的PSFCH资源集来分配用于允许任何UE响应于PSSCH接收来执行HARQ ACK/NACK反馈的PSFCH资源。此时,PSFCH资源集中的PSFCH资源分配信息可以被显式地发信号通知或隐式地发信号通知。
返回参考图15,在步骤S1510,发射机UE可以使用接收机UE中基于PSFCH资源集中的某些标识信息确定的PSFCH资源来接收PSSCH的HARQ反馈信息。
在一个实施例中,可以隐式地发信号通知包括在PSFCH资源池或PSFCH资源集中的多个PSFCH中的PSFCH资源,该PSFCH资源将用于允许接收机UE响应于PSSCH接收而执行HARQACK/NACK反馈。在这种情况下,接收机UE可以根据已经执行PSCCH或PSSCH传输所通过的子信道的子信道索引来确定PSFCH资源。
在一个实施例中,当基于组播执行PSSCH传输时,如果多个接收机UE共享由一个隐式信令提供的一个或多个PSFCH,则在多个接收UE之间存在用于HARQ ACK/NACK反馈的PSFCH传输资源冲突的可能性。为了防止这种冲突,可以关于分配PSFCH资源来应用UE特定的偏移,以允许侧链路UE执行HARQ ACK/NACK反馈。接收机UE可以通过将UE特定的偏移值(例如,为每个UE设置的)应用于由基站、侧链路发射机UE或侧链路调度机UE隐式地发信号通知的PSFCH资源信息,来导出用于HARQ ACK/NACK反馈的最终PSFCH资源。
在一个实施例中,基站可以通过UE特定的更高层信令、MAC CE信令、L1控制信令等为每个UE设置UE特定的PSFCH偏移值。在另一个实施例中,当建立组播会话时,基站、发射机UE或调度机UE可以设置UE特定的PSFCH偏移值,然后将所设置的值传送到相应的UE。在又一个实施例中,当分配基于组播的PSSCH资源时,基站、发射机UE或调度机UE可以通过PDCCH或PSCCH向相应的UE传送UE特定的PSFCH偏移值。
在又一个实施例中,UE特定的PSFCH偏移值可以根据每个UE ID等来隐式地设置。例如,可以根据对应的UE的C-RNTI来导出UE特定的PSFCH偏移值。在又一个实施例中,定义了用于侧链路发送/接收的UE ID,并且结果是,可以导出对应的UE特定的PSFCH偏移值。在这种情况下,用于对应的侧链路发送/接收的UE ID可以是更高层的UE ID,其是在组播数据传输中包括接收机UE的组的组ID(成员ID)。可替选地,UE ID可以是作为对应的单播或组播数据传输目标的目的地ID的形式,或者是作为发射机UE的标识符的源ID的形式。可替选地,用于对应的侧链路发送/接收的UE ID可以是侧链路物理层ID,或者用于PSCCH接收的类似ID,诸如S1-RNTI。
用于侧链路发送/接收的UE ID可以由基站设置,然后通过UE特定的更高层信令来分配,或者由侧链路发射机UE或侧链路调度机UE设置,然后通过诸如PSDCH、PSCCH、PSSCH等侧链路无线电信道传送。组播PSSCH发射机UE可以接收每个侧链路接收机UE的UE特定的PSFCH偏移信息。具体地,组播PSSCH发射机UE可以通过更高层信令、MAC CE信令或L1控制信令从基站接收每个接收机UE的UE特定的PSFCH偏移信息,或者通过侧链路无线电信道从调度机UE接收。
在一个实施例中,是否应用UE特定的PSFCH偏移可以关于响应于PSSCH接收而为HARQ ACK/NACK反馈分配PSFCH资源来另外指示。也就是说,关于允许接收机UE响应于对应的PSSCH接收而导出用于HARQ ACK/NACK反馈的PSFCH资源,基站、侧链路发射机UE、或侧链路调度机UE可以指示是否应用配置的UE特定的PSFCH偏移值。
是否应用对应的UE特定的PSFCH偏移可以通过被包括在DCI或SCI中用于传送任何PSSCH资源分配信息而在PDCCH或PSCCH上指示。在这种情况下,在一个实施例中,用于指示是否应用了对应的UE特定的PSFCH偏移的信息区域可以被包括在包括用于PSSCH的资源分配信息的DCI格式或SCI格式中。
在另一个实施例中,当传送包括PSSCH分配信息的DCI格式或SCI格式时,是否应用UE特定的PSFCH偏移可以根据在CRC中加扰的RNTI、传送DCI格式或SCI格式所通过的搜索空间/CORESET、PSCCH资源池等而被隐含地指示。
在另一个实施例中,是否应用UE特定的PSFCH偏移,可以通过更高层信令为接收机UE半静态地配置。在另一个实施例中,是否应用UE特定的PSFCH偏移可以通过MAC CE信令激活或去激活。
发射机UE可以使用在接收机UE中确定的PSFCH资源来接收PSSCH的HARQ ACK/NACK反馈信息。
在上文中,讨论是基于发射机UE接收HARQ ACK/NACK反馈信息的情况进行的;然而,在不脱离本公开的精神和范围的情况下,本公开的实施例可以基本上等同地应用于已经传送PSSCH的发射机UE被基站替换的情况。
根据以上描述,可以提供用于传送侧链路HARQ反馈信息的方法和装置,以使得能够在NR中分配用于传送侧链路HARQ反馈信息的无线电资源。
在下文中,参考相关附图,对与用于在NR中传送侧链路HARQ反馈信息的无线电资源配置和分配相关的实施例进行讨论。
根据在LTE系统中发送/接收用于提供V2X服务的侧链路的方法,已经基于广播执行了通过侧链路通信的数据传输。也就是说,以这样的方式执行侧链路通信,即当发射机UE广播侧链路无线电信道或无线电信号以传送到相邻UE而不指定目的地UE时,可用于接收对应的广播信号的相邻UE接收对应信号。以这种方式,作为侧链路数据信道的PSSCH的HARQ过程尚未应用于LTE V2X。
然而,在基于NR的V2X的情况下,出现了支持基于单播或组播以及广播的侧链路发送/接收的必要性。
像这样,作为一种类型的基于NR的V2X通信,当定义了基于单播或组播的侧链路发送/接收方法时,需要定义用于对应的侧链路无线电信道的HARQ应用方法、用于侧链路的信道状态信息(CSI)获取方法、链路自适应方法等。
根据本公开的实施例,提出了在通过侧链路的数据发送/接收中应用HARQ的具体方法。特别地,在应用用于侧链路通信的组播的环境中,提出了一种用于使接收机UE能够传送HARQ ACK/NACK反馈信息的资源分配方法。
可以以分布式方法或集中式方法来执行用于基于先前定义的侧链路的设备之间的直接通信的资源分配。也就是说,在由基站配置或预先配置的一个或多个资源池中,发射机UE(发射节点)可以选择无线电资源,例如,用于侧链路数据传输的子信道,并且使用所选择的无线电资源传送PSSCH和包括关于PSSCH的调度控制信息的PSCCH。可替换地,基站可以通过PDCCH向发射机UE传送用于发射机UE的侧链路资源分配信息,并且发射机UE可以使用由基站分配的侧链路资源来传送相应的PSCCH和PSSCH。像这样,由基站调度的传输模式3或基于分布式的传输模式4被定义为基于侧链路传送无线电数据的方法。
同样,在NR V2X中,可以定义模式1和模式2,在模式1中,基站分配PSSCH传输资源,在模式2中,发射机UE或调度机UE分配PSSCH传输资源。当单播方案或组播方案被支持作为基于NR的V2X的侧链路传输方法时,配置在一个发射机UE和一个或多个接收机UE之间或者在一个主UE和一个或多个从UE之间的单播或组播链路,并且在配置的链路上的PSSCH传输资源也可以由基站调度或者由UE调度。
这样,当执行基于单播或组播的PSSCH传输时,已经接收到对应的PSSCH的接收机UE可以响应于PSSCH接收向对应的发射机UE或调度机UE或基站反馈HARQ ACK/NACK反馈信息。这里,用于对应的HARQ ACK/NACK反馈的侧链路无线电信道可以被称为PSFCH。应当注意,这种定义仅仅是一个示例;因此,本公开的实施例不限于此。在不脱离本公开的精神和范围的情况下,可以实质上等同地使用其他术语。
在本公开中,提出了一种用于通过侧链路通信接收到PSSCH的UE进行的HARQ ACK/NACK反馈的PSFCH资源分配方法。特别地,本文提供了一种为基于组播的PSSCH接收分配UE的PSFCH资源的方法。
实施例1 PSFCH资源池或PSFCH资源集的配置
可以为响应于UE的PSSCH接收而进行的HARQ ACK/NACK反馈来配置PSFCH资源池。对应的资源池配置信息可以配置有时域资源分配信息和频率资源分配信息,并且可以由基站通过小区特定或UE特定的更高层信令来配置,或者预先配置。可替换地,对应的资源池配置信息可以由发射机UE或调度机UE配置,然后通过侧链路无线电信道(诸如PSDCH、PSCCH、PSSCH等)传送到接收机UE。
PSFCH资源池可以被配置为与PSSCH资源池配置相关联。PSFCH资源池可以被配置为与PSCCH资源池配置相关联。
可以使用配置的PSFCH资源池来分配用于允许接收机UE响应于PSSCH接收而执行HARQ ACK/NACK反馈的PSFCH资源。此时,PSFCH资源池中的PSFCH资源分配信息可以被显式地发信号通知或隐式地发信号通知。
PSFCH资源集可以被配置为允许接收机UE响应于PSSCH接收来执行HARQ ACK/NACK反馈。对应的PSFCH资源集可以由基站配置,然后通过小区特定的或UE特定的更高层信令传送,或者由发射机UE或调度机UE配置,并通过诸如PSDCH、PSCCH、PSSCH等侧链路无线电信道传送。
可以使用配置的PSFCH资源集来分配用于允许接收机UE响应于PSSCH接收而执行HARQ ACK/NACK反馈的PSFCH资源。此时,对应的PSFCH资源集中的PSFCH资源分配信息可以被显式地发信号通知或隐式地发信号通知。
实施例2用于组播的UE特定的偏移配置
可以由基站、侧链路发射机UE或侧链路调度机UE显式地发信号通知或隐式地发信号通知包括在上述PSFCH资源池或PSFCH资源集中的多个PSFCH中的PSFCH资源,该PSFCH资源用于允许接收机UE响应于PSSCH接收而执行HARQ ACK/NACK反馈。当PSFCH资源被显式地发信号通知时,PSFCH资源可以通过包括在DCI或侧链路控制信息(SCI)中,由基站、侧链路发射机UE或侧链路调度机UE通过PDCCH或PSCCH传送。当PSFCH资源被隐式地发信号通知时,PSFCH资源可以根据已经在其上执行PSSCH或PSCCH传输的资源池、已经在对应的资源池中执行对应的PSSCH或PSCCH传输的资源索引等来分配。例如,资源索引可以包括子信道索引、侧链路控制信道元素索引等,或者可以包括用于PSCCH或PSSCH传输的基本单元。
当基于组播来执行PSSCH传输时,由于多个接收机UE共享由一个显式或隐式信令提供的一个或多个PSFCH,所以在多个接收机UE之间存在用于HARQACK/NACK反馈的PSFCH传输资源冲突的可能性。
为了防止这种冲突,提供了一种有关分配PSFCH资源来应用UE特定的偏移以用于允许侧链路UE执行HARQ ACK/NACK反馈的方法。关于接收用于响应于PSSCH接收而进行的HARQ ACK/NACK反馈的PSFCH资源,UE可以将相应的UE特定偏移值应用于由基站、侧链路发射机UE或侧链路调度机UE显式或隐式发信号通知的PSFCH资源信息,并且基于此,可以导出用于HARQ ACK/NACK反馈的相应的最终PSFCH资源。
例如,当使用包括在DCI或SCI中的ACK资源指示符(ARI)信息区域来指示用于一个或多个UE的PSFCH资源分配信息,以传送用于PSSCH的调度信息时,每个UE可以通过将为每个UE设置的UE特定的PSFCH偏移值添加到由ARI指示的PSFCH资源信息(例如,PSFCH索引)来导出最终的PSFCH资源信息。同样地,当隐式地导出PSFCH资源信息时,UE特定的PSFCH偏移值可以被包括作为对应的隐式PSFCH资源导出函数的一个参数。
在一个实施例中,基站可以通过UE特定的更高层信令、MAC CE信令、L1控制信令等为每个UE设置UE特定的PSFCH偏移值。在另一个实施例中,当建立组播会话时,可以由基站,侧链路发射机UE或侧链路调度机UE来设置UE特定的PSFCH偏移值,然后将其传送到相应的UE。在又一个实施例中,当分配基于组播的PSSCH资源时,可以通过PDCCH或PSCCH将UE特定的PSFCH偏移值传送到相应的UE。
在又一个实施例中,UE特定的PSFCH偏移值可以根据每个UE ID等来隐式地设置。例如,可以根据UE的C-RNTI来导出UE特定的PSFCH偏移值。在又一个实施例中,定义了用于侧链路发送/接收的UE ID,并且结果是,可以导出对应的UE特定的PSFCH偏移值。在这种情况下,用于对应的侧链路发送/接收的UE ID可以是更高层的UE ID,或者可以是作为对应的单播或组播数据传输目标的目的地ID或源ID的形式。可替选地,用于对应的侧链路发送/接收的UE ID可以是侧链路物理层ID,或者用于PSCCH接收的类似ID,诸如S1-RNTI。
用于对应的侧链路发送/接收的UE ID可以由基站设置,然后通过UE特定的更高层信令分配,或者由侧链路发射机UE或侧链路调度机UE设置,然后通过诸如PSDCH、PSCCH、PSSCH等侧链路无线电信道传送。每个侧链路接收机UE的UE特定的PSFCH偏移信息可以被传送到组播PSSCH发射机UE。具体而言,基站可以通过更高层信令或MAC CE信令将每个接收机UE的UE特定的PSFCH偏移信息传送到组播PSSCH发射机UE,或者调度机UE通过侧链路无线电信道将该UE特定的PSFCH偏移信息传送到对应的组播PSSCH发射机UE。
此外,是否引入UE特定的PSFCH偏移可以关于响应于PSSCH接收而为HARQ ACK/NACK反馈分配PSFCH资源来另外指示。也就是说,关于允许PSSCH接收机UE响应于对应的PSSCH接收而导出用于HARQ ACK/NACK反馈的PSFCH资源,基站、侧链路发射机UE或侧链路调度机UE可以指示是否应用配置的UE特定的PSFCH偏移值。
是否应用对应的UE特定的PSFCH偏移,可以通过被包括在DCI或SCI中用于传送任何PSSCH资源分配信息而在PDCCH或PSCCH上被指示。具体地,用于指示是否应用了对应的UE特定的PSFCH偏移的信息区域(例如,1比特指示符)可以以包括关于PSSCH的资源分配信息的DCI格式或SCI格式来定义,并且可以使用定义的信息区域(例如指示符)来明确指示是否应用了对应的UE特定的PSFCH偏移。
在另一个实施例中,在没有定义单独的指示信息区域的情况下,当传送包括对应的PSSCH分配信息的DCI格式或SCI格式时,是否应用了UE特定的PSFCH偏移可以根据在CRC中加扰的RNTI、传送DCI格式或SCI格式所通过的搜索空间/CORESET、PSCCH资源池等而被隐式地指示。
