WO2016135904A1 - Refrigeration apparatus - Google Patents

Refrigeration apparatus Download PDF

Info

Publication number
WO2016135904A1
WO2016135904A1 PCT/JP2015/055476 JP2015055476W WO2016135904A1 WO 2016135904 A1 WO2016135904 A1 WO 2016135904A1 JP 2015055476 W JP2015055476 W JP 2015055476W WO 2016135904 A1 WO2016135904 A1 WO 2016135904A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat source
amount
temperature
refrigeration apparatus
Prior art date
Application number
PCT/JP2015/055476
Other languages
French (fr)
Japanese (ja)
Inventor
佐多 裕士
齊藤 信
久登 森田
洋貴 佐藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017501756A priority Critical patent/JP6449979B2/en
Priority to PCT/JP2015/055476 priority patent/WO2016135904A1/en
Priority to CN201580072558.3A priority patent/CN107110586B/en
Publication of WO2016135904A1 publication Critical patent/WO2016135904A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present invention relates to a refrigeration apparatus for determining the amount of refrigerant in a refrigerant circuit.
  • a temperature difference between the inlet refrigerant temperature and the outlet refrigerant temperature of the subcooler is calculated, and it is determined that the refrigerant is leaking when the temperature difference is smaller than a set value.
  • a temperature difference between the inlet refrigerant temperature and the outlet refrigerant temperature of the subcooler is calculated, and it is determined that the refrigerant is leaking when the temperature difference is smaller than a set value.
  • Patent Document 1 uses the change in the degree of supercooling to determine the shortage of the refrigerant amount, erroneous determination is likely to occur in the refrigerant leakage determination. This is because the degree of supercooling varies greatly depending on the operating conditions of the refrigeration apparatus.
  • the present invention has been made against the background of the above-described problems, and an object thereof is to obtain a refrigeration apparatus capable of accurately determining the amount of refrigerant.
  • a refrigeration apparatus includes a heat source side unit having a heat source side heat exchanger and a supercooler functioning as a compressor and a condenser, and a usage side heat exchanger functioning as a usage side expansion valve and an evaporator.
  • a refrigerating apparatus having a refrigerant circuit that is connected by piping and circulates a refrigerant, the degree of supercooling of the refrigerant at the outlet of the subcooler being a maximum temperature difference of the subcooler.
  • a refrigerant amount determination unit that determines the amount of refrigerant charged in the refrigerant circuit using the temperature efficiency of the subcooler, which is a value obtained by dividing, and the refrigerant amount determination unit acquires the operating state of the refrigeration apparatus, If the determination of the refrigerant amount is likely to be an erroneous determination, the refrigerant amount is not determined.
  • the refrigerant amount can be accurately determined.
  • FIG. 2 is an example of a ph diagram when the amount of refrigerant in the refrigeration apparatus shown in FIG. 1 is appropriate.
  • FIG. 2 is an example of a ph diagram when the refrigerant amount of the refrigeration apparatus shown in FIG. 1 is insufficient. It is a figure explaining the relationship between the refrigerant
  • FIG. 1 is a diagram for explaining an example of a temperature change of a refrigerant when the refrigerant flows in the order of a heat source side heat exchanger, a receiver, and an air supercooler when the refrigerant amount is an appropriate amount in the refrigeration apparatus illustrated in FIG. 1. It is. It is a figure explaining the relationship between the refrigerant
  • FIG. [Refrigeration equipment] 1 is a diagram schematically illustrating an example of a refrigerant circuit of a refrigeration apparatus according to Embodiment 1 of the present invention.
  • the refrigeration apparatus 1 illustrated in FIG. 1 performs, for example, room cooling such as a room, a warehouse, a showcase, or a refrigerator by performing a vapor compression refrigeration cycle operation.
  • the refrigeration apparatus 1 includes, for example, one heat source side unit 2 and two usage side units 4 connected in parallel to the heat source side unit 2.
  • the heat source side unit 2 and the use side unit 4 are connected by the liquid refrigerant extension pipe 6 and the gas refrigerant extension pipe 7, whereby the refrigerant circuit 10 for circulating the refrigerant is formed.
  • the refrigerant charged in the refrigerant circuit 10 of this embodiment is, for example, R410A, which is an HFC mixed refrigerant.
  • R410A which is an HFC mixed refrigerant.
  • one heat source side unit 2 and two usage side units 4 are described.
  • two or more heat source side units 2 may be used. May be one or three or more.
  • the capacities of the plurality of heat source side units 2 may be the same or different.
  • the capacity of the plurality of usage-side units 4 may be the same or different.
  • the refrigeration apparatus 1 in which the refrigerant exchanges heat with air will be described.
  • the refrigerant may be a refrigeration apparatus that exchanges heat with a fluid such as water, refrigerant, or brine.
  • the use side unit 4 is an indoor unit that is installed indoors, for example, and includes a use side refrigerant circuit 10 a and a use side control unit 32 that constitute a part of the refrigerant circuit 10.
  • the use side refrigerant circuit 10 a includes a use side expansion valve 41 and a use side heat exchanger 42.
  • the use side expansion valve 41 adjusts the flow rate of the refrigerant flowing through the use side refrigerant circuit 10a, and is configured by, for example, an electronic expansion valve or a temperature type expansion valve.
  • the use side expansion valve 41 may be disposed in the heat source side unit 2, and in this case, the use side expansion valve 41 is, for example, the first subcooler 22 and the liquid side of the heat source side unit 2.
  • the use-side heat exchanger 42 is, for example, a fin and tube heat exchanger configured to include a heat transfer tube and a large number of fins, and functions as an evaporator that evaporates the refrigerant.
  • a use side fan 43 that blows air to the use side heat exchanger 42 is disposed.
  • the use-side fan 43 includes, for example, a centrifugal fan or a multi-blade fan, and is driven by a motor not shown.
  • the use side fan 43 can adjust the amount of air blown to the use side heat exchanger 42.
  • the heat source side unit 2 includes, for example, a heat source side refrigerant circuit 10b, a first injection circuit 71, a second injection circuit 73, and a heat source side control unit 31 that constitute a part of the refrigerant circuit 10.
  • a heat source side refrigerant circuit 10b includes, for example, a heat source side refrigerant circuit 10b, a first injection circuit 71, a second injection circuit 73, and a heat source side control unit 31 that constitute a part of the refrigerant circuit 10.
  • the refrigeration apparatus 1 is one of the first injection circuit 71 and the second injection circuit 73.
  • the structure which has one side may be sufficient.
  • the heat source side refrigerant circuit 10 b includes a compressor 21, a heat source side heat exchanger 23, a receiver 25, a first subcooler 22, a liquid side closing valve 28, a gas side closing valve 29, and an accumulator 24.
  • the first injection circuit 71 branches a part of the refrigerant sent from the heat source side heat exchanger 23 to the use side heat exchanger 42 from the heat source side refrigerant circuit 10b and returns it to the intermediate pressure part of the compressor 21.
  • the injection amount adjusting valve 72 is included.
  • the second injection circuit 73 branches a part of the refrigerant sent from the heat source side heat exchanger 23 to the use side heat exchanger 42 from the heat source side refrigerant circuit 10b and flows into the suction portion of the compressor 21.
  • a capillary tube 74 and a solenoid valve 75 for suction injection.
  • the compressor 21 is, for example, an inverter compressor that is controlled by an inverter, and can change the capacity (the amount of refrigerant sent out per unit time) by arbitrarily changing the operating frequency.
  • the compressor 21 may be a constant speed compressor that operates at 50 Hz or 60 Hz.
  • FIG. 1 shows an example having one compressor 21, but two or more compressors 21 are connected in parallel according to the load size of the usage-side unit 4. May be.
  • the heat source side heat exchanger 23 is, for example, a fin and tube heat exchanger configured to include a heat transfer tube and a large number of fins, and functions as a condenser that condenses the refrigerant.
  • a heat source side fan 27 for blowing air to the heat source side heat exchanger 23 is disposed.
  • the heat source side fan 27 blows outside air sucked from the outside of the heat source side unit 2 to the heat source side heat exchanger 23.
  • the heat source side fan 27 includes, for example, a centrifugal fan or a multiblade fan, and is driven by a motor not shown.
  • the heat source side fan 27 can adjust the amount of air blown to the heat source side heat exchanger 23.
  • the receiver 25 is disposed between the heat source side heat exchanger 23 and the first subcooler 22 and stores excess liquid refrigerant.
  • the receiver 25 is a container for storing excess liquid refrigerant.
  • the surplus liquid refrigerant is generated in the refrigerant circuit 10 in accordance with, for example, the size of the load on the use side unit 4, the refrigerant condensing temperature, the outside air temperature, the capacity of the compressor 21, or the like.
  • the first subcooler 22 exchanges heat between the refrigerant and the air, and is formed integrally with the heat source side heat exchanger 23. That is, in the example of this embodiment, a part of the heat exchanger is configured as the heat source side heat exchanger 23, and the other part of the heat exchanger is configured as the first subcooler 22.
  • the first subcooler 22 corresponds to the “supercooler” of the present invention.
  • the 1st subcooler 22 and the heat source side heat exchanger 23 may be comprised separately. In that case, a fan (not shown) that blows air to the first subcooler 22 is disposed in the vicinity of the first subcooler 22.
  • the liquid side closing valve 28 and the gas side closing valve 29 are constituted by valves that open and close such as a ball valve, an on-off valve, or an operation valve, for example.
  • the capillary tube 74 may be configured with a valve capable of adjusting the flow rate.
  • the inlets of the first injection circuit 71 and the second injection circuit 73 are connected between the first subcooler 22 and the liquid side shut-off valve 28, but the first injection
  • the inlets of the circuit 71 and the second injection circuit 73 may be connected between the receiver 25 and the first subcooler 22, may be connected to the receiver 25, or may be connected to the heat source side heat exchanger 23. It may be connected between the receiver 25.
  • the heat source side unit 2 includes a heat source side control unit 31 that controls the entire refrigeration apparatus 1.
  • the heat source side control unit 31 includes a microcomputer and a memory.
  • the usage side unit 4 includes a usage side control unit 32 that controls the usage side unit 4.
  • the use side control unit 32 includes a microcomputer and a memory.
  • the use side control unit 32 and the heat source side control unit 31 can communicate and exchange control signals.
  • the use side control unit 32 receives an instruction from the heat source side control unit 31. In response, the user side unit 4 is controlled.
  • the refrigeration apparatus 1 includes an intake temperature sensor 33a, a discharge temperature sensor 33b, a suction outside air temperature sensor 33c, a supercooler high pressure side outlet temperature sensor 33d, a use side heat exchange inlet temperature sensor 33e, and a use side heat exchange. It includes an outlet temperature sensor 33f, a suction air temperature sensor 33g, a suction pressure sensor 34a, and a discharge pressure sensor 34b.
  • the suction temperature sensor 33a, the discharge temperature sensor 33b, the suction outside air temperature sensor 33c, the supercooler high pressure side outlet temperature sensor 33d, the suction pressure sensor 34a, and the discharge pressure sensor 34b are disposed in the heat source side unit 2 and are controlled by the heat source. Connected to the unit 31.
  • the use side heat exchange inlet temperature sensor 33e, the use side heat exchange outlet temperature sensor 33f, and the intake air temperature sensor 33g are provided in the use side unit 4 and connected to the use side control unit 32.
  • the suction temperature sensor 33a detects the temperature of the refrigerant sucked by the compressor 21.
  • the discharge temperature sensor 33b detects the temperature of the refrigerant discharged from the compressor 21.
  • the subcooler high pressure side outlet temperature sensor 33d detects the temperature of the refrigerant that has passed through the first subcooler 22.
  • the use side heat inlet temperature sensor 33e detects the evaporation temperature of the gas-liquid two-phase refrigerant flowing into the use side heat exchanger.
  • the use-side heat exchange outlet temperature sensor 33f detects the temperature of the refrigerant that has flowed out of the use-side heat exchanger 42.
  • the above-mentioned sensor for detecting the temperature of the refrigerant is disposed, for example, in contact with the refrigerant pipe or inserted into the refrigerant pipe, and detects the temperature of the refrigerant.
  • the suction outside air temperature sensor 33c detects the ambient temperature outside the room by detecting the temperature of the air before passing through the heat source side heat exchanger 23.
  • the intake air temperature sensor 33g detects the ambient temperature in the room where the use side heat exchanger 42 is installed by detecting the temperature of the air before passing through the use side heat exchanger 42.
  • the suction pressure sensor 34 a is disposed on the suction side of the compressor 21 and detects the pressure of the refrigerant sucked into the compressor 21.
  • the suction pressure sensor 34 a may be disposed between the gas side closing valve 29 and the compressor 21.
  • the discharge pressure sensor 34b is disposed on the discharge side of the compressor 21 and detects the pressure of the refrigerant discharged from the compressor 21.
  • the condensation temperature of the heat source side heat exchanger 23 is obtained by converting the pressure of the discharge pressure sensor 34b into the saturation temperature, but the condensation temperature of the heat source side heat exchanger 23 is obtained. Can also be obtained by arranging a temperature sensor in the heat source side heat exchanger 23.
  • FIG. 2 is a diagram schematically illustrating an example of the configuration of the refrigeration apparatus according to Embodiment 1 of the present invention.
  • the control unit 3 controls the entire refrigeration apparatus 1, and the control unit 3 in the example of this embodiment is included in the heat source side control unit 31.
  • the control unit 3 corresponds to the “refrigerant amount determination unit” of the present invention.
  • the control unit 3 includes an acquisition unit 3a, a calculation unit 3b, a storage unit 3c, and a drive unit 3d.
  • the acquisition unit 3a, the calculation unit 3b, and the drive unit 3d are configured to include, for example, a microcomputer, and the storage unit 3c is configured to include, for example, a semiconductor memory.
  • the acquisition unit 3a acquires information such as temperature and pressure detected by sensors such as a pressure sensor and a temperature sensor.
  • the calculation unit 3b performs processing such as calculation, comparison, and determination using the information acquired by the acquisition unit 3a.
  • the drive unit 3d performs drive control of the compressor 21, valves, fans, and the like using the results calculated by the calculation unit 3b.
  • the storage unit 3c stores physical property values (saturation pressure, saturation temperature, etc.) of the refrigerant, data for the calculation unit 3b to perform calculations, and the like.
  • the calculation unit 3b can refer to or update the storage content of the storage unit 3c as necessary.
  • the control unit 3 includes an input unit 3e and an output unit 3f.
  • the input unit 3e inputs operation input from a remote controller or switches (not shown) or communication data from communication means (not shown) such as a telephone line or a LAN line.
  • the output unit 3f outputs the processing result of the control unit 3 to a display unit (not shown) such as an LED or a monitor, and outputs it to a notification unit (not shown) such as a speaker, or a telephone line or a LAN line.
  • a communication means not shown.
  • the calculation unit 3b calculates the temperature efficiency T of the first subcooler 22 using the information acquired by the acquisition unit 3a, and the output unit 3f calculates the temperature efficiency calculated by the calculation unit 3b.
  • T is sent to the remote device.
  • the remote device is provided with a refrigerant shortage determining means (not shown) for determining the shortage of the refrigerant amount, and determines the shortage of the refrigerant amount using the temperature efficiency T.
  • control unit 3 is included in the heat source side control unit 31
  • control unit 3 may be included in the use side control unit 32 or the heat source
  • the side control unit 31 and the use side control unit 32 may be configured separately.
  • FIG. 3 is an example of a ph diagram of the refrigeration apparatus shown in FIG. 1 when the amount of refrigerant is appropriate.
  • the compressor 21 illustrated in FIG. 1 compresses the refrigerant.
  • the high-temperature and high-pressure gas refrigerant compressed by the compressor 21 in FIG. 1 is heat-exchanged by the heat source side heat exchanger 23 functioning as a condenser to be condensed and liquefied.
  • the refrigerant that has been heat-exchanged by the heat source side heat exchanger 23 and condensed and liquefied flows into the receiver 25 and is temporarily stored in the receiver 25.
  • the amount of the refrigerant stored in the receiver 25 varies depending on the operation load, the outside air temperature, the condensation temperature, and the like of the usage-side unit 4.
  • the liquid refrigerant stored in the receiver 25 in FIG. 1 is supercooled by the first subcooler 22.
  • the degree of supercooling at the outlet of the first supercooler 22 is calculated by subtracting the temperature of the supercooler high-pressure side outlet temperature sensor 33d from the condensation temperature.
  • the liquid refrigerant supercooled by the first subcooler 22 in FIG. 1 from the point N to the point O in FIG. 3 passes through the liquid side closing valve 28 and the liquid refrigerant extension pipe 6 to the usage side unit 4. It is sent and decompressed by the use side expansion valve 41 to become a low-pressure gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant decompressed by the use side expansion valve 41 in FIG. 1 is gasified in the use side heat exchanger 42 functioning as an evaporator.
  • the degree of superheat of the refrigerant is calculated by subtracting the evaporation temperature of the refrigerant detected by the use side heat exchange inlet temperature sensor 33e from the temperature detected by the use side heat exchange outlet temperature sensor 33f.
  • the gas refrigerant gasified by the use side heat exchanger 42 returns to the compressor 21 via the gas refrigerant extension pipe 7, the gas side closing valve 29, and the accumulator 24.
  • the first injection circuit 71 is for lowering the refrigerant temperature of the discharge part of the compressor 21.
  • the inlet of the first injection circuit 71 is connected between the outlet of the first subcooler 22 and the liquid side shut-off valve 28, and a part of the high-pressure liquid refrigerant subcooled by the first subcooler 22 is Then, the pressure is reduced by the injection amount adjusting valve 72 to become a two-phase refrigerant having an intermediate pressure, and flows into the injection portion of the compressor 21.
  • the second injection circuit 73 is for lowering the refrigerating machine oil inside the compressor 21, the temperature of the motor, and the refrigerant temperature of the discharge part.
  • the inlet of the second injection circuit 73 is connected between the outlet of the first subcooler 22 and the liquid side shut-off valve 28, and a part of the high-pressure liquid refrigerant subcooled by the first subcooler 22 is Then, the pressure is reduced in the capillary tube 74 to become a low-pressure two-phase refrigerant and flows into the suction portion of the compressor 21.
  • FIG. 4 is an example of a ph diagram when the refrigerant amount is insufficient in the refrigeration apparatus shown in FIG.
  • the refrigeration apparatus 1 operates in the same manner as when the refrigerant amount is appropriate, as shown in FIG.
  • the enthalpy at the outlet of the heat source side heat exchanger 23 functioning as a condenser increases as shown by a point M1 in FIG.
  • the refrigerant state at the outlet of the heat exchanger 23 becomes a two-phase state.
  • the first subcooler 22 performs the condensing and supercooling of the two-phase refrigerant, so that the point N1 indicates The enthalpy at the outlet of the first subcooler 22 is also increased.
  • the refrigerant amount is determined using the degree of supercooling of the refrigerant. For example, when the refrigerant amount is insufficient due to leakage of the refrigerant, the degree of supercooling is reduced as shown in FIG. Therefore, in Comparative Example 1, when the degree of supercooling becomes smaller than a preset threshold value, it is determined that the refrigerant amount is insufficient.
  • FIG. 5 is a diagram illustrating the relationship between the refrigerant amount of the refrigeration apparatus illustrated in FIG. 1, the degree of supercooling of the first subcooler, and the operating conditions of the refrigeration apparatus.
  • the degree of supercooling of the first subcooler 22 varies greatly depending on the operating conditions of the refrigeration apparatus 1 (outside air temperature, heat exchange amount, refrigerant circulation amount, etc.). Therefore, as in Comparative Example 1, when using the degree of supercooling to determine whether the amount of refrigerant is insufficient, it is necessary to set the degree of supercooling threshold S low so as not to make an erroneous determination.
  • the refrigerant amount is determined by using the temperature efficiency T of the first subcooler 22 that has a smaller variation with respect to changes in the operating conditions of the refrigeration apparatus 1 than the degree of supercooling. This will be described below.
  • FIG. 6 is an example of the temperature change of the refrigerant when the refrigerant flows in the order of the heat source side heat exchanger, the receiver, and the air supercooler when the refrigerant amount is an appropriate amount in the refrigeration apparatus illustrated in FIG. FIG.
  • the vertical axis indicates the temperature, and the temperature is higher at the top.
  • the horizontal axis indicates the refrigerant path of the heat source side heat exchanger 23, the receiver 25, and the first subcooler 22.
  • s1 is the refrigerant condensation temperature
  • s2 is the refrigerant temperature at the outlet of the first subcooler 22
  • s3 is the outside air temperature.
  • the temperature efficiency T of the first subcooler 22 indicates the efficiency of the first subcooler 22, and the maximum temperature difference A is taken as the denominator and the actual temperature difference B is taken as the numerator. .
  • the maximum possible temperature difference A is the difference between the condensation temperature s1 and the outside air temperature s3
  • the actually possible temperature difference B is the condensation temperature s1 and the outlet of the first subcooler 22. Is the difference from the temperature s2.
  • FIG. 7 is a diagram illustrating the relationship between the refrigerant amount of the refrigeration apparatus illustrated in FIG. 1, the temperature efficiency of the first subcooler, and the operating conditions of the refrigeration apparatus.
  • the horizontal axis represents the refrigerant amount of the refrigerant
  • the vertical axis represents the temperature efficiency T of the first subcooler 22.
  • the temperature efficiency T indicates the performance of the supercooling heat exchanger 5, and since the fluctuation due to the operating conditions of the refrigeration apparatus 1 is smaller than the degree of supercooling, a threshold is set for each operating condition of the refrigeration apparatus 1. Therefore, it is possible to improve the determination accuracy of the refrigerant amount shortage.
  • an exception condition for refrigerant amount determination is provided, and when the refrigerant amount determination corresponds to an exception condition that may be erroneously determined, the temperature efficiency T of the first subcooler 22 is set. The amount of refrigerant used is not determined. This will be described below.
  • Exception condition 1 is a case where user-side fan delay control is performed.
  • the use-side fan delay control is performed to prevent warm air generated during the defrosting operation from being blown out into the cooling space.
  • the time until the temperature of the use side heat exchanger 42 decreases after the defrosting operation is completed is, for example, several minutes, and the use side fan 43 operates before the temperature of the use side heat exchanger 42 decreases. Then, since warm air is blown out into the cooling space, the operation of the use side fan 43 is stopped until the temperature of the use side heat exchanger 42 decreases. And after the temperature of the use side heat exchanger 42 falls, the operation
  • the refrigerant amount determination using the temperature efficiency T may be erroneously determined. Therefore, at the time of use-side fan delay control, the refrigerant amount determination using the temperature efficiency T is not performed.
  • the use-side fan delay control is completed and the use-side fan 43 is operated, the refrigerant flowing from the use-side heat exchanger 42 to the compressor 21 is in a gas state, and the shortage of refrigerant on the high-pressure side is resolved.
  • the control unit 3 determines that the refrigeration apparatus 1 is performing the use-side fan delay control by acquiring the operation state of the refrigeration apparatus 1. Then, the control unit 3 determines that the refrigerant flowing from the use side heat exchanger 42 to the compressor 21 is in the gas state during the use side fan delay control or during the use side fan delay control and after the use side fan delay control.
  • the refrigerant shortage determination is not performed for a certain period of time. Even when the use-side fan delay control is not performed, when the operation of the use-side fan 43 is stopped, the refrigerant amount determination using the temperature efficiency T may be erroneously determined as described above. There is. Therefore, when the operation of the use-side fan 43 is stopped, the refrigerant amount determination using the temperature efficiency T may not be performed.
  • the temperature efficiency T exceeds the preset set time and falls below the temperature efficiency threshold value T1
  • the maximum time of the use side fan delay control is, for example, about 10 minutes
  • Exception condition 2 is when the evaporation temperature is high during pull-down.
  • the operation may be performed in a state where the pressure on the low pressure side of the refrigerant circuit 10 is higher than usual although it is a short time. In this case, the pressure from the use side expansion valve 41 to the suction portion of the compressor 21 increases, and the refrigerant density increases.
  • the required amount of refrigerant is expressed by density ⁇ volume, the required amount of refrigerant on the low pressure side temporarily increases, and the high pressure side such as the receiver 25, the first subcooler 22, the heat source side heat exchanger 23, etc. A refrigerant shortage state occurs. Therefore, at the time of pull-down, when the evaporation temperature is high, the refrigerant amount determination using the temperature efficiency T is not performed.
  • FIG. 8 is a diagram for explaining that, in the refrigerant amount determination of this embodiment, when the compressor is an inverter compressor, the refrigerant amount determination is not performed according to the magnitude of the low pressure.
  • FIG. 9 is a diagram for explaining that, in the refrigerant amount determination according to this embodiment, when the compressor is a constant speed compressor, the refrigerant amount determination is not performed according to the magnitude of the low pressure. .
  • the compressor 21 is an inverter compressor, the operating frequency of the compressor 21 is increased so that the actual low pressure approaches the target low pressure P1 set in advance. It has been reduced. Further, as shown in FIG.
  • a low pressure cut ON value P4 is set to operate the compressor 21 when the low pressure increases, and when the low pressure decreases.
  • a low pressure cut OFF value P3 for stopping the compressor 21 is set, and the compressor 21 is operated. That is, when the compressor 21 is an inverter compressor, the low pressure pressure during the operation of the compressor 21 is operated at a substantially target low pressure, and when the compressor 21 is a constant speed compressor, the compression is performed. Most of operations are less than the low pressure cut ON value for operating the machine 21. Therefore, if the current low pressure is higher than the target low pressure or the value obtained by adding a margin to the low pressure cut ON value as described below, the refrigerant shortage determination is not performed. That is, as shown in FIG.
  • the refrigerant shortage determination is not performed when the current low pressure is larger than the target low pressure P1 + the pressure P2 of the margin ⁇ .
  • the refrigerant shortage determination is performed when the current low pressure is higher than the low pressure cut ON value P4 + the pressure P5 of the margin ⁇ . Absent.
  • Exception condition 3 is a case where the electromagnetic valve 75 for suction injection shown in FIG. 1 is open.
  • the electromagnetic valve 75 for suction injection When the electromagnetic valve 75 for suction injection is opened, a part of the high-pressure liquid refrigerant is decompressed by the capillary tube 74 and flows into the suction portion of the compressor 21.
  • the high pressure side such as the first subcooler 22 and the heat source side heat exchanger 23 is in a refrigerant shortage state.
  • the case where the electromagnetic valve 75 for suction injection is opened is a rare situation, for example, when the intake gas temperature of the compressor 21 abnormally rises during pull-down after a long-term stop.
  • the electromagnetic valve 75 for suction injection is used.
  • the gas-liquid two-phase state up to the suction portion of the compressor 21 is temporarily increased, the amount of refrigerant temporarily increases to the low pressure side, and the high pressure side such as the receiver 25, the first subcooler 22 and the heat source side heat exchanger 23 is in a refrigerant shortage state. Therefore, the refrigerant shortage determination is not performed.
  • the example in which the refrigerant shortage determination is not performed when performing the injection in the second injection circuit 73 has been described.
  • the refrigerant shortage is not performed. You may be comprised so that determination may not be performed. In that case, it is only necessary to determine whether or not to determine whether the refrigerant is insufficient by using the opening degree of the injection amount adjusting valve 72 or the like.
  • Exception condition 4 (when the air volume of the heat source fan is low)]
  • the air volume of the heat source side fan 27 is reduced.
  • the air volume of the heat source side fan 27 is reduced, for example, when the outside air is reduced, if the high pressure is too low, the differential pressure of the use side expansion valve 41 becomes small and the flow rate of the refrigerant cannot be secured.
  • the air volume of the heat source side fan 27 is reduced in order to keep it high. For example, in order to reduce the noise of the heat source side fan 27, the air volume of the heat source side fan 27 may be reduced.
  • the condensing temperature increases as the air volume of the heat source side fan 27 decreases, so that the maximum possible temperature difference A, which is the difference between the condensing temperature and the outside air temperature, increases.
  • the actual possible temperature difference B which is the difference between the condensation temperature and the outlet temperature of the first subcooler 22, is the maximum possible temperature difference A because the air volume of the heat source side fan 27 is reduced. Does not become large compared to. Therefore, when the air volume of the heat source side fan 27 is decreased, the temperature efficiency T is decreased. In particular, when the ambient temperature is low, such as -15 ° C., it is necessary to turn on / off the heat source side fan 27.
  • the maximum temperature difference A that is normally about 7K to 15K is 30K to 50K.
  • the temperature efficiency T decreases. Therefore, when the air volume of the heat source side fan 27 is decreased, the difference between the outside air temperature and the condensation temperature is increased, or when the outside air temperature is lower than a certain temperature, the refrigerant shortage determination is not performed.
  • FIG. 10 is a diagram showing an example of the relationship between the air volume of the heat source side fan and the temperature efficiency threshold. As shown in FIG. 10, by setting the temperature efficiency threshold T2 when the air volume of the heat source side fan 27 is reduced to a small value, compared to the temperature efficiency threshold T3 when the air volume of the heat source side fan 27 is large. In addition, the risk of erroneous determination of refrigerant amount determination using temperature efficiency T can be suppressed.
  • the condensation temperature is 25.0 ° C.
  • the outside air temperature is 24.9 ° C.
  • the outlet temperature of the first subcooler 22 is 24.8 ° C.
  • the temperature efficiency T varies greatly due to sensor variations or the like during a long-term stop of the compressor 21.
  • the temperature efficiency T is stabilized at a value between 0.0 and 1.0 at time m2.
  • the time from time m1 to time m2 is, for example, about 30 seconds to 1 minute.
  • the temperature efficiency T is unstable for a certain time after the compressor 21 is started after the compressor 21 is stopped. For example, the compressor 21 is repeatedly stopped and operated in a short time. In such a case, the situation where the temperature efficiency T is low continues. As a result, even if the refrigerant is not leaking, the refrigerant determination using the temperature efficiency T may be insufficient. Therefore, the refrigerant shortage is not determined for a certain period of time after the compressor 21 is started after the compressor 21 is stopped.
  • FIG. 12 is a diagram illustrating an example of the refrigerant amount determination operation of the refrigeration apparatus illustrated in FIG.
  • the refrigeration apparatus 1 uses the temperature efficiency T of the first subcooler 22 to determine the refrigerant amount. Note that the determination of the refrigerant amount described below can also be applied to a refrigerant charging operation when the refrigeration apparatus 1 is installed or a refrigerant charging operation when the refrigeration apparatus 1 is maintained.
  • the refrigerant amount determination operation may be executed when an instruction from a remote device (not shown) is received.
  • step ST1 of FIG. 12 the refrigeration apparatus 1 shown in FIG.
  • the heat source side control unit 31 acquires operation data such as the pressure and temperature of the refrigerant circuit 10 detected by the sensors, and uses the operation data to condense the condensation temperature, the evaporation temperature, and the like.
  • the control values such as target value and deviation are calculated to control the actuators.
  • the operation of the actuators will be described.
  • the heat source side control unit 31 controls the operating frequency of the compressor 21 so that the evaporation temperature of the refrigeration cycle of the refrigeration apparatus 1 matches the target temperature (for example, 0 ° C.).
  • the evaporation temperature of the refrigeration cycle can also be obtained by converting the pressure detected by the suction pressure sensor 34a into a saturation temperature.
  • the heat source side control unit 31 increases the operation frequency of the compressor 21 when the current evaporation temperature is higher than the target temperature, and operates the compressor 21 when the current evaporation temperature is lower than the target value. Reduce the frequency.
  • the heat source side control unit 31 blows air to the heat source side heat exchanger 23 so that the condensation temperature of the refrigeration cycle of the refrigeration apparatus 1 matches a target temperature (for example, 45 ° C.). Control the number of revolutions.
  • the condensation temperature of the refrigeration cycle of the refrigeration apparatus 1 can also be obtained by converting the pressure detected by the discharge pressure sensor 34b into a saturation temperature.
  • the heat source side control unit 31 increases the number of rotations of the heat source side fan 27 when the current condensing temperature is higher than the target temperature, and increases the rotational speed of the heat source side fan 27 when the current condensing temperature is lower than the target temperature. Reduce the rotation speed.
  • the heat source side control unit 31 adjusts the opening degree of the injection amount adjustment valve 72 of the first injection circuit 71 using the signals obtained from the sensors, or for the suction injection of the second injection circuit 73.
  • the opening degree of the electromagnetic valve 75 is adjusted. For example, when the current discharge temperature of the compressor 21 is high, the heat source side control unit 31 opens the injection amount adjusting valve 72 or the suction injection electromagnetic valve 75 and the current discharge temperature of the compressor 21 is low. Closes the injection amount adjusting valve 72 or the electromagnetic valve 75 for suction injection. Further, for example, the heat source side control unit 31 controls the rotation speed of the use side fan 43 that blows air to the use side unit 4.
  • step ST2 the heat source side control unit 31, for example, the outlet temperature of the heat source side heat exchanger 23, the temperature of the outlet of the first subcooler 22, the outside air temperature detected by the suction outside air temperature sensor 33c and the discharge pressure sensor 34b. Is used to calculate the temperature efficiency T of the first subcooler 22.
  • step ST3 the heat source side control unit 31 acquires the operation state of the refrigeration apparatus 1.
  • the process returns to step ST1
  • the operating state of the refrigeration apparatus 1 corresponds to the “exception condition for refrigerant amount determination”. If not, the process proceeds to step ST4.
  • step ST4 the heat source side control unit 31 determines whether the operation control of the refrigeration apparatus 1 performed in step ST1 is stable. If the operation control of the refrigeration apparatus 1 is not stable, the process returns to step ST1, and if the operation control of the refrigeration apparatus 1 is stable, the process proceeds to step ST5.
  • the temperature efficiency T of the first subcooler 22 is preferably a moving average of a plurality of temperature efficiencies T that are temporally different from each other, rather than using an instantaneous value.
  • the determination threshold value Tm may be stored in advance in the storage unit 3c of the heat source side control unit 31, for example, or may be set by an input from a remote controller or a switch, or an instruction from a remote device (not shown). May be set.
  • step ST6 the heat source side control unit 31 outputs in step ST6 that the refrigerant amount is suitable.
  • the amount of refrigerant is appropriate, the fact that the amount of refrigerant is appropriate is displayed, for example, on a display unit (not shown) such as an LED or a liquid crystal disposed in the refrigeration apparatus 1, or the amount of refrigerant is appropriate. Is transmitted to a remote device (not shown).
  • the heat source side control unit 31 outputs in step ST7 that the refrigerant amount is abnormal.
  • the refrigerant amount is abnormal, for example, an alarm indicating that the refrigerant amount is abnormal is displayed on a display unit (not shown) such as an LED or a liquid crystal provided in the refrigeration apparatus 1, or the refrigerant amount Is transmitted to a remote device (not shown).
  • a display unit such as an LED or a liquid crystal provided in the refrigeration apparatus 1
  • the refrigerant amount Is transmitted to a remote device not shown.
  • an emergency since an emergency may be required when the amount of refrigerant is abnormal, it may be configured to notify the service person of the occurrence of abnormality directly through a telephone line or the like.
  • the temperature efficiency T is calculated in step ST2, and it is determined whether or not the refrigerant amount is determined in steps ST3 and ST4.
  • step ST3 and step ST4 are used.
  • step ST2 may be executed. By performing the calculation of the temperature efficiency T after determining whether or not to determine the refrigerant amount, the amount of processing that the heat source side control unit 31 performs the calculation can be reduced.
  • the temperature efficiency T is used to determine the amount of refrigerant flowing in the refrigerant circuit 10 of the refrigeration apparatus 1, so that even if the refrigerant leaks, The refrigerant leakage can be detected at an early stage.
  • the refrigerant amount using the temperature efficiency T Since the determination is not performed, the risk of erroneous determination of the refrigerant amount is suppressed.
  • the amount of refrigerant can be set to an appropriate amount, the cost of the refrigerant can be reduced.
  • the amount of refrigerant is an appropriate amount, even if the refrigerant leaks, the amount of refrigerant released into the atmosphere can be reduced.
  • the refrigeration apparatus 1 of this embodiment since the amount of refrigerant is an appropriate amount, even if the operation of the expansion valve or the like becomes abnormal and liquid back occurs, the amount of liquid back to the compressor 21 is reduced. Can be reduced. Therefore, the refrigeration apparatus 1 of this embodiment has improved reliability.
  • control for specifying the condensation temperature and the evaporation temperature is not performed.
  • the control may be performed so that the condensation temperature and the evaporation temperature are constant.
  • it is not necessary to control the condensing temperature and the evaporating temperature by setting the operating frequency of the compressor 21 and the rotation speed of the heat source side fan 27 of the heat source side unit 2 as constant values.
  • the control may be performed so that one of the condensation temperature and the evaporation temperature becomes a target value.
  • the degree of subcooling of the first subcooler 22 and the fluctuation of the operating state variable that varies according to the degree of subcooling are reduced, and the threshold value can be easily determined. This makes it easier to determine whether the refrigerant amount is insufficient.
  • the refrigerant amount determination operation of this embodiment is applied to the refrigerant charging operation at the initial stage of installation of the refrigeration apparatus 1 or the refrigerant charging operation when the refrigerant is once discharged and refilled at the time of maintenance. It is possible to reduce the time required for the operator and reduce the load on the worker.
  • FIG. 13 shows a first modification of FIG. Compared with the refrigeration apparatus 1 described in FIG. 1, the heat source side unit 2 ⁇ / b> A of the refrigeration apparatus 1 ⁇ / b> A according to the first modification has a second subcooler 26 downstream of the first subcooler 22, as shown in FIG. 13. It has further.
  • the second subcooler 26 corresponds to the “supercooler” of the present invention.
  • the second subcooler 26 includes, for example, a double pipe or a plate-type heat exchanger, and has a high pressure refrigerant flowing in the heat source side refrigerant circuit 10b and an intermediate pressure flowing in the first injection circuit 71A. Heat exchange with the refrigerant is performed.
  • a part of the refrigerant that has passed through the second subcooler 26 is expanded by the injection amount adjustment valve 72 to become an intermediate-pressure refrigerant, and exchanges heat with the refrigerant that has passed through the second subcooler 26.
  • the high-pressure refrigerant flowing from the receiver 25 and heat-exchanged by the second subcooler 26 is further subcooled.
  • the intermediate-pressure refrigerant that flows in from the injection amount adjustment valve 72 and exchanges heat with the second subcooler 26 becomes a refrigerant having a high dryness, so that the discharge temperature of the compressor 21 is lowered in order to lower the discharge temperature of the compressor 21. Injection into the suction side.
  • the refrigerant determination operation in the first modification is performed using the temperature efficiency of the first subcooler 22, the temperature efficiency of the second subcooler 26, or the temperature efficiency of the first subcooler 22 and the second subcooler 26. It's fine.
  • the first subcooler 22 may be omitted, and the refrigerant that has flowed out from the receiver 25 may flow into the second subcooler 26.
  • the present invention is not limited to the above embodiment, and can be variously modified within the scope of the present invention. That is, the configuration of the above embodiment may be improved as appropriate, or at least a part of the configuration may be replaced with another configuration. Further, the configuration requirements that are not particularly limited with respect to the arrangement are not limited to the arrangement disclosed in the embodiment, and can be arranged at a position where the function can be achieved.

