WO2018028169A1 - 有机电致发光器件及其制备方法、显示装置 - Google Patents

有机电致发光器件及其制备方法、显示装置 Download PDF

Info

Publication number
WO2018028169A1
WO2018028169A1 PCT/CN2017/074417 CN2017074417W WO2018028169A1 WO 2018028169 A1 WO2018028169 A1 WO 2018028169A1 CN 2017074417 W CN2017074417 W CN 2017074417W WO 2018028169 A1 WO2018028169 A1 WO 2018028169A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic electroluminescent
electroluminescent device
electrode
electron
Prior art date
Application number
PCT/CN2017/074417
Other languages
English (en)
French (fr)
Inventor
廖金龙
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP17778161.4A priority Critical patent/EP3499598B1/en
Priority to US15/566,355 priority patent/US10658431B2/en
Publication of WO2018028169A1 publication Critical patent/WO2018028169A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • H10K50/131OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit with spacer layers between the electroluminescent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/155Hole transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/19Tandem OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/30Organic light-emitting transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • H10K85/6565Oxadiazole compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • Embodiments of the present invention relate to an organic electroluminescent device, a method of fabricating the same, and a display device.
  • OLED Organic Light-Emitting Diode
  • OLEDs Organic electroluminescent devices
  • Current organic electroluminescent devices include an anode, a cathode, and a luminescent layer disposed between the anode and the cathode.
  • the holes injected by the anode and the electrons injected by the cathode enter the recombination zone of the luminescent layer to form excitons, and the exciton radiation transitions to emit photons to perform electroluminescence.
  • the holes and electrons have different mobility, the injection of holes and electrons is unbalanced, so that the actual luminous efficiency of the organic electroluminescent device is low.
  • At least one embodiment of the present invention provides an organic electroluminescent device comprising: a substrate, a first electrode and a second electrode disposed on the substrate, disposed at the first a first light emitting layer between the electrode and the second electrode, a charge generating layer disposed between the first light emitting layer and the second electrode; wherein the charge generating layer comprises a first layer disposed a connection layer, a carrier injection layer, and a second connection layer; the first connection layer includes an electron transport material and a hole blocking material doped therein; the second connection layer includes a hole transport material and doped Among them are electronic barrier materials.
  • the hole transporting material includes an aromatic diamine compound, a triphenylamine compound, an aromatic triamine compound, a biphenyldiamine derivative, Any one or combination of a triarylamine polymer and a carbazole polymer.
  • the electron The transport material includes 4,7-diphenyl-1,10-phenanthroline, 2,9-bis(naphthalen-2-yl)-4,7-diphenyl-1,10-phenanthroline, Any of 4,7-diphenyl-1,10-phenanthroline, 2,9-dimethyl-4,7-biphenyl-1,10-phenanthroline and 8-hydroxyquinoline aluminum One or a combination.
  • the electron transporting material has a conductivity of less than 10 -6 S/cm, and the hole transporting material has a conductivity of more than 10 3 S/cm.
  • the electron blocking material includes any one or combination of MoO 3 , Cs 2 CO 3 , CsF, Al, Ir (ppz 3 ).
  • the hole blocking material comprises 2-(4-biphenyl)-5-phenyl-1,3,4-oxadiazole.
  • 3-(biphenyl-4-yl)-5-(4-tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole, 1,3,5-tris(1-benzene Any one or combination of benzyl-1H-benzimidazol-2-yl)benzene, triphenylquinoline, and 2,6-bis(biphenyl)-4,8-diphenyloxazoline.
  • the carrier injection layer includes a metal, a composite material of an organic substance and a metal, or a metal compound.
  • the carrier injection layer has a thickness of 0.5 to 2 nm.
  • the organic electroluminescent device further includes a second luminescent layer disposed between the second electrode and the charge generating layer.
  • the first luminescent layer includes a first illuminating unit and a second illuminating unit
  • the second illuminating layer includes a third illuminating unit
  • the One light emitting unit is formed of a red light emitting material
  • the second light emitting unit is formed of a green light emitting material
  • the third light emitting unit is formed of a blue light emitting material.
  • the organic electroluminescent device further includes: an electron transport layer disposed between the second electrode and the second light emitting layer; disposed on the first electrode and the A hole transport layer between the first light emitting layers.
  • the hole transport layer has a thickness of 10 to 180 nm; and the electron transport layer has a thickness of 10 to 35 nm.
  • the organic electroluminescent device further includes: a hole injection layer disposed between the first electrode and the hole transport layer; and the second electrode and the An electron injection layer between the electron transport layers.
  • the hole injection layer has a thickness of 10 to 180 nm; and the electron injection layer has a thickness of 1 to 5 nm.
  • the material of the hole injection layer includes poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT/PSS), Any one or combination of polythiophene and polyaniline.
  • PEDOT/PSS poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid
  • the material of the electron injecting layer includes any one or a combination of LiF and 8-hydroxyquinoline-lithium.
  • At least one embodiment of the present invention also provides a display device comprising the above organic electroluminescent device.
  • At least one embodiment of the present invention provides a method of fabricating an organic electroluminescent device, comprising: providing a substrate; forming a first electrode, a first light emitting layer, a charge generating layer, and a second electrode on the substrate
  • the charge generating layer comprises a first connecting layer, a carrier injection layer and a second connecting layer disposed in a stack
  • the first connecting layer comprises an electron transporting material and a hole blocking material doped therein
  • the second connection layer includes a hole transport material and an electron blocking material doped therein.
  • the carrier injection layer includes a metal, a composite material of an organic substance and a metal, or a metal compound.
  • the preparation method provided by at least one embodiment of the present invention includes: forming the first luminescent layer on the first electrode by a solution process.
  • 1 is a schematic structural view of an organic electroluminescent device
  • FIG. 2 is a schematic structural diagram of an organic electroluminescent device according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a charge generating layer according to an embodiment of the present invention.
  • FIG. 4 is a flow chart of a method for fabricating an organic electroluminescent device according to an embodiment of the invention.
  • FIG. 1 is a schematic structural view of an organic electroluminescent device including: a substrate substrate 101, a first electrode 102, an organic light-emitting layer 104, and a second electrode 103 sequentially disposed on a base substrate 101.
  • the organic light-emitting layer 104 includes three colors of red, green, and blue organic light-emitting materials, and the light-emitting principle is that when a voltage is applied to the first electrode 102 and the second electrode 103 to form a current, electrons and holes are organic. Excitons are compositely formed in the light-emitting layer 104, and the organic material in the organic light-emitting layer 104 is excited.
  • OLED organic electroluminescent device
  • the red and green organic light-emitting materials respectively adopt a solution process to form a phosphorescent light-emitting layer, and the blue organic light-emitting material adopts an evaporation process to form a fluorescent light-emitting layer, and the control of carriers in the composite region is difficult, resulting in electrons and The hole is not balanced, and it is not easy to obtain the desired luminous efficacy and light color.
  • At least one embodiment of the present invention provides an organic electroluminescent device, a method of fabricating the same, and a display device including the organic electroluminescent device.
  • the organic electroluminescent device includes: a substrate, a first electrode and a second electrode disposed on the substrate, a first light emitting layer disposed between the first electrode and the second electrode, disposed on the first light emitting layer And a charge generating layer between the second electrode;
  • the charge generation layer includes a first connection layer, a carrier injection layer, and a second connection layer disposed in a stack;
  • the first connection layer includes an electron transport material and a hole blocking material doped therein; and
  • the second connection layer includes an empty The hole transport material and the electron blocking material doped therein.
  • the arrangement of the charge generation layer directly affects the position of the carrier transport and the carrier recombination zone, the carrier injection layer in the charge generation layer can generate electrons and holes, and the first connection layer and the second connection layer can adjust the electrons
  • the mobility and the hole mobility increase the number of electrons and hole pairs recombined in the light-emitting layer, thereby improving the luminous efficiency of the organic electroluminescent device, thereby improving the display effect of the display device.
  • FIG. 2 is a schematic structural diagram of an organic electroluminescent device according to an embodiment of the present invention.
  • the organic electroluminescent device 100 includes: a substrate 101 a first electrode 102 and a second electrode 103 disposed on the base substrate 101, a first light emitting layer 1041 disposed between the first electrode 102 and the second electrode 103, disposed on the first light emitting layer 1041 and the second electrode a charge generation layer 105 between 103; wherein the charge generation layer 105 includes a first connection layer 1051, a carrier injection layer 1052 and a second connection layer 1053 which are laminated; the first connection layer 1051 includes an electron transport material and a blend a hole blocking material mixed therein; the second connection layer 1053 includes a hole transport material and an electron blocking material doped therein.
  • the base substrate 101 may be a transparent glass substrate or a transparent plastic substrate.
  • one of the first electrode 102 and the second electrode 103 is an anode and the other is a cathode.
  • the electrode material as the anode includes a transparent conductive material such as indium tin oxide or zinc oxide; and the electrode material as the cathode includes aluminum, magnesium or an alloy material formed of both.
  • the carrier injection layer 1052 can generate electrons and holes under the action of an electric field to balance the contents of electrons and holes.
  • the material of the carrier injection layer 1052 may be a metal, for example, the material of the metal layer includes aluminum, calcium, magnesium, silver, gold, sodium, potassium, rubidium or lithium.
  • the material of the carrier injection layer 1052 may include a composite material formed by doping a metal in an organic substance, for example, a derivative of ruthenium, an aromatic diamine compound, a triphenylamine compound, an aromatic triamine compound, and a combination.
  • a metal in an organic substance for example, a derivative of ruthenium, an aromatic diamine compound, a triphenylamine compound, an aromatic triamine compound, and a combination.
  • the phenylenediamine derivative is doped with aluminum, calcium, magnesium, silver, gold, sodium, potassium, rubidium or lithium.
  • the material of the carrier injection layer 1052 may also include a metal compound, which may be an organic metal complex or an inorganic metal compound.
  • a metal compound which may be an organic metal complex or an inorganic metal compound.
  • the organometallic complex includes: bis(2-methyl-8-hydroxyquinoline-N1,O8)-(1,1'-biphenyl-4-hydroxy)aluminum, bis[2-(2-hydroxyl) Phenyl-1)-pyridine] ruthenium or the like; inorganic metal compounds include: V 2 O 5 , MoO 3 , 8b 2 O 5 , PbO and the like.
  • the carrier injection layer has a thickness of 0.5 to 2 nm, for example, 0.5 nm, 1 nm, and 2 nm.
  • the hole transporting material may be made of an aromatic diamine compound, a triphenylamine compound, an aromatic triamine compound, a biphenyldiamine derivative, a triarylamine polymer, and a carbazole polymer.
  • an aromatic diamine compound such as NPB, TPD, TCTA and polyvinyl carbazole or their monomers.
  • the electron transporting material includes: 4,7-diphenyl-1,10-phenanthroline, 2,9-bis(naphthalen-2-yl)-4,7-diphenyl-1,10- Phenanthroline, 4,7-diphenyl-1,10-phenanthroline, 2,9-dimethyl-4,7-biphenyl-1,10-phenanthroline and 8-hydroxyquinoline
  • the material of the electron transport layer may also be lithium quinolate (Liq), 8-hydroxyquinoline gallium, bis[2-(2-hydroxyphenyl-1)-pyridine] fluorene, 2-(4-diphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD), 1,3,5-tris(N-phenyl-2-benzene And imidazole-2) benzene (TPBI), BCP, Bphen, and the like.
  • Liq lithium quinolate
  • 8-hydroxyquinoline gallium bis[2-(2-hydroxypheny
  • the conductivity of the electron transporting material is less than 10 -6 S/cm, and the conductivity of the hole transporting material is greater than 10 3 S/cm.
  • the electron blocking material as a hole transport material doping material includes any one or a combination of MoO 3 , Cs 2 CO 3 , CsF, Al, Ir(ppz 3 ).
  • a hole blocking material as a dopant material for an electron transporting material includes: 2-(4-biphenyl)-5-phenyl-1,3,4-oxadiazole, 2-(4-biphenylyl) 5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD), 3-(biphenyl-4-yl)-5-(4-tert-butylphenyl)-4 -Phenyl-4H-1,2,4-triazole (TAZ), 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene (TPBI), porphyrin derivative , triphenylquinoline (TPQ), azide derivative, 2,6-bis(biphenyl)-4,8-diphenyloxazoline, phenanthroline derivative, and the like.
  • the organic electroluminescent device 100 further includes a second luminescent layer 1042 disposed between the second electrode 103 and the charge generating layer 105.
  • the first light emitting layer 1041 includes a first light emitting unit and a second light emitting unit disposed in the same layer, and the second light emitting layer 1042 includes a third light emitting unit.
  • the first light emitting unit is formed of a red light emitting material
  • the second light emitting unit is formed of a green light emitting material
  • the third light emitting unit is formed of a blue light emitting material.
  • the materials of the first luminescent layer 1041 and the second luminescent layer 1042 may be selected according to the color of the emitted light.
  • the organic light-emitting material in the embodiment of the present invention includes a fluorescent light-emitting material or a phosphorescent light-emitting material, as needed.
  • a doping system is generally employed, that is, a doping material is mixed in a host luminescent material to obtain a usable luminescent material.
  • the host luminescent material may be a metal compound material, a ruthenium derivative, an aromatic diamine compound, a triphenylamine compound, an aromatic triamine compound, a biphenyldiamine derivative, or a triarylamine polymer, etc., exemplary.
  • Fluorescent or doped materials include, for example, coumarin dyes (coumarin 6, C-545T), quinacles Pyridone (DMQA), or 4-(dinitrile methylene)-2-methyl-6-(4-dimethylamino-styrene)-4H-pyran (DCM) series, etc.
  • Phosphorescent materials or The doping material includes, for example, metal complex luminescent materials based on Ir, Pt, Ru, Os, such as: FIRpic, Fir6, FirN4, FIRtaz, Ir(ppy) 3 , Ir(ppy) 2 (acac), PtOEP, (btp). 2 Iracac, Ir(piq) 2 (acac) or (MDQ) 2 Iracac, etc.
  • the luminescent material may also include a dual host and doping.
  • the red luminescent layer is made of 4,4'-bis(N-carbazole)-1,1'-biphenyl doped with 5,6,11,12-tetraphenyltetracene, 4,4'- The doping ratio of bis(N-carbazole)-1,1'-biphenyl to 5,6,11,12-tetraphenyltetracene was 97:3.
  • the green light-emitting layer is doped with 1,3,5-tris(bromomethyl)benzene, N,N'-dimethylquinacridone, 1,3,5-tris(bromomethyl)benzene and N, The doping ratio of N'-dimethylquinacridone was 85:15.
  • the first luminescent layer 1041 is formed using a solution process.
  • the blue light-emitting layer is made of 3-tert-butyl-9,10-bis(2-naphthalene)anthene doped with 2,5,8,11-tetra-tert-butylfluorene.
  • the doping ratio of 3-tert-butyl-9,10-bis(2-naphthyl)anthracene to 2,5,8,11-tetra-tert-butylfluorene was 95:5.
  • the second luminescent layer 1042 is formed using a vacuum thermal evaporation process.
  • each of the light emitting units may be formed of a light emitting material of another color.
  • the number of light-emitting units of the organic light-emitting layer and the light-emitting material formed by each light-emitting unit may be specifically determined according to actual conditions, and are not limited herein.
  • the first light-emitting unit, the second light-emitting unit, and the third light-emitting unit shown in FIG. 2 are arranged in two layers. In practical applications, the arrangement of the light-emitting units may also be specifically determined according to actual conditions, and is not used herein. limited.
  • the charge generating layer 105 is disposed between the first light emitting layer 1041 and the second light emitting layer 1042, and the charge generating layer 105 is in direct contact with both the first light emitting layer 1041 and the second light emitting layer 1042.
  • the first connection layer 1051 and the second connection layer 1053 can adjust electron mobility and hole mobility, and electrons and holes generated by the carrier injection layer 1052 make holes and electrons in the organic electroluminescence device more balanced. Thereby, the number of combined electron and hole pairs in the first light-emitting layer 1041 and the second light-emitting layer 1042 is increased, and the luminous efficiency of the organic electroluminescent device is improved.
  • the material of the first connection layer 1051 is doped with holes for materials suitable for the electron transport layer. A mixture of barrier materials.
  • the electrons generated by the carrier injection layer 1052 are transmitted to the red light-emitting layer or the green light-emitting layer, and the holes injected from the anode are combined to form excitons, and the combined electron and hole pairs in the red light-emitting layer and the green light-emitting layer are added.
  • the amount of the organic material in the red light-emitting layer is excited to emit red light
  • the organic material in the green light-emitting layer is excited to emit green light to improve the luminous efficiency of red light and green light.
  • the material of the second connection layer 1053 is a mixture of materials doped with an electron blocking material suitable for the hole transport layer. This facilitates the transport of holes generated by the carrier injection layer 1052 to the blue light-emitting layer and the electrons injected from the cathode to form excitons, increasing the number of electrons and hole pairs composited in the blue light-emitting layer, thereby exciting blue.
  • the organic material in the luminescent layer emits blue light to increase the luminous efficiency of the blue light.
  • the thickness of the first connection layer 1051 is 0.5 to 3 nm, for example, 2 nm; the thickness of the second connection layer 1053 is 0.5 to 3 nm, for example, 2 nm; and the thickness of the carrier injection layer is 0.5 to 2 nm, for example, 1 nm.
  • a hole transport layer 106 is disposed between the first electrode 102 and the first light-emitting layer 1041 with the first electrode 102 as an anode.
  • 106 is formed using a solution process.
  • the second electrode 103 is used as a cathode, and an electron transport layer 107 is disposed between the second electrode 103 and the second light-emitting layer 1042.
  • the electron transport layer 107 is formed by a vacuum thermal evaporation process.
  • the hole transport layer 106 has a thickness of 10 to 180 nm
  • the electron transport layer 107 has a thickness of 10 to 35 nm.
  • the organic electroluminescent device 100 further includes an electron injection layer 109 disposed between the second electrode 103 and the electron transport layer 107; disposed between the first electrode 102 and the hole transport layer 106.
  • the hole injection layer 108 is disposed between the second electrode 103 and the electron transport layer 107.
  • the thickness of the hole injection layer is 10 to 180 nm; and the thickness of the electron injection layer is 1 to 5 nm.
  • the material of the hole injection layer includes any one of poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT/PSS), polythiophene, and polyaniline.
  • the material of the hole injection layer may also be tris-[4-(5-phenyl-2-thienyl)benzene]amine, 4,4',4"-tris[2-naphthyl(phenyl)amino]tri Aniline (2-TNATA), 4,4',4"-tris-(3-methylphenylanilino)triphenylamine (m-MTDATA), beryllium copper (CuPc) or TPD.
  • the material of the electron injecting layer includes any one or a combination of LiF, 8-hydroxyquinoline-lithium.
  • the electron injecting layer may also be an alkali metal oxide or another alkali metal fluoride or the like.
  • the alkali metal oxide includes lithium oxide (Li 2 O), lithium boron oxide (LiBO 2 ), potassium oxychloride (K 2 SiO 3 ), cesium carbonate (Cs 2 CO 3 ), and the like; alkali metal fluoride includes sodium fluoride ( NaF) and so on.
  • the hole injection layer 108 has a thickness of 10 to 180 nm; and the electron injection layer 109 has a thickness of 1 to 5 nm.
  • the working principle of the organic electroluminescent device is that when a voltage is applied between the first electrode 102 and the second electrode 103, holes injected by the first electrode 102 (anode) pass through the cavity under the driving of the external voltage.
  • the injection layer 108 and the hole transport layer 106 enter the first light-emitting layer 1041 and then enter the first connection layer 1051, and electrons injected from the second electrode 103 (cathode) enter the second light-emitting layer through the electron injection layer 109 and the electron transport layer 107.
  • the carrier injection layer 1052 generates electrons and holes under the action of the electric field force, and the electrons generated by the carrier injection layer 1052 are transported at a higher rate than the current carrier in the first connection layer 1051.
  • the holes generated by the sub-injection layer 1052 have a high transfer rate in the first connection layer 1051, the electrons generated by the carrier injection layer 1052 are recombined with the holes injected from the anode 102, or the holes generated by the carrier injection layer 1052.
  • the holes generated by the carrier injection layer 1052 are combined with the electrons injected from the cathode, or the electrons generated by the carrier injection layer 1052 cannot be transported in the second connection layer 1053, and only holes are allowed to be transported to the second light-emitting layer 1042.
  • the electrons injected from the cathode 103 recombine, thereby increasing the number of electrons and hole pairs recombined in the blue light-emitting layer to increase the luminous efficiency of the blue light.
  • an organic electroluminescent device not using a charge generating layer is provided as a comparative device, as shown in FIG. 1, which is the structure of the organic electroluminescent device in the comparative example, and the constituent materials and thicknesses of the remaining functional layers of the comparative device are
  • the organic electroluminescent device provided by the embodiments of the present invention is the same.
  • the experiment is carried out under the same brightness conditions as the organic electroluminescent device provided by the embodiment of the present invention, as shown in FIG. 2, which is the structure of the organic electroluminescent device according to the embodiment of the present invention.
  • the brightness of the organic electroluminescent device provided by the comparative device and the embodiment of the present invention was 1000 nits.
  • the organic electroluminescent device provided by the embodiment of the present invention requires less voltage than the comparative device under the same brightness condition, and the luminous efficiency is higher than that of the comparative device, and the external quantum efficiency (External quantum efficiency, EQE) is also higher than the comparison device.
  • external quantum efficiency is commonly used to characterize luminous efficiency.
  • the external quantum efficiency refers to the ratio of the number of photons emitted by the light-emitting device to the number of injected electrons (holes) excited upon light emission.
  • Embodiments of the present invention also provide a display device including the above-described organic electroluminescent device provided by an embodiment of the present invention.
  • the display device may be any product or component having a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • a display function such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • Other indispensable components of the display device are understood by those skilled in the art, and are not described herein, nor should they be construed as limiting the invention.
  • FIG. 4 is a flow chart of a method for preparing an organic electroluminescent device according to an embodiment of the invention.
  • the preparation method comprises the following steps:
  • a substrate which is a transparent glass substrate or a transparent plastic substrate
  • a first electrode, a first light emitting layer, a charge generating layer, and a second electrode are sequentially formed on the base substrate.
  • the charge generation layer includes a first connection layer, a carrier injection layer, and a second connection layer disposed in a stack, the first connection layer including an electron transport material and a hole blocking material doped therein;
  • the tie layer includes a hole transport material and an electron blocking material doped therein.
  • the formation process of the charge generation layer includes sequentially forming a first connection layer, a carrier injection layer, and a second connection layer by an evaporation process.
  • the material of the first tie layer may be a mixture of materials doped with a hole blocking material suitable for the electron transport layer. This is more advantageous for the electrons generated by the carrier injection layer to be transported into the red or green light-emitting layer and the holes injected from the anode.
  • the excitons excite the organic material in the red light-emitting layer to emit red light, and the organic material in the green light-emitting layer emits green light to improve the luminous efficiency of the red light and the green light.
  • the material of the second tie layer may be a mixture of materials doped with an electron blocking material suitable for the hole transport layer.
  • the holes generated by the carrier injection layer are transported to the blue light-emitting layer and the electrons injected from the cathode are combined to form excitons, and the organic material in the blue light-emitting layer is excited to emit blue light to improve the light-emitting efficiency of the blue light.
  • the carrier injection layer includes a metal, a composite of an organic substance and a metal, or a metal compound.
  • the material of the carrier injection layer may be a composite material formed by doping a metal in an organic substance, for example, a derivative of ruthenium, an aromatic diamine compound, a triphenylamine compound, an aromatic triamine compound, or a biphenyl.
  • the diamine derivative is doped with aluminum, calcium, magnesium, silver, gold or lithium;
  • the material of the carrier injection layer may also be a metal complex such as bis(2-methyl-8-hydroxyquinoline- N1,O8)-(1,1'-biphenyl-4-hydroxy)aluminum, bis[2-(2-hydroxyphenyl-1)-pyridine]indole, and the like.
  • the thickness of the first connection layer is 0.5 to 3 nm
  • the thickness of the second connection layer is 0.5 to 3 nm
  • the thickness of the carrier injection layer is 0.5 to 2 nm.
  • the carrier injection layer in the charge generation layer may generate electrons and holes, and the first connection layer and the second connection layer may adjust electron and hole transport, thereby increasing the number of composite electron and hole pairs in the light-emitting layer, thereby The luminous efficiency of the organic electroluminescent device is improved, thereby improving the display effect of the display device.
  • one of the first electrode and the second electrode is an anode and the other is a cathode.
  • the second electrode (cathode) can be formed by vacuum thermal evaporation through a metal cathode mask, and the evaporation rate is 0.1 to 1 nm/s, for example, 0.5 nm/s.
  • the material of the cathode includes Al, Mg/Ag, etc., and the thickness of the cathode is 80 to 120 nm.
  • the electrode material of the anode includes a transparent conductive material such as indium tin oxide or zinc oxide.
  • a first luminescent layer is formed on the first electrode using a solution process.
  • the preparation method further includes: forming a charge generating layer between the first light emitting layer and the second electrode by using an evaporation process; forming a second light emitting layer between the second electrode and the charge generating layer by using an evaporation process;
  • the preparation method further includes forming a hole transport layer between the first electrode and the first light-emitting layer by a solution process, and forming an electron transport layer between the second electrode and the second light-emitting layer by an evaporation process.
  • the preparation method further includes: forming a hole injection layer between the first electrode and the hole transport layer by a solution process; forming an electron injection layer between the second electrode and the electron transport layer by an evaporation process.
  • the manufacturing process of the organic electroluminescent device comprises: cleaning the substrate formed with the first electrode with deionized water, acetone and absolute ethanol in an ultrasonic environment, and after the cleaning, the substrate is grounded with nitrogen. Drying is performed, and then the substrate is subjected to UV irradiation or oxygen or nitrogen plasma treatment to remove residual impurities. After the end of the treatment, a hole injection layer, a hole transport layer, and a first light-emitting layer are sequentially formed on the anode by a solution process, and the first light-emitting layer includes a red light-emitting layer and a green light-emitting layer.
  • a charge generating layer, a second light emitting layer, an electron transport layer, and an electron injecting layer are sequentially formed on the first light emitting layer by an evaporation process, and the second light emitting layer includes a blue light emitting layer.
  • Both the charge generating layer and the second luminescent layer are formed by a vacuum evaporation process, which simplifies the preparation process and saves production costs.
  • the charge generating layer, the blue light emitting layer, the electron transport layer, and the electron injecting layer are formed by vacuum thermal evaporation using an open mask.
  • the vapor deposition conditions are a vacuum of less than 5 ⁇ 10 -4 Pa and a vapor deposition rate of 0.01 to 0.5 nm / s, for example, 0.1 nm / s.
  • the hole transport layer For the materials of the hole transport layer, the hole injection layer, the electron transport layer, the electron injection layer, the red light-emitting layer, the green light-emitting layer, and the blue light-emitting layer, refer to the related description in the above embodiments, and details are not described herein again.
  • any production process capable of patterning the substrate may be adopted. There are no restrictions here.
  • the organic electroluminescent device provided by the embodiment of the present invention and the display device including the organic electroluminescent device have at least the following beneficial effects: the carrier injection layer generates electrons and holes under the action of the electric field force, through the first connection The adjustment of electron mobility and hole mobility by the layer and the second connecting layer, the newly generated electrons recombine with the holes injected from the anode, increasing the number of electrons and hole pairs composited in the red and green light-emitting layers Thereby increasing the luminous efficiency of red and green light; the newly generated holes recombine with the electrons injected from the cathode, increasing the number of electrons and hole pairs composited in the blue light-emitting layer, thereby improving the luminous efficiency of blue light .

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机电致发光器件及其制备方法和显示装置,该有机电致发光器件(100)包括衬底基板(101),设置在所述衬底基板(101)上的第一电极(102)和第二电极(103),设置在所述第一电极(102)和所述第二电极(103)之间的第一发光层(1041),设置在所述第一发光层(1041)和所述第二电极(103)之间的电荷产生层(105);其中,所述电荷产生层(105)包括叠层设置的第一连接层(1051)、载流子注入层(1052)和第二连接层(1053);所述第一连接层(1051)包括电子传输材料和掺杂在其中的空穴阻挡材料;所述第二连接层(1053)包括空穴传输材料和掺杂在其中的电子阻挡材料。该有机电致发光器件通过电荷产生层增加了发光层中复合的电子和空穴对的数量,从而提高了发光效率。

Description

有机电致发光器件及其制备方法、显示装置 技术领域
本发明的实施例涉及一种有机电致发光器件及其制备方法、显示装置。
背景技术
有机电致发光器件(Organic Light-Emitting Diode,OLED)是一种电激发荧光体或磷光体有机化合物实现发光的显示器件。有机电致发光器件(OLED)因其具有自发光、全固态、宽视角、响应快等诸多优点而被认为在显示领域中有着巨大的应用前景。
目前的有机电致发光器件包括阳极、阴极以及设置在阳极与阴极之间的发光层。在外界电压的驱动下,由阳极注入的空穴和由阴极注入的电子进入到发光层的复合区复合形成激子,激子辐射跃迁发射光子从而进行电致发光。然后,由于空穴和电子具有不同的迁移率,导致空穴和电子的注入不平衡,使得有机电致发光器件的实际发光效率较低。
发明内容
本发明至少一实施例提供一种有机电致发光器件,该有机电致发光器件包括:衬底基板,设置在所述衬底基板上的第一电极和第二电极,设置在所述第一电极和所述第二电极之间的第一发光层,设置在所述第一发光层和所述第二电极之间的电荷产生层;其中,所述电荷产生层包括叠层设置的第一连接层、载流子注入层和第二连接层;所述第一连接层包括电子传输材料和掺杂在其中的空穴阻挡材料;所述第二连接层包括空穴传输材料和掺杂在其中的电子阻挡材料。
例如,在本发明至少一实施例提供的有机电致发光器件中,所述空穴传输材料包括芳香族二胺类化合物、三苯胺化合物、芳香族三胺类化合物、联苯二胺衍生物、三芳胺聚合物和咔唑类聚合物中的任意一种或组合。
例如,在本发明至少一实施例提供的有机电致发光器件中,所述电子 传输材料包括4,7-二苯基-1,10-邻二氮杂菲、2,9-双(萘-2-基)-4,7-二苯基-1,10-菲罗啉、4,7-二苯基-1,10-菲啰啉、2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲以及8-羟基喹啉铝中的任意一种或组合。
例如,在本发明至少一实施例提供的有机电致发光器件中,所述电子传输材料的电导率小于10-6S/cm,所述空穴传输材料的电导率大于103S/cm。
例如,在本发明至少一实施例提供的有机电致发光器件中,所述电子阻挡材料包括MoO3,Cs2CO3,CsF,Al,Ir(ppz3)中的任意一种或组合。
例如,在本发明至少一实施例提供的有机电致发光器件中,所述空穴阻挡材料包括2-(4-联苯基)-5-苯基-1,3,4-恶二唑,3-(联苯-4-基)-5-(4-叔丁基苯基)-4-苯基-4H-1,2,4-三唑,1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯,三苯基喹啉以及2,6-双(联苯)-4,8-二苯基蒽唑啉中的任意一种或组合。
例如,在本发明至少一实施例提供的有机电致发光器件中,所述载流子注入层包括金属、有机物与金属的复合材料或金属化合物。
例如,在本发明至少一实施例提供的有机电致发光器件中,所述载流子注入层的厚度为0.5~2nm。
例如,在本发明至少一实施例提供的有机电致发光器件中,所述有机电致发光器件还包括设置在所述第二电极和所述电荷产生层之间的第二发光层。
例如,在本发明至少一实施例提供的有机电致发光器件中,所述第一发光层包括第一发光单元和第二发光单元,所述第二发光层包括第三发光单元,所述第一发光单元由红色发光材料形成,所述第二发光单元由绿色发光材料形成,所述第三发光单元由蓝色发光材料形成。
例如,本发明至少一实施例提供的有机电致发光器件,还包括:设置于所述第二电极和所述第二发光层之间的电子传输层;设置于所述第一电极和所述第一发光层之间的空穴传输层。
例如,在本发明至少一实施例提供的有机电致发光器件中,所述空穴传输层的厚度为10~180nm;所述电子传输层的厚度为10~35nm。
例如,本发明至少一实施例提供的有机电致发光器件,还包括:设置于所述第一电极和所述空穴传输层之间的空穴注入层;设置于所述第二电极和所述电子传输层之间的电子注入层。
例如,在本发明至少一实施例提供的有机电致发光器件中,所述空穴注入层的厚度为10~180nm;所述电子注入层的厚度为1~5nm。
例如,在本发明至少一实施例提供的有机电致发光器件中,所述空穴注入层的材料包括聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT/PSS)、聚噻吩和聚苯胺中的任意一种或组合。
例如,在本发明至少一实施例提供的有机电致发光器件中,所述电子注入层的材料包括LiF、8-羟基喹啉-锂中的任意一种或组合。
本发明至少一实施例还提供一种显示装置,包括上述中的有机电致发光器件。
本发明至少一实施例还提供一种有机电致发光器件的制备方法,包括:提供衬底基板;在所述衬底基板上形成第一电极、第一发光层、电荷产生层和第二电极;其中,所述电荷产生层包括叠层设置的第一连接层、载流子注入层和第二连接层;所述第一连接层包括电子传输材料和掺杂在其中的空穴阻挡材料;所述第二连接层包括空穴传输材料和掺杂在其中的电子阻挡材料。
例如,在本发明至少一实施例提供的制备方法中,所述载流子注入层包括金属、有机物与金属的复合材料或金属化合物。
例如,本发明至少一实施例提供的制备方法,包括:采用溶液制程在所述第一电极上形成所述第一发光层。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为一种有机电致发光器件的结构示意图;
图2为本发明一实施例提供的一种有机电致发光器件的结构示意图;
图3为本发明一实施例提供的电荷产生层的结构示意图;
图4为本发明一实施例提供的一种有机电致发光器件的制备方法的流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
图1为一种有机电致发光器件的结构示意图,该有机电致发光器件包括:衬底基板101,依次设置在衬底基板101上的第一电极102、有机发光层104和第二电极103,该有机发光层104包括红、绿、蓝三种颜色的有机发光材料,其发光原理为在分别对第一电极102和第二电极103通电压以形成电流时,电子和空穴会在有机发光层104中复合形成激子,有机发光层104中的有机材料受激发光。在有机电致发光器件(OLED)的不同膜层间的界面特性对于OLED的性能而言尤其重要。目前,OLED是由溶液制程和真空热蒸镀制程这两种制程工艺混合制成的,彼此相邻的两种不同的材料可能分别由不同的制程得到。由于这两种制程工艺的转换,不同材料间的界面特性必然受到影响,尤其是有机发光层易受到影响。例如,红色和绿色两种颜色的有机发光材料分别采用溶液制程形成磷光发光层,蓝色有机发光材料采用蒸镀制程形成荧光发光层,在复合区对载流子的控制较困难,导致电子和空穴不平衡,不容易较好地获得理想的发光效能和光色。
本发明至少一实施例提供一种有机电致发光器件及其制备方法,以及包含该有机电致发光器件的显示装置。该有机电致发光器件包括:衬底基板,设置在衬底基板上的第一电极和第二电极,设置在第一电极和第二电极之间的第一发光层,设置在第一发光层和第二电极之间的电荷产生层; 该电荷产生层包括叠层设置的第一连接层、载流子注入层和第二连接层;第一连接层包括电子传输材料和掺杂在其中的空穴阻挡材料;第二连接层包括空穴传输材料和掺杂在其中的电子阻挡材料。
电荷产生层的设置直接影响了载流子传输与载流子复合区的位置,电荷产生层中的载流子注入层可以产生电子和空穴,第一连接层和第二连接层可以调整电子迁移率和空穴迁移率,从而增加发光层中复合的电子和空穴对的数量,从而提高有机电致发光器件的发光效率,进而提高显示装置的显示效果。
本发明的实施例提供一种有机电致发光器件,例如,图2为本发明的实施例提供的一种有机电致发光器件的结构示意图,该有机电致发光器件100包括:衬底基板101,设置在衬底基板101上的第一电极102和第二电极103,设置在第一电极102和第二电极103之间的第一发光层1041,设置在第一发光层1041和第二电极103之间的电荷产生层105;其中,电荷产生层105包括叠层设置的第一连接层1051、载流子注入层1052和第二连接层1053;第一连接层1051包括电子传输材料和掺杂在其中的空穴阻挡材料;第二连接层1053包括空穴传输材料和掺杂在其中的电子阻挡材料。
例如,衬底基板101可以为透明的玻璃基板或透明的塑料基板。
例如,第一电极102和第二电极103中的一个为阳极,另一个为阴极。作为阳极的电极材料包括氧化铟锡、氧化锌等透明导电材料;作为阴极的电极材料包括铝、镁或者二者形成的合金材料。在对阳极和阴极施加电压形成电场后,载流子注入层1052在电场作用下可以产生电子和空穴来平衡电子和空穴的含量。
例如,载流子注入层1052的材料可以为金属,例如该金属层的材料包括铝、钙、镁、银、金、钠、钾、铯或者锂等。
例如,载流子注入层1052的材料可以包括在有机物中掺杂金属形成的复合材料,例如,在蒽的衍生物、芳香族二胺类化合物、三苯胺化合物、芳香族三胺类化合物、联苯二胺衍生物中掺杂铝、钙、镁、银、金、钠、钾、铯或者锂等。
例如,载流子注入层1052的材料也可以包括金属化合物,该金属化合物可以为有机金属络合物、无机金属化合物。例如,有机金属络合物包 括:双(2-甲基-8-羟基喹啉-N1,O8)-(1,1′-联苯-4-羟基)铝、双[2-(2-羟基苯基-1)-吡啶]铍等;无机金属化合物包括:V2O5,MoO3,8b2O5,PbO等。
例如,载流子注入层的厚度为0.5~2nm,例如0.5nm、1nm、2nm。
例如,空穴传输材料可采用芳香族二胺类化合物、三苯胺化合物、芳香族三胺类化合物、联苯二胺衍生物、三芳胺聚合物以及咔唑类聚合物制成。如NPB、TPD、TCTA以及聚乙烯咔唑或者其单体。
例如,电子传输材料包括:4,7-二苯基-1,10-邻二氮杂菲、2,9-双(萘-2-基)-4,7-二苯基-1,10-菲罗啉、4,7-二苯基-1,10-菲啰啉、2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲以及8-羟基喹啉铝中的任意一种,电子传输层的材料还可以为8-羟基喹啉锂(Liq)、8-羟基喹啉镓、双[2-(2-羟基苯基-1)-吡啶]铍、2-(4-二苯基)-5-(4-叔丁苯基)-1,3,4-噁二唑(PBD)、1,3,5-三(N-苯基-2-苯并咪唑-2)苯(TPBI)、BCP、Bphen等。
例如,电子传输材料的电导率小于10-6S/cm,空穴传输材料的电导率大于103S/cm。
例如,作为空穴传输材料掺杂材料的电子阻挡材料包括MoO3,Cs2CO3,CsF,Al,Ir(ppz3)中的任意一种或组合。
例如,作为电子传输材料掺杂材料的空穴阻挡材料包括:2-(4-联苯基)-5-苯基-1,3,4-恶二唑,2-(4-联苯基)-5-(4-叔丁基苯基)-1,3,4-恶二唑(PBD),3-(联苯-4-基)-5-(4-叔丁基苯基)-4-苯基-4H-1,2,4-三唑(TAZ),1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯(TPBI),喔啉衍生物,三苯基喹啉(TPQ),氮蒽衍生物,2,6-双(联苯)-4,8-二苯基蒽唑啉,二氮菲衍生物等。
例如,如图2所示,该有机电致发光器件100还包括设置在第二电极103和电荷产生层105之间的第二发光层1042。第一发光层1041包括同层设置的第一发光单元和第二发光单元,第二发光层1042包括第三发光单元。这里,例如,第一发光单元由红色发光材料形成,第二发光单元由绿色发光材料形成,第三发光单元由蓝色发光材料形成。
例如,在本发明的实施例中,第一发光层1041和第二发光层1042的材料可以根据其发射光颜色的不同进行选择。另外,根据需要,本发明的实施例中有机发光材料包括荧光发光材料或磷光发光材料。目前,通常采用掺杂体系,即在主体发光材料中混入掺杂材料来得到可用的发光材料。例如,主体发光材料可以采用金属化合物材料、蒽的衍生物、芳香族二胺 类化合物、三苯胺化合物、芳香族三胺类化合物、联苯二胺衍生物、或三芳胺聚合物等,示例性地,双(2-甲基-8-羟基喹啉-N1,O8)-(1,1′-联苯-4-羟基)铝(Balq)、9,10-二-(2-萘基)蒽(ADN)、TAZ、4,4′-二(9-咔唑)联苯(CBP)、MCP、4,4′,4"-三-9-咔唑基三苯胺(TCTA)或N,N-双(α-萘基-苯基)-4,4-联苯二胺(NPB)等。荧光发光材料或掺杂材料例如包括香豆素染料(coumarin 6、C-545T)、喹吖啶酮(DMQA)、或4-(二腈亚甲叉)-2-甲基-6-(4-二甲胺基-苯乙烯)-4H-吡喃(DCM)系列等。磷光发光材料或掺杂材料例如包括基于Ir、Pt、Ru、Os等金属配合物发光材料,比如:FIrpic、Fir6、FirN4、FIrtaz、Ir(ppy)3、Ir(ppy)2(acac)、PtOEP、(btp)2Iracac、Ir(piq)2(acac)或(MDQ)2Iracac等。另外,发光材料还可以包括双主体且进行掺杂的情形。
例如,红色发光层采用4,4′-双(N-咔唑)-1,1′-联苯掺杂5,6,11,12-四苯基并四苯制成,4,4′-双(N-咔唑)-1,1′-联苯与5,6,11,12-四苯基并四苯的掺杂比例为97∶3。例如,绿色发光层采用1,3,5-三(溴甲基)苯掺杂N,N′-二甲基喹吖啶酮,1,3,5-三(溴甲基)苯与N,N′-二甲基喹吖啶酮的掺杂比例为85∶15。在本发明的实施例中,第一发光层1041采用溶液制程形成。
例如,蓝色发光层采用3-叔丁基-9,10-二(2-萘)蒽掺杂2,5,8,11-四叔丁基苝制成。3-叔丁基-9,10-二(2-萘)蒽与2,5,8,11-四叔丁基苝的掺杂比例为95∶5。在本发明的实施例中,第二发光层1042采用真空热蒸镀制程形成。
需要说明的是,各发光单元也可以由其他颜色的发光材料形成。对有机发光层的发光单元个数、各发光单元形成的发光材料可以具体根据实际情况而定,在此不作限定。图2中所示的第一发光单元、第二发光单元、第三发光单元排列为两层设置,在实际应用中,对各发光单元的排列方式也可以具体根据实际情况而定,在此不作限定。
例如,如图2和图3所示,电荷产生层105设置在第一发光层1041和第二发光层1042之间,电荷产生层105与第一发光层1041和第二发光层1042均直接接触,第一连接层1051和第二连接层1053可以调整电子迁移率和空穴迁移率,载流子注入层1052产生的电子和空穴使得有机电致发光器件中的空穴和电子更加平衡,从而增加了第一发光层1041和第二发光层1042中复合的电子和空穴对的数量,提高了有机电致发光器件的发光效率。
例如,第一连接层1051的材料为电子传输层所适用的材料掺杂空穴 阻挡材料形成的混合物。这样更利于载流子注入层1052产生的电子传输至红色发光层或者绿色发光层中与从阳极注入的空穴复合形成激子,增加红色发光层和绿色发光层中复合的电子和空穴对的数量,从而激发红色发光层中的有机材料发出红光,激发绿色发光层中的有机材料发出绿光,来提高红光和绿光的发光效率。
例如,第二连接层1053的材料为空穴传输层所适用的材料掺杂电子阻挡材料形成的混合物。这样更利于载流子注入层1052产生的空穴传输至蓝色发光层与从阴极注入的电子复合形成激子,增加蓝色发光层中复合的电子和空穴对的数量,从而激发蓝色发光层中的有机材料发出蓝光,来提高蓝光的发光效率。
例如,第一连接层1051的厚度为0.5~3nm,例如2nm;第二连接层1053的厚度为0.5~3nm,例如2nm;载流子注入层的厚度为0.5~2nm,例如1nm。
例如,如图2所示,为了有效提高显示器件的发光效率,以第一电极102作为阳极,在第一电极102和第一发光层1041之间设置有空穴传输层106,空穴传输层106采用溶液制程形成。以第二电极103作为阴极,在第二电极103和第二发光层1042之间设置有电子传输层107,电子传输层107采用真空热蒸镀制程形成。
例如,空穴传输层106的厚度为10~180nm,电子传输层107的厚度为10~35nm。
例如,如图2所示,该有机电致发光器件100还包括设置于第二电极103和电子传输层107之间的电子注入层109;设置于第一电极102和空穴传输层106之间的空穴注入层108。
例如,空穴注入层的厚度为10~180nm;电子注入层的厚度为1~5nm。
例如,空穴注入层的材料包括聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT/PSS)、聚噻吩和聚苯胺中的任意一种。空穴注入层的材料也可以为三-[4-(5-苯基-2-噻吩基)苯]胺、4,4’,4”-三[2-萘基(苯基)氨基]三苯胺(2-TNATA)、4,4’,4”-三-(3-甲基苯基苯胺基)三苯胺(m-MTDATA)、酞箐铜(CuPc)或TPD。
例如,电子注入层的材料包括LiF、8-羟基喹啉-锂中的任意一种或组合。电子注入层还可以采用碱金属氧化物、或者其他的碱金属氟化物等。 碱金属氧化物包括氧化锂(Li2O)、氧化锂硼(LiBO2)、硅氧化钾(K2SiO3)、碳酸铯(Cs2CO3)等;碱金属氟化物包括氟化钠(NaF)等。
例如,空穴注入层108的厚度为10~180nm;电子注入层109的厚度为1~5nm。
该有机电致发光器件的工作原理为:当第一电极102与第二电极103之间施加有电压时,在外界电压的驱动下,由第一电极102(阳极)注入的空穴通过空穴注入层108和空穴传输层106进入第一发光层1041,然后进入第一连接层1051,由第二电极103(阴极)注入的电子通过电子注入层109和电子传输层107进入第二发光层1042,然后进入第二连接层1053,载流子注入层1052在电场力的作用下产生电子和空穴,载流子注入层1052产生的电子在第一连接层1051中的传输速率比载流子注入层1052产生的空穴在第一连接层1051中的传输速率快,载流子注入层1052产生的电子与从阳极102注入的空穴复合,或者载流子注入层1052产生的空穴在第一连接层1051中不能传输,只允许电子传输至第一发光层1041与从阳极102注入的空穴复合,从而增加红色发光层和绿色发光层中复合的电子和空穴对的数量来提高红光和绿光的发光效率;载流子注入层1052产生的空穴在第二连接层1053中的传输速率比载流子注入层1052产生的电子在第二连接层1053中的传输速率快,载流子注入层1052产生的空穴与从阴极注入的电子复合,或者载流子注入层1052产生的电子在第二连接层1053中不能传输,只允许空穴传输至第二发光层1042与从阴极103注入的电子复合,从而增加蓝色发光层中复合的电子和空穴对的数量来提高蓝光的发光效率。
下面通过实验证实本发明的实施例提供的有机电致发光器件的有效性。首先,提供没有采用电荷产生层的有机电致发光器件作为对比器件,如图1所示,为对比例中有机电致发光器件的结构,对比器件的其余各功能层的构成材料以及厚度均与本发明的实施例提供的有机电致发光器件相同。本实验是在对比器件与本发明的实施例提供的有机电致发光器件具有相同的亮度条件下进行的,如图2所示,为本发明的实施例中有机电致发光器件的结构,设定对比器件与本发明的实施例提供的有机电致发光器件的亮度为1000nits。
表一
Figure PCTCN2017074417-appb-000001
从表一可以看出,在相同的亮度条件下,本发明的实施例提供的有机电致发光器件需要的电压小于对比器件,而发光效率却比对比器件高,外量子效率(External quantum efficiency,EQE)也比对比器件高。在对电致发光器件的研究中,常用外量子效率表征发光效率。外量子效率是指发光器件发射的光子数与发光时激发的注入电子(空穴)数之比。
本发明的实施例还提供一种显示装置,该显示装置包括本发明的实施例提供的上述有机电致发光器件。
例如,该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。对于该显示装置的其它必不可少的组成部分均为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本发明的限制。该显示装置的实施可以参见上述有机电致发光器件的实施例,重复之处不再赘述。
本发明的实施例还提供一种有机电致发光器件的制备方法,图4为本发明一实施例提供的一种有机电致发光器件的制备方法的流程图。该制备方法包括如下的步骤:
提供衬底基板,该衬底基板为透明的玻璃基板或者透明的塑料基板;
在衬底基板上依次形成第一电极、第一发光层、电荷产生层和第二电极。
例如,该电荷产生层包括叠层设置的第一连接层、载流子注入层和第二连接层,第一连接层包括电子传输材料和掺杂在其中的空穴阻挡材料;所述第二连接层包括空穴传输材料和掺杂在其中的电子阻挡材料。
例如,电荷产生层的形成过程包括采用蒸镀制程依次形成第一连接层、载流子注入层和第二连接层。第一连接层的材料可以是电子传输层所适用的材料掺杂空穴阻挡材料形成的混合物。这样更利于载流子注入层产生的电子传输至红色发光层或者绿色发光层中与从阳极注入的空穴复合形 成激子,激发红色发光层中的有机材料发出红光,激发绿色发光层中的有机材料发出绿光,来提高红光和绿光的发光效率。例如,第二连接层的材料可以是空穴传输层所适用的材料掺杂电子阻挡材料形成的混合物。这样更利于载流子注入层产生的空穴传输至蓝色发光层与从阴极注入的电子复合形成激子,激发蓝色发光层中的有机材料发出蓝光,来提高蓝光的发光效率。
例如,载流子注入层包括金属、有机物与金属的复合材料或金属化合物。
例如,载流子注入层的材料可以是在有机物中掺杂金属形成的复合材料,例如,在蒽的衍生物、芳香族二胺类化合物、三苯胺化合物、芳香族三胺类化合物、联苯二胺衍生物中掺杂铝、钙、镁、银、金或者锂;例如,载流子注入层的材料也可以是金属络合物,例如双(2-甲基-8-羟基喹啉-N1,O8)-(1,1′-联苯-4-羟基)铝、双[2-(2-羟基苯基-1)-吡啶]铍等。
例如,第一连接层的厚度为0.5~3nm,第二连接层的厚度为0.5~3nm,载流子注入层的厚度为0.5~2nm。
电荷产生层中的载流子注入层可以产生电子和空穴,第一连接层和第二连接层可以调整电子和空穴传输,从而增加发光层中复合的电子和空穴对的数量,从而提高有机电致发光器件的发光效率,进而提高显示装置的显示效果。
例如,第一电极和第二电极中的一个为阳极,另一个为阴极。可通过金属阴极掩膜版(metal mask)采用真空热蒸镀的方式形成第二电极(阴极),且蒸镀速率0.1~1nm/s,例如为0.5nm/s。例如,阴极的材料包括Al、Mg/Ag等,阴极的厚度为80~120nm。例如,阳极的电极材料包括氧化铟锡、氧化锌等透明导电材料。
例如,采用溶液制程在第一电极上形成第一发光层。
例如,该制备方法还包括:采用蒸镀制程在第一发光层和第二电极之间形成电荷产生层;采用蒸镀制程在第二电极和电荷产生层之间形成第二发光层;
例如,该制备方法还包括:采用溶液制程在第一电极和第一发光层之间形成空穴传输层,采用蒸镀制程在第二电极和第二发光层之间形成电子传输层。
例如,该制备方法还包括:采用溶液制程在第一电极和空穴传输层之间形成空穴注入层;采用蒸镀制程在第二电极和电子传输层之间形成电子注入层。
例如,该有机电致发光器件的制作过程包括:将形成有第一电极的衬底基板用去离子水、丙酮和无水乙醇在超声的环境中清洗,清洗结束后,用氮气将衬底基板吹干,然后对衬底基板进行uv照射或氧气、氮气等离子体处理以去除残留杂质。处理结束后,在阳极之上用溶液制程依次形成空穴注入层、空穴传输层和第一发光层,第一发光层包括红色发光层和绿色发光层。然后采用蒸镀制程在第一发光层上依次形成电荷产生层、第二发光层、电子传输层和电子注入层,第二发光层包括蓝色发光层。电荷产生层和第二发光层均采用真空蒸镀制程形成,简化了制备工艺,节省了生产成本。
例如,电荷产生层、蓝色发光层、电子传输层以及电子注入层使用开放掩膜版(openmask)通过真空热蒸镀的方式形成。蒸镀条件为真空度低于5×10-4Pa,蒸镀的速率为0.01~0.5nm/s,例如0.1nm/s。
空穴传输层、空穴注入层、电子传输层、电子注入层、红色发光层、绿色发光层和蓝色发光层得材料可参见上述实施例中的相关描述,在此不再赘述。
需要说明的是,在本发明的实施例提供的上述有机电致发光器件的制备方法中,除了采用溶液制程和真空热蒸镀制程外,还可以采用任意的能够实现基板图案化的生产工艺,在此不作限制。
本发明的实施例提供的有机电致发光器件以及包含该有机电致发光器件的显示装置至少具有如下有益效果:载流子注入层在电场力的作用下产生电子和空穴,通过第一连接层和第二连接层对电子迁移率和空穴迁移率的调整,新产生的电子与从阳极注入的空穴复合,增加了红色发光层和绿色发光层中复合的电子和空穴对的数量,从而提高了红光和绿光的发光效率;新产生的空穴与从阴极注入的电子复合,增加了蓝色发光层中复合的电子和空穴对的数量,从而提高了蓝光的发光效率。
有以下几点需要说明:
(1)本发明实施例附图只涉及到与本发明实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本发明的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
(3)在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,本发明的保护范围应以所述权利要求的保护范围为准。
本申请要求于2016年8月12日递交的中国专利申请第201610665931.2号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (20)

  1. 一种有机电致发光器件,包括:
    衬底基板,
    设置在所述衬底基板上的第一电极和第二电极,
    设置在所述第一电极和所述第二电极之间的第一发光层,
    设置在所述第一发光层和所述第二电极之间的电荷产生层;其中,
    所述电荷产生层包括叠层设置的第一连接层、载流子注入层和第二连接层;
    所述第一连接层包括电子传输材料和掺杂在其中的空穴阻挡材料;所述第二连接层包括空穴传输材料和掺杂在其中的电子阻挡材料。
  2. 根据权利要求1所述的有机电致发光器件,其中,所述空穴传输材料包括芳香族二胺类化合物、三苯胺化合物、芳香族三胺类化合物、联苯二胺衍生物、三芳胺聚合物和咔唑类聚合物中的任意一种或组合。
  3. 根据权利要求1所述的有机电致发光器件,其中,所述电子传输材料包括4,7-二苯基-1,10-邻二氮杂菲、2,9-双(萘-2-基)-4,7-二苯基-1,10-菲罗啉、4,7-二苯基-1,10-菲啰啉、2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲以及8-羟基喹啉铝中的任意一种或组合。
  4. 根据权利要求1-3中任一项所述的有机电致发光器件,其中,所述电子传输材料的电导率小于10-6S/cm,所述空穴传输材料的电导率大于103S/cm。
  5. 根据权利要求1所述的有机电致发光器件,其中,所述电子阻挡材料包括MoO3,Cs2CO3,CsF,Al,Ir(ppz3)中的任意一种或组合。
  6. 根据权利要求1所述的有机电致发光器件,其中,所述空穴阻挡材料包括2-(4-联苯基)-5-苯基-1,3,4-恶二唑,3-(联苯-4-基)-5-(4-叔丁基苯基)-4-苯基-4H-1,2,4-三唑,1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯,三苯基喹啉以及2,6-双(联苯)-4,8-二苯基蒽唑啉中的任意一种或组合。
  7. 根据权利要求1所述的有机电致发光器件,其中,所述载流子注入层包括金属、有机物与金属的复合材料或金属化合物。
  8. 根据权利要求7所述的有机电致发光器件,其中,所述载流子注入层的厚度为0.5~2nm。
  9. 根据权利要求1-8中任一项所述的有机电致发光器件,其中,所述有机电致发光器件还包括设置在所述第二电极和所述电荷产生层之间的第二发光层。
  10. 根据权利要求9所述的有机电致发光器件,其中,所述第一发光层包括第一发光单元和第二发光单元,所述第二发光层包括第三发光单元,所述第一发光单元由红色发光材料形成,所述第二发光单元由绿色发光材料形成,所述第三发光单元由蓝色发光材料形成。
  11. 根据权利要求9或10所述的有机电致发光器件,还包括:
    设置于所述第二电极和所述第二发光层之间的电子传输层;
    设置于所述第一电极和所述第一发光层之间的空穴传输层。
  12. 根据权利要求11所述的有机电致发光器件,其中,所述空穴传输层的厚度为10~180nm;所述电子传输层的厚度为10~35nm。
  13. 根据权利要求10或11所述的有机电致发光器件,还包括:
    设置于所述第一电极和所述空穴传输层之间的空穴注入层;
    设置于所述第二电极和所述电子传输层之间的电子注入层。
  14. 根据权利要求13所述的有机电致发光器件,其中,所述空穴注入层的厚度为10~180nm;所述电子注入层的厚度为1~5nm。
  15. 根据权利要求13或14所述的有机电致发光器件,其中,所述空穴注入层的材料包括聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT/PSS)、聚噻吩和聚苯胺中的任意一种或组合。
  16. 根据权利要求13或14所述的有机电致发光器件,其中,所述电子注入层的材料包括LiF、8-羟基喹啉-锂中的任意一种或组合。
  17. 一种显示装置,包括权利要求1-16中任一项所述的有机电致发光器件。
  18. 一种有机电致发光器件的制备方法,包括:
    提供衬底基板;
    在所述衬底基板上形成第一电极、第一发光层、电荷产生层和第二电极;
    其中,所述电荷产生层包括叠层设置的第一连接层、载流子注入层和第二连接层;
    所述第一连接层包括电子传输材料和掺杂在其中的空穴阻挡材料;所 述第二连接层包括空穴传输材料和掺杂在其中的电子阻挡材料。
  19. 根据权利要求18所述的制备方法,其中,所述载流子注入层包括金属、有机物与金属的复合材料或金属化合物。
  20. 根据权利要求18或19所述的制备方法,包括:采用溶液制程在所述第一电极上形成所述第一发光层。
PCT/CN2017/074417 2016-08-12 2017-02-22 有机电致发光器件及其制备方法、显示装置 WO2018028169A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17778161.4A EP3499598B1 (en) 2016-08-12 2017-02-22 Organic light-emitting diode and preparation method thereof, and display device
US15/566,355 US10658431B2 (en) 2016-08-12 2017-02-22 Organic light-emitting diode having charge generation layer and manufacturing method thereof and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610665931.2A CN106058066B (zh) 2016-08-12 2016-08-12 有机电致发光器件及其制备方法、显示装置
CN201610665931.2 2016-08-12

Publications (1)

Publication Number Publication Date
WO2018028169A1 true WO2018028169A1 (zh) 2018-02-15

Family

ID=57481941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/074417 WO2018028169A1 (zh) 2016-08-12 2017-02-22 有机电致发光器件及其制备方法、显示装置

Country Status (4)

Country Link
US (1) US10658431B2 (zh)
EP (1) EP3499598B1 (zh)
CN (1) CN106058066B (zh)
WO (1) WO2018028169A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112640146A (zh) * 2018-11-26 2021-04-09 深圳市柔宇科技股份有限公司 有机发光二极管器件、显示面板及显示装置
CN113066934A (zh) * 2021-03-12 2021-07-02 武汉华星光电半导体显示技术有限公司 显示面板以及移动终端

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106058066B (zh) 2016-08-12 2018-09-07 京东方科技集团股份有限公司 有机电致发光器件及其制备方法、显示装置
CN106409879B (zh) * 2016-11-30 2018-03-09 京东方科技集团股份有限公司 一种oled单元、器件及显示装置
CN106531775A (zh) * 2016-12-30 2017-03-22 京东方科技集团股份有限公司 有机发光二极管显示基板及其显示装置与制备方法
KR102086890B1 (ko) 2017-05-31 2020-03-09 주식회사 엘지화학 유기 발광 소자
CN109920922B (zh) * 2017-12-12 2020-07-17 京东方科技集团股份有限公司 有机发光器件及其制备方法、显示基板、显示驱动方法
CN108538894B (zh) * 2018-04-24 2021-05-25 京东方科技集团股份有限公司 一种有机电致发光器件、发光装置
JP2020161577A (ja) * 2019-03-26 2020-10-01 株式会社ジャパンディスプレイ 表示装置
CN110635060B (zh) * 2019-10-23 2022-11-11 昆山国显光电有限公司 一种发光器件和显示面板
CN110729336A (zh) * 2019-10-28 2020-01-24 昆山国显光电有限公司 一种显示面板及显示装置
KR20210076624A (ko) * 2019-12-16 2021-06-24 엘지디스플레이 주식회사 전계 발광소자 및 그를 포함하는 전계 발광 표시장치
WO2021203376A1 (zh) * 2020-04-09 2021-10-14 京东方科技集团股份有限公司 显示基板与显示装置
CN111864088A (zh) * 2020-07-06 2020-10-30 武汉华星光电半导体显示技术有限公司 一种有机发光二极管器件及其显示面板
CN111785764B (zh) * 2020-07-31 2022-12-23 广东聚华印刷显示技术有限公司 发光元件及检测装置
CN115295596B (zh) * 2022-08-19 2023-05-09 昆山国显光电有限公司 显示面板及显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2769977A1 (en) * 2013-02-22 2014-08-27 Samsung Display Co., Ltd. Heterocyclic Compound and Organic Light-Emitting Diode including the same
CN104253240A (zh) * 2013-06-28 2014-12-31 乐金显示有限公司 有机发光装置
CN106058066A (zh) * 2016-08-12 2016-10-26 京东方科技集团股份有限公司 有机电致发光器件及其制备方法、显示装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7273663B2 (en) * 2004-08-20 2007-09-25 Eastman Kodak Company White OLED having multiple white electroluminescence units
JP2006092936A (ja) * 2004-09-24 2006-04-06 Toyota Industries Corp 有機el装置
JP5270114B2 (ja) * 2007-06-15 2013-08-21 富士フイルム株式会社 固体撮像素子
KR101407580B1 (ko) * 2007-09-17 2014-06-13 삼성디스플레이 주식회사 백색 유기발광소자 및 그를 포함하는 표시장치와 조명장치
CN102810644A (zh) * 2011-06-03 2012-12-05 海洋王照明科技股份有限公司 叠层有机电致发光器件及其制备方法
KR101438110B1 (ko) 2011-12-30 2014-09-12 두산중공업 주식회사 복합발전시스템
WO2013100711A1 (ko) 2011-12-30 2013-07-04 두산중공업 주식회사 복합발전시스템 및 복합발전시스템의 이산화탄소 포집방법
CN103664748B (zh) * 2012-09-03 2016-05-11 乐金显示有限公司 芘化合物以及包含该化合物的有机发光二极管设备
WO2014076917A1 (ja) * 2012-11-15 2014-05-22 ソニー株式会社 有機el多色発光装置
KR101412511B1 (ko) * 2013-02-20 2014-06-26 서강대학교산학협력단 병렬저항이 극대화된 유기 태양전지 및 그 제조방법
KR101666781B1 (ko) * 2013-06-28 2016-10-17 엘지디스플레이 주식회사 유기 발광 소자
KR102053443B1 (ko) * 2013-10-23 2019-12-06 엘지디스플레이 주식회사 유기전계발광소자
JP2017502158A (ja) * 2013-11-06 2017-01-19 メルク パテント ゲーエムベーハー 共役ポリマー
CN104681728A (zh) * 2013-11-29 2015-06-03 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
US9412902B2 (en) * 2014-02-22 2016-08-09 Sensor Electronic Technology, Inc. Semiconductor structure with stress-reducing buffer structure
TWI542066B (zh) * 2014-06-10 2016-07-11 群創光電股份有限公司 有機發光二極體顯示器
KR102398695B1 (ko) * 2014-12-26 2022-05-13 엘지디스플레이 주식회사 유기 발광 소자
KR102365778B1 (ko) * 2015-02-24 2022-02-21 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
US9882153B2 (en) * 2015-06-25 2018-01-30 International Business Machines Corporation Organic monolayer passivation and silicon heterojunction photovoltaic devices using the same
US9997725B2 (en) * 2015-06-25 2018-06-12 Semiconductor Energy Laboratory Co., Ltd. Heterocyclic compound, light-emitting element, light-emitting device, electronic device, and lighting device
CN105161627B (zh) * 2015-06-29 2016-08-17 京东方科技集团股份有限公司 一种串联式有机发光二极管、阵列基板及显示装置
JP2018156721A (ja) * 2015-07-14 2018-10-04 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2769977A1 (en) * 2013-02-22 2014-08-27 Samsung Display Co., Ltd. Heterocyclic Compound and Organic Light-Emitting Diode including the same
CN104253240A (zh) * 2013-06-28 2014-12-31 乐金显示有限公司 有机发光装置
CN106058066A (zh) * 2016-08-12 2016-10-26 京东方科技集团股份有限公司 有机电致发光器件及其制备方法、显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3499598A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112640146A (zh) * 2018-11-26 2021-04-09 深圳市柔宇科技股份有限公司 有机发光二极管器件、显示面板及显示装置
CN113066934A (zh) * 2021-03-12 2021-07-02 武汉华星光电半导体显示技术有限公司 显示面板以及移动终端
CN113066934B (zh) * 2021-03-12 2023-05-09 武汉华星光电半导体显示技术有限公司 显示面板以及移动终端

Also Published As

Publication number Publication date
US10658431B2 (en) 2020-05-19
CN106058066B (zh) 2018-09-07
US20180301511A1 (en) 2018-10-18
EP3499598A4 (en) 2020-01-22
EP3499598A1 (en) 2019-06-19
CN106058066A (zh) 2016-10-26
EP3499598B1 (en) 2021-04-14

Similar Documents

Publication Publication Date Title
WO2018028169A1 (zh) 有机电致发光器件及其制备方法、显示装置
US11152583B2 (en) Organic light-emitting diode containing co-hosts forming exciplex, and lighting device and display apparatus including same
CN109088008B (zh) 一种有机发光器件及显示面板
US10879481B2 (en) Organic light emitting display device
Zhao et al. Progress on material, structure and function for tandem organic light-emitting diodes
KR101973287B1 (ko) 복합체를 포함하는 정공 수송층을 구비하는 유기 발광 소자
US9496514B2 (en) Organic light-emitting device and fabrication method for the same, and display device
CN102694131A (zh) 一种有机电致发光器件及其制备方法以及显示装置
US20090039294A1 (en) Radiation emitting device
WO2016173135A1 (zh) 有机发光二极管器件及其制备方法
TW200921965A (en) Organic light emitting device
CN102709481A (zh) 一种有机电致发光器件及其制备方法
WO2013159514A1 (zh) 电致发光器件、显示装置和电致发光器件制备方法
CN102349172A (zh) 有机电致发光元件的制造方法、有机电致发光元件、有机el显示器和有机el照明
TW201448309A (zh) 有機發光裝置及包含其之平板顯示裝置
WO2017216557A1 (en) Methods for the production of organic electronic devices
KR20170079487A (ko) 유기 발광 소자
CN105070844A (zh) 一种改变有机电致发光二极管中激子分布的方法
WO2022062702A1 (zh) 有机电致发光器件、显示面板及显示装置
KR101965910B1 (ko) 유기 전계 발광 소자
KR101674250B1 (ko) 고효율 백색 유기발광다이오드
CN112054129B (zh) 一种发光器件、显示装置
KR102536929B1 (ko) 유기 발광 소자
KR20230092605A (ko) 유기발광다이오드 및 이를 포함하는 유기발광장치
KR102623188B1 (ko) 색안정성 확보를 위해 나노-섬 구조체를 구비하는 유기 발광 소자 및 그 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15566355

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17778161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE