WO2018027705A1 - 信号传输方法、装置和系统 - Google Patents

信号传输方法、装置和系统 Download PDF

Info

Publication number
WO2018027705A1
WO2018027705A1 PCT/CN2016/094458 CN2016094458W WO2018027705A1 WO 2018027705 A1 WO2018027705 A1 WO 2018027705A1 CN 2016094458 W CN2016094458 W CN 2016094458W WO 2018027705 A1 WO2018027705 A1 WO 2018027705A1
Authority
WO
WIPO (PCT)
Prior art keywords
subcarrier
signal
symbol
subcarrier spacing
terminal
Prior art date
Application number
PCT/CN2016/094458
Other languages
English (en)
French (fr)
Inventor
焦淑蓉
花梦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/094458 priority Critical patent/WO2018027705A1/zh
Priority to CN201680088283.7A priority patent/CN109565740B/zh
Publication of WO2018027705A1 publication Critical patent/WO2018027705A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a signal transmission method, apparatus, and system.
  • the 5G technology will adopt a waveform based on Orthogonal Frequency Division Multiplexing (OFDM), and the OFDM-based waveform parameters involve subcarrier spacing, OFDM symbol length, and the like.
  • OFDM Orthogonal Frequency Division Multiplexing
  • 5G technology needs to support at least three services, enhance mobile broadband (English: Enhanced mobile broadband, referred to as: eMBB), Massive machine-type communications (English: Massive machine-type communications, referred to as: mMTC) and high-reliability low-latency communication (English) :Ultra-reliable and low-latency communications, referred to as: URLLC).
  • eMBB Enhanced mobile broadband
  • mMTC Massive machine-type communications
  • URLLC high-reliability low-latency communication
  • the waveform parameters corresponding to different services are also different.
  • the user power of mMTC is lower, and it is desirable to use a smaller subcarrier spacing (corresponding to a longer OFDM symbol length) to ensure sufficient signal energy; and the URLLC service will It is more inclined to use a larger subcarrier spacing (corresponding to a shorter OFDM symbol length) to achieve short-term transmission of emergency services.
  • the network side uses a fixed subcarrier spacing to transmit a common signal.
  • a fixed subcarrier spacing must be used to receive a common signal to enable successful access.
  • Network but this solution will increase the receiver complexity of the terminal and increase the cost.
  • Embodiments of the present invention provide a signal transmission method, apparatus, and system, which are used to reduce the complexity of a receiver of a terminal and save cost.
  • an embodiment of the present invention provides a signal transmission method, including: a network device generates a first signal to be sent; and then sends a first signal to a terminal, where the first signal is carried in a first subcarrier in a frequency domain.
  • the subcarrier spacing of the first subcarrier is the first subcarrier spacing
  • the first signal is continuous in the first time length in the time domain, and the first time length is greater than the symbol length corresponding to the second subcarrier spacing
  • the first sub The ratio of the carrier spacing to the second subcarrier spacing is N, and N is an integer greater than one.
  • the first time length is equal to a sum of a symbol length corresponding to the second subcarrier interval and a cyclic prefix (English: Cyclic Prefix, CP for short) corresponding to the second subcarrier spacing.
  • the first subcarrier spacing is a maximum subcarrier spacing in the preset subcarrier spacing set
  • the second subcarrier spacing is a minimum subcarrier spacing in the preset subcarrier spacing set
  • the preset subcarrier spacing set is sent The set of subcarrier spacing corresponding to the carrier frequency used by the first signal.
  • the first signal is a non-zero value signal.
  • the foregoing sending the first signal to the terminal includes: using N as the number of transmissions of the first signal; and carrying the first signal on the first subcarrier in the frequency domain to obtain the first symbol in the time domain; A subcarrier interval sends N first symbols to the terminal.
  • the sending, by using the first subcarrier interval, the N first symbols to the terminal includes: acquiring, in the time domain, the first preset symbol in the first symbol as the first CP; the first preset symbol is a symbol of a first preset length of a tail in a symbol, the first preset length is a CP length corresponding to the first subcarrier spacing; and the tail symbol of the first CP is level with the head symbol of the first symbol in a time domain And obtaining a second symbol in the time domain; using the first subcarrier spacing, transmitting N second symbols to the terminal.
  • the foregoing sending the first signal to the terminal includes: carrying the first signal and the zero value signal on the second subcarrier in the frequency domain to obtain the third symbol in the time domain; and the subcarrier spacing of the second subcarrier a second subcarrier spacing; wherein the first signal is carried on a preset subcarrier in the second subcarrier, the subcarrier spacing of the preset subcarrier is a first subcarrier spacing, and the zero value signal is carried in the second subcarrier And transmitting a third symbol to the terminal by using the second subcarrier interval.
  • the sending, by the second subcarrier interval, the third symbol to the terminal includes: acquiring, in the time domain, a second preset symbol in the third symbol as the second CP; the second preset symbol is the third Symbol a second preset length symbol in the middle tail, the second preset length is a CP length corresponding to the second subcarrier spacing; and the tail symbol of the second CP is cascaded with the head symbol of the third symbol in the time domain, Obtaining a fourth symbol on the time domain; transmitting a fourth symbol to the terminal by using the second subcarrier spacing.
  • an embodiment of the present invention provides a signal transmission method, including: determining, by a terminal, a first subcarrier interval for receiving a signal; and then receiving, by using a first subcarrier interval, a first signal sent by a network device, where The signal is carried on the first subcarrier in the frequency domain, and the subcarrier spacing of the first subcarrier is the second subcarrier spacing, and the first signal is continuous in the first time length in the time domain, and the first time length is greater than the third time.
  • the symbol length corresponding to the subcarrier spacing, the ratio of the second subcarrier spacing to the third subcarrier spacing is N, N is an integer greater than 1; the ratio of the second subcarrier spacing to the first subcarrier spacing is M, and M is greater than An integer equal to 1 and less than or equal to N.
  • the first time length is equal to a sum of a symbol length corresponding to the third subcarrier interval and a CP length corresponding to the third subcarrier interval.
  • the first signal is a non-zero value signal.
  • the receiving, by using the first subcarrier interval, the first signal sent by the network device includes: receiving N/M received symbols by using a first subcarrier interval; and performing combining processing and decoding processing on the N/M received symbols. Obtaining a first signal; or, and performing decoding processing on any of the N/M received symbols to obtain a first signal.
  • performing the combining processing and the decoding processing on the N/M received symbols to obtain the first signal including: performing time-frequency conversion on each received symbol, and obtaining a received signal carried on the second subcarrier in the frequency domain.
  • the subcarrier spacing of the second subcarrier is the first subcarrier spacing; acquiring the received signal on the first subcarrier in the second subcarrier in the frequency domain; and carrying the first subcarrier in the frequency domain for the N/M group
  • the received signal on the carrier is subjected to combining processing and decoding processing to obtain a first signal.
  • performing the decoding process on any one of the N/M received symbols to obtain the first signal including: performing time-frequency conversion on any of the N/M received symbols, and obtaining the bearer in a received signal on a second subcarrier of the frequency domain; a subcarrier spacing of the second subcarrier is a first subcarrier spacing; and a received signal received on a first subcarrier in a second subcarrier of the frequency domain; The received signal on the first subcarrier in the frequency domain is subjected to decoding processing to obtain a first signal.
  • an embodiment of the present invention provides a network device, including: a processor, configured to generate a first signal to be sent, and a transmitter, configured to send a first signal to the terminal, where the first signal is in a frequency domain Carrying on the first subcarrier, the subcarrier spacing of the first subcarrier is the first subcarrier spacing, The first signal is continuous in phase in the first time length in the time domain, and the first time length is greater than the symbol length corresponding to the second subcarrier interval, and the ratio of the first subcarrier spacing to the second subcarrier spacing is N, and N is greater than 1. The integer.
  • the first time length is equal to a sum of a symbol length corresponding to the second subcarrier interval and a CP length corresponding to the second subcarrier interval.
  • the first subcarrier spacing is a maximum subcarrier spacing in the preset subcarrier spacing set
  • the second subcarrier spacing is a minimum subcarrier spacing in the preset subcarrier spacing set
  • the preset subcarrier spacing set is a network.
  • the device transmits a set of subcarrier spacing corresponding to a carrier frequency used by the first signal.
  • the first signal is a non-zero value signal.
  • the processor is further configured to use N as the number of transmissions of the first signal; and to carry the first signal on the first subcarrier in the frequency domain to obtain the first symbol in the time domain; And transmitting N first symbols to the terminal by using the first subcarrier spacing.
  • the processor is further configured to acquire, as the first CP, the first preset symbol in the first symbol in the time domain; the first preset symbol is a symbol of the first preset length of the tail in the first symbol, The first preset length is a CP length corresponding to the first subcarrier interval; and the tail symbol of the first CP is concatenated with the head symbol of the first symbol in the time domain to obtain a second symbol in the time domain;
  • the device is specifically configured to send, by using the first subcarrier interval, N second symbols to the terminal.
  • the processor is further configured to carry the first signal and the zero value signal on the second subcarrier in the frequency domain to obtain the third symbol in the time domain;
  • the subcarrier spacing of the second subcarrier is the second subcarrier a carrier interval, where the first signal is carried on a preset subcarrier in the second subcarrier, the subcarrier spacing of the preset subcarrier is the first subcarrier interval, and the zero value signal is carried in the second subcarrier except the preset a subcarrier other than the subcarrier;
  • the transmitter is specifically configured to send the third symbol to the terminal by using the second subcarrier interval.
  • the processor is further configured to acquire, in the time domain, a second preset symbol in the third symbol as the second CP, where the second preset symbol is a symbol of the second preset length of the tail in the third symbol,
  • the second preset length is a CP length corresponding to the second subcarrier spacing; and the tail symbol of the second CP is concatenated with the head symbol of the third symbol in the time domain to obtain a fourth symbol in the time domain;
  • the transmitter is specifically configured to send the fourth symbol to the terminal by using the second subcarrier spacing.
  • an embodiment of the present invention provides a terminal, including: a processor, configured to determine a first subcarrier spacing for receiving a signal, and a receiver, configured to receive, by using the first subcarrier spacing, a first network transmission a signal, wherein the first signal is carried on the first subcarrier in the frequency domain, the first sub The subcarrier spacing of the carrier is the second subcarrier spacing, and the first signal is continuous in phase in the first time length in the time domain, the first time length is greater than the symbol length corresponding to the third subcarrier spacing, and the second subcarrier spacing is the third
  • the ratio of the subcarrier spacing is N, and N is an integer greater than 1.
  • the ratio of the second subcarrier spacing to the first subcarrier spacing is M, and M is an integer greater than or equal to 1 and less than or equal to N.
  • the first time length is equal to a sum of a symbol length corresponding to the third subcarrier interval and a CP length corresponding to the third subcarrier interval.
  • the first signal is a non-zero value signal.
  • the receiver is configured to receive the N/M received symbols by using the first subcarrier interval
  • the processor is further configured to perform a combining process and a decoding process on the N/M received symbols to obtain the first signal; or Decoding processing of any of the N/M received symbols to obtain a first signal.
  • the processor performs a combining process and a decoding process on the N/M received symbols to obtain a first signal, where the processor performs time-frequency conversion on each received symbol to obtain a second sub-carrier in the frequency domain.
  • a received signal on the carrier; a subcarrier spacing of the second subcarrier is a first subcarrier spacing; and acquiring a received signal on the first subcarrier in the second subcarrier in the frequency domain; and carrying the N/M group
  • the received signal on the first subcarrier in the frequency domain is subjected to combining processing and decoding processing to obtain a first signal.
  • the processor performs decoding processing on any of the N/M received symbols to obtain a first signal, and is specifically used to: perform time-frequency on any of the N/M received symbols. Converting, obtaining a received signal carried on a second subcarrier in a frequency domain; a subcarrier spacing of the second subcarrier is a first subcarrier spacing; and acquiring a first subcarrier carried in a second subcarrier in the frequency domain Receiving a signal; and decoding the received signal carried on the first subcarrier in the frequency domain to obtain the first signal.
  • an embodiment of the present invention provides a signal transmission system, including: a network device according to an embodiment of the present invention, and a terminal provided by the embodiment of the present invention.
  • the signal transmission method, device, and system provided by the embodiment of the present invention send a first signal to a terminal by using a network device, where the first signal is carried on a subcarrier of a first subcarrier interval, and the first signal is first in a time domain.
  • the phase is continuous within the length of time (greater than the symbol length corresponding to the second subcarrier interval); since the terminal uses the subcarrier spacing for receiving the first signal as the third subcarrier spacing, and the third subcarrier spacing is less than or equal to the first subcarrier Interval, and not less than the second subcarrier spacing, so the terminal can successfully receive the first signal by using the third subcarrier spacing, without the terminal having to adopt the network
  • the same subcarrier spacing of the network device is used for signal transmission, and the terminal uses the subcarrier spacing supported by the terminal to receive signals, thereby avoiding the defect of increasing the complexity of the receiver of the terminal and saving the cost.
  • FIG. 1 is a flowchart of a signal transmission method according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart of a signal transmission method according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic diagram of a first signal transmission according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of another first signal transmission according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a network device according to Embodiment 1 of the present invention.
  • FIG. 7 is a schematic structural diagram of a terminal according to Embodiment 1 of the present invention.
  • FIG. 8 is a schematic structural diagram of a signal transmission system according to Embodiment 1 of the present invention.
  • FIG. 1 is a flowchart of a signal transmission method according to Embodiment 1 of the present invention. As shown in FIG. 1 , the method in this embodiment may include:
  • the network device generates a first signal to be sent.
  • the network device sends the first signal to a terminal.
  • the network device generates the first signal
  • the first signal may be a common signal, a synchronization signal, a broadcast signal, a paging signal, a multicast service, etc., and the embodiment is not limited thereto.