Abstract

A refrigeration apparatus 1 has a refrigerant circuit 10 which is configured by a heat-source-side unit 2 and at least one use-side unit 4 being connected by piping and circulates a refrigerant therethrough. The heat-source-side unit 2 has a compressor 21, a heat-source-side heat exchanger 23 serving as a condenser, and a supercooler 22. The use-side unit 4 has a use-side expansion valve 41 and a use-side heat exchanger 42 serving as an evaporator. The refrigeration apparatus 1 is equipped with a refrigerant amount determination unit 3 that determines the amount of the refrigerant filled in the refrigerant circuit 10 using the temperature efficiency T of the supercooler 22, which is a value obtained by dividing the supercooling degree of the refrigerant at the outlet of the supercooler 22 by the maximum temperature difference of the supercooler 22. The refrigerant amount determination unit 3 acquires the operating state of the refrigeration apparatus 1, and, if the refrigerant amount is likely to be erroneously determined, the determination of the refrigerant amount is not performed.

Description

冷凍装置Refrigeration equipment
 この発明は、冷媒回路の冷媒量を判定する冷凍装置に関するものである。 The present invention relates to a refrigeration apparatus for determining the amount of refrigerant in a refrigerant circuit.
 冷凍装置においては、冷媒量の過不足が発生すると冷凍装置の能力低下や構成機器の損傷を生じさせる原因になる。そこで、このような不具合の発生を防止するため、冷凍装置に充填されている冷媒量の過不足を判定する機能を備えているものがある。 In the refrigeration system, if the amount of refrigerant is excessive or insufficient, it may cause a decrease in the capacity of the refrigeration system or damage to the components. Therefore, in order to prevent the occurrence of such a problem, some have a function of determining whether the amount of refrigerant filled in the refrigeration apparatus is excessive or insufficient.
 従来の冷凍装置における冷媒不足の判定方法としては、例えば、過冷却器の入口冷媒温度と出口冷媒温度との温度差を算出し、この温度差が設定値より減少したとき冷媒洩れであると判定するものが提案されている(例えば、特許文献1参照)。 As a method for determining the refrigerant shortage in the conventional refrigeration system, for example, a temperature difference between the inlet refrigerant temperature and the outlet refrigerant temperature of the subcooler is calculated, and it is determined that the refrigerant is leaking when the temperature difference is smaller than a set value. Have been proposed (see, for example, Patent Document 1).
特開平9-105567号公報JP-A-9-105567
 しかしながら、特許文献1に記載の従来の冷凍装置では、過冷却度の変化を利用して、冷媒量の不足を判定しているため、冷媒漏洩の判定において、誤判定が発生しやすい。なぜなら、過冷却度は、冷凍装置の運転条件によって大きく変化する。 However, since the conventional refrigeration apparatus described in Patent Document 1 uses the change in the degree of supercooling to determine the shortage of the refrigerant amount, erroneous determination is likely to occur in the refrigerant leakage determination. This is because the degree of supercooling varies greatly depending on the operating conditions of the refrigeration apparatus.
 この発明は、上記のような課題を背景としてなされたものであり、冷媒量の判定を精度よく行うことができる冷凍装置を得ることを目的としている。 The present invention has been made against the background of the above-described problems, and an object thereof is to obtain a refrigeration apparatus capable of accurately determining the amount of refrigerant.
 この発明に係る冷凍装置は、圧縮機と凝縮器として機能する熱源側熱交換器と過冷却器とを有する熱源側ユニットと、利用側膨張弁と蒸発器として機能する利用側熱交換器とを有する少なくとも1つの利用側ユニットとが、配管で接続され、冷媒を循環させる冷媒回路を有する冷凍装置であって、過冷却器の出口における冷媒の過冷却度を、過冷却器の最大温度差で除算した値である、過冷却器の温度効率を用いて、冷媒回路に充填された冷媒量を判定する冷媒量判定部を備え、冷媒量判定部は、当該冷凍装置の運転状態を取得し、冷媒量の判定が誤判定となるおそれがある場合に、冷媒量の判定を行わない、ものである。 A refrigeration apparatus according to the present invention includes a heat source side unit having a heat source side heat exchanger and a supercooler functioning as a compressor and a condenser, and a usage side heat exchanger functioning as a usage side expansion valve and an evaporator. A refrigerating apparatus having a refrigerant circuit that is connected by piping and circulates a refrigerant, the degree of supercooling of the refrigerant at the outlet of the subcooler being a maximum temperature difference of the subcooler. A refrigerant amount determination unit that determines the amount of refrigerant charged in the refrigerant circuit using the temperature efficiency of the subcooler, which is a value obtained by dividing, and the refrigerant amount determination unit acquires the operating state of the refrigeration apparatus, If the determination of the refrigerant amount is likely to be an erroneous determination, the refrigerant amount is not determined.
 この発明の冷凍装置によれば、冷媒量の判定を精度よく行うことができる。 According to the refrigeration apparatus of the present invention, the refrigerant amount can be accurately determined.
この発明の実施の形態1に係る冷凍装置の冷媒回路の一例を模式的に記載した図である。It is the figure which described typically an example of the refrigerant circuit of the freezing apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る冷凍装置の構成の一例を模式的に記載した図である。It is the figure which described typically an example of the structure of the freezing apparatus which concerns on Embodiment 1 of this invention. 図1に記載の冷凍装置の、冷媒量が適正であるときの、p-h線図の一例である。FIG. 2 is an example of a ph diagram when the amount of refrigerant in the refrigeration apparatus shown in FIG. 1 is appropriate. 図1に記載の冷凍装置の、冷媒量が不足となったときの、p-h線図の一例である。FIG. 2 is an example of a ph diagram when the refrigerant amount of the refrigeration apparatus shown in FIG. 1 is insufficient. 図1に記載の冷凍装置の冷媒量と第1過冷却器の過冷却度と冷凍装置の運転条件との関係を説明する図である。It is a figure explaining the relationship between the refrigerant | coolant amount of the freezing apparatus described in FIG. 1, the supercooling degree of a 1st supercooler, and the operating conditions of a freezing apparatus. 図1に記載の冷凍装置において、冷媒量が適正量であるときに、冷媒が、熱源側熱交換器、レシーバ、空気過冷却器の順に流れるときの、冷媒の温度変化の一例を説明する図である。FIG. 1 is a diagram for explaining an example of a temperature change of a refrigerant when the refrigerant flows in the order of a heat source side heat exchanger, a receiver, and an air supercooler when the refrigerant amount is an appropriate amount in the refrigeration apparatus illustrated in FIG. 1. It is. 図1に記載の冷凍装置の冷媒量と第1過冷却器の温度効率と冷凍装置の運転条件との関係を説明する図である。It is a figure explaining the relationship between the refrigerant | coolant amount of the freezing apparatus described in FIG. 1, the temperature efficiency of a 1st subcooler, and the operating conditions of a freezing apparatus. この実施の形態の冷媒量判定において、圧縮機がインバータ圧縮機である場合に、低圧圧力の大きさに応じて、冷媒量判定を行わないことを説明するための図である。It is a figure for demonstrating not performing refrigerant | coolant amount determination according to the magnitude | size of a low pressure pressure in the refrigerant | coolant amount determination of this embodiment, when a compressor is an inverter compressor. この実施の形態の冷媒量判定において、圧縮機が一定速圧縮機である場合に、低圧圧力の大きさに応じて、冷媒量判定を行わないことを説明するための図である。It is a figure for demonstrating not performing refrigerant | coolant amount determination according to the magnitude | size of a low pressure pressure in the refrigerant | coolant amount determination of this embodiment, when a compressor is a constant speed compressor. 熱源側ファンの風量と温度効率閾値との関係の一例を示す図である。It is a figure which shows an example of the relationship between the air volume of a heat source side fan, and a temperature efficiency threshold value. 圧縮機の起動の前後の、凝縮温度、外気温度、第1過冷却器の出口温度、および温度効率の関係を説明する図である。It is a figure explaining the relationship of the condensation temperature, the external temperature, the exit temperature of a 1st subcooler, and temperature efficiency before and behind starting of a compressor. 図1に記載の冷凍装置の冷媒量判定動作の一例を説明する図である。It is a figure explaining an example of the refrigerant | coolant amount determination operation | movement of the freezing apparatus described in FIG. 図1の変形例1である。It is the modification 1 of FIG.
 以下、図面を参照して、この発明の実施の形態について説明する。なお、各図中、同一または相当する部分には、同一符号を付して、その説明を適宜省略または簡略化する。また、各図に記載の構成について、その形状、大きさおよび配置等は、この発明の範囲内で適宜変更することができる。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and the description thereof is omitted or simplified as appropriate. In addition, the shape, size, arrangement, and the like of the configuration described in each drawing can be changed as appropriate within the scope of the present invention.
 実施の形態1.
[冷凍装置]
 図1は、この発明の実施の形態1に係る冷凍装置の冷媒回路の一例を模式的に記載した図である。図1に記載の冷凍装置1は、蒸気圧縮式の冷凍サイクル運転を行うことによって、例えば、部屋、倉庫、ショーケース、または冷蔵庫等の室内の冷却を行うものである。冷凍装置1は、例えば、1台の熱源側ユニット2と熱源側ユニット2に並列に接続された2台の利用側ユニット4とを含んでいる。熱源側ユニット2と利用側ユニット4とが、液冷媒延長配管6およびガス冷媒延長配管7で接続されることによって、冷媒を循環させる冷媒回路10が形成される。この実施の形態の冷媒回路10に充填される冷媒は、例えば、HFC系の混合冷媒であるR410Aである。なお、図1の例では、1台の熱源側ユニット2と2台の利用側ユニット4とが記載されているが、熱源側ユニット2は、2台以上であってもよく、利用側ユニット4は、1台または3台以上であってもよい。熱源側ユニット2が複数台である場合には、複数台の熱源側ユニット2の容量は、同じであってもよく、異なっていてもよい。また、利用側ユニット4が複数台である場合には、複数台の利用側ユニット4の容量は、同じであってもよく、異なっていてもよい。以下の説明では、冷媒が空気と熱交換する冷凍装置1についての説明を行うが、冷媒が、水、冷媒またはブライン等の流体と熱交換する冷凍装置であってもよい。
Embodiment 1 FIG.
[Refrigeration equipment]
1 is a diagram schematically illustrating an example of a refrigerant circuit of a refrigeration apparatus according to Embodiment 1 of the present invention. The refrigeration apparatus 1 illustrated in FIG. 1 performs, for example, room cooling such as a room, a warehouse, a showcase, or a refrigerator by performing a vapor compression refrigeration cycle operation. The refrigeration apparatus 1 includes, for example, one heat source side unit 2 and two usage side units 4 connected in parallel to the heat source side unit 2. The heat source side unit 2 and the use side unit 4 are connected by the liquid refrigerant extension pipe 6 and the gas refrigerant extension pipe 7, whereby the refrigerant circuit 10 for circulating the refrigerant is formed. The refrigerant charged in the refrigerant circuit 10 of this embodiment is, for example, R410A, which is an HFC mixed refrigerant. In the example of FIG. 1, one heat source side unit 2 and two usage side units 4 are described. However, two or more heat source side units 2 may be used. May be one or three or more. When there are a plurality of heat source side units 2, the capacities of the plurality of heat source side units 2 may be the same or different. When there are a plurality of usage-side units 4, the capacity of the plurality of usage-side units 4 may be the same or different. In the following description, the refrigeration apparatus 1 in which the refrigerant exchanges heat with air will be described. However, the refrigerant may be a refrigeration apparatus that exchanges heat with a fluid such as water, refrigerant, or brine.
[利用側ユニット]
 利用側ユニット4は、例えば室内に設置される室内ユニットであり、冷媒回路10の一部分を構成する利用側冷媒回路10aと利用側制御部32とを備えている。利用側冷媒回路10aは、利用側膨張弁41と利用側熱交換器42とを含んでいる。利用側膨張弁41は、利用側冷媒回路10aを流れる冷媒の流量を調整するものであり、例えば電子膨張弁または温度式膨張弁等で構成されている。なお、利用側膨張弁41は、熱源側ユニット2に配設されていてもよく、その場合には、利用側膨張弁41は、例えば、熱源側ユニット2の第1過冷却器22と液側閉鎖弁28との間に配設される。利用側熱交換器42は、例えば、伝熱管と多数のフィンとを含んで構成されたフィン&チューブ型熱交換器であり、冷媒を蒸発させる蒸発器として機能する。
[Usage unit]
The use side unit 4 is an indoor unit that is installed indoors, for example, and includes a use side refrigerant circuit 10 a and a use side control unit 32 that constitute a part of the refrigerant circuit 10. The use side refrigerant circuit 10 a includes a use side expansion valve 41 and a use side heat exchanger 42. The use side expansion valve 41 adjusts the flow rate of the refrigerant flowing through the use side refrigerant circuit 10a, and is configured by, for example, an electronic expansion valve or a temperature type expansion valve. The use side expansion valve 41 may be disposed in the heat source side unit 2, and in this case, the use side expansion valve 41 is, for example, the first subcooler 22 and the liquid side of the heat source side unit 2. It is arranged between the closing valve 28. The use-side heat exchanger 42 is, for example, a fin and tube heat exchanger configured to include a heat transfer tube and a large number of fins, and functions as an evaporator that evaporates the refrigerant.
 利用側熱交換器42の近傍には、利用側熱交換器42に空気を送風する利用側ファン43が配設されている。利用側ファン43は、例えば遠心ファンまたは多翼ファン等を含んで構成されており、図示を省略してあるモータによって駆動される。利用側ファン43は、利用側熱交換器42に送風する空気の送風量を調整できるようになっている。 In the vicinity of the use side heat exchanger 42, a use side fan 43 that blows air to the use side heat exchanger 42 is disposed. The use-side fan 43 includes, for example, a centrifugal fan or a multi-blade fan, and is driven by a motor not shown. The use side fan 43 can adjust the amount of air blown to the use side heat exchanger 42.
[熱源側ユニット]
 熱源側ユニット2は、例えば、冷媒回路10の一部分を構成する熱源側冷媒回路10bと第1インジェクション回路71と第2インジェクション回路73と熱源側制御部31とを含んでいる。なお、以下の説明では、第1インジェクション回路71と第2インジェクション回路73とを有する例についての説明を行うが、冷凍装置1は、第1インジェクション回路71および第2インジェクション回路73のうちの何れか一方を有する構成であってもよい。
[Heat source side unit]
The heat source side unit 2 includes, for example, a heat source side refrigerant circuit 10b, a first injection circuit 71, a second injection circuit 73, and a heat source side control unit 31 that constitute a part of the refrigerant circuit 10. In the following description, an example having the first injection circuit 71 and the second injection circuit 73 will be described. However, the refrigeration apparatus 1 is one of the first injection circuit 71 and the second injection circuit 73. The structure which has one side may be sufficient.
 熱源側冷媒回路10bは、圧縮機21と熱源側熱交換器23とレシーバ25と第1過冷却器22と液側閉鎖弁28とガス側閉鎖弁29とアキュムレータ24とを含んでいる。第1インジェクション回路71は、熱源側熱交換器23から利用側熱交換器42へ送られる冷媒の一部を、熱源側冷媒回路10bから分岐させて圧縮機21の中間圧部に戻すものであり、インジェクション量調整弁72を含んでいる。第2インジェクション回路73は、熱源側熱交換器23から利用側熱交換器42へ送られる冷媒の一部を、熱源側冷媒回路10bから分岐させて圧縮機21の吸入部に流入させるものであり、キャピラリチューブ74と吸入インジェクション用電磁弁75とを含んでいる。 The heat source side refrigerant circuit 10 b includes a compressor 21, a heat source side heat exchanger 23, a receiver 25, a first subcooler 22, a liquid side closing valve 28, a gas side closing valve 29, and an accumulator 24. The first injection circuit 71 branches a part of the refrigerant sent from the heat source side heat exchanger 23 to the use side heat exchanger 42 from the heat source side refrigerant circuit 10b and returns it to the intermediate pressure part of the compressor 21. The injection amount adjusting valve 72 is included. The second injection circuit 73 branches a part of the refrigerant sent from the heat source side heat exchanger 23 to the use side heat exchanger 42 from the heat source side refrigerant circuit 10b and flows into the suction portion of the compressor 21. And a capillary tube 74 and a solenoid valve 75 for suction injection.
 圧縮機21は、例えば、インバータで制御が行われるインバータ圧縮機であり、運転周波数を任意に変化させて、容量(単位時間あたりに冷媒を送り出す量)を変化させることができる。なお、圧縮機21は、50Hzまたは60Hzで動作する一定速圧縮機であってもよい。また、図1には、1台の圧縮機21を有する例が記載されているが、利用側ユニット4の負荷の大きさ等に応じて、2台以上の圧縮機21が並列に接続されていてもよい。 The compressor 21 is, for example, an inverter compressor that is controlled by an inverter, and can change the capacity (the amount of refrigerant sent out per unit time) by arbitrarily changing the operating frequency. The compressor 21 may be a constant speed compressor that operates at 50 Hz or 60 Hz. FIG. 1 shows an example having one compressor 21, but two or more compressors 21 are connected in parallel according to the load size of the usage-side unit 4. May be.
 熱源側熱交換器23は、例えば、伝熱管と多数のフィンとを含んで構成されたフィン&チューブ型熱交換器であり、冷媒を凝縮させる凝縮器として機能する。熱源側熱交換器23の近傍には、熱源側熱交換器23に空気を送風する熱源側ファン27が配設されている。熱源側ファン27は、熱源側ユニット2の外部から吸入した外気を、熱源側熱交換器23に送風するものである。熱源側ファン27は、例えば遠心ファンまたは多翼ファン等を含んで構成されており、図示を省略してあるモータによって駆動される。熱源側ファン27は、熱源側熱交換器23に送風する空気の送風量を調整できるようになっている。 The heat source side heat exchanger 23 is, for example, a fin and tube heat exchanger configured to include a heat transfer tube and a large number of fins, and functions as a condenser that condenses the refrigerant. In the vicinity of the heat source side heat exchanger 23, a heat source side fan 27 for blowing air to the heat source side heat exchanger 23 is disposed. The heat source side fan 27 blows outside air sucked from the outside of the heat source side unit 2 to the heat source side heat exchanger 23. The heat source side fan 27 includes, for example, a centrifugal fan or a multiblade fan, and is driven by a motor not shown. The heat source side fan 27 can adjust the amount of air blown to the heat source side heat exchanger 23.
 レシーバ25は、熱源側熱交換器23と第1過冷却器22との間に配設され、余剰液冷媒を溜めるものであり、例えば余剰液冷媒を溜める容器である。なお、余剰液冷媒は、例えば、利用側ユニット4の負荷の大きさ、冷媒の凝縮温度、外気温度、または圧縮機21の容量等に応じて冷媒回路10内に発生するものである。 The receiver 25 is disposed between the heat source side heat exchanger 23 and the first subcooler 22 and stores excess liquid refrigerant. For example, the receiver 25 is a container for storing excess liquid refrigerant. The surplus liquid refrigerant is generated in the refrigerant circuit 10 in accordance with, for example, the size of the load on the use side unit 4, the refrigerant condensing temperature, the outside air temperature, the capacity of the compressor 21, or the like.
