WO2018025900A1 - Refrigeration device and control method therefor - Google Patents

Refrigeration device and control method therefor Download PDF

Info

Publication number
WO2018025900A1
WO2018025900A1 PCT/JP2017/028003 JP2017028003W WO2018025900A1 WO 2018025900 A1 WO2018025900 A1 WO 2018025900A1 JP 2017028003 W JP2017028003 W JP 2017028003W WO 2018025900 A1 WO2018025900 A1 WO 2018025900A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
gas
refrigerant
liquid
piping
Prior art date
Application number
PCT/JP2017/028003
Other languages
French (fr)
Japanese (ja)
Inventor
村上 健一
篤 塩谷
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Priority to EP17837002.9A priority Critical patent/EP3462108A4/en
Publication of WO2018025900A1 publication Critical patent/WO2018025900A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0415Refrigeration circuit bypassing means for the receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves

Definitions

  • the present invention relates to a refrigeration apparatus using a non-azeotropic mixture refrigerant and a control method thereof.
  • HFC refrigerants such as R410A
  • R410A As a refrigerant used for an air conditioner, HFC refrigerants, such as R410A, are used.
  • the HFC refrigerant represented by R410A has a high GWP (global warming potential). Therefore, among HFC refrigerants, R32 having a GWP lower than that of R410A, and HFO refrigerants 1234yf and R1234ze (E) are listed as candidates for the next refrigerant for R410A.
  • GWP global warming potential
  • R32 has lower GWP and can obtain equal or higher performance than R410A, but has the disadvantage of high discharge temperature and inferior reliability in a low temperature range compared to R410A.
  • R1234yf and R1234ze (E) have the advantage of having a low GWP with a GWP of 10 or less, they are only about 50% in volume capacity due to their low density compared to R410A, and to ensure equivalent performance There is a disadvantage that the size of the device is increased.
  • Patent Document 1 discloses changing the ratio of the mixed refrigerant in the refrigeration cycle by dissolving the mixed refrigerant in the refrigerator oil and utilizing the difference in the solubility of the refrigerant.
  • a non-azeotropic mixed refrigerant in which refrigerants having different boiling points are mixed causes temperature slippage as shown in FIG. That is, since the boiling points and condensation points of the mixed refrigerants are different, the isotherm in the wet vapor (between the saturated liquid line and the saturated vapor line) does not become constant in pressure (p) like a single refrigerant, p It is an isothermal line falling to the right on the -h diagram. That is, temperature slippage occurs in the non-azeotropic mixed refrigerant.
  • the temperature difference of the temperature slip differs. 12
  • the horizontal axis represents the mixing ratio [wt%] of R32 (low boiling point refrigerant) to R1234ze (E) (high boiling point refrigerant)
  • the vertical axis represents the high pressure side (FIG. 12A: saturation temperature 40 ° C.)
  • the temperature difference [° C.] of the temperature slip on the low pressure side (FIG. 12B: saturation temperature 10 ° C.) is shown.
  • the temperature slip is maximum at a mixing ratio of R32 to R1234ze (E) of about 20 wt%.
  • the saturation temperature is 10 ° C. on the low pressure side
  • frost may be formed on the evaporator.
  • FIG. 13 shows COPs (coefficients of performance) at the time of cooling operation and at the time of heating operation when the mixing ratio of R410A and R1234ze (E) is changed.
  • the horizontal axis (lower axis) is the mixing ratio [wt%] of R32 to R1234ze (E)
  • the horizontal axis (upper axis) is GWP in each mixing ratio
  • the vertical axis is R410A It is considered as COP in the same ability ratio to.
  • the ratio of R1234ze (E) increases, so the GWP decreases, but the COPs during the cooling operation and the heating operation decrease, especially the COP decreases during the cooling operation .
  • the present invention has been made in view of such circumstances, and provides a refrigeration apparatus that can change the mixing ratio of non-azeotropic refrigerants that perform refrigeration cycles with a simple configuration during operation, and a control method thereof. With the goal.
  • Another object of the present invention is to provide a refrigeration system and a control method thereof that can prevent frost formation on the evaporator temperature due to temperature slip of the non-azeotropic mixture refrigerant.
  • Another object of the present invention is to provide a refrigeration system using a non-azeotropic mixed refrigerant that can suppress performance deterioration during cooling operation as much as possible, and a control method thereof.
  • a refrigeration apparatus includes a compressor for compressing a non-azeotropic refrigerant mixture in which low boiling point refrigerants having different boiling points and high boiling point refrigerant are mixed, and a non-azeotropic refrigerant introduced from the compressor
  • a takeout pipe for taking out part of the non-azeotropic mixture refrigerant from between the expansion valve and the expansion valve, an open / close valve for takeout piping provided in the takeout piping, and the takeout pipe connected to store the non-azeotropic mixture refrigerant Gas-liquid separator
  • the on-off valve for the discharge pipe By opening the on-off valve for the discharge pipe according to a command from the control unit, a part of the non-azeotropic mixed refrigerant is taken out from between the condenser and the expansion valve via the discharge pipe, and temporarily used as a gas-liquid separator. Retain.
  • the gas-liquid separator the gas-liquid is separated according to the temperature and pressure in the gas-liquid separator to form a liquid phase portion and a gas phase portion.
  • the on / off valve for gas return piping is opened according to a command from the control unit, the gas phase portion of the gas / liquid separator is communicated between the expansion valve and the evaporator via the gas return piping, and the pressure in the gas phase portion is low.
  • the low boiling point refrigerant is preferentially led to the evaporator.
  • the ratio of the low boiling point refrigerant in the non-azeotropic refrigerant mixture in which the refrigeration cycle is performed can be increased.
  • low-boiling point refrigerant evaporates and is separated from the liquid phase portion, so high-boiling point refrigerant is present in the liquid refrigerant at a higher ratio than when non-azeotropic mixed refrigerant is taken out from the outlet piping. doing. Thereby, the ratio of the high boiling point refrigerant in the non-azeotropic refrigerant mixture in which the refrigeration cycle is performed can be increased.
  • the refrigerant that has been separated by the gas-liquid separator can be returned from the gas phase portion or the liquid phase portion into the refrigeration cycle only by controlling the on-off valves of the pipes connected to the gas-liquid separator.
  • the mixing ratio of the low boiling point refrigerant and the high boiling point refrigerant can be arbitrarily changed by a simple configuration.
  • the low boiling point refrigerant include R32
  • examples of the high boiling point refrigerant include R1234yf and R1234ze (E).
  • control unit performs the on-off valve for the extraction pipe when the outside air temperature is less than a predetermined value or the temperature of the evaporator is less than a predetermined value during heating operation. Is opened, and the on-off valve for the gas return pipe is opened to perform a separation operation in which the gas refrigerant separated by the gas-liquid separator is returned from the gas return pipe to the evaporator side.
  • the temperature of the evaporator is generally low because the outside air temperature is low.
  • a predetermined value for example, a problem such as frost formation on the evaporator occurs. Therefore, when the outside air temperature is less than the predetermined value or the temperature of the evaporator is less than the predetermined value, the gas refrigerant separated by the gas-liquid separator (mainly the low boiling point) is opened by opening the on-off valve for gas return piping. The refrigerant is returned to the evaporator side through the gas return pipe to increase the proportion of the low boiling point refrigerant in the refrigeration cycle.
  • the non-azeotropic mixed refrigerant is introduced from the refrigeration cycle to the gas-liquid separator from the refrigeration cycle, and gas-liquid separation is performed in the gas-liquid separator to achieve low boiling point. Returning the refrigerant back to the refrigeration cycle further promotes an increase in the proportion of low boiling point refrigerant in the refrigeration cycle.
  • separation operation is performed to separate the high boiling point refrigerant from the non-azeotropic mixed refrigerant that performs the refrigeration cycle to increase the proportion of the low boiling point refrigerant, thereby reducing the temperature slip, and the evaporator It is possible to raise the saturation temperature at the point where it is possible, for example, to suppress
  • the predetermined value of the outside air temperature or the predetermined value of the temperature of the evaporator is, for example, a temperature at which the temperature of the evaporator may decrease to cause frost formation.
  • control unit causes the degree of superheat of the non-azeotropic mixture refrigerant sucked by the compressor to be less than a predetermined value after a predetermined period has elapsed since the start of the separation operation. After that, the on-off valve for the extraction pipe is closed.
  • the on-off valve for the extraction pipe is closed Stop taking part of the non-azeotropic mixed refrigerant into the gas-liquid separator.
  • the “predetermined period” after a predetermined period has elapsed since the start of the separation operation is selected, for example, as the time until the desired mixing ratio is obtained by performing the separation operation.
  • the “predetermined value” in which the degree of superheat of the refrigerant sucked by the compressor is less than the predetermined value for example, a value set to avoid liquid compression of the compressor is used.
  • control unit opens and closes the outlet pipe when the outside air temperature is equal to or higher than a predetermined value or the temperature of the discharge gas discharged from the compressor is equal to or higher than a predetermined value.
  • the valve is opened, the on-off valve for gas return piping is closed, and the on-off valve for liquid return piping is opened.
  • the on-off valve for gas return piping is closed to stop the low boiling point refrigerant from being preferentially returned during the refrigeration cycle. Then, the liquid return piping on-off valve is opened to return the high boiling point refrigerant, which is often present in the liquid phase portion, into the refrigeration cycle.
  • the non-azeotropic mixed refrigerant is introduced from the refrigeration cycle to the gas-liquid separator, and the gas-liquid separation is performed in the gas-liquid separator
  • the proportion increase of the high boiling point refrigerant in the refrigeration cycle is promoted.
  • the mixing operation of mixing the high boiling point refrigerant into the non-azeotropic mixture refrigerant performing the refrigeration cycle the ratio of the high boiling point refrigerant in the non-azeotropic mixture refrigerant is increased, and the mixing at the time of refrigerant charge is performed. It can be returned to the percentage.
  • the discharge gas temperature can be lowered by returning the mixing ratio of the refrigerant at the time of the refrigerant filling by the mixing operation.
  • control unit opens the on-off valve for the extraction pipe and opens the on-off valve for the gas return pipe during the cooling operation.
  • a low boiling point refrigerant such as R32 has a higher density than a high boiling point refrigerant such as R1234yf or R1234ze (E), and thus has a high COP. Therefore, at the time of the cooling operation, the ratio of the low boiling point refrigerant in the non-azeotropic mixed refrigerant which performs the refrigeration cycle is increased by performing the separation operation of opening the on-off valve for the extraction pipe and the on-off valve for the gas return pipe. Thereby, highly efficient cooling operation can be realized.
  • control unit opens the on-off valve for the extraction pipe when the temperature of the discharge gas discharged from the compressor reaches a predetermined value or more.
  • the return piping on-off valve is closed, and the liquid return piping on-off valve is opened.
  • the discharge gas temperature of the compressor may be excessively high. Therefore, when the discharge gas temperature exceeds a predetermined value, open the on-off valve for the extraction pipe, close the on-off valve for the gas return pipe, and perform the mixing operation to open the on-off valve for the liquid return pipe. Then, the proportion of the high-boiling point refrigerant in the non-azeotropic mixture refrigerant is increased to return to the mixing ratio at the time of refrigerant charging. As a result, by preventing the discharge gas temperature of the compressor from becoming excessively high, the equipment can be protected.
  • a control method of a refrigeration apparatus includes: a compressor for compressing a non-azeotropic refrigerant mixture in which low boiling point refrigerants having different boiling points and high boiling point refrigerant are mixed; A condenser for condensing non-azeotropic refrigerant, an expansion valve for expanding the non-azeotropic refrigerant led from the condenser, and an evaporator for evaporating the non-azeotropic refrigerant led from the expansion valve; A non-azeotropic mixture connected to a take-out pipe for taking out part of the non-azeotropic mixed refrigerant from between the condenser and the expansion valve, a take-off pipe on-off valve provided on the take-out pipe, and the take-out pipe A gas-liquid separator that stores refrigerant and separates gas-liquid, a gas return pipe that connects between the expansion valve and the evaporator, and a gas phase portion in the gas-liquid
  • the refrigerant that has been separated by the gas-liquid separator can be returned from the gas phase portion or the liquid phase portion into the refrigeration cycle simply by controlling each on-off valve of each pipe connected to the gas-liquid separator
  • the mixing ratio of the non-azeotropic mixed refrigerant can be arbitrarily changed with the following configuration.
  • the separation operation is performed by opening the on-off valve for the extraction pipe and the on-off valve for the gas return pipe to increase the ratio of the low boiling point refrigerant in the non-azeotropic mixed refrigerant performing the refrigeration cycle. Efficient cooling operation can be realized.
  • the temperature slip according to the mixing ratio of the non-azeotropic mixture refrigerant is shown, which is the temperature slip when the saturation temperature is 10 ° C. It is the graph which showed the change of COP according to the mixing ratio of the non-azeotropic mixture refrigerant.
  • FIG. 1 shows a refrigerant circuit configuration of the refrigeration apparatus 1 of the present embodiment.
  • the refrigeration apparatus 1 is used, for example, as an air conditioner, and can perform heating operation and cooling operation by switching a four-way valve (not shown) provided on the discharge side of the compressor 3.
  • FIG. 1 shows the configuration during heating operation.
  • the refrigerating apparatus 1 uses, as a refrigerant, a non-azeotropic mixed refrigerant in which R32 and R1234ze (E) are mixed.
  • R32 is considered as a low boiling point refrigerant having a low boiling point relative to R1234ze (E).
  • R1234ze (E) is regarded as a high boiling point refrigerant having a high boiling point relative to R32. Note that R1234yf may be used instead of R1234ze (E).
  • the refrigeration system 1 includes a compressor 3 that compresses a non-azeotropic mixture refrigerant (hereinafter sometimes simply referred to as “refrigerant”), a condenser 5, an expansion valve 7, and an evaporator 9.
  • refrigerant a non-azeotropic mixture refrigerant
  • condenser 5 a condenser 5
  • expansion valve 7 a condenser 5
  • evaporator 9 By connecting the compressor 3, the condenser 5, the expansion valve 7, and the evaporator 9 with a refrigerant pipe, a refrigerant circuit that performs a refrigeration cycle is configured.
  • the compressor 3 is installed inside the outdoor unit, for example, a scroll compressor or a rotary compressor, and is driven by an electric motor (not shown).
  • the electric motor is provided with an inverter device, and the number of rotations is arbitrarily changed by a command from a control unit (not shown).
  • a suction pressure sensor 11 for measuring the suction pressure Ps of the refrigerant is provided on the suction side of the compressor 3, and a discharge temperature sensor 13 for measuring the discharge temperature of the refrigerant is provided on the discharge side of the compressor 3. ing.
  • the outputs of the suction pressure sensor 11 and the discharge temperature sensor 13 are sent to the control unit.
  • the condenser 5 is an indoor heat exchanger, and heats and exchanges heat with room air during heating operation to condense the high-pressure gas refrigerant introduced from the compressor 3.
  • the expansion valve 7 expands the refrigerant condensed and liquefied in the condenser 5.
  • the opening degree of the expansion valve 7 is controlled by the control unit.
  • the evaporator 9 is an outdoor heat exchanger installed inside the outdoor unit, and during the heating operation, the evaporator 9 evaporates the refrigerant expanded by the expansion valve 7 by exchanging heat with the outside air as the outdoor heat exchanger. .
  • an evaporator outlet temperature sensor 15 for measuring the temperature of the evaporating refrigerant is provided. The output of the evaporator outlet temperature sensor 15 is sent to the control unit.
  • a gas-liquid separator 17 is provided separately from the main refrigerant circuit that performs the refrigeration cycle by the compressor 3, the condenser 5, the expansion valve 7 and the evaporator 9 described above.
  • the gas-liquid separator 17 is a tank having a capacity capable of temporarily storing the refrigerant.
  • the gas-liquid separator 17 is installed inside an outdoor unit that accommodates the compressor 3 and the evaporator 9.
  • a discharge pipe 19 is provided between the discharge position A between the condenser 5 and the expansion valve 7 and the upper portion of the gas-liquid separator 17.
  • the outlet pipe 19 is provided with an outlet pipe on-off valve 20.
  • the outlet piping on-off valve 20 is, for example, a solenoid valve, and is opened and closed in accordance with a command from the control unit.
  • a gas return pipe 21 is provided between a joining position B between the expansion valve 7 and the evaporator 9 and the gas-liquid separator 17.
  • the upstream end 21 a of the gas return pipe 21 is located at the upper part of the gas-liquid separator 17 and opens to the gas phase portion of the refrigerant separated in the gas-liquid separator 17.
  • the gas return pipe 21 is provided with a gas return pipe on-off valve 22.
  • the gas return piping on-off valve 22 is, for example, an electromagnetic valve, which is opened and closed in accordance with a command from the control unit.
  • a liquid return pipe 23 is provided between the gas-liquid separator 17 and a joining position B between the expansion valve 7 and the evaporator 9.
  • the upstream end 23 a of the liquid return pipe 23 is located at the lower portion (or the bottom) of the gas-liquid separator 17 and opens to the liquid phase portion of the refrigerant separated in the gas-liquid separator 17.
  • the liquid return pipe 23 is provided with a liquid return pipe on-off valve 24.
  • the liquid return piping on-off valve 24 is, for example, an electromagnetic valve, and is opened and closed in accordance with a command from the control unit.
  • the control unit is configured of, for example, a central processing unit (CPU), a random access memory (RAM), a read only memory (ROM), a computer readable storage medium, and the like. Then, a series of processes for realizing various functions are stored in the form of a program, for example, in a storage medium or the like in the form of a program, and the CPU reads this program into a RAM or the like to execute information processing and arithmetic processing. Thus, various functions are realized.
  • the program may be installed in advance in a ROM or other storage medium, may be provided as stored in a computer-readable storage medium, or may be distributed via a wired or wireless communication means. Etc. may be applied.
  • the computer readable storage medium is a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory or the like.
  • the outlet piping on-off valve 20 is closed, the gas return piping on-off valve 22 is open, and the liquid return piping on-off valve 24 is open.
  • the open valve is displayed as white and the closed valve is displayed as solid.
