JP2018021721A - Freezer and its control method - Google Patents

Freezer and its control method Download PDF

Info

Publication number
JP2018021721A
JP2018021721A JP2016153753A JP2016153753A JP2018021721A JP 2018021721 A JP2018021721 A JP 2018021721A JP 2016153753 A JP2016153753 A JP 2016153753A JP 2016153753 A JP2016153753 A JP 2016153753A JP 2018021721 A JP2018021721 A JP 2018021721A
Authority
JP
Japan
Prior art keywords
valve
gas
refrigerant
liquid
return pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016153753A
Other languages
Japanese (ja)
Other versions
JP2018021721A5 (en
JP6692715B2 (en
Inventor
村上 健一
Kenichi Murakami
健一 村上
篤 塩谷
Atsushi Shiotani
篤 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Thermal Systems Ltd
Original Assignee
Mitsubishi Heavy Industries Thermal Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Thermal Systems Ltd filed Critical Mitsubishi Heavy Industries Thermal Systems Ltd
Priority to JP2016153753A priority Critical patent/JP6692715B2/en
Priority to PCT/JP2017/028003 priority patent/WO2018025900A1/en
Priority to EP17837002.9A priority patent/EP3462108A4/en
Publication of JP2018021721A publication Critical patent/JP2018021721A/en
Publication of JP2018021721A5 publication Critical patent/JP2018021721A5/ja
Application granted granted Critical
Publication of JP6692715B2 publication Critical patent/JP6692715B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0415Refrigeration circuit bypassing means for the receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves

Abstract

PROBLEM TO BE SOLVED: To provide a freezer capable of changing the mixture ratio of the non-azeotropic refrigerant mixture performing the refrigerating cycle during driving in a simple configuration.SOLUTION: A freezer comprises: takeout piping 19 for taking out a part of the non-azeotropic refrigerant mixture from between a condenser 5 and an expansion valve 7; an on-off valve 20 for the takeout piping; a gas-liquid separator 17 connected to the takeout piping 19 for separating gas-liquid by storing the non-azeotropic refrigerant mixture; gas return piping 21 for connecting between the expansion valve 7 and an evaporator 9 to a gas phase part in the gas-liquid separator 17; an on-off valve 22 for the gas return piping; liquid return piping 23 for connecting between the expansion valve 7 and the evaporator 9 to a liquid phase part in the gas-liquid separator 17; and a control part for controlling the on-off valve 20 for the takeout piping, the on-off valve 22 for the gas return piping, and an on-off valve 24 for the liquid return piping.SELECTED DRAWING: Figure 1

Description

本発明は、非共沸混合冷媒を用いた冷凍装置及びその制御方法に関するものである。   The present invention relates to a refrigeration apparatus using a non-azeotropic refrigerant mixture and a control method thereof.

空気調和機に用いる冷媒として、R410A等のHFC冷媒が用いられている。しかし、R410Aに代表されるHFC冷媒は、GWP(地球温暖化係数)が高い。そこで、HFC冷媒の中でもR410AよりもGWPが低いR32や、HFO冷媒である1234yfやR1234ze(E)がR410Aに対する次期冷媒の候補として挙がっている。ところが、フロン冷媒・自然冷媒の冷媒物性上、次期候補となる冷媒には一長一短がある。例えば、R32は、R410Aに比べてGWPが低く同等以上の性能を得ることができるが、R410Aに比べて吐出温度が高く低温域での信頼性に劣るという欠点がある。R1234yfやR1234ze(E)は、GWPが10以下であるGWPが低いという利点は有するものの、R410Aに比べて低密度とされるため約50%の体積能力しかなく、同等性能を確保するためには機器の大型化を招くという欠点がある。   An HFC refrigerant such as R410A is used as the refrigerant used in the air conditioner. However, the HFC refrigerant represented by R410A has a high GWP (global warming potential). Therefore, among HFC refrigerants, R32 having a lower GWP than R410A, and H234 refrigerants 1234yf and R1234ze (E) are listed as candidates for the next refrigerant for R410A. However, the refrigerants that are candidates for the next period have merits and demerits because of the refrigerant physical properties of chlorofluorocarbon refrigerants and natural refrigerants. For example, R32 has a lower GWP than R410A and can obtain the same or higher performance, but has a disadvantage that the discharge temperature is higher than R410A and the reliability in a low temperature range is inferior. R1234yf and R1234ze (E) have the advantage that the GWP with a GWP of 10 or less is low. However, since the density is lower than that of the R410A, the volume capacity is only about 50%. There is a disadvantage that the equipment is increased in size.

このような、冷媒の一長一短を補うために、2種類以上の冷媒を混合した混合冷媒の使用が検討されている。下記特許文献1には、冷凍機油中に混合冷媒を溶け込ませて、冷媒の溶解度の相違を利用することで、冷凍サイクル中の混合冷媒の割合を変更することが開示されている。   In order to make up for such advantages and disadvantages of the refrigerant, use of a mixed refrigerant in which two or more kinds of refrigerants are mixed has been studied. Patent Document 1 below discloses changing the ratio of the mixed refrigerant in the refrigeration cycle by dissolving the mixed refrigerant in the refrigeration oil and using the difference in the solubility of the refrigerant.

特開平7−98161号公報JP-A-7-98161

混合冷媒の中でも、沸点が異なる冷媒が混合された非共沸混合冷媒は、図11に示すように、温度すべりが生じる。つまり、混合した各冷媒の沸点や凝縮点が異なるため、湿り蒸気中(飽和液線と飽和蒸気線との間)の等温線が単一冷媒のように圧力(p)一定にならず、p−h線図上では右下がりの等温線となる。すなわち、非共沸混合冷媒には温度すべりが生じる。   Among mixed refrigerants, a non-azeotropic mixed refrigerant in which refrigerants having different boiling points are mixed causes temperature slip as shown in FIG. That is, since the boiling points and condensation points of the mixed refrigerants are different, the isotherm in the wet steam (between the saturated liquid line and the saturated vapor line) does not become constant in pressure (p) as in the case of a single refrigerant. On the -h diagram, it becomes a lower right isotherm. That is, temperature slip occurs in the non-azeotropic refrigerant mixture.

また、非共沸混合冷媒中の各冷媒の割合に応じて、例えば図12に示すように、温度すべりの温度差が異なってくる。図12において、横軸はR1234ze(E)(高沸点冷媒)に対するR32(低沸点冷媒)の混合比率[wt%]とされており、縦軸が高圧側(図12(a):飽和温度40℃)及び低圧側(図12(b):飽和温度10℃)における温度すべりの温度差[℃]が示されている。同図から分かるように、R1234ze(E)に対するR32の混合比率が20wt%あたりで温度すべりが最大となる。この場合、低圧側では飽和温度が10℃とされているため、低圧側すなわち蒸発器温度が0℃以下となるおそれがあるため、蒸発器に着霜が生じるおそれがある。暖房運転を行っている場合には、蒸発器が着霜すると熱交換性能が下がり吸熱量が減少するため暖房性能の低下が顕著となる。   Further, depending on the ratio of each refrigerant in the non-azeotropic refrigerant mixture, for example, as shown in FIG. 12, the temperature difference of the temperature slip varies. In FIG. 12, the horizontal axis represents the mixing ratio [wt%] of R32 (low boiling point refrigerant) to R1234ze (E) (high boiling point refrigerant), and the vertical axis represents the high pressure side (FIG. 12 (a): saturation temperature 40 (° C.) and the temperature difference [° C.] of the temperature slip on the low pressure side (FIG. 12B: saturation temperature 10 ° C.). As can be seen from the figure, the temperature slip is maximum when the mixing ratio of R32 to R1234ze (E) is around 20 wt%. In this case, since the saturation temperature is set to 10 ° C. on the low pressure side, the low pressure side, that is, the evaporator temperature may be 0 ° C. or less, so that the evaporator may be frosted. When the heating operation is performed, when the evaporator is frosted, the heat exchange performance is lowered and the heat absorption amount is reduced, so that the heating performance is significantly lowered.

図13には、R410AとR1234ze(E)との混合割合を変えた場合の冷房運転時及び暖房運転時のCOP(成績係数)が示されている。同図において、横軸(下軸)はR1234ze(E)に対するR32の混合比率[wt%]とされており、横軸(上軸)は各混合比率におけるGWPとされており、縦軸がR410Aに対する同一能力比におけるCOPとされている。同図から分かるように、R32混合比率が下がると、R1234ze(E)の割合が増えるのでGWPは下がるものの、冷房運転時及び暖房運転時のCOPが低下し、特に冷房運転時のCOP低下が大きい。   FIG. 13 shows COPs (coefficients of performance) during cooling operation and heating operation when the mixing ratio of R410A and R1234ze (E) is changed. In the figure, the horizontal axis (lower axis) is the mixing ratio [wt%] of R32 to R1234ze (E), the horizontal axis (upper axis) is GWP at each mixing ratio, and the vertical axis is R410A. COP at the same capacity ratio. As can be seen from the figure, when the mixing ratio of R32 decreases, the ratio of R1234ze (E) increases, so although GWP decreases, the COP during cooling operation and heating operation decreases, and in particular, the COP decrease during cooling operation is large. .

そこで、冷凍サイクルを行う非共沸混合冷媒の混合割合を運転中に可変とすることが望まれる。上記特許文献1では、冷凍サイクル中の混合冷媒の割合を変更することができるが、冷凍機油に対する冷媒の溶解度を用いているため、冷凍機油の温度や貯油量を制御する必要があり、システムとして複雑になるおそれがある。   Therefore, it is desired to change the mixing ratio of the non-azeotropic refrigerant mixture for performing the refrigeration cycle during operation. In the above Patent Document 1, the ratio of the mixed refrigerant in the refrigeration cycle can be changed. However, since the solubility of the refrigerant in the refrigeration oil is used, it is necessary to control the temperature of the refrigeration oil and the amount of stored oil. May be complicated.

本発明は、このような事情に鑑みてなされたものであって、冷凍サイクルを行う非共沸混合冷媒の混合割合を運転中に簡便な構成で変更できる冷凍装置及びその制御方法を提供することを目的とする。
また、非共沸混合冷媒の温度すべりによって蒸発器温度が着霜することを回避できる冷凍装置及びその制御方法を提供することを目的とする。
また、冷房運転中の性能低下を可及的に抑えることができる非共沸混合冷媒を用いた冷凍装置及びその制御方法を提供することを目的とする。
This invention is made | formed in view of such a situation, Comprising: The freezing apparatus which can change the mixing ratio of the non-azeotropic refrigerant mixture which performs a refrigerating cycle with a simple structure during driving | operation, and its control method are provided. With the goal.
It is another object of the present invention to provide a refrigeration apparatus that can prevent the evaporator temperature from frosting due to temperature slip of the non-azeotropic refrigerant mixture and a control method therefor.
It is another object of the present invention to provide a refrigeration apparatus using a non-azeotropic refrigerant mixture and a method for controlling the refrigeration apparatus that can suppress performance degradation during cooling operation as much as possible.

上記課題を解決するために、本発明の冷凍装置及びその制御方法は以下の手段を採用する。
すなわち、本発明にかかる冷凍装置は、沸点が異なる低沸点冷媒と高沸点冷媒とが混合された非共沸混合冷媒を圧縮する圧縮機と、該圧縮機から導かれた非共沸混合冷媒を凝縮させる凝縮器と、該凝縮器から導かれた非共沸混合冷媒を膨張させる膨張弁と、該膨張弁から導かれた非共沸混合冷媒を蒸発させる蒸発器と、前記凝縮器と前記膨張弁との間から非共沸混合冷媒の一部を取り出す取出配管と、該取出配管に設けられた取出配管用開閉弁と、前記取出配管に接続され、非共沸混合冷媒を貯留して気液分離する気液分離器と、前記膨張弁と前記蒸発器との間と前記気液分離器内のガス相部とを接続するガス戻り配管と、該ガス戻り配管に設けられたガス戻り配管用開閉弁と、前記膨張弁と前記蒸発器との間と前記気液分離器内の液相部とを接続する液戻り配管と、前記液戻り配管に設けられた液戻り配管用開閉弁と、前記取出配管用開閉弁、前記ガス戻り配管用開閉弁および前記液戻り配管用開閉弁を制御する制御部とを備えていることを特徴とする。
In order to solve the above problems, the refrigeration apparatus and the control method thereof according to the present invention employ the following means.
That is, the refrigeration apparatus according to the present invention includes a compressor that compresses a non-azeotropic refrigerant mixture in which a low-boiling point refrigerant and a high-boiling point refrigerant having different boiling points are mixed, and a non-azeotropic refrigerant mixture that is led from the compressor. A condenser for condensing, an expansion valve for expanding the non-azeotropic refrigerant mixture led from the condenser, an evaporator for evaporating the non-azeotropic refrigerant mixture led from the expansion valve, the condenser and the expansion An extraction pipe for taking out a part of the non-azeotropic refrigerant mixture from the valve, an extraction pipe on-off valve provided in the extraction pipe, and the non-azeotropic refrigerant mixture stored in the extraction pipe. A gas-liquid separator that performs liquid separation, a gas return pipe that connects between the expansion valve and the evaporator and a gas phase part in the gas-liquid separator, and a gas return pipe that is provided in the gas return pipe On-off valve, between the expansion valve and the evaporator, and a liquid phase part in the gas-liquid separator; A liquid return pipe to be connected, a liquid return pipe on-off valve provided on the liquid return pipe, a control part for controlling the on-off valve for the extraction pipe, the on-off valve for the gas return pipe, and the on-off valve for the liquid return pipe It is characterized by having.