 第1過冷却器22は、冷媒と空気とを熱交換させるものであり、熱源側熱交換器23と一体的に形成されている。つまり、この実施の形態の例では、熱交換器の一部分が、熱源側熱交換器23として構成されており、熱交換器の他の部分が、第1過冷却器22として構成されている。第1過冷却器22は、この発明の「過冷却器」に相当するものである。なお、第1過冷却器22と熱源側熱交換器23とが別々に構成されていてもよい。その場合には、第1過冷却器22の近傍に、第1過冷却器22へ空気を送風するファン(図示せず)が配設される。 The first subcooler 22 exchanges heat between the refrigerant and the air, and is formed integrally with the heat source side heat exchanger 23. That is, in the example of this embodiment, a part of the heat exchanger is configured as the heat source side heat exchanger 23, and the other part of the heat exchanger is configured as the first subcooler 22. The first subcooler 22 corresponds to the “supercooler” of the present invention. In addition, the 1st subcooler 22 and the heat source side heat exchanger 23 may be comprised separately. In that case, a fan (not shown) that blows air to the first subcooler 22 is disposed in the vicinity of the first subcooler 22.
 液側閉鎖弁28およびガス側閉鎖弁29は、例えば、ボールバルブ、開閉弁、または操作弁等の開閉動作する弁で構成されている。キャピラリチューブ74は、流量を調整することができる弁で構成されていてもよい。 The liquid side closing valve 28 and the gas side closing valve 29 are constituted by valves that open and close such as a ball valve, an on-off valve, or an operation valve, for example. The capillary tube 74 may be configured with a valve capable of adjusting the flow rate.
 なお、図1に記載の例では、第1インジェクション回路71および第2インジェクション回路73の入口は、第1過冷却器22と液側閉鎖弁28との間に接続されているが、第1インジェクション回路71および第2インジェクション回路73の入口は、レシーバ25と第1過冷却器22との間に接続されていてもよく、レシーバ25に接続されていてもよく、または熱源側熱交換器23とレシーバ25との間に接続されていてもよい。 In the example shown in FIG. 1, the inlets of the first injection circuit 71 and the second injection circuit 73 are connected between the first subcooler 22 and the liquid side shut-off valve 28, but the first injection The inlets of the circuit 71 and the second injection circuit 73 may be connected between the receiver 25 and the first subcooler 22, may be connected to the receiver 25, or may be connected to the heat source side heat exchanger 23. It may be connected between the receiver 25.
[制御部およびセンサ類]
 次に、この実施の形態の冷凍装置1が備える制御部およびセンサ類について説明する。熱源側ユニット2は、冷凍装置1の全体の制御を行う熱源側制御部31を備えている。熱源側制御部31は、マイクロコンピュータおよびメモリ等を含んで構成されている。また、利用側ユニット4は、利用側ユニット4の制御を行う利用側制御部32を備えている。利用側制御部32は、マイクロコンピュータおよびメモリ等を含んで構成されている。利用側制御部32と熱源側制御部31とは、通信を行って制御信号のやりとりを行うことができるようになっており、例えば、利用側制御部32は、熱源側制御部31から指示を受けて利用側ユニット4の制御を行う。
[Control unit and sensors]
Next, the control unit and sensors included in the refrigeration apparatus 1 of this embodiment will be described. The heat source side unit 2 includes a heat source side control unit 31 that controls the entire refrigeration apparatus 1. The heat source side control unit 31 includes a microcomputer and a memory. Further, the usage side unit 4 includes a usage side control unit 32 that controls the usage side unit 4. The use side control unit 32 includes a microcomputer and a memory. The use side control unit 32 and the heat source side control unit 31 can communicate and exchange control signals. For example, the use side control unit 32 receives an instruction from the heat source side control unit 31. In response, the user side unit 4 is controlled.
 この実施の形態に係る冷凍装置1は、吸入温度センサ33aと吐出温度センサ33bと吸込み外気温度センサ33cと過冷却器高圧側出口温度センサ33dと利用側熱交入口温度センサ33eと利用側熱交出口温度センサ33fと吸込空気温度センサ33gと吸入圧力センサ34aと吐出圧力センサ34bとを含んでいる。吸入温度センサ33aと吐出温度センサ33bと吸込み外気温度センサ33cと過冷却器高圧側出口温度センサ33dと吸入圧力センサ34aと吐出圧力センサ34bとは、熱源側ユニット2に配設され、熱源側制御部31に接続されている。利用側熱交入口温度センサ33eと利用側熱交出口温度センサ33fと吸込空気温度センサ33gとは、利用側ユニット4に配設され、利用側制御部32に接続されている。 The refrigeration apparatus 1 according to this embodiment includes an intake temperature sensor 33a, a discharge temperature sensor 33b, a suction outside air temperature sensor 33c, a supercooler high pressure side outlet temperature sensor 33d, a use side heat exchange inlet temperature sensor 33e, and a use side heat exchange. It includes an outlet temperature sensor 33f, a suction air temperature sensor 33g, a suction pressure sensor 34a, and a discharge pressure sensor 34b. The suction temperature sensor 33a, the discharge temperature sensor 33b, the suction outside air temperature sensor 33c, the supercooler high pressure side outlet temperature sensor 33d, the suction pressure sensor 34a, and the discharge pressure sensor 34b are disposed in the heat source side unit 2 and are controlled by the heat source. Connected to the unit 31. The use side heat exchange inlet temperature sensor 33e, the use side heat exchange outlet temperature sensor 33f, and the intake air temperature sensor 33g are provided in the use side unit 4 and connected to the use side control unit 32.
 吸入温度センサ33aは、圧縮機21が吸入する冷媒の温度を検出するものである。吐出温度センサ33bは、圧縮機21が吐出する冷媒の温度を検出するものである。過冷却器高圧側出口温度センサ33dは、第1過冷却器22を通過した冷媒の温度を検出するものである。利用側熱交入口温度センサ33eは、利用側熱交換器42に流入する気液二相冷媒の蒸発温度を検出するものである。利用側熱交出口温度センサ33fは、利用側熱交換器42から流出した冷媒の温度を検出するものである。なお、上記の冷媒の温度を検出するセンサは、例えば、冷媒配管に当接させまたは冷媒配管に挿入して配設されており、冷媒の温度を検出する。 The suction temperature sensor 33a detects the temperature of the refrigerant sucked by the compressor 21. The discharge temperature sensor 33b detects the temperature of the refrigerant discharged from the compressor 21. The subcooler high pressure side outlet temperature sensor 33d detects the temperature of the refrigerant that has passed through the first subcooler 22. The use side heat inlet temperature sensor 33e detects the evaporation temperature of the gas-liquid two-phase refrigerant flowing into the use side heat exchanger. The use-side heat exchange outlet temperature sensor 33f detects the temperature of the refrigerant that has flowed out of the use-side heat exchanger 42. The above-mentioned sensor for detecting the temperature of the refrigerant is disposed, for example, in contact with the refrigerant pipe or inserted into the refrigerant pipe, and detects the temperature of the refrigerant.
 吸込み外気温度センサ33cは、熱源側熱交換器23を通過する前の空気の温度を検出することによって、室外の周囲温度を検出するものである。吸込空気温度センサ33gは、利用側熱交換器42を通過する前の空気の温度を検出することによって、利用側熱交換器42が設置された室内の周囲温度を検出するものである。 The suction outside air temperature sensor 33c detects the ambient temperature outside the room by detecting the temperature of the air before passing through the heat source side heat exchanger 23. The intake air temperature sensor 33g detects the ambient temperature in the room where the use side heat exchanger 42 is installed by detecting the temperature of the air before passing through the use side heat exchanger 42.
 吸入圧力センサ34aは、圧縮機21の吸入側に配設されており、圧縮機21に吸入される冷媒の圧力を検出するものである。なお、吸入圧力センサ34aは、ガス側閉鎖弁29と圧縮機21との間に配設されていればよい。吐出圧力センサ34bは、圧縮機21の吐出側に配設されており、圧縮機21が吐出した冷媒の圧力を検出するものである。 The suction pressure sensor 34 a is disposed on the suction side of the compressor 21 and detects the pressure of the refrigerant sucked into the compressor 21. The suction pressure sensor 34 a may be disposed between the gas side closing valve 29 and the compressor 21. The discharge pressure sensor 34b is disposed on the discharge side of the compressor 21 and detects the pressure of the refrigerant discharged from the compressor 21.
 この実施の形態の例では、熱源側熱交換器23の凝縮温度は、吐出圧力センサ34bの圧力を飽和温度に換算して得られるようになっているが、熱源側熱交換器23の凝縮温度は、熱源側熱交換器23に温度センサを配設して取得することもできる。 In the example of this embodiment, the condensation temperature of the heat source side heat exchanger 23 is obtained by converting the pressure of the discharge pressure sensor 34b into the saturation temperature, but the condensation temperature of the heat source side heat exchanger 23 is obtained. Can also be obtained by arranging a temperature sensor in the heat source side heat exchanger 23.
 図2は、この発明の実施の形態1に係る冷凍装置の構成の一例を模式的に記載した図である。制御部3は、冷凍装置1の全体の制御を行うものであり、この実施の形態の例の制御部3は、熱源側制御部31に含まれている。なお、制御部3は、この発明の「冷媒量判定部」に相当するものである。制御部3は、取得部3a、演算部3b、記憶部3cおよび駆動部3dを含んでいる。取得部3a、演算部3bおよび駆動部3dは、例えばマイコン等を含んで構成されており、記憶部3cは、例えば半導体メモリ等を含んで構成されている。取得部3aは、圧力センサおよび温度センサ等のセンサ類が検出した温度および圧力等の情報を取得するものである。演算部3bは、取得部3aが取得した情報を用いて、演算、比較、判定などの処理を行うものである。駆動部3dは、演算部3bが演算した結果を用いて、圧縮機21、弁類、ファン等の駆動制御を行うものである。記憶部3cは、冷媒の物性値(飽和圧力、飽和温度など)、演算部3bが演算を行うためのデータ等を記憶している。演算部3bは、必要に応じて、記憶部3cの記憶内容を参照し、または更新することができる。 FIG. 2 is a diagram schematically illustrating an example of the configuration of the refrigeration apparatus according to Embodiment 1 of the present invention. The control unit 3 controls the entire refrigeration apparatus 1, and the control unit 3 in the example of this embodiment is included in the heat source side control unit 31. The control unit 3 corresponds to the “refrigerant amount determination unit” of the present invention. The control unit 3 includes an acquisition unit 3a, a calculation unit 3b, a storage unit 3c, and a drive unit 3d. The acquisition unit 3a, the calculation unit 3b, and the drive unit 3d are configured to include, for example, a microcomputer, and the storage unit 3c is configured to include, for example, a semiconductor memory. The acquisition unit 3a acquires information such as temperature and pressure detected by sensors such as a pressure sensor and a temperature sensor. The calculation unit 3b performs processing such as calculation, comparison, and determination using the information acquired by the acquisition unit 3a. The drive unit 3d performs drive control of the compressor 21, valves, fans, and the like using the results calculated by the calculation unit 3b. The storage unit 3c stores physical property values (saturation pressure, saturation temperature, etc.) of the refrigerant, data for the calculation unit 3b to perform calculations, and the like. The calculation unit 3b can refer to or update the storage content of the storage unit 3c as necessary.
 また、制御部3は、入力部3eおよび出力部3fを含んでいる。入力部3eは、リモコンもしくはスイッチ類等(図示せず)からの操作入力を入力し、または、電話回線もしくはLAN回線等の通信手段(図示せず)からの通信データを入力するものである。出力部3fは、制御部3の処理結果を、LEDやモニタ等の表示手段(図示せず)に出力し、スピーカ等の報知手段(図示せず)に出力し、または、電話回線もしくはLAN回線等の通信手段(図示せず)に出力するものである。なお、通信手段によって遠隔地へ情報を出力する場合には、冷凍装置1と遠隔装置(図示せず)との双方に、同一の通信プロトコルを有する通信手段(図示せず)を設けるとよい。 The control unit 3 includes an input unit 3e and an output unit 3f. The input unit 3e inputs operation input from a remote controller or switches (not shown) or communication data from communication means (not shown) such as a telephone line or a LAN line. The output unit 3f outputs the processing result of the control unit 3 to a display unit (not shown) such as an LED or a monitor, and outputs it to a notification unit (not shown) such as a speaker, or a telephone line or a LAN line. To a communication means (not shown). In addition, when outputting information to a remote place by a communication means, it is good to provide the communication means (not shown) which has the same communication protocol in both the refrigeration apparatus 1 and a remote device (not shown).
 例えば、冷凍装置1と遠隔装置(図示せず)とを用いて、冷媒量の不足等を判定することもできる。その場合には、例えば、演算部3bは、取得部3aが取得した情報を用いて、第1過冷却器22の温度効率Tを演算し、出力部3fは、演算部3bが演算した温度効率Tを、遠隔装置に送信する。遠隔装置は、冷媒量の不足を判定する冷媒不足判定手段(図示せず)を備えており、温度効率Tを用いて冷媒量の不足を判定する。遠隔装置にて冷媒の不足情報等を管理することにより、遠隔装置が設置された場所で冷凍装置1の異常等を早期に発見することができるため、冷凍装置1に異常が発生した場合等に、冷凍装置1のメンテナンス等を早期に行うことができる。 For example, it is possible to determine the shortage of the refrigerant amount by using the refrigeration apparatus 1 and a remote apparatus (not shown). In that case, for example, the calculation unit 3b calculates the temperature efficiency T of the first subcooler 22 using the information acquired by the acquisition unit 3a, and the output unit 3f calculates the temperature efficiency calculated by the calculation unit 3b. T is sent to the remote device. The remote device is provided with a refrigerant shortage determining means (not shown) for determining the shortage of the refrigerant amount, and determines the shortage of the refrigerant amount using the temperature efficiency T. By managing the refrigerant shortage information and the like by the remote device, it is possible to detect an abnormality or the like of the refrigeration device 1 at a place where the remote device is installed at an early stage. The maintenance of the refrigeration apparatus 1 can be performed at an early stage.
 なお、上記の説明では、制御部3が、熱源側制御部31に含まれる例についての説明を行ったが、制御部3は、利用側制御部32に含まれていてもよく、または、熱源側制御部31および利用側制御部32とは別途の構成であってもよい。 In the above description, the example in which the control unit 3 is included in the heat source side control unit 31 has been described. However, the control unit 3 may be included in the use side control unit 32 or the heat source The side control unit 31 and the use side control unit 32 may be configured separately.
[冷凍装置の動作(冷媒量適正時)]
 図3は、図1に記載の冷凍装置の、冷媒量が適正であるときの、p-h線図の一例である。まず、冷媒量が適正である場合の、冷凍装置1の動作について説明する。図3の点Kから点Lにて、図1に記載の圧縮機21は、冷媒を圧縮する。図3の点Lから点Mにて、図1の圧縮機21で圧縮された高温高圧のガス冷媒は、凝縮器として機能する熱源側熱交換器23で熱交換されて凝縮液化する。なお、熱源側熱交換器23で熱交換されて凝縮液化した冷媒は、レシーバ25に流入して、一時的にレシーバ25内に貯留される。レシーバ25に貯留される冷媒の量は、利用側ユニット4の運転負荷、外気温度および凝縮温度等に応じて変化する。
[Operation of refrigeration equipment (when the amount of refrigerant is appropriate)]
FIG. 3 is an example of a ph diagram of the refrigeration apparatus shown in FIG. 1 when the amount of refrigerant is appropriate. First, the operation of the refrigeration apparatus 1 when the refrigerant amount is appropriate will be described. From the point K to the point L in FIG. 3, the compressor 21 illustrated in FIG. 1 compresses the refrigerant. From the point L to the point M in FIG. 3, the high-temperature and high-pressure gas refrigerant compressed by the compressor 21 in FIG. 1 is heat-exchanged by the heat source side heat exchanger 23 functioning as a condenser to be condensed and liquefied. Note that the refrigerant that has been heat-exchanged by the heat source side heat exchanger 23 and condensed and liquefied flows into the receiver 25 and is temporarily stored in the receiver 25. The amount of the refrigerant stored in the receiver 25 varies depending on the operation load, the outside air temperature, the condensation temperature, and the like of the usage-side unit 4.
 図3の点Mから点Nにて、図1のレシーバ25に貯留された液冷媒は、第1過冷却器22で過冷却される。なお、第1過冷却器22の出口の過冷却度は、凝縮温度から、過冷却器高圧側出口温度センサ33dの温度を差し引くことで算出される。 3 from the point M to the point N in FIG. 3, the liquid refrigerant stored in the receiver 25 in FIG. 1 is supercooled by the first subcooler 22. The degree of supercooling at the outlet of the first supercooler 22 is calculated by subtracting the temperature of the supercooler high-pressure side outlet temperature sensor 33d from the condensation temperature.
 図3の点Nから点Oにて、図1の第1過冷却器22で過冷却された液冷媒は、液側閉鎖弁28及び液冷媒延長配管6を経由して、利用側ユニット4に送られ、利用側膨張弁41によって減圧されて低圧の気液二相冷媒となる。 The liquid refrigerant supercooled by the first subcooler 22 in FIG. 1 from the point N to the point O in FIG. 3 passes through the liquid side closing valve 28 and the liquid refrigerant extension pipe 6 to the usage side unit 4. It is sent and decompressed by the use side expansion valve 41 to become a low-pressure gas-liquid two-phase refrigerant.
 図3の点Oから点Kにて、図1の利用側膨張弁41で減圧された気液二相冷媒は、蒸発器として機能する利用側熱交換器42にてガス化する。なお、冷媒の過熱度は、利用側熱交出口温度センサ33fが検出した温度から、利用側熱交入口温度センサ33eが検出した冷媒の蒸発温度を差し引くことで算出される。利用側熱交換器42でガス化されたガス冷媒は、ガス冷媒延長配管7、ガス側閉鎖弁29、アキュムレータ24を経て、圧縮機21へ戻る。 3 from point O to point K in FIG. 3, the gas-liquid two-phase refrigerant decompressed by the use side expansion valve 41 in FIG. 1 is gasified in the use side heat exchanger 42 functioning as an evaporator. The degree of superheat of the refrigerant is calculated by subtracting the evaporation temperature of the refrigerant detected by the use side heat exchange inlet temperature sensor 33e from the temperature detected by the use side heat exchange outlet temperature sensor 33f. The gas refrigerant gasified by the use side heat exchanger 42 returns to the compressor 21 via the gas refrigerant extension pipe 7, the gas side closing valve 29, and the accumulator 24.
 次に、インジェクション回路について説明を行う。第1インジェクション回路71は、圧縮機21の吐出部の冷媒温度を下げるためのものである。第1インジェクション回路71の入口は、第1過冷却器22の出口と液側閉鎖弁28との間に接続されており、第1過冷却器22で過冷却された高圧液冷媒の一部は、インジェクション量調整弁72で減圧されて中間圧の二相冷媒となり、圧縮機21のインジェクション部に流入する。 Next, the injection circuit will be described. The first injection circuit 71 is for lowering the refrigerant temperature of the discharge part of the compressor 21. The inlet of the first injection circuit 71 is connected between the outlet of the first subcooler 22 and the liquid side shut-off valve 28, and a part of the high-pressure liquid refrigerant subcooled by the first subcooler 22 is Then, the pressure is reduced by the injection amount adjusting valve 72 to become a two-phase refrigerant having an intermediate pressure, and flows into the injection portion of the compressor 21.
 第2インジェクション回路73は、圧縮機21の内部の冷凍機油、モータの温度、吐出部の冷媒温度を下げるためのものである。第2インジェクション回路73の入口は、第1過冷却器22の出口と液側閉鎖弁28との間に接続されており、第1過冷却器22で過冷却された高圧液冷媒の一部は、キャピラリチューブ74で減圧されて低圧の二相冷媒となり、圧縮機21の吸入部に流入する。 The second injection circuit 73 is for lowering the refrigerating machine oil inside the compressor 21, the temperature of the motor, and the refrigerant temperature of the discharge part. The inlet of the second injection circuit 73 is connected between the outlet of the first subcooler 22 and the liquid side shut-off valve 28, and a part of the high-pressure liquid refrigerant subcooled by the first subcooler 22 is Then, the pressure is reduced in the capillary tube 74 to become a low-pressure two-phase refrigerant and flows into the suction portion of the compressor 21.
[冷凍装置の動作(冷媒量不足時)]
 図4は、図1に記載の冷凍装置の、冷媒量が不足となったときの、p-h線図の一例である。例えば、図1に記載の冷凍装置1から冷媒が漏洩等して、冷媒の量が減少すると、レシーバ25に余剰液冷媒が貯留されている間は、レシーバ25に貯留された余剰液冷媒が減少する。レシーバ25に余剰液冷媒が存在している間は、冷凍装置1は、図3に示すように、冷媒量が適正な場合と同様に動作する。
[Operation of refrigeration equipment (when refrigerant amount is insufficient)]
FIG. 4 is an example of a ph diagram when the refrigerant amount is insufficient in the refrigeration apparatus shown in FIG. For example, when the refrigerant leaks from the refrigeration apparatus 1 illustrated in FIG. 1 and the amount of the refrigerant decreases, the excess liquid refrigerant stored in the receiver 25 decreases while the excess liquid refrigerant is stored in the receiver 25. To do. While the surplus liquid refrigerant is present in the receiver 25, the refrigeration apparatus 1 operates in the same manner as when the refrigerant amount is appropriate, as shown in FIG.
 冷媒の減少が更に進んで、レシーバ25内の余剰液冷媒がなくなると、図4の点M1に示すように、凝縮器として機能する熱源側熱交換器23の出口のエンタルピーが大きくなり、熱源側熱交換器23の出口の冷媒状態が二相状態となる。また、熱源側熱交換器23の出口のエンタルピーが大きくなることに伴って、第1過冷却器22が二相冷媒の凝縮液化と過冷却とを行うこととなるため、点N1に示すように、第1過冷却器22の出口のエンタルピーも大きくなる。 When the refrigerant further decreases and the excess liquid refrigerant in the receiver 25 disappears, the enthalpy at the outlet of the heat source side heat exchanger 23 functioning as a condenser increases as shown by a point M1 in FIG. The refrigerant state at the outlet of the heat exchanger 23 becomes a two-phase state. Further, as the enthalpy at the outlet of the heat source side heat exchanger 23 increases, the first subcooler 22 performs the condensing and supercooling of the two-phase refrigerant, so that the point N1 indicates The enthalpy at the outlet of the first subcooler 22 is also increased.
[比較例1]
 比較例1では、冷媒の過冷却度を利用して、冷媒量の判定を行う。例えば冷媒が漏洩する等して、冷媒量が不足すると、図4に示すように、過冷却度が低下する。そこで、比較例1では、過冷却度が、予め設定された閾値よりも小さくなったときに、冷媒量が不足していると判定する。
[Comparative Example 1]
In Comparative Example 1, the refrigerant amount is determined using the degree of supercooling of the refrigerant. For example, when the refrigerant amount is insufficient due to leakage of the refrigerant, the degree of supercooling is reduced as shown in FIG. Therefore, in Comparative Example 1, when the degree of supercooling becomes smaller than a preset threshold value, it is determined that the refrigerant amount is insufficient.
 図5は、図1に記載の冷凍装置の冷媒量と第1過冷却器の過冷却度と冷凍装置の運転条件との関係を説明する図である。図5に示すように、第1過冷却器22の過冷却度は、冷凍装置1の運転条件(外気温度、熱交換量、冷媒循環量等)に応じて、大きく変動する。そのため、比較例1のように、過冷却度を利用して、冷媒量の不足の判定を行う場合には、誤判定とならないように、過冷却度閾値Sを低く設定する必要性がある。変形例1では、過冷却度閾値Sを低く設定しなければならないため、冷媒量の不足を判定するまでに長時間を要し、例えば冷媒が漏洩している場合に、冷媒の漏洩量が多くなってしまう。 FIG. 5 is a diagram illustrating the relationship between the refrigerant amount of the refrigeration apparatus illustrated in FIG. 1, the degree of supercooling of the first subcooler, and the operating conditions of the refrigeration apparatus. As shown in FIG. 5, the degree of supercooling of the first subcooler 22 varies greatly depending on the operating conditions of the refrigeration apparatus 1 (outside air temperature, heat exchange amount, refrigerant circulation amount, etc.). Therefore, as in Comparative Example 1, when using the degree of supercooling to determine whether the amount of refrigerant is insufficient, it is necessary to set the degree of supercooling threshold S low so as not to make an erroneous determination. In Modification 1, since the supercooling degree threshold value S must be set low, it takes a long time to determine whether the refrigerant amount is insufficient. For example, when the refrigerant is leaking, the amount of refrigerant leakage is large. turn into.
[冷媒量の判定]
 そこで、この実施の形態では、過冷却度と比較して、冷凍装置1の運転条件の変化に対する変動が小さい第1過冷却器22の温度効率Tを用いて、冷媒量の判定を行う。以下に説明する。
[Judgment of refrigerant amount]
Therefore, in this embodiment, the refrigerant amount is determined by using the temperature efficiency T of the first subcooler 22 that has a smaller variation with respect to changes in the operating conditions of the refrigeration apparatus 1 than the degree of supercooling. This will be described below.
 図6は、図1に記載の冷凍装置において、冷媒量が適正量であるときに、冷媒が、熱源側熱交換器、レシーバ、空気過冷却器の順に流れるときの、冷媒の温度変化の一例を説明する図である。なお、図6において、縦軸は温度を示し、上部ほど高い温度となる。また、横軸は熱源側熱交換器23、レシーバ25、第1過冷却器22の冷媒経路を示している。s1は冷媒の凝縮温度であり、s2は第1過冷却器22の出口の冷媒温度であり、s3は外気温度である。 FIG. 6 is an example of the temperature change of the refrigerant when the refrigerant flows in the order of the heat source side heat exchanger, the receiver, and the air supercooler when the refrigerant amount is an appropriate amount in the refrigeration apparatus illustrated in FIG. FIG. In FIG. 6, the vertical axis indicates the temperature, and the temperature is higher at the top. The horizontal axis indicates the refrigerant path of the heat source side heat exchanger 23, the receiver 25, and the first subcooler 22. s1 is the refrigerant condensation temperature, s2 is the refrigerant temperature at the outlet of the first subcooler 22, and s3 is the outside air temperature.
 第1過冷却器22の温度効率Tは、第1過冷却器22の効率を示すものであり、最大取り得る温度差Aを分母に取り、実際の温度差Bを分子に取ったものである。第1過冷却器22において、最大とり得る温度差Aは、凝縮温度s1と外気温度s3との差であり、実際に取り得る温度差Bは、凝縮温度s1と第1過冷却器22の出口の温度s2との差である。温度効率Tは、下記(数式1)で表される。
 温度効率T=実際に取り得る温度差B/最大とり得る温度差A・・・(数式1)
The temperature efficiency T of the first subcooler 22 indicates the efficiency of the first subcooler 22, and the maximum temperature difference A is taken as the denominator and the actual temperature difference B is taken as the numerator. . In the first subcooler 22, the maximum possible temperature difference A is the difference between the condensation temperature s1 and the outside air temperature s3, and the actually possible temperature difference B is the condensation temperature s1 and the outlet of the first subcooler 22. Is the difference from the temperature s2. The temperature efficiency T is expressed by the following (Formula 1).
Temperature efficiency T = Actual temperature difference B / Maximum temperature difference A (Expression 1)
 図7は、図1に記載の冷凍装置の冷媒量と第1過冷却器の温度効率と冷凍装置の運転条件との関係を説明する図である。図7において、横軸は、冷媒の冷媒量であり、縦軸は、第1過冷却器22の温度効率Tである。図7に示すように、冷媒量が少なくなり、冷媒量がEになってレシーバ25の余剰液冷媒が無くなると、第1過冷却器22の温度効率Tが低下する。そこで、温度効率Tが予め設定された温度効率閾値T1よりも小さくなったときに、冷媒が漏洩したと判定する。温度効率Tは、過冷却熱交換器5の性能を示すものであり、過冷却度に比べて冷凍装置1の運転条件による変動が小さいため、冷凍装置1の運転条件ごとに閾値を設定することなく冷媒量不足の判定精度を向上することができる。 FIG. 7 is a diagram illustrating the relationship between the refrigerant amount of the refrigeration apparatus illustrated in FIG. 1, the temperature efficiency of the first subcooler, and the operating conditions of the refrigeration apparatus. In FIG. 7, the horizontal axis represents the refrigerant amount of the refrigerant, and the vertical axis represents the temperature efficiency T of the first subcooler 22. As shown in FIG. 7, when the refrigerant amount decreases, the refrigerant amount becomes E, and the excess liquid refrigerant in the receiver 25 disappears, the temperature efficiency T of the first subcooler 22 decreases. Therefore, when the temperature efficiency T becomes smaller than the preset temperature efficiency threshold T1, it is determined that the refrigerant has leaked. The temperature efficiency T indicates the performance of the supercooling heat exchanger 5, and since the fluctuation due to the operating conditions of the refrigeration apparatus 1 is smaller than the degree of supercooling, a threshold is set for each operating condition of the refrigeration apparatus 1. Therefore, it is possible to improve the determination accuracy of the refrigerant amount shortage.
[冷媒量判定の例外条件]
 なお、冷媒量が適正量である場合であっても、図1に記載の冷凍装置1の運転状態によっては、第1過冷却器22の温度効率Tを用いた冷媒量判定が誤判定となって、冷媒量不足の判定となる場合がある。冷媒量が適正量である場合に、冷媒量不足の判定となると、混乱を招くこととなる。なお、冷媒量は適正量であるが、冷媒量不足の判定となったときに、冷媒を補充することによって、冷媒量の判定結果が適正量の判定となる場合もある。しかしながら、その場合には、冷凍装置1に必ずしも必要のない量の冷媒が封入されるため、冷凍装置1のコストの増加となる。また、冷媒量が不必要に多くなると、仮に、冷媒が漏洩した時に、温度効率Tを用いた冷媒量判定によって冷媒不足の判定ができるまでの漏洩量を増加させることとなる。また、冷媒量が不必要に多くなることによって、液バックが発生したときに、液バック量が増加し、圧縮機21の不具合に繋がるおそれもある。そこで、この実施の形態の例では、冷媒量判定の例外条件を設け、冷媒量判定が誤判定となるおそれがある例外条件に該当する場合には、第1過冷却器22の温度効率Tを用いた冷媒量判定を行わない。以下に説明する。
[Exception condition for refrigerant quantity judgment]
Even when the refrigerant amount is an appropriate amount, depending on the operating state of the refrigeration apparatus 1 illustrated in FIG. 1, the refrigerant amount determination using the temperature efficiency T of the first subcooler 22 becomes an erroneous determination. Therefore, it may be determined that the refrigerant amount is insufficient. If it is determined that the refrigerant amount is insufficient when the refrigerant amount is an appropriate amount, confusion will be caused. Note that the refrigerant amount is an appropriate amount, but when the refrigerant amount is determined to be insufficient, the refrigerant amount determination result may be the appropriate amount determination by replenishing the refrigerant. However, in that case, an unnecessary amount of refrigerant is sealed in the refrigeration apparatus 1, which increases the cost of the refrigeration apparatus 1. Further, if the amount of the refrigerant increases unnecessarily, if the refrigerant leaks, the amount of leakage until the refrigerant shortage can be determined by the refrigerant amount determination using the temperature efficiency T is increased. Moreover, when the amount of refrigerant increases unnecessarily, the amount of liquid back increases when liquid back occurs, which may lead to a malfunction of the compressor 21. Therefore, in the example of this embodiment, an exception condition for refrigerant amount determination is provided, and when the refrigerant amount determination corresponds to an exception condition that may be erroneously determined, the temperature efficiency T of the first subcooler 22 is set. The amount of refrigerant used is not determined. This will be described below.
[例外条件1(利用側ファン遅延制御時)]
 例外条件1は、利用側ファン遅延制御を行う場合である。利用側ファン遅延制御は、除霜運転中に発生した暖気が、冷却空間に吹き出されることを防止するために行われる。除霜運転が終了した後の、利用側熱交換器42の温度が低下するまでの時間は、例えば数分間であり、利用側熱交換器42の温度が低下する前に利用側ファン43が動作すると、冷却空間に暖気が吹き出されるため、利用側熱交換器42の温度が低下するまでは、利用側ファン43の動作を停止する。そして、利用側熱交換器42の温度が低下した後に、利用側ファン43の動作を再開する。
[Exception condition 1 (during use-side fan delay control)]
Exception condition 1 is a case where user-side fan delay control is performed. The use-side fan delay control is performed to prevent warm air generated during the defrosting operation from being blown out into the cooling space. The time until the temperature of the use side heat exchanger 42 decreases after the defrosting operation is completed is, for example, several minutes, and the use side fan 43 operates before the temperature of the use side heat exchanger 42 decreases. Then, since warm air is blown out into the cooling space, the operation of the use side fan 43 is stopped until the temperature of the use side heat exchanger 42 decreases. And after the temperature of the use side heat exchanger 42 falls, the operation | movement of the use side fan 43 is restarted.
 利用側ファン43の動作を停止しているときは、利用側熱交換器42での熱交換が抑制されるため、利用側熱交換器42を通過した冷媒が、気液2相状態となる場合がある。つまり、通常時はガス状態で利用側熱交換器42から圧縮機21まで流れる冷媒が、利用側ファン遅延制御を行っているときには、二相状態で流れ、アキュムレータ24に液冷媒が貯留される。したがって、利用側ファン遅延制御を行っているときは、低圧側の冷媒の量が一時的に増加し、高圧側の冷媒の量が一時的に低下している。その結果、利用側ファン遅延制御を行っているときは、温度効率Tを用いた冷媒量判定が、誤判定となるおそれがある。そこで、利用側ファン遅延制御時には、温度効率Tを用いた冷媒量判定を行わない。なお、利用側ファン遅延制御が終了し、利用側ファン43を運転させると、利用側熱交換器42から圧縮機21まで流れる冷媒がガス状態となって、高圧側の冷媒不足は解消する。 When the operation of the usage-side fan 43 is stopped, heat exchange in the usage-side heat exchanger 42 is suppressed, so that the refrigerant that has passed through the usage-side heat exchanger 42 is in a gas-liquid two-phase state. There is. That is, the refrigerant flowing from the use side heat exchanger 42 to the compressor 21 in the gas state normally flows in the two-phase state when the use side fan delay control is performed, and the liquid refrigerant is stored in the accumulator 24. Therefore, when the use-side fan delay control is performed, the amount of refrigerant on the low-pressure side temporarily increases, and the amount of refrigerant on the high-pressure side temporarily decreases. As a result, when the use-side fan delay control is performed, the refrigerant amount determination using the temperature efficiency T may be erroneously determined. Therefore, at the time of use-side fan delay control, the refrigerant amount determination using the temperature efficiency T is not performed. When the use-side fan delay control is completed and the use-side fan 43 is operated, the refrigerant flowing from the use-side heat exchanger 42 to the compressor 21 is in a gas state, and the shortage of refrigerant on the high-pressure side is resolved.
 例えば、制御部3は、冷凍装置1の運転状態を取得することによって、冷凍装置1が利用側ファン遅延制御を実施中であると判断する。そして、制御部3は、利用側ファン遅延制御の実施中、または利用側ファン遅延制御の実施中および利用側ファン遅延制御後の利用側熱交換器42から圧縮機21まで流れる冷媒がガス状態となるまでの一定時間は、冷媒不足の判定を行わない。なお、利用側ファン遅延制御を行う場合以外であっても、利用側ファン43の動作を停止する場合には、上記と同様に、温度効率Tを用いた冷媒量判定が、誤判定となるおそれがある。したがって、利用側ファン43の動作を停止する場合に、温度効率Tを用いた冷媒量判定を行わないように構成されていてもよい。 For example, the control unit 3 determines that the refrigeration apparatus 1 is performing the use-side fan delay control by acquiring the operation state of the refrigeration apparatus 1. Then, the control unit 3 determines that the refrigerant flowing from the use side heat exchanger 42 to the compressor 21 is in the gas state during the use side fan delay control or during the use side fan delay control and after the use side fan delay control. The refrigerant shortage determination is not performed for a certain period of time. Even when the use-side fan delay control is not performed, when the operation of the use-side fan 43 is stopped, the refrigerant amount determination using the temperature efficiency T may be erroneously determined as described above. There is. Therefore, when the operation of the use-side fan 43 is stopped, the refrigerant amount determination using the temperature efficiency T may not be performed.
 なお、温度効率Tが、予め設定された設定時間を超えて、温度効率閾値T1を下回った場合に、冷媒不足であると判定することもできる。すなわち、利用側ファン遅延制御の最大時間は例えば10分程度であり、利用側ファン遅延制御を行った後に、利用側熱交換器42から圧縮機21まで流れる冷媒がガス状態となるまでの最大時間は例えば10分程度である。そこで、例えば、温度効率Tが、“利用側ファン遅延制御の最大時間+利用側ファン遅延制御を行った後に、利用側熱交換器42から圧縮機21まで流れる冷媒がガス状態となるまでの最大時間”で決まる設定時間(例えば20分)を超えて、温度効率閾値T1を下回る場合に、冷媒不足であると判定することもできる。 In addition, when the temperature efficiency T exceeds the preset set time and falls below the temperature efficiency threshold value T1, it can be determined that the refrigerant is insufficient. That is, the maximum time of the use side fan delay control is, for example, about 10 minutes, and the maximum time until the refrigerant flowing from the use side heat exchanger 42 to the compressor 21 becomes a gas state after the use side fan delay control is performed. Is, for example, about 10 minutes. Therefore, for example, the temperature efficiency T is “maximum time until the refrigerant flowing from the use-side heat exchanger 42 to the compressor 21 becomes a gas state after performing the“ maximum time of use-side fan delay control + use-side fan delay control ”. It is also possible to determine that the refrigerant is insufficient when it exceeds a set time (for example, 20 minutes) determined by “time” and falls below the temperature efficiency threshold T1.
[例外条件2(プルダウン時、蒸発温度が高い場合)]
 例外条件2は、プルダウン時、蒸発温度が高い場合である。通常、冷凍装置1の長期停止後の冷やし込み時の庫内温度が高い場合は、短時間であるが冷媒回路10の低圧側の圧力が通常よりも高い状態で運転される場合がある。この場合、利用側膨張弁41から圧縮機21の吸入部までの圧力が高くなり、冷媒密度が高くなる。必要とする冷媒量は、密度×容積で表されるため、一時的に、低圧側の必要冷媒量が多くなり、レシーバ25、第1過冷却器22、熱源側熱交換器23などの高圧側が冷媒不足状態となる。したがって、プルダウン時、蒸発温度が高い場合は、温度効率Tを用いた冷媒量判定を行わない。
[Exception condition 2 (when pulling down, evaporation temperature is high)]