  • the refrigerant is not extracted from the inside of the refrigeration cycle, and the mixing ratio of the refrigerant performing the refrigeration cycle is not changed. Further, by opening the on / off valve 24 for liquid return piping, the liquid refrigerant is not stored in the gas-liquid separator 17, and the mixing ratio of the refrigerant performing the refrigeration cycle is not changed.
  • the gas return piping on-off valve 22 is opened to equalize the pressure with the refrigerant pressure after being expanded by the expansion valve 7. This makes it possible to prevent the low boiling point refrigerant from remaining unvaporized during normal operation, and to prevent the liquid seal state in which the inside of the gas-liquid separator 17 is filled with unvaporized refrigerant during stoppage It is for.
  • FIG. 2 shows the separation operation at the time of heating operation.
  • the separation operation is performed after the above-described normal operation (encapsulation composition), and R32 (low boiling point refrigerant) in the refrigerant performing the refrigeration cycle by separating R1234ze (high boiling point refrigerant) from the refrigerant performing the refrigeration cycle Operation to increase the mixing ratio of
  • the outlet piping on-off valve 20 is open, the gas return piping on-off valve 22 is open, and the liquid return piping on-off valve 24 is closed.
  • R 32 evaporated in the gas-liquid separator 17 passes through the gas return pipe 21 and is returned from the joining position B to the evaporator 9 to be used as a refrigerant that performs a refrigeration cycle. Thereby, the mixing ratio of R32 in the refrigerant performing the refrigeration cycle is increased.
  • FIG. 3 shows a normal operation (separated composition) at the time of heating operation. This normal operation is performed after the above-described separation operation, and is operated in a separated composition in which R1234ze (E) in the refrigerant performing the refrigeration cycle is separated to increase the mixing ratio of R32 It is.
  • the outlet piping on-off valve 20 is closed, the gas return piping on-off valve 22 is open, and the liquid return piping on-off valve 24 is closed.
  • the refrigerant is not extracted from the inside of the refrigeration cycle, and the mixing ratio of the refrigerant performing the refrigeration cycle is not changed. Further, by closing the liquid return piping on-off valve 24, the liquid refrigerant in the gas-liquid separator 17 is not returned to the refrigeration cycle, and the mixing ratio of the refrigerant performing the refrigeration cycle is not changed.
  • the gas return piping on-off valve 22 is opened to lead R 32 separated in the gas-liquid separator 17 to the evaporator 9 through the gas return piping 21.
  • FIG. 4 shows the mixing operation at the time of heating operation.
  • the mixing operation is performed after the above-described normal operation (separation composition), and is performed to mix R1234ze (E) into the refrigerant performing the refrigeration cycle to reduce the mixing ratio of R32 in the refrigerant.
  • the outlet piping on-off valve 20 is open, the gas return piping on-off valve 22 is closed, and the liquid return piping on-off valve 24 is open.
  • liquid refrigerant is introduced into the gas-liquid separator 17 from between the condenser 5 and the expansion valve 7.
  • the gas return piping on-off valve 22 since the gas return piping on-off valve 22 is closed, R32 evaporated in the gas-liquid separator 17 is not supplied from the joining position B to the refrigerant performing the refrigeration cycle.
  • the liquid return piping on-off valve 24 since the liquid return piping on-off valve 24 is opened, the liquid refrigerant stored in the gas-liquid separator 17 is led from the junction position B to the evaporator 9 through the liquid return piping 23.
  • the liquid refrigerant in the gas-liquid separator 17 in which R1234ze (E) is concentrated by the separation operation see FIG. 2 is returned to the refrigerant performing the refrigeration cycle, so R1234ze (E in the refrigerant performing the refrigeration cycle
  • the mixing ratio of) increases.
  • step S1 it is determined whether the outside air temperature is less than a predetermined value (for example, 10 ° C.) (step S1).
  • a predetermined value for example, 10 ° C.
  • a measurement value of an outside air temperature sensor (not shown) is used.
  • the separation operation is performed to increase the mixing ratio of R32 in the refrigerant that performs the refrigeration cycle. Thereby, the temperature slip in the evaporator 9 is reduced (see FIG. 12B), and the low pressure in the evaporator 9 is increased to prevent frost formation.
  • step S1 If it is determined in step S1 that the outside air temperature is 10 ° C. or higher, the process proceeds to step S3 and a normal operation (enclosed composition) is performed (see FIG. 1).
  • a normal operation In normal operation (enclosed composition), the mixing ratio in the refrigerant performing the refrigeration cycle is equal to that in the refrigerant filling, and the mixing ratio of R32 is not excessively large, so the discharge gas temperature of the refrigerant gas discharged from the compressor 3 Is maintained below a predetermined value.
  • step S5 If the measured temperature Tho-R of the evaporator outlet temperature sensor 15 is equal to or higher than a predetermined value (for example, -3 ° C.) while performing the normal operation (enclosed composition) in step S3 (step S4), the unit is stopped It is determined whether or not there is a command (step S5). When a unit stop command is issued, the refrigeration system 1 is stopped and the process is ended. If the unit stop command has not been issued, the process returns to step S3 and the normal operation (enclosed composition) is continued. When the measured temperature Tho-R of the evaporator outlet temperature sensor 15 becomes lower than -3 ° C. in step S4, the process proceeds to step S3 and the separation operation is performed. By the separation operation, the low pressure of the evaporator 9 rises to prevent frost formation.
  • a predetermined value for example, -3 ° C.
  • Step S6 While performing the separation operation in step S2, it is determined whether the degree of suction superheat of the compressor 3 is less than 2 ° C. or whether a predetermined time (for example, one hour) has passed since the separation operation was started (Ste S6).
  • the suction superheat degree is calculated from the difference between the saturation temperature of the pressure obtained by the suction pressure sensor 11 and the temperature obtained by the evaporator outlet temperature sensor 15.
  • step S6 when the degree of suction superheat is not less than 2 ° C. and one hour has not elapsed from the separation operation, the process returns to step S2 and the separation operation is continued.
  • step S6 when the degree of suction superheat becomes less than 2 ° C., or when one hour or more has passed from the separation operation, the process proceeds to step S7, and the normal operation (separation composition) is performed (see FIG. 3).
  • the normal operation an operation is performed in which R1234ze (E) is separated from the refrigerant performing the refrigeration cycle to increase the mixing ratio of R32.
  • frost formation on the evaporator 9 is suppressed and, as shown in FIG. 13, an operation with a high COP is performed.
  • step S8 it is determined whether the discharge temperature Tho-D measured by the discharge temperature sensor 13 exceeds a predetermined value (for example, 110 ° C.) (step S8). If the discharge temperature Tho-D exceeds 110 ° C., the process proceeds to step S9 to perform the mixing operation (see FIG. 4).
  • R1234ze (E) is mixed in the refrigerant that performs the refrigeration cycle, and is operated to approach the mixing ratio at the time of sealing. As a result, the mixing ratio of R32 in the refrigerant that performs the refrigeration cycle decreases, and the discharge temperature decreases.
  • the mixing operation ends after a predetermined time (for example, 5 minutes) elapses, and the process proceeds to step S3 and a normal operation (enclosed composition) is performed.
  • step S8 the process proceeds to step S10, and it is determined whether there is a unit stop command. If the unit stop command has not been issued, the process returns to step S7 and the normal operation (separated composition) is continued. If a unit stop command is issued, the process proceeds to step S11, and after performing a mixing operation for a predetermined time (for example, 5 minutes), the refrigeration apparatus 1 is stopped and the process is ended. By performing the mixing operation before stopping the refrigeration system 1, the mixing ratio in the refrigerant that performs the refrigeration cycle at the next activation is returned at the time of refrigerant charging.
  • a predetermined time for example, 5 minutes
  • the outlet piping on-off valve 20 is closed, the gas return piping on-off valve 22 is open, and the liquid return piping on-off valve 24 is closed.
  • the refrigerant is not extracted from the inside of the refrigeration cycle, and the mixing ratio of the refrigerant performing the refrigeration cycle is not changed. Further, by opening the on-off valve 24 for liquid return piping, the liquid refrigerant is not stored in the gas-liquid separator 17, and the mixing ratio of the refrigerant forming the refrigeration cycle is not changed.
  • the gas return piping on-off valve 22 is opened to equalize the pressure with the refrigerant pressure after being expanded by the expansion valve 7. This makes it possible to prevent the low boiling point refrigerant from remaining unvaporized during normal operation, and to prevent the liquid seal state in which the inside of the gas-liquid separator is filled with unvaporized refrigerant during stoppage It is.
  • FIG. 7 shows the separation operation at the time of the cooling operation.
  • the separation operation is performed after the above-described normal operation (enclosed composition), and R32 (low) in the refrigerant performing the refrigeration cycle by separating R1234ze (E) (high boiling point refrigerant) from the refrigerant performing the refrigeration cycle
  • the operation is to increase the mixing ratio of the boiling point refrigerant).
  • the outlet piping on-off valve 20 is open, the gas return piping on-off valve 22 is open, and the liquid return piping on-off valve 24 is closed.
  • liquid refrigerant is introduced into the gas-liquid separator 17 from between the condenser 5 and the expansion valve 7. Since the gas return piping on-off valve 22 is open in the gas-liquid separator 17 and the pressure is low equivalent to the pressure between the expansion valve 7 and the evaporator 9, the inside of the gas-liquid separator 17 is The low-boiling-point refrigerant R32 led to is preferentially evaporated over the high-boiling-point refrigerant R1234ze (E).
  • R 32 evaporated in the gas-liquid separator 17 passes through the gas return pipe 22 and is returned from the joining position B to the evaporator 9 and is used as a refrigerant that performs a refrigeration cycle. Thereby, the mixing ratio of R32 in the refrigerant performing the refrigeration cycle is increased.
  • FIG. 8 shows a normal operation (separated composition) at the time of the cooling operation. This normal operation is performed after the above-described separation operation, and is operated in a separated composition in which R1234ze (E) in the refrigerant performing the refrigeration cycle is separated to increase the mixing ratio of R32 It is.
  • the outlet piping on-off valve 20 is closed, the gas return piping on-off valve 22 is closed, and the liquid return piping on-off valve 24 is closed.
  • the refrigerant is not extracted from the inside of the refrigeration cycle, and the mixing ratio of the refrigerant performing the refrigeration cycle is not changed. Further, by closing the liquid return piping on-off valve 24, the liquid refrigerant in the gas-liquid separator 17 is not returned to the refrigeration cycle, and the mixing ratio of the refrigerant performing the refrigeration cycle is not changed.
  • the gas return piping on-off valve 22 is closed. Since the outside air temperature is higher in the cooling operation than in the heating operation, the environmental temperature in the outdoor unit in which the gas-liquid separator 17 is installed is high, and R1234ze (E), which is a high boiling point refrigerant, also evaporates. This is because there is a possibility that the refrigerant may join the refrigerant performing the refrigeration cycle through the return pipe 21.
  • R1234ze (E) which is a high boiling point refrigerant
  • FIG. 9 shows the mixing operation at the time of the cooling operation.
  • the mixing operation is performed after the above-described normal operation (separation composition), and is performed to mix R1234ze (E) into the refrigerant performing the refrigeration cycle to reduce the mixing ratio of R32 in the refrigerant.
  • the outlet piping on-off valve 20 is open, the gas return piping on-off valve 22 is closed, and the liquid return piping on-off valve 24 is open.
  • liquid refrigerant is introduced into the gas-liquid separator 17 from between the condenser 5 and the expansion valve 7.
  • the gas return piping on-off valve 22 since the gas return piping on-off valve 22 is closed, R32 evaporated in the gas-liquid separator 17 is not supplied from the joining position B to the refrigerant performing the refrigeration cycle.
  • the liquid return piping on-off valve 24 since the liquid return piping on-off valve 24 is opened, the liquid refrigerant stored in the gas-liquid separator 17 is led from the junction position B to the evaporator 9 through the liquid return piping 23.
  • the liquid refrigerant in the gas-liquid separator 17 in which R1234ze (E) is concentrated by the separation operation see FIG. 7) is returned to the refrigerant that performs the refrigeration cycle, so R1234ze (E in the refrigerant that performs the refrigeration cycle
  • the mixing ratio of) increases.
  • step S21 the separation operation (see FIG. 7) is performed, and the mixing ratio of R32 in the refrigerant performing the refrigeration cycle is increased.
  • the cooling operation with improved COP is performed (see FIG. 13).
  • Step S21 While performing the separation operation in step S21, it is determined whether the degree of suction superheat of the compressor 3 is less than 2 ° C. or whether a predetermined time (for example, one hour) has passed since the separation operation was started ( Step S22).
  • step S22 If it is determined in step S22 that the degree of suction superheat is not less than 2 ° C. and one hour has not elapsed from the separation operation, the process returns to step S21 to continue the separation operation.
  • step S22 when the degree of suction superheat is less than 2 ° C. or one hour or more has elapsed from the separation operation, the process proceeds to step S23, and the normal operation (separation composition) is performed (see FIG. 8).
  • the normal operation an operation is performed in which R1234ze (E) is separated from the refrigerant performing the refrigeration cycle to increase the mixing ratio of R32.
  • the cooling operation with a high COP is continued.
  • step S24 While performing the normal operation (separation composition) in step S23, it is determined whether the discharge temperature Tho-D measured by the discharge temperature sensor 13 exceeds a predetermined value (for example, 110 ° C.) (step S24). If the discharge temperature Tho-D exceeds 110 ° C., the process proceeds to step S25 to perform the mixing operation (see FIG. 9).
  • R1234ze (E) is mixed in the refrigerant that performs the refrigeration cycle, and is operated to approach the mixing ratio at the time of sealing.
  • the mixing ratio of R32 in the refrigerant that performs the refrigeration cycle decreases, and the discharge temperature decreases.
  • the mixing operation is finished after a predetermined time (for example, 5 minutes) elapses, and the process proceeds to step S26 where a normal operation (enclosed composition) is performed (see FIG. 6).
  • the mixing ratio in the refrigerant performing the refrigeration cycle is equal to that at the time of refrigerant charging, and the mixing ratio of R32 is not large, so the discharge gas temperature of the refrigerant gas discharged from the compressor 3 is predetermined. It becomes the operation kept below the value.
  • step S27 While performing the normal operation (enclosed composition) in step S26, it is determined whether or not there is a unit stop command (step S27). When a unit stop command is issued, the refrigeration system 1 is stopped and the process is ended. If the unit stop command has not been issued, the process returns to step S26 and the normal operation (enclosed composition) is continued.
  • step S24 If it is determined in step S24 that the discharge temperature Tho-D does not exceed 110 ° C., the process proceeds to step S28, and it is determined whether there is a unit stop instruction. If the unit stop command has not been issued, the process returns to step S23 and the normal operation (separation composition) is continued. If a unit stop command has been issued, the process proceeds to step S29, and after performing a mixing operation for a predetermined time (for example, 5 minutes), the refrigeration apparatus 1 is stopped and the process is ended. By performing the mixing operation before stopping the refrigeration system 1, the mixing ratio in the refrigerant that performs the refrigeration cycle at the next activation is returned at the time of refrigerant charging.
  • a predetermined time for example, 5 minutes
  • the gas refrigerant or liquid refrigerant separated by the gas / liquid separator 17 is subjected to a refrigeration cycle only by connecting the pipes 19, 21 and 23 to the gas / liquid separator 17 and controlling the on / off valves 20, 22 and 24. Since it can be returned to the inside, the mixing ratio of the low boiling point refrigerant (R32) and the high boiling point refrigerant (R1234ze (E)) can be arbitrarily changed by a simple configuration.
  • the temperature of the evaporator 9 is low because the outside air temperature is generally low.
  • the evaporator may be frosted. Therefore, when the outside air temperature is less than a predetermined value (for example, 10 ° C.) or the evaporator outlet temperature is less than a predetermined value (for example, -3 ° C.), the gas return piping on-off valve 22 is opened to perform refrigeration. Increase the proportion of R32 (low-boiling point refrigerant) in the cycle.
  • a predetermined value for example, 10 ° C.
  • a predetermined value for example, -3 ° C.
  • the refrigerant is introduced from the refrigeration cycle to the gas-liquid separator 17, and the gas-liquid separation is performed in the gas-liquid separator 17 to perform R32 during the refrigeration cycle. Reversion further promotes the increase in the proportion of R32 in the refrigeration cycle.
  • temperature slip can be achieved by performing separation operation in which R1234ze (E) (high boiling point refrigerant) is separated from the refrigerant performing the refrigeration cycle to increase the ratio of R32. It is possible to reduce the size and increase the saturation temperature in the evaporator 9 to suppress frost formation.
  • the extraction pipe on-off valve 20 is closed.
  • the removal of part of the refrigerant that performs the refrigeration cycle into the gas-liquid separator 17 is stopped (see FIG. 3).
  • the control for increasing the ratio of R32 in the refrigerant that performs the refrigeration cycle is stopped, and the normal operation (separation composition) can be performed with the composition of the mixed refrigerant after the separation operation.
  • the gas return piping on-off valve 22 is closed to stop that R32 is preferentially returned during the refrigeration cycle. Then, the liquid return piping on-off valve 24 is opened to return R1234ze (E), which is mostly present in the liquid refrigerant in the gas-liquid separator 17, back to the refrigeration cycle.
  • a predetermined value for example, 10 ° C.
  • the refrigerant is introduced from the refrigeration cycle to the gas-liquid separator 17, and the gas-liquid separation is performed in the gas-liquid separator 17 to obtain R1234ze (liquid phase).
  • R1234ze liquid phase
  • E) By bringing the E cycle into the refrigeration cycle preferentially, it promotes an increase in the proportion of R1234ze (E) in the refrigeration cycle.
  • the ratio of R1234ze (E) in the refrigerant can be increased, and the mixing ratio at the time of refrigerant charging can be returned to .
  • the discharge gas temperature discharged from the compressor 3 reaches a predetermined value (for example, 110 ° C.) or more, the discharge gas temperature is lowered by returning the mixing ratio of the refrigerant at the time of refrigerant filling by the mixing operation.
  • a predetermined value for example, 110 ° C.
  • the ratio R32 in the refrigerant performing the refrigeration cycle is increased by performing the separation operation (see FIG. 7) in which the on-off valve 20 for the extraction pipe and the on-off valve 22 for the gas return pipe are opened. Thereby, highly efficient cooling operation can be realized.
  • the refrigeration apparatus capable of switching between heating and cooling has been described, but the present invention is not limited to this, and is also applied to a refrigeration apparatus performing only heating operation or only cooling operation. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

A refrigeration device is equipped with: an extraction pipe (19) that extracts a portion of a non-azeotropic refrigerant mixture from between a condenser (5) and an expansion valve (7); an extraction pipe on-off valve (20); a gas-liquid separator (17) that is connected to the extraction pipe (19), and that accumulates the non-azeotropic refrigerant mixture and separates the mixture into a gas and a liquid; a gas return pipe (21) connecting the gas-phase portion inside the gas-liquid separator (17) and a point between the expansion valve (7) and an evaporator (9); a gas return pipe on-off valve (22); a liquid return pipe (23) connecting the liquid-phase portion inside the gas-liquid separator (17) and a point between the expansion valve (7) and the evaporator (9); a liquid return pipe on-off valve (24); and a control unit that controls the extraction pipe on-off valve (20), the gas return pipe on-off valve (22), and the liquid return pipe on-off valve (24).

Description

冷凍装置及びその制御方法Refrigerating apparatus and control method thereof
 本発明は、非共沸混合冷媒を用いた冷凍装置及びその制御方法に関するものである。 The present invention relates to a refrigeration apparatus using a non-azeotropic mixture refrigerant and a control method thereof.
 空気調和機に用いる冷媒として、R410A等のHFC冷媒が用いられている。しかし、R410Aに代表されるHFC冷媒は、GWP(地球温暖化係数)が高い。そこで、HFC冷媒の中でもR410AよりもGWPが低いR32や、HFO冷媒である1234yfやR1234ze(E)がR410Aに対する次期冷媒の候補として挙がっている。ところが、フロン冷媒・自然冷媒の冷媒物性上、次期候補となる冷媒には一長一短がある。例えば、R32は、R410Aに比べてGWPが低く同等以上の性能を得ることができるが、R410Aに比べて吐出温度が高く低温域での信頼性に劣るという欠点がある。R1234yfやR1234ze(E)は、GWPが10以下であるGWPが低いという利点は有するものの、R410Aに比べて低密度とされるため約50%の体積能力しかなく、同等性能を確保するためには機器の大型化を招くという欠点がある。 As a refrigerant used for an air conditioner, HFC refrigerants, such as R410A, are used. However, the HFC refrigerant represented by R410A has a high GWP (global warming potential). Therefore, among HFC refrigerants, R32 having a GWP lower than that of R410A, and HFO refrigerants 1234yf and R1234ze (E) are listed as candidates for the next refrigerant for R410A. However, due to the physical properties of fluorocarbon refrigerant and natural refrigerant, there are advantages and disadvantages in the refrigerants to be the next candidate. For example, R32 has lower GWP and can obtain equal or higher performance than R410A, but has the disadvantage of high discharge temperature and inferior reliability in a low temperature range compared to R410A. Although R1234yf and R1234ze (E) have the advantage of having a low GWP with a GWP of 10 or less, they are only about 50% in volume capacity due to their low density compared to R410A, and to ensure equivalent performance There is a disadvantage that the size of the device is increased.
 このような、冷媒の一長一短を補うために、2種類以上の冷媒を混合した混合冷媒の使用が検討されている。下記特許文献1には、冷凍機油中に混合冷媒を溶け込ませて、冷媒の溶解度の相違を利用することで、冷凍サイクル中の混合冷媒の割合を変更することが開示されている。 In order to compensate for such advantages and disadvantages of the refrigerant, use of a mixed refrigerant in which two or more types of refrigerants are mixed has been considered. Patent Document 1 below discloses changing the ratio of the mixed refrigerant in the refrigeration cycle by dissolving the mixed refrigerant in the refrigerator oil and utilizing the difference in the solubility of the refrigerant.
特開平7-98161号公報JP-A-7-98161
 混合冷媒の中でも、沸点が異なる冷媒が混合された非共沸混合冷媒は、図11に示すように、温度すべりが生じる。つまり、混合した各冷媒の沸点や凝縮点が異なるため、湿り蒸気中(飽和液線と飽和蒸気線との間)の等温線が単一冷媒のように圧力(p)一定にならず、p-h線図上では右下がりの等温線となる。すなわち、非共沸混合冷媒には温度すべりが生じる。 Among the mixed refrigerants, a non-azeotropic mixed refrigerant in which refrigerants having different boiling points are mixed causes temperature slippage as shown in FIG. That is, since the boiling points and condensation points of the mixed refrigerants are different, the isotherm in the wet vapor (between the saturated liquid line and the saturated vapor line) does not become constant in pressure (p) like a single refrigerant, p It is an isothermal line falling to the right on the -h diagram. That is, temperature slippage occurs in the non-azeotropic mixed refrigerant.
 また、非共沸混合冷媒中の各冷媒の割合に応じて、例えば図12に示すように、温度すべりの温度差が異なってくる。図12において、横軸はR1234ze(E)(高沸点冷媒)に対するR32(低沸点冷媒)の混合比率[wt%]とされており、縦軸が高圧側(図12A:飽和温度40℃)及び低圧側(図12B:飽和温度10℃)における温度すべりの温度差[℃]が示されている。同図から分かるように、R1234ze(E)に対するR32の混合比率が20wt%あたりで温度すべりが最大となる。この場合、低圧側では飽和温度が10℃とされているため、低圧側すなわち蒸発器温度が0℃以下となるおそれがあるため、蒸発器に着霜が生じるおそれがある。暖房運転を行っている場合には、蒸発器が着霜すると熱交換性能が下がり吸熱量が減少するため暖房性能の低下が顕著となる。 Further, depending on the proportions of the refrigerants in the non-azeotropic mixture refrigerant, for example, as shown in FIG. 12, the temperature difference of the temperature slip differs. 12, the horizontal axis represents the mixing ratio [wt%] of R32 (low boiling point refrigerant) to R1234ze (E) (high boiling point refrigerant), and the vertical axis represents the high pressure side (FIG. 12A: saturation temperature 40 ° C.) The temperature difference [° C.] of the temperature slip on the low pressure side (FIG. 12B: saturation temperature 10 ° C.) is shown. As can be seen from the figure, the temperature slip is maximum at a mixing ratio of R32 to R1234ze (E) of about 20 wt%. In this case, since the saturation temperature is 10 ° C. on the low pressure side, there is a possibility that the low temperature side, that is, the evaporator temperature becomes 0 ° C. or less, and frost may be formed on the evaporator. When the heating operation is performed, when the evaporator is frosted, the heat exchange performance is reduced and the heat absorption amount is reduced, so that the decrease in the heating performance becomes remarkable.
 図13には、R410AとR1234ze(E)との混合割合を変えた場合の冷房運転時及び暖房運転時のCOP(成績係数)が示されている。同図において、横軸(下軸)はR1234ze(E)に対するR32の混合比率[wt%]とされており、横軸(上軸)は各混合比率におけるGWPとされており、縦軸がR410Aに対する同一能力比におけるCOPとされている。同図から分かるように、R32混合比率が下がると、R1234ze(E)の割合が増えるのでGWPは下がるものの、冷房運転時及び暖房運転時のCOPが低下し、特に冷房運転時のCOP低下が大きい。 FIG. 13 shows COPs (coefficients of performance) at the time of cooling operation and at the time of heating operation when the mixing ratio of R410A and R1234ze (E) is changed. In the figure, the horizontal axis (lower axis) is the mixing ratio [wt%] of R32 to R1234ze (E), the horizontal axis (upper axis) is GWP in each mixing ratio, and the vertical axis is R410A It is considered as COP in the same ability ratio to. As can be seen from the figure, when the R32 mixture ratio decreases, the ratio of R1234ze (E) increases, so the GWP decreases, but the COPs during the cooling operation and the heating operation decrease, especially the COP decreases during the cooling operation .
 そこで、冷凍サイクルを行う非共沸混合冷媒の混合割合を運転中に可変とすることが望まれる。上記特許文献1では、冷凍サイクル中の混合冷媒の割合を変更することができるが、冷凍機油に対する冷媒の溶解度を用いているため、冷凍機油の温度や貯油量を制御する必要があり、システムとして複雑になるおそれがある。 Therefore, it is desirable to make the mixing ratio of the non-azeotropic mixture refrigerant performing the refrigeration cycle variable during operation. Although the ratio of the mixed refrigerant in the refrigeration cycle can be changed in the above-mentioned Patent Document 1, it is necessary to control the temperature and the oil storage amount of the refrigerator oil since the solubility of the refrigerant in the refrigerator oil is used. It may be complicated.
 本発明は、このような事情に鑑みてなされたものであって、冷凍サイクルを行う非共沸混合冷媒の混合割合を運転中に簡便な構成で変更できる冷凍装置及びその制御方法を提供することを目的とする。
 また、非共沸混合冷媒の温度すべりによって蒸発器温度が着霜することを回避できる冷凍装置及びその制御方法を提供することを目的とする。
 また、冷房運転中の性能低下を可及的に抑えることができる非共沸混合冷媒を用いた冷凍装置及びその制御方法を提供することを目的とする。
The present invention has been made in view of such circumstances, and provides a refrigeration apparatus that can change the mixing ratio of non-azeotropic refrigerants that perform refrigeration cycles with a simple configuration during operation, and a control method thereof. With the goal.
Another object of the present invention is to provide a refrigeration system and a control method thereof that can prevent frost formation on the evaporator temperature due to temperature slip of the non-azeotropic mixture refrigerant.
Another object of the present invention is to provide a refrigeration system using a non-azeotropic mixed refrigerant that can suppress performance deterioration during cooling operation as much as possible, and a control method thereof.
 上記課題を解決するために、本発明の冷凍装置及びその制御方法は以下の手段を採用する。
 すなわち、本発明の一態様にかかる冷凍装置は、沸点が異なる低沸点冷媒と高沸点冷媒とが混合された非共沸混合冷媒を圧縮する圧縮機と、該圧縮機から導かれた非共沸混合冷媒を凝縮させる凝縮器と、該凝縮器から導かれた非共沸混合冷媒を膨張させる膨張弁と、該膨張弁から導かれた非共沸混合冷媒を蒸発させる蒸発器と、前記凝縮器と前記膨張弁との間から非共沸混合冷媒の一部を取り出す取出配管と、該取出配管に設けられた取出配管用開閉弁と、前記取出配管に接続され、非共沸混合冷媒を貯留して気液分離する気液分離器と、前記膨張弁と前記蒸発器との間と前記気液分離器内のガス相部とを接続するガス戻り配管と、該ガス戻り配管に設けられたガス戻り配管用開閉弁と、前記膨張弁と前記蒸発器との間と前記気液分離器内の液相部とを接続する液戻り配管と、前記液戻り配管に設けられた液戻り配管用開閉弁と、前記取出配管用開閉弁、前記ガス戻り配管用開閉弁および前記液戻り配管用開閉弁を制御する制御部とを備えている。
In order to solve the above-mentioned subject, the freezing device and its control method of the present invention adopt the following means.
That is, a refrigeration apparatus according to one aspect of the present invention includes a compressor for compressing a non-azeotropic refrigerant mixture in which low boiling point refrigerants having different boiling points and high boiling point refrigerant are mixed, and a non-azeotropic refrigerant introduced from the compressor A condenser for condensing mixed refrigerant, an expansion valve for expanding non-azeotropic mixed refrigerant led from the condenser, an evaporator for evaporating the non-azeotropic mixed refrigerant led from the expansion valve, and the condenser A takeout pipe for taking out part of the non-azeotropic mixture refrigerant from between the expansion valve and the expansion valve, an open / close valve for takeout piping provided in the takeout piping, and the takeout pipe connected to store the non-azeotropic mixture refrigerant Gas-liquid separator, a gas return pipe connecting between the expansion valve and the evaporator, and a gas phase part in the gas-liquid separator, and the gas return pipe A gas return pipe on-off valve, between the expansion valve and the evaporator, and in the gas-liquid separator A liquid return pipe connecting the phase portion, a liquid return pipe on-off valve provided on the liquid return pipe, the outlet pipe on-off valve, the gas return pipe on-off valve, and the liquid return pipe on-off valve And a control unit to control.
 制御部の指令によって取出配管用開閉弁を開とすることで、凝縮器と膨張弁との間から取出配管を介して非共沸混合冷媒の一部を取り出し、気液分離器に一時的に貯留する。気液分離器内では、気液分離器内の温度及び圧力に応じて気液が分離され、液相部とガス相部が形成される。
 制御部の指令によってガス戻り配管用開閉弁を開くと、ガス戻り配管を介して、膨張弁と蒸発器との間と気液分離器のガス相部とが連通され、ガス相部内が低圧となって低沸点冷媒が優先的に蒸発器へ導かれる。これにより、冷凍サイクルを行う非共沸混合冷媒中の低沸点冷媒の割合を増加することができる。
 制御部の指令によって液戻り配管用開閉弁を開くと、液戻り配管を介して、膨張弁と蒸発器との間と気液分離器の液相部とが連通され、液相内の液冷媒が蒸発器へ導かれる。気液分離器内では低沸点冷媒が蒸発して液相部から分離されているので、液冷媒中には取出配管から非共沸混合冷媒を取り出した時よりも高沸点冷媒が高い割合で存在している。これにより、冷凍サイクルを行う非共沸混合冷媒中の高沸点冷媒の割合を増加することができる。
 以上により、気液分離器に接続した各配管の各開閉弁の制御を行うだけで、気液分離器で気液分離した冷媒をガス相部または液相部から冷凍サイクル中に戻すことができるので、簡便な構成で低沸点冷媒と高沸点冷媒との混合割合を任意に変更することができる。
 低沸点冷媒としては、例えばR32が挙げられ、高沸点冷媒としては、例えばR1234yfやR1234ze(E)が挙げられる。
By opening the on-off valve for the discharge pipe according to a command from the control unit, a part of the non-azeotropic mixed refrigerant is taken out from between the condenser and the expansion valve via the discharge pipe, and temporarily used as a gas-liquid separator. Retain. In the gas-liquid separator, the gas-liquid is separated according to the temperature and pressure in the gas-liquid separator to form a liquid phase portion and a gas phase portion.
When the on / off valve for gas return piping is opened according to a command from the control unit, the gas phase portion of the gas / liquid separator is communicated between the expansion valve and the evaporator via the gas return piping, and the pressure in the gas phase portion is low. Thus, the low boiling point refrigerant is preferentially led to the evaporator. Thereby, the ratio of the low boiling point refrigerant in the non-azeotropic refrigerant mixture in which the refrigeration cycle is performed can be increased.
When the liquid return piping on-off valve is opened according to a command from the control unit, the liquid phase portion of the gas-liquid separator is communicated between the expansion valve and the evaporator through the liquid return piping, and the liquid refrigerant in the liquid phase Are led to the evaporator. In the gas-liquid separator, low-boiling point refrigerant evaporates and is separated from the liquid phase portion, so high-boiling point refrigerant is present in the liquid refrigerant at a higher ratio than when non-azeotropic mixed refrigerant is taken out from the outlet piping. doing. Thereby, the ratio of the high boiling point refrigerant in the non-azeotropic refrigerant mixture in which the refrigeration cycle is performed can be increased.
As described above, the refrigerant that has been separated by the gas-liquid separator can be returned from the gas phase portion or the liquid phase portion into the refrigeration cycle only by controlling the on-off valves of the pipes connected to the gas-liquid separator. Therefore, the mixing ratio of the low boiling point refrigerant and the high boiling point refrigerant can be arbitrarily changed by a simple configuration.
Examples of the low boiling point refrigerant include R32, and examples of the high boiling point refrigerant include R1234yf and R1234ze (E).
 さらに、本発明の一態様にかかる冷凍装置では、前記制御部は、暖房運転時に、外気温度が所定値未満または前記蒸発器の温度が所定値未満となった場合に、前記取出配管用開閉弁を開とし、前記ガス戻り配管用開閉弁を開として、気液分離器で分離したガス冷媒を前記ガス戻り配管から前記蒸発器側へと戻す分離運転を行う。 Furthermore, in the refrigeration apparatus according to one aspect of the present invention, the control unit performs the on-off valve for the extraction pipe when the outside air temperature is less than a predetermined value or the temperature of the evaporator is less than a predetermined value during heating operation. Is opened, and the on-off valve for the gas return pipe is opened to perform a separation operation in which the gas refrigerant separated by the gas-liquid separator is returned from the gas return pipe to the evaporator side.
 暖房運転時には、一般に外気温度が低いので、蒸発器の温度が低くなる。蒸発器の温度が所定値未満になると、例えば蒸発器に着霜が生じるといった不具合が生じる。そこで、外気温度が所定値未満または蒸発器の温度が所定値未満になった場合には、ガス戻り配管用開閉弁を開とすることで、気液分離器で分離したガス冷媒(主として低沸点冷媒)をガス戻り配管を介して蒸発器側に戻し、冷凍サイクル中の低沸点冷媒の割合を高くする。このときに、取出配管用開閉弁も開とすることで、冷凍サイクルから非共沸混合冷媒を冷凍サイクルから気液分離器へと導き、気液分離器にて気液分離を行って低沸点冷媒を冷凍サイクル中に戻すことで、冷凍サイクル中の低沸点冷媒の割合上昇をさらに促進する。
 このような分離運転を行うことで、冷凍サイクルを行う非共沸混合冷媒から高沸点冷媒を分離して低沸点冷媒の割合を高くする分離運転を行うことで、温度すべりを小さくし、蒸発器での飽和温度を上昇させることができ、例えば着霜を抑制することができる。
 外気温度の所定値や蒸発器の温度の所定値は、例えば、蒸発器の温度が低下して着霜が発生するおそれがある温度が選択される。
During heating operation, the temperature of the evaporator is generally low because the outside air temperature is low. When the temperature of the evaporator falls below a predetermined value, for example, a problem such as frost formation on the evaporator occurs. Therefore, when the outside air temperature is less than the predetermined value or the temperature of the evaporator is less than the predetermined value, the gas refrigerant separated by the gas-liquid separator (mainly the low boiling point) is opened by opening the on-off valve for gas return piping. The refrigerant is returned to the evaporator side through the gas return pipe to increase the proportion of the low boiling point refrigerant in the refrigeration cycle. At this time, by opening the on-off valve for the extraction pipe, the non-azeotropic mixed refrigerant is introduced from the refrigeration cycle to the gas-liquid separator from the refrigeration cycle, and gas-liquid separation is performed in the gas-liquid separator to achieve low boiling point. Returning the refrigerant back to the refrigeration cycle further promotes an increase in the proportion of low boiling point refrigerant in the refrigeration cycle.
By performing such separation operation, separation operation is performed to separate the high boiling point refrigerant from the non-azeotropic mixed refrigerant that performs the refrigeration cycle to increase the proportion of the low boiling point refrigerant, thereby reducing the temperature slip, and the evaporator It is possible to raise the saturation temperature at the point where it is possible, for example, to suppress
The predetermined value of the outside air temperature or the predetermined value of the temperature of the evaporator is, for example, a temperature at which the temperature of the evaporator may decrease to cause frost formation.
 さらに、本発明の一態様にかかる冷凍装置では、前記制御部は、前記分離運転を開始してから所定期間経過後に、または、前記圧縮機が吸い込む非共沸混合冷媒の過熱度が所定値未満となった後に、前記取出配管用開閉弁を閉とする。 Furthermore, in the refrigeration apparatus according to one aspect of the present invention, the control unit causes the degree of superheat of the non-azeotropic mixture refrigerant sucked by the compressor to be less than a predetermined value after a predetermined period has elapsed since the start of the separation operation. After that, the on-off valve for the extraction pipe is closed.
 分離運転を開始してから所定期間経過後に、または、前記圧縮機が吸い込む非共沸混合冷媒の過熱度が所定値未満となった後に、取出配管用開閉弁を閉とすることで、冷凍サイクルを行う非共沸混合冷媒の一部を気液分離器に取り出すことを停止する。これにより、冷凍サイクルを行う非共沸混合冷媒中の低沸点冷媒の割合を上昇させる制御を停止して、分離運転を行った後の非共沸混合冷媒の組成で運転を継続することができる。
 分離運転を開始してから所定期間経過後とする「所定期間」は、例えば、分離運転を行って所望の混合比率が得られるまでの時間として選定される。
 なお、圧縮機が吸い込む冷媒の過熱度が所定値未満とされる「所定値」は、例えば、圧縮機の液圧縮を回避するために設定されている値が用いられる。
After a predetermined period has elapsed since the start of the separation operation, or after the degree of superheat of the non-azeotropic mixture refrigerant sucked by the compressor becomes less than a predetermined value, the on-off valve for the extraction pipe is closed Stop taking part of the non-azeotropic mixed refrigerant into the gas-liquid separator. Thus, the control for increasing the proportion of the low boiling point refrigerant in the non-azeotropic mixture refrigerant performing the refrigeration cycle can be stopped, and the operation can be continued with the composition of the non-azeotropic mixture refrigerant after the separation operation is performed. .
The “predetermined period” after a predetermined period has elapsed since the start of the separation operation is selected, for example, as the time until the desired mixing ratio is obtained by performing the separation operation.
As the “predetermined value” in which the degree of superheat of the refrigerant sucked by the compressor is less than the predetermined value, for example, a value set to avoid liquid compression of the compressor is used.
 さらに、本発明の一態様にかかる冷凍装置では、前記制御部は、外気温度が所定値以上または前記圧縮機から吐出される吐出ガス温度が所定値以上となった場合に、前記取出配管用開閉弁を開とし、前記ガス戻り配管用開閉弁を閉とし、前記液戻り配管用開閉弁を開とする。 Furthermore, in the refrigeration apparatus according to one aspect of the present invention, the control unit opens and closes the outlet pipe when the outside air temperature is equal to or higher than a predetermined value or the temperature of the discharge gas discharged from the compressor is equal to or higher than a predetermined value. The valve is opened, the on-off valve for gas return piping is closed, and the on-off valve for liquid return piping is opened.
 外気温度が所定値以上となると、蒸発器の着霜といった不具合のおそれがなくなる。そこで、外気温度が所定値以上となった場合には、ガス戻り配管用開閉弁を閉として、低沸点冷媒が冷凍サイクル中に優先的に戻されることを停止する。そして、液戻り配管用開閉弁を開として、液相部に多く存在する高沸点冷媒を冷凍サイクル中に戻す。このときに、取出配管用開閉弁も開とすることで、冷凍サイクルから非共沸混合冷媒を気液分離器へと導き、気液分離器にて気液分離を行って液相中の高沸点冷媒を優先的に冷凍サイクル中に戻すことで、冷凍サイクル中の高沸点冷媒の割合上昇を促進する。
 このように、冷凍サイクルを行う非共沸混合冷媒中に高沸点冷媒を混合する混合運転を行うことで、非共沸混合冷媒中の高沸点冷媒の割合を高くして、冷媒封入時の混合割合に戻すことができる。
 また、圧縮機から吐出される吐出ガス温度が所定値以上になった場合には、混合運転によって冷媒の混合割合を冷媒封入時に戻すことで、吐出ガス温度を低下させることができる。
When the outside air temperature becomes equal to or higher than the predetermined value, there is no possibility of a problem such as frost formation on the evaporator. Therefore, when the outside air temperature becomes equal to or higher than a predetermined value, the on-off valve for gas return piping is closed to stop the low boiling point refrigerant from being preferentially returned during the refrigeration cycle. Then, the liquid return piping on-off valve is opened to return the high boiling point refrigerant, which is often present in the liquid phase portion, into the refrigeration cycle. At this time, by opening the on-off valve for the extraction pipe, the non-azeotropic mixed refrigerant is introduced from the refrigeration cycle to the gas-liquid separator, and the gas-liquid separation is performed in the gas-liquid separator By preferentially returning the boiling point refrigerant back to the refrigeration cycle, the proportion increase of the high boiling point refrigerant in the refrigeration cycle is promoted.
As described above, by performing the mixing operation of mixing the high boiling point refrigerant into the non-azeotropic mixture refrigerant performing the refrigeration cycle, the ratio of the high boiling point refrigerant in the non-azeotropic mixture refrigerant is increased, and the mixing at the time of refrigerant charge is performed. It can be returned to the percentage.
Further, when the temperature of the discharge gas discharged from the compressor becomes equal to or higher than a predetermined value, the discharge gas temperature can be lowered by returning the mixing ratio of the refrigerant at the time of the refrigerant filling by the mixing operation.
 さらに、本発明の一態様にかかる冷凍装置では、前記制御部は、冷房運転時に、前記取出配管用開閉弁を開とし、前記ガス戻り配管用開閉弁を開とする。 Furthermore, in the refrigeration system according to one aspect of the present invention, the control unit opens the on-off valve for the extraction pipe and opens the on-off valve for the gas return pipe during the cooling operation.
 R32のような低沸点冷媒は、R1234yfやR1234ze(E)のような高沸点冷媒よりも高密度とされるので、COPが高くなる。そこで、冷房運転時には、取出配管用開閉弁およびガス戻り配管用開閉弁を開とする分離運転を行うことで、冷凍サイクルを行う非共沸混合冷媒中の低沸点冷媒の割合を高くする。これにより、高効率な冷房運転を実現することができる。 A low boiling point refrigerant such as R32 has a higher density than a high boiling point refrigerant such as R1234yf or R1234ze (E), and thus has a high COP. Therefore, at the time of the cooling operation, the ratio of the low boiling point refrigerant in the non-azeotropic mixed refrigerant which performs the refrigeration cycle is increased by performing the separation operation of opening the on-off valve for the extraction pipe and the on-off valve for the gas return pipe. Thereby, highly efficient cooling operation can be realized.
 さらに、本発明の一態様にかかる冷凍装置では、前記制御部は、前記圧縮機から吐出される吐出ガス温度が所定値以上となった場合に、前記取出配管用開閉弁を開とし、前記ガス戻り配管用開閉弁を閉とし、前記液戻り配管用開閉弁を開とする。 Furthermore, in the refrigeration apparatus according to one aspect of the present invention, the control unit opens the on-off valve for the extraction pipe when the temperature of the discharge gas discharged from the compressor reaches a predetermined value or more. The return piping on-off valve is closed, and the liquid return piping on-off valve is opened.
 冷凍サイクルを行う非共沸混合冷媒中の低沸点冷媒の割合が高くなると、圧縮機の吐出ガス温度が過剰に高くなるおそれがある。そこで、吐出ガス温度が所定値以上となった場合には、取出配管用開閉弁を開とし、ガス戻り配管用開閉弁を閉とし、液戻り配管用開閉弁を開とする混合運転を行うことで、非共沸混合冷媒中の高沸点冷媒の割合を高くして、冷媒封入時の混合割合に戻すこととした。これにより、圧縮機の吐出ガス温度が過剰に高くなることを回避することで、機器の保護を図ることができる。 If the proportion of the low boiling point refrigerant in the non-azeotropic refrigerant mixture in which the refrigeration cycle is performed is high, the discharge gas temperature of the compressor may be excessively high. Therefore, when the discharge gas temperature exceeds a predetermined value, open the on-off valve for the extraction pipe, close the on-off valve for the gas return pipe, and perform the mixing operation to open the on-off valve for the liquid return pipe. Then, the proportion of the high-boiling point refrigerant in the non-azeotropic mixture refrigerant is increased to return to the mixing ratio at the time of refrigerant charging. As a result, by preventing the discharge gas temperature of the compressor from becoming excessively high, the equipment can be protected.
 また、本発明の一態様にかかる冷凍装置の制御方法は、沸点が異なる低沸点冷媒と高沸点冷媒とが混合された非共沸混合冷媒を圧縮する圧縮機と、該圧縮機から導かれた非共沸混合冷媒を凝縮させる凝縮器と、該凝縮器から導かれた非共沸混合冷媒を膨張させる膨張弁と、該膨張弁から導かれた非共沸混合冷媒を蒸発させる蒸発器と、前記凝縮器と前記膨張弁との間から非共沸混合冷媒の一部を取り出す取出配管と、該取出配管に設けられた取出配管用開閉弁と、前記取出配管に接続され、非共沸混合冷媒を貯留して気液分離する気液分離器と、前記膨張弁と前記蒸発器との間と前記気液分離器内のガス相部とを接続するガス戻り配管と、該ガス戻り配管に設けられたガス戻り配管用開閉弁と、前記膨張弁と前記蒸発器との間と前記気液分離器内の液相部とを接続する液戻り配管と、前記液戻り配管に設けられた液戻り配管用開閉弁とを備えた冷凍装置の制御方法であって、前記取出配管用開閉弁、前記ガス戻り配管用開閉弁および前記液戻り配管用開閉弁の開閉制御を行う。 Further, a control method of a refrigeration apparatus according to one aspect of the present invention includes: a compressor for compressing a non-azeotropic refrigerant mixture in which low boiling point refrigerants having different boiling points and high boiling point refrigerant are mixed; A condenser for condensing non-azeotropic refrigerant, an expansion valve for expanding the non-azeotropic refrigerant led from the condenser, and an evaporator for evaporating the non-azeotropic refrigerant led from the expansion valve; A non-azeotropic mixture connected to a take-out pipe for taking out part of the non-azeotropic mixed refrigerant from between the condenser and the expansion valve, a take-off pipe on-off valve provided on the take-out pipe, and the take-out pipe A gas-liquid separator that stores refrigerant and separates gas-liquid, a gas return pipe that connects between the expansion valve and the evaporator, and a gas phase portion in the gas-liquid separator, and the gas return pipe A gas return valve provided between the expansion valve and the evaporator; A control method of a refrigeration apparatus comprising: a liquid return pipe for connecting a liquid phase portion in the vessel; and a liquid return pipe on / off valve provided on the liquid return pipe, comprising: the outlet pipe on / off valve; The on-off control of the gas return piping on-off valve and the liquid return piping on-off valve is performed.
 気液分離器に接続した各配管の各開閉弁の制御を行うだけで、気液分離器で気液分離した冷媒をガス相部または液相部から冷凍サイクル中に戻すことができるので、簡便な構成で非共沸混合冷媒の混合割合を任意に変更することができる。
 冷凍サイクルを行う非共沸混合冷媒から高沸点冷媒を分離して低沸点冷媒の割合を高くする分離運転を行うことで、蒸発器での飽和温度を上昇させることで、蒸発器の着霜を抑制することができる。
 冷房運転時には、取出配管用開閉弁およびガス戻り配管用開閉弁を開とする分離運転を行うことで、冷凍サイクルを行う非共沸混合冷媒中の低沸点冷媒の割合を高くすることで、高効率な冷房運転を実現することができる。
The refrigerant that has been separated by the gas-liquid separator can be returned from the gas phase portion or the liquid phase portion into the refrigeration cycle simply by controlling each on-off valve of each pipe connected to the gas-liquid separator The mixing ratio of the non-azeotropic mixed refrigerant can be arbitrarily changed with the following configuration.
By separating the high-boiling point refrigerant from the non-azeotropic mixed refrigerant that performs the refrigeration cycle and performing the separation operation to increase the proportion of the low-boiling point refrigerant, the formation of frost on the evaporator is achieved by raising the saturation temperature in the evaporator. It can be suppressed.
During the cooling operation, the separation operation is performed by opening the on-off valve for the extraction pipe and the on-off valve for the gas return pipe to increase the ratio of the low boiling point refrigerant in the non-azeotropic mixed refrigerant performing the refrigeration cycle. Efficient cooling operation can be realized.
本発明の一実施形態に係る冷凍装置の冷媒回路であり、暖房運転時における通常運転(封入組成)を示した概略構成図である。It is a refrigerant circuit of a refrigerating apparatus concerning one embodiment of the present invention, and is a schematic structure figure showing normal operation (enclosed composition) at the time of heating operation. 暖房運転時における分離運転を示した冷媒回路の概略構成図である。It is a schematic block diagram of the refrigerant circuit which showed separation operation at the time of heating operation. 暖房運転時における通常運転(分離組成)を示した冷媒回路の概略構成図である。It is a schematic block diagram of the refrigerant circuit which showed normal operation (separation composition) at the time of heating operation. 暖房運転時における混合運転を示した冷媒回路の概略構成図である。It is a schematic block diagram of the refrigerant circuit which showed the mixing operation at the time of heating operation. 暖房運転時における制御を示したフローチャートである。It is the flowchart which showed the control at the time of heating operation. 冷房運転時における通常運転(封入組成)を示した冷媒回路の概略構成図である。It is a schematic block diagram of the refrigerant circuit which showed normal operation (enclosed composition) at the time of air conditioning operation. 冷房運転時における分離運転を示した冷媒回路の概略構成図である。It is a schematic block diagram of the refrigerant circuit which showed separation operation at the time of air conditioning operation. 冷房運転時における通常運転(分離組成)を示した冷媒回路の概略構成図である。It is a schematic block diagram of the refrigerant circuit which showed normal operation (separation composition) at the time of air conditioning operation. 冷房運転時における混合運転を示した冷媒回路の概略構成図である。It is a schematic block diagram of the refrigerant circuit which showed the mixing operation at the time of air conditioning operation. 冷房運転時における制御を示したフローチャートである。It is the flowchart which showed the control at the time of air conditioning operation. 非共沸混合冷媒の温度すべりを示したp(圧力)-h(エンタルピ)線図である。It is ap (pressure)-h (enthalpy) diagram which showed the temperature slip of a non-azeotropic mixture refrigerant. 非共沸混合冷媒の混合割合に応じた温度すべりを示し、飽和温度40℃のときの温度すべりを示したグラフである。It is the graph which showed the temperature slip according to the mixing ratio of the non-azeotropic mixture refrigerant | coolant, and showed the temperature slip at the time of saturation temperature 40 degreeC. 非共沸混合冷媒の混合割合に応じた温度すべりを示し、飽和温度10℃のときの温度すべりである。The temperature slip according to the mixing ratio of the non-azeotropic mixture refrigerant is shown, which is the temperature slip when the saturation temperature is 10 ° C. 非共沸混合冷媒の混合割合に応じたCOPの変化を示したグラフである。It is the graph which showed the change of COP according to the mixing ratio of the non-azeotropic mixture refrigerant.
 以下に、本発明にかかる一実施形態について、図面を参照して説明する。
 図1には、本実施形態の冷凍装置1の冷媒回路構成が示されている。冷凍装置1は、例えば空気調和機として用いられ、圧縮機3の吐出側に設けた四方弁(図示せず)を切り替えることによって、暖房運転と冷房運転を行うことができる。図1では、暖房運転時の構成が示されている。
Hereinafter, an embodiment according to the present invention will be described with reference to the drawings.
FIG. 1 shows a refrigerant circuit configuration of the refrigeration apparatus 1 of the present embodiment. The refrigeration apparatus 1 is used, for example, as an air conditioner, and can perform heating operation and cooling operation by switching a four-way valve (not shown) provided on the discharge side of the compressor 3. FIG. 1 shows the configuration during heating operation.
 冷凍装置1は、冷媒として、R32とR1234ze(E)とが混合された非共沸混合冷媒を用いている。R32は、R1234ze(E)に対して低い沸点を有した低沸点冷媒とされている。R1234ze(E)は、R32に対して高い沸点を有した高沸点冷媒とされている。なお、R1234ze(E)に代えてR1234yfを用いても良い。 The refrigerating apparatus 1 uses, as a refrigerant, a non-azeotropic mixed refrigerant in which R32 and R1234ze (E) are mixed. R32 is considered as a low boiling point refrigerant having a low boiling point relative to R1234ze (E). R1234ze (E) is regarded as a high boiling point refrigerant having a high boiling point relative to R32. Note that R1234yf may be used instead of R1234ze (E).
 冷凍装置1は、非共沸混合冷媒(以下、単に「冷媒」という場合もある。)を圧縮する圧縮機3と、凝縮器5と、膨張弁7と、蒸発器9とを備えている。これら圧縮機3、凝縮器5、膨張弁7及び蒸発器9を冷媒配管によって接続することで冷凍サイクルを行う冷媒回路が構成される。 The refrigeration system 1 includes a compressor 3 that compresses a non-azeotropic mixture refrigerant (hereinafter sometimes simply referred to as “refrigerant”), a condenser 5, an expansion valve 7, and an evaporator 9. By connecting the compressor 3, the condenser 5, the expansion valve 7, and the evaporator 9 with a refrigerant pipe, a refrigerant circuit that performs a refrigeration cycle is configured.
 圧縮機3は、室外機の内部に設置され、例えばスクロール圧縮機やロータリー圧縮機とされており、図示しない電動モータによって駆動される。電動モータは、インバータ装置を備えており、図示しない制御部からの指令によって回転数が任意に変更されるようになっている。
 圧縮機3の吸入側には、冷媒の吸入圧力Psを計測する吸入圧力センサ11が設けられており、圧縮機3の吐出側には、冷媒の吐出温度を計測する吐出温度センサ13が設けられている。吸入圧力センサ11及び吐出温度センサ13の出力は、制御部へと送信される。
The compressor 3 is installed inside the outdoor unit, for example, a scroll compressor or a rotary compressor, and is driven by an electric motor (not shown). The electric motor is provided with an inverter device, and the number of rotations is arbitrarily changed by a command from a control unit (not shown).
A suction pressure sensor 11 for measuring the suction pressure Ps of the refrigerant is provided on the suction side of the compressor 3, and a discharge temperature sensor 13 for measuring the discharge temperature of the refrigerant is provided on the discharge side of the compressor 3. ing. The outputs of the suction pressure sensor 11 and the discharge temperature sensor 13 are sent to the control unit.
 凝縮器5は、室内熱交換器とされ、暖房運転時には室内空気を加温して熱交換することで、圧縮機3から導かれた高圧ガス冷媒を凝縮させる。
 膨張弁7は、凝縮器5にて凝縮液化された冷媒を膨張させる。膨張弁7の開度は、制御部によって制御される。
 蒸発器9は、室外機の内部に設置された室外熱交換器とされ、暖房運転時には室外熱交換器として外気との間で熱交換することで、膨張弁7によって膨張された冷媒を蒸発させる。蒸発器9の冷媒出口には、蒸発冷媒温度を計測する蒸発器出口温度センサ15が設けられている。蒸発器出口温度センサ15の出力は、制御部へと送信される。
The condenser 5 is an indoor heat exchanger, and heats and exchanges heat with room air during heating operation to condense the high-pressure gas refrigerant introduced from the compressor 3.
The expansion valve 7 expands the refrigerant condensed and liquefied in the condenser 5. The opening degree of the expansion valve 7 is controlled by the control unit.
The evaporator 9 is an outdoor heat exchanger installed inside the outdoor unit, and during the heating operation, the evaporator 9 evaporates the refrigerant expanded by the expansion valve 7 by exchanging heat with the outside air as the outdoor heat exchanger. . At the refrigerant outlet of the evaporator 9, an evaporator outlet temperature sensor 15 for measuring the temperature of the evaporating refrigerant is provided. The output of the evaporator outlet temperature sensor 15 is sent to the control unit.
 上述した圧縮機3、凝縮器5、膨張弁7及び蒸発器9によって冷凍サイクルを行う主冷媒回路とは別に、気液分離器17が設けられている。気液分離器17は、一時的に冷媒を貯留することが可能な容量を有するタンクとされている。気液分離器17は、圧縮機3や蒸発器9を収容する室外機の内部に設置されている。 A gas-liquid separator 17 is provided separately from the main refrigerant circuit that performs the refrigeration cycle by the compressor 3, the condenser 5, the expansion valve 7 and the evaporator 9 described above. The gas-liquid separator 17 is a tank having a capacity capable of temporarily storing the refrigerant. The gas-liquid separator 17 is installed inside an outdoor unit that accommodates the compressor 3 and the evaporator 9.
 凝縮器5と膨張弁7との間の取出位置Aと、気液分離器17の上部との間には、取出配管19が設けられている。取出配管19には、取出配管用開閉弁20が設けられている。取出配管用開閉弁20は、例えば電磁弁とされており、制御部からの指令によって開閉が行われる。 A discharge pipe 19 is provided between the discharge position A between the condenser 5 and the expansion valve 7 and the upper portion of the gas-liquid separator 17. The outlet pipe 19 is provided with an outlet pipe on-off valve 20. The outlet piping on-off valve 20 is, for example, a solenoid valve, and is opened and closed in accordance with a command from the control unit.
 膨張弁7と蒸発器9との間の合流位置Bと、気液分離器17との間には、ガス戻り配管21が設けられている。ガス戻り配管21の上流端21aは、気液分離器17の上部に位置しており、気液分離器17内で分離された冷媒のガス相部に開口している。ガス戻り配管21には、ガス戻り配管用開閉弁22が設けられている。ガス戻り配管用開閉弁22は、例えば電磁弁とされており、制御部からの指令によって開閉が行われる。 A gas return pipe 21 is provided between a joining position B between the expansion valve 7 and the evaporator 9 and the gas-liquid separator 17. The upstream end 21 a of the gas return pipe 21 is located at the upper part of the gas-liquid separator 17 and opens to the gas phase portion of the refrigerant separated in the gas-liquid separator 17. The gas return pipe 21 is provided with a gas return pipe on-off valve 22. The gas return piping on-off valve 22 is, for example, an electromagnetic valve, which is opened and closed in accordance with a command from the control unit.
 膨張弁7と蒸発器9との間の合流位置Bと、気液分離器17の間には、液戻り配管23が設けられている。液戻り配管23の上流端23aは、気液分離器17の下部(又は底部)に位置しており、気液分離器17内で分離された冷媒の液相部に開口している。液戻り配管23には、液戻り配管用開閉弁24が設けられている。液戻り配管用開閉弁24は、例えば電磁弁とされており、制御部からの指令によって開閉が行われる。 A liquid return pipe 23 is provided between the gas-liquid separator 17 and a joining position B between the expansion valve 7 and the evaporator 9. The upstream end 23 a of the liquid return pipe 23 is located at the lower portion (or the bottom) of the gas-liquid separator 17 and opens to the liquid phase portion of the refrigerant separated in the gas-liquid separator 17. The liquid return pipe 23 is provided with a liquid return pipe on-off valve 24. The liquid return piping on-off valve 24 is, for example, an electromagnetic valve, and is opened and closed in accordance with a command from the control unit.
 制御部は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。なお、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。 The control unit is configured of, for example, a central processing unit (CPU), a random access memory (RAM), a read only memory (ROM), a computer readable storage medium, and the like. Then, a series of processes for realizing various functions are stored in the form of a program, for example, in a storage medium or the like in the form of a program, and the CPU reads this program into a RAM or the like to execute information processing and arithmetic processing. Thus, various functions are realized. The program may be installed in advance in a ROM or other storage medium, may be provided as stored in a computer-readable storage medium, or may be distributed via a wired or wireless communication means. Etc. may be applied. The computer readable storage medium is a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory or the like.
<暖房運転時>
 次に、上記構成の冷凍装置1の暖房運転時における運転モードについて説明する。
[通常運転(封入組成):暖房運転時]
 図1には、暖房運転時における通常運転(封入組成)が示されている。この通常運転は、非共沸混合冷媒を冷凍装置1内に封入したときと同等の混合割合(例えばR32:R1234ze(E)=1:1の混合割合)とされた組成で運転するものである。
<Heating operation>
Next, an operation mode during heating operation of the refrigeration apparatus 1 configured as described above will be described.
[Normal operation (enclosed composition): heating operation]
FIG. 1 shows a normal operation (enclosed composition) at the time of heating operation. This normal operation is operated with a composition having a mixing ratio equivalent to that when the non-azeotropic mixed refrigerant is enclosed in the refrigeration system 1 (for example, a mixing ratio of R32: R1234ze (E) = 1: 1). .
 取出配管用開閉弁20は閉、ガス戻り配管用開閉弁22は開、液戻り配管用開閉弁24は開とされている。各図において、開弁は白抜きの表示とされ、閉弁が塗りつぶしの表示とされている。 The outlet piping on-off valve 20 is closed, the gas return piping on-off valve 22 is open, and the liquid return piping on-off valve 24 is open. In each of the drawings, the open valve is displayed as white and the closed valve is displayed as solid.
 取出配管用開閉弁20を閉とすることで、冷凍サイクル中から冷媒を取り出すことをせず、冷凍サイクルを行う冷媒の混合割合を変更しない。また、液戻り配管用開閉弁24を開とすることで、気液分離器17内に液冷媒を溜めないようにして、冷凍サイクルを行う冷媒の混合割合を変更しない。
 ガス戻り配管用開閉弁22は開として、膨張弁7によって膨張させられた後の冷媒圧力と均圧させておく。これにより、通常運転中は、低沸点冷媒が未蒸発のまま留まらないようにすることが可能となり、停止中に気液分離器17内が未蒸発の冷媒で満たされた液封状態を防止するためである。
By closing the outlet piping on-off valve 20, the refrigerant is not extracted from the inside of the refrigeration cycle, and the mixing ratio of the refrigerant performing the refrigeration cycle is not changed. Further, by opening the on / off valve 24 for liquid return piping, the liquid refrigerant is not stored in the gas-liquid separator 17, and the mixing ratio of the refrigerant performing the refrigeration cycle is not changed.
The gas return piping on-off valve 22 is opened to equalize the pressure with the refrigerant pressure after being expanded by the expansion valve 7. This makes it possible to prevent the low boiling point refrigerant from remaining unvaporized during normal operation, and to prevent the liquid seal state in which the inside of the gas-liquid separator 17 is filled with unvaporized refrigerant during stoppage It is for.
[分離運転(暖房運転時)]
 図2には、暖房運転時における分離運転が示されている。分離運転は、上述した通常運転(封入組成)の後に行われるものであり、冷凍サイクルを行う冷媒からR1234ze(高沸点冷媒)を分離して、冷凍サイクルを行う冷媒中のR32(低沸点冷媒)の混合割合を増大させる運転である。
[Separate operation (during heating operation)]
FIG. 2 shows the separation operation at the time of heating operation. The separation operation is performed after the above-described normal operation (encapsulation composition), and R32 (low boiling point refrigerant) in the refrigerant performing the refrigeration cycle by separating R1234ze (high boiling point refrigerant) from the refrigerant performing the refrigeration cycle Operation to increase the mixing ratio of
 取出配管用開閉弁20は開、ガス戻り配管用開閉弁22は開、液戻り配管用開閉弁24は閉とされている。 The outlet piping on-off valve 20 is open, the gas return piping on-off valve 22 is open, and the liquid return piping on-off valve 24 is closed.
 取出配管用開閉弁20を開とすることで、凝縮器5と膨張弁7との間から液冷媒の一部が気液分離器17内に導かれる。気液分離器17内は、ガス戻り配管用開閉弁22が開とされており、膨張弁7と蒸発器9との間の圧力と同等の低圧とされているため、気液分離器17内に導かれた低沸点冷媒であるR32は高沸点冷媒であるR1234ze(E)よりも優先的に蒸発される。そして、気液分離器17内で蒸発したR32は、ガス戻り配管21を通り、合流位置Bから蒸発器9へと戻され、冷凍サイクルを行う冷媒として用いられる。これにより、冷凍サイクルを行う冷媒中のR32の混合割合が上昇する。 By opening the on-off valve 20 for the extraction pipe, a portion of the liquid refrigerant is introduced into the gas-liquid separator 17 from between the condenser 5 and the expansion valve 7. Since the gas return piping on-off valve 22 is open in the gas-liquid separator 17 and the pressure is low equivalent to the pressure between the expansion valve 7 and the evaporator 9, the inside of the gas-liquid separator 17 is The low-boiling-point refrigerant R32 led to is preferentially evaporated over the high-boiling-point refrigerant R1234ze (E). Then, R 32 evaporated in the gas-liquid separator 17 passes through the gas return pipe 21 and is returned from the joining position B to the evaporator 9 to be used as a refrigerant that performs a refrigeration cycle. Thereby, the mixing ratio of R32 in the refrigerant performing the refrigeration cycle is increased.
[通常運転(分離組成):暖房運転時]
 図3には、暖房運転時における通常運転(分離組成)が示されている。この通常運転は、上述した分離運転の後に行われるものであり、冷凍サイクルを行う冷媒中のR1234ze(E)が分離されてR32の混合割合が高くなった分離組成とされた状態で運転するものである。
[Normal operation (separated composition): heating operation]
FIG. 3 shows a normal operation (separated composition) at the time of heating operation. This normal operation is performed after the above-described separation operation, and is operated in a separated composition in which R1234ze (E) in the refrigerant performing the refrigeration cycle is separated to increase the mixing ratio of R32 It is.
 取出配管用開閉弁20は閉、ガス戻り配管用開閉弁22は開、液戻り配管用開閉弁24は閉とされている。 The outlet piping on-off valve 20 is closed, the gas return piping on-off valve 22 is open, and the liquid return piping on-off valve 24 is closed.
 取出配管用開閉弁20を閉とすることで、冷凍サイクル中から冷媒を取り出すことをせず、冷凍サイクルを行う冷媒の混合割合を変更しない。また、液戻り配管用開閉弁24を閉とすることで、気液分離器17内の液冷媒を冷凍サイクル中に戻すことをせず、冷凍サイクルを行う冷媒の混合割合を変更しない。
 ガス戻り配管用開閉弁22は開として、気液分離器17内で分離されたR32をガス戻り配管21を介して蒸発器9へと導く。
By closing the outlet piping on-off valve 20, the refrigerant is not extracted from the inside of the refrigeration cycle, and the mixing ratio of the refrigerant performing the refrigeration cycle is not changed. Further, by closing the liquid return piping on-off valve 24, the liquid refrigerant in the gas-liquid separator 17 is not returned to the refrigeration cycle, and the mixing ratio of the refrigerant performing the refrigeration cycle is not changed.
The gas return piping on-off valve 22 is opened to lead R 32 separated in the gas-liquid separator 17 to the evaporator 9 through the gas return piping 21.
[混合運転:暖房運転時]
 図4には、暖房運転時における混合運転が示されている。混合運転は、上述の通常運転(分離組成)の後に行われるものであり、冷凍サイクルを行う冷媒中にR1234ze(E)を混合して冷媒中のR32の混合割合を減少させる運転とされる。
[Mixed operation: heating operation]
FIG. 4 shows the mixing operation at the time of heating operation. The mixing operation is performed after the above-described normal operation (separation composition), and is performed to mix R1234ze (E) into the refrigerant performing the refrigeration cycle to reduce the mixing ratio of R32 in the refrigerant.
 取出配管用開閉弁20は開、ガス戻り配管用開閉弁22は閉、液戻り配管用開閉弁24は開とされている。 The outlet piping on-off valve 20 is open, the gas return piping on-off valve 22 is closed, and the liquid return piping on-off valve 24 is open.
 取出配管用開閉弁20を開とすることで、凝縮器5と膨張弁7との間から液冷媒が気液分離器17内に導かれる。気液分離器17内は、ガス戻り配管用開閉弁22が閉とされているので、気液分離器17内で蒸発したR32が合流位置Bから冷凍サイクルを行う冷媒に供給されることはない。一方、液戻り配管用開閉弁24が開とされているので、気液分離器17内に貯留された液冷媒が、液戻り配管23を通り合流位置Bから蒸発器9へと導かれる。これにより、分離運転(図2参照)によってR1234ze(E)が濃縮された気液分離器17内の液冷媒が冷凍サイクルを行う冷媒中に戻されるので、冷凍サイクルを行う冷媒中のR1234ze(E)の混合割合が上昇する。 By opening the on-off valve 20 for the extraction pipe, liquid refrigerant is introduced into the gas-liquid separator 17 from between the condenser 5 and the expansion valve 7. In the gas-liquid separator 17, since the gas return piping on-off valve 22 is closed, R32 evaporated in the gas-liquid separator 17 is not supplied from the joining position B to the refrigerant performing the refrigeration cycle. . On the other hand, since the liquid return piping on-off valve 24 is opened, the liquid refrigerant stored in the gas-liquid separator 17 is led from the junction position B to the evaporator 9 through the liquid return piping 23. As a result, the liquid refrigerant in the gas-liquid separator 17 in which R1234ze (E) is concentrated by the separation operation (see FIG. 2) is returned to the refrigerant performing the refrigeration cycle, so R1234ze (E in the refrigerant performing the refrigeration cycle The mixing ratio of) increases.
 次に、図5を用いて、暖房運転時の冷凍装置1の制御方法について説明する。以下に示す各ステップは、制御部からの指令によって行われる。 Next, a control method of the refrigeration system 1 during the heating operation will be described using FIG. 5. Each step shown below is performed by instructions from the control unit.
 運転が開始されると、外気温度が所定値(例えば10℃)未満か否かが判断される(ステップS1)。外気温度は、図示しない外気温度センサの計測値が用いられる。外気温度が10℃未満の場合には、分離運転(図2参照)が行われ、冷凍サイクルを行う冷媒中のR32の混合比率を上昇させる。これにより、蒸発器9における温度すべりが小さくなり(図12B参照)、蒸発器9における低圧が上昇して着霜が防止される。 When the operation is started, it is determined whether the outside air temperature is less than a predetermined value (for example, 10 ° C.) (step S1). As the outside air temperature, a measurement value of an outside air temperature sensor (not shown) is used. When the outside air temperature is less than 10 ° C., the separation operation (see FIG. 2) is performed to increase the mixing ratio of R32 in the refrigerant that performs the refrigeration cycle. Thereby, the temperature slip in the evaporator 9 is reduced (see FIG. 12B), and the low pressure in the evaporator 9 is increased to prevent frost formation.
 ステップS1にて外気温度が10℃以上と判断されると、ステップS3へと進み、通常運転(封入組成)が行われる(図1参照)。通常運転(封入組成)では、冷凍サイクルを行う冷媒中の混合割合が冷媒封入時と同等とされ、R32の混合比率が過剰に大きくないため、圧縮機3から吐出された冷媒ガスの吐出ガス温度が所定値以下に保たれた運転となる。 If it is determined in step S1 that the outside air temperature is 10 ° C. or higher, the process proceeds to step S3 and a normal operation (enclosed composition) is performed (see FIG. 1). In normal operation (enclosed composition), the mixing ratio in the refrigerant performing the refrigeration cycle is equal to that in the refrigerant filling, and the mixing ratio of R32 is not excessively large, so the discharge gas temperature of the refrigerant gas discharged from the compressor 3 Is maintained below a predetermined value.
 ステップS3にて通常運転(封入組成)を行っている間に、蒸発器出口温度センサ15の計測温度Tho-Rが所定値(例えば-3℃)以上の場合には(ステップS4)、ユニット停止指令の有無を判断する(ステップS5)。ユニット停止指令が出た場合には、冷凍装置1を停止して、処理を終了する。ユニット停止指令が出ていない場合には、ステップS3へと戻り通常運転(封入組成)を継続する。
 ステップS4にて蒸発器出口温度センサ15の計測温度Tho-Rが-3℃未満になると、ステップS3へ進み分離運転が行われる。分離運転により、蒸発器9の低圧が上昇して着霜が防止される。
If the measured temperature Tho-R of the evaporator outlet temperature sensor 15 is equal to or higher than a predetermined value (for example, -3 ° C.) while performing the normal operation (enclosed composition) in step S3 (step S4), the unit is stopped It is determined whether or not there is a command (step S5). When a unit stop command is issued, the refrigeration system 1 is stopped and the process is ended. If the unit stop command has not been issued, the process returns to step S3 and the normal operation (enclosed composition) is continued.
When the measured temperature Tho-R of the evaporator outlet temperature sensor 15 becomes lower than -3 ° C. in step S4, the process proceeds to step S3 and the separation operation is performed. By the separation operation, the low pressure of the evaporator 9 rises to prevent frost formation.
 ステップS2にて分離運転を行っている間に、圧縮機3の吸入過熱度が2℃未満を検出するか、分離運転に入ってから所定時間(例えば1時間)を経過したかを判断する(ステップS6)。吸入過熱度は、吸入圧力センサ11で得られた圧力の飽和温度と、蒸発器出口温度センサ15で得られた温度との差分から演算される。 While performing the separation operation in step S2, it is determined whether the degree of suction superheat of the compressor 3 is less than 2 ° C. or whether a predetermined time (for example, one hour) has passed since the separation operation was started ( Step S6). The suction superheat degree is calculated from the difference between the saturation temperature of the pressure obtained by the suction pressure sensor 11 and the temperature obtained by the evaporator outlet temperature sensor 15.
 ステップS6にて、吸入過熱度が2℃未満でもなく、分離運転から1時間経過していない場合には、ステップS2へと戻り、分離運転を継続する。 In step S6, when the degree of suction superheat is not less than 2 ° C. and one hour has not elapsed from the separation operation, the process returns to step S2 and the separation operation is continued.
 ステップS6にて、吸入過熱度が2℃未満となるか、又は、分離運転から1時間以上経過すると、ステップS7へと進み、通常運転(分離組成)を行う(図3参照)。通常運転(分離組成)では、冷凍サイクルを行う冷媒中からR1234ze(E)を分離してR32の混合比率を高くした運転を行う。これにより、蒸発器9の着霜を抑制するとともに、図13に示したようにCOPが高い運転を行う。 In step S6, when the degree of suction superheat becomes less than 2 ° C., or when one hour or more has passed from the separation operation, the process proceeds to step S7, and the normal operation (separation composition) is performed (see FIG. 3). In the normal operation (separation composition), an operation is performed in which R1234ze (E) is separated from the refrigerant performing the refrigeration cycle to increase the mixing ratio of R32. As a result, frost formation on the evaporator 9 is suppressed and, as shown in FIG. 13, an operation with a high COP is performed.
 通常運転(分離組成)を行っている間に、吐出温度センサ13で計測した吐出温度Tho-Dが所定値(例えば110℃)を超えたか否かを判断する(ステップS8)。吐出温度Tho-Dが110℃を超えた場合には、ステップS9へと進み混合運転(図4参照)を行う。混合運転では、冷凍サイクルを行う冷媒中にR1234ze(E)が混合され、封入時の混合比率に近づくように運転される。これにより、冷凍サイクルを行う冷媒中のR32の混合比率が小さくなり、吐出温度が低下する。混合運転は、所定時間(例えば5分)経過後に終了し、ステップS3へと進んで通常運転(封入組成)が行われる。 While performing the normal operation (separation composition), it is determined whether the discharge temperature Tho-D measured by the discharge temperature sensor 13 exceeds a predetermined value (for example, 110 ° C.) (step S8). If the discharge temperature Tho-D exceeds 110 ° C., the process proceeds to step S9 to perform the mixing operation (see FIG. 4). In the mixing operation, R1234ze (E) is mixed in the refrigerant that performs the refrigeration cycle, and is operated to approach the mixing ratio at the time of sealing. As a result, the mixing ratio of R32 in the refrigerant that performs the refrigeration cycle decreases, and the discharge temperature decreases. The mixing operation ends after a predetermined time (for example, 5 minutes) elapses, and the process proceeds to step S3 and a normal operation (enclosed composition) is performed.
 ステップS8にて吐出温度Tho-Dが110℃を超えていない場合には、ステップS10へと進み、ユニット停止指令の有無を判断する。ユニット停止指令が出ていない場合には、ステップS7へと戻り通常運転(分離組成)を継続する。ユニット停止指令が出た場合には、ステップS11へ進み、混合運転を所定時間(例えば5分)行った後に、冷凍装置1を停止して処理を終了する。冷凍装置1を停止する前に混合運転を行うことにより、次回の起動時に冷凍サイクルを行う冷媒中の混合比率を冷媒封入時に戻しておく。 If the discharge temperature Tho-D does not exceed 110 ° C. in step S8, the process proceeds to step S10, and it is determined whether there is a unit stop command. If the unit stop command has not been issued, the process returns to step S7 and the normal operation (separated composition) is continued. If a unit stop command is issued, the process proceeds to step S11, and after performing a mixing operation for a predetermined time (for example, 5 minutes), the refrigeration apparatus 1 is stopped and the process is ended. By performing the mixing operation before stopping the refrigeration system 1, the mixing ratio in the refrigerant that performs the refrigeration cycle at the next activation is returned at the time of refrigerant charging.
<冷房運転時>
 次に、上記構成の冷凍装置1の冷房運転時における運転モードについて説明する。冷房運転は、圧縮機3の吐出側に設けた四方弁(図示せず)を切り換えて、暖房運転から変更する。これにより、暖房運転時に凝縮器が冷房運転時には蒸発器(室内熱交換器)に切り替わり、暖房運転時の蒸発器が冷房運転時には凝縮器(室外熱交換器)に切り替わる。
<During cooling operation>
Next, an operation mode at the time of cooling operation of the refrigeration apparatus 1 configured as described above will be described. In the cooling operation, the four-way valve (not shown) provided on the discharge side of the compressor 3 is switched to change the heating operation. Thereby, the condenser switches to the evaporator (indoor heat exchanger) during the cooling operation during the heating operation, and switches to the condenser (the outdoor heat exchanger) during the cooling operation.
[通常運転(封入組成):冷房運転時]
 図6には、冷房運転時における通常運転(封入組成)が示されている。この通常運転は、非共沸混合冷媒を冷凍装置1内に封入したときと同等の混合割合(例えばR32:R1234ze(E)=1:1の混合割合)とされた組成で運転するものである。
[Normal operation (enclosed composition): During cooling operation]
FIG. 6 shows a normal operation (enclosed composition) at the time of the cooling operation. This normal operation is operated with a composition having a mixing ratio equivalent to that when the non-azeotropic mixed refrigerant is enclosed in the refrigeration system 1 (for example, a mixing ratio of R32: R1234ze (E) = 1: 1). .
 取出配管用開閉弁20は閉、ガス戻り配管用開閉弁22は開、液戻り配管用開閉弁24は閉とされている。 The outlet piping on-off valve 20 is closed, the gas return piping on-off valve 22 is open, and the liquid return piping on-off valve 24 is closed.
 取出配管用開閉弁20を閉とすることで、冷凍サイクル中から冷媒を取り出すことをせず、冷凍サイクルを行う冷媒の混合割合を変更しない。また、液戻り配管用開閉弁24を開とすることで、気液分離器17内に液冷媒を溜めないようにして、冷凍サイクルを形成する冷媒の混合割合を変更しない。
 ガス戻り配管用開閉弁22は開として、膨張弁7によって膨張させられた後の冷媒圧力と均圧させておく。これにより、通常運転中は、低沸点冷媒が未蒸発のまま留まらないようにすることが可能となり、停止中に気液分離器内が未蒸発の冷媒で満たされた液封状態を防止するためである。
By closing the outlet piping on-off valve 20, the refrigerant is not extracted from the inside of the refrigeration cycle, and the mixing ratio of the refrigerant performing the refrigeration cycle is not changed. Further, by opening the on-off valve 24 for liquid return piping, the liquid refrigerant is not stored in the gas-liquid separator 17, and the mixing ratio of the refrigerant forming the refrigeration cycle is not changed.
The gas return piping on-off valve 22 is opened to equalize the pressure with the refrigerant pressure after being expanded by the expansion valve 7. This makes it possible to prevent the low boiling point refrigerant from remaining unvaporized during normal operation, and to prevent the liquid seal state in which the inside of the gas-liquid separator is filled with unvaporized refrigerant during stoppage It is.
[分離運転(冷房運転時)]
 図7には、冷房運転時における分離運転が示されている。分離運転は、上述した通常運転(封入組成)の後に行われるものであり、冷凍サイクルを行う冷媒からR1234ze(E)(高沸点冷媒)を分離して、冷凍サイクルを行う冷媒中のR32(低沸点冷媒)の混合割合を増大させる運転である。
[Separate operation (during cooling operation)]
FIG. 7 shows the separation operation at the time of the cooling operation. The separation operation is performed after the above-described normal operation (enclosed composition), and R32 (low) in the refrigerant performing the refrigeration cycle by separating R1234ze (E) (high boiling point refrigerant) from the refrigerant performing the refrigeration cycle The operation is to increase the mixing ratio of the boiling point refrigerant).
 取出配管用開閉弁20は開、ガス戻り配管用開閉弁22は開、液戻り配管用開閉弁24は閉とされている。 The outlet piping on-off valve 20 is open, the gas return piping on-off valve 22 is open, and the liquid return piping on-off valve 24 is closed.
 取出配管用開閉弁20を開とすることで、凝縮器5と膨張弁7との間から液冷媒が気液分離器17内に導かれる。気液分離器17内は、ガス戻り配管用開閉弁22が開とされており、膨張弁7と蒸発器9との間の圧力と同等の低圧とされているため、気液分離器17内に導かれた低沸点冷媒であるR32は高沸点冷媒であるR1234ze(E)よりも優先的に蒸発される。そして、気液分離器17内で蒸発したR32は、ガス戻り配管22を通り、合流位置Bから蒸発器9へと戻され、冷凍サイクルを行う冷媒として用いられる。これにより、冷凍サイクルを行う冷媒中のR32の混合割合が上昇する。 By opening the on-off valve 20 for the extraction pipe, liquid refrigerant is introduced into the gas-liquid separator 17 from between the condenser 5 and the expansion valve 7. Since the gas return piping on-off valve 22 is open in the gas-liquid separator 17 and the pressure is low equivalent to the pressure between the expansion valve 7 and the evaporator 9, the inside of the gas-liquid separator 17 is The low-boiling-point refrigerant R32 led to is preferentially evaporated over the high-boiling-point refrigerant R1234ze (E). Then, R 32 evaporated in the gas-liquid separator 17 passes through the gas return pipe 22 and is returned from the joining position B to the evaporator 9 and is used as a refrigerant that performs a refrigeration cycle. Thereby, the mixing ratio of R32 in the refrigerant performing the refrigeration cycle is increased.
[通常運転(分離組成):冷房運転時]
 図8には、冷房運転時における通常運転(分離組成)が示されている。この通常運転は、上述した分離運転の後に行われるものであり、冷凍サイクルを行う冷媒中のR1234ze(E)が分離されてR32の混合割合が高くなった分離組成とされた状態で運転するものである。
[Normal operation (separated composition): During cooling operation]
FIG. 8 shows a normal operation (separated composition) at the time of the cooling operation. This normal operation is performed after the above-described separation operation, and is operated in a separated composition in which R1234ze (E) in the refrigerant performing the refrigeration cycle is separated to increase the mixing ratio of R32 It is.
 取出配管用開閉弁20は閉、ガス戻り配管用開閉弁22は閉、液戻り配管用開閉弁24は閉とされている。 The outlet piping on-off valve 20 is closed, the gas return piping on-off valve 22 is closed, and the liquid return piping on-off valve 24 is closed.
 取出配管用開閉弁20を閉とすることで、冷凍サイクル中から冷媒を取り出すことをせず、冷凍サイクルを行う冷媒の混合割合を変更しない。また、液戻り配管用開閉弁24を閉とすることで、気液分離器17内の液冷媒を冷凍サイクル中に戻すことをせず、冷凍サイクルを行う冷媒の混合割合を変更しない。 By closing the outlet piping on-off valve 20, the refrigerant is not extracted from the inside of the refrigeration cycle, and the mixing ratio of the refrigerant performing the refrigeration cycle is not changed. Further, by closing the liquid return piping on-off valve 24, the liquid refrigerant in the gas-liquid separator 17 is not returned to the refrigeration cycle, and the mixing ratio of the refrigerant performing the refrigeration cycle is not changed.
 ガス戻り配管用開閉弁22は、図3に示した暖房運転時における通常運転(分離組成)とは異なり、閉とされている。これは、冷房運転時には外気温度が暖房運転時に比べて高いため、気液分離器17が設置される室外機内の環境温度が高く、高沸点冷媒であるR1234ze(E)も蒸発してしまい、ガス戻り配管21を通り冷凍サイクルを行う冷媒に合流するおそれがあるからである。なお、気液分離器17が室外機内よりも外気温度の影響を受けない環境(例えば室内)に設置される場合には、暖房運転時における通常運転(分離組成)と同様に、ガス戻り配管用開閉弁22を開としても良い。 Unlike the normal operation (separated composition) during the heating operation shown in FIG. 3, the gas return piping on-off valve 22 is closed. Since the outside air temperature is higher in the cooling operation than in the heating operation, the environmental temperature in the outdoor unit in which the gas-liquid separator 17 is installed is high, and R1234ze (E), which is a high boiling point refrigerant, also evaporates. This is because there is a possibility that the refrigerant may join the refrigerant performing the refrigeration cycle through the return pipe 21. When the gas-liquid separator 17 is installed in an environment (for example, indoor) which is not affected by the outside air temperature than in the outdoor unit, it is for gas return piping as in the normal operation (separation composition) during heating operation. The on-off valve 22 may be opened.
[混合運転:冷房運転時]
 図9には、冷房運転時における混合運転が示されている。混合運転は、上述の通常運転(分離組成)の後に行われるものであり、冷凍サイクルを行う冷媒中にR1234ze(E)を混合して冷媒中のR32の混合割合を減少させる運転とされる。
[Mixing operation: During cooling operation]
FIG. 9 shows the mixing operation at the time of the cooling operation. The mixing operation is performed after the above-described normal operation (separation composition), and is performed to mix R1234ze (E) into the refrigerant performing the refrigeration cycle to reduce the mixing ratio of R32 in the refrigerant.
 取出配管用開閉弁20は開、ガス戻り配管用開閉弁22は閉、液戻り配管用開閉弁24は開とされている。 The outlet piping on-off valve 20 is open, the gas return piping on-off valve 22 is closed, and the liquid return piping on-off valve 24 is open.
 取出配管用開閉弁20を開とすることで、凝縮器5と膨張弁7との間から液冷媒が気液分離器17内に導かれる。気液分離器17内は、ガス戻り配管用開閉弁22が閉とされているので、気液分離器17内で蒸発したR32が合流位置Bから冷凍サイクルを行う冷媒に供給されることはない。一方、液戻り配管用開閉弁24が開とされているので、気液分離器17内に貯留された液冷媒が、液戻り配管23を通り合流位置Bから蒸発器9へと導かれる。これにより、分離運転(図7参照)によってR1234ze(E)が濃縮された気液分離器17内の液冷媒が冷凍サイクルを行う冷媒中に戻されるので、冷凍サイクルを行う冷媒中のR1234ze(E)の混合割合が上昇する。 By opening the on-off valve 20 for the extraction pipe, liquid refrigerant is introduced into the gas-liquid separator 17 from between the condenser 5 and the expansion valve 7. In the gas-liquid separator 17, since the gas return piping on-off valve 22 is closed, R32 evaporated in the gas-liquid separator 17 is not supplied from the joining position B to the refrigerant performing the refrigeration cycle. . On the other hand, since the liquid return piping on-off valve 24 is opened, the liquid refrigerant stored in the gas-liquid separator 17 is led from the junction position B to the evaporator 9 through the liquid return piping 23. As a result, the liquid refrigerant in the gas-liquid separator 17 in which R1234ze (E) is concentrated by the separation operation (see FIG. 7) is returned to the refrigerant that performs the refrigeration cycle, so R1234ze (E in the refrigerant that performs the refrigeration cycle The mixing ratio of) increases.
 次に、図10を用いて、冷房運転時の冷凍装置1の制御方法について説明する。以下に示す各ステップは、制御部からの指令によって行われる。 Next, a control method of the refrigeration apparatus 1 during the cooling operation will be described using FIG. Each step shown below is performed by instructions from the control unit.
 運転が開始されると、ステップS21へと進み、分離運転(図7参照)が行われ、冷凍サイクルを行う冷媒中のR32の混合比率を上昇させる。これにより、COPが向上した冷房運転が行われる(図13参照)。 When the operation is started, the process proceeds to step S21, the separation operation (see FIG. 7) is performed, and the mixing ratio of R32 in the refrigerant performing the refrigeration cycle is increased. Thus, the cooling operation with improved COP is performed (see FIG. 13).
 ステップS21にて分離運転を行っている間に、圧縮機3の吸入過熱度が2℃未満を検出するか、分離運転に入ってから所定時間(例えば1時間)を経過したかを判断する(ステップS22)。 While performing the separation operation in step S21, it is determined whether the degree of suction superheat of the compressor 3 is less than 2 ° C. or whether a predetermined time (for example, one hour) has passed since the separation operation was started ( Step S22).
 ステップS22にて、吸入過熱度が2℃未満でもなく、分離運転から1時間経過していない場合には、ステップS21へと戻り、分離運転を継続する。 If it is determined in step S22 that the degree of suction superheat is not less than 2 ° C. and one hour has not elapsed from the separation operation, the process returns to step S21 to continue the separation operation.
 ステップS22にて、吸入過熱度が2℃未満となるか、分離運転から1時間以上経過すると、ステップS23へと進み、通常運転(分離組成)を行う(図8参照)。通常運転(分離組成)では、冷凍サイクルを行う冷媒中からR1234ze(E)を分離してR32の混合比率を高くした運転を行う。これにより、COPが高い冷房運転が継続される。 In step S22, when the degree of suction superheat is less than 2 ° C. or one hour or more has elapsed from the separation operation, the process proceeds to step S23, and the normal operation (separation composition) is performed (see FIG. 8). In the normal operation (separation composition), an operation is performed in which R1234ze (E) is separated from the refrigerant performing the refrigeration cycle to increase the mixing ratio of R32. Thus, the cooling operation with a high COP is continued.
 ステップS23にて通常運転(分離組成)を行っている間に、吐出温度センサ13で計測した吐出温度Tho-Dが所定値(例えば110℃)を超えたか否かを判断する(ステップS24)。吐出温度Tho-Dが110℃を超えた場合には、ステップS25へと進み混合運転(図9参照)を行う。混合運転では、冷凍サイクルを行う冷媒中にR1234ze(E)が混合され、封入時の混合比率に近づくように運転される。これにより、冷凍サイクルを行う冷媒中のR32の混合比率が小さくなり、吐出温度が低下する。混合運転は、所定時間(例えば5分)経過後に終了し、ステップS26へと進んで通常運転(封入組成)が行われる(図6参照)。 While performing the normal operation (separation composition) in step S23, it is determined whether the discharge temperature Tho-D measured by the discharge temperature sensor 13 exceeds a predetermined value (for example, 110 ° C.) (step S24). If the discharge temperature Tho-D exceeds 110 ° C., the process proceeds to step S25 to perform the mixing operation (see FIG. 9). In the mixing operation, R1234ze (E) is mixed in the refrigerant that performs the refrigeration cycle, and is operated to approach the mixing ratio at the time of sealing. As a result, the mixing ratio of R32 in the refrigerant that performs the refrigeration cycle decreases, and the discharge temperature decreases. The mixing operation is finished after a predetermined time (for example, 5 minutes) elapses, and the process proceeds to step S26 where a normal operation (enclosed composition) is performed (see FIG. 6).
 通常運転(封入組成)では、冷凍サイクルを行う冷媒中の混合割合が冷媒封入時と同等とされ、R32の混合比率が大きくないため、圧縮機3から吐出された冷媒ガスの吐出ガス温度が所定値以下に保たれた運転となる。 In normal operation (enclosed composition), the mixing ratio in the refrigerant performing the refrigeration cycle is equal to that at the time of refrigerant charging, and the mixing ratio of R32 is not large, so the discharge gas temperature of the refrigerant gas discharged from the compressor 3 is predetermined. It becomes the operation kept below the value.
 ステップS26にて通常運転(封入組成)を行っている間に、ユニット停止指令の有無を判断する(ステップS27)。ユニット停止指令が出た場合には、冷凍装置1を停止して、処理を終了する。ユニット停止指令が出ていない場合には、ステップS26へと戻り通常運転(封入組成)を継続する。 While performing the normal operation (enclosed composition) in step S26, it is determined whether or not there is a unit stop command (step S27). When a unit stop command is issued, the refrigeration system 1 is stopped and the process is ended. If the unit stop command has not been issued, the process returns to step S26 and the normal operation (enclosed composition) is continued.
 ステップS24にて吐出温度Tho-Dが110℃を超えていない場合には、ステップS28へと進み、ユニット停止指令の有無を判断する。ユニット停止指令が出ていない場合には、ステップS23へと戻り通常運転(分離組成)を継続する。ユニット停止指令が出た場合には、ステップS29へ進み、混合運転を所定時間(例えば5分)行った後に、冷凍装置1を停止して処理を終了する。冷凍装置1を停止する前に混合運転を行うことにより、次回の起動時に冷凍サイクルを行う冷媒中の混合比率を冷媒封入時に戻しておく。 If it is determined in step S24 that the discharge temperature Tho-D does not exceed 110 ° C., the process proceeds to step S28, and it is determined whether there is a unit stop instruction. If the unit stop command has not been issued, the process returns to step S23 and the normal operation (separation composition) is continued. If a unit stop command has been issued, the process proceeds to step S29, and after performing a mixing operation for a predetermined time (for example, 5 minutes), the refrigeration apparatus 1 is stopped and the process is ended. By performing the mixing operation before stopping the refrigeration system 1, the mixing ratio in the refrigerant that performs the refrigeration cycle at the next activation is returned at the time of refrigerant charging.
 以上の通り、本実施形態によれば、以下の作用効果を奏する。
 気液分離器17に各配管19,21,23を接続し、各開閉弁20,22,24の制御を行うだけで、気液分離器17で気液分離したガス冷媒または液冷媒を冷凍サイクル中に戻すことができるので、簡便な構成で低沸点冷媒(R32)と高沸点冷媒(R1234ze(E)との混合割合を任意に変更することができる。
As described above, according to the present embodiment, the following effects can be obtained.
The gas refrigerant or liquid refrigerant separated by the gas / liquid separator 17 is subjected to a refrigeration cycle only by connecting the pipes 19, 21 and 23 to the gas / liquid separator 17 and controlling the on / off valves 20, 22 and 24. Since it can be returned to the inside, the mixing ratio of the low boiling point refrigerant (R32) and the high boiling point refrigerant (R1234ze (E)) can be arbitrarily changed by a simple configuration.
 暖房運転時には、一般に外気温度が低いので、蒸発器9の温度が低くなる。蒸発器9の温度が所定値以下になると、例えば蒸発器に着霜が生じるといった不具合が生じる。そこで、外気温度が所定値(例えば10℃)未満または蒸発器出口温度が所定値(例えば-3℃)未満になった場合には、ガス戻り配管用開閉弁22を開とすることで、冷凍サイクル中のR32(低沸点冷媒)の割合を高くする。このときに、取出配管用開閉弁20も開とすることで、冷凍サイクルから冷媒を気液分離器17へと導き、気液分離器17にて気液分離を行ってR32を冷凍サイクル中に戻すことで、冷凍サイクル中のR32の割合上昇をさらに促進する。このような分離運転(図2参照)を行うことで、冷凍サイクルを行う冷媒からR1234ze(E)(高沸点冷媒)を分離してR32の割合を高くする分離運転を行うことで、温度すべりを小さくし、蒸発器9での飽和温度を上昇させて着霜を抑制することができる。 During the heating operation, the temperature of the evaporator 9 is low because the outside air temperature is generally low. When the temperature of the evaporator 9 falls below a predetermined value, for example, the evaporator may be frosted. Therefore, when the outside air temperature is less than a predetermined value (for example, 10 ° C.) or the evaporator outlet temperature is less than a predetermined value (for example, -3 ° C.), the gas return piping on-off valve 22 is opened to perform refrigeration. Increase the proportion of R32 (low-boiling point refrigerant) in the cycle. At this time, by opening the on-off valve 20 for the extraction pipe, the refrigerant is introduced from the refrigeration cycle to the gas-liquid separator 17, and the gas-liquid separation is performed in the gas-liquid separator 17 to perform R32 during the refrigeration cycle. Reversion further promotes the increase in the proportion of R32 in the refrigeration cycle. By performing such separation operation (see FIG. 2), temperature slip can be achieved by performing separation operation in which R1234ze (E) (high boiling point refrigerant) is separated from the refrigerant performing the refrigeration cycle to increase the ratio of R32. It is possible to reduce the size and increase the saturation temperature in the evaporator 9 to suppress frost formation.
 分離運転(図2参照)を行ってから所定期間(例えば1時間)経過後に、または、吸入過熱度が所定値(例えば2℃)未満となった後に、取出配管用開閉弁20を閉とすることで、冷凍サイクルを行う冷媒の一部を気液分離器17に取り出すことを停止する(図3参照)。これにより、冷凍サイクルを行う冷媒中のR32の割合を上昇させる制御を停止して、分離運転を行った後の混合冷媒の組成で通常運転(分離組成)を行うことができる。 After the separation operation (see FIG. 2) is performed, after the predetermined period (for example, 1 hour) elapses, or after the degree of suction superheat becomes less than the predetermined value (for example, 2 ° C.), the extraction pipe on-off valve 20 is closed. Thus, the removal of part of the refrigerant that performs the refrigeration cycle into the gas-liquid separator 17 is stopped (see FIG. 3). As a result, the control for increasing the ratio of R32 in the refrigerant that performs the refrigeration cycle is stopped, and the normal operation (separation composition) can be performed with the composition of the mixed refrigerant after the separation operation.
 暖房運転時に、外気温度が所定値(例えば10℃)以上となると、蒸発器9の着霜といった不具合のおそれがなくなる。そこで、外気温度が所定値以上となった場合には、ガス戻り配管用開閉弁22を閉として、R32が冷凍サイクル中に優先的に戻されることを停止する。そして、液戻り配管用開閉弁24を開として、気液分離器17内の液冷媒中に多く存在するR1234ze(E)を冷凍サイクル中に戻す。このときに、取出配管用開閉弁20も開とすることで、冷凍サイクルから冷媒を気液分離器17へと導き、気液分離器17にて気液分離を行って液相中のR1234ze(E)を優先的に冷凍サイクル中に戻すことで、冷凍サイクル中のR1234ze(E)の割合上昇を促進する。
 このように、冷凍サイクルを行う冷媒中にR1234ze(E)を混合する混合運転を行うことで、冷媒中のR1234ze(E)の割合を高くして、冷媒封入時の混合割合に戻すことができる。
 また、圧縮機3から吐出される吐出ガス温度が所定値(例えば110℃)以上になった場合には、混合運転によって冷媒の混合割合を冷媒封入時に戻すことで、吐出ガス温度を低下させることができる。
When the outside air temperature becomes equal to or higher than a predetermined value (for example, 10 ° C.) during the heating operation, there is no possibility of a defect such as frost formation on the evaporator 9. Therefore, when the outside air temperature becomes equal to or higher than the predetermined value, the gas return piping on-off valve 22 is closed to stop that R32 is preferentially returned during the refrigeration cycle. Then, the liquid return piping on-off valve 24 is opened to return R1234ze (E), which is mostly present in the liquid refrigerant in the gas-liquid separator 17, back to the refrigeration cycle. At this time, by opening the on-off valve 20 for the extraction pipe, the refrigerant is introduced from the refrigeration cycle to the gas-liquid separator 17, and the gas-liquid separation is performed in the gas-liquid separator 17 to obtain R1234ze (liquid phase). E) By bringing the E cycle into the refrigeration cycle preferentially, it promotes an increase in the proportion of R1234ze (E) in the refrigeration cycle.
Thus, by performing the mixing operation of mixing R1234ze (E) into the refrigerant that performs the refrigeration cycle, the ratio of R1234ze (E) in the refrigerant can be increased, and the mixing ratio at the time of refrigerant charging can be returned to .
In addition, when the discharge gas temperature discharged from the compressor 3 reaches a predetermined value (for example, 110 ° C.) or more, the discharge gas temperature is lowered by returning the mixing ratio of the refrigerant at the time of refrigerant filling by the mixing operation. Can.
 冷房運転時には、取出配管用開閉弁20およびガス戻り配管用開閉弁22を開とする分離運転(図7参照)を行うことで、冷凍サイクルを行う冷媒中のR32の割合を高くする。これにより、高効率な冷房運転を実現することができる。 During the cooling operation, the ratio R32 in the refrigerant performing the refrigeration cycle is increased by performing the separation operation (see FIG. 7) in which the on-off valve 20 for the extraction pipe and the on-off valve 22 for the gas return pipe are opened. Thereby, highly efficient cooling operation can be realized.
 冷房運転時においても、吐出ガス温度が所定値(例えば110℃)以上となった場合には、取出配管用開閉弁20を開とし、ガス戻り配管用開閉弁22を閉とし、液戻り配管用開閉弁24を開とする混合運転(図9参照)を行うことで、冷媒中のR1234ze(E)の割合を高くして、冷媒封入時の混合割合に戻すこととした。これにより、圧縮機3の吐出ガス温度が過剰に高くなることを回避することで、機器の保護を図ることができる。 Even in the cooling operation, when the discharge gas temperature reaches a predetermined value (for example, 110 ° C.), the outlet piping on-off valve 20 is opened and the gas return piping on-off valve 22 is closed to use for liquid return piping. By performing a mixing operation (see FIG. 9) in which the on-off valve 24 is opened, the ratio of R1234ze (E) in the refrigerant is increased to return to the mixing ratio at the time of refrigerant filling. By this, by preventing the discharge gas temperature of the compressor 3 from becoming excessively high, the equipment can be protected.
 なお、上述した実施形態では、冷暖房の切り替えが可能な冷凍装置について説明したが、本発明はこれに限定されるものではなく、暖房運転のみ又は冷房運転のみを行う冷凍装置に対しても適用することができる。 In the embodiment described above, the refrigeration apparatus capable of switching between heating and cooling has been described, but the present invention is not limited to this, and is also applied to a refrigeration apparatus performing only heating operation or only cooling operation. be able to.
1 冷凍装置
3 圧縮機
5 凝縮器
7 膨張弁
9 蒸発器
11 吸入圧力センサ
13 吐出温度センサ
15 蒸発器出口温度センサ
17 気液分離器
19 取出配管
20 取出配管用開閉弁
21 ガス戻り配管
22 ガス戻り配管用開閉弁
23 液戻り配管
24 液戻り配管用開閉弁
A 取出位置
B 合流位置
DESCRIPTION OF SYMBOLS 1 Refrigeration apparatus 3 Compressor 5 Condenser 7 Expansion valve 9 Evaporator 11 Suction pressure sensor 13 Discharge temperature sensor 15 Evaporator outlet temperature sensor 17 Gas-liquid separator 19 Extraction piping 20 Extraction piping on-off valve 21 Gas return piping 22 Gas return Piping on-off valve 23 Liquid return piping 24 Liquid return piping on-off valve A Extraction position B Merging position

Claims (7)

  1.  沸点が異なる低沸点冷媒と高沸点冷媒とが混合された非共沸混合冷媒を圧縮する圧縮機と、
     該圧縮機から導かれた非共沸混合冷媒を凝縮させる凝縮器と、
     該凝縮器から導かれた非共沸混合冷媒を膨張させる膨張弁と、
     該膨張弁から導かれた非共沸混合冷媒を蒸発させる蒸発器と、
     前記凝縮器と前記膨張弁との間から非共沸混合冷媒の一部を取り出す取出配管と、
     該取出配管に設けられた取出配管用開閉弁と、
     前記取出配管に接続され、非共沸混合冷媒を貯留して気液分離する気液分離器と、
     前記膨張弁と前記蒸発器との間と前記気液分離器内のガス相部とを接続するガス戻り配管と、
     該ガス戻り配管に設けられたガス戻り配管用開閉弁と、
     前記膨張弁と前記蒸発器との間と前記気液分離器内の液相部とを接続する液戻り配管と、
     前記液戻り配管に設けられた液戻り配管用開閉弁と、
     前記取出配管用開閉弁、前記ガス戻り配管用開閉弁および前記液戻り配管用開閉弁を制御する制御部と、
    を備えている冷凍装置。
    A compressor for compressing a non-azeotropic refrigerant mixture in which low-boiling refrigerants and high-boiling refrigerants having different boiling points are mixed;
    A condenser for condensing the non-azeotropic mixed refrigerant introduced from the compressor;
    An expansion valve for expanding the non-azeotropic mixed refrigerant introduced from the condenser;
    An evaporator for evaporating the non-azeotropic mixed refrigerant introduced from the expansion valve;
    An extraction pipe for extracting a part of the non-azeotropic refrigerant mixture from between the condenser and the expansion valve;
    A release piping on-off valve provided in the removal piping;
    A gas-liquid separator connected to the take-out pipe for storing non-azeotropic mixed refrigerant for gas-liquid separation;
    A gas return pipe connecting between the expansion valve and the evaporator and a gas phase portion in the gas-liquid separator;
    A gas return piping on-off valve provided in the gas return piping;
    A liquid return pipe that connects between the expansion valve and the evaporator and a liquid phase portion in the gas-liquid separator;
    A liquid return piping on-off valve provided in the liquid return piping;
    A control unit that controls the open / close valve for the extraction pipe, the open / close valve for the gas return pipe, and the open / close valve for the liquid return pipe;
    A refrigeration system equipped with
  2.  前記制御部は、暖房運転時に、外気温度が所定値未満または前記蒸発器の温度が所定値未満となった場合に、前記取出配管用開閉弁を開とし、前記ガス戻り配管用開閉弁を開として、前記気液分離器で分離したガス冷媒を前記ガス戻り配管から前記蒸発器側へと戻す分離運転を行う請求項1に記載の冷凍装置。 The control unit opens the on-off valve for the extraction pipe and opens the on-off valve for the gas return pipe when the outside air temperature is lower than a predetermined value or the temperature of the evaporator is lower than the predetermined value during heating operation. The refrigeration apparatus according to claim 1, wherein a separation operation is performed to return the gas refrigerant separated by the gas-liquid separator from the gas return pipe to the evaporator side.
  3.  前記制御部は、前記分離運転を開始してから所定期間経過後に、または、前記圧縮機が吸い込む非共沸混合冷媒の過熱度が所定値未満となった後に、前記取出配管用開閉弁を閉とする請求項2に記載の冷凍装置。 The control unit closes the on-off valve for the extraction pipe after a predetermined period has elapsed since the start of the separation operation, or after the degree of superheat of the non-azeotropic mixed refrigerant sucked by the compressor becomes less than a predetermined value. The refrigeration apparatus according to claim 2, wherein
  4.  前記制御部は、外気温度が所定値以上または前記圧縮機から吐出される吐出ガス温度が所定値以上となった場合に、前記取出配管用開閉弁を開とし、前記ガス戻り配管用開閉弁を閉とし、前記液戻り配管用開閉弁を開とする請求項2又は3に記載の冷凍装置。 When the outside air temperature is equal to or higher than a predetermined value or the temperature of the discharge gas discharged from the compressor is equal to or higher than a predetermined value, the control unit opens the on-off valve for the extraction pipe and opens the on-off valve for the gas return pipe. The refrigeration apparatus according to claim 2 or 3, wherein the liquid return pipe on-off valve is opened by closing the liquid return pipe.
  5.  前記制御部は、冷房運転時に、前記取出配管用開閉弁を開とし、前記ガス戻り配管用開閉弁を開とする請求項1に記載の冷凍装置。 The refrigeration apparatus according to claim 1, wherein the control unit opens the on-off valve for extraction piping and opens the on-off valve for gas return piping during cooling operation.
  6.  前記制御部は、前記圧縮機から吐出される吐出ガス温度が所定値以上となった場合に、前記取出配管用開閉弁を開とし、前記ガス戻り配管用開閉弁を閉とし、前記液戻り配管用開閉弁を開とする請求項4に記載の冷凍装置。 When the temperature of the discharge gas discharged from the compressor reaches a predetermined value or more, the control unit opens the on-off valve for the extraction pipe and closes the on-off valve for the gas return pipe, and the liquid return pipe The refrigeration apparatus according to claim 4, wherein the on-off valve is opened.
  7.  沸点が異なる低沸点冷媒と高沸点冷媒とが混合された非共沸混合冷媒を圧縮する圧縮機と、
     該圧縮機から導かれた非共沸混合冷媒を凝縮させる凝縮器と、
     該凝縮器から導かれた非共沸混合冷媒を膨張させる膨張弁と、
     該膨張弁から導かれた非共沸混合冷媒を蒸発させる蒸発器と、
     前記凝縮器と前記膨張弁との間から非共沸混合冷媒の一部を取り出す取出配管と、
     該取出配管に設けられた取出配管用開閉弁と、
     前記取出配管に接続され、非共沸混合冷媒を貯留して気液分離する気液分離器と、
     前記膨張弁と前記蒸発器との間と前記気液分離器内のガス相部とを接続するガス戻り配管と、
     該ガス戻り配管に設けられたガス戻り配管用開閉弁と、
     前記膨張弁と前記蒸発器との間と前記気液分離器内の液相部とを接続する液戻り配管と、
     前記液戻り配管に設けられた液戻り配管用開閉弁と、
    を備えた冷凍装置の制御方法であって、
     前記取出配管用開閉弁、前記ガス戻り配管用開閉弁および前記液戻り配管用開閉弁の開閉制御を行う冷凍装置の制御方法。
    A compressor for compressing a non-azeotropic refrigerant mixture in which low-boiling refrigerants and high-boiling refrigerants having different boiling points are mixed;
    A condenser for condensing the non-azeotropic mixed refrigerant introduced from the compressor;
    An expansion valve for expanding the non-azeotropic mixed refrigerant introduced from the condenser;
    An evaporator for evaporating the non-azeotropic mixed refrigerant introduced from the expansion valve;
    An extraction pipe for extracting a part of the non-azeotropic refrigerant mixture from between the condenser and the expansion valve;
    A release piping on-off valve provided in the removal piping;
    A gas-liquid separator connected to the take-out pipe for storing non-azeotropic mixed refrigerant for gas-liquid separation;
    A gas return pipe connecting between the expansion valve and the evaporator and a gas phase portion in the gas-liquid separator;
    A gas return piping on-off valve provided in the gas return piping;
    A liquid return pipe that connects between the expansion valve and the evaporator and a liquid phase portion in the gas-liquid separator;
    A liquid return piping on-off valve provided in the liquid return piping;
    A control method of a refrigeration system provided with
    A control method of a refrigeration system which performs opening and closing control of the on-off valve for extraction piping, the on-off valve for gas return piping, and the on-off valve for liquid return piping.
PCT/JP2017/028003 2016-08-04 2017-08-02 Refrigeration device and control method therefor WO2018025900A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17837002.9A EP3462108A4 (en) 2016-08-04 2017-08-02 Refrigeration device and control method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016153753A JP6692715B2 (en) 2016-08-04 2016-08-04 Refrigeration apparatus and control method thereof
JP2016-153753 2016-08-04

Publications (1)

Publication Number Publication Date
WO2018025900A1 true WO2018025900A1 (en) 2018-02-08

Family

ID=61072767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028003 WO2018025900A1 (en) 2016-08-04 2017-08-02 Refrigeration device and control method therefor

Country Status (3)

Country Link
EP (1) EP3462108A4 (en)
JP (1) JP6692715B2 (en)
WO (1) WO2018025900A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020083823A1 (en) * 2018-10-21 2020-04-30 Proff Investment As Cooling system
KR20200070035A (en) 2018-12-08 2020-06-17 이동원 A Control method of heat pump
KR20200085623A (en) 2019-01-07 2020-07-15 이동원 A Control method of heat pump
KR20200086593A (en) 2019-01-09 2020-07-17 이동원 A Control method of heat pump
KR20200123603A (en) 2019-04-22 2020-10-30 이동원 Heat pump and it's Control method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111435040A (en) * 2019-01-11 2020-07-21 青岛海尔智能技术研发有限公司 Refrigerating system and refrigerating equipment
KR102188984B1 (en) * 2020-06-18 2020-12-10 오석재 heat pump system
US20240011696A1 (en) * 2021-01-05 2024-01-11 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JPWO2022249394A1 (en) 2021-05-27 2022-12-01
JP2023136032A (en) * 2022-03-16 2023-09-29 株式会社富士通ゼネラル Refrigeration cycle device
CN114739026B (en) * 2022-03-22 2023-10-13 澳柯玛股份有限公司 Mixed refrigerant refrigerating system for display cabinet

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687746A (en) * 1979-12-12 1981-07-16 Gen Electric Steam compression cycle device and method of adjusting its volume
JPS616567A (en) * 1984-06-19 1986-01-13 松下電器産業株式会社 Heat pump device
JPS63129253A (en) * 1986-11-19 1988-06-01 三菱重工業株式会社 Heat pump device
JPH0798161A (en) * 1993-09-29 1995-04-11 Toshiba Corp Freezer using mixed refrigerant
JPH07198215A (en) * 1993-12-28 1995-08-01 Mitsubishi Heavy Ind Ltd Freezer
JPH07332814A (en) * 1994-06-08 1995-12-22 Daikin Ind Ltd Heat pump system
WO2009154149A1 (en) * 2008-06-16 2009-12-23 三菱電機株式会社 Non‑azeotropic refrigerant mixture and refrigeration cycle device
JP2013204936A (en) * 2012-03-28 2013-10-07 Fujitsu General Ltd Air conditioner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1123078A (en) * 1997-06-27 1999-01-26 Sanyo Electric Co Ltd Refrigerating device
JP2003028518A (en) * 2001-07-19 2003-01-29 Fujitsu General Ltd Air conditioner
JP2007085586A (en) * 2005-09-20 2007-04-05 Sanden Corp Refrigerating system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687746A (en) * 1979-12-12 1981-07-16 Gen Electric Steam compression cycle device and method of adjusting its volume
JPS616567A (en) * 1984-06-19 1986-01-13 松下電器産業株式会社 Heat pump device
JPS63129253A (en) * 1986-11-19 1988-06-01 三菱重工業株式会社 Heat pump device
JPH0798161A (en) * 1993-09-29 1995-04-11 Toshiba Corp Freezer using mixed refrigerant
JPH07198215A (en) * 1993-12-28 1995-08-01 Mitsubishi Heavy Ind Ltd Freezer
JPH07332814A (en) * 1994-06-08 1995-12-22 Daikin Ind Ltd Heat pump system
WO2009154149A1 (en) * 2008-06-16 2009-12-23 三菱電機株式会社 Non‑azeotropic refrigerant mixture and refrigeration cycle device
JP2013204936A (en) * 2012-03-28 2013-10-07 Fujitsu General Ltd Air conditioner

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020083823A1 (en) * 2018-10-21 2020-04-30 Proff Investment As Cooling system
CN113227678A (en) * 2018-10-21 2021-08-06 资产投资股份有限公司 Cooling system
CN113227678B (en) * 2018-10-21 2023-06-02 资产投资股份有限公司 Cooling system
KR20200070035A (en) 2018-12-08 2020-06-17 이동원 A Control method of heat pump
KR20200085623A (en) 2019-01-07 2020-07-15 이동원 A Control method of heat pump
KR20200086593A (en) 2019-01-09 2020-07-17 이동원 A Control method of heat pump
KR20200123603A (en) 2019-04-22 2020-10-30 이동원 Heat pump and it's Control method

Also Published As

Publication number Publication date
EP3462108A4 (en) 2019-05-22
EP3462108A1 (en) 2019-04-03
JP6692715B2 (en) 2020-05-13
JP2018021721A (en) 2018-02-08

Similar Documents

Publication Publication Date Title
WO2018025900A1 (en) Refrigeration device and control method therefor
CN106104172B (en) Refrigerating circulatory device
JP6157721B2 (en) Refrigeration apparatus and control method of refrigeration apparatus
CN106104170B (en) Refrigerating circulatory device
US10018389B2 (en) Air-conditioning apparatus
JP5409715B2 (en) Air conditioner
JP2011052884A (en) Refrigerating air conditioner
JP2018021721A5 (en)
WO2018025935A1 (en) Heat pump device and control method therefor
JP2000292037A (en) Air conditioner
JP5770157B2 (en) Refrigeration equipment
JP2023116735A (en) Refrigeration system and method
JP2008267732A (en) Air-conditioning device
JP2013002737A (en) Refrigeration cycle device
JP2002039648A (en) Refrigerant charging method and air conditioner
JP2012122637A (en) Refrigeration cycle apparatus
TWI568984B (en) Gas - liquid heat exchange type refrigeration device
JP2016217628A (en) Refrigerator machine and refrigerator device
JP2009270775A (en) Refrigerating cycle
JP2015140980A (en) Freezer unit
JP2015169347A (en) Heat pump device
JP2015129609A (en) Refrigeration device
JP2020003204A (en) Refrigerator machine and refrigerator device
KR101403768B1 (en) Vacuum box of two stage evaporating heat pump
JP5201175B2 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17837002

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017837002

Country of ref document: EP

Effective date: 20181226

NENP Non-entry into the national phase

Ref country code: DE