  • the first signal is sent to the terminal.
  • the first signal is carried on the first subcarrier in the frequency domain, the subcarrier spacing of the first subcarrier is the first subcarrier interval, and the first signal is in the first time interval in the time domain.
  • the phase is continuous, the first time length is greater than the symbol length corresponding to the second subcarrier spacing, the ratio of the first subcarrier spacing to the second subcarrier spacing is N, and the N is an integer greater than 1.
  • the second subcarrier spacing is smaller than the first subcarrier spacing. The smaller the subcarrier spacing, the larger the symbol length corresponding to the subcarrier spacing.
  • the symbols in the first time length in this embodiment carry the first signal, and the phase of the first signal in the first time length is continuous.
  • the terminal determines a third subcarrier spacing for receiving a signal.
  • the terminal may determine a subcarrier spacing used for receiving the first signal, which is referred to herein as a third subcarrier spacing, and a ratio of the first subcarrier spacing to the third subcarrier spacing is M.
  • M is an integer greater than or equal to 1 and less than or equal to the N
  • the third subcarrier spacing is less than or equal to the first subcarrier spacing
  • the third subcarrier spacing is not less than the second subcarrier spacing. If the terminal supports one subcarrier spacing, it is determined that the subcarrier spacing supported by the terminal is the third subcarrier spacing.
  • the terminal supports multiple subcarrier spacings, it may be determined that the maximum subcarrier spacing supported by the terminal is the third subcarrier spacing, or the minimum subcarrier spacing supported by the terminal is determined to be the third subcarrier spacing. This embodiment is not limited to these modes.
  • the terminal receives the first signal sent by the network device by using the third subcarrier interval.
  • the terminal after determining the third subcarrier interval, receives the first signal sent by the network device by using the third subcarrier interval.
  • the third subcarrier spacing in this embodiment is less than or equal to the first subcarrier spacing, and therefore the symbol length corresponding to the third subcarrier spacing is greater than or equal to the symbol length corresponding to the first subcarrier spacing; and the third subcarrier spacing is not less than the second.
  • the subcarrier spacing is such that the symbol length corresponding to the third subcarrier spacing is not greater than the symbol length corresponding to the second subcarrier spacing.
  • the phase of the first signal is continuous in the symbol length corresponding to the second subcarrier spacing in the time domain
  • the phase of the first signal is continuous in the symbol length corresponding to the third subcarrier spacing in the time domain, so that the terminal adopts the third sub The carrier interval can successfully receive the first signal, which solves the technical problem that the terminal must use the same subcarrier spacing of the network device to receive the signal in the prior art.
  • S103 may be executed before S104, and the embodiment is not limited to the execution order of S103 and S101 and S102.
  • the signal transmission method provided in this embodiment sends a first signal to the terminal by using the network device, where
  • the first signal is carried on the subcarriers of the first subcarrier interval, and the first signal is continuous in the first time length in the time domain (greater than the symbol length corresponding to the second subcarrier interval);
  • the subcarrier spacing of the signal is the third subcarrier spacing, and the third subcarrier spacing is less than or equal to the first subcarrier spacing, and is not greater than the second subcarrier spacing, so the terminal can successfully receive the first signal by using the third subcarrier spacing.
  • the terminal does not need to use the same subcarrier spacing as the network device for signal transmission, and the terminal uses the supported subcarrier spacing to receive signals, thereby avoiding the defect of increasing the receiver complexity of the terminal and saving cost.
  • the first time length is equal to a sum of a symbol length corresponding to the second subcarrier interval and a cyclic prefix (English: Cyclic Prefix, CP for short) corresponding to the second subcarrier spacing.
  • the first signal is a non-zero value signal.
  • the first subcarrier spacing is the largest subcarrier spacing in the subcarrier spacing supported by the network device
  • the second subcarrier spacing is the smallest subcarrier spacing among the subcarrier spacing supported by the network device, so that the terminal can be guaranteed.
  • the subcarrier spacing (ie, the third subcarrier spacing) used by the first signal is received between the first subcarrier spacing and the second subcarrier spacing as much as possible, which improves the success rate of the terminal receiving the first signal.
  • the first subcarrier spacing is a maximum subcarrier spacing in a preset subcarrier spacing set
  • the second subcarrier spacing is a minimum subcarrier spacing in a preset subcarrier spacing set
  • the subcarrier spacing set is a subcarrier spacing set corresponding to a carrier frequency point used by the network device to send the first signal, where the subcarrier spacing set includes all subcarrier spacings corresponding to the carrier frequency point, so that the terminal can receive the first
  • the subcarrier spacing (ie, the third subcarrier spacing) used by one signal falls between the first subcarrier spacing and the second subcarrier spacing, which further improves the success rate of the terminal receiving the first signal.
  • the first subcarrier spacing is a maximum subcarrier spacing in a preset subcarrier spacing set
  • the second subcarrier spacing is a minimum subcarrier spacing in a preset subcarrier spacing set
  • the subcarrier spacing set is a subset of the subcarrier spacing set corresponding to the carrier frequency point used by the network device to send the first signal, and the subset includes a part of subcarriers of all subcarrier spacings corresponding to the carrier frequency point.
  • the interval, or the subset includes the subcarrier spacing supported by the network device in all subcarrier intervals corresponding to the carrier frequency.
  • FIG. 2 is a flowchart of a signal transmission method according to Embodiment 2 of the present invention. As shown in FIG. 2, the method in this embodiment may include:
  • the network device generates a first signal to be sent.
  • the network device acquires, according to the first subcarrier interval and the second subcarrier interval, the number of transmissions of the first signal is N.
  • the N is a ratio of the first subcarrier spacing to the second subcarrier spacing, and N is an integer greater than 1.
  • the network device acquires a ratio of the first subcarrier spacing to the second subcarrier spacing, and uses the ratio as the number N of transmissions of the first signal.
  • the network device carries the first signal on the first subcarrier in a frequency domain, and obtains a first symbol in a time domain.
  • the network device carries the first signal on the first subcarrier in the frequency domain, and the subcarrier spacing of the first subcarrier is the first subcarrier spacing, so that the first time can be obtained in the time domain. symbol.
  • the network device uses the first subcarrier spacing to send N the first symbols to the terminal.
  • the network device uses the first subcarrier spacing to send N the first symbols obtained by the foregoing, so that the first signal is transmitted N times.
  • the phase between the N first symbols is continuous, so the first signal transmitted N times is continuous in the first time length in the time domain, and the first time length is greater than the symbol length corresponding to the second subcarrier interval.
  • S204 may include S2041-S2043:
  • the network device acquires, in a time domain, a first preset symbol in the first symbol as a first CP, where the first preset symbol is a first preset length of a tail portion in the first symbol.
  • the symbol, the first preset length is a CP length corresponding to the first subcarrier spacing.
  • S2042 The network device cascades a tail symbol of the first CP with a header symbol of the first symbol in a time domain to obtain a second symbol in a time domain.
  • the network device uses the first subcarrier spacing to send N the second symbols to the terminal. Wherein, the phase between the N second symbols is continuous.
  • the network device acquires, in the time domain, the first preset symbol in the first symbol is the first CP corresponding to the first symbol, and the first preset symbol is the tail in the first symbol.
  • a symbol of a first preset length where the first preset length is a CP length corresponding to the first subcarrier interval, and different subcarriers
  • the corresponding CP lengths in the wave interval are different.
  • the network device cascades the tail symbol of the first CP with the header symbol of the first symbol in the time domain to obtain a second symbol in the time domain, where the length of the second symbol is the length of the first symbol and the first CP
  • the sum of the lengths, the length of the first symbol is the symbol length corresponding to the first subcarrier spacing.
  • the first subcarrier spacing is 60 kHz
  • the second subcarrier spacing is 15 kHz
  • the second symbol is transmitted four times, and the first signal is carried on the 60 kHz spaced subcarriers.
  • the terminal determines a third subcarrier spacing for receiving a signal.
  • the terminal receives N/M received symbols by using a third subcarrier interval.
  • the M is a ratio of the first subcarrier spacing to the third subcarrier spacing, the N is an integer greater than 1, and the M is an integer greater than or equal to 1 and less than or equal to the N.
  • the network device sends the first sub-carriers by using the first sub-carrier interval, and if the first sub-carrier interval is used as the first transmission duration, the network device sends the first sub-carrier.
  • the duration of sending the N first symbols is N first transmission durations; the duration of receiving the received symbols by the terminal using the third subcarrier spacing is the first reception duration, because the ratio of the first subcarrier spacing to the third subcarrier spacing is M Therefore, the ratio of the first receiving duration to the first sending duration is also M, so that the terminal can receive M first symbols (one received symbol) in the first receiving duration, and correspondingly, the terminal can receive N/M in total. Receive symbols.
  • the receiving symbol that the terminal can receive each time is equivalent to including M first transmission symbols.
  • the first subcarrier spacing is 60 kHz.
  • the second subcarrier spacing is 15 kHz, and the third subcarrier spacing is 30 kHz.
  • the terminal receives a total of two received symbols, and each received symbol is equivalent to including two first transmitted symbols.
  • the terminal performs a combining process and a decoding process on the N/M received symbols to obtain the first signal. Or, the terminal decodes any received symbol in the N/M received symbols. Processing, obtaining the first signal.
  • the terminal performs a combining process on the N/M received symbols, and then performs a decoding process on the received received symbols to obtain a first signal.
  • S2071-S2073 may be included in the foregoing first possible implementation.
  • the terminal performs time-frequency conversion on each of the received symbols to obtain a received signal that is carried on a third subcarrier in a frequency domain; and a subcarrier spacing of the third subcarrier is the third subcarrier. interval.
  • S2072 The terminal acquires a received signal on the first subcarrier that is carried in the third subcarrier in a frequency domain.
  • S2073 Perform a combining process and a decoding process on the received signal that is carried by the N/M group on the first subcarrier in the frequency domain, to obtain the first signal.
  • the signal in the received symbol received by the terminal using the third subcarrier interval is carried on the third subcarrier, and the subcarrier spacing of the third subcarrier is the third subcarrier interval. Therefore, the terminal receives each received.
  • the symbol performs time-frequency conversion to obtain a received signal carried on a third subcarrier in the frequency domain.
  • the received signal that is carried on the third subcarrier includes the received signal that is carried on the first subcarrier, and the subcarrier spacing of the first subcarrier is that the third subcarrier spacing is less than or equal to the first subcarrier spacing.
  • the network device carries the first signal on the first subcarrier, and therefore, the terminal acquires the received signal carried on the first subcarrier from the received signal carried on the third subcarrier, Since the terminal receives a total of N/M received symbols, the terminal may acquire the received signal carried by the N/M group on the first subcarrier, and then perform the received signal on the first subcarrier of the N/M group.
  • the combining process and the decoding process are performed to obtain the first signal.
  • the third subcarrier spacing is 30 kHz
  • the terminal can acquire the received signals on subcarriers with a subcarrier spacing of 30 kHz, such as 30 kHz, 60 kHz, 90 kHz, and 120 kHz, wherein the reception is performed on subcarriers of 60 kHz and 120 kHz.
  • the signal is a useful signal (ie, the first signal)
  • the received signal on the 30KHz, 90KHz subcarrier is an unwanted signal (eg, a zero-value signal)
  • the terminal discards the received signal on the 30KHz, 90KHz subcarrier, only two A received signal on a subcarrier of 60 KHz and 120 KHz in the received symbol is used for decoding processing.
  • the terminal performs decoding processing on any one of the N/M received symbols to obtain the first signal.
  • S2071'-S2073' may be included in the second possible implementation described above.
  • the terminal performs time-frequency conversion on any one of the N/M received symbols to obtain a received signal carried on a third subcarrier in a frequency domain; and a subcarrier of the third subcarrier
  • the interval is the third subcarrier spacing.
  • the terminal acquires a received signal that is carried on the first subcarrier in the third subcarrier.
  • the terminal decodes the received signal carried on the first subcarrier The first signal is obtained.
  • the signal in the received symbol received by the terminal using the third subcarrier interval is carried on the third subcarrier, and the subcarrier spacing of the third subcarrier is the third subcarrier interval. Therefore, the terminal is paired with N/M. Any one of the received symbols is time-frequency converted to obtain a received signal carried on the third subcarrier in the frequency domain.
  • the received signal that is carried on the third subcarrier includes the received signal that is carried on the first subcarrier, and the subcarrier spacing of the first subcarrier is that the third subcarrier spacing is less than or equal to the first subcarrier spacing.
  • the network device carries the first signal on the first subcarrier, and therefore, the terminal acquires the received signal carried on the first subcarrier from the received signal carried on the third subcarrier, Then, the received signal carried on the first subcarrier is decoded to obtain the first signal.
  • the third subcarrier spacing is 30 kHz
  • the terminal can acquire the received signals on the subcarriers of 30 kHz, 60 kHz, 90 kHz, and 120 kHz subcarrier spacings of 30 kHz, wherein the received signals on the subcarriers of 60 kHz and 120 kHz are received.
  • the terminal discards the received signal on the 30KHz, 90KHz subcarrier, and only needs to receive one of them.
  • the received signals on the 60 KHz, 120 KHz subcarriers in the symbol are used for decoding processing.
  • the ratio of the first subcarrier interval to the second subcarrier interval is obtained by the network device, and the number of transmissions N of the first signal is received, and then the first signal is carried in the first subcarrier in the frequency domain.
  • Interval obtaining the first symbol in the time domain, transmitting the first symbol N times by using the first subcarrier interval, the phase of the first symbol is consecutive N times, and the first time length of the first signal in the time domain (greater than the second sub-length
  • the phase is continuous in the symbol length corresponding to the carrier interval; correspondingly, the terminal can successfully receive N/M received symbols by using the third subcarrier interval, and perform combining processing and decoding processing on the N/M received symbols to obtain the first signal.
  • the terminal does not need to use the same subcarrier spacing as the network device for signal transmission, and the terminal uses its supported subcarrier spacing to receive signals, thereby avoiding the drawback of increasing the receiver complexity of the terminal and saving cost.