在又一个实施例中,是否应用了UE特定的PSFCH偏移,可以通过更高层信令为UE半静态地配置。在又一个实施例中,是否应用UE特定的PSFCH偏移,可以通过MAC CE信令来激活或去激活。
此外,不管特定的PSFCH信道结构如何,上述描述都可以适用。例如,当反馈信息通过侧链路直接传送到UE时,对应的PSFCH可以重用PSCCH的结构或PUCCH的结构,或者基于该结构或新设计的结构来设计。然而,本公开的实施例不限于此。同样,当反馈信息通过uu链路传送到基站时,对应的PSFCH可以重用PUCCH的结构或者以新的形式设计。然而,本公开的实施例不限于此。
根据以上描述,可以提供用于传送侧链路HARQ反馈信息的方法和装置,以使得能够在NR中分配用于传送侧链路HARQ反馈信息的无线电资源。
在下文中,将参考附图讨论能够执行参考图1至15描述的部分或全部实施例的接收机UE和发射机UE的配置。
图16是示出根据本公开的另一实施例的接收机UE1600的框图。
参考图16,根据另一个实施例的接收机UE1600包括接收机1610、控制器1620和发射机1630。
控制器1610根据接收机UE传送执行上述本发明实施例所需的HARQ反馈信息的方法来控制接收机UE 1600的整体操作。发射机1620通过对应的信道向基站、发射机UE或侧链路调度机UE传送UL控制信息和数据、消息。接收机1630在对应的信道上从基站、发射机UE或侧链调度机UE接收DL控制信息和数据、消息。
接收机1610可以接收关于PSFCH资源集的配置信息。当基于侧链路通信接收到PSSCH时,接收机UE的发射机1620可以传送对应于接收到的PSSCH的HARQ ACK/NACK反馈信息。
关于PSFCH资源集或PSFCH资源池的配置信息可以由基站通过小区特定的或UE特定的更高层信令来配置,或者被预先配置。可替选地,接收机1630可以通过诸如PSDCH、PSCCH、PSSCH等的侧链路无线电信道接收关于由发射机UE或调度机UE配置的PSFCH资源集或PSFCH资源池的配置信息。
在一个实施例中,PSFCH资源池可以被配置为与PSCCH或PSSCH资源池配置相关联。在这种情况下,其上配置了每个PSSCH或PSCCH资源池的侧链路时隙和其上配置了与配置PSSCH或PSCCH资源池的时隙相对应的PSFCH资源池的侧链路时隙之间的定时间隙相关信息,可以被包括作为关于PSFCH资源池的配置信息。
当从发射机UE接收到PSSCH时,控制器1610可以基于PSFCH资源集中的某些标识信息来确定用于传送PSSCH的HARQ反馈信息的PSFCH资源。在一个实施例中,可以隐式地发信号通知包括在PSFCH资源池或PSFCH资源集中的多个PSFCH中的PSFCH资源,该PSFCH资源将用于允许接收机UE响应于PSSCH接收而执行HARQ ACK/NACK反馈。在这种情况下,控制器1610可以根据已经执行PSCCH或PSSCH传输所通过的子信道的子信道索引来确定PSFCH资源。
在一个实施例中,当基于组播执行PSSCH传输时,如果多个接收机UE共享由一个隐式信令提供的一个或多个PSFCH,则在多个接收机UE之间存在用于HARQ ACK/NACK反馈的PSFCH传输资源冲突的可能性。为了防止这种冲突,可以关于分配PSFCH资源来应用UE特定的偏移,以允许侧链路UE执行HARQ ACK/NACK反馈。控制器1610可以通过将UE特定的偏移值(例如,为每个UE设置的)应用于由基站、侧链路发射机UE或侧链路调度机UE隐式地发信号通知的PSFCH资源信息,来导出用于HARQ ACK/NACK反馈的最终PSFCH资源。
在一个实施例中,UE特定的PSFCH偏移值可以根据每个UE ID等来隐式地设置。在另一个实施例中,定义了用于侧链路发送/接收的UE ID,并且结果是,可以导出对应的UE特定的PSFCH偏移值。在这种情况下,用于对应侧链路发送/接收的UE ID可以是更高层的UEID,其是在组播数据传输中包括接收机UE的组的组ID(成员ID)。可替选地,UE ID可以是作为对应单播或组播数据传输目标的目的地ID或者作为发射机UE的标识符的源ID的形式。可替选地,UE ID可以是侧链路物理层ID,或者用于PSCCH接收的类似ID,诸如SL-RNTI。
用于侧链路发送/接收的UE ID可以由基站设置,然后通过UE特定的更高层信令来分配,或者由侧链路发射机UE或侧链路调度机UE设置,然后通过诸如PSDCH、PSCCH、PSSCH等侧链路无线电信道传送。每个侧链路接收机UE的UE特定PSFCH偏移信息可以被传送到组播PSSCH发射机UE。具体而言,基站可以通过更高层信令或MAC CE信令将每个接收机UE的UE特定PSFCH偏移信息传送到组播PSSCH发射机UE,或者调度机UE通过侧链路无线电信道将该UE特定的PSFCH偏移信息传送到对应的组播PSSCH发射机UE。
在一个实施例中,是否应用UE特定的PSFCH偏移可以关于响应于PSSCH接收而为HARQ ACK/NACK反馈分配PSFCH资源来另外指示。也就是说,关于允许控制器1610响应于对应的PSSCH接收而导出用于HARQ ACK/NACK反馈的PSFCH资源,基站、侧链路发射机UE或侧链路调度机UE可以指示是否应用配置的UE特定的PSFCH偏移值。
是否应用对应的UE特定的PSFCH偏移可以通过被包括在DCI或SCI中用于传送任何PSSCH资源分配信息而在PDCCH或PSCCH上指示。在这种情况下,在一个实施例中,用于指示是否应用了对应的UE特定的PSFCH偏移的信息区域可以包括在包括用于PSSCH的资源分配信息的DCI格式或SCI格式中。
在另一个实施例中,当传送包括PSSCH分配信息的DCI格式或SCI格式时,是否应用UE特定的PSFCH偏移可以根据在CRC中加扰的RNTI、传送DCI格式或SCI格式所通过的搜索空间/CORESET、PSCCH资源池等而被隐式地指示。
在又一个实施例中,是否应用UE特定的PSFCH偏移,可以通过更高层信令为接收机UE半静态地配置。在又一个实施例中,是否应用UE特定的PSFCH偏移可以通过MACCE信令来激活或去激活。
发射机1620可以使用PSFCH资源传送HARQ反馈信息。发射机1620可以使用所确定的PSFCH资源响应于接收到的PSSCH而传送HARQ ACK/NACK反馈信息。在这种情况下,发射机1620可以将HARQ ACK/NACK反馈信息传送给已经传送了PSSCH的基站或发射机UE。
根据以上描述,可以提供用于传送侧链路HARQ反馈信息的方法和装置,以使得能够在NR中分配用于传送侧链路HARQ反馈信息的无线电资源。
图17是示出根据本公开的另一实施例的发射机UE 1700的框图。
参考图17,根据另一个实施例的发射机UE 1700包括控制器1710、发射机1720和接收机1730。
控制器1710根据发射机UE接收执行上述本发明实施例所需的HARQ反馈信息的方法来控制发射机UE 1700的整体操作。发射机1720用于向UE传送执行上述一些实施例所需的信号、消息和数据。接收机1730用于从UE接收执行如上所述的一些实施例所需的信号、消息和数据。
发射机1720可以向接收机UE传送PSSCCH。当基于侧链路通信传送PSSCH时,接收机1730可以从接收机UE接收对应于传送的PSSCH的HARQ ACK/NACK反馈信息。为此,PSFCH资源集或PSFCH资源池可以被配置用于响应于PSSCH接收而传送HARQ ACK/NACK反馈信息。