制御部の指令によって取出配管用開閉弁を開とすることで、凝縮器と膨張弁との間から取出配管を介して非共沸混合冷媒の一部を取り出し、気液分離器に一時的に貯留する。気液分離器内では、気液分離器内の温度及び圧力に応じて気液が分離され、液相部とガス相部が形成される。
制御部の指令によってガス戻り配管用開閉弁を開くと、ガス戻り配管を介して、膨張弁と蒸発器との間と気液分離器のガス相部とが連通され、ガス相部内が低圧となって低沸点冷媒が優先的に蒸発器へ導かれる。これにより、冷凍サイクルを行う非共沸混合冷媒中の低沸点冷媒の割合を増加することができる。
制御部の指令によって液戻り配管用開閉弁を開くと、液戻り配管を介して、膨張弁と蒸発器との間と気液分離器の液相部とが連通され、液相内の液冷媒が蒸発器へ導かれる。気液分離器内では低沸点冷媒が蒸発して液相部から分離されているので、液冷媒中には取出配管から非共沸混合冷媒を取り出した時よりも高沸点冷媒が高い割合で存在している。これにより、冷凍サイクルを行う非共沸混合冷媒中の高沸点冷媒の割合を増加することができる。
以上により、気液分離器に接続した各配管の各開閉弁の制御を行うだけで、気液分離器で気液分離した冷媒をガス相部または液相部から冷凍サイクル中に戻すことができるので、簡便な構成で低沸点冷媒と高沸点冷媒との混合割合を任意に変更することができる。
低沸点冷媒としては、例えばR32が挙げられ、高沸点冷媒としては、例えばR1234yfやR1234ze(E)が挙げられる。
By opening the open / close valve for the extraction pipe according to a command from the control unit, a part of the non-azeotropic refrigerant mixture is taken out between the condenser and the expansion valve via the extraction pipe, and temporarily stored in the gas-liquid separator. Store. In the gas-liquid separator, the gas-liquid is separated according to the temperature and pressure in the gas-liquid separator, and a liquid phase part and a gas phase part are formed.
When the gas return pipe on-off valve is opened by a command from the control unit, the expansion valve and the evaporator communicate with the gas phase part of the gas-liquid separator via the gas return pipe, and the gas phase part has a low pressure. Thus, the low boiling point refrigerant is preferentially guided to the evaporator. Thereby, the ratio of the low boiling point refrigerant | coolant in the non-azeotropic refrigerant mixture which performs a refrigerating cycle can be increased.
When the on-off valve for the liquid return pipe is opened by a command from the control unit, the liquid refrigerant in the liquid phase is connected between the expansion valve and the evaporator and the liquid phase part of the gas-liquid separator via the liquid return pipe. Is led to the evaporator. In the gas-liquid separator, the low-boiling point refrigerant evaporates and is separated from the liquid phase part, so the high-boiling point refrigerant is present in the liquid refrigerant at a higher rate than when the non-azeotropic refrigerant mixture is taken out from the extraction pipe. doing. Thereby, the ratio of the high boiling point refrigerant | coolant in the non-azeotropic refrigerant mixture which performs a refrigerating cycle can be increased.
As described above, the refrigerant separated by the gas-liquid separator can be returned from the gas phase portion or the liquid phase portion to the refrigeration cycle only by controlling each on-off valve of each pipe connected to the gas-liquid separator. Therefore, the mixing ratio of the low boiling point refrigerant and the high boiling point refrigerant can be arbitrarily changed with a simple configuration.
Examples of the low boiling point refrigerant include R32, and examples of the high boiling point refrigerant include R1234yf and R1234ze (E).

さらに、本発明の冷凍装置では、前記制御部は、暖房運転時に、外気温度が所定値未満または前記蒸発器の温度が所定値未満となった場合に、前記取出配管用開閉弁を開とし、前記ガス戻り配管用開閉弁を開として、気液分離器で分離したガス冷媒を前記ガス戻り配管から前記蒸発器側へと戻す分離運転を行うことを特徴とする。   Further, in the refrigeration apparatus of the present invention, the control unit opens the extraction pipe on-off valve when the outside air temperature is less than a predetermined value or the evaporator temperature is less than a predetermined value during heating operation. A separation operation is performed in which the gas return pipe on-off valve is opened and the gas refrigerant separated by the gas-liquid separator is returned from the gas return pipe to the evaporator side.

暖房運転時には、一般に外気温度が低いので、蒸発器の温度が低くなる。蒸発器の温度が所定値未満になると、例えば蒸発器に着霜が生じるといった不具合が生じる。そこで、外気温度が所定値未満または蒸発器の温度が所定値未満になった場合には、ガス戻り配管用開閉弁を開とすることで、気液分離器で分離したガス冷媒(主として低沸点冷媒)をガス戻り配管を介して蒸発器側に戻し、冷凍サイクル中の低沸点冷媒の割合を高くする。このときに、取出配管用開閉弁も開とすることで、冷凍サイクルから非共沸混合冷媒を冷凍サイクルから気液分離器へと導き、気液分離器にて気液分離を行って低沸点冷媒を冷凍サイクル中に戻すことで、冷凍サイクル中の低沸点冷媒の割合上昇をさらに促進する。
このような分離運転を行うことで、冷凍サイクルを行う非共沸混合冷媒から高沸点冷媒を分離して低沸点冷媒の割合を高くする分離運転を行うことで、温度すべりを小さくし、蒸発器での飽和温度を上昇させることができ、例えば着霜を抑制することができる。
外気温度の所定値や蒸発器の温度の所定値は、例えば、蒸発器の温度が低下して着霜が発生するおそれがある温度が選択される。
During the heating operation, since the outside air temperature is generally low, the temperature of the evaporator becomes low. When the temperature of the evaporator becomes lower than a predetermined value, for example, a problem that frosting occurs in the evaporator occurs. Therefore, when the outside air temperature is lower than the predetermined value or the evaporator temperature is lower than the predetermined value, the gas refrigerant separated by the gas-liquid separator (mainly low boiling point) is opened by opening the gas return pipe on-off valve. Refrigerant) is returned to the evaporator side through the gas return pipe, and the ratio of the low boiling point refrigerant in the refrigeration cycle is increased. At this time, by opening the on-off valve for the extraction pipe, the non-azeotropic refrigerant mixture is guided from the refrigeration cycle to the gas-liquid separator from the refrigeration cycle, and gas-liquid separation is performed in the gas-liquid separator. Returning the refrigerant into the refrigeration cycle further promotes an increase in the proportion of the low boiling point refrigerant in the refrigeration cycle.
By performing such a separation operation, by separating the high boiling point refrigerant from the non-azeotropic refrigerant mixture that performs the refrigeration cycle and increasing the proportion of the low boiling point refrigerant, the temperature slip is reduced, and the evaporator The saturation temperature can be increased, and for example, frost formation can be suppressed.
As the predetermined value of the outside air temperature and the predetermined value of the evaporator temperature, for example, a temperature at which the temperature of the evaporator decreases and frost formation may occur is selected.

さらに、本発明の冷凍装置では、前記制御部は、前記分離運転を開始してから所定期間経過後に、または、前記圧縮機が吸い込む非共沸混合冷媒の過熱度が所定値未満となった後に、前記取出配管用開閉弁を閉とすることを特徴とする。   Furthermore, in the refrigeration apparatus of the present invention, the control unit may be configured after a predetermined period has elapsed since the start of the separation operation, or after the degree of superheat of the non-azeotropic refrigerant mixture sucked by the compressor becomes less than a predetermined value. The extraction pipe on-off valve is closed.

分離運転を開始してから所定期間経過後に、または、前記圧縮機が吸い込む非共沸混合冷媒の過熱度が所定値未満となった後に、取出配管用開閉弁を閉とすることで、冷凍サイクルを行う非共沸混合冷媒の一部を気液分離器に取り出すことを停止する。これにより、冷凍サイクルを行う非共沸混合冷媒中の低沸点冷媒の割合を上昇させる制御を停止して、分離運転を行った後の非共沸混合冷媒の組成で運転を継続することができる。
分離運転を開始してから所定期間経過後とする「所定期間」は、例えば、分離運転を行って所望の混合比率が得られるまでの時間として選定される。
なお、圧縮機が吸い込む冷媒の過熱度が所定値未満とされる「所定値」は、例えば、圧縮機の液圧縮を回避するために設定されている値が用いられる。
A refrigeration cycle is performed by closing the take-off piping on-off valve after a predetermined period has elapsed since the start of the separation operation or after the degree of superheat of the non-azeotropic refrigerant mixture sucked by the compressor becomes less than a predetermined value. Stop taking out part of the non-azeotropic refrigerant mixture to the gas-liquid separator. As a result, the control for increasing the ratio of the low-boiling refrigerant in the non-azeotropic refrigerant mixture that performs the refrigeration cycle is stopped, and the operation can be continued with the composition of the non-azeotropic refrigerant mixture after performing the separation operation. .
The “predetermined period” after the elapse of a predetermined period from the start of the separation operation is selected, for example, as the time from when the separation operation is performed until a desired mixing ratio is obtained.
As the “predetermined value” at which the degree of superheat of the refrigerant sucked by the compressor is less than a predetermined value, for example, a value set to avoid liquid compression of the compressor is used.

さらに、本発明の冷凍装置では、前記制御部は、外気温度が所定値以上または前記圧縮機から吐出される吐出ガス温度が所定値以上となった場合に、前記取出配管用開閉弁を開とし、前記ガス戻り配管用開閉弁を閉とし、前記液戻り配管用開閉弁を開とすることを特徴とする。   Furthermore, in the refrigeration apparatus of the present invention, the control unit opens the extraction piping on-off valve when the outside air temperature is equal to or higher than a predetermined value or the discharge gas temperature discharged from the compressor is equal to or higher than a predetermined value. The gas return pipe on-off valve is closed, and the liquid return pipe on-off valve is opened.

外気温度が所定値以上となると、蒸発器の着霜といった不具合のおそれがなくなる。そこで、外気温度が所定値以上となった場合には、ガス戻り配管用開閉弁を閉として、低沸点冷媒が冷凍サイクル中に優先的に戻されることを停止する。そして、液戻り配管用開閉弁を開として、液相部に多く存在する高沸点冷媒を冷凍サイクル中に戻す。このときに、取出配管用開閉弁も開とすることで、冷凍サイクルから非共沸混合冷媒を気液分離器へと導き、気液分離器にて気液分離を行って液相中の高沸点冷媒を優先的に冷凍サイクル中に戻すことで、冷凍サイクル中の高沸点冷媒の割合上昇を促進する。
このように、冷凍サイクルを行う非共沸混合冷媒中に高沸点冷媒を混合する混合運転を行うことで、非共沸混合冷媒中の高沸点冷媒の割合を高くして、冷媒封入時の混合割合に戻すことができる。
また、圧縮機から吐出される吐出ガス温度が所定値以上になった場合には、混合運転によって冷媒の混合割合を冷媒封入時に戻すことで、吐出ガス温度を低下させることができる。
When the outside air temperature is equal to or higher than a predetermined value, there is no risk of malfunction such as frost formation on the evaporator. Therefore, when the outside air temperature becomes equal to or higher than a predetermined value, the gas return pipe on-off valve is closed to stop the low-boiling point refrigerant from being preferentially returned during the refrigeration cycle. Then, the on-off valve for the liquid return pipe is opened, and the high-boiling point refrigerant existing in the liquid phase part is returned to the refrigeration cycle. At this time, by opening the on-off valve for the extraction pipe, the non-azeotropic refrigerant mixture is led from the refrigeration cycle to the gas-liquid separator, and gas-liquid separation is performed by the gas-liquid separator. By preferentially returning the boiling point refrigerant into the refrigeration cycle, the rate of the high boiling point refrigerant in the refrigeration cycle is increased.
In this way, by performing the mixing operation in which the high boiling point refrigerant is mixed in the non-azeotropic refrigerant mixture that performs the refrigeration cycle, the ratio of the high boiling point refrigerant in the non-azeotropic refrigerant mixture is increased, and mixing at the time of refrigerant filling is performed. The ratio can be returned.
Further, when the temperature of the discharge gas discharged from the compressor becomes a predetermined value or more, the discharge gas temperature can be lowered by returning the mixing ratio of the refrigerant at the time of filling the refrigerant by the mixing operation.