Exception condition 2 is when the evaporation temperature is high during pull-down. Usually, when the internal temperature at the time of cooling after the refrigeration apparatus 1 is stopped for a long time is high, the operation may be performed in a state where the pressure on the low pressure side of the refrigerant circuit 10 is higher than usual although it is a short time. In this case, the pressure from the use side expansion valve 41 to the suction portion of the compressor 21 increases, and the refrigerant density increases. Since the required amount of refrigerant is expressed by density × volume, the required amount of refrigerant on the low pressure side temporarily increases, and the high pressure side such as the receiver 25, the first subcooler 22, the heat source side heat exchanger 23, etc. A refrigerant shortage state occurs. Therefore, at the time of pull-down, when the evaporation temperature is high, the refrigerant amount determination using the temperature efficiency T is not performed.
 図8は、この実施の形態の冷媒量判定において、圧縮機がインバータ圧縮機である場合に、低圧圧力の大きさに応じて、冷媒量判定を行わないことを説明するための図であり、図9は、この実施の形態の冷媒量判定において、圧縮機が一定速圧縮機である場合に、低圧圧力の大きさに応じて、冷媒量判定を行わないことを説明するための図である。図8に示すように、圧縮機21がインバータ圧縮機である場合には、事前に設定された目標の低圧P1に、実際の低圧が近付くように、圧縮機21の運転周波数を増加させたり、低下させたりしている。また、図9に示すように、圧縮機21が一定速圧縮機である場合には、低圧が上昇した場合に圧縮機21を運転させる低圧カットON値P4を設定し、低圧が低下した場合に圧縮機21を停止させる低圧カットOFF値P3を設定して、圧縮機21を運転させる。つまり、圧縮機21の運転中の低圧圧力は、圧縮機21がインバータ圧縮機である場合には、ほぼ目標の低圧で運転し、また圧縮機21が一定速圧縮機である場合には、圧縮機21を運転させる低圧カットON値以下の運転がほとんどである。そこで、以下のように目標低圧、あるいは低圧カットON値に対してマージンを加えた値よりも、現在の低圧が高い場合は、冷媒不足の判定を行わない。すなわち、図8に示すように、圧縮機21がインバータ圧縮機である場合には、現在の低圧が、目標低圧P1+マージンαの圧力P2よりも大きい場合に、冷媒不足の判定を行わない。また、図9に示すように、圧縮機21が一定速圧縮機である場合には、現在の低圧が、低圧カットON値P4+マージンβの圧力P5よりも大きい場合に、冷媒不足の判定を行わない。 FIG. 8 is a diagram for explaining that, in the refrigerant amount determination of this embodiment, when the compressor is an inverter compressor, the refrigerant amount determination is not performed according to the magnitude of the low pressure. FIG. 9 is a diagram for explaining that, in the refrigerant amount determination according to this embodiment, when the compressor is a constant speed compressor, the refrigerant amount determination is not performed according to the magnitude of the low pressure. . As shown in FIG. 8, when the compressor 21 is an inverter compressor, the operating frequency of the compressor 21 is increased so that the actual low pressure approaches the target low pressure P1 set in advance. It has been reduced. Further, as shown in FIG. 9, when the compressor 21 is a constant speed compressor, a low pressure cut ON value P4 is set to operate the compressor 21 when the low pressure increases, and when the low pressure decreases. A low pressure cut OFF value P3 for stopping the compressor 21 is set, and the compressor 21 is operated. That is, when the compressor 21 is an inverter compressor, the low pressure pressure during the operation of the compressor 21 is operated at a substantially target low pressure, and when the compressor 21 is a constant speed compressor, the compression is performed. Most of operations are less than the low pressure cut ON value for operating the machine 21. Therefore, if the current low pressure is higher than the target low pressure or the value obtained by adding a margin to the low pressure cut ON value as described below, the refrigerant shortage determination is not performed. That is, as shown in FIG. 8, when the compressor 21 is an inverter compressor, the refrigerant shortage determination is not performed when the current low pressure is larger than the target low pressure P1 + the pressure P2 of the margin α. As shown in FIG. 9, when the compressor 21 is a constant speed compressor, the refrigerant shortage determination is performed when the current low pressure is higher than the low pressure cut ON value P4 + the pressure P5 of the margin β. Absent.
[例外条件3(吸入インジェクション用電磁弁が開の場合)]
 例外条件3は、図1に記載の吸入インジェクション用電磁弁75が開の場合である。吸入インジェクション用電磁弁75が開となると、高圧液冷媒の一部は、キャピラリチューブ74で減圧されて、圧縮機21の吸入部に流入する。この時、通常は、ガス状態である低圧側の吸入インジェクション用電磁弁75から圧縮機21の吸入部までが気液2相状態となり、低圧側に一時的に冷媒量が増えるため、レシーバ25、第1過冷却器22、熱源側熱交換器23などの高圧側が冷媒不足状態となる。なお、吸入インジェクション用電磁弁75を開とする場合は、長期停止後のプルダウン時等において、圧縮機21の吸入ガス温度が異常に上昇するときなどであり、稀な状況である。
[Exception condition 3 (when the solenoid valve for suction injection is open)]
Exception condition 3 is a case where the electromagnetic valve 75 for suction injection shown in FIG. 1 is open. When the electromagnetic valve 75 for suction injection is opened, a part of the high-pressure liquid refrigerant is decompressed by the capillary tube 74 and flows into the suction portion of the compressor 21. At this time, normally, the gas-liquid two-phase state from the low pressure suction electromagnetic valve 75 on the low pressure side, which is in the gas state, to the suction portion of the compressor 21, and the amount of refrigerant temporarily increases to the low pressure side. The high pressure side such as the first subcooler 22 and the heat source side heat exchanger 23 is in a refrigerant shortage state. Note that the case where the electromagnetic valve 75 for suction injection is opened is a rare situation, for example, when the intake gas temperature of the compressor 21 abnormally rises during pull-down after a long-term stop.
 したがって、圧縮機21が運転中であり、且つ吸入インジェクション用電磁弁75が開の場合、および吸入インジェクション用電磁弁75が開から閉となってからの一定時間は、吸入インジェクション用電磁弁75から圧縮機21の吸入部までが気液2相状態となり、低圧側に一時的に冷媒量が増えて、レシーバ25、第1過冷却器22、熱源側熱交換器23など高圧側が冷媒不足状態となるため、冷媒不足の判定を行わない。なお、上記では、第2インジェクション回路73でのインジェクションを行うときに、冷媒不足の判定を行わない例についての説明を行ったが、第1インジェクション回路71でのインジェクションを行うときに、冷媒不足の判定を行わないように構成されていてもよい。その場合には、インジェクション量調整弁72の開度等を利用して、冷媒不足の判定を行うか否かの判断を行えばよい。 Therefore, when the compressor 21 is in operation and the electromagnetic valve 75 for suction injection is open, and for a certain period of time after the electromagnetic valve 75 for suction injection is opened to closed, the electromagnetic valve 75 for suction injection is used. The gas-liquid two-phase state up to the suction portion of the compressor 21 is temporarily increased, the amount of refrigerant temporarily increases to the low pressure side, and the high pressure side such as the receiver 25, the first subcooler 22 and the heat source side heat exchanger 23 is in a refrigerant shortage state. Therefore, the refrigerant shortage determination is not performed. In the above description, the example in which the refrigerant shortage determination is not performed when performing the injection in the second injection circuit 73 has been described. However, when the injection in the first injection circuit 71 is performed, the refrigerant shortage is not performed. You may be comprised so that determination may not be performed. In that case, it is only necessary to determine whether or not to determine whether the refrigerant is insufficient by using the opening degree of the injection amount adjusting valve 72 or the like.
[例外条件4(熱源側ファンの風量低下時)]
 上記の例外条件1~例外条件3は、高圧側の冷媒が一時的に不足する場合に、冷媒量判定を行わない例についての説明を行った。例外条件4は、熱源側ファン27の風量を低下させる場合である。熱源側ファン27の風量を低下させる場合とは、例えば、外気が低下した場合に高圧が低下しすぎると利用側膨張弁41の差圧が小さくなり冷媒の流量が確保できなくなるため、高圧をある程度高く維持するために熱源側ファン27の風量を低下させる場合である。また、例えば、熱源側ファン27の騒音の低減を図るために、熱源側ファン27の風量を低下させる場合もある。
[Exception condition 4 (when the air volume of the heat source fan is low)]
In the above exception conditions 1 to 3, the example in which the refrigerant amount determination is not performed when the high-pressure side refrigerant is temporarily insufficient is described. Exception condition 4 is a case where the air volume of the heat source side fan 27 is reduced. When the air volume of the heat source side fan 27 is reduced, for example, when the outside air is reduced, if the high pressure is too low, the differential pressure of the use side expansion valve 41 becomes small and the flow rate of the refrigerant cannot be secured. This is a case where the air volume of the heat source side fan 27 is reduced in order to keep it high. For example, in order to reduce the noise of the heat source side fan 27, the air volume of the heat source side fan 27 may be reduced.
 温度効率Tは、熱源側ファン27の風量が低下すると凝縮温度が高くなるため、凝縮温度と外気温度との差である最大とり得る温度差Aが大きくなる。このときに、凝縮温度と第1過冷却器22の出口の温度との差である実際に取り得る温度差Bは、熱源側ファン27の風量が低下しているため、最大とり得る温度差Aと比較して大きくならない。したがって、熱源側ファン27の風量を低下させると、温度効率Tが低下する。特に、気温が-15℃程度の低外気時などにおいては、熱源側ファン27をON/OFFさせる必要があり、通常は7K~15K程度である最大とり得る温度差Aが、30K~50Kとなり、温度効率Tは低下する。そこで、熱源側ファン27の風量を低下した場合、外気温度と凝縮温度の差が大きくなった場合、または外気温度がある温度よりも低い場合には、冷媒不足の判定を行わない。 In the temperature efficiency T, the condensing temperature increases as the air volume of the heat source side fan 27 decreases, so that the maximum possible temperature difference A, which is the difference between the condensing temperature and the outside air temperature, increases. At this time, the actual possible temperature difference B, which is the difference between the condensation temperature and the outlet temperature of the first subcooler 22, is the maximum possible temperature difference A because the air volume of the heat source side fan 27 is reduced. Does not become large compared to. Therefore, when the air volume of the heat source side fan 27 is decreased, the temperature efficiency T is decreased. In particular, when the ambient temperature is low, such as -15 ° C., it is necessary to turn on / off the heat source side fan 27. The maximum temperature difference A that is normally about 7K to 15K is 30K to 50K. The temperature efficiency T decreases. Therefore, when the air volume of the heat source side fan 27 is decreased, the difference between the outside air temperature and the condensation temperature is increased, or when the outside air temperature is lower than a certain temperature, the refrigerant shortage determination is not performed.
 図10は、熱源側ファンの風量と温度効率閾値との関係の一例を示す図である。図10に示すように、熱源側ファン27の風量が多い時の温度効率閾値T3と比較して、熱源側ファン27の風量を低下させた場合の温度効率閾値T2を小さい値に設定することによって、温度効率Tを用いた冷媒量判定の誤判定のおそれを抑制することもできる。 FIG. 10 is a diagram showing an example of the relationship between the air volume of the heat source side fan and the temperature efficiency threshold. As shown in FIG. 10, by setting the temperature efficiency threshold T2 when the air volume of the heat source side fan 27 is reduced to a small value, compared to the temperature efficiency threshold T3 when the air volume of the heat source side fan 27 is large. In addition, the risk of erroneous determination of refrigerant amount determination using temperature efficiency T can be suppressed.
[例外条件5(圧縮機停止中、圧縮機起動後一定時間)]
 例外条件5は、圧縮機停止中、圧縮機起動後の一定時間である。図11は、圧縮機の起動の前後の、凝縮温度、外気温度、第1過冷却器の出口温度、および温度効率の関係を説明する図である。たとえば、圧縮機21を長期停止後、圧縮機21を起動させる場合を考える。圧縮機21の長期停止中は、外気温度、第1過冷却器22の出口温度、凝縮温度はほぼ等しくなる。この場合、すべての温度が等しくなったとすれば温度効率T=B/A=0/0となる。ただし、実際には、センサのバラツキによって、例えば、凝縮温度が25.0℃、外気温度が24.9℃、第1過冷却器22の出口温度が24.8℃となり、温度効率T=B/A=0.2/0.1=2.0となる。なお、上記の例は、一例であり、実際には、圧縮機21の長期停止中は、センサのバラツキ等によって、温度効率Tが大きく変動する。時刻m1にて、圧縮機21を起動させると、時刻m2にて、温度効率Tが、0.0~1.0の間の値に安定する。なお、時刻m1から時刻m2までの時間は、例えば30秒~1分程度である。
[Exception condition 5 (compressor stopped, fixed time after compressor startup)]
Exception condition 5 is a fixed time after the compressor is started while the compressor is stopped. FIG. 11 is a diagram illustrating the relationship between the condensation temperature, the outside air temperature, the outlet temperature of the first subcooler, and the temperature efficiency before and after the start of the compressor. For example, consider a case where the compressor 21 is started after the compressor 21 has been stopped for a long time. While the compressor 21 is stopped for a long time, the outside air temperature, the outlet temperature of the first subcooler 22 and the condensation temperature are substantially equal. In this case, if all the temperatures are equal, the temperature efficiency T = B / A = 0/0. However, in practice, due to sensor variations, for example, the condensation temperature is 25.0 ° C., the outside air temperature is 24.9 ° C., the outlet temperature of the first subcooler 22 is 24.8 ° C., and the temperature efficiency T = B /A=0.2/0.1=2.0. Note that the above example is merely an example, and in practice, the temperature efficiency T varies greatly due to sensor variations or the like during a long-term stop of the compressor 21. When the compressor 21 is started at time m1, the temperature efficiency T is stabilized at a value between 0.0 and 1.0 at time m2. The time from time m1 to time m2 is, for example, about 30 seconds to 1 minute.
 上記のように、圧縮機21の停止中から、圧縮機21の起動後の一定時間は、温度効率Tが不安定な状況であり、たとえば、短時間に圧縮機21の停止、運転を繰り返した場合には、温度効率Tが低い状況が継続される。その結果、冷媒が漏洩していない場合であっても、温度効率Tを利用した冷媒判定が冷媒不足となるおそれがある。そこで、圧縮機21の停止中から、圧縮機21の起動後一定時間は、冷媒不足の判定を行わない。 As described above, the temperature efficiency T is unstable for a certain time after the compressor 21 is started after the compressor 21 is stopped. For example, the compressor 21 is repeatedly stopped and operated in a short time. In such a case, the situation where the temperature efficiency T is low continues. As a result, even if the refrigerant is not leaking, the refrigerant determination using the temperature efficiency T may be insufficient. Therefore, the refrigerant shortage is not determined for a certain period of time after the compressor 21 is started after the compressor 21 is stopped.
[冷媒量判定動作]
 図12は、図1に記載の冷凍装置の冷媒量判定動作の一例を説明する図である。この実施の形態の冷凍装置1は、第1過冷却器22の温度効率Tを用いて、冷媒量の判定を行う。なお、以下で説明する冷媒量の判定は、冷凍装置1を設置するときの冷媒充填作業または冷凍装置1のメンテナンスを行うときの冷媒充填作業に適用することもできる。また、冷媒量判定動作は、遠隔装置(図示せず)からの指示を受けたときに、実行されてもよい。
[Refrigerant amount judgment operation]
FIG. 12 is a diagram illustrating an example of the refrigerant amount determination operation of the refrigeration apparatus illustrated in FIG. The refrigeration apparatus 1 according to this embodiment uses the temperature efficiency T of the first subcooler 22 to determine the refrigerant amount. Note that the determination of the refrigerant amount described below can also be applied to a refrigerant charging operation when the refrigeration apparatus 1 is installed or a refrigerant charging operation when the refrigeration apparatus 1 is maintained. The refrigerant amount determination operation may be executed when an instruction from a remote device (not shown) is received.
 図12のステップST1にて、図1に記載の冷凍装置1は、通常運転制御が行われる。冷凍装置1の通常運転制御では、熱源側制御部31は、例えば、センサ類が検出した冷媒回路10の圧力および温度等の運転データを取得して、運転データを用いて凝縮温度および蒸発温度等の目標値および偏差等の制御値を演算し、アクチュエータ類の制御を行う。以下、アクチュエータ類の動作について説明する。 In step ST1 of FIG. 12, the refrigeration apparatus 1 shown in FIG. In the normal operation control of the refrigeration apparatus 1, for example, the heat source side control unit 31 acquires operation data such as the pressure and temperature of the refrigerant circuit 10 detected by the sensors, and uses the operation data to condense the condensation temperature, the evaporation temperature, and the like. The control values such as target value and deviation are calculated to control the actuators. Hereinafter, the operation of the actuators will be described.
 例えば、熱源側制御部31は、冷凍装置1の冷凍サイクルの蒸発温度を、目標温度(例えば0℃)と一致させるように、圧縮機21の運転周波数を制御する。なお、冷凍サイクルの蒸発温度は、吸入圧力センサ34aが検出した圧力を飽和温度に換算することによって得ることもできる。例えば、熱源側制御部31は、現在の蒸発温度が目標温度よりも高い場合には圧縮機21の運転周波数を上昇させ、現在の蒸発温度が目標値よりも低い場合には圧縮機21の運転周波数を低下させる。 For example, the heat source side control unit 31 controls the operating frequency of the compressor 21 so that the evaporation temperature of the refrigeration cycle of the refrigeration apparatus 1 matches the target temperature (for example, 0 ° C.). The evaporation temperature of the refrigeration cycle can also be obtained by converting the pressure detected by the suction pressure sensor 34a into a saturation temperature. For example, the heat source side control unit 31 increases the operation frequency of the compressor 21 when the current evaporation temperature is higher than the target temperature, and operates the compressor 21 when the current evaporation temperature is lower than the target value. Reduce the frequency.
 また、例えば、熱源側制御部31は、冷凍装置1の冷凍サイクルの凝縮温度を、目標温度(例えば45℃)と一致させるように、熱源側熱交換器23に空気を送風する熱源側ファン27の回転数を制御する。なお、冷凍装置1の冷凍サイクルの凝縮温度は、吐出圧力センサ34bが検出した圧力を、飽和温度に換算することによって得ることもできる。例えば、熱源側制御部31は、現在の凝縮温度が目標温度よりも高い場合には熱源側ファン27の回転数を大きくし、現在の凝縮温度が目標温度よりも低い場合は熱源側ファン27の回転数を小さくする。 Further, for example, the heat source side control unit 31 blows air to the heat source side heat exchanger 23 so that the condensation temperature of the refrigeration cycle of the refrigeration apparatus 1 matches a target temperature (for example, 45 ° C.). Control the number of revolutions. The condensation temperature of the refrigeration cycle of the refrigeration apparatus 1 can also be obtained by converting the pressure detected by the discharge pressure sensor 34b into a saturation temperature. For example, the heat source side control unit 31 increases the number of rotations of the heat source side fan 27 when the current condensing temperature is higher than the target temperature, and increases the rotational speed of the heat source side fan 27 when the current condensing temperature is lower than the target temperature. Reduce the rotation speed.
 また、例えば、熱源側制御部31は、センサ類から得られた信号を用いて、第1インジェクション回路71のインジェクション量調整弁72の開度を調整し、または第2インジェクション回路73の吸入インジェクション用電磁弁75の開度を調整する。例えば、熱源側制御部31は、現在の圧縮機21の吐出温度が高い場合は、インジェクション量調整弁72または吸入インジェクション用電磁弁75を開状態として、現在の圧縮機21の吐出温度が低い場合は、インジェクション量調整弁72または吸入インジェクション用電磁弁75を閉じる。また、例えば、熱源側制御部31は、利用側ユニット4に空気を送風する利用側ファン43の回転数の制御を行う。 Further, for example, the heat source side control unit 31 adjusts the opening degree of the injection amount adjustment valve 72 of the first injection circuit 71 using the signals obtained from the sensors, or for the suction injection of the second injection circuit 73. The opening degree of the electromagnetic valve 75 is adjusted. For example, when the current discharge temperature of the compressor 21 is high, the heat source side control unit 31 opens the injection amount adjusting valve 72 or the suction injection electromagnetic valve 75 and the current discharge temperature of the compressor 21 is low. Closes the injection amount adjusting valve 72 or the electromagnetic valve 75 for suction injection. Further, for example, the heat source side control unit 31 controls the rotation speed of the use side fan 43 that blows air to the use side unit 4.
 ステップST2にて、熱源側制御部31は、例えば、熱源側熱交換器23の出口温度、第1過冷却器22の出口の温度、吸込み外気温度センサ33cが検出した外気温度および吐出圧力センサ34bが検出した圧力等を用いて、第1過冷却器22の温度効率Tの演算を行う。 In step ST2, the heat source side control unit 31, for example, the outlet temperature of the heat source side heat exchanger 23, the temperature of the outlet of the first subcooler 22, the outside air temperature detected by the suction outside air temperature sensor 33c and the discharge pressure sensor 34b. Is used to calculate the temperature efficiency T of the first subcooler 22.
 ステップST3にて、熱源側制御部31は、冷凍装置1の運転状態を取得する。冷凍装置1の運転状態が、上記の「冷媒量判定の例外条件」に該当する場合には、ステップST1に戻り、冷凍装置1の運転状態が、上記の「冷媒量判定の例外条件」に該当しない場合には、ステップST4に進む。 In step ST3, the heat source side control unit 31 acquires the operation state of the refrigeration apparatus 1. When the operating state of the refrigeration apparatus 1 corresponds to the “exception condition for refrigerant amount determination”, the process returns to step ST1, and the operating state of the refrigeration apparatus 1 corresponds to the “exception condition for refrigerant amount determination”. If not, the process proceeds to step ST4.
 ステップST4にて、熱源側制御部31は、ステップST1によって行われている冷凍装置1の運転制御が安定しているかを判定する。冷凍装置1の運転制御が安定していない場合にはステップST1に戻り、冷凍装置1の運転制御が安定している場合にはステップST5に進む。 In step ST4, the heat source side control unit 31 determines whether the operation control of the refrigeration apparatus 1 performed in step ST1 is stable. If the operation control of the refrigeration apparatus 1 is not stable, the process returns to step ST1, and if the operation control of the refrigeration apparatus 1 is stable, the process proceeds to step ST5.
 ステップST5にて、熱源側制御部31は、冷媒量判定パラメータとその基準値を比較することにより冷媒量の適否の判定を行う。具体的には、第1過冷却器22の温度効率Tと判定閾値Tmの偏差量ΔT(=T-Tm)を求め、偏差量ΔTが正の値であるか否かを判定する。偏差量ΔTが正である場合には、熱源側制御部31は、冷媒量が不足していないと判断して、ステップST6に進む。偏差量ΔTが負である場合には、熱源側制御部31は、冷媒量が不足していると判断して、ステップST7に進む。このときに、第1過冷却器22の温度効率Tは、瞬時値を用いるよりも、時間的に異なる複数の温度効率Tの移動平均をとることが望ましい。時間的に異なる複数の温度効率Tの移動平均を取ることで、冷凍サイクルの安定も考慮することができる。なお、判定閾値Tmは、例えば、熱源側制御部31の記憶部3cに予め記憶されていてもよく、リモコンまたはスイッチなどの入力によって設定されてもよく、遠隔装置(図示せず)からの指示によって設定されてもよい。 In step ST5, the heat source side control unit 31 determines whether or not the refrigerant amount is appropriate by comparing the refrigerant amount determination parameter and its reference value. Specifically, a deviation amount ΔT (= T−Tm) between the temperature efficiency T of the first subcooler 22 and the determination threshold value Tm is obtained, and it is determined whether or not the deviation amount ΔT is a positive value. If the deviation amount ΔT is positive, the heat source side control unit 31 determines that the refrigerant amount is not insufficient, and proceeds to step ST6. If the deviation amount ΔT is negative, the heat source side control unit 31 determines that the refrigerant amount is insufficient, and proceeds to step ST7. At this time, the temperature efficiency T of the first subcooler 22 is preferably a moving average of a plurality of temperature efficiencies T that are temporally different from each other, rather than using an instantaneous value. By taking a moving average of a plurality of temperature efficiencies T that are temporally different, the stability of the refrigeration cycle can be taken into consideration. The determination threshold value Tm may be stored in advance in the storage unit 3c of the heat source side control unit 31, for example, or may be set by an input from a remote controller or a switch, or an instruction from a remote device (not shown). May be set.
 ステップST5での冷媒量判定結果が冷媒量適性である場合には、熱源側制御部31は、ステップST6にて、冷媒量が適性である旨の出力を行う。冷媒量が適性である場合には、冷媒量が適性である旨が、例えば、冷凍装置1に配設されたLEDまたは液晶などの表示部(図示せず)に表示され、または冷媒量が適性である旨の信号が遠隔装置(図示せず)に送信される。 If the refrigerant amount determination result in step ST5 is the refrigerant amount suitability, the heat source side control unit 31 outputs in step ST6 that the refrigerant amount is suitable. When the amount of refrigerant is appropriate, the fact that the amount of refrigerant is appropriate is displayed, for example, on a display unit (not shown) such as an LED or a liquid crystal disposed in the refrigeration apparatus 1, or the amount of refrigerant is appropriate. Is transmitted to a remote device (not shown).
 ステップST5での冷媒量判定結果が冷媒量不足である場合には、熱源側制御部31は、ステップST7にて、冷媒量が異常である旨の出力を行う。冷媒量が異常である場合には、例えば、冷媒量が異常である旨の警報が、冷凍装置1に配設されたLEDまたは液晶などの表示部(図示せず)に表示され、または冷媒量が異常である旨の信号が遠隔装置(図示せず)に送信される。なお、冷媒量が異常である場合は緊急を要することもあるため、電話回線などを通じて、サービスマンへ異常発生を直接的に報知するように構成されてもよい。 If the refrigerant amount determination result in step ST5 is that the refrigerant amount is insufficient, the heat source side control unit 31 outputs in step ST7 that the refrigerant amount is abnormal. When the refrigerant amount is abnormal, for example, an alarm indicating that the refrigerant amount is abnormal is displayed on a display unit (not shown) such as an LED or a liquid crystal provided in the refrigeration apparatus 1, or the refrigerant amount Is transmitted to a remote device (not shown). In addition, since an emergency may be required when the amount of refrigerant is abnormal, it may be configured to notify the service person of the occurrence of abnormality directly through a telephone line or the like.
 なお、上記の実施の形態では、ステップST2にて、温度効率Tの演算を行い、ステップST3およびステップST4にて冷媒量の判定を行うか否かの判断を行ったが、ステップST3およびステップST4の後に、ステップST2を実行してもよい。冷媒量の判定を行うか否かの判断を行った後に、温度効率Tの演算を行うことによって、熱源側制御部31が演算を行う処理量を低減することができる。 In the above embodiment, the temperature efficiency T is calculated in step ST2, and it is determined whether or not the refrigerant amount is determined in steps ST3 and ST4. However, step ST3 and step ST4 are used. After step ST2, step ST2 may be executed. By performing the calculation of the temperature efficiency T after determining whether or not to determine the refrigerant amount, the amount of processing that the heat source side control unit 31 performs the calculation can be reduced.
 上記のように、この実施の形態では、温度効率Tを利用して、冷凍装置1の冷媒回路10に流れる冷媒の量の判定を行っているため、仮に、冷媒が漏洩した場合であっても、冷媒の漏れを早期に検出することができる。 As described above, in this embodiment, the temperature efficiency T is used to determine the amount of refrigerant flowing in the refrigerant circuit 10 of the refrigeration apparatus 1, so that even if the refrigerant leaks, The refrigerant leakage can be detected at an early stage.
 さらに、この実施の形態では、冷凍装置1の運転状態を取得して、冷凍装置1の運転状態が、「冷媒量判定の例外条件」に該当する場合には、温度効率Tを利用した冷媒量判定を行わないため、冷媒量の誤判定のおそれが抑制されている。その結果、この実施の形態では、冷媒量を適切な量とすることができるため、冷媒のコストを低減することができる。さらに、この実施の形態では、冷媒量が適切な量となっているため、仮に、冷媒が漏れた場合であっても、大気に冷媒が放出される量を低減することができる。さらに、この実施の形態では、冷媒量が適切な量となっているため、仮に膨張弁等の動作が異常となり、液バックが発生した場合であっても、圧縮機21への液バック量を少なくすることができる。したがって、この実施の形態の冷凍装置1は、信頼性が向上されている。 Furthermore, in this embodiment, when the operation state of the refrigeration apparatus 1 is acquired and the operation state of the refrigeration apparatus 1 corresponds to the “exception condition for refrigerant amount determination”, the refrigerant amount using the temperature efficiency T Since the determination is not performed, the risk of erroneous determination of the refrigerant amount is suppressed. As a result, in this embodiment, since the amount of refrigerant can be set to an appropriate amount, the cost of the refrigerant can be reduced. Furthermore, in this embodiment, since the amount of refrigerant is an appropriate amount, even if the refrigerant leaks, the amount of refrigerant released into the atmosphere can be reduced. Furthermore, in this embodiment, since the amount of refrigerant is an appropriate amount, even if the operation of the expansion valve or the like becomes abnormal and liquid back occurs, the amount of liquid back to the compressor 21 is reduced. Can be reduced. Therefore, the refrigeration apparatus 1 of this embodiment has improved reliability.
 なお、上記で説明した運転制御では、凝縮温度や蒸発温度を特定する制御はしていないが、例えば、凝縮温度、蒸発温度が一定になるように制御を行ってもよい。また、例えば、圧縮機21の運転周波数と熱源側ユニット2の熱源側ファン27の回転数を一定値として、凝縮温度と蒸発温度の制御を行わなくてもよい。また、例えば、凝縮温度もしくは蒸発温度のうちの何れか一方を目標値となるように制御を行ってもよい。冷凍装置1の運転状態を一定の条件に制御することによって、第1過冷却器22の過冷却度や過冷却度に応じて変動する運転状態量の変動が小さくなり、閾値の決定が容易となり、冷媒量不足の判定が行いやすくなる。 In the operation control described above, control for specifying the condensation temperature and the evaporation temperature is not performed. However, for example, the control may be performed so that the condensation temperature and the evaporation temperature are constant. Further, for example, it is not necessary to control the condensing temperature and the evaporating temperature by setting the operating frequency of the compressor 21 and the rotation speed of the heat source side fan 27 of the heat source side unit 2 as constant values. Further, for example, the control may be performed so that one of the condensation temperature and the evaporation temperature becomes a target value. By controlling the operating state of the refrigeration apparatus 1 to a certain condition, the degree of subcooling of the first subcooler 22 and the fluctuation of the operating state variable that varies according to the degree of subcooling are reduced, and the threshold value can be easily determined. This makes it easier to determine whether the refrigerant amount is insufficient.
 また、この実施の形態の冷媒量判定動作を、冷凍装置1の設置初期の冷媒充填作業、またはメンテナンス時に冷媒を一度排出して再度充填する際の冷媒充填作業に適用することによって、冷媒充填作業の時間短縮、作業者の負荷軽減を実現することができる。 In addition, the refrigerant amount determination operation of this embodiment is applied to the refrigerant charging operation at the initial stage of installation of the refrigeration apparatus 1 or the refrigerant charging operation when the refrigerant is once discharged and refilled at the time of maintenance. It is possible to reduce the time required for the operator and reduce the load on the worker.
[変形例1]
 図13は、図1の変形例1である。図1に記載の冷凍装置1と比較して、変形例1の冷凍装置1Aの熱源側ユニット2Aは、図13に示すように、第1過冷却器22の下流に、第2過冷却器26をさらに有している。なお、第2過冷却器26は、この発明の「過冷却器」に相当するものである。第2過冷却器26は、例えば、二重管またはプレート型熱交換器等を含んで構成されており、熱源側冷媒回路10bに流れる高圧の冷媒と、第1インジェクション回路71Aに流れる中間圧の冷媒とを熱交換させるものである。第2過冷却器26を通過した冷媒の一部は、インジェクション量調整弁72で膨張されて中間圧の冷媒となり、第2過冷却器26を通過する冷媒と熱交換する。その結果、変形例2では、レシーバ25から流入して第2過冷却器26で熱交換された高圧の冷媒は、更に過冷却される。また、インジェクション量調整弁72から流入して、第2過冷却器26で熱交換された中間圧の冷媒は、乾き度が高い冷媒となり、圧縮機21の吐出温度を下げるために圧縮機21の吸入側にインジェクションされる。変形例1における冷媒判定動作は、第1過冷却器22の温度効率、第2過冷却器26の温度効率、または第1過冷却器22および第2過冷却器26の温度効率を用いて行われればよい。なお、変形例1では、第1過冷却器22を省略し、レシーバ25から流出した冷媒が、第2過冷却器26に流入する構成とすることもできる。
[Modification 1]
FIG. 13 shows a first modification of FIG. Compared with the refrigeration apparatus 1 described in FIG. 1, the heat source side unit 2 </ b> A of the refrigeration apparatus 1 </ b> A according to the first modification has a second subcooler 26 downstream of the first subcooler 22, as shown in FIG. 13. It has further. The second subcooler 26 corresponds to the “supercooler” of the present invention. The second subcooler 26 includes, for example, a double pipe or a plate-type heat exchanger, and has a high pressure refrigerant flowing in the heat source side refrigerant circuit 10b and an intermediate pressure flowing in the first injection circuit 71A. Heat exchange with the refrigerant is performed. A part of the refrigerant that has passed through the second subcooler 26 is expanded by the injection amount adjustment valve 72 to become an intermediate-pressure refrigerant, and exchanges heat with the refrigerant that has passed through the second subcooler 26. As a result, in the second modification, the high-pressure refrigerant flowing from the receiver 25 and heat-exchanged by the second subcooler 26 is further subcooled. Further, the intermediate-pressure refrigerant that flows in from the injection amount adjustment valve 72 and exchanges heat with the second subcooler 26 becomes a refrigerant having a high dryness, so that the discharge temperature of the compressor 21 is lowered in order to lower the discharge temperature of the compressor 21. Injection into the suction side. The refrigerant determination operation in the first modification is performed using the temperature efficiency of the first subcooler 22, the temperature efficiency of the second subcooler 26, or the temperature efficiency of the first subcooler 22 and the second subcooler 26. It's fine. In the first modification, the first subcooler 22 may be omitted, and the refrigerant that has flowed out from the receiver 25 may flow into the second subcooler 26.
 この発明は、上記の実施の形態に限定されるものではなく、この発明の範囲内で種々に改変することができる。すなわち、上記の実施の形態の構成を適宜改良してもよく、また、少なくとも一部を他の構成に代替させてもよい。さらに、その配置について特に限定のない構成要件は、実施の形態で開示した配置に限らず、その機能を達成できる位置に配置することができる。 The present invention is not limited to the above embodiment, and can be variously modified within the scope of the present invention. That is, the configuration of the above embodiment may be improved as appropriate, or at least a part of the configuration may be replaced with another configuration. Further, the configuration requirements that are not particularly limited with respect to the arrangement are not limited to the arrangement disclosed in the embodiment, and can be arranged at a position where the function can be achieved.
 1 冷凍装置、1A 冷凍装置、2 熱源側ユニット、2A 熱源側ユニット、3 制御部、3a 取得部、3b 演算部、3c 記憶部、3d 駆動部、3e 入力部、3f 出力部、4 利用側ユニット、5 過冷却熱交換器、6 液冷媒延長配管、7 ガス冷媒延長配管、10 冷媒回路、10a 利用側冷媒回路、10b 熱源側冷媒回路、21 圧縮機、22 第1過冷却器、23 熱源側熱交換器、24 アキュムレータ、25 レシーバ、26 第2過冷却器、27 熱源側ファン、28 液側閉鎖弁、29 ガス側閉鎖弁、31 熱源側制御部、32 利用側制御部、33a 吸入温度センサ、33b 吐出温度センサ、33c 吸込み外気温度センサ、33d 過冷却器高圧側出口温度センサ、33e 利用側熱交入口温度センサ、33f 利用側熱交出口温度センサ、33g 吸込空気温度センサ、34a 吸入圧力センサ、34b 吐出圧力センサ、41 利用側膨張弁、42 利用側熱交換器、43 利用側ファン、71 第1インジェクション回路、71A 第1インジェクション回路、72 インジェクション量調整弁、73 第2インジェクション回路、74 キャピラリチューブ、75 吸入インジェクション用電磁弁、T 温度効率、T1 温度効率閾値、T2 温度効率閾値、T3 温度効率閾値。 1 Refrigeration unit, 1A Refrigeration unit, 2 Heat source side unit, 2A Heat source side unit, 3 Control unit, 3a acquisition unit, 3b Calculation unit, 3c Storage unit, 3d drive unit, 3e input unit, 3f output unit, 4 Usage unit 5, 5 supercooling heat exchanger, 6 liquid refrigerant extension pipe, 7 gas refrigerant extension pipe, 10 refrigerant circuit, 10a use side refrigerant circuit, 10b heat source side refrigerant circuit, 21 compressor, 22 1st subcooler, 23 heat source side Heat exchanger, 24 accumulator, 25 receiver, 26 second subcooler, 27 heat source side fan, 28 liquid side closing valve, 29 gas side closing valve, 31 heat source side control unit, 32 usage side control unit, 33a suction temperature sensor , 33b Discharge temperature sensor, 33c Suction outside air temperature sensor, 33d Supercooler high pressure side outlet temperature sensor, 33e Use side heat exchange inlet Degree sensor, 33f use side heat exchange outlet temperature sensor, 33g suction air temperature sensor, 34a suction pressure sensor, 34b discharge pressure sensor, 41 use side expansion valve, 42 use side heat exchanger, 43 use side fan, 71 first injection Circuit, 71A first injection circuit, 72 injection amount adjustment valve, 73 second injection circuit, 74 capillary tube, 75 solenoid valve for injection, T temperature efficiency, T1 temperature efficiency threshold, T2 temperature efficiency threshold, T3 temperature efficiency threshold.

Claims (9)

  1.  圧縮機と凝縮器として機能する熱源側熱交換器と過冷却器とを有する熱源側ユニットと、利用側膨張弁と蒸発器として機能する利用側熱交換器とを有する少なくとも1つの利用側ユニットとが、配管で接続され、冷媒を循環させる冷媒回路を有する冷凍装置であって、
     前記過冷却器の出口における冷媒の過冷却度を、前記過冷却器の最大温度差で除算した値である、前記過冷却器の温度効率を用いて、前記冷媒回路に充填された冷媒量を判定する冷媒量判定部を備え、
     前記冷媒量判定部は、当該冷凍装置の運転状態を取得し、前記冷媒量の判定が誤判定となるおそれがある場合に、前記冷媒量の判定を行わない、
     冷凍装置。
    A heat source side unit having a heat source side heat exchanger and a supercooler functioning as a compressor and a condenser, and at least one usage side unit having a usage side expansion valve and a usage side heat exchanger functioning as an evaporator; Is a refrigeration apparatus having a refrigerant circuit connected by piping and circulating the refrigerant,
    Using the temperature efficiency of the subcooler, which is a value obtained by dividing the degree of supercooling of the refrigerant at the outlet of the subcooler by the maximum temperature difference of the subcooler, the amount of refrigerant charged in the refrigerant circuit is A refrigerant amount determination unit for determining,
    The refrigerant amount determination unit acquires the operating state of the refrigeration apparatus and does not determine the refrigerant amount when there is a possibility that the determination of the refrigerant amount is erroneously determined.
    Refrigeration equipment.
  2.  前記冷媒量の判定が誤判定となるおそれがある場合は、前記熱源側熱交換器から前記利用側膨張弁の入口までの高圧側冷媒が一時的に少なくなり、前記利用側膨張弁の出口から前記圧縮機の吸引側までの低圧側冷媒が一時的に多くなる場合である、
     請求項1に記載の冷凍装置。
    If there is a possibility that the determination of the refrigerant amount is erroneously determined, the high-pressure side refrigerant from the heat source side heat exchanger to the inlet of the usage side expansion valve temporarily decreases, and from the outlet of the usage side expansion valve. When the low-pressure side refrigerant to the suction side of the compressor temporarily increases,
    The refrigeration apparatus according to claim 1.
  3.  前記利用側熱交換器に空気を送風する利用側ファンをさらに備え、
     前記熱源側熱交換器から前記利用側膨張弁の入口までの高圧側冷媒が一時的に少なくなり、前記利用側膨張弁の出口から前記圧縮機の吸引側までの低圧側冷媒が一時的に多くなる場合は、前記利用側ファンが送風する送風量を一時的に低下させる場合である、
     請求項2に記載の冷凍装置。
    A user-side fan that blows air to the user-side heat exchanger;
    The high-pressure side refrigerant from the heat source side heat exchanger to the inlet of the usage side expansion valve temporarily decreases, and the low pressure side refrigerant from the outlet of the usage side expansion valve to the suction side of the compressor temporarily increases. If this is the case, the amount of air blown by the use-side fan is temporarily reduced.
    The refrigeration apparatus according to claim 2.
  4.  前記熱源側熱交換器から前記利用側膨張弁の入口までの高圧側冷媒が一時的に少なくなり、前記利用側膨張弁の出口から前記圧縮機の吸引側までの低圧側冷媒が一時的に多くなる場合は、当該冷凍装置をプルダウンさせる場合である、
     請求項2に記載の冷凍装置。
    The high-pressure side refrigerant from the heat source side heat exchanger to the inlet of the usage side expansion valve temporarily decreases, and the low pressure side refrigerant from the outlet of the usage side expansion valve to the suction side of the compressor temporarily increases. If this is the case, pull down the refrigeration device,
    The refrigeration apparatus according to claim 2.
  5.  前記熱源側熱交換器で冷却された冷媒の一部を、前記圧縮機にインジェクションするインジェクション回路と、
     前記インジェクション回路に配設された開閉弁をさらに備え、
     前記熱源側熱交換器から前記利用側膨張弁の入口までの高圧側冷媒が一時的に少なくなり、前記利用側膨張弁の出口から前記圧縮機の吸引側までの低圧側冷媒が一時的に多くなる場合は、前記開閉弁を開状態にする場合である、
     請求項2に記載の冷凍装置。
    An injection circuit for injecting a part of the refrigerant cooled by the heat source side heat exchanger into the compressor;
    Further comprising an on-off valve disposed in the injection circuit,
    The high-pressure side refrigerant from the heat source side heat exchanger to the inlet of the usage side expansion valve temporarily decreases, and the low pressure side refrigerant from the outlet of the usage side expansion valve to the suction side of the compressor temporarily increases. Is, it is a case of opening the on-off valve,
    The refrigeration apparatus according to claim 2.
  6.  前記熱源側熱交換器に空気を送風する熱源側ファンをさらに備え、
     前記冷媒量の判定が誤判定となるおそれがある場合は、前記熱源側ファンが送風する送風量を一時的に低下させる場合である。
     請求項1に記載の冷凍装置。
    A heat source side fan for blowing air to the heat source side heat exchanger;
    The case where the determination of the refrigerant amount is likely to be an erroneous determination is a case where the amount of air blown by the heat source side fan is temporarily reduced.
    The refrigeration apparatus according to claim 1.
  7.  前記冷媒量の判定が誤判定となるおそれがある場合は、前記圧縮機の停止中および前記圧縮機が起動した後の一定時間である、
     請求項1に記載の冷凍装置。
    When there is a possibility that the determination of the refrigerant amount may be an erroneous determination, it is a certain time after the compressor is stopped and after the compressor is started.
    The refrigeration apparatus according to claim 1.
  8.  前記冷媒量判定部は、前記冷媒量が不足したと判定するための温度効率閾値を記憶しており、前記温度効率閾値は、前記冷凍装置の運転状態に応じて変更される、
     請求項1に記載の冷凍装置。
    The refrigerant amount determination unit stores a temperature efficiency threshold for determining that the amount of refrigerant is insufficient, and the temperature efficiency threshold is changed according to an operating state of the refrigeration apparatus.
    The refrigeration apparatus according to claim 1.
  9.  前記熱源側熱交換器に空気を送風する熱源側ファンをさらに備え、
     前記温度効率閾値は、前記熱源側ファンが送風する送風量に応じて変更される、
     請求項8に記載の冷凍装置。
    A heat source side fan for blowing air to the heat source side heat exchanger;
    The temperature efficiency threshold is changed according to the amount of air blown by the heat source side fan,
    The refrigeration apparatus according to claim 8.
PCT/JP2015/055476 2015-02-25 2015-02-25 Refrigeration apparatus WO2016135904A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017501756A JP6449979B2 (en) 2015-02-25 2015-02-25 Refrigeration equipment
PCT/JP2015/055476 WO2016135904A1 (en) 2015-02-25 2015-02-25 Refrigeration apparatus
CN201580072558.3A CN107110586B (en) 2015-02-25 2015-02-25 Refrigerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/055476 WO2016135904A1 (en) 2015-02-25 2015-02-25 Refrigeration apparatus

Publications (1)

Publication Number Publication Date
WO2016135904A1 true WO2016135904A1 (en) 2016-09-01

Family

ID=56788634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055476 WO2016135904A1 (en) 2015-02-25 2015-02-25 Refrigeration apparatus

Country Status (3)

Country Link
JP (1) JP6449979B2 (en)
CN (1) CN107110586B (en)
WO (1) WO2016135904A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021111561A1 (en) 2019-12-04 2021-06-10 三菱電機株式会社 Outdoor unit and refrigeration cycle device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6899960B2 (en) * 2018-04-23 2021-07-07 三菱電機株式会社 Refrigeration cycle equipment and refrigeration equipment

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08121917A (en) * 1994-10-24 1996-05-17 Hitachi Ltd Refrigerant quantity determining device
JP2004069198A (en) * 2002-08-07 2004-03-04 Sanyo Electric Co Ltd Refrigerant leak detecting method for refrigerator
JP4215022B2 (en) * 2005-04-07 2009-01-28 ダイキン工業株式会社 Air conditioner
JP2009229050A (en) * 2008-02-29 2009-10-08 Daikin Ind Ltd Air conditioner
JP2010007997A (en) * 2008-06-27 2010-01-14 Daikin Ind Ltd Refrigerant amount determining method of air conditioning device, and air conditioning device
JP2010223542A (en) * 2009-03-25 2010-10-07 Mitsubishi Electric Corp Refrigerating air-conditioning device
JP2012132639A (en) * 2010-12-22 2012-07-12 Mitsubishi Electric Corp Refrigeration unit
JP2012211723A (en) * 2011-03-31 2012-11-01 Nakano Refrigerators Co Ltd Freezer and method for detecting refrigerant leakage in the freezer
JP2014196833A (en) * 2013-03-29 2014-10-16 三菱電機株式会社 Refrigerator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1852664B1 (en) * 2005-02-24 2014-08-06 Mitsubishi Electric Corporation Air conditioning system
WO2007049372A1 (en) * 2005-10-25 2007-05-03 Mitsubishi Electric Corporation Air-conditioning apparatus, method of refrigerant filling in air-conditioning apparatus, method of judging state of refrigerant filling in air-conditioning apparatus, and method of refrigerant filling/piping cleaning for air-conditioning apparatus
JP4114691B2 (en) * 2005-12-16 2008-07-09 ダイキン工業株式会社 Air conditioner
JP2010007995A (en) * 2008-06-27 2010-01-14 Daikin Ind Ltd Refrigerant amount determining method of air conditioning device, and air conditioning device
US9222711B2 (en) * 2010-03-12 2015-12-29 Mitsubishi Electric Corporation Refrigerating and air-conditioning apparatus
JP5334909B2 (en) * 2010-04-20 2013-11-06 三菱電機株式会社 Refrigeration air conditioner and refrigeration air conditioning system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08121917A (en) * 1994-10-24 1996-05-17 Hitachi Ltd Refrigerant quantity determining device
JP2004069198A (en) * 2002-08-07 2004-03-04 Sanyo Electric Co Ltd Refrigerant leak detecting method for refrigerator
JP4215022B2 (en) * 2005-04-07 2009-01-28 ダイキン工業株式会社 Air conditioner
JP2009229050A (en) * 2008-02-29 2009-10-08 Daikin Ind Ltd Air conditioner
JP2010007997A (en) * 2008-06-27 2010-01-14 Daikin Ind Ltd Refrigerant amount determining method of air conditioning device, and air conditioning device
JP2010223542A (en) * 2009-03-25 2010-10-07 Mitsubishi Electric Corp Refrigerating air-conditioning device
JP2012132639A (en) * 2010-12-22 2012-07-12 Mitsubishi Electric Corp Refrigeration unit
JP2012211723A (en) * 2011-03-31 2012-11-01 Nakano Refrigerators Co Ltd Freezer and method for detecting refrigerant leakage in the freezer
JP2014196833A (en) * 2013-03-29 2014-10-16 三菱電機株式会社 Refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021111561A1 (en) 2019-12-04 2021-06-10 三菱電機株式会社 Outdoor unit and refrigeration cycle device

Also Published As

Publication number Publication date
CN107110586B (en) 2020-01-24
JP6449979B2 (en) 2019-01-09
JPWO2016135904A1 (en) 2017-09-07
CN107110586A (en) 2017-08-29

Similar Documents

Publication Publication Date Title
JP5334909B2 (en) Refrigeration air conditioner and refrigeration air conditioning system
JP4864110B2 (en) Refrigeration air conditioner
JP6366742B2 (en) Air conditioner
JP6730532B2 (en) Refrigeration cycle device and refrigeration device
US11149999B2 (en) Refrigeration cycle apparatus having foreign substance release control
JP6732862B2 (en) Refrigeration equipment
JP6588626B2 (en) Refrigeration equipment
JP6490237B2 (en) Refrigerant amount management apparatus and refrigerant amount management system
JP2021081187A (en) Air conditioner
JP5718629B2 (en) Refrigerant amount detection device
JP6449979B2 (en) Refrigeration equipment
JP6590945B2 (en) Refrigeration equipment
JP6537629B2 (en) Air conditioner
JP2020169807A (en) Refrigeration equipment
JP6848027B2 (en) Refrigeration equipment
JP6267483B2 (en) Refrigerator unit and refrigeration equipment
JP2020159687A (en) Refrigeration cycle device and refrigeration device
JP2015143614A (en) Refrigerant amount detector
CN116075675A (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883200

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017501756

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15883200

Country of ref document: EP

Kind code of ref document: A1