基站可以通过小区特定或UE特定的更高层信令来配置或预先配置关于PSFCH资源集或PSFCH资源池的配置信息。可替选地,关于PSFCH资源集或PSFCH资源池的配置信息可以由发射机UE或调度机UE配置,然后通过诸如PSDCH、PSCCH、PSSCH等侧链路无线电信道传送到接收机UE。
也就是说,在一个实施例中,当关于PSFCH资源集或PSFCH资源池的配置信息由发射机UE配置并然后被传送时,图15的过程可以进一步包括发射机UE传送关于侧链路反馈信道(物理侧链路反馈信道(PSFCH))资源集的配置信息的操作。
在一个实施例中,PSFCH资源池可以被配置为与PSCCH或PSSCH资源池配置相关联。在这种情况下,其上配置了每个PSSCH或PSCCH资源池的侧链路时隙和其上配置了与用于配置PSSCH或PSCCH资源池的时隙相对应的PSFCH资源池的侧链路时隙之间的定时间隙相关信息可以被包括作为关于PSFCH资源池的配置信息。
在步骤S1510,接收机1730可以使用基于PSFCH资源集中的某些标识信息在接收机UE中确定的PSFCH资源来接收PSSCH的HARQ反馈信息。
当从发射机1720传送PSSCH时,接收机UE可以基于PSFCH资源集中的某些标识信息来确定用于传送PSSCH的HARQ反馈信息的PSFCH资源。在一个实施例中,可以隐式地发信号通知包括在PSFCH资源池或PSFCH资源集中的多个PSFCH中的PSFCH资源,该PSFCH资源将用于允许接收机UE响应于PSSCH接收而执行HARQ ACK/NACK反馈。在这种情况下,接收机UE可以根据已经执行PSCCH或PSSCH传输所通过的子信道的子信道索引来确定PSFCH资源。
在一个实施例中,当基于组播执行PSSCH传输时,如果多个接收机UE共享由一个隐式信令提供的一个或多个PSFCH,则在多个接收UE之间存在用于HARQ ACK/NACK反馈的PSFCH传输资源冲突的可能性。为了防止这种冲突,可以关于分配PSFCH资源来应用UE特定的偏移,以允许侧链路UE执行HARQ ACK/NACK反馈。接收机UE可以通过将UE特定的偏移值(例如,为每个UE设置的)应用于由基站、侧链路发射机UE或侧链路调度机UE隐式地发信号通知的PSFCH资源信息,来导出用于HARQ ACK/NACK反馈的最终PSFCH资源。
在一个实施例中,UE特定的PSFCH偏移值可以根据每个UE ID等来隐式地设置。在另一个实施例中,定义了用于侧链路发送/接收的UE ID,并且结果是,可以导出对应的UE特定的PSFCH偏移值。在这种情况下,用于对应的侧链路发送/接收的UE ID可以是更高层的UEID,其是在组播数据传输中包括接收机UE的组的组ID(成员ID)。可替选地,UE ID可以是作为对应的单播或组播数据传输目标的目的地ID或者作为发射机UE的标识符的源ID的形式。可替选地,用于对应的侧链路发送/接收的UE ID可以是侧链路物理层ID,或者用于PSCCH接收的类似ID,诸如S1-RNTI。
用于侧链路发送/接收的UE ID可以由基站设置,然后通过UE特定的更高层信令来分配,或者由侧链路发射机UE或侧链路调度机UE设置,然后通过诸如PSDCH、PSCCH、PSSCH等侧链路无线电信道传送。接收机1730可以接收每个侧链路接收机UE的UE特定的PSFCH偏移信息。具体而言,接收机1730可以通过更高层信令、MAC CE信令或L1控制信令从基站接收每个接收机UE的UE特定的PSFCH偏移信息,或者通过侧链路无线电信道从调度机UE接收。
在一个实施例中,是否应用UE特定的PSFCH偏移可以关于响应于PSSCH接收而为HARQ ACK/NACK反馈分配PSFCH资源来另外指示。也就是说,关于允许接收机UE响应于对应的PSSCH接收而导出用于HARQ ACK/NACK反馈的PSFCH资源,基站、侧链路发射机UE或侧链路调度机UE可以指示是否应用配置的UE特定的PSFCH偏移值。
是否应用对应的UE特定的PSFCH偏移可以通过被包括在DCI或SCI中用于传送任何PSSCH资源分配信息而在PDCCH或PSCCH上指示。在这种情况下,在一个实施例中,用于指示是否应用了对应的UE特定的PSFCH偏移的信息区域可以被包括在包括用于PSSCH的资源分配信息的DCI格式或SCI格式中。
在另一个实施例中,当传送包括PSSCH分配信息的DCI格式或SCI格式时,是否应用UE特定的PSFCH偏移可以根据在CRC中加扰的RNTI、传送DCI格式或SCI格式所通过的搜索空间/CORESET、PSCCH资源池等而被隐式地指示。
在又一个实施例中,是否应用UE特定的PSFCH偏移,可以通过更高层信令为接收机UE半静态地配置。在又一个实施例中,是否应用UE特定的PSFCH偏移可以通过MAC CE信令激活或去激活。
接收机1730可以使用在接收机UE中确定的PSFCH资源来接收用于PSSCH的HARQACK/NACK反馈信息。
应当注意,以上讨论是基于发射机UE进行的;然而,本公开的实施例不限于此。在不脱离本公开的精神和范围的情况下,上述讨论可以基本上等同地应用于侧链路调度机UE或基站。
根据上述实施例,可以提供用于传送侧链HARQ反馈信息的方法和装置,以使得能够在NR中分配用于传送侧链路HARQ反馈信息的无线电资源。
上述实施例可以由诸如IEEE 802、3GPP和3GPP2的至少一个无线电接入系统中公开的标准文档支持。也就是说,为了阐明本公开的技术构思,可以通过上述标准文档来支持在本实施例中未描述的步骤、配置和部件。另外,本文公开的所有术语可以通过上述标准文件来描述。
可以通过各种手段中的任何手段来实现上述实施例。例如,本实施例可以被实现为硬件、固件、软件或其组合。
在通过硬件实现的情况下,根据本实施例的方法可以被实现为专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理装置(DSPD)、可编程逻辑装置(PLD)、现场可编程门阵列(FPGA)、处理器、控制器、微控制器或微处理器中的至少一个。
在通过固件或软件实现的情况下,根据本实施例的方法可以以用于执行上述功能或操作的设备、过程或功能的形式来实现。软件代码可以存储在存储器单元中,并且可以由处理器驱动。存储器单元可以提供在处理器的内部或外部,并且可以通过各种公知手段的任意手段与处理器交换数据。
此外,术语“系统”、“处理器”、“控制器”、“组件”、“模块”、“接口”、“模型”、“单元”等通常可以意为计算机相关的实体硬件、硬件和软件的组合、软件或运行软件。例如,上述组件可以是但不限于由处理器驱动的过程、处理器、控制器、控制处理器、实体、执行线程、程序和/或计算机。例如,在控制器或处理器中运行的应用程序和控制器或处理器都可以是组件。可以在过程和/或执行线程中提供一个或多个组件,并且可以在单个装置(例如,系统、计算装置等)中提供组件,或者组件可以分布在两个或更多个装置上。
仅出于说明性目的描述了本公开的上述实施例,并且本领域技术人员将理解的是,在不脱离本公开的范围和精神的情况下,可以对其进行各种修改和改变。此外,本公开的实施例不旨在限制,而是旨在说明本公开的技术构思,并因此本公开的技术构思的范围不受这些实施例的限制。本公开的范围应基于所附权利要求以如下方式被解释:包括在等同于权利要求的范围内的所有技术构思都属于本公开。