さらに、本発明の冷凍装置では、前記制御部は、冷房運転時に、前記取出配管用開閉弁を開とし、前記ガス戻り配管用開閉弁を開とすることを特徴とする。   Further, in the refrigeration apparatus of the present invention, the control unit opens the extraction piping on-off valve and opens the gas return piping on-off valve during cooling operation.

R32のような低沸点冷媒は、R1234yfやR1234ze(E)のような高沸点冷媒よりも高密度とされるので、COPが高くなる。そこで、冷房運転時には、取出配管用開閉弁およびガス戻り配管用開閉弁を開とする分離運転を行うことで、冷凍サイクルを行う非共沸混合冷媒中の低沸点冷媒の割合を高くする。これにより、高効率な冷房運転を実現することができる。   A low boiling point refrigerant such as R32 has a higher density than a high boiling point refrigerant such as R1234yf or R1234ze (E), and therefore has a higher COP. Therefore, during the cooling operation, the ratio of the low boiling point refrigerant in the non-azeotropic refrigerant mixture that performs the refrigeration cycle is increased by performing a separation operation in which the open / close valve for the extraction pipe and the open / close valve for the gas return pipe are opened. Thereby, highly efficient cooling operation is realizable.

さらに、本発明の冷凍装置では、前記制御部は、前記圧縮機から吐出される吐出ガス温度が所定値以上となった場合に、前記取出配管用開閉弁を開とし、前記ガス戻り配管用開閉弁を閉とし、前記液戻り配管用開閉弁を開とすることを特徴とする。   Furthermore, in the refrigeration apparatus of the present invention, the control unit opens the extraction pipe on-off valve when the discharge gas temperature discharged from the compressor becomes a predetermined value or more, and opens and closes the gas return pipe on-off. The valve is closed and the liquid return pipe on-off valve is opened.

冷凍サイクルを行う非共沸混合冷媒中の低沸点冷媒の割合が高くなると、圧縮機の吐出ガス温度が過剰に高くなるおそれがある。そこで、吐出ガス温度が所定値以上となった場合には、取出配管用開閉弁を開とし、ガス戻り配管用開閉弁を閉とし、液戻り配管用開閉弁を開とする混合運転を行うことで、非共沸混合冷媒中の高沸点冷媒の割合を高くして、冷媒封入時の混合割合に戻すこととした。これにより、圧縮機の吐出ガス温度が過剰に高くなることを回避することで、機器の保護を図ることができる。   When the ratio of the low boiling point refrigerant in the non-azeotropic refrigerant mixture that performs the refrigeration cycle is increased, the discharge gas temperature of the compressor may be excessively increased. Therefore, when the discharge gas temperature exceeds the specified value, a mixing operation is performed in which the open / close valve for the extraction pipe is opened, the open / close valve for the gas return pipe is closed, and the open / close valve for the liquid return pipe is opened. Therefore, the ratio of the high boiling point refrigerant in the non-azeotropic refrigerant mixture is increased to return to the mixing ratio at the time of refrigerant filling. Thereby, protection of an apparatus can be aimed at by avoiding that the discharge gas temperature of a compressor becomes high too much.

また、本発明の冷凍装置の制御方法は、沸点が異なる低沸点冷媒と高沸点冷媒とが混合された非共沸混合冷媒を圧縮する圧縮機と、該圧縮機から導かれた非共沸混合冷媒を凝縮させる凝縮器と、該凝縮器から導かれた非共沸混合冷媒を膨張させる膨張弁と、該膨張弁から導かれた非共沸混合冷媒を蒸発させる蒸発器と、前記凝縮器と前記膨張弁との間から非共沸混合冷媒の一部を取り出す取出配管と、該取出配管に設けられた取出配管用開閉弁と、前記取出配管に接続され、非共沸混合冷媒を貯留して気液分離する気液分離器と、前記膨張弁と前記蒸発器との間と前記気液分離器内のガス相部とを接続するガス戻り配管と、該ガス戻り配管に設けられたガス戻り配管用開閉弁と、前記膨張弁と前記蒸発器との間と前記気液分離器内の液相部とを接続する液戻り配管と、前記液戻り配管に設けられた液戻り配管用開閉弁とを備えた冷凍装置の制御方法であって、前記取出配管用開閉弁、前記ガス戻り配管用開閉弁および前記液戻り配管用開閉弁の開閉制御を行うことを特徴とする。   Further, the control method of the refrigeration apparatus according to the present invention includes a compressor that compresses a non-azeotropic mixed refrigerant in which a low-boiling refrigerant and a high-boiling refrigerant having different boiling points are mixed, and a non-azeotropic mixing derived from the compressor. A condenser for condensing the refrigerant, an expansion valve for expanding the non-azeotropic refrigerant mixture led from the condenser, an evaporator for evaporating the non-azeotropic refrigerant mixture led from the expansion valve, and the condenser An extraction pipe for extracting a part of the non-azeotropic refrigerant mixture from the expansion valve, an extraction pipe on-off valve provided in the extraction pipe, and the non-azeotropic refrigerant mixture are connected to the extraction pipe. A gas-liquid separator that performs gas-liquid separation, a gas return pipe that connects between the expansion valve and the evaporator and a gas phase portion in the gas-liquid separator, and a gas provided in the gas return pipe A return pipe on-off valve, between the expansion valve and the evaporator, and a liquid phase part in the gas-liquid separator; A control method of a refrigeration apparatus comprising a liquid return pipe to be connected and a liquid return pipe on-off valve provided on the liquid return pipe, wherein the extraction pipe on-off valve, the gas return pipe on-off valve, and the The on-off control of the on-off valve for liquid return piping is performed.

気液分離器に接続した各配管の各開閉弁の制御を行うだけで、気液分離器で気液分離した冷媒をガス相部または液相部から冷凍サイクル中に戻すことができるので、簡便な構成で非共沸混合冷媒の混合割合を任意に変更することができる。
冷凍サイクルを行う非共沸混合冷媒から高沸点冷媒を分離して低沸点冷媒の割合を高くする分離運転を行うことで、蒸発器での飽和温度を上昇させることで、蒸発器の着霜を抑制することができる。
冷房運転時には、取出配管用開閉弁およびガス戻り配管用開閉弁を開とする分離運転を行うことで、冷凍サイクルを行う非共沸混合冷媒中の低沸点冷媒の割合を高くすることで、高効率な冷房運転を実現することができる。
By simply controlling each on-off valve of each pipe connected to the gas-liquid separator, the gas-liquid separated refrigerant in the gas-liquid separator can be returned to the refrigeration cycle from the gas phase part or liquid phase part. With such a configuration, the mixing ratio of the non-azeotropic refrigerant mixture can be arbitrarily changed.
By separating the high-boiling refrigerant from the non-azeotropic refrigerant that performs the refrigeration cycle and increasing the proportion of the low-boiling refrigerant, the saturation temperature in the evaporator is increased, thereby reducing the frost formation on the evaporator. Can be suppressed.
During the cooling operation, the separation operation is performed by opening the on-off valve for the extraction pipe and the on-off valve for the gas return pipe, thereby increasing the ratio of the low boiling point refrigerant in the non-azeotropic refrigerant mixture that performs the refrigeration cycle. Efficient cooling operation can be realized.

本発明の一実施形態に係る冷凍装置の冷媒回路であり、暖房運転時における通常運転(封入組成)を示した概略構成図である。It is a refrigerant circuit of the refrigerating device which concerns on one Embodiment of this invention, and is a schematic block diagram which showed the normal driving | operation (encapsulation composition) at the time of heating operation. 暖房運転時における分離運転を示した冷媒回路の概略構成図である。It is a schematic block diagram of the refrigerant circuit which showed the separation operation at the time of heating operation. 暖房運転時における通常運転(分離組成)を示した冷媒回路の概略構成図である。It is a schematic block diagram of the refrigerant circuit which showed the normal operation (separation composition) at the time of heating operation. 暖房運転時における混合運転を示した冷媒回路の概略構成図である。It is a schematic block diagram of the refrigerant circuit which showed the mixing operation at the time of heating operation. 暖房運転時における制御を示したフローチャートである。It is the flowchart which showed the control at the time of heating operation. 冷房運転時における通常運転(封入組成)を示した冷媒回路の概略構成図である。It is a schematic block diagram of the refrigerant circuit which showed the normal operation (enclosure composition) at the time of air_conditionaing | cooling operation. 冷房運転時における分離運転を示した冷媒回路の概略構成図である。It is a schematic block diagram of the refrigerant circuit which showed the separation operation at the time of air_conditionaing | cooling operation. 冷房運転時における通常運転(分離組成)を示した冷媒回路の概略構成図である。It is a schematic block diagram of the refrigerant circuit which showed normal operation (separation composition) at the time of air_conditionaing | cooling operation. 冷房運転時における混合運転を示した冷媒回路の概略構成図である。It is a schematic block diagram of the refrigerant circuit which showed the mixing operation at the time of air_conditionaing | cooling operation. 冷房運転時における制御を示したフローチャートである。It is the flowchart which showed the control at the time of air_conditionaing | cooling operation. 非共沸混合冷媒の温度すべりを示したp(圧力)−h(エンタルピ)線図である。It is the p (pressure) -h (enthalpy) diagram which showed the temperature slip of the non-azeotropic refrigerant mixture. 非共沸混合冷媒の混合割合に応じた温度すべりを示し、(a)は飽和温度40℃のときの温度すべりであり、(b)は飽和温度10℃のときの温度すべりである。A temperature slip corresponding to the mixing ratio of the non-azeotropic refrigerant mixture is shown, (a) is a temperature slip when the saturation temperature is 40 ° C., and (b) is a temperature slip when the saturation temperature is 10 ° C. 非共沸混合冷媒の混合割合に応じたCOPの変化を示したグラフである。It is the graph which showed the change of COP according to the mixing ratio of a non-azeotropic refrigerant mixture.

以下に、本発明にかかる一実施形態について、図面を参照して説明する。
図1には、本実施形態の冷凍装置1の冷媒回路構成が示されている。冷凍装置1は、例えば空気調和機として用いられ、圧縮機3の吐出側に設けた四方弁(図示せず)を切り替えることによって、暖房運転と冷房運転を行うことができる。図1では、暖房運転時の構成が示されている。
Hereinafter, an embodiment according to the present invention will be described with reference to the drawings.
FIG. 1 shows the refrigerant circuit configuration of the refrigeration apparatus 1 of the present embodiment. The refrigeration apparatus 1 is used as an air conditioner, for example, and can perform a heating operation and a cooling operation by switching a four-way valve (not shown) provided on the discharge side of the compressor 3. In FIG. 1, the structure at the time of heating operation is shown.

冷凍装置1は、冷媒として、R32とR1234ze(E)とが混合された非共沸混合冷媒を用いている。R32は、R1234ze(E)に対して低い沸点を有した低沸点冷媒とされている。R1234ze(E)は、R32に対して高い沸点を有した高沸点冷媒とされている。なお、R1234ze(E)に代えてR1234yfを用いても良い。   The refrigeration apparatus 1 uses a non-azeotropic refrigerant mixture in which R32 and R1234ze (E) are mixed as a refrigerant. R32 is a low boiling point refrigerant having a lower boiling point than R1234ze (E). R1234ze (E) is a high boiling point refrigerant having a high boiling point relative to R32. Note that R1234yf may be used instead of R1234ze (E).

冷凍装置1は、非共沸混合冷媒(以下、単に「冷媒」という場合もある。)を圧縮する圧縮機3と、凝縮器5と、膨張弁7と、蒸発器9とを備えている。これら圧縮機3、凝縮器5、膨張弁7及び蒸発器9を冷媒配管によって接続することで冷凍サイクルを行う冷媒回路が構成される。   The refrigeration apparatus 1 includes a compressor 3 that compresses a non-azeotropic refrigerant mixture (hereinafter sometimes simply referred to as “refrigerant”), a condenser 5, an expansion valve 7, and an evaporator 9. The refrigerant circuit which performs a refrigerating cycle is comprised by connecting these compressor 3, the condenser 5, the expansion valve 7, and the evaporator 9 with refrigerant | coolant piping.

圧縮機3は、室外機の内部に設置され、例えばスクロール圧縮機やロータリー圧縮機とされており、図示しない電動モータによって駆動される。電動モータは、インバータ装置を備えており、図示しない制御部からの指令によって回転数が任意に変更されるようになっている。
圧縮機3の吸入側には、冷媒の吸入圧力Psを計測する吸入圧力センサ11が設けられており、圧縮機3の吐出側には、冷媒の吐出温度を計測する吐出温度センサ13が設けられている。吸入圧力センサ11及び吐出温度センサ13の出力は、制御部へと送信される。
The compressor 3 is installed inside the outdoor unit, and is a scroll compressor or a rotary compressor, for example, and is driven by an electric motor (not shown). The electric motor includes an inverter device, and the rotation speed is arbitrarily changed by a command from a control unit (not shown).
A suction pressure sensor 11 that measures the suction pressure Ps of the refrigerant is provided on the suction side of the compressor 3, and a discharge temperature sensor 13 that measures the discharge temperature of the refrigerant is provided on the discharge side of the compressor 3. ing. Outputs of the suction pressure sensor 11 and the discharge temperature sensor 13 are transmitted to the control unit.

凝縮器5は、室内熱交換器とされ、暖房運転時には室内空気を加温して熱交換することで、圧縮機3から導かれた高圧ガス冷媒を凝縮させる。
膨張弁7は、凝縮器5にて凝縮液化された冷媒を膨張させる。膨張弁7の開度は、制御部によって制御される。
蒸発器9は、室外機の内部に設置された室外熱交換器とされ、暖房運転時には室外熱交換器として外気との間で熱交換することで、膨張弁7によって膨張された冷媒を蒸発させる。蒸発器9の冷媒出口には、蒸発冷媒温度を計測する蒸発器出口温度センサ15が設けられている。蒸発器出口温度センサ15の出力は、制御部へと送信される。
The condenser 5 is an indoor heat exchanger, and condenses the high-pressure gas refrigerant introduced from the compressor 3 by heating indoor air and exchanging heat during heating operation.
The expansion valve 7 expands the refrigerant condensed and liquefied by the condenser 5. The opening degree of the expansion valve 7 is controlled by the control unit.
The evaporator 9 is an outdoor heat exchanger installed inside the outdoor unit, and evaporates the refrigerant expanded by the expansion valve 7 by exchanging heat with the outside air as an outdoor heat exchanger during heating operation. . An evaporator outlet temperature sensor 15 for measuring the temperature of the evaporated refrigerant is provided at the refrigerant outlet of the evaporator 9. The output of the evaporator outlet temperature sensor 15 is transmitted to the control unit.

上述した圧縮機3、凝縮器5、膨張弁7及び蒸発器9によって冷凍サイクルを行う主冷媒回路とは別に、気液分離器17が設けられている。気液分離器17は、一時的に冷媒を貯留することが可能な容量を有するタンクとされている。気液分離器17は、圧縮機3や蒸発器9を収容する室外機の内部に設置されている。   Apart from the main refrigerant circuit that performs the refrigeration cycle by the compressor 3, the condenser 5, the expansion valve 7, and the evaporator 9 described above, a gas-liquid separator 17 is provided. The gas-liquid separator 17 is a tank having a capacity capable of temporarily storing the refrigerant. The gas-liquid separator 17 is installed inside an outdoor unit that houses the compressor 3 and the evaporator 9.

凝縮器5と膨張弁7との間の取出位置Aと、気液分離器17の上部との間には、取出配管19が設けられている。取出配管19には、取出配管用開閉弁20が設けられている。取出配管用開閉弁20は、例えば電磁弁とされており、制御部からの指令によって開閉が行われる。   An extraction pipe 19 is provided between the extraction position A between the condenser 5 and the expansion valve 7 and the upper part of the gas-liquid separator 17. The extraction pipe 19 is provided with an extraction pipe opening / closing valve 20. The extraction piping on-off valve 20 is, for example, an electromagnetic valve, and is opened and closed by a command from the control unit.

膨張弁7と蒸発器9との間の合流位置Bと、気液分離器17との間には、ガス戻り配管21が設けられている。ガス戻り配管21の上流端21aは、気液分離器17の上部に位置しており、気液分離器17内で分離された冷媒のガス相部に開口している。ガス戻り配管21には、ガス戻り配管用開閉弁22が設けられている。ガス戻り配管用開閉弁22は、例えば電磁弁とされており、制御部からの指令によって開閉が行われる。   A gas return pipe 21 is provided between the merging position B between the expansion valve 7 and the evaporator 9 and the gas-liquid separator 17. The upstream end 21 a of the gas return pipe 21 is positioned above the gas-liquid separator 17 and opens to the gas phase portion of the refrigerant separated in the gas-liquid separator 17. The gas return pipe 21 is provided with a gas return pipe open / close valve 22. The gas return pipe on-off valve 22 is, for example, an electromagnetic valve, and is opened and closed by a command from the control unit.

膨張弁7と蒸発器9との間の合流位置Bと、気液分離器17の間には、液戻り配管23が設けられている。液戻り配管23の上流端23aは、気液分離器17の下部(又は底部)に位置しており、気液分離器17内で分離された冷媒の液相部に開口している。液戻り配管23には、液戻り配管用開閉弁24が設けられている。液戻り配管用開閉弁24は、例えば電磁弁とされており、制御部からの指令によって開閉が行われる。   A liquid return pipe 23 is provided between the merging position B between the expansion valve 7 and the evaporator 9 and the gas-liquid separator 17. The upstream end 23 a of the liquid return pipe 23 is located at the lower part (or the bottom part) of the gas-liquid separator 17 and opens to the liquid phase part of the refrigerant separated in the gas-liquid separator 17. The liquid return pipe 23 is provided with a liquid return pipe open / close valve 24. The liquid return piping on-off valve 24 is, for example, an electromagnetic valve, and is opened and closed by a command from the control unit.

制御部は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。なお、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等である。   The control unit includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and a computer-readable storage medium. A series of processes for realizing various functions is stored in a storage medium or the like in the form of a program as an example, and the CPU reads the program into a RAM or the like to execute information processing / arithmetic processing. As a result, various functions are realized. The program is preinstalled in a ROM or other storage medium, provided in a state stored in a computer-readable storage medium, or distributed via wired or wireless communication means. Etc. may be applied. The computer-readable storage medium is a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.

<暖房運転時>
次に、上記構成の冷凍装置1の暖房運転時における運転モードについて説明する。
[通常運転(封入組成):暖房運転時]
図1には、暖房運転時における通常運転(封入組成)が示されている。この通常運転は、非共沸混合冷媒を冷凍装置1内に封入したときと同等の混合割合(例えばR32:R1234ze(E)=1:1の混合割合)とされた組成で運転するものである。
<During heating operation>
Next, the operation mode at the time of heating operation of the refrigeration apparatus 1 having the above configuration will be described.
[Normal operation (encapsulated composition): During heating operation]
FIG. 1 shows normal operation (encapsulation composition) during heating operation. This normal operation is performed with a composition having a mixing ratio (for example, a mixing ratio of R32: R1234ze (E) = 1: 1) equivalent to that when the non-azeotropic refrigerant mixture is enclosed in the refrigeration apparatus 1. .

取出配管用開閉弁20は閉、ガス戻り配管用開閉弁22は開、液戻り配管用開閉弁24は開とされている。各図において、開弁は白抜きの表示とされ、閉弁が塗りつぶしの表示とされている。   The extraction piping on-off valve 20 is closed, the gas return piping on-off valve 22 is opened, and the liquid return piping on-off valve 24 is opened. In each figure, the valve opening is indicated by white and the valve closing is indicated by solid color.

取出配管用開閉弁20を閉とすることで、冷凍サイクル中から冷媒を取り出すことをせず、冷凍サイクルを行う冷媒の混合割合を変更しない。また、液戻り配管用開閉弁24を開とすることで、気液分離器17内に液冷媒を溜めないようにして、冷凍サイクルを行う冷媒の混合割合を変更しない。
ガス戻り配管用開閉弁22は開として、膨張弁7によって膨張させられた後の冷媒圧力と均圧させておく。これにより、通常運転中は、低沸点冷媒が未蒸発のまま留まらないようにすることが可能となり、停止中に気液分離器17内が未蒸発の冷媒で満たされた液封状態を防止するためである。
By closing the take-off piping on-off valve 20, the refrigerant is not taken out from the refrigeration cycle, and the mixing ratio of the refrigerant that performs the refrigeration cycle is not changed. Further, by opening the on-off valve 24 for the liquid return pipe, the liquid refrigerant is not accumulated in the gas-liquid separator 17 and the mixing ratio of the refrigerant for performing the refrigeration cycle is not changed.
The gas return piping on-off valve 22 is opened and equalized with the refrigerant pressure after being expanded by the expansion valve 7. This makes it possible to prevent the low-boiling point refrigerant from remaining unevaporated during normal operation, thereby preventing a liquid-sealed state in which the gas-liquid separator 17 is filled with unevaporated refrigerant during stoppage. Because.

[分離運転(暖房運転時)]
図2には、暖房運転時における分離運転が示されている。分離運転は、上述した通常運転(封入組成)の後に行われるものであり、冷凍サイクルを行う冷媒からR1234ze(高沸点冷媒)を分離して、冷凍サイクルを行う冷媒中のR32(低沸点冷媒)の混合割合を増大させる運転である。
[Separate operation (heating operation)]
FIG. 2 shows the separation operation during the heating operation. The separation operation is performed after the normal operation (encapsulated composition) described above, and R1234ze (high boiling point refrigerant) is separated from the refrigerant that performs the refrigeration cycle, and R32 (low boiling point refrigerant) in the refrigerant that performs the refrigeration cycle. This is an operation to increase the mixing ratio.

取出配管用開閉弁20は開、ガス戻り配管用開閉弁22は開、液戻り配管用開閉弁24は閉とされている。   The extraction piping on-off valve 20 is open, the gas return piping on-off valve 22 is open, and the liquid return piping on-off valve 24 is closed.

取出配管用開閉弁20を開とすることで、凝縮器5と膨張弁7との間から液冷媒の一部が気液分離器17内に導かれる。気液分離器17内は、ガス戻り配管用開閉弁22が開とされており、膨張弁7と蒸発器9との間の圧力と同等の低圧とされているため、気液分離器17内に導かれた低沸点冷媒であるR32は高沸点冷媒であるR1234ze(E)よりも優先的に蒸発される。そして、気液分離器17内で蒸発したR32は、ガス戻り配管21を通り、合流位置Bから蒸発器9へと戻され、冷凍サイクルを行う冷媒として用いられる。これにより、冷凍サイクルを行う冷媒中のR32の混合割合が上昇する。   By opening the extraction pipe on-off valve 20, a part of the liquid refrigerant is introduced into the gas-liquid separator 17 from between the condenser 5 and the expansion valve 7. In the gas-liquid separator 17, the gas return pipe on-off valve 22 is opened, and the gas-liquid separator 17 has a low pressure equivalent to the pressure between the expansion valve 7 and the evaporator 9. R32, which is a low-boiling point refrigerant led to (3), is preferentially evaporated over R1234ze (E), which is a high-boiling point refrigerant. The R32 evaporated in the gas-liquid separator 17 passes through the gas return pipe 21 and is returned from the joining position B to the evaporator 9 and used as a refrigerant for performing the refrigeration cycle. This increases the mixing ratio of R32 in the refrigerant that performs the refrigeration cycle.

[通常運転(分離組成):暖房運転時]
図3には、暖房運転時における通常運転(分離組成)が示されている。この通常運転は、上述した分離運転の後に行われるものであり、冷凍サイクルを行う冷媒中のR1234ze(E)が分離されてR32の混合割合が高くなった分離組成とされた状態で運転するものである。
[Normal operation (separated composition): During heating operation]
FIG. 3 shows a normal operation (separation composition) during the heating operation. This normal operation is performed after the above-described separation operation, and is operated in a state in which R1234ze (E) in the refrigerant that performs the refrigeration cycle is separated and the mixing ratio of R32 is increased. It is.

取出配管用開閉弁20は閉、ガス戻り配管用開閉弁22は開、液戻り配管用開閉弁24は閉とされている。   The extraction piping on-off valve 20 is closed, the gas return piping on-off valve 22 is open, and the liquid return piping on-off valve 24 is closed.

取出配管用開閉弁20を閉とすることで、冷凍サイクル中から冷媒を取り出すことをせず、冷凍サイクルを行う冷媒の混合割合を変更しない。また、液戻り配管用開閉弁24を閉とすることで、気液分離器17内の液冷媒を冷凍サイクル中に戻すことをせず、冷凍サイクルを行う冷媒の混合割合を変更しない。
ガス戻り配管用開閉弁22は開として、気液分離器17内で分離されたR32をガス戻り配管21を介して蒸発器9へと導く。
By closing the take-off piping on-off valve 20, the refrigerant is not taken out from the refrigeration cycle, and the mixing ratio of the refrigerant that performs the refrigeration cycle is not changed. Further, by closing the liquid return pipe open / close valve 24, the liquid refrigerant in the gas-liquid separator 17 is not returned to the refrigeration cycle, and the mixing ratio of the refrigerant for performing the refrigeration cycle is not changed.
The gas return pipe on-off valve 22 is opened, and R32 separated in the gas-liquid separator 17 is guided to the evaporator 9 through the gas return pipe 21.

[混合運転:暖房運転時]
図4には、暖房運転時における混合運転が示されている。混合運転は、上述の通常運転(分離組成)の後に行われるものであり、冷凍サイクルを行う冷媒中にR1234ze(E)を混合して冷媒中のR32の混合割合を減少させる運転とされる。
[Mixed operation: Heating operation]
FIG. 4 shows the mixing operation during the heating operation. The mixing operation is performed after the above-described normal operation (separation composition), and is an operation in which R1234ze (E) is mixed in the refrigerant that performs the refrigeration cycle to reduce the mixing ratio of R32 in the refrigerant.

取出配管用開閉弁20は開、ガス戻り配管用開閉弁22は閉、液戻り配管用開閉弁24は開とされている。   The extraction piping on-off valve 20 is open, the gas return piping on-off valve 22 is closed, and the liquid return piping on-off valve 24 is open.

取出配管用開閉弁20を開とすることで、凝縮器5と膨張弁7との間から液冷媒が気液分離器17内に導かれる。気液分離器17内は、ガス戻り配管用開閉弁22が閉とされているので、気液分離器17内で蒸発したR32が合流位置Bから冷凍サイクルを行う冷媒に供給されることはない。一方、液戻り配管用開閉弁24が開とされているので、気液分離器17内に貯留された液冷媒が、液戻り配管23を通り合流位置Bから蒸発器9へと導かれる。これにより、分離運転(図2参照)によってR1234ze(E)が濃縮された気液分離器17内の液冷媒が冷凍サイクルを行う冷媒中に戻されるので、冷凍サイクルを行う冷媒中のR1234ze(E)の混合割合が上昇する。   By opening the extraction pipe on-off valve 20, the liquid refrigerant is introduced into the gas-liquid separator 17 from between the condenser 5 and the expansion valve 7. Since the gas return pipe open / close valve 22 is closed in the gas / liquid separator 17, R32 evaporated in the gas / liquid separator 17 is not supplied from the joining position B to the refrigerant that performs the refrigeration cycle. . On the other hand, since the liquid return pipe opening / closing valve 24 is opened, the liquid refrigerant stored in the gas-liquid separator 17 is guided from the merging position B to the evaporator 9 through the liquid return pipe 23. Thereby, since the liquid refrigerant in the gas-liquid separator 17 in which R1234ze (E) is concentrated by the separation operation (see FIG. 2) is returned to the refrigerant that performs the refrigeration cycle, R1234ze (E) in the refrigerant that performs the refrigeration cycle. ) Mixing ratio increases.

次に、図5を用いて、暖房運転時の冷凍装置1の制御方法について説明する。以下に示す各ステップは、制御部からの指令によって行われる。   Next, a control method of the refrigeration apparatus 1 during the heating operation will be described with reference to FIG. Each step shown below is performed by a command from the control unit.

運転が開始されると、外気温度が所定値(例えば10℃)未満か否かが判断される(ステップS1)。外気温度は、図示しない外気温度センサの計測値が用いられる。外気温度が10℃未満の場合には、分離運転(図2参照)が行われ、冷凍サイクルを行う冷媒中のR32の混合比率を上昇させる。これにより、蒸発器9における温度すべりが小さくなり(図12(b)参照)、蒸発器9における低圧が上昇して着霜が防止される。   When the operation is started, it is determined whether or not the outside air temperature is lower than a predetermined value (for example, 10 ° C.) (step S1). As the outside air temperature, a measurement value of an outside air temperature sensor (not shown) is used. When the outside air temperature is less than 10 ° C., a separation operation (see FIG. 2) is performed to increase the mixing ratio of R32 in the refrigerant that performs the refrigeration cycle. Thereby, the temperature slip in the evaporator 9 becomes small (refer FIG.12 (b)), the low pressure in the evaporator 9 rises, and frost formation is prevented.

ステップS1にて外気温度が10℃以上と判断されると、ステップS3へと進み、通常運転(封入組成)が行われる(図1参照)。通常運転(封入組成)では、冷凍サイクルを行う冷媒中の混合割合が冷媒封入時と同等とされ、R32の混合比率が過剰に大きくないため、圧縮機3から吐出された冷媒ガスの吐出ガス温度が所定値以下に保たれた運転となる。   When it is determined in step S1 that the outside air temperature is 10 ° C. or higher, the process proceeds to step S3, and normal operation (encapsulated composition) is performed (see FIG. 1). In normal operation (encapsulated composition), the mixing ratio in the refrigerant that performs the refrigeration cycle is equivalent to that in the refrigerant charging, and the mixing ratio of R32 is not excessively large, so the discharge gas temperature of the refrigerant gas discharged from the compressor 3 Is maintained at a predetermined value or less.

ステップS3にて通常運転(封入組成)を行っている間に、蒸発器出口温度センサ15の計測温度Tho−Rが所定値(例えば−3℃)以上の場合には(ステップS4)、ユニット停止指令の有無を判断する(ステップS5)。ユニット停止指令が出た場合には、冷凍装置1を停止して、処理を終了する。ユニット停止指令が出ていない場合には、ステップS3へと戻り通常運転(封入組成)を継続する。
ステップS4にて蒸発器出口温度センサ15の計測温度Tho−Rが−3℃未満になると、ステップS3へ進み分離運転が行われる。分離運転により、蒸発器9の低圧が上昇して着霜が防止される。
If the measured temperature Tho-R of the evaporator outlet temperature sensor 15 is a predetermined value (for example, −3 ° C.) or more during normal operation (encapsulation composition) in step S3 (step S4), the unit is stopped. The presence / absence of a command is determined (step S5). When the unit stop command is issued, the refrigeration apparatus 1 is stopped and the process is terminated. If the unit stop command has not been issued, the process returns to step S3 to continue the normal operation (encapsulated composition).
When the measured temperature Th0-R of the evaporator outlet temperature sensor 15 is less than −3 ° C. in step S4, the process proceeds to step S3 and the separation operation is performed. By the separation operation, the low pressure of the evaporator 9 rises and frost formation is prevented.

ステップS2にて分離運転を行っている間に、圧縮機3の吸入過熱度が2℃未満を検出するか、分離運転に入ってから所定時間(例えば1時間)を経過したかを判断する(ステップS6)。吸入過熱度は、吸入圧力センサ11で得られた圧力の飽和温度と、蒸発器出口温度センサ15で得られた温度との差分から演算される。   While performing the separation operation in step S2, it is determined whether the suction superheat degree of the compressor 3 is less than 2 ° C. or whether a predetermined time (for example, 1 hour) has elapsed since the separation operation was started ( Step S6). The suction superheat degree is calculated from the difference between the saturation temperature of the pressure obtained by the suction pressure sensor 11 and the temperature obtained by the evaporator outlet temperature sensor 15.

ステップS6にて、吸入過熱度が2℃未満でもなく、分離運転から1時間経過していない場合には、ステップS2へと戻り、分離運転を継続する。   In step S6, if the suction superheat is not less than 2 ° C. and one hour has not elapsed since the separation operation, the process returns to step S2 and the separation operation is continued.

ステップS6にて、吸入過熱度が2℃未満となるか、又は、分離運転から1時間以上経過すると、ステップS7へと進み、通常運転(分離組成)を行う(図3参照)。通常運転(分離組成)では、冷凍サイクルを行う冷媒中からR1234ze(E)を分離してR32の混合比率を高くした運転を行う。これにより、蒸発器9の着霜を抑制するとともに、図13に示したようにCOPが高い運転を行う。   In step S6, when the suction superheat degree is less than 2 ° C. or one hour or more has elapsed from the separation operation, the process proceeds to step S7, and normal operation (separation composition) is performed (see FIG. 3). In the normal operation (separation composition), an operation is performed in which R1234ze (E) is separated from the refrigerant that performs the refrigeration cycle to increase the mixing ratio of R32. Thereby, while suppressing the frost formation of the evaporator 9, operation | movement with high COP is performed as shown in FIG.

通常運転(分離組成)を行っている間に、吐出温度センサ13で計測した吐出温度Tho−Dが所定値(例えば110℃)を超えたか否かを判断する(ステップS8)。吐出温度Tho−Dが110℃を超えた場合には、ステップS9へと進み混合運転(図4参照)を行う。混合運転では、冷凍サイクルを行う冷媒中にR1234ze(E)が混合され、封入時の混合比率に近づくように運転される。これにより、冷凍サイクルを行う冷媒中のR32の混合比率が小さくなり、吐出温度が低下する。混合運転は、所定時間(例えば5分)経過後に終了し、ステップS3へと進んで通常運転(封入組成)が行われる。   During normal operation (separation composition), it is determined whether or not the discharge temperature Tho-D measured by the discharge temperature sensor 13 exceeds a predetermined value (for example, 110 ° C.) (step S8). When the discharge temperature Th0-D exceeds 110 ° C., the process proceeds to step S9 and a mixing operation (see FIG. 4) is performed. In the mixing operation, R1234ze (E) is mixed in the refrigerant performing the refrigeration cycle, and the operation is performed so as to approach the mixing ratio at the time of sealing. Thereby, the mixing ratio of R32 in the refrigerant that performs the refrigeration cycle decreases, and the discharge temperature decreases. The mixing operation is terminated after a predetermined time (for example, 5 minutes) has elapsed, and the routine proceeds to step S3 where the normal operation (encapsulated composition) is performed.

ステップS8にて吐出温度Tho−Dが110℃を超えていない場合には、ステップS10へと進み、ユニット停止指令の有無を判断する。ユニット停止指令が出ていない場合には、ステップS7へと戻り通常運転(分離組成)を継続する。ユニット停止指令が出た場合には、ステップS11へ進み、混合運転を所定時間(例えば5分)行った後に、冷凍装置1を停止して処理を終了する。冷凍装置1を停止する前に混合運転を行うことにより、次回の起動時に冷凍サイクルを行う冷媒中の混合比率を冷媒封入時に戻しておく。   If it is determined in step S8 that the discharge temperature Tho-D does not exceed 110 ° C., the process proceeds to step S10 to determine whether a unit stop command is present. If the unit stop command has not been issued, the process returns to step S7 and the normal operation (separation composition) is continued. When the unit stop command is issued, the process proceeds to step S11, and after the mixing operation is performed for a predetermined time (for example, 5 minutes), the refrigeration apparatus 1 is stopped and the process is terminated. By performing the mixing operation before stopping the refrigeration apparatus 1, the mixing ratio in the refrigerant that performs the refrigeration cycle at the next start-up is returned when the refrigerant is charged.

<冷房運転時>
次に、上記構成の冷凍装置1の冷房運転時における運転モードについて説明する。冷房運転は、圧縮機3の吐出側に設けた四方弁(図示せず)を切り換えて、暖房運転から変更する。これにより、暖房運転時に凝縮器が冷房運転時には蒸発器(室内熱交換器)に切り替わり、暖房運転時の蒸発器が冷房運転時には凝縮器(室外熱交換器)に切り替わる。
<During cooling operation>
Next, the operation mode during the cooling operation of the refrigeration apparatus 1 having the above-described configuration will be described. The cooling operation is changed from the heating operation by switching a four-way valve (not shown) provided on the discharge side of the compressor 3. Thereby, a condenser switches to an evaporator (indoor heat exchanger) at the time of cooling operation, and an evaporator at the time of heating operation switches to a condenser (outdoor heat exchanger) at the time of cooling operation.

[通常運転(封入組成):冷房運転時]
図6には、冷房運転時における通常運転(封入組成)が示されている。この通常運転は、非共沸混合冷媒を冷凍装置1内に封入したときと同等の混合割合(例えばR32:R1234ze(E)=1:1の混合割合)とされた組成で運転するものである。
[Normal operation (encapsulated composition): During cooling operation]
FIG. 6 shows a normal operation (encapsulation composition) during the cooling operation. This normal operation is performed with a composition having a mixing ratio (for example, a mixing ratio of R32: R1234ze (E) = 1: 1) equivalent to that when the non-azeotropic refrigerant mixture is enclosed in the refrigeration apparatus 1. .

取出配管用開閉弁20は閉、ガス戻り配管用開閉弁22は開、液戻り配管用開閉弁24は閉とされている。   The extraction piping on-off valve 20 is closed, the gas return piping on-off valve 22 is open, and the liquid return piping on-off valve 24 is closed.

取出配管用開閉弁20を閉とすることで、冷凍サイクル中から冷媒を取り出すことをせず、冷凍サイクルを行う冷媒の混合割合を変更しない。また、液戻り配管用開閉弁24を開とすることで、気液分離器17内に液冷媒を溜めないようにして、冷凍サイクルを形成する冷媒の混合割合を変更しない。
ガス戻り配管用開閉弁22は開として、膨張弁7によって膨張させられた後の冷媒圧力と均圧させておく。これにより、通常運転中は、低沸点冷媒が未蒸発のまま留まらないようにすることが可能となり、停止中に気液分離器内が未蒸発の冷媒で満たされた液封状態を防止するためである。
By closing the take-off piping on-off valve 20, the refrigerant is not taken out from the refrigeration cycle, and the mixing ratio of the refrigerant that performs the refrigeration cycle is not changed. Further, by opening the on-off valve 24 for the liquid return pipe, the liquid refrigerant is not accumulated in the gas-liquid separator 17 and the mixing ratio of the refrigerant forming the refrigeration cycle is not changed.
The gas return piping on-off valve 22 is opened and equalized with the refrigerant pressure after being expanded by the expansion valve 7. This makes it possible to prevent the low-boiling point refrigerant from remaining unevaporated during normal operation, and to prevent a liquid-sealed state in which the gas-liquid separator is filled with unevaporated refrigerant during stoppage. It is.

[分離運転(冷房運転時)]
図7には、冷房運転時における分離運転が示されている。分離運転は、上述した通常運転(封入組成)の後に行われるものであり、冷凍サイクルを行う冷媒からR1234ze(E)(高沸点冷媒)を分離して、冷凍サイクルを行う冷媒中のR32(低沸点冷媒)の混合割合を増大させる運転である。
[Separation operation (air-cooling operation)]
FIG. 7 shows the separation operation during the cooling operation. The separation operation is performed after the above-described normal operation (encapsulated composition), and R1234ze (E) (high boiling point refrigerant) is separated from the refrigerant that performs the refrigeration cycle, and R32 (low in the refrigerant that performs the refrigeration cycle). This is an operation for increasing the mixing ratio of the boiling point refrigerant.

取出配管用開閉弁20は開、ガス戻り配管用開閉弁22は開、液戻り配管用開閉弁24は閉とされている。   The extraction piping on-off valve 20 is open, the gas return piping on-off valve 22 is open, and the liquid return piping on-off valve 24 is closed.

取出配管用開閉弁20を開とすることで、凝縮器5と膨張弁7との間から液冷媒が気液分離器17内に導かれる。気液分離器17内は、ガス戻り配管用開閉弁22が開とされており、膨張弁7と蒸発器9との間の圧力と同等の低圧とされているため、気液分離器17内に導かれた低沸点冷媒であるR32は高沸点冷媒であるR1234ze(E)よりも優先的に蒸発される。そして、気液分離器17内で蒸発したR32は、ガス戻り配管22を通り、合流位置Bから蒸発器9へと戻され、冷凍サイクルを行う冷媒として用いられる。これにより、冷凍サイクルを行う冷媒中のR32の混合割合が上昇する。   By opening the extraction pipe on-off valve 20, the liquid refrigerant is introduced into the gas-liquid separator 17 from between the condenser 5 and the expansion valve 7. In the gas-liquid separator 17, the gas return pipe on-off valve 22 is opened, and the gas-liquid separator 17 has a low pressure equivalent to the pressure between the expansion valve 7 and the evaporator 9. R32, which is a low-boiling point refrigerant led to (3), is preferentially evaporated over R1234ze (E), which is a high-boiling point refrigerant. Then, R32 evaporated in the gas-liquid separator 17 passes through the gas return pipe 22 and is returned from the joining position B to the evaporator 9 to be used as a refrigerant for performing a refrigeration cycle. This increases the mixing ratio of R32 in the refrigerant that performs the refrigeration cycle.

[通常運転(分離組成):冷房運転時]
図8には、冷房運転時における通常運転(分離組成)が示されている。この通常運転は、上述した分離運転の後に行われるものであり、冷凍サイクルを行う冷媒中のR1234ze(E)が分離されてR32の混合割合が高くなった分離組成とされた状態で運転するものである。
[Normal operation (separated composition): During cooling operation]
FIG. 8 shows a normal operation (separation composition) during the cooling operation. This normal operation is performed after the above-described separation operation, and is operated in a state in which R1234ze (E) in the refrigerant that performs the refrigeration cycle is separated and the mixing ratio of R32 is increased. It is.

取出配管用開閉弁20は閉、ガス戻り配管用開閉弁22は閉、液戻り配管用開閉弁24は閉とされている。   The extraction piping on-off valve 20 is closed, the gas return piping on-off valve 22 is closed, and the liquid return piping on-off valve 24 is closed.

取出配管用開閉弁20を閉とすることで、冷凍サイクル中から冷媒を取り出すことをせず、冷凍サイクルを行う冷媒の混合割合を変更しない。また、液戻り配管用開閉弁24を閉とすることで、気液分離器17内の液冷媒を冷凍サイクル中に戻すことをせず、冷凍サイクルを行う冷媒の混合割合を変更しない。   By closing the take-off piping on-off valve 20, the refrigerant is not taken out from the refrigeration cycle, and the mixing ratio of the refrigerant that performs the refrigeration cycle is not changed. Further, by closing the liquid return pipe open / close valve 24, the liquid refrigerant in the gas-liquid separator 17 is not returned to the refrigeration cycle, and the mixing ratio of the refrigerant for performing the refrigeration cycle is not changed.

ガス戻り配管用開閉弁22は、図3に示した暖房運転時における通常運転(分離組成)とは異なり、閉とされている。これは、冷房運転時には外気温度が暖房運転時に比べて高いため、気液分離器17が設置される室外機内の環境温度が高く、高沸点冷媒であるR1234ze(E)も蒸発してしまい、ガス戻り配管21を通り冷凍サイクルを行う冷媒に合流するおそれがあるからである。なお、気液分離器17が室外機内よりも外気温度の影響を受けない環境(例えば室内)に設置される場合には、暖房運転時における通常運転(分離組成)と同様に、ガス戻り配管用開閉弁22を開としても良い。   The gas return piping on-off valve 22 is closed, unlike the normal operation (separation composition) during the heating operation shown in FIG. This is because the outdoor temperature during cooling operation is higher than that during heating operation, the ambient temperature in the outdoor unit in which the gas-liquid separator 17 is installed is high, and R1234ze (E), which is a high-boiling refrigerant, also evaporates. This is because there is a risk of joining the refrigerant passing through the return pipe 21 and performing the refrigeration cycle. When the gas-liquid separator 17 is installed in an environment (for example, indoors) that is not affected by the outside air temperature as compared with the inside of the outdoor unit, it is for the gas return pipe as in the normal operation (separation composition) during the heating operation. The on-off valve 22 may be opened.

[混合運転:冷房運転時]
図9には、冷房運転時における混合運転が示されている。混合運転は、上述の通常運転(分離組成)の後に行われるものであり、冷凍サイクルを行う冷媒中にR1234ze(E)を混合して冷媒中のR32の混合割合を減少させる運転とされる。
[Mixed operation: during cooling operation]
FIG. 9 shows the mixing operation during the cooling operation. The mixing operation is performed after the above-described normal operation (separation composition), and is an operation in which R1234ze (E) is mixed in the refrigerant that performs the refrigeration cycle to reduce the mixing ratio of R32 in the refrigerant.

取出配管用開閉弁20は開、ガス戻り配管用開閉弁22は閉、液戻り配管用開閉弁24は開とされている。   The extraction piping on-off valve 20 is open, the gas return piping on-off valve 22 is closed, and the liquid return piping on-off valve 24 is open.

取出配管用開閉弁20を開とすることで、凝縮器5と膨張弁7との間から液冷媒が気液分離器17内に導かれる。気液分離器17内は、ガス戻り配管用開閉弁22が閉とされているので、気液分離器17内で蒸発したR32が合流位置Bから冷凍サイクルを行う冷媒に供給されることはない。一方、液戻り配管用開閉弁24が開とされているので、気液分離器17内に貯留された液冷媒が、液戻り配管23を通り合流位置Bから蒸発器9へと導かれる。これにより、分離運転(図7参照)によってR1234ze(E)が濃縮された気液分離器17内の液冷媒が冷凍サイクルを行う冷媒中に戻されるので、冷凍サイクルを行う冷媒中のR1234ze(E)の混合割合が上昇する。   By opening the extraction pipe on-off valve 20, the liquid refrigerant is introduced into the gas-liquid separator 17 from between the condenser 5 and the expansion valve 7. Since the gas return pipe open / close valve 22 is closed in the gas / liquid separator 17, R32 evaporated in the gas / liquid separator 17 is not supplied from the joining position B to the refrigerant that performs the refrigeration cycle. . On the other hand, since the liquid return pipe opening / closing valve 24 is opened, the liquid refrigerant stored in the gas-liquid separator 17 is guided from the merging position B to the evaporator 9 through the liquid return pipe 23. As a result, the liquid refrigerant in the gas-liquid separator 17 in which R1234ze (E) is concentrated by the separation operation (see FIG. 7) is returned to the refrigerant that performs the refrigeration cycle, so that R1234ze (E in the refrigerant that performs the refrigeration cycle). ) Mixing ratio increases.

次に、図10を用いて、冷房運転時の冷凍装置1の制御方法について説明する。以下に示す各ステップは、制御部からの指令によって行われる。   Next, a control method of the refrigeration apparatus 1 during the cooling operation will be described with reference to FIG. Each step shown below is performed by a command from the control unit.

運転が開始されると、ステップS21へと進み、分離運転(図7参照)が行われ、冷凍サイクルを行う冷媒中のR32の混合比率を上昇させる。これにより、COPが向上した冷房運転が行われる(図13参照)。   When the operation is started, the process proceeds to step S21, where the separation operation (see FIG. 7) is performed, and the mixing ratio of R32 in the refrigerant that performs the refrigeration cycle is increased. Thereby, the cooling operation with improved COP is performed (see FIG. 13).

ステップS21にて分離運転を行っている間に、圧縮機3の吸入過熱度が2℃未満を検出するか、分離運転に入ってから所定時間(例えば1時間)を経過したかを判断する(ステップS22)。   While performing the separation operation in step S21, it is determined whether the suction superheat degree of the compressor 3 is less than 2 ° C. or whether a predetermined time (for example, 1 hour) has passed since the separation operation was started ( Step S22).

ステップS22にて、吸入過熱度が2℃未満でもなく、分離運転から1時間経過していない場合には、ステップS21へと戻り、分離運転を継続する。   In step S22, if the suction superheat is not less than 2 ° C. and one hour has not passed since the separation operation, the process returns to step S21 and the separation operation is continued.

ステップS22にて、吸入過熱度が2℃未満となるか、分離運転から1時間以上経過すると、ステップS23へと進み、通常運転(分離組成)を行う(図8参照)。通常運転(分離組成)では、冷凍サイクルを行う冷媒中からR1234ze(E)を分離してR32の混合比率を高くした運転を行う。これにより、COPが高い冷房運転が継続される。   In step S22, when the suction superheat degree is less than 2 ° C. or one hour or more has elapsed from the separation operation, the process proceeds to step S23, and normal operation (separation composition) is performed (see FIG. 8). In the normal operation (separation composition), an operation is performed in which R1234ze (E) is separated from the refrigerant that performs the refrigeration cycle to increase the mixing ratio of R32. Thereby, the cooling operation with high COP is continued.

ステップS23にて通常運転(分離組成)を行っている間に、吐出温度センサ13で計測した吐出温度Tho−Dが所定値(例えば110℃)を超えたか否かを判断する(ステップS24)。吐出温度Tho−Dが110℃を超えた場合には、ステップS25へと進み混合運転(図9参照)を行う。混合運転では、冷凍サイクルを行う冷媒中にR1234ze(E)が混合され、封入時の混合比率に近づくように運転される。これにより、冷凍サイクルを行う冷媒中のR32の混合比率が小さくなり、吐出温度が低下する。混合運転は、所定時間(例えば5分)経過後に終了し、ステップS26へと進んで通常運転(封入組成)が行われる(図6参照)。   During the normal operation (separation composition) in step S23, it is determined whether or not the discharge temperature Tho-D measured by the discharge temperature sensor 13 exceeds a predetermined value (for example, 110 ° C.) (step S24). When the discharge temperature Th0-D exceeds 110 ° C., the process proceeds to step S25 and a mixing operation (see FIG. 9) is performed. In the mixing operation, R1234ze (E) is mixed in the refrigerant performing the refrigeration cycle, and the operation is performed so as to approach the mixing ratio at the time of sealing. Thereby, the mixing ratio of R32 in the refrigerant that performs the refrigeration cycle decreases, and the discharge temperature decreases. The mixing operation is terminated after a predetermined time (for example, 5 minutes) has elapsed, and the routine proceeds to step S26 where the normal operation (encapsulated composition) is performed (see FIG. 6).

通常運転(封入組成)では、冷凍サイクルを行う冷媒中の混合割合が冷媒封入時と同等とされ、R32の混合比率が大きくないため、圧縮機3から吐出された冷媒ガスの吐出ガス温度が所定値以下に保たれた運転となる。   In normal operation (encapsulated composition), the mixing ratio in the refrigerant that performs the refrigeration cycle is equal to that at the time of refrigerant charging, and the mixing ratio of R32 is not large, so the discharge gas temperature of the refrigerant gas discharged from the compressor 3 is predetermined. The operation is kept below the value.

ステップS26にて通常運転(封入組成)を行っている間に、ユニット停止指令の有無を判断する(ステップS27)。ユニット停止指令が出た場合には、冷凍装置1を停止して、処理を終了する。ユニット停止指令が出ていない場合には、ステップS26へと戻り通常運転(封入組成)を継続する。   During normal operation (encapsulation composition) in step S26, it is determined whether there is a unit stop command (step S27). When the unit stop command is issued, the refrigeration apparatus 1 is stopped and the process is terminated. If the unit stop command has not been issued, the process returns to step S26 to continue the normal operation (encapsulated composition).

ステップS24にて吐出温度Tho−Dが110℃を超えていない場合には、ステップS28へと進み、ユニット停止指令の有無を判断する。ユニット停止指令が出ていない場合には、ステップS23へと戻り通常運転(分離組成)を継続する。ユニット停止指令が出た場合には、ステップS29へ進み、混合運転を所定時間(例えば5分)行った後に、冷凍装置1を停止して処理を終了する。冷凍装置1を停止する前に混合運転を行うことにより、次回の起動時に冷凍サイクルを行う冷媒中の混合比率を冷媒封入時に戻しておく。   If it is determined in step S24 that the discharge temperature Tho-D does not exceed 110 ° C., the process proceeds to step S28 to determine whether a unit stop command is present. If no unit stop command has been issued, the process returns to step S23 to continue normal operation (separation composition). When the unit stop command is issued, the process proceeds to step S29, and after the mixing operation is performed for a predetermined time (for example, 5 minutes), the refrigeration apparatus 1 is stopped and the process is terminated. By performing the mixing operation before stopping the refrigeration apparatus 1, the mixing ratio in the refrigerant that performs the refrigeration cycle at the next start-up is returned when the refrigerant is charged.

以上の通り、本実施形態によれば、以下の作用効果を奏する。
気液分離器17に各配管19,21,23を接続し、各開閉弁20,22,24の制御を行うだけで、気液分離器17で気液分離したガス冷媒または液冷媒を冷凍サイクル中に戻すことができるので、簡便な構成で低沸点冷媒(R32)と高沸点冷媒(R1234ze(E)との混合割合を任意に変更することができる。
As described above, according to the present embodiment, the following operational effects are obtained.
The pipe 19, 21, 23 is connected to the gas-liquid separator 17, and the gas refrigerant or liquid refrigerant separated by the gas-liquid separator 17 can be refrigerated by simply controlling the on-off valves 20, 22, 24. Since it can be returned to the inside, the mixing ratio of the low-boiling point refrigerant (R32) and the high-boiling point refrigerant (R1234ze (E)) can be arbitrarily changed with a simple configuration.

暖房運転時には、一般に外気温度が低いので、蒸発器9の温度が低くなる。蒸発器9の温度が所定値以下になると、例えば蒸発器に着霜が生じるといった不具合が生じる。そこで、外気温度が所定値(例えば10℃)未満または蒸発器出口温度が所定値(例えば−3℃)未満になった場合には、ガス戻り配管用開閉弁22を開とすることで、冷凍サイクル中のR32(低沸点冷媒)の割合を高くする。このときに、取出配管用開閉弁20も開とすることで、冷凍サイクルから冷媒を気液分離器17へと導き、気液分離器17にて気液分離を行ってR32を冷凍サイクル中に戻すことで、冷凍サイクル中のR32の割合上昇をさらに促進する。このような分離運転(図2参照)を行うことで、冷凍サイクルを行う冷媒からR1234ze(E)(高沸点冷媒)を分離してR32の割合を高くする分離運転を行うことで、温度すべりを小さくし、蒸発器9での飽和温度を上昇させて着霜を抑制することができる。   During the heating operation, since the outside air temperature is generally low, the temperature of the evaporator 9 becomes low. When the temperature of the evaporator 9 becomes equal to or lower than a predetermined value, for example, a problem that frost formation occurs in the evaporator occurs. Therefore, when the outside air temperature is lower than a predetermined value (for example, 10 ° C.) or the evaporator outlet temperature is lower than the predetermined value (for example, −3 ° C.), the gas return pipe on-off valve 22 is opened to Increase the ratio of R32 (low boiling point refrigerant) in the cycle. At this time, by opening the take-off piping on-off valve 20 as well, the refrigerant is guided from the refrigeration cycle to the gas-liquid separator 17, and the gas-liquid separator 17 performs gas-liquid separation so that R32 is placed in the refrigeration cycle. By returning, the rate increase of R32 in the refrigeration cycle is further promoted. By performing such a separation operation (see FIG. 2), by performing a separation operation in which R1234ze (E) (high boiling point refrigerant) is separated from the refrigerant that performs the refrigeration cycle and the ratio of R32 is increased, temperature slip is reduced. The frosting can be suppressed by reducing the temperature and increasing the saturation temperature in the evaporator 9.

分離運転(図2参照)を行ってから所定期間(例えば1時間)経過後に、または、吸入過熱度が所定値(例えば2℃)未満となった後に、取出配管用開閉弁20を閉とすることで、冷凍サイクルを行う冷媒の一部を気液分離器17に取り出すことを停止する(図3参照)。これにより、冷凍サイクルを行う冷媒中のR32の割合を上昇させる制御を停止して、分離運転を行った後の混合冷媒の組成で通常運転(分離組成)を行うことができる。   After a predetermined period (for example, 1 hour) has elapsed since the separation operation (see FIG. 2), or after the intake superheat has become less than a predetermined value (for example, 2 ° C.), the extraction pipe on-off valve 20 is closed. Thus, taking out a part of the refrigerant that performs the refrigeration cycle to the gas-liquid separator 17 is stopped (see FIG. 3). Thereby, the control which raises the ratio of R32 in the refrigerant | coolant which performs a refrigerating cycle can be stopped, and a normal driving | operation (separation composition) can be performed with the composition of the mixed refrigerant after performing a separation driving | operation.

暖房運転時に、外気温度が所定値(例えば10℃)以上となると、蒸発器9の着霜といった不具合のおそれがなくなる。そこで、外気温度が所定値以上となった場合には、ガス戻り配管用開閉弁22を閉として、R32が冷凍サイクル中に優先的に戻されることを停止する。そして、液戻り配管用開閉弁24を開として、気液分離器17内の液冷媒中に多く存在するR1234ze(E)を冷凍サイクル中に戻す。このときに、取出配管用開閉弁20も開とすることで、冷凍サイクルから冷媒を気液分離器17へと導き、気液分離器17にて気液分離を行って液相中のR1234ze(E)を優先的に冷凍サイクル中に戻すことで、冷凍サイクル中のR1234ze(E)の割合上昇を促進する。
このように、冷凍サイクルを行う冷媒中にR1234ze(E)を混合する混合運転を行うことで、冷媒中のR1234ze(E)の割合を高くして、冷媒封入時の混合割合に戻すことができる。
また、圧縮機3から吐出される吐出ガス温度が所定値(例えば110℃)以上になった場合には、混合運転によって冷媒の混合割合を冷媒封入時に戻すことで、吐出ガス温度を低下させることができる。
If the outside air temperature becomes a predetermined value (for example, 10 ° C.) or more during the heating operation, there is no possibility of a problem such as frost formation on the evaporator 9. Therefore, when the outside air temperature becomes equal to or higher than a predetermined value, the gas return pipe on-off valve 22 is closed to stop the R32 from being returned preferentially during the refrigeration cycle. Then, the on-off valve 24 for the liquid return pipe is opened to return R1234ze (E), which is present in the liquid refrigerant in the gas-liquid separator 17, to the refrigeration cycle. At this time, by opening the take-off piping on-off valve 20 as well, the refrigerant is led from the refrigeration cycle to the gas-liquid separator 17, and the gas-liquid separator 17 performs gas-liquid separation, so that R1234ze ( By preferentially returning E) into the refrigeration cycle, the rate of R1234ze (E) in the refrigeration cycle is increased.
Thus, by performing the mixing operation in which R1234ze (E) is mixed in the refrigerant that performs the refrigeration cycle, the ratio of R1234ze (E) in the refrigerant can be increased and returned to the mixing ratio at the time of filling the refrigerant. .
Further, when the discharge gas temperature discharged from the compressor 3 becomes a predetermined value (for example, 110 ° C.) or higher, the discharge gas temperature is lowered by returning the mixing ratio of the refrigerant at the time of filling the refrigerant by the mixing operation. Can do.

冷房運転時には、取出配管用開閉弁20およびガス戻り配管用開閉弁22を開とする分離運転(図7参照)を行うことで、冷凍サイクルを行う冷媒中のR32の割合を高くする。これにより、高効率な冷房運転を実現することができる。   During the cooling operation, by performing a separation operation (see FIG. 7) in which the extraction piping on-off valve 20 and the gas return piping on-off valve 22 are opened, the ratio of R32 in the refrigerant that performs the refrigeration cycle is increased. Thereby, highly efficient cooling operation is realizable.

冷房運転時においても、吐出ガス温度が所定値(例えば110℃)以上となった場合には、取出配管用開閉弁20を開とし、ガス戻り配管用開閉弁22を閉とし、液戻り配管用開閉弁24を開とする混合運転(図9参照)を行うことで、冷媒中のR1234ze(E)の割合を高くして、冷媒封入時の混合割合に戻すこととした。これにより、圧縮機3の吐出ガス温度が過剰に高くなることを回避することで、機器の保護を図ることができる。   Even during the cooling operation, when the discharge gas temperature becomes a predetermined value (for example, 110 ° C.) or more, the extraction piping on-off valve 20 is opened, the gas return piping on-off valve 22 is closed, and the liquid return piping is on. By performing the mixing operation (see FIG. 9) in which the on-off valve 24 is opened, the ratio of R1234ze (E) in the refrigerant is increased and returned to the mixing ratio at the time of charging the refrigerant. Thereby, protection of an apparatus can be aimed at by avoiding that the discharge gas temperature of the compressor 3 becomes high too much.

なお、上述した実施形態では、冷暖房の切り替えが可能な冷凍装置について説明したが、本発明はこれに限定されるものではなく、暖房運転のみ又は冷房運転のみを行う冷凍装置に対しても適用することができる。   In the above-described embodiment, the refrigeration apparatus capable of switching between cooling and heating has been described. However, the present invention is not limited to this and is also applied to a refrigeration apparatus that performs only heating operation or cooling operation. be able to.

1 冷凍装置
3 圧縮機
5 凝縮器
7 膨張弁
9 蒸発器
11 吸入圧力センサ
13 吐出温度センサ
15 蒸発器出口温度センサ
17 気液分離器
19 取出配管
20 取出配管用開閉弁
21 ガス戻り配管
22 ガス戻り配管用開閉弁
23 液戻り配管
24 液戻り配管用開閉弁
A 取出位置
B 合流位置
DESCRIPTION OF SYMBOLS 1 Refrigeration apparatus 3 Compressor 5 Condenser 7 Expansion valve 9 Evaporator 11 Suction pressure sensor 13 Discharge temperature sensor 15 Evaporator outlet temperature sensor 17 Gas-liquid separator 19 Extraction piping 20 Extraction piping on-off valve 21 Gas return piping 22 Gas return Pipe open / close valve 23 Liquid return pipe 24 Liquid return pipe open / close valve A Extraction position B Merge position

Claims (7)

沸点が異なる低沸点冷媒と高沸点冷媒とが混合された非共沸混合冷媒を圧縮する圧縮機と、
該圧縮機から導かれた非共沸混合冷媒を凝縮させる凝縮器と、
該凝縮器から導かれた非共沸混合冷媒を膨張させる膨張弁と、
該膨張弁から導かれた非共沸混合冷媒を蒸発させる蒸発器と、
前記凝縮器と前記膨張弁との間から非共沸混合冷媒の一部を取り出す取出配管と、
該取出配管に設けられた取出配管用開閉弁と、
前記取出配管に接続され、非共沸混合冷媒を貯留して気液分離する気液分離器と、
前記膨張弁と前記蒸発器との間と前記気液分離器内のガス相部とを接続するガス戻り配管と、
該ガス戻り配管に設けられたガス戻り配管用開閉弁と、
前記膨張弁と前記蒸発器との間と前記気液分離器内の液相部とを接続する液戻り配管と、
前記液戻り配管に設けられた液戻り配管用開閉弁と、
前記取出配管用開閉弁、前記ガス戻り配管用開閉弁および前記液戻り配管用開閉弁を制御する制御部と、
を備えていることを特徴とする冷凍装置。
A compressor that compresses a non-azeotropic refrigerant mixture in which a low-boiling refrigerant and a high-boiling refrigerant having different boiling points are mixed;
A condenser for condensing a non-azeotropic refrigerant mixture led from the compressor;
An expansion valve for expanding the non-azeotropic refrigerant mixture led from the condenser;
An evaporator for evaporating the non-azeotropic refrigerant mixture led from the expansion valve;
An extraction pipe for taking out part of the non-azeotropic refrigerant mixture from between the condenser and the expansion valve;
An opening / closing valve for the extraction pipe provided in the extraction pipe;
A gas-liquid separator connected to the extraction pipe and storing a non-azeotropic refrigerant mixture for gas-liquid separation;
A gas return pipe connecting between the expansion valve and the evaporator and a gas phase part in the gas-liquid separator;
An on-off valve for the gas return pipe provided in the gas return pipe;
A liquid return pipe connecting between the expansion valve and the evaporator and a liquid phase part in the gas-liquid separator;
An opening / closing valve for the liquid return pipe provided in the liquid return pipe;
A control unit for controlling the on-off valve for the extraction pipe, the on-off valve for the gas return pipe, and the on-off valve for the liquid return pipe;
A refrigeration apparatus comprising:
前記制御部は、暖房運転時に、外気温度が所定値未満または前記蒸発器の温度が所定値未満となった場合に、前記取出配管用開閉弁を開とし、前記ガス戻り配管用開閉弁を開として、前記気液分離器で分離したガス冷媒を前記ガス戻り配管から前記蒸発器側へと戻す分離運転を行うことを特徴とする請求項1に記載の冷凍装置。   The controller opens the extraction pipe on-off valve and opens the gas return pipe on-off valve when the outside air temperature is lower than a predetermined value or the evaporator temperature is lower than a predetermined value during heating operation. The refrigeration apparatus according to claim 1, wherein a separation operation is performed in which the gas refrigerant separated by the gas-liquid separator is returned from the gas return pipe to the evaporator side. 前記制御部は、前記分離運転を開始してから所定期間経過後に、または、前記圧縮機が吸い込む非共沸混合冷媒の過熱度が所定値未満となった後に、前記取出配管用開閉弁を閉とすることを特徴とする請求項2に記載の冷凍装置。   The control unit closes the extraction pipe on-off valve after a predetermined period has elapsed since the start of the separation operation, or after the degree of superheat of the non-azeotropic refrigerant mixture sucked by the compressor becomes less than a predetermined value. The refrigeration apparatus according to claim 2, wherein: 前記制御部は、外気温度が所定値以上または前記圧縮機から吐出される吐出ガス温度が所定値以上となった場合に、前記取出配管用開閉弁を開とし、前記ガス戻り配管用開閉弁を閉とし、前記液戻り配管用開閉弁を開とすることを特徴とする請求項2又は3に記載の冷凍装置。   When the outside air temperature is equal to or higher than a predetermined value or the discharge gas temperature discharged from the compressor is equal to or higher than a predetermined value, the control unit opens the extraction pipe on-off valve and opens the gas return pipe on-off valve. The refrigeration apparatus according to claim 2 or 3, wherein the refrigeration apparatus is closed and the on-off valve for the liquid return pipe is opened. 前記制御部は、冷房運転時に、前記取出配管用開閉弁を開とし、前記ガス戻り配管用開閉弁を開とすることを特徴とする請求項1に記載の冷凍装置。   2. The refrigeration apparatus according to claim 1, wherein the control unit opens the extraction pipe on-off valve and opens the gas return pipe on-off valve during cooling operation. 前記制御部は、前記圧縮機から吐出される吐出ガス温度が所定値以上となった場合に、前記取出配管用開閉弁を開とし、前記ガス戻り配管用開閉弁を閉とし、前記液戻り配管用開閉弁を開とすることを特徴とする請求項4に記載の冷凍装置。   The control unit opens the extraction piping on-off valve, closes the gas return piping on-off valve, and closes the liquid return piping when the temperature of the discharge gas discharged from the compressor exceeds a predetermined value. 5. The refrigeration apparatus according to claim 4, wherein the on-off valve is opened. 沸点が異なる低沸点冷媒と高沸点冷媒とが混合された非共沸混合冷媒を圧縮する圧縮機と、
該圧縮機から導かれた非共沸混合冷媒を凝縮させる凝縮器と、
該凝縮器から導かれた非共沸混合冷媒を膨張させる膨張弁と、
該膨張弁から導かれた非共沸混合冷媒を蒸発させる蒸発器と、
前記凝縮器と前記膨張弁との間から非共沸混合冷媒の一部を取り出す取出配管と、
該取出配管に設けられた取出配管用開閉弁と、
前記取出配管に接続され、非共沸混合冷媒を貯留して気液分離する気液分離器と、
前記膨張弁と前記蒸発器との間と前記気液分離器内のガス相部とを接続するガス戻り配管と、
該ガス戻り配管に設けられたガス戻り配管用開閉弁と、
前記膨張弁と前記蒸発器との間と前記気液分離器内の液相部とを接続する液戻り配管と、
前記液戻り配管に設けられた液戻り配管用開閉弁と、
を備えた冷凍装置の制御方法であって、
前記取出配管用開閉弁、前記ガス戻り配管用開閉弁および前記液戻り配管用開閉弁の開閉制御を行うことを特徴とする冷凍装置の制御方法。
A compressor that compresses a non-azeotropic refrigerant mixture in which a low-boiling refrigerant and a high-boiling refrigerant having different boiling points are mixed;
A condenser for condensing a non-azeotropic refrigerant mixture led from the compressor;
An expansion valve for expanding the non-azeotropic refrigerant mixture led from the condenser;
An evaporator for evaporating the non-azeotropic refrigerant mixture led from the expansion valve;
An extraction pipe for taking out part of the non-azeotropic refrigerant mixture from between the condenser and the expansion valve;
An opening / closing valve for the extraction pipe provided in the extraction pipe;
A gas-liquid separator connected to the extraction pipe and storing a non-azeotropic refrigerant mixture for gas-liquid separation;
A gas return pipe connecting between the expansion valve and the evaporator and a gas phase part in the gas-liquid separator;
An on-off valve for the gas return pipe provided in the gas return pipe;
A liquid return pipe connecting between the expansion valve and the evaporator and a liquid phase part in the gas-liquid separator;
An opening / closing valve for the liquid return pipe provided in the liquid return pipe;
A method for controlling a refrigeration apparatus comprising:
A control method for a refrigerating apparatus, wherein opening / closing control of the extraction piping on-off valve, the gas return piping on-off valve, and the liquid return piping on-off valve is performed.
JP2016153753A 2016-08-04 2016-08-04 Refrigeration apparatus and control method thereof Active JP6692715B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016153753A JP6692715B2 (en) 2016-08-04 2016-08-04 Refrigeration apparatus and control method thereof
PCT/JP2017/028003 WO2018025900A1 (en) 2016-08-04 2017-08-02 Refrigeration device and control method therefor
EP17837002.9A EP3462108A4 (en) 2016-08-04 2017-08-02 Refrigeration device and control method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016153753A JP6692715B2 (en) 2016-08-04 2016-08-04 Refrigeration apparatus and control method thereof

Publications (3)

Publication Number Publication Date
JP2018021721A true JP2018021721A (en) 2018-02-08
JP2018021721A5 JP2018021721A5 (en) 2019-04-18
JP6692715B2 JP6692715B2 (en) 2020-05-13

Family

ID=61072767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016153753A Active JP6692715B2 (en) 2016-08-04 2016-08-04 Refrigeration apparatus and control method thereof

Country Status (3)

Country Link
EP (1) EP3462108A4 (en)
JP (1) JP6692715B2 (en)
WO (1) WO2018025900A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111435040A (en) * 2019-01-11 2020-07-21 青岛海尔智能技术研发有限公司 Refrigerating system and refrigerating equipment
KR102188984B1 (en) * 2020-06-18 2020-12-10 오석재 heat pump system
CN114739026A (en) * 2022-03-22 2022-07-12 澳柯玛股份有限公司 Mixed refrigerant refrigerating system for display cabinet
WO2022149187A1 (en) * 2021-01-05 2022-07-14 三菱電機株式会社 Refrigeration cycle apparatus
WO2022249394A1 (en) 2021-05-27 2022-12-01 三菱電機株式会社 Refrigeration cycle device
WO2023176697A1 (en) * 2022-03-16 2023-09-21 株式会社富士通ゼネラル Refrigeration cycle device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020083823A1 (en) * 2018-10-21 2020-04-30 Proff Investment As Cooling system
KR20200070035A (en) 2018-12-08 2020-06-17 이동원 A Control method of heat pump
KR20200085623A (en) 2019-01-07 2020-07-15 이동원 A Control method of heat pump
KR20200086593A (en) 2019-01-09 2020-07-17 이동원 A Control method of heat pump
KR20200123603A (en) 2019-04-22 2020-10-30 이동원 Heat pump and it's Control method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687746A (en) * 1979-12-12 1981-07-16 Gen Electric Steam compression cycle device and method of adjusting its volume
JPS616567A (en) * 1984-06-19 1986-01-13 松下電器産業株式会社 Heat pump device
JPS63129253A (en) * 1986-11-19 1988-06-01 三菱重工業株式会社 Heat pump device
JPH0798161A (en) * 1993-09-29 1995-04-11 Toshiba Corp Freezer using mixed refrigerant
JPH07198215A (en) * 1993-12-28 1995-08-01 Mitsubishi Heavy Ind Ltd Freezer
JPH07332814A (en) * 1994-06-08 1995-12-22 Daikin Ind Ltd Heat pump system
JPH1123078A (en) * 1997-06-27 1999-01-26 Sanyo Electric Co Ltd Refrigerating device
JP2003028518A (en) * 2001-07-19 2003-01-29 Fujitsu General Ltd Air conditioner
JP2007085586A (en) * 2005-09-20 2007-04-05 Sanden Corp Refrigerating system
WO2009154149A1 (en) * 2008-06-16 2009-12-23 三菱電機株式会社 Non‑azeotropic refrigerant mixture and refrigeration cycle device
JP2013204936A (en) * 2012-03-28 2013-10-07 Fujitsu General Ltd Air conditioner

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687746A (en) * 1979-12-12 1981-07-16 Gen Electric Steam compression cycle device and method of adjusting its volume
JPS616567A (en) * 1984-06-19 1986-01-13 松下電器産業株式会社 Heat pump device
JPS63129253A (en) * 1986-11-19 1988-06-01 三菱重工業株式会社 Heat pump device
JPH0798161A (en) * 1993-09-29 1995-04-11 Toshiba Corp Freezer using mixed refrigerant
JPH07198215A (en) * 1993-12-28 1995-08-01 Mitsubishi Heavy Ind Ltd Freezer
JPH07332814A (en) * 1994-06-08 1995-12-22 Daikin Ind Ltd Heat pump system
JPH1123078A (en) * 1997-06-27 1999-01-26 Sanyo Electric Co Ltd Refrigerating device
JP2003028518A (en) * 2001-07-19 2003-01-29 Fujitsu General Ltd Air conditioner
JP2007085586A (en) * 2005-09-20 2007-04-05 Sanden Corp Refrigerating system
WO2009154149A1 (en) * 2008-06-16 2009-12-23 三菱電機株式会社 Non‑azeotropic refrigerant mixture and refrigeration cycle device
JP2013204936A (en) * 2012-03-28 2013-10-07 Fujitsu General Ltd Air conditioner

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111435040A (en) * 2019-01-11 2020-07-21 青岛海尔智能技术研发有限公司 Refrigerating system and refrigerating equipment
KR102188984B1 (en) * 2020-06-18 2020-12-10 오석재 heat pump system
WO2022149187A1 (en) * 2021-01-05 2022-07-14 三菱電機株式会社 Refrigeration cycle apparatus
WO2022249394A1 (en) 2021-05-27 2022-12-01 三菱電機株式会社 Refrigeration cycle device
WO2023176697A1 (en) * 2022-03-16 2023-09-21 株式会社富士通ゼネラル Refrigeration cycle device
CN114739026A (en) * 2022-03-22 2022-07-12 澳柯玛股份有限公司 Mixed refrigerant refrigerating system for display cabinet
CN114739026B (en) * 2022-03-22 2023-10-13 澳柯玛股份有限公司 Mixed refrigerant refrigerating system for display cabinet

Also Published As

Publication number Publication date
EP3462108A4 (en) 2019-05-22
JP6692715B2 (en) 2020-05-13
WO2018025900A1 (en) 2018-02-08
EP3462108A1 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
JP6692715B2 (en) Refrigeration apparatus and control method thereof
JP4799347B2 (en) Hot water supply, cold and hot water air conditioner
JP6157721B2 (en) Refrigeration apparatus and control method of refrigeration apparatus
US10001310B2 (en) Binary refrigeration apparatus
WO2015140879A1 (en) Refrigeration cycle device
WO2015140870A1 (en) Refrigeration cycle apparatus
JP4905018B2 (en) Refrigeration equipment
CN105579787A (en) Refrigeration cycle device
JP5449266B2 (en) Refrigeration cycle equipment
WO2018025935A1 (en) Heat pump device and control method therefor
WO2014038028A1 (en) Refrigerating device
JP5871723B2 (en) Air conditioner and control method thereof
JP2005214575A (en) Refrigerator
JP2007155143A (en) Refrigerating device
WO2018229826A1 (en) Refrigeration cycle device
JP3749092B2 (en) Refrigerant sealing method and air conditioner
WO2016135904A1 (en) Refrigeration apparatus
JP2012122637A (en) Refrigeration cycle apparatus
JP2002364937A (en) Refrigerator
JP6590945B2 (en) Refrigeration equipment
TWI568984B (en) Gas - liquid heat exchange type refrigeration device
JP6267483B2 (en) Refrigerator unit and refrigeration equipment
JP2009036508A (en) Supercooling system
JP2009024998A (en) Supercooling device
KR20070078194A (en) Air conditioner and the method for controlling the operation thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190307

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200415

R150 Certificate of patent or registration of utility model

Ref document number: 6692715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150