  • FIG. 4 is a flowchart of a signal transmission method according to Embodiment 3 of the present invention. As shown in FIG. 4, the method in this embodiment may include:
  • the network device generates a first signal to be sent.
  • the network device carries the first signal and the zero value signal on a second subcarrier in a frequency domain to obtain a third symbol in a time domain.
  • the network device carries the first signal and the zero-value signal and the zero-value signal on the second subcarrier in the frequency domain, where the first signal carries the preset sub-carrier in the second subcarrier.
  • the subcarrier spacing of the preset subcarrier is the first subcarrier spacing
  • the zero value signal is received on a subcarrier other than the preset subcarrier in the second subcarrier.
  • the third symbol on the time domain thus obtaining the third symbol in the time domain.
  • the second subcarrier spacing is smaller than the first subcarrier spacing, and the second subcarrier includes the foregoing preset subcarrier, and the preset subcarrier carries the first A signal, and subcarriers other than the preset subcarriers in the second subcarrier carry a zero value signal.
  • the network device sends the third symbol to the terminal by using a second subcarrier interval.
  • the network device uses the second subcarrier spacing to send the second symbol obtained above to the terminal.
  • S303 may include S3031-S3033:
  • the network device acquires a second preset symbol in the third symbol as a second CP in a time domain, where the second preset symbol is a second preset length of a tail portion in the third symbol. a symbol, where the second preset length is a CP length corresponding to the second subcarrier spacing.
  • S3032 The network device cascades a tail symbol of the second CP with a header symbol of the third symbol in a time domain to obtain a fourth symbol in a time domain.
  • the network device uses a second subcarrier interval to send the fourth symbol to the terminal.
  • the network device acquires, in the time domain, the second preset symbol in the third symbol is the second CP corresponding to the third symbol, and the second preset symbol is the third
  • the symbol of the second preset length in the tail of the symbol, the second preset length is the length corresponding to the second subcarrier spacing, and the corresponding CP length in different subcarrier intervals is different.
  • the network device cascades the tail symbol of the second CP with the header symbol of the third symbol in the time domain to obtain a fourth symbol in the time domain, the length of the fourth symbol being the length of the third symbol and the second CP
  • the sum of the lengths, the length of the third symbol is the symbol length corresponding to the second subcarrier spacing.
  • the first subcarrier spacing is 60 kHz
  • the second subcarrier spacing is 15 kHz.
  • the first signal is carried on subcarriers of 60 kHz, 120 kHz, etc.
  • the zero value signal It is carried on subcarriers of 15KHz, 30KHz, 45KHz, 75KHz, 90KHz, 105KHz, etc.
  • the terminal determines a third subcarrier spacing for receiving a signal.
  • the terminal receives N/M received symbols by using a third subcarrier interval.
  • the M is a ratio of the first subcarrier spacing to the third subcarrier spacing, where N is a ratio of a first subcarrier to a second subcarrier spacing, and the N is an integer greater than 1, M is an integer greater than or equal to 1 and less than or equal to the N.
  • the network device sends the second symbol by using the second sub-carrier interval, and if the second sub-carrier interval is used to send the second symbol, the terminal uses the third sub-carrier interval to receive the received symbol.
  • the duration is the second receiving duration.
  • the ratio of the first subcarrier spacing to the third subcarrier spacing is M, and the ratio of the first subcarrier spacing to the second subcarrier spacing is N, so the second receiving duration and the second sending duration are The ratio is also M/N, so that the terminal can receive M/N second symbols (one received symbol) in the second receiving duration, and accordingly, the terminal can receive N/M receiving in total during the second sending duration. symbol.
  • the terminal may include M/N second transmission symbols in the received symbol that can be received each time.
  • the first subcarrier spacing is 60 kHz.
  • the second subcarrier spacing is 15 kHz, and the third subcarrier spacing is 30 kHz.
  • the terminal receives a total of two received symbols, and each received symbol corresponds to 1/2 second transmitted symbols.
  • the terminal performs a combining process and a decoding process on the N/M received symbols to obtain the first signal. Alternatively, the terminal decodes any one of the N/M received symbols. Processing, obtaining the first signal.
  • the terminal performs a combining process on the N/M received symbols, and then performs a decoding process on the received received symbols to obtain a first signal.
  • S3061-S3063 may be included in the foregoing first possible implementation.
  • the terminal performs time-frequency conversion on each of the received symbols to obtain a received signal that is carried on a third subcarrier in a frequency domain, and the subcarrier spacing of the third subcarrier is the third subcarrier interval. .
  • S3062 The terminal acquires a received signal on the first subcarrier that is carried in the third subcarrier in a frequency domain.
  • S3063 Perform a combining process and a decoding process on the received signal of the N/M group that is carried on the first subcarrier in the frequency domain, to obtain the first signal.
  • the third subcarrier spacing is 30 kHz
  • the terminal can acquire the received signals on subcarriers with a subcarrier spacing of 30 kHz, such as 30 kHz, 60 kHz, 90 kHz, and 120 kHz, wherein the subcarrier spacing of 60 kHz and 120 kHz is 60 kHz.
  • the received signal on the subcarrier is the first signal
  • the received signal on the 30KHz, 90KHz subcarrier is a zero value signal
  • the terminal discards the received signal on the 30KHz, 90KHz subcarrier, and only needs to receive 60KHz in the two received symbols.
  • the received signal on the 120 KHz subcarrier is used for decoding processing.
  • the terminal performs decoding processing on any one of the N/M received symbols to obtain the first signal.
  • S3061'-S3063' may be included in the second possible implementation described above.
  • the terminal performs time-frequency conversion on any one of the N/M received symbols, and obtains a received signal carried on a third subcarrier in a frequency domain; and a subcarrier of the third subcarrier
  • the interval is the third subcarrier spacing.
  • the terminal acquires a received signal that is carried on the first subcarrier in the third subcarrier.
  • the terminal performs decoding processing on the received signal carried on the first subcarrier to obtain the first signal.
  • the third subcarrier spacing is 30 kHz
  • the terminal can acquire the received signals on subcarriers with a subcarrier spacing of 30 kHz, such as 30 kHz, 60 kHz, 90 kHz, and 120 kHz, wherein the subcarrier spacing of 60 kHz and 120 kHz is 60 kHz.
  • the received signal on the subcarrier is the first signal
  • the received signal on the 30KHz, 90KHz subcarrier is a zero value signal
  • the terminal discards the received signal on the 30KHz, 90KHz subcarrier, and only needs to receive one of the received symbols.
  • the received signals on the 60 KHz, 120 KHz subcarriers are used for decoding processing.
  • the first signal is carried on the first subcarrier in the frequency domain by the network device, and the zero value signal is carried in the second subcarrier in the frequency domain except the first subcarrier.
  • the second symbol in the time domain is obtained, and the second symbol is sent in the second subcarrier interval, where the first signal is in the time domain for the first time length (greater than the symbol length corresponding to the second subcarrier interval)
  • the phase is continuous; correspondingly, the terminal can successfully receive N/M received symbols by using the third subcarrier interval, and perform combining processing and decoding processing on the N/M received symbols to obtain the first signal; or Decoding processing is performed on any of the N/M received symbols to obtain a first signal.
  • the terminal does not need to use the same subcarrier spacing as the network device for signal transmission, and the terminal uses its supported subcarrier spacing to receive signals, thereby avoiding the drawback of increasing the receiver complexity of the terminal and saving cost.
  • FIG. 6 is a schematic structural diagram of a network device according to Embodiment 1 of the present invention.
  • the network device in this embodiment may include: a processor 11 and a transmitter 12;
  • the processor 11 is configured to generate a first signal to be sent.
  • the transmitter 12 is configured to send the first signal to the terminal, where the first signal is carried on the first subcarrier in the frequency domain, and the subcarrier spacing of the first subcarrier is the first subcarrier interval
  • the first signal is continuous in phase in the first time length in the time domain, the first time length is greater than a symbol length corresponding to the second subcarrier interval, and the first subcarrier spacing is spaced from the second subcarrier
  • the ratio is N, and the N is an integer greater than one.
  • the first time length is equal to a sum of a symbol length corresponding to the second subcarrier interval and a cyclic prefix CP length corresponding to the second subcarrier interval.
  • the first subcarrier spacing is a maximum subcarrier spacing in a preset subcarrier spacing set
  • the second subcarrier spacing is a minimum subcarrier spacing in a preset subcarrier spacing set
  • the subcarrier spacing set is a subcarrier spacing set corresponding to a carrier frequency point used by the network device to send the first signal.
  • the first signal is a non-zero value signal.
  • the processor 11 is further configured to use the N as a number of transmissions of the first signal, and to carry the first signal in a frequency domain. Obtaining a first symbol on a time domain on the first subcarrier;
  • the transmitter 12 is specifically configured to send, by using the first subcarrier spacing, N first symbols to the terminal.
  • the processor 11 is further configured to acquire, in the time domain, a first preset symbol in the first symbol as a first CP, where the first preset symbol is a tail in the first symbol a first preset length symbol, the first preset length being a CP length corresponding to the first subcarrier spacing; and a tail symbol of the first CP and the first symbol in a time domain
  • the header symbols are cascaded to obtain a second symbol in the time domain;
  • the transmitter 12 is specifically configured to send the N to the terminal by using the first subcarrier spacing. The second symbol.
  • the processor 11 is further configured to carry the first signal and the zero value signal on a second subcarrier in a frequency domain to obtain a time domain a third subcarrier; the subcarrier spacing of the second subcarrier is the second subcarrier spacing; wherein the first signal is carried on a preset subcarrier in the second subcarrier, the preset sub The subcarrier spacing of the carrier is the first subcarrier spacing, and the zero value signal is carried on a subcarrier other than the preset subcarrier in the second subcarrier.
  • the transmitter 12 is specifically configured to send the third symbol to the terminal by using the second subcarrier interval.
  • the processor 11 is further configured to acquire, in the time domain, a second preset symbol in the third symbol as a second CP, where the second preset symbol is a tail in the third symbol. a second preset length symbol, the second preset length being a CP length corresponding to the second subcarrier spacing; and a tail symbol of the second CP and the third symbol in a time domain
  • the header symbols are concatenated to obtain a fourth symbol in the time domain;
  • the transmitter 12 is specifically configured to send the fourth symbol to the terminal by using a second subcarrier spacing.
  • the device in this embodiment may be used to implement the technical solution executed by the network device in the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 7 is a schematic structural diagram of a terminal according to Embodiment 1 of the present invention. As shown in FIG. 7, the terminal in this embodiment may include: a processor 21 and a receiver 22;
  • the processor 21 is configured to determine a first subcarrier spacing for receiving a signal
  • the receiver 22 is configured to receive, by using the first subcarrier interval, a first signal sent by a network device, where the first signal is carried in a frequency domain on a first subcarrier, and a subcarrier of the first subcarrier
  • the carrier interval is a second subcarrier interval
  • the first signal is continuous in phase in the first time length in the time domain
  • the first time length is greater than a symbol length corresponding to the third subcarrier interval
  • the second subcarrier spacing is
  • the ratio of the third subcarrier spacing is N, the N is an integer greater than 1;
  • the ratio of the second subcarrier spacing to the first subcarrier spacing is M, and the M is greater than or equal to 1 and An integer less than or equal to the N.
  • the first time length is equal to a sum of a symbol length corresponding to the third subcarrier interval and a cyclic prefix CP length corresponding to the third subcarrier interval.
  • the first signal is a non-zero value signal.
  • the receiver 22 is specifically configured to receive N/M received symbols by using the first subcarrier interval
  • the processor 21 is further configured to perform a combining process and a decoding process on the N/M received symbols to obtain the first signal; or perform performing, on any one of the N/M received symbols Decoding processing to obtain the first signal.
  • the processor 21 performs a combining process and a decoding process on the N/M received symbols to obtain the first signal, specifically for:
  • the received symbols are time-frequency converted to obtain a received signal carried on a second subcarrier in the frequency domain; the subcarrier spacing of the second subcarrier is the first subcarrier spacing; and the acquired carrier is in the frequency domain.
  • a received signal on the first subcarrier of the second subcarrier; and a combining process and a decoding process on the received signal of the N/M group carried on the first subcarrier in a frequency domain Obtaining the first signal.
  • the processor 21 performs a decoding process on any one of the N/M received symbols, where the first signal is obtained, specifically used And performing time-frequency conversion on any one of the N/M received symbols to obtain a received signal that is carried on a second subcarrier in a frequency domain; the subcarrier spacing of the second subcarrier is the And a subcarrier spacing; and acquiring a received signal on the first subcarrier in the second subcarrier in a frequency domain; and decoding a received signal carried on the first subcarrier in a frequency domain Processing, obtaining the first signal.
  • the device in this embodiment may be used to perform the technical solution executed by the terminal in the foregoing method embodiments, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the processor may be a central processing unit (English: Central Processing Unit, CPU for short), or other general-purpose processor, digital signal processor (English: Digital Signal) Processor, referred to as DSP, and Application Specific Integrated Circuit (ASIC).
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like. The steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • FIG. 8 is a schematic structural diagram of a signal transmission system according to Embodiment 1 of the present invention.
  • the system in this embodiment includes: a network device 10, and a terminal 20; wherein, the network device 10 can
  • the configuration of the device embodiment shown in FIG. 6 is used to perform the technical solution executed by the network device in the foregoing method embodiments.
  • the implementation principle and technical effects are similar, and details are not described herein;
  • the structure of the device embodiment is shown, and correspondingly, the technical solution executed by the terminal of each method embodiment is performed, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing storage medium includes: read-only memory (English: Read-Only Memory, ROM for short), random access memory (English: Random Access Memory, RAM), disk or A variety of media such as optical discs that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种信号传输方法、装置和系统,此方法包括:网络设备生成待发送的第一信号;向终端发送所述第一信号,所述第一信号在频域上承载在第一子载波上,所述第一子载波的子载波间隔为第一子载波间隔,所述第一信号在时域上第一时间长度内相位连续,所述第一时间长度大于第二子载波间隔对应的符号长度,所述第一子载波间隔与所述第二子载波间隔的比值为N,所述N为大于1的整数,使得终端采用第三子载波间隔可以成功接收第一信号,无需终端必须采用与网络设备相同的子载波间隔进行信号传输,终端采用其支持的子载波间隔进行接收信号,避免增加终端的接收机复杂度的缺陷,节约了成本。

Description

信号传输方法、装置和系统 技术领域
本发明实施例涉及通信技术领域,尤其涉及一种信号传输方法、装置和系统。
背景技术
根据目前3GPP关于5G技术的讨论,5G技术将采用基于正交频分复用(英文:Orthogonal Frequency Division Multiplexing,简称:OFDM)的波形,基于OFDM的波形参数涉及子载波间隔、OFDM符号长度等。5G技术至少需要支持三种业务,增强移动宽带(英文:Enhanced mobile broadband,简称:eMBB)、海量机器类型通信(英文:Massive machine-type communications,简称:mMTC)和高可靠低延时通信(英文:Ultra-reliable and low-latency communications,简称:URLLC)。不同的业务对应的波形参数也不一样,比如:mMTC的用户功率较低,会希望采用较小的子载波间隔(对应较长的OFDM符号长度)来保证足够的信号能量;而URLLC业务则会更倾向于采用较大的子载波间隔(对应较短的OFDM符号长度)来实现紧急业务的短时发送。
在5G技术中,系统带宽增大,在同一个载波的带宽内,会有各种不同业务的存在,为了提高系统频谱效率和及时响应各种用户的需求,具有不同波形参数的波形会同时存在。而对于一个刚进入小区的终端来说,首先要做的是利用同步信道获取时间频率同步,其次是通过广播信道来获取该小区的信息,但在多波形参数共存的网络中,要利用哪套波形参数来接收公共信号(包括同步信道和广播信道)是需要解决的问题。
目前可以在标准中规定网络侧均使用固定的子载波间隔来发送公共信号,对于终端,除了该终端支持的子载波间隔,必须采用这种固定的子载波间隔来接收公共信号以能够成功接入网络,但是这种方案会增加终端的接收机复杂度,提升成本。
发明内容
本发明实施例提供一种信号传输方法、装置和系统,用于降低终端的接收机复杂度,节约成本。
第一方面,本发明实施例提供一种信号传输方法,包括:网络设备生成待发送的第一信号;然后向终端发送第一信号,其中,第一信号在频域上承载在第一子载波上,第一子载波的子载波间隔为第一子载波间隔,第一信号在时域上第一时间长度内相位连续,第一时间长度大于第二子载波间隔对应的符号长度,第一子载波间隔与第二子载波间隔的比值为N,N为大于1的整数。
可选地,第一时间长度等于第二子载波间隔对应的符号长度与第二子载波间隔对应的循环前缀(英文:Cyclic Prefix,简称:CP)长度之和。
可选地,第一子载波间隔为预设子载波间隔集合中的最大子载波间隔,第二子载波间隔为预设子载波间隔集合中的最小子载波间隔;预设子载波间隔集合为发送第一信号使用的载波频点对应的子载波间隔集合。
可选地,第一信号为非零值信号。
可选地,上述向终端发送第一信号,包括:将N作为第一信号的传输次数;将第一信号承载在频域的第一子载波上,获得时域上的第一符号;采用第一子载波间隔,向终端发送N个第一符号。
可选地,上述采用第一子载波间隔,向终端发送N个第一符号,包括:在时域上获取第一符号中的第一预设符号作为第一CP;第一预设符号为第一符号中尾部的第一预设长度的符号,第一预设长度为第一子载波间隔对应的CP长度;在时域上将第一CP的尾部符号与第一符号的头部符号进行级连,获得时域上的第二符号;采用第一子载波间隔,向终端发送N个第二符号。
可选地,上述向终端发送第一信号,包括:将第一信号和零值信号承载在频域的第二子载波上,获得时域上的第三符号;第二子载波的子载波间隔为第二子载波间隔;其中,第一信号承载在第二子载波中的预设子载波上,预设子载波的子载波间隔为第一子载波间隔,零值信号承载在第二子载波中除预设子载波之外的子载波上;采用第二子载波间隔向终端发送第三符号。
可选地,上这述采用第二子载波间隔向终端发送第三符号,包括:在时域上获取第三符号中的第二预设符号作为第二CP;第二预设符号为第三符号 中尾部的第二预设长度的符号,第二预设长度为第二子载波间隔对应的CP长度;在时域上将第二CP的尾部符号与第三符号的头部符号进行级连,获得在时域上的第四符号;采用第二子载波间隔,向终端发送第四符号。
第二方面,本发明实施例提供一种信号传输方法,包括:终端确定用于接收信号的第一子载波间隔;然后采用第一子载波间隔接收网络设备发送的第一信号,其中,第一信号在频域上承载在第一子载波上,第一子载波的子载波间隔为第二子载波间隔,第一信号在时域上第一时间长度内相位连续,第一时间长度大于第三子载波间隔对应的符号长度,第二子载波间隔与第三子载波间隔的比值为N,N为大于1的整数;第二子载波间隔与第一子载波间隔的比值为M,M为大于等于1且小于等于N的整数。
可选地,第一时间长度等于第三子载波间隔对应的符号长度与第三子载波间隔对应的CP长度之和。
可选地,第一信号为非零值信号。
可选地,上述采用第一子载波间隔接收网络设备发送的第一信号,包括:采用第一子载波间隔接收N/M个接收符号;以及对N/M个接收符号进行合并处理和解码处理,获得第一信号;或者,以及对N/M个接收符号中的任一接收符号进行解码处理,获得第一信号。
可选地,上述对N/M个接收符号进行合并处理和解码处理,获得第一信号,包括:对每个接收符号进行时频转换,获得承载在频域的第二子载波上的接收信号;第二子载波的子载波间隔为第一子载波间隔;获取承载在频域的第二子载波中的第一子载波上的接收信号;对N/M组承载在频域的第一子载波上的接收信号进行合并处理和解码处理,获得第一信号。
可选地,上述对N/M个接收符号中的任一接收符号进行解码处理,获得第一信号,包括:对N/M个接收符号中的任一接收符号进行时频转换,获得承载在频域的第二子载波上的接收信号;第二子载波的子载波间隔为第一子载波间隔;获取承载在频域的第二子载波中的第一子载波上的接收信号;对承载在频域的第一子载波上的接收信号进行解码处理,获得第一信号。
第三方面,本发明实施例提供一种网络设备,包括:处理器,用于生成待发送的第一信号;发射机,用于向终端发送第一信号,其中,第一信号在频域上承载在第一子载波上,第一子载波的子载波间隔为第一子载波间隔, 第一信号在时域上第一时间长度内相位连续,第一时间长度大于第二子载波间隔对应的符号长度,第一子载波间隔与第二子载波间隔的比值为N,N为大于1的整数。
可选地,第一时间长度等于第二子载波间隔对应的符号长度与第二子载波间隔对应的CP长度之和。
可选地,第一子载波间隔为预设子载波间隔集合中的最大子载波间隔,第二子载波间隔为预设子载波间隔集合中的最小子载波间隔;预设子载波间隔集合为网络设备发送第一信号使用的载波频点对应的子载波间隔集合。
可选地,第一信号为非零值信号。
可选地,处理器,还用于将N作为第一信号的传输次数;以及将第一信号承载在频域的第一子载波上,获得时域上的第一符号;发射机,具体用于采用第一子载波间隔,向终端发送N个第一符号。
可选地,处理器,还用于在时域上获取第一符号中的第一预设符号作为第一CP;第一预设符号为第一符号中尾部的第一预设长度的符号,第一预设长度为第一子载波间隔对应的CP长度;以及在时域上将第一CP的尾部符号与第一符号的头部符号进行级连,获得时域上的第二符号;发射机,具体用于采用第一子载波间隔,向终端发送N个第二符号。
可选地,处理器,还用于将第一信号和零值信号承载在频域的第二子载波上,获得时域上的第三符号;第二子载波的子载波间隔为第二子载波间隔;其中,第一信号承载在第二子载波中的预设子载波上,预设子载波的子载波间隔为第一子载波间隔,零值信号承载在第二子载波中除预设子载波之外的子载波上;发射机,具体用于采用第二子载波间隔向终端发送第三符号。
可选地,处理器,还用于在时域上获取第三符号中的第二预设符号作为第二CP;第二预设符号为第三符号中尾部的第二预设长度的符号,第二预设长度为第二子载波间隔对应的CP长度;以及在时域上将第二CP的尾部符号与第三符号的头部符号进行级连,获得在时域上的第四符号;发射机,具体用于采用第二子载波间隔,向终端发送第四符号。
第四方面,本发明实施例提供一种终端,包括:处理器,用于确定用于接收信号的第一子载波间隔;接收机,用于采用第一子载波间隔接收网络设备发送的第一信号,其中,第一信号在频域上承载在第一子载波上,第一子 载波的子载波间隔为第二子载波间隔,第一信号在时域上第一时间长度内相位连续,第一时间长度大于第三子载波间隔对应的符号长度,第二子载波间隔与第三子载波间隔的比值为N,N为大于1的整数;第二子载波间隔与第一子载波间隔的比值为M,M为大于等于1且小于等于N的整数。
可选地,第一时间长度等于第三子载波间隔对应的符号长度与第三子载波间隔对应的CP长度之和。
可选地,第一信号为非零值信号。
可选地,接收机,具体用于采用第一子载波间隔接收N/M个接收符号;处理器,还用于对N/M个接收符号进行合并处理和解码处理,获得第一信号;或者,对N/M个接收符号中的任一接收符号进行解码处理,获得第一信号。
可选地,处理器在对N/M个接收符号进行合并处理和解码处理,获得第一信号时,具体用于:对每个接收符号进行时频转换,获得承载在频域的第二子载波上的接收信号;第二子载波的子载波间隔为第一子载波间隔;并获取承载在频域的第二子载波中的第一子载波上的接收信号;以及对N/M组承载在频域的第一子载波上的接收信号进行合并处理和解码处理,获得第一信号。
可选地,处理器在对N/M个接收符号中的任一接收符号进行解码处理,获得第一信号时,具体用于:对N/M个接收符号中的任一接收符号进行时频转换,获得承载在频域的第二子载波上的接收信号;第二子载波的子载波间隔为第一子载波间隔;并获取承载在频域的第二子载波中的第一子载波上的接收信号;以及对承载在频域的第一子载波上的接收信号进行解码处理,获得第一信号。
第五方面,本发明实施例提供一种信号传输系统,包括:如第三方面本发明实施例提供的网络设备,以及如第四方面本发明实施例提供的终端。
本发明实施例提供的信号传输方法、装置和系统,通过网络设备向终端发送第一信号,该第一信号承载在第一子载波间隔的子载波上,而且第一信号在时域上第一时间长度内(大于第二子载波间隔对应的符号长度)内相位连续;由于终端采用接收第一信号的子载波间隔为第三子载波间隔,而且该第三子载波间隔小于等于第一子载波间隔,而且不小于第二子载波间隔,所以终端采用第三子载波间隔可以成功接收第一信号,无需终端必须采用与网 络设备相同的子载波间隔进行信号传输,终端采用其支持的子载波间隔进行接收信号,避免增加终端的接收机复杂度的缺陷,节约了成本。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一提供的信号传输方法的流程图;
图2为本发明实施例二提供的信号传输方法的流程图;
图3为本发明实施例提供的一种第一信号传输的示意图;
图4为本发明实施例三提供的信号传输方法的流程图;
图5为本发明实施例提供的另一种第一信号传输的示意图;
图6为本发明实施例一提供的一种网络设备的结构示意图;
图7为本发明实施例一提供的一种终端的结构示意图;
图8为本发明实施例一提供的信号传输系统的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明实施例一提供的信号传输方法的流程图,如图1所示,本实施例的方法可以包括:
S101、网络设备生成待发送的第一信号。
S102、所述网络设备向终端发送所述第一信号。
本实施例中,网络设备生成第一信号,第一信号可以为公共信号、同步信号、广播信号、寻呼信号、组播业务等,本实施例并不限于此。网络设备生成第一信号后,向终端发送第一信号。
其中,所述第一信号在频域上承载在第一子载波上,所述第一子载波的子载波间隔为第一子载波间隔,所述第一信号在时域上第一时间长度内相位连续,所述第一时间长度大于第二子载波间隔对应的符号长度,所述第一子载波间隔与所述第二子载波间隔的比值为N,所述N为大于1的整数,所述第二子载波间隔小于所述第一子载波间隔。子载波间隔越小,子载波间隔对应的符号长度越大。本实施例中的第一时间长度内的符号承载有第一信号,并且第一信号在第一时间长度内的相位是连续的。
S103、所述终端确定用于接收信号的第三子载波间隔。
本实施例中,终端可以确定接收第一信号采用的子载波间隔,此处称为第三子载波间隔,所述第一子载波间隔与所述第三子载波间隔的比值为M,所述M为大于等于1且小于等于所述N的整数,所述第三子载波间隔小于等于所述第一子载波间隔,所述第三子载波间隔不小于所述第二子载波间隔。若终端支持一种子载波间隔,则确定终端所支持的这种子载波间隔为第三子载波间隔。若终端支持多种子载波间隔,则可以确定终端所支持的最大子载波间隔为第三子载波间隔,或者,确定终端所支持的最小子载波间隔为第三子载波间隔。本实施例不限于这些方式。
S104、所述终端采用所述第三子载波间隔接收所述网络设备发送的所述第一信号。
本实施例中,终端在确定第三子载波间隔后,采用第三子载波间隔接收网络设备发送的第一信号。本实施例中的第三子载波间隔小于等于第一子载波间隔,因此第三子载波间隔对应的符号长度大于等于第一子载波间隔对应的符号长度;而且第三子载波间隔不小于第二子载波间隔,因此第三子载波间隔对应的符号长度不大于第二子载波间隔对应的符号长度。由于第一信号在时域上第二子载波间隔对应的符号长度内相位连续,因此,第一信号在时域上第三子载波间隔对应的符号长度内相位也连续,从而终端采用第三子载波间隔可以成功接收第一信号,解决了现在技术中终端必须采用网络设备相同的子载波间隔来接收信号的技术问题。
需要说明的是,S103在S104之前执行即可,本实施例并不限于S103与S101以及S102的执行顺序。
本实施例提供的信号传输方法,通过网络设备向终端发送第一信号,该 第一信号承载在第一子载波间隔的子载波上,而且第一信号在时域上第一时间长度内(大于第二子载波间隔对应的符号长度)内相位连续;由于终端采用接收第一信号的子载波间隔为第三子载波间隔,而且该第三子载波间隔小于等于第一子载波间隔,而且不大于第二子载波间隔,所以终端采用第三子载波间隔可以成功接收第一信号,无需终端必须采用与网络设备相同的子载波间隔进行信号传输,终端采用其支持的子载波间隔进行接收信号,避免增加终端的接收机复杂度的缺陷,节约了成本。
可选地,所述第一时间长度等于第二子载波间隔对应的符号长度与所述第二子载波间隔对应的循环前缀(英文:Cyclic Prefix,简称:CP)长度之和。
可选地,上述第一信号为非零值信号。
可选地,上述第一子载波间隔为网络设备支持的子载波间隔中最大的子载波间隔,上述第二子载波间隔为网络设备支持的子载波间隔中最小的子载波间隔,从而可以保证终端接收第一信号采用的子载波间隔(即第三子载波间隔)尽量落入第一子载波间隔与第二子载波间隔之间,提高了终端接收第一信号的成功率。
可选地,所述第一子载波间隔为预设子载波间隔集合中的最大子载波间隔,所述第二子载波间隔为预设子载波间隔集合中的最小子载波间隔;所述预设子载波间隔集合为所述网络设备发送所述第一信号使用的载波频点对应的子载波间隔集合,该子载波间隔集合包括该载波频点对应的所有子载波间隔,从而可以保证终端接收第一信号采用的子载波间隔(即第三子载波间隔)均会落入第一子载波间隔与第二子载波间隔之间,进一步提高了终端接收第一信号的成功率。
可选地,所述第一子载波间隔为预设子载波间隔集合中的最大子载波间隔,所述第二子载波间隔为预设子载波间隔集合中的最小子载波间隔;所述预设子载波间隔集合为所述网络设备发送所述第一信号使用的载波频点对应的子载波间隔集合中的子集合,该子集合包括该载波频点对应的所有子载波间隔中的一部分子载波间隔,或者,该子集合包括该载波频点对应的所有子载波间隔中的网络设备支持的子载波间隔。
图2为本发明实施例二提供的信号传输方法的流程图,如图2所示,本实施例的方法可以包括:
S201、网络设备生成待发送的第一信号。
本实施例中,S201的具体实现过程可以参见图1所示实施例中的相关描述,此处不再赘述。
S202、所述网络设备根据第一子载波间隔和第二子载波间隔,获取所述第一信号的传输次数为N。
本实施例中,所述N为所述第一子载波间隔与所述第二子载波间隔的比值,N为大于1的整数。网络设备获取第一子载波间隔与第二子载波间隔的比值,将该比值作为第一信号的传输次数N。
S203、所述网络设备将所述第一信号承载在频域的所述第一子载波上,获得时域上的第一符号。
本实施例中,网络设备将第一信号承载在频域上的第一子载波上,该第一子载波的子载波间隔为所述第一子载波间隔,从而在时域上可以获得第一符号。
S204、所述网络设备采用第一子载波间隔,向所述终端发送N个所述第一符号。
本实施例中,网络设备采用第一子载波间隔,向终端发送N个上述获得的第一符号,从而实现了第一信号传输了N次。其中,N个第一符号间的相位连续,因此传输N次的第一信号在时域上第一时间长度内相位连续,第一时间长度大于第二子载波间隔对应的符号长度。
其中,S204的一种可行的实现方式可以包括S2041-S2043:
S2041、所述网络设备在时域上获取所述第一符号中的第一预设符号为第一CP;所述第一预设符号为所述第一符号中尾部的第一预设长度的符号,所述第一预设长度为所述第一子载波间隔对应的CP长度。
S2042、所述网络设备在时域上将所述第一CP的尾部符号与所述第一符号的头部符号进行级连,获得时域上的第二符号。
S2043、所述网络设备采用所述第一子载波间隔,向所述终端发送N个所述第二符号。其中,N个第二符号间的相位连续。
本实施例中,如图3所示,网络设备在时域上获取第一符号中的第一预设符号为第一符号对应的第一CP,第一预设符号为第一符号中尾部的第一预设长度的符号,第一预设长度为第一子载波间隔对应的CP长度,不同子载 波间隔中对应的CP长度不同。网络设备在时域上将第一CP的尾部符号与第一符号的头部符号级连,获得时域上的第二符号,该第二符号的长度为第一符号的长度与第一CP的长度之和,第一符号的长度为第一子载波间隔对应的符号长度。以第一子载波间隔为60KHz,第二子载波间隔为15KHz,第二符号的发送次数为4次,第一信号承载在60KHz间隔的子载波上。
S205、所述终端确定用于接收信号的第三子载波间隔。
本实施例中,S205的具体实现过程可以参见图1所示实施例中的相关描述,此处不再赘述。
S206、所述终端采用第三子载波间隔接收N/M个接收符号。
所述M为所述第一子载波间隔与所述第三子载波间隔的比值,所述N为大于1的整数,所述M为大于或等于1且小于等于所述N的整数。
本实施例中,由于网络设备采用第一子载波间隔发送了N个第一符号,若采用第一子载波间隔发送第一符号的时长为第一发送时长,则网络设备发采用第一子载波发送N个第一符号的时长为N个第一发送时长;终端采用第三子载波间隔接收接收符号的时长为第一接收时长,由于第一子载波间隔与第三子载波间隔的比值为M,所以第一接收时长与第一发送时长的比值也为M,从而终端在第一接收时长相当于可以接收M个第一符号(一个接收符号),相应地,终端总共可以接收N/M个接收符号。
可选地,若每个第一符号通过第一发送符号传输,则终端每次可以接收的接收符号中相当于包括M个第一发送符号,如图3所示,第一子载波间隔为60KHz,第二子载波间隔为15KHz,第三子载波间隔为30KHz,终端一共接收了两个接收符号,每个接收符号中相当于包括两个第一发送符号。
S207、所述终端对所述N/M个接收符号进行合并处理和解码处理,获得所述第一信号;或者,所述终端对所述N/M个接收符号中的任一接收符号进行解码处理,获得所述第一信号。
本实施例中,在第一种可能的实现方案中,终端对N/M个接收符号进行合并处理,再将合并处理后的接收符号进行解码处理,获得第一信号。
可选地,上述第一种可能的实现方案中可以包括S2071-S2073。
S2071、所述终端对每个所述接收符号进行时频转换,获得承载在频域的第三子载波上的接收信号;所述第三子载波的子载波间隔为所述第三子载波 间隔。
S2072、所述终端获取承载在频域的所述第三子载波中的所述第一子载波上的接收信号。
S2073、对所述N/M组承载在频域的所述第一子载波上的接收信号进行合并处理和解码处理,获得所述第一信号。
本实施例中,终端采用第三子载波间隔接收的接收符号中信号是承载在第三子载波上的,第三子载波的子载波间隔为第三子载波间隔,因此,终端对每个接收符号进行时频转换,获得承载在频域的第三子载波上的接收信号。由于第三子载波间隔小于等于第一子载波间隔,因此,上述获得的承载在第三子载波上的接收信号包括承载在第一子载波上的接收信号,第一子载波的子载波间隔为第一子载波间隔;而且网络设备是将第一信号承载在第一子载波上的,因此,终端从承载在第三子载波上的接收信号中获取承载在第一子载波上的接收信号,由于终端一共接收了N/M个接收符号,相应地,终端可以获取N/M组承载在第一子载波上的接收信号,然后对N/M组承载在第一子载波上的接收信号进行合并处理和解码处理,获得所述第一信号。
如图3所示,以第三子载波间隔为30KHz,终端可以获取30KHz、60KHz、90KHz、120KHz等子载波间隔为30KHz的子载波上的接收信号,其中,60KHz、120KHz的子载波上的接收信号为有用信号(即第一信号),而30KHz、90KHz的子载波上的接收信号为无用信号(例如零值信号),终端丢弃30KHz、90KHz的子载波上的接收信号,只需要将两个接收符号中60KHz、120KHz的子载波上的接收信号用于解码处理。
本实施例中,在第二种可能的实现方案中,终端对N/M个接收符号中的任意一个接收符号进行解码处理,获得第一信号。
可选地,上述第二种可能的实现方案中可以包括S2071’-S2073’。
S2071’、所述终端对所述N/M个接收符号中的任一接收符号进行时频转换,获得频域上承载在第三子载波上的接收信号;所述第三子载波的子载波间隔为所述第三子载波间隔。
S2072’、所述终端获取承载在所述第三子载波中的所述第一子载波上的接收信号。
S2073’、所述终端对承载在所述第一子载波上的接收信号进行解码处 理,获得所述第一信号。
本实施例中,终端采用第三子载波间隔接收的接收符号中信号是承载在第三子载波上的,第三子载波的子载波间隔为第三子载波间隔,因此,终端对N/M个接收符号中的任意其中一个接收符号进行时频转换,获得频域上承载在第三子载波上的接收信号。由于第三子载波间隔小于等于第一子载波间隔,因此,上述获得的承载在第三子载波上的接收信号包括承载在第一子载波上的接收信号,第一子载波的子载波间隔为第一子载波间隔;而且网络设备是将第一信号承载在第一子载波上的,因此,终端从承载在第三子载波上的接收信号中获取承载在第一子载波上的接收信号,然后对承载在第一子载波上的接收信号进行解码处理,获得所述第一信号。
如图3所示,以第三子载波间隔为30KHz,终端可以获取30KHz、60KHz、90KHz、120KHz子载波间隔为30KHz的子载波上的接收信号,其中,60KHz、120KHz的子载波上的接收信号为有用信号(例如第一信号),而30KHz、90KHz的子载波上的接收信号为无用信号(例如零值信号),终端丢弃30KHz、90KHz的子载波上的接收信号,只需要将其中一个接收符号中的60KHz、120KHz的子载波上的接收信号用于解码处理。
本实施例提供的信号传输方法,通过网络设备获取第一子载波间隔和第二子载间隔的比值为第一信号的传输次数N,然后在频域上将第一信号承载在第一子载波间隔上,获得时域上的第一符号,采用第一子载波间隔发送N次第一符号,N次第一符号间相位连续,第一信号在时域上第一时间长度(大于第二子载波间隔对应的符号长度)内相位连续;相应地,终端采用第三子载波间隔可以成功接收N/M个接收符号,对该N/M个接收符号进行合并处理和解码处理,获得第一信号;或者,对该N/M个接收符号中的任一接收符号进行解码处理,获得第一信号。无需终端必须采用与网络设备相同的子载波间隔进行信号传输,终端采用其支持的子载波间隔进行接收信号,避免增加终端的接收机复杂度的缺陷,节约了成本。
图4为本发明实施例三提供的信号传输方法的流程图,如图4所示,本实施例的方法可以包括:
S301、网络设备生成待发送的第一信号。
本实施例中,S301的具体实现过程可以参见图1所示实施例中的相关描 述,此处不再赘述。
S302、所述网络设备将所述第一信号和零值信号承载在频域的第二子载波上,获得时域上的第三符号。
本实施例中,网络设备将第一信号和零值信号和零值信号承载在频域的第二子载波上,其中,所述第一信号承载在所述第二子载波中的预设子载波上,所述预设子载波的子载波间隔为所述第一子载波间隔,所述零值信号承载在所述第二子载波中除所述预设子载波之外的子载波上获得时域上的第三符号,从而在时域上获得第三符号。由于所述第二子载波的间隔为第二子载波间隔,第二子载波间隔小于第一子载波间隔,因此第二子载波中包括上述的预设子载波,而且预设子载波上承载第一信号,而第二子载波中除预设子载波之外的子载波承载零值信号。
S303、所述网络设备采用第二子载波间隔向所述终端发送所述第三符号。
本实施例中,网络设备采用第二子载波间隔,向终端发送上述获得的第二符号。
其中,S303的一种可行的实现方式可以包括S3031-S3033:
S3031、所述网络设备在时域上获取所述第三符号中的第二预设符号作为第二CP;所述第二预设符号为所述第三符号中尾部的第二预设长度的符号,所述第二预设长度为所述第二子载波间隔对应的CP长度。
S3032、所述网络设备在时域上将所述第二CP的尾部符号与所述第三符号的头部符号进行级连,获得在时域上的第四符号。
S3033、所述网络设备采用第二子载波间隔,向所述终端发送所述第四符号。
本实施例中,如图5所示,网络设备在时域上获取第三符号中的第二预设符号为第三符号对应的第二CP,所述第二预设符号为所述第三符号中尾部的第二预设长度的符号,第二预设长度为第二子载波间隔对应的长度,不同子载波间隔中对应的CP长度不同。网络设备在时域上将第二CP的尾部符号与第三符号的头部符号级连,获得时域上的第四符号,该第四符号的长度为第三符号的长度与第二CP的长度之和,第三符号的长度为第二子载波间隔对应的符号长度。以第一子载波间隔为60KHz,第二子载波间隔为15KHz为例,第一信号承载在60KHz、120KHz等的子载波上,零值信号(“0”)承 载在15KHz、30KHz、45KHz、75KHz、90KHz、105KHz等的子载波上。
S304、所述终端确定用于接收信号的第三子载波间隔。
本实施例中,S304的具体实现过程可以参见图1所示实施例中的相关描述,此处不再赘述。
S305、所述终端采用第三子载波间隔接收N/M个接收符号。
所述M为所述第一子载波间隔与所述第三子载波间隔的比值,所述N为第一子载波与第二子载波间隔的比值,所述N为大于1的整数,所述M为大于等于1且小于等于所述N的整数。
本实施例中,由于网络设备采用第二子载波间隔发送了第二符号,若采用第二子载波间隔发送第二符号的时长为第二发送时长,终端采用第三子载波间隔接收接收符号的时长为第二接收时长,由于第一子载波间隔与第三子载波间隔的比值为M,第一子载波间隔与第二子载波间隔的比值为N,所以第二接收时长与第二发送时长的比值也为M/N,从而终端在第二接收时长相当于可以接收M/N个第二符号(一个接收符号),相应地,终端在第二发送时长内总共可以接收N/M个接收符号。
可选地,若第二符号通过第二发送符号传输,则终端每次可以接收的接收符号中相当于包括M/N个第二发送符号,如图5所示,第一子载波间隔为60KHz,第二子载波间隔为15KHz,第三子载波间隔为30KHz,终端一共接收了两个接收符号,每个接收符号中相当于包括1/2个第二发送符号。
S306、所述终端对所述N/M个接收符号进行合并处理和解码处理,获得所述第一信号;或者,所述终端对所述N/M个接收符号中的任一接收符号进行解码处理,获得所述第一信号。
本实施例中,在第一种可能的实现方案中,终端对N/M个接收符号进行合并处理,再将合并处理后的接收符号进行解码处理,获得第一信号。
可选地,上述第一种可能的实现方案中可以包括S3061-S3063。
S3061、所述终端对每个所述接收符号进行时频转换,获得承载在频域的第三子载波上的接收信号;所述第三子载波的子载波间隔为所述第三子载波间隔。
S3062、所述终端获取承载在频域的所述第三子载波中的所述第一子载波上的接收信号。
S3063、对所述N/M组承载在频域的所述第一子载波上的接收信号进行合并处理和解码处理,获得所述第一信号。
如图5所示,以第三子载波间隔为30KHz,终端可以获取30KHz、60KHz、90KHz、120KHz等子载波间隔为30KHz的子载波上的接收信号,其中,60KHz、120KHz的子载波间隔为60KHz的子载波上的接收信号为第一信号,而30KHz、90KHz的子载波上的接收信号为零值信号,终端丢弃30KHz、90KHz的子载波上的接收信号,只需要将两个接收符号中60KHz、120KHz的子载波上的接收信号用于解码处理。
本实施例中,在第二种可能的实现方案中,终端对N/M个接收符号中的任意一个接收符号进行解码处理,获得第一信号。
可选地,上述第二种可能的实现方案中可以包括S3061’-S3063’。
S3061’、所述终端对所述N/M个接收符号中的任一接收符号进行时频转换,获得频域上承载在第三子载波上的接收信号;所述第三子载波的子载波间隔为所述第三子载波间隔。
S3062’、所述终端获取承载在所述第三子载波中的所述第一子载波上的接收信号。
S3063’、所述终端对承载在所述第一子载波上的接收信号进行解码处理,获得所述第一信号。
如图5所示,以第三子载波间隔为30KHz,终端可以获取30KHz、60KHz、90KHz、120KHz等子载波间隔为30KHz的子载波上的接收信号,其中,60KHz、120KHz的子载波间隔为60KHz的子载波上的接收信号为第一信号,而30KHz、90KHz的子载波上的接收信号为零值信号,终端丢弃30KHz、90KHz的子载波上的接收信号,只需要将其中一个接收符号中的60KHz、120KHz的子载波上的接收信号用于解码处理。
本实施例提供的信号传输方法,通过网络设备将第一信号在频域上承载在第一子载波上,且将零值信号在频域上承载在第二子载波中除第一子载波之外的子载波上,获得时域上的第二符号,采用第二子载波间隔发送第二符号,第一信号在时域上第一时间长度(大于第二子载波间隔对应的符号长度)内相位连续;相应地,终端采用第三子载波间隔可以成功接收N/M个接收符号,对该N/M个接收符号进行合并处理和解码处理,获得第一信号;或者, 对该N/M个接收符号中的任一接收符号进行解码处理,获得第一信号。无需终端必须采用与网络设备相同的子载波间隔进行信号传输,终端采用其支持的子载波间隔进行接收信号,避免增加终端的接收机复杂度的缺陷,节约了成本。
图6为本发明实施例一提供的一种网络设备的结构示意图,如图6所示,本实施例的网络设备可以包括:处理器11和发射机12;其中,
处理器11,用于生成待发送的第一信号;
发射机12,用于向终端发送所述第一信号,其中,所述第一信号在频域上承载在第一子载波上,所述第一子载波的子载波间隔为第一子载波间隔,所述第一信号在时域上第一时间长度内相位连续,所述第一时间长度大于第二子载波间隔对应的符号长度,所述第一子载波间隔与所述第二子载波间隔的比值为N,所述N为大于1的整数。
可选地,所述第一时间长度等于所述第二子载波间隔对应的符号长度与所述第二子载波间隔对应的循环前缀CP长度之和。
可选地,所述第一子载波间隔为预设子载波间隔集合中的最大子载波间隔,所述第二子载波间隔为预设子载波间隔集合中的最小子载波间隔;所述预设子载波间隔集合为所述网络设备发送所述第一信号使用的载波频点对应的子载波间隔集合。
可选地,所述第一信号为非零值信号。
可选地,在第一种可能的实现方式中,所述处理器11,还用于将所述N作为所述第一信号的传输次数;以及将所述第一信号承载在频域的所述第一子载波上,获得时域上的第一符号;
所述发射机12,具体用于采用所述第一子载波间隔,向所述终端发送N个所述第一符号。
可选地,所述处理器11,还用于在时域上获取所述第一符号中的第一预设符号作为第一CP;所述第一预设符号为所述第一符号中尾部的第一预设长度的符号,所述第一预设长度为所述第一子载波间隔对应的CP长度;以及在时域上将所述第一CP的尾部符号与所述第一符号的头部符号进行级连,获得时域上的第二符号;
所述发射机12,具体用于采用所述第一子载波间隔,向所述终端发送N 个所述第二符号。
可选地,在第二种可能的实现方式中,所述处理器11,还用于将所述第一信号和零值信号承载在频域的第二子载波上,获得时域上的第三符号;所述第二子载波的子载波间隔为所述第二子载波间隔;其中,所述第一信号承载在所述第二子载波中的预设子载波上,所述预设子载波的子载波间隔为所述第一子载波间隔,所述零值信号承载在所述第二子载波中除所述预设子载波之外的子载波上。
所述发射机12,具体用于采用所述第二子载波间隔向所述终端发送所述第三符号。
可选地,所述处理器11,还用于在时域上获取所述第三符号中的第二预设符号作为第二CP;所述第二预设符号为所述第三符号中尾部的第二预设长度的符号,所述第二预设长度为所述第二子载波间隔对应的CP长度;以及在时域上将所述第二CP的尾部符号与所述第三符号的头部符号进行级连,获得在时域上的第四符号;
所述发射机12,具体用于采用第二子载波间隔,向所述终端发送所述第四符号。
本实施例的装置,可以用于执行上述各方法实施例中网络设备执行的技术方案,其实现原理和技术效果类似,此处不再赘述。
图7为本发明实施例一提供的一种终端的结构示意图,如图7所示,本实施例的终端可以包括:处理器21和接收机22;其中,
处理器21,用于确定用于接收信号的第一子载波间隔;
接收机22,用于采用所述第一子载波间隔接收网络设备发送的第一信号,其中,所述第一信号在频域上承载在第一子载波上,所述第一子载波的子载波间隔为第二子载波间隔,所述第一信号在时域上第一时间长度内相位连续,所述第一时间长度大于第三子载波间隔对应的符号长度,所述第二子载波间隔与所述第三子载波间隔的比值为N,所述N为大于1的整数;所述第二子载波间隔与所述第一子载波间隔的比值为M,所述M为大于等于1且小于等于所述N的整数。
可选地,所述第一时间长度等于第三子载波间隔对应的符号长度与所述第三子载波间隔对应的循环前缀CP长度之和。
可选地,所述第一信号为非零值信号。
可选地,所述接收机22,具体用于采用所述第一子载波间隔接收N/M个接收符号;
所述处理器21,还用于对所述N/M个接收符号进行合并处理和解码处理,获得所述第一信号;或者,对所述N/M个接收符号中的任一接收符号进行解码处理,获得所述第一信号。
可选地,在第一种可能的实现方式中,所述处理器21在对所述N/M个接收符号进行合并处理和解码处理,获得所述第一信号时,具体用于:对每个所述接收符号进行时频转换,获得承载在频域的第二子载波上的接收信号;所述第二子载波的子载波间隔为所述第一子载波间隔;并获取承载在频域的所述第二子载波中的所述第一子载波上的接收信号;以及对所述N/M组承载在频域的所述第一子载波上的接收信号进行合并处理和解码处理,获得所述第一信号。
可选地,在第二种可能的实现方式中,所述处理器21在对所述N/M个接收符号中的任一接收符号进行解码处理,获得所述第一信号时,具体用于:对所述N/M个接收符号中的任一接收符号进行时频转换,获得承载在频域的第二子载波上的接收信号;所述第二子载波的子载波间隔为所述第一子载波间隔;并获取承载在频域的所述第二子载波中的所述第一子载波上的接收信号;以及对承载在频域的所述第一子载波上的接收信号进行解码处理,获得所述第一信号。
本实施例的装置,可以用于执行上述各方法实施例中终端执行的技术方案,其实现原理和技术效果类似,此处不再赘述。
在上述网络设备或者终端的实施例中,应理解,处理器可以是中央处理单元(英文:Central Processing Unit,简称:CPU),还可以是其他通用处理器、数字信号处理器(英文:Digital Signal Processor,简称:DSP)、专用集成电路(英文:Application Specific Integrated Circuit,简称:ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
图8为本发明实施例一提供的信号传输系统的结构示意图,如图8所示,本实施例的系统包括:网络设备10,以及终端20;其中,网络设备10可以 采用图6所示装置实施例的结构,其对应地,可以执行上述各方法实施例的网络设备执行的技术方案,其实现原理和技术效果类似,此处不再赘述;终端20可以采用图7所示装置实施例的结构,其对应地,可以执行上述各方法实施例的终端执行的技术方案,其实现原理和技术效果类似,此处不再赘述。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:只读内存(英文:Read-Only Memory,简称:ROM)、随机存取存储器(英文:Random Access Memory,简称:RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (29)

  1. 一种信号传输方法,其特征在于,包括:
    生成待发送的第一信号;
    向终端发送所述第一信号,其中,所述第一信号在频域上承载在第一子载波上,所述第一子载波的子载波间隔为第一子载波间隔,所述第一信号在时域上第一时间长度内相位连续,所述第一时间长度大于第二子载波间隔对应的符号长度,所述第一子载波间隔与所述第二子载波间隔的比值为N,所述N为大于1的整数。
  2. 根据权利要求1所述的方法,其特征在于,所述第一时间长度等于所述第二子载波间隔对应的符号长度与所述第二子载波间隔对应的循环前缀CP长度之和。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一子载波间隔为预设子载波间隔集合中的最大子载波间隔,所述第二子载波间隔为预设子载波间隔集合中的最小子载波间隔;所述预设子载波间隔集合为发送所述第一信号使用的载波频点对应的子载波间隔集合。
  4. 根据权利要求1-3任意一项所述的方法,其特征在于,所述第一信号为非零值信号。
  5. 根据权利要求1-4任意一项所述的方法,其特征在于,所述向终端发送所述第一信号,包括:
    将所述N作为所述第一信号的传输次数;
    将所述第一信号承载在频域的所述第一子载波上,获得时域上的第一符号;
    采用所述第一子载波间隔,向所述终端发送N个所述第一符号。
  6. 根据权利要求5所述的方法,其特征在于,所述采用所述第一子载波间隔,向所述终端发送N个所述第一符号,包括:
    在时域上获取所述第一符号中的第一预设符号作为第一CP;所述第一预设符号为所述第一符号中尾部的第一预设长度的符号,所述第一预设长度为所述第一子载波间隔对应的CP长度;
    在时域上将所述第一CP的尾部符号与所述第一符号的头部符号进行级连,获得时域上的第二符号;
    采用所述第一子载波间隔,向所述终端发送N个所述第二符号。
  7. 根据权利要求1-4任意一项所述的方法,其特征在于,所述向终端发送所述第一信号,包括:
    将所述第一信号和零值信号承载在频域的第二子载波上,获得时域上的第三符号;所述第二子载波的子载波间隔为所述第二子载波间隔;其中,所述第一信号承载在所述第二子载波中的预设子载波上,所述预设子载波的子载波间隔为所述第一子载波间隔,所述零值信号承载在所述第二子载波中除所述预设子载波之外的子载波上;
    采用所述第二子载波间隔向所述终端发送所述第三符号。
  8. 根据权利要求7所述的方法,其特征在于,所述采用所述第二子载波间隔向所述终端发送所述第三符号,包括:
    在时域上获取所述第三符号中的第二预设符号作为第二CP;所述第二预设符号为所述第三符号中尾部的第二预设长度的符号,所述第二预设长度为所述第二子载波间隔对应的CP长度;
    在时域上将所述第二CP的尾部符号与所述第三符号的头部符号进行级连,获得在时域上的第四符号;
    采用第二子载波间隔,向所述终端发送所述第四符号。
  9. 一种信号传输方法,其特征在于,包括:
    确定用于接收信号的第一子载波间隔;
    采用所述第一子载波间隔接收网络设备发送的第一信号,其中,所述第一信号在频域上承载在第一子载波上,所述第一子载波的子载波间隔为第二子载波间隔,所述第一信号在时域上第一时间长度内相位连续,所述第一时间长度大于第三子载波间隔对应的符号长度,所述第二子载波间隔与所述第三子载波间隔的比值为N,所述N为大于1的整数;所述第二子载波间隔与所述第一子载波间隔的比值为M,所述M为大于等于1且小于等于所述N的整数。
  10. 根据权利要求9所述的方法,其特征在于,所述第一时间长度等于所述第三子载波间隔对应的符号长度与所述第三子载波间隔对应的循环前缀CP长度之和。
  11. 根据权利要求9或10所述的方法,其特征在于,所述第一信号为非 零值信号。
  12. 根据权利要求9-11任意一项所述的方法,其特征在于,所述采用所述第一子载波间隔接收网络设备发送的第一信号,包括:
    采用所述第一子载波间隔接收N/M个接收符号;
    对所述N/M个接收符号进行合并处理和解码处理,获得所述第一信号;或者,对所述N/M个接收符号中的任一接收符号进行解码处理,获得所述第一信号。
  13. 根据权利要求12所述的方法,其特征在于,所述对所述N/M个接收符号进行合并处理和解码处理,获得所述第一信号,包括:
    对每个所述接收符号进行时频转换,获得承载在频域的第二子载波上的接收信号;所述第二子载波的子载波间隔为所述第一子载波间隔;
    获取承载在频域的所述第二子载波中的所述第一子载波上的接收信号;
    对所述N/M组承载在频域的所述第一子载波上的接收信号进行合并处理和解码处理,获得所述第一信号。
  14. 根据权利要求12所述的方法,其特征在于,所述对所述N/M个接收符号中的任一接收符号进行解码处理,获得所述第一信号,包括:
    对所述N/M个接收符号中的任一接收符号进行时频转换,获得承载在频域的第二子载波上的接收信号;所述第二子载波的子载波间隔为所述第一子载波间隔;
    获取承载在频域的所述第二子载波中的所述第一子载波上的接收信号;
    对承载在频域的所述第一子载波上的接收信号进行解码处理,获得所述第一信号。
  15. 一种网络设备,其特征在于,包括:
    处理器,用于生成待发送的第一信号;
    发射机,用于向终端发送所述第一信号,其中,所述第一信号在频域上承载在第一子载波上,所述第一子载波的子载波间隔为第一子载波间隔,所述第一信号在时域上第一时间长度内相位连续,所述第一时间长度大于第二子载波间隔对应的符号长度,所述第一子载波间隔与所述第二子载波间隔的比值为N,所述N为大于1的整数。
  16. 根据权利要求15所述的网络设备,其特征在于,所述第一时间长度 等于所述第二子载波间隔对应的符号长度与所述第二子载波间隔对应的循环前缀CP长度之和。
  17. 根据权利要求15或16所述的网络设备,其特征在于,所述第一子载波间隔为预设子载波间隔集合中的最大子载波间隔,所述第二子载波间隔为预设子载波间隔集合中的最小子载波间隔;所述预设子载波间隔集合为所述网络设备发送所述第一信号使用的载波频点对应的子载波间隔集合。
  18. 根据权利要求15-17任意一项所述的网络设备,其特征在于,所述第一信号为非零值信号。
  19. 根据权利要求15-18任意一项所述的网络设备,其特征在于,所述处理器,还用于将所述N作为所述第一信号的传输次数;以及将所述第一信号承载在频域的所述第一子载波上,获得时域上的第一符号;
    所述发射机,具体用于采用所述第一子载波间隔,向所述终端发送N个所述第一符号。
  20. 根据权利要求19所述的网络设备,其特征在于,所述处理器,还用于在时域上获取所述第一符号中的第一预设符号作为第一CP;所述第一预设符号为所述第一符号中尾部的第一预设长度的符号,所述第一预设长度为所述第一子载波间隔对应的CP长度;以及在时域上将所述第一CP的尾部符号与所述第一符号的头部符号进行级连,获得时域上的第二符号;
    所述发射机,具体用于采用所述第一子载波间隔,向所述终端发送N个所述第二符号。
  21. 根据权利要求15-18任意一项所述的网络设备,其特征在于,所述处理器,还用于将所述第一信号和零值信号承载在频域的第二子载波上,获得时域上的第三符号;所述第二子载波的子载波间隔为所述第二子载波间隔;其中,所述第一信号承载在所述第二子载波中的预设子载波上,所述预设子载波的子载波间隔为所述第一子载波间隔,所述零值信号承载在所述第二子载波中除所述预设子载波之外的子载波上;
    所述发射机,具体用于采用所述第二子载波间隔向所述终端发送所述第三符号。
  22. 根据权利要求21所述的网络设备,其特征在于,所述处理器,还用于在时域上获取所述第三符号中的第二预设符号作为第二CP;所述第二预设 符号为所述第三符号中尾部的第二预设长度的符号,所述第二预设长度为所述第二子载波间隔对应的CP长度;以及在时域上将所述第二CP的尾部符号与所述第三符号的头部符号进行级连,获得在时域上的第四符号;
    所述发射机,具体用于采用第二子载波间隔,向所述终端发送所述第四符号。
  23. 一种终端,其特征在于,包括:
    处理器,用于确定用于接收信号的第一子载波间隔;
    接收机,用于采用所述第一子载波间隔接收网络设备发送的第一信号,其中,所述第一信号在频域上承载在第一子载波上,所述第一子载波的子载波间隔为第二子载波间隔,所述第一信号在时域上第一时间长度内相位连续,所述第一时间长度大于第三子载波间隔对应的符号长度,所述第二子载波间隔与所述第三子载波间隔的比值为N,所述N为大于1的整数;所述第二子载波间隔与所述第一子载波间隔的比值为M,所述M为大于等于1且小于等于所述N的整数。
  24. 根据权利要求23所述的终端,其特征在于,所述第一时间长度等于所述第三子载波间隔对应的符号长度与所述第三子载波间隔对应的循环前缀CP长度之和。
  25. 根据权利要求23或24所述的终端,其特征在于,所述第一信号为非零值信号。
  26. 根据权利要求23-25任意一项所述的终端,其特征在于,所述接收机,具体用于采用所述第一子载波间隔接收N/M个接收符号;
    所述处理器,还用于对所述N/M个接收符号进行合并处理和解码处理,获得所述第一信号;或者,对所述N/M个接收符号中的任一接收符号进行解码处理,获得所述第一信号。
  27. 根据权利要求26所述的终端,其特征在于,所述处理器在对所述N/M个接收符号进行合并处理和解码处理,获得所述第一信号时,具体用于:对每个所述接收符号进行时频转换,获得承载在频域的第二子载波上的接收信号;所述第二子载波的子载波间隔为所述第一子载波间隔;并获取承载在频域的所述第二子载波中的所述第一子载波上的接收信号;以及对所述N/M组承载在频域的所述第一子载波上的接收信号进行合并处理和解码处理,获 得所述第一信号。
  28. 根据权利要求26所述的终端,其特征在于,所述处理器在对所述N/M个接收符号中的任一接收符号进行解码处理,获得所述第一信号时,具体用于:对所述N/M个接收符号中的任一接收符号进行时频转换,获得承载在频域的第二子载波上的接收信号;所述第二子载波的子载波间隔为所述第一子载波间隔;并获取承载在频域的所述第二子载波中的所述第一子载波上的接收信号;以及对承载在频域的所述第一子载波上的接收信号进行解码处理,获得所述第一信号。
  29. 一种信号传输系统,其特征在于,包括:如权利要求15-22任意一项所述的网络设备,以及如权利要求23-28任意一项所述的终端。
PCT/CN2016/094458 2016-08-10 2016-08-10 信号传输方法、装置和系统 WO2018027705A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/094458 WO2018027705A1 (zh) 2016-08-10 2016-08-10 信号传输方法、装置和系统
CN201680088283.7A CN109565740B (zh) 2016-08-10 2016-08-10 信号传输方法、装置和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/094458 WO2018027705A1 (zh) 2016-08-10 2016-08-10 信号传输方法、装置和系统

Publications (1)

Publication Number Publication Date
WO2018027705A1 true WO2018027705A1 (zh) 2018-02-15

Family

ID=61161434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/094458 WO2018027705A1 (zh) 2016-08-10 2016-08-10 信号传输方法、装置和系统

Country Status (2)

Country Link
CN (1) CN109565740B (zh)
WO (1) WO2018027705A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112771991A (zh) * 2018-10-02 2021-05-07 华为技术有限公司 使用节能参考信号降低功耗的系统及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110932780B (zh) * 2019-10-14 2021-05-14 北京邮电大学 一种基于并行化kk的信号处理方法及装置
WO2024041522A1 (zh) * 2022-08-26 2024-02-29 华为技术有限公司 信号处理的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101686434A (zh) * 2008-09-28 2010-03-31 大唐移动通信设备有限公司 一种mbms传输的反馈方法、系统及设备
CN102740375A (zh) * 2011-04-11 2012-10-17 中兴通讯股份有限公司 一种无线参数配置和信号发送的方法及装置
WO2015042940A1 (zh) * 2013-09-30 2015-04-02 华为技术有限公司 传输定时方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080084853A1 (en) * 2006-10-04 2008-04-10 Motorola, Inc. Radio resource assignment in control channel in wireless communication systems
CN101409583B (zh) * 2007-10-11 2013-02-13 电信科学技术研究院 信号发送方法、信号发送装置
CN101686433A (zh) * 2008-09-28 2010-03-31 大唐移动通信设备有限公司 一种mbms传输的反馈方法、系统及设备
CN101908949A (zh) * 2010-08-20 2010-12-08 西安交通大学 无线通信系统及其基站、中继站、用户终端和数据的发送接收方法
GB2487907B (en) * 2011-02-04 2015-08-26 Sca Ipla Holdings Inc Telecommunications method and system
US10200175B2 (en) * 2014-10-31 2019-02-05 Lg Electronics Inc. Multiuser transreceiving method in wireless communication system and device for same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101686434A (zh) * 2008-09-28 2010-03-31 大唐移动通信设备有限公司 一种mbms传输的反馈方法、系统及设备
CN102740375A (zh) * 2011-04-11 2012-10-17 中兴通讯股份有限公司 一种无线参数配置和信号发送的方法及装置
WO2015042940A1 (zh) * 2013-09-30 2015-04-02 华为技术有限公司 传输定时方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Subcarrier spacing and scaling for new RAT", 3GPP TSG RAN WG1 MEETING #85, RL-164179, 27 May 2016 (2016-05-27), XP051096541 *
NEC: "Subcarrier Spacing and Other Parameters Fornumerology", 3GPP TSG RAN WG1 MEETING #85, RL-164486, 27 May 2016 (2016-05-27), XP051090271 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112771991A (zh) * 2018-10-02 2021-05-07 华为技术有限公司 使用节能参考信号降低功耗的系统及方法
CN112771991B (zh) * 2018-10-02 2023-03-17 华为技术有限公司 使用节能参考信号降低功耗的系统及方法

Also Published As

Publication number Publication date
CN109565740B (zh) 2020-09-11
CN109565740A (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
US10129064B1 (en) Wireless device low power wake up
JP6657236B2 (ja) 混合レートのワイヤレス通信における信号反復によるロバスト早期検出
JP6333953B2 (ja) 多元接続wlan通信システムのための後方互換性プリアンブルフォーマットを使用する装置および方法
JP6615891B2 (ja) 混合レートワイヤレス通信ネットワークのためのトレーニングフィールドトーンプラン
JP7143357B2 (ja) 拡張範囲モード送信方法および装置
US20170250848A1 (en) Peak to average power ratio (papr) reduction in a wireless network
KR101643437B1 (ko) 효율적인 향상 멀티캐스트 방송 시스템(e-mbs) map 디코딩을 위한 시스템 및 방법
JP6779872B2 (ja) IEEE 802.11axにおける低レートモードのためのダイバーシティ繰り返し
JP2016521051A5 (zh)
WO2016197349A1 (zh) 物理层协议数据单元的传输方法和装置
WO2016115960A1 (zh) 用于指示传输帧结构的方法、设备及系统
US10368344B2 (en) User equipment, network side device and method for controlling user equipment
JP2018512827A (ja) 無線lanシステムにおける追加の復号処理時間についてのサポート
JP2020014218A (ja) 混合レートワイヤレス通信ネットワークのためのフレーム構造
WO2018027705A1 (zh) 信号传输方法、装置和系统
WO2011006397A1 (zh) Mbms通知信息的承载方法与装置
WO2012151965A1 (zh) 数据传输方法及装置、数据处理方法及装置、帧结构
WO2016155213A1 (zh) 调度信息发送、接收方法及装置
WO2016183842A1 (zh) 一种数据传输方法、装置、系统及接入点
WO2020221319A1 (zh) 一种通信方法及装置
WO2012024913A1 (zh) 数据发送、接收及传输方法、装置和系统
TW201824800A (zh) 傳輸信息的方法、網絡設備和終端設備
US11025397B2 (en) Quick acknowledgement reply method and apparatus
WO2016191991A1 (zh) 物理层协议数据单元的传输方法和装置
WO2018094942A1 (zh) 一种信息传输方法及站点、接入点

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16912160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16912160

Country of ref document: EP

Kind code of ref document: A1