Claims (15)

1.一种用于接收机用户设备(UE)传送混合自动重传请求(HARQ)反馈信息的方法,所述方法包括:
接收关于物理侧链路反馈信道(PSFCH)资源集的配置信息;
从发射机UE接收物理侧链路共享信道(PSSCH);
基于预先配置的标识信息,确定PSFCH资源集中的用于响应于PSSCH而传送所述HARQ反馈信息的PSFCH资源;以及
使用所述PSFCH资源传送所述HARQ反馈信息。
2.根据权利要求1所述的方法,其中,所述预先配置的标识信息包括用于接收所述PSSCH的子信道的子信道索引。
3.根据权利要求1所述的方法,其中,所述预先配置的标识信息包括已经传送了所述PSSCH的所述发射机UE的源标识符(ID)。
4.根据权利要求1所述的方法,其中,所述预先配置的标识信息包括根据组播传输从所述发射机UE接收所述PSSCH的所述接收机UE的成员标识符(ID)。
5.根据权利要求1所述的方法,其中,关于所述PSFCH资源集的配置信息包括在所述PSSCH的接收和响应于所述PSSCH的接收而进行的所述HARQ反馈信息的传输之间的定时间隙信息。
6.一种用于发射机用户设备(UE)接收混合自动重传请求(HARQ)反馈信息的方法,所述方法包括:
向接收机UE传送物理侧链路共享信道(PSSCH);以及
使用物理侧链路反馈信道(PSFCH)资源集中的基于预先配置的标识信息所确定的PSFCH资源来接收响应于PSSCH的HARQ反馈信息。
7.根据权利要求6所述的方法,其中,所述预先配置的标识信息包括用于传送所述PSSCH的子信道的子信道索引。
8.根据权利要求6所述的方法,其中,所述预先配置的标识信息包括已经传送了所述PSSCH的发射机UE的源标识符(ID)。
9.根据权利要求6所述的方法,其中,所述预先配置的标识信息包括根据组播传输从所述发射机UE接收所述PSSCH的所述接收机UE的成员标识符(ID)。
10.根据权利要求6所述的方法,其中,关于所述PSFCH资源集的配置信息包括在所述PSSCH的接收与响应于所述PSSCH的接收而进行的所述HARQ反馈信息的传输之间的定时间隙信息。
11.一种用于传送混合自动重传请求(HARQ)反馈信息的接收机用户设备(UE),所述接收机UE包括:
接收机,接收关于物理侧链路反馈信道(PSFCH)资源集的配置信息,并从发射机UE接收物理侧链路共享信道(PSSCH);
控制器,基于预先配置的标识信息,确定PSFCH资源集中的用于响应于PSSCH而传送所述HARQ反馈信息的PSFCH资源;以及
发射机,使用所述PSFCH资源传送所述HARQ反馈信息。
12.根据权利要求11所述的接收机UE,其中,所述预先配置的标识信息包括用于接收所述PSSCH的子信道的子信道索引。
13.根据权利要求11所述的接收机UE,其中,所述预先配置的标识信息包括已经传送了所述PSSCH的所述发射机UE的源标识符(ID)。
14.根据权利要求11所述的接收机UE,其中,所述预先配置的标识信息包括根据组播传输从所述发射机UE接收所述PSSCH的所述接收机UE的成员标识符(ID)。
15.根据权利要求11所述的接收机UE,其中,关于所述PSFCH资源集的配置信息包括在所述PSSCH的接收与响应于所述PSSCH的接收而进行的所述HARQ反馈信息的传输之间的定时间隙信息。
CN202010010092.7A 2019-01-04 2020-01-06 传送侧链路harq反馈信息的方法和装置 Active CN111416700B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20190001402 2019-01-04
KR10-2019-0001402 2019-01-04
KR1020190161978A KR20200085643A (ko) 2019-01-04 2019-12-06 사이드링크 harq 피드백 정보를 전송하는 방법 및 장치
KR10-2019-0161978 2019-12-06

Publications (2)

Publication Number Publication Date
CN111416700A true CN111416700A (zh) 2020-07-14
CN111416700B CN111416700B (zh) 2023-04-18

Family

ID=71405231

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010010092.7A Active CN111416700B (zh) 2019-01-04 2020-01-06 传送侧链路harq反馈信息的方法和装置

Country Status (3)

Country Link
US (1) US11539475B2 (zh)
KR (1) KR20230107171A (zh)
CN (1) CN111416700B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111970094A (zh) * 2020-07-24 2020-11-20 中国信息通信研究院 一种确定边链路反馈资源的方法和设备
CN112839307A (zh) * 2021-01-11 2021-05-25 南通新飓计算机信息科技有限公司 一种基于设备间通信的智能楼宇管理方法及系统
WO2022028328A1 (zh) * 2020-08-06 2022-02-10 夏普株式会社 由用户设备执行的方法以及用户设备
CN115211070A (zh) * 2020-08-20 2022-10-18 Lg电子株式会社 用于在nr v2x中配置psfch资源的方法和设备
CN116326057A (zh) * 2020-10-09 2023-06-23 上海诺基亚贝尔股份有限公司 用于免许可频谱中的nr侧链通信的harq反馈
WO2024093895A1 (zh) * 2022-11-04 2024-05-10 维沃移动通信有限公司 传输方法、装置、终端及可读存储介质

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020145803A1 (ko) 2019-01-11 2020-07-16 엘지전자 주식회사 무선통신시스템에서 피드백 정보를 전송하는 방법
WO2020145723A1 (ko) * 2019-01-11 2020-07-16 엘지전자 주식회사 Nr v2x에서 pssch 자원을 선택하는 방법 및 장치
JP7154436B2 (ja) * 2019-03-05 2022-10-17 エルジー エレクトロニクス インコーポレイティド Nr v2xにおけるpsfchを送信する方法、及び装置
US11722255B2 (en) * 2019-03-26 2023-08-08 Kt Corporation Method and apparatus for transmitting and receiving sidelink HARQ feedback information
US20220201654A1 (en) * 2019-04-09 2022-06-23 Idac Holdings, Inc. Nr sl psfch transmission and monitoring
WO2020228772A1 (en) * 2019-05-14 2020-11-19 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data transmission method and device
EP4170956A1 (en) * 2019-10-03 2023-04-26 Ofinno, LLC Radio resource mapping of a feedback channel
US20240089982A1 (en) * 2019-10-04 2024-03-14 Lg Electronics Inc. Method and device for reporting harq feedback to base station in nr v2x
US11792825B2 (en) * 2020-05-12 2023-10-17 Qualcomm Incorporated Broadcasting intended time division duplex configurations
US20220038213A1 (en) * 2020-07-28 2022-02-03 Qualcomm Incorporated Multi-transmission negative acknowledgement indication in physical sidelink feedback channel
US11997544B2 (en) * 2020-08-18 2024-05-28 Qualcomm Incorporated Reusing sidelink resources
CN114258127B (zh) * 2020-09-25 2023-09-15 维沃移动通信有限公司 信息确定方法、信息发送方法、装置和设备
US11641650B2 (en) 2020-12-10 2023-05-02 Qualcomm Incorporated Timing advance (TA) determination for sidelink (SL) communication
US11658790B2 (en) 2020-12-16 2023-05-23 Qualcomm Incorporated Sidelink component carrier selection for feedback during sidelink carrier aggregation
US20220200737A1 (en) * 2020-12-17 2022-06-23 Qualcomm Incorporated Hybrid automatic repeat request feedback resource configuration for sidelink with carrier aggregation
US12021634B2 (en) 2020-12-17 2024-06-25 Qualcomm Incorporated Resource determination for sidelink hybrid automatic repeat request feedback
CN116527211A (zh) * 2021-01-14 2023-08-01 北京小米移动软件有限公司 通信方法、用户设备及存储介质
US20220232409A1 (en) * 2021-01-19 2022-07-21 Mediatek Singapore Pte. Ltd. Resource Allocation Enhancements For Sidelink Communications
US11848772B2 (en) * 2021-03-05 2023-12-19 Qualcomm Incorporated Rate-matching pattern indications for sidelink carrier aggregation
CN115225218A (zh) * 2021-04-15 2022-10-21 维沃移动通信有限公司 旁链路反馈资源的确定方法、终端及网络侧设备
US20230066859A1 (en) * 2021-08-31 2023-03-02 Qualcomm Incorporated Multiplexing sci-exclusive messages and data-exclusive traffic on sidelinks

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103548409A (zh) * 2011-05-02 2014-01-29 Lg电子株式会社 在无线通信系统中发射/接收数据的方法及其基站
WO2017127245A1 (en) * 2016-01-22 2017-07-27 Qualcomm Incorporated Hybrid automatic repeat request feedback for device-to-device unicast sidelink communications
CN107040338A (zh) * 2016-02-04 2017-08-11 株式会社Kt 用于配置用于NB‑IoT UE发送上行信号的资源单元的方法和设备
CN107277923A (zh) * 2016-04-01 2017-10-20 华硕电脑股份有限公司 无线通信系统中改善使用配置资源的传输的方法及装置
CN107852301A (zh) * 2015-07-10 2018-03-27 Lg 电子株式会社 在无线通信系统中报告信道状态信息的方法及其设备
WO2018171540A1 (zh) * 2017-03-23 2018-09-27 中兴通讯股份有限公司 信息传输的方法、装置、系统及存储介质
CN108781143A (zh) * 2016-04-01 2018-11-09 摩托罗拉移动有限责任公司 用于调度具有减少的延迟的上行链路传输的方法和装置
CN110419192A (zh) * 2017-03-03 2019-11-05 高通股份有限公司 用于对低延时通信和侧链路通信进行复用的信令

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103095433B (zh) * 2011-11-04 2018-06-15 北京三星通信技术研究有限公司 一种发送harq-ack反馈信息的方法
US9277533B2 (en) * 2012-05-17 2016-03-01 Vid Scale, Inc. Scalable video coding over simultaneous unicast/multicast LTE DL shared channel
EP3206452B1 (en) * 2016-02-10 2019-10-16 Panasonic Intellectual Property Corporation of America Priority-optimized sidelink data transfer in the case of autonomous resource allocation in lte prose communication
EP3206321B1 (en) * 2016-02-15 2020-07-08 Panasonic Intellectual Property Corporation of America Improved uplink harq operation for prose-enabled ues participating in sidelink discovery operation
US20190174530A1 (en) * 2016-07-01 2019-06-06 Lg Electronics Inc. Method for transmitting and receiving data in wireless communication system and apparatus therefor
JP6936862B2 (ja) * 2017-02-10 2021-09-22 華為技術有限公司Huawei Technologies Co.,Ltd. データ伝送方法、関連するデバイス、及びシステム
US11316625B2 (en) * 2017-02-17 2022-04-26 Telefonaktiebolaget Lm Ericsson (Publ) Sidelink resource signaling
US11382083B2 (en) * 2018-07-23 2022-07-05 Samsung Electronics Co., Ltd. Method and apparatus for high reliability transmission in vehicle to everything (V2X) communication
US11108507B2 (en) * 2018-10-04 2021-08-31 Lg Electronics Inc. Method and apparatus for transmitting sidelink HARQ feedback in NR V2X
JP6918214B2 (ja) * 2018-10-31 2021-08-11 エルジー エレクトロニクス インコーポレイティド Nr v2xにおける位置情報を送受信する方法及び装置
EP3648385A1 (en) * 2018-10-31 2020-05-06 Hyundai Motor Company Method and apparatus for hybrid automatic repeat request in sidelink communications
WO2020119723A1 (en) * 2018-12-14 2020-06-18 FG Innovation Company Limited Methods and apparatuses for collision control of sidelink communications in wireless communication systems
CN111356099B (zh) * 2018-12-20 2021-10-29 上海朗帛通信技术有限公司 一种被用于无线通信的第一节点中的方法和装置
EP3672337B1 (en) * 2018-12-20 2022-02-16 ASUSTek Computer Inc. Method for handling sidelink feedback collision in a wireless communication system
EP3683993B1 (en) * 2019-01-18 2023-11-15 Nokia Technologies Oy Sidelink feedback for groupcast
JP6934965B2 (ja) * 2019-02-20 2021-09-15 華碩電腦股▲ふん▼有限公司 無線通信システムにおいてサイドリンクおよび上りリンクharq−ackフィードバックを処理するための方法および装置
JP7154436B2 (ja) * 2019-03-05 2022-10-17 エルジー エレクトロニクス インコーポレイティド Nr v2xにおけるpsfchを送信する方法、及び装置
CN111865485A (zh) * 2019-04-30 2020-10-30 北京三星通信技术研究有限公司 Harq反馈方法及执行harq反馈方法的ue
WO2020222565A1 (en) * 2019-05-02 2020-11-05 Samsung Electronics Co., Ltd. Resource allocation method and apparatus in wireless communication system
US10972229B2 (en) * 2019-05-03 2021-04-06 Qualcomm Incorporated HARQ feedback for sidelink communication

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103548409A (zh) * 2011-05-02 2014-01-29 Lg电子株式会社 在无线通信系统中发射/接收数据的方法及其基站
CN107852301A (zh) * 2015-07-10 2018-03-27 Lg 电子株式会社 在无线通信系统中报告信道状态信息的方法及其设备
WO2017127245A1 (en) * 2016-01-22 2017-07-27 Qualcomm Incorporated Hybrid automatic repeat request feedback for device-to-device unicast sidelink communications
US20170215183A1 (en) * 2016-01-22 2017-07-27 Qualcomm Incorporated Hybrid automatic repeat request feedback for unicast sidelink communications
CN107040338A (zh) * 2016-02-04 2017-08-11 株式会社Kt 用于配置用于NB‑IoT UE发送上行信号的资源单元的方法和设备
CN107277923A (zh) * 2016-04-01 2017-10-20 华硕电脑股份有限公司 无线通信系统中改善使用配置资源的传输的方法及装置
CN108781143A (zh) * 2016-04-01 2018-11-09 摩托罗拉移动有限责任公司 用于调度具有减少的延迟的上行链路传输的方法和装置
CN110419192A (zh) * 2017-03-03 2019-11-05 高通股份有限公司 用于对低延时通信和侧链路通信进行复用的信令
WO2018171540A1 (zh) * 2017-03-23 2018-09-27 中兴通讯股份有限公司 信息传输的方法、装置、系统及存储介质

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "R1-1812205 \"Sidelink physical layer procedures for NR V2X\"" *
HUAWEI等: "R1-1812205 "Sidelink physical layer procedures for NR V2X"", 《3GPP TSG_RAN\WG1_RL1》 *
ITL: ""R1-1813976_NR-V2X_HARQ"", 《3GPP TSG_RAN\WG1_RL1》 *
LG ELECTRONIC: ""R1-1814265"", 《3GPP TSG_RAN\WG1_RL1》 *
LG ELECTRONIC: ""Updated feature lead summary for agenda item 7.2.4.1.2 Physical layer procedures"", 《3GPP TSG RAN WG1 MEETING #95 R1-1814265》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111970094A (zh) * 2020-07-24 2020-11-20 中国信息通信研究院 一种确定边链路反馈资源的方法和设备
WO2022028328A1 (zh) * 2020-08-06 2022-02-10 夏普株式会社 由用户设备执行的方法以及用户设备
CN115211070A (zh) * 2020-08-20 2022-10-18 Lg电子株式会社 用于在nr v2x中配置psfch资源的方法和设备
CN115211070B (zh) * 2020-08-20 2024-04-23 Lg电子株式会社 用于在nr v2x中配置psfch资源的方法和设备
CN116326057A (zh) * 2020-10-09 2023-06-23 上海诺基亚贝尔股份有限公司 用于免许可频谱中的nr侧链通信的harq反馈
CN112839307A (zh) * 2021-01-11 2021-05-25 南通新飓计算机信息科技有限公司 一种基于设备间通信的智能楼宇管理方法及系统
CN112839307B (zh) * 2021-01-11 2021-12-17 台州信元建筑节能科技有限公司 一种基于设备间通信的智能楼宇管理方法及系统
WO2024093895A1 (zh) * 2022-11-04 2024-05-10 维沃移动通信有限公司 传输方法、装置、终端及可读存储介质

Also Published As

Publication number Publication date
US11539475B2 (en) 2022-12-27
KR20230107171A (ko) 2023-07-14
US20200220669A1 (en) 2020-07-09
CN111416700B (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
CN111416700B (zh) 传送侧链路harq反馈信息的方法和装置
CN110943809B (zh) 用于传送侧链路harq反馈信息的方法和设备
US11405143B2 (en) Method and apparatus for transmitting sidelink HARQ feedback information
US11160053B2 (en) Method and apparatus for transmitting and receiving sidelink data
CN111756488B (zh) 用于发射和接收侧行链路harq反馈信息的方法和装置
CN111800872B (zh) 发射和接收侧链路harq反馈信息的方法和装置
CN111756515B (zh) 发射和接收用于侧链路信道状态信息获取的参考信号的方法和装置
KR20200120533A (ko) 사이드링크 통신을 수행하는 방법 및 그 장치
CN112152755B (zh) 发射和接收侧行链路通信中调制和解调信息的方法和装置
CN111867099B (zh) 发射和接收侧链路harq反馈信息的方法和装置
KR102246074B1 (ko) Nr v2x에서 사이드링크 프레임 및 물리계층 구조
KR102338792B1 (ko) 사이드링크 harq 피드백 정보를 전송하는 방법 및 장치
US20220015139A1 (en) Method for performing vehicle communication and device therefor
KR102412491B1 (ko) 사이드링크 harq 피드백 정보를 송수신하는 방법 및 장치
EP4030850A1 (en) Method and apparatus for transmitting and receiving coordination information for sidelink communication
KR102434619B1 (ko) 사이드링크 harq 피드백 정보를 전송하는 방법 및 장치
US20220322302A1 (en) Method and device for performing sidelink communication using coordination information
KR20200127123A (ko) 사이드링크 harq 피드백 정보를 송수신하는 방법 및 장치
KR102338799B1 (ko) 사이드링크 데이터를 송수신하는 방법 및 장치
KR20200116026A (ko) 사이드링크 채널 상태 정보 획득을 위한 참조 신호 송수신 방법 및 장치
KR20210127282A (ko) 차세대 무선망에서 단말의 사이드링크 송수신 방법 및 장치
CN118020364A (zh) 用于执行侧链路通信的方法及其设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant