WO2018023995A1 - 探测面板及探测装置 - Google Patents

探测面板及探测装置 Download PDF

Info

Publication number
WO2018023995A1
WO2018023995A1 PCT/CN2017/079714 CN2017079714W WO2018023995A1 WO 2018023995 A1 WO2018023995 A1 WO 2018023995A1 CN 2017079714 W CN2017079714 W CN 2017079714W WO 2018023995 A1 WO2018023995 A1 WO 2018023995A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
cesium iodide
panel according
detecting panel
iodide scintillator
Prior art date
Application number
PCT/CN2017/079714
Other languages
English (en)
French (fr)
Inventor
王熙元
田慧
李延钊
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/561,760 priority Critical patent/US10274615B2/en
Publication of WO2018023995A1 publication Critical patent/WO2018023995A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20183Arrangements for preventing or correcting crosstalk, e.g. optical or electrical arrangements for correcting crosstalk
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • G01T1/2023Selection of materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/208Circuits specially adapted for scintillation detectors, e.g. for the photo-multiplier section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/241Electrode arrangements, e.g. continuous or parallel strips or the like
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/246Measuring radiation intensity with semiconductor detectors utilizing latent read-out, e.g. charge stored and read-out later
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes

Definitions

  • Embodiments of the present invention relate to a detection panel and a detection device.
  • X-rays have been widely used in people's lives because of their high photon energy and strong penetrating power.
  • X-rays are used in the medical field for fluoroscopy, and used in industry for flaw detection. They are used in subways, airports, stations, etc. In security check.
  • the X-ray detecting devices currently on the market generally include a scintillator layer, a detector disposed on the light exiting side of the scintillator layer, and a matching circuit.
  • the scintillator layer is used to convert X-rays into light
  • the detector is used to convert the light output by the scintillator layer into an electrical signal, after which the circuit processes the electrical signal and outputs it to a display to form an image of the object to be measured.
  • At least one embodiment of the present invention provides a detection panel comprising: a cesium iodide scintillator layer undoped germanium; and a photodetector disposed on a light exit side of the cesium iodide scintillator layer and including A semiconductor layer having a material having a forbidden band width greater than or equal to 2.3 eV.
  • the material for forming the cesium iodide scintillator layer is a pure cesium iodide scintillator or a sodium-doped cesium iodide scintillator.
  • the material of the semiconductor layer includes a zinc oxide semiconductor.
  • the material for forming the cesium iodide scintillator layer is a pure cesium iodide scintillator.
  • the zinc oxide semiconductor is an n-type doped zinc oxide semiconductor and is doped with B, Al, Ga, In, Sc, Y, Si, Ge, Sn, Ti, Zr, V, Nb, Mo, F, One or several of Cl.
  • the zinc oxide semiconductor is a p-type doped zinc oxide semiconductor and is doped with one or more of Li, Na, K, Au, Ag, Cu, N, P, As, and Sb.
  • the material of the semiconductor layer includes a zinc oxynitride semiconductor, or a gallium nitride semiconductor, or A silicon carbide semiconductor, or a diamond semiconductor, or a diamond-like semiconductor, or an aluminum nitride semiconductor, or a gallium arsenide semiconductor, or a boron nitride semiconductor.
  • the photodetector is a photoconductive detector or a photovoltaic detector.
  • the cesium iodide scintillator layer has a thickness of from 1 micron to 2000 microns.
  • the cesium iodide scintillator layer includes a plurality of columnar crystals of cesium iodide arranged in an array.
  • each of the columnar crystals of cesium iodide has a diameter of from 0.1 ⁇ m to 100 ⁇ m.
  • the detection panel further includes a thin film transistor switch array disposed on a side of the photodetector remote from the cesium iodide scintillator layer.
  • the detection panel is an X-ray detection panel.
  • At least one embodiment of the present invention also provides a detecting device comprising the detecting panel of any of the above.
  • the detecting panel and the detecting device provided by the embodiments of the invention can greatly reduce the manufacturing cost of the detecting panel, are environmentally friendly and friendly, and can effectively detect the near-ultraviolet light outputted by the cesium iodide scintillator layer.
  • FIG. 1 is a schematic structural view of an X-ray detecting panel
  • FIG. 2 is a schematic structural diagram of a detection panel according to an embodiment of the present invention.
  • FIG. 4a is a schematic structural view of a different-surface photoconductive detector according to an embodiment of the present invention.
  • 4b is a schematic structural diagram of a coplanar photoconductive detector according to an embodiment of the present invention.
  • 4c is a schematic structural diagram of a p-i-n type photovoltaic detector according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a p-n type photovoltaic detector according to an embodiment of the present invention.
  • the detection panel includes a carrier substrate 140 and a switch circuit 130 , a photodetector 120 , and a scintillator layer 110 on the carrier substrate 140 .
  • the scintillator layer 110 is a CsI:TlI (cerium iodide-doped cesium iodide, CsI(Tl)) scintillator material to convert high-energy X-rays into visible light (arrows in the figure) Show).
  • the photodetector 120 is an amorphous silicon photodetector for detecting visible light output from the scintillator layer 110.
  • the peak wavelength of the amorphous silicon photodetector 120 (that is, the wavelength corresponding to the maximum response rate) is about 550 nanometers (nm) and the photoelectric response to ultraviolet light below 440 nm is low, so that the scintillator layer 110 is output.
  • the light is effectively detected by the photodetector 120, and the doping amount of the germanium element (T1) in the scintillator layer 110 needs to be adjusted to adjust the wavelength of the light output from the scintillator layer 110 to the amorphous silicon photodetector. Near the peak wavelength.
  • the inventors of the present application have noticed that the X-ray detecting panel using the CsI:TlI scintillator material to make the scintillator layer is expensive to produce because strontium and its compound cesium iodide are highly toxic substances. After entering the human body, it will cause serious damage to the human body. Therefore, the X-ray detection panel using the CsI:TlI scintillator material to make the scintillator layer needs to adopt a higher level of safety protection measures during the production process, and the detection panel cannot be free after being scrapped. Discarding requires special recycling and recycling to avoid damage to the environment. Moreover, since the base metal is a precious metal, this further increases the manufacturing cost of the X-ray detecting panel.
  • At least one embodiment of the present invention provides a detection panel including a carrier The substrate 240 and the cesium iodide (CsI) scintillator layer 210 and the photodetector 220 disposed on the carrier substrate 240.
  • the ytterbium iodide scintillator layer 210 itself and its forming material are not doped ⁇ ;
  • the photodetector 220 is disposed on the light exiting side of the yttrium iodide scintillator layer 210 and includes a semiconductor layer 221 having a material having a forbidden band width greater than Or equal to 2.3eV (electron volts).
  • the cesium iodide scintillator layer not doped with yttrium element and the photodetector using a wide band gap semiconductor are combined to avoid the highly toxic ruthenium and its compound cesium iodide, which can make the detection panel Manufacturing costs are greatly reduced and environmentally friendly and human friendly.
  • the cesium iodide scintillator layer which is not doped with antimony, converts X-rays into near-ultraviolet light.
  • the amorphous silicon photodetector has low photoelectric response to the near-ultraviolet light and poor detection sensitivity, and the amorphous silicon material has a photodegradation effect after being irradiated by ultraviolet light, which can cause the response curve of the amorphous silicon photodetector. Drift, resulting in degraded output image quality and even artifacts.
  • the detecting panel of the embodiment of the present invention uses the wide band gap semiconductor material with a forbidden band width of 2.3 eV to fabricate the photodetector 220, so that the optical cutoff wavelength of the photodetector 220 (ie, the response rate drops to half of the maximum value).
  • the wavelength which indicates that the photodetector is suitable for a wavelength range of less than or equal to 540 nm, can effectively detect the near-ultraviolet light output from the cesium iodide scintillator layer.
  • the carrier substrate 240 may be a glass substrate having a thickness of 0.1 mm to 1 mm, or may be a transparent flexible substrate of PET (polyethylene terephthalate) or PI (polyimide), for example, the transparent
  • the flexible substrate may have a thickness of from 1 micron to 500 microns.
  • Embodiments of the invention include, but are not limited to, the listed substrates.
  • the detection panel provided by at least one embodiment of the present invention may be an X-ray detection panel.
  • the material for forming the cesium iodide scintillator layer 210 may be a pure cesium iodide scintillator CsI (pure), that is, an undoped cesium iodide scintillator; or the cesium iodide scintillator 210 may be a doped material.
  • cesium iodide scintillator CsI Na
  • the cesium iodide scintillator layer which is not doped with cerium can effectively absorb X-rays and convert it into near-ultraviolet light.
  • a pure cesium iodide scintillator can absorb X-rays and convert it into near-ultraviolet light having a peak wavelength of about 310 nm
  • a sodium-doped cesium iodide scintillator for example, a NaI-doped cesium iodide scintillator.
  • the X-rays can be converted into near-ultraviolet light having a peak wavelength of about 420 nm.
  • the thickness d of the cesium iodide scintillator layer 210 may be from 1 micrometer to 2000 micrometers. If the cesium iodide scintillator layer is too thin, the efficiency of converting X-rays into near-ultraviolet light is low; if the cesium iodide scintillator layer is too thick, the cost of the scintillator layer is high and X-rays are easily flickered. Absorption of the body layer results in low light conversion efficiency. Further, for example, the thickness d of the cesium iodide scintillator layer 210 may be 500 to 600 ⁇ m.
  • the cesium iodide scintillator layer 210 may include a plurality of columnar crystals of cesium iodide arranged in an array.
  • each of the cesium iodide columnar crystals 211 may have a diameter of 0.1 ⁇ m to 100 ⁇ m. If the columnar crystal of cesium iodide is too thick, crosstalk is easily increased; if the columnar crystal of cesium iodide is too fine, the light conversion efficiency of the columnar crystal is low and the pitch of the columnar crystal is large, resulting in sparse pixels of the image generated by the detection panel.
  • each of the cesium iodide columnar crystals 211 may have a diameter of from 1 micrometer to 20 micrometers.
  • the detecting panel provided by at least one embodiment of the present invention may further include a connecting portion 250, and a sealing layer 260 disposed on the light incident side of the cesium iodide scintillator layer 210 and covering the sealing layer.
  • the transparent organic protective film 270, the connecting portion 250 e.g., dam glue
  • the sealing layer 260 may be a single-layer encapsulating film structure or a multi-layer encapsulating film structure, and the sealing layer 260 may be an organic film or an inorganic film or a laminate of the two.
  • the encapsulation manner of the cesium iodide scintillator layer 210 includes, but is not limited to, the embodiment shown in FIG. 2.
  • the sealing chamber may be filled with a filling adhesive (Filler Adhesive).
  • a laminate Laminator
  • a substrate may be disposed on the light incident side of the yttrium iodide scintillator layer 210, and the frit may be sintered by laser.
  • the substrate and the carrier substrate 240 are coupled to form a sealed cavity.
  • the detection panel provided by at least one embodiment of the present invention may further include a thin film transistor switch array 230 disposed on a side of the photodetector 220 remote from the cesium iodide scintillator layer 210, including a plurality of thin film transistors 231, and It is used to control the reading of the output signal of the photodetector 220.
  • a thin film transistor switch array 230 disposed on a side of the photodetector 220 remote from the cesium iodide scintillator layer 210, including a plurality of thin film transistors 231, and It is used to control the reading of the output signal of the photodetector 220.
  • the embodiment of the present invention does not limit the correspondence between the number of the thin film transistor 231, the photodetector 220, and the cesium iodide columnar crystal 211, and the number of these components can be set according to actual needs.
  • the thin film transistor 231 may be an amorphous silicon thin film transistor, an amorphous indium gallium zinc thin film transistor, a low temperature polycrystalline indium gallium zinc thin film transistor, a low temperature polysilicon thin film transistor, a zinc oxynitride thin film transistor, or an organic thin film transistor.
  • the material of the semiconductor layer 221 of the photodetector 220 may include a zinc oxide (ZnO) semiconductor.
  • Zinc oxide semiconductor is a wide bandgap direct bandgap semiconductor material in which direct recombination between electrons and holes occurs. This direct recombination method makes photodetectors prepared by replacing zinc oxide semiconductors with amorphous silicon materials. High luminous efficiency. In addition, zinc oxide semiconductor materials are non-toxic to humans and the environment, abundant in the earth and inexpensive.
  • the combination of pure cesium iodide scintillator and zinc oxide semiconductor enables the photodetector 220 to effectively detect the near-ultraviolet output of the cesium iodide scintillator layer 210. Light.
  • the photodetector 220 since the optical cutoff wavelength of the zinc oxide semiconductor is 370 nm, the photodetector 220 has no photoelectric response to visible light, and thus the light incident end of the photodetector 220 can be used without blocking the visible light entering the filter, thereby reducing the cost and the cost. Prevent crosstalk from visible light in the environment.
  • the zinc oxide semiconductor may be an n-type doped zinc oxide semiconductor and doped with B, Al, Ga, In, Sc, Y, Si, Ge, Sn, Ti, Zr, V, Nb, Mo, F, Cl. One or several of them.
  • the zinc oxide semiconductor may be a p-type doped zinc oxide semiconductor and doped with one or more of Li, Na, K, Au, Ag, Cu, N, P, As, Sb.
  • the material of the semiconductor layer 221 may also include zinc oxynitride, or gallium nitride, or silicon carbide, or diamond, or diamond-like, or aluminum nitride, or gallium arsenide. , or boron nitride.
  • zinc oxynitride or gallium nitride, or silicon carbide, or diamond, or diamond-like, or aluminum nitride, or gallium arsenide.
  • boron nitride boronitride.
  • photodetector 220 can be a photoconductive detector or a photovoltaic detector.
  • a photoconductive detector is a detector fabricated using the photoconductive effect of a semiconductor material.
  • the so-called photoconductivity effect refers to a physical phenomenon in which the conductivity of an irradiated material is changed by radiation.
  • the photoconductive detector can include a hetero-area photoconductive detector and a coplanar photoconductive detector.
  • Photovoltaic detectors are devices made using the photovoltaic effect of semiconductor PN junctions, also known as junction optoelectronic devices. Photovoltaic detectors include many types, and avalanche photodetectors are one of them. The avalanche photodetector uses an avalanche photodiode (APD) for greater responsiveness.
  • APD avalanche photodiode
  • the photodetector 220 is a hetero-area photoconductive detector including a first electrode 222a, a semiconductor layer 221 on the first electrode 222a, and a plurality of second layers on the semiconductor layer 221
  • the electrode 222b that is, the first electrode 222a and the second electrode 222b are respectively disposed on the backlight side and the illumination side of the semiconductor layer 221.
  • the photodetector 220 is a coplanar photoconductive detector including a semiconductor layer 221 and a first electrode 222a and a second electrode 222b disposed on the illumination side of the semiconductor layer 221.
  • the photodetector 220 is a pin-type photovoltaic detector including a semiconductor layer 221, an insulating layer 224, and a first electrode 222a and a plurality of second on the backlight side and the illumination side of the semiconductor layer 221, respectively. Electrode 222b.
  • the semiconductor layer 221 includes an intrinsic semiconductor 221c and first and second doped semiconductors 221a and 221b respectively disposed on both sides thereof.
  • One of the first doped semiconductor 221a and the second doped semiconductor 221b is a p-type doped semiconductor and the other is an n-type doped semiconductor.
  • the insulating layer 224 spaces the second electrode 222b from the intrinsic semiconductor 221c.
  • the photodetector 220 is a pn-type photovoltaic detector including a semiconductor layer 221, an insulating layer 224, and a first electrode 222a and a plurality of second on the backlight side and the illumination side of the semiconductor layer 221, respectively.
  • Electrode 222b Electrode 222b.
  • the semiconductor layer 221 includes a first doped semiconductor 221a and a second doped semiconductor 221b, one of which is a p-type doped semiconductor and the other is an n-type doped semiconductor.
  • the insulating layer 224 spaces the second electrode 222b from the first doped semiconductor 221a.
  • both the first electrode and the second electrode is a positive electrode and the other is a negative electrode.
  • both the first electrode and the second electrode may be made of a metal material such as one or more of metals such as aluminum, aluminum-niobium alloy, copper, titanium, molybdenum, and molybdenum-niobium alloy.
  • At least one embodiment of the present invention also provides a detecting device comprising the detecting panel provided by any of the above embodiments.
  • the detection device may also include peripheral circuitry such as a display device.
  • peripheral circuitry such as a display device.
  • the X-ray is converted into near-ultraviolet light by the cesium iodide scintillator layer, and then converted into an electrical signal by the photodetector, and the electrical signal is collected and output by the thin film transistor switch array.
  • the image is finally formed on the display.
  • the detecting panel and the detecting device avoid the opening by combining a cesium iodide scintillator layer not doped with antimony element (Tl) and a photodetector using a wide band gap semiconductor.
  • the highly toxic hydrazine and its compound cesium iodide can greatly reduce the manufacturing cost of the detection panel, are environmentally friendly and human-friendly, and can effectively detect the near-ultraviolet light output from the cesium iodide scintillator layer.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Medical Informatics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Geophysics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Measurement Of Radiation (AREA)

Abstract

一种探测面板及探测装置,该探测面板包括:碘化铯闪烁体层(210),其未掺杂铊;以及光电探测器(220),其设置于碘化铯闪烁体层(210)的出光侧并且包括半导体层(221),半导体层(221)的材料的禁带宽度大于或等于2.3eV。该探测面板可以降低探测面板的制作成本。

Description

探测面板及探测装置 技术领域
本发明的实施例涉及一种探测面板及探测装置。
背景技术
X射线因为光子能量高、穿透力强的特点,已经广泛应用于人们的生活中,比如X射线在医学领域用于透视检查,在工业中用来探伤,在地铁、机场、车站等场合用于安检。
目前市场上销售的X射线探测装置通常包括闪烁体层、设置于闪烁体层出光侧的探测器以及配套的电路。闪烁体层用于将X射线转化为光,探测器用于将该闪烁体层输出的光转化为电信号,之后电路将该电信号进行处理后输出至显示器,以形成被测物体的图像。
发明内容
本发明的至少一个实施例提供一种探测面板,其包括:碘化铯闪烁体层,其未掺杂铊;以及光电探测器,其设置于所述碘化铯闪烁体层的出光侧并且包括半导体层,所述半导体层的材料的禁带宽度大于或等于2.3eV。
例如,所述碘化铯闪烁体层的形成材料为纯碘化铯闪烁体或者掺钠碘化铯闪烁体。
例如,所述半导体层的材料包括氧化锌半导体。
例如,在所述半导体层的材料包括氧化锌半导体的情况下,所述碘化铯闪烁体层的形成材料为纯碘化铯闪烁体。
例如,所述氧化锌半导体为n型掺杂氧化锌半导体,并且掺杂有B、Al、Ga、In、Sc、Y、Si、Ge、Sn、Ti、Zr、V、Nb、Mo、F、Cl中的一种或几种。
例如,所述氧化锌半导体为p型掺杂氧化锌半导体,并且掺杂有Li、Na、K、Au、Ag、Cu、N、P、As、Sb中的一种或几种。
例如,所述半导体层的材料包括氮氧化锌半导体,或氮化镓半导体,或 碳化硅半导体,或金刚石半导体,或类金刚石半导体,或氮化铝半导体,或砷化镓半导体,或氮化硼半导体。
例如,所述光电探测器为光电导探测器或光伏探测器。
例如,所述碘化铯闪烁体层的厚度为1微米至2000微米。
例如,所述碘化铯闪烁体层包括多个呈阵列排列的碘化铯柱状晶体。
例如,每个碘化铯柱状晶体的直径为0.1微米至100微米。
例如,所述探测面板还包括薄膜晶体管开关阵列,其设置于所述光电探测器的远离所述碘化铯闪烁体层的一侧。
例如,所述探测面板为X射线探测面板。
本发明的至少一个实施例还提供一种探测装置,其包括以上任一项所述的探测面板。
本发明实施例提供的探测面板和探测装置,可以使探测面板的制造成本大大降低,对环境和人友好无毒,并且可以有效地探测碘化铯闪烁体层输出的近紫外光。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为一种X射线探测面板的结构示意图;
图2为本发明实施例提供的探测面板的结构示意图;
图3为CsI(纯)、CsI(Na)以及CsI(Tl)的X射线光致发光谱;
图4a为本发明实施例提供的一种异面型光电导探测器的结构示意图;
图4b为本发明实施例提供的一种共面型光电导探测器的结构示意图;
图4c为本发明实施例提供的一种p-i-n型光伏探测器的结构示意图;
图4d为本发明实施例提供的一种p-n型光伏探测器的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然, 所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
图1为根据一种技术的X射线探测面板的结构示意图。如图1所示,该探测面板包括承载基板140和位于承载基板140上的开关电路130、光电探测器120以及闪烁体层110。闪烁体层110为CsI:TlI(碘化铊掺杂的碘化铯,CsI(Tl))闪烁体材料,以将高能量的X射线(X-ray)转化为可见光(如图中的箭头所示)。光电探测器120为非晶硅光电探测器,用于探测闪烁体层110输出的可见光。非晶硅光电探测器120的峰值波长(即响应率最大值所对应的波长)在550纳米(nm)左右且对440nm以下的紫外光的光电响应度较低,因此为了使闪烁体层110输出的光被光电探测器120有效地探测到,需要调节闪烁体层110中的铊元素(Tl)的掺杂量,以将闪烁体层110输出的光的波长调至非晶硅光电探测器的峰值波长附近。
在研究中,本申请的发明人注意到,采用CsI:TlI闪烁体材料制作闪烁体层的X射线探测面板的制作成本较高,这是因为:铊及其化合物碘化铊是剧毒物质,进入人体后会对人体造成严重损害,因此采用CsI:TlI闪烁体材料制作闪烁体层的X射线探测面板在生产过程中需要采用较高级别的安全防护措施,并且探测面板在报废后也不能随意丢弃,需要进行专门的回收再处理以避免破坏环境;再者,由于铊金属是贵重金属,这进一步增加了X射线探测面板的制作成本。
如图2所示,本发明的至少一个实施例提供一种探测面板,其包括承载 基板240以及设置于承载基板240上的碘化铯(CsI)闪烁体层210和光电探测器220。碘化铯闪烁体层210本身及其形成材料未掺杂铊;光电探测器220设置于碘化铯闪烁体层210的出光侧并且包括半导体层221,该半导体层221的材料的禁带宽度大于或等于2.3eV(电子伏特)。
本发明实施例将不掺杂铊元素的碘化铯闪烁体层和采用宽禁带半导体的光电探测器结合在一起,避开了剧毒的铊及其化合物碘化铊,可以使探测面板的制造成本大大降低并且对环境和人友好无毒。
不掺杂铊元素的碘化铯闪烁体层将X射线转换成近紫外光。非晶硅光电探测器对于该近紫外光的光电响应度较低、探测灵敏度很差,并且非晶硅材料经过紫外光照射后具有光致退化效应,可导致非晶硅光电探测器响应曲线的漂移,造成输出图像品质下降甚至产生假像。因此,本发明实施例的探测面板采用禁带宽度大于等于2.3eV的宽禁带半导体材料制作光电探测器220,使得光电探测器220的光学截止波长(即响应率下降到最大值的一半所对应的波长,其表示光电探测器适用的波长范围)小于或等于540nm,可以有效地探测碘化铯闪烁体层输出的近紫外光。
例如,承载基板240可以是厚度为0.1毫米至1毫米的玻璃基板,也可以是PET(聚对苯二甲酸乙二酯)或PI(聚酰亚胺)的透明柔性衬底,例如,该透明柔性衬底的厚度可以为1微米至500微米。本发明实施例包括但不限于所列举的基板。
例如,本发明的至少一个实施例提供的探测面板可以为X射线探测面板。
例如,碘化铯闪烁体层210的形成材料可以为纯碘化铯闪烁体CsI(纯),即不掺杂的碘化铯闪烁体;或者,碘化铯闪烁体210的形成材料可以为掺钠碘化铯闪烁体CsI(Na)。
不掺杂铊的碘化铯闪烁体层可以有效地吸收X射线并将其转化成近紫外光。例如,如图3所示,纯碘化铯闪烁体可吸收X射线并将其转化为峰值波长约310nm的近紫外光,掺钠碘化铯闪烁体(例如掺杂NaI的碘化铯闪烁体)可将X射线转化成峰值波长约420nm的近紫外光。
例如,如图2所示,碘化铯闪烁体层210的厚度d可以为1微米至2000微米。如果碘化铯闪烁体层太薄,则导致X射线被转化成近紫外光的效率较低;如果碘化铯闪烁体层太厚,则闪烁体层的成本高且因X射线容易被闪烁 体层吸收而导致光转化效率低。进一步地,例如,碘化铯闪烁体层210的厚度d可以为500至600微米。
例如,碘化铯闪烁体层210可以包括呈阵列排列的多个碘化铯柱状晶体。例如,每个碘化铯柱状晶体211的直径可以为0.1微米至100微米。若碘化铯柱状晶体太粗,则容易增大串扰;若碘化铯柱状晶体太细,则柱状晶体的光转化效率较低且柱状晶体的间距大,导致探测面板所生成图像的像素点稀疏。进一步地,例如,每个碘化铯柱状晶体211的直径可以为1微米至20微米。
由于碘化铯闪烁体材料容易发生潮解,因此需要对碘化铯闪烁体层210进行封装,以阻隔空气中的水、氧。
例如,如图2所示,本发明的至少一个实施例提供的探测面板还可以包括连接部250、以及设置于碘化铯闪烁体层210的入光侧的密封层260和覆盖该密封层的透明有机保护膜270,连接部250(例如坝胶)将密封层260与光电探测器220连接起来以形成容纳碘化铯闪烁体层210的密封腔体。
例如,密封层260可以为单层封装薄膜结构或者多层封装薄膜结构,并且密封层260可以为有机薄膜或无机薄膜或者两者的叠层。
当然,碘化铯闪烁体层210的封装方式包括但不限于图2所示的实施例。例如,在上述密封腔体内还可以填充有填充胶(Filler Adhesive)。例如,可以采用片胶(Laminator)取代连接部250与密封层260来进行封装;或者,可以在碘化铯闪烁体层210的入光侧设置基板,并且通过激光烧结玻璃料(Frit)的方式连接该基板以及承载基板240以形成密封腔体。
例如,本发明的至少一个实施例提供的探测面板还可以包括薄膜晶体管开关阵列230,其设置于光电探测器220的远离碘化铯闪烁体层210的一侧,包括多个薄膜晶体管231,并且用于控制光电探测器220的输出信号的读取。
需要说明的是,本发明实施例不限定薄膜晶体管231、光电探测器220以及碘化铯柱状晶体211的数量之间的对应关系,这些部件的数量可以根据实际需要进行设置。
例如,薄膜晶体管231可以是非晶硅薄膜晶体管、非晶氧化铟镓锌薄膜晶体管、低温多晶氧化铟镓锌薄膜晶体管、低温多晶硅薄膜晶体管、氮氧化锌薄膜晶体管或者有机物薄膜晶体管。
例如,光电探测器220的半导体层221的材料可以包括氧化锌(ZnO)半导体。
氧化锌半导体是一种宽禁带直接带隙半导体材料,其中的电子与空穴之间发生直接复合,这种直接复合的方式使得采用氧化锌半导体取代非晶硅材料制备的光电探测器具有较高的发光效率。此外,氧化锌半导体材料对人和环境无毒、在地球上储量丰富且价格便宜。
例如,在光电探测器220采用氧化锌半导体的情况下,碘化铯闪烁体层210可以为纯碘化铯闪烁体。由于纯碘化铯闪烁体可将X射线转变为峰值波长为310nm左右的近紫外光,氧化锌半导体的禁带宽度为3.37eV,光学截止波长为1240/3.37=370nm,并且氧化锌半导体对300~370nm近紫外光的光电响应量子效率高于10%,因此采用纯碘化铯闪烁体与氧化锌半导体的组合,可以使光电探测器220有效地探测碘化铯闪烁体层210输出的近紫外光。
另外,由于氧化锌半导体的光学截止波长为370nm,使得光电探测器220对可见光无光电响应,因而光电探测器220的入光端可不使用阻挡可见光进入的滤光片,这样既可降低成本又可防止环境中的可见光可能带来的串扰。
例如,氧化锌半导体可以为n型掺杂氧化锌半导体,并且掺杂有B、Al、Ga、In、Sc、Y、Si、Ge、Sn、Ti、Zr、V、Nb、Mo、F、Cl中的一种或几种。
例如,氧化锌半导体可以为p型掺杂氧化锌半导体,并且掺杂有Li、Na、K、Au、Ag、Cu、N、P、As、Sb中的一种或几种。
当然,在本发明的至少另一个实施例中,半导体层221的材料也可以包括氮氧化锌,或氮化镓,或碳化硅,或金刚石,或类金刚石,或氮化铝,或砷化镓,或氮化硼。这些半导体材料可有效探测近紫外光,并且对环境中的可见光无响应,可大大降低环境光的串扰、节省阻挡可见光的滤光片并提高信噪比。
例如,在本发明的至少一个实施例中,光电探测器220可以为光电导探测器或光伏探测器。
光电导探测器是指利用半导体材料的光电导效应制作的探测器。所谓光电导效应,是指由辐射引起被照射材料电导率改变的一种物理现象。光电导探测器可以包括异面型光电导探测器和共面型光电导探测器。
光伏探测器是利用半导体PN结光伏效应制成的器件,也称结型光电器件。光伏探测器包括多种类型,雪崩光电探测器是其中的一种。雪崩光电探测器采用雪崩光电二极管(APD),能够具有更大的响应度。
下面结合图4a至图4d对本发明实施例中的光电探测器进行详细说明。
例如,如图4a所示,光电探测器220为异面型光电导探测器,其包括第一电极222a,位于第一电极222a上的半导体层221,以及位于半导体层221上的多个第二电极222b,也就是说,第一电极222a和第二电极222b分别设置于半导体层221的背光侧和照光侧。
例如,如图4b所示,光电探测器220为共面型光电导探测器,其包括半导体层221以及设置于半导体层221的照光侧的第一电极222a和第二电极222b。
例如,如图4c所示,光电探测器220为p-i-n型光伏探测器,其包括半导体层221、绝缘层224以及分别位于半导体层221的背光侧和照光侧的第一电极222a和多个第二电极222b。半导体层221包括本征半导体221c以及分别设置于其两侧的第一掺杂半导体221a和第二掺杂半导体221b。第一掺杂半导体221a和第二掺杂半导体221b中的一个为p型掺杂半导体且另一个为n型掺杂半导体。绝缘层224将第二电极222b与本征半导体221c间隔开。
例如,如图4d所示,光电探测器220为p-n型光伏探测器,其包括半导体层221、绝缘层224以及分别位于半导体层221的背光侧和照光侧的第一电极222a和多个第二电极222b。半导体层221包括第一掺杂半导体221a和第二掺杂半导体221b,二者中的一个为p型掺杂半导体且另一个为n型掺杂半导体。绝缘层224将第二电极222b与第一掺杂半导体221a间隔开。
在以上任一光电探测器中,第一电极和第二电极中的一个为正极且另一个为负极。例如,第一电极和第二电极都可以采用金属材料制作,例如铝、铝钕合金、铜、钛、钼和钼铌合金等金属中的一种或几种。
本发明的至少一个实施例还提供一种探测装置,其包括以上任一实施例提供的探测面板。
例如,该探测装置还可以包括外围电路,例如显示器等设备。X射线在进入该探测装置的探测面板之后,被碘化铯闪烁体层转化为近紫外光,之后被光电探测器转化为电信号,该电信号被薄膜晶体管开关阵列收集并输出, 最终在显示器上形成图像。
综上所述,本发明实施例提供的探测面板和探测装置,通过将不掺杂铊元素(Tl)的碘化铯闪烁体层和采用宽禁带半导体的光电探测器结合在一起,避开了剧毒的铊及其化合物碘化铊,可以使探测面板的制造成本大大降低,对环境和人友好无毒,并且可以有效地探测碘化铯闪烁体层输出的近紫外光。
在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。
本申请要求于2016年8月5日递交的第201610639194.9号中国专利申请的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (14)

  1. 一种探测面板,包括:
    碘化铯闪烁体层,其未掺杂铊;以及
    光电探测器,其设置于所述碘化铯闪烁体层的出光侧并且包括半导体层,其中,所述半导体层的材料的禁带宽度大于或等于2.3eV。
  2. 根据权利要求1所述的探测面板,其中,所述碘化铯闪烁体层的形成材料为纯碘化铯闪烁体或者掺钠碘化铯闪烁体。
  3. 根据权利要求1所述的探测面板,其中,所述半导体层的材料包括氧化锌半导体。
  4. 根据权利要求3所述的探测面板,其中,所述碘化铯闪烁体层的形成材料为纯碘化铯闪烁体。
  5. 根据权利要求3或4所述的探测面板,其中,所述氧化锌半导体为n型掺杂氧化锌半导体,并且掺杂有B、Al、Ga、In、Sc、Y、Si、Ge、Sn、Ti、Zr、V、Nb、Mo、F、Cl中的一种或几种。
  6. 根据权利要求3或4所述的探测面板,其中,所述氧化锌半导体为p型掺杂氧化锌半导体,并且掺杂有Li、Na、K、Au、Ag、Cu、N、P、As、Sb中的一种或几种。
  7. 根据权利要求1或2所述的探测面板,其中,所述半导体层的材料包括氮氧化锌半导体,或氮化镓半导体,或碳化硅半导体,或金刚石半导体,或类金刚石半导体,或氮化铝半导体,或砷化镓半导体,或氮化硼半导体。
  8. 根据权利要求1至7中任一项所述的探测面板,其中,所述光电探测器为光电导探测器或光伏探测器。
  9. 根据权利要求1至7中任一项所述的探测面板,其中,所述碘化铯闪烁体层的厚度为1微米至2000微米。
  10. 根据权利要求1至7中任一项所述的探测面板,其中,所述碘化铯闪烁体层包括多个呈阵列排列的碘化铯柱状晶体。
  11. 根据权利要求10所述的探测面板,其中,每个碘化铯柱状晶体的直径为0.1微米至100微米。
  12. 根据权利要求1至7中任一项所述的探测面板,其中,所述探测面 板还包括薄膜晶体管开关阵列,其设置于所述光电探测器的远离所述碘化铯闪烁体层的一侧。
  13. 根据权利要求1至7中任一项所述的探测面板,其中,所述探测面板为X射线探测面板。
  14. 一种探测装置,包括权利要求1-13中任一项所述的探测面板。
PCT/CN2017/079714 2016-08-05 2017-04-07 探测面板及探测装置 WO2018023995A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/561,760 US10274615B2 (en) 2016-08-05 2017-04-07 Detection panel and detection apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610639194.9 2016-08-05
CN201610639194.9A CN107703533B (zh) 2016-08-05 2016-08-05 探测面板及探测装置

Publications (1)

Publication Number Publication Date
WO2018023995A1 true WO2018023995A1 (zh) 2018-02-08

Family

ID=61073321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079714 WO2018023995A1 (zh) 2016-08-05 2017-04-07 探测面板及探测装置

Country Status (3)

Country Link
US (1) US10274615B2 (zh)
CN (1) CN107703533B (zh)
WO (1) WO2018023995A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109097735A (zh) * 2018-08-31 2018-12-28 北京师范大学 一种防潮高透明度的类金刚石涂层的制备方法
CN109713001B (zh) * 2018-11-30 2021-01-19 上海奕瑞光电子科技股份有限公司 一种x射线平板探测器及其制备方法
CN109782330B (zh) * 2019-01-11 2021-10-01 惠科股份有限公司 X射线探测器及显像设备
CN110308475A (zh) * 2019-08-01 2019-10-08 深圳市安健科技股份有限公司 一种x射线探测器及其制备方法
CN112103354A (zh) * 2020-08-26 2020-12-18 上海大学 透明Ga2O3的p-i-n异质结构日盲型紫外光探测器及其制备方法
CN113066876B (zh) * 2021-04-29 2022-12-06 中国科学院长春光学精密机械与物理研究所 一种紫外探测器及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100314531A1 (en) * 2009-06-10 2010-12-16 Saint-Gobain Ceramics & Plastics, Inc. Scintillator and detector assembly
CN102445703A (zh) * 2010-10-12 2012-05-09 上海生物医学工程研究中心 基于无缝拼接的光电传感探测器及制备方法
CN102918419A (zh) * 2010-05-31 2013-02-06 富士胶片株式会社 放射线摄影装置
CN104240786A (zh) * 2013-06-10 2014-12-24 柯尼卡美能达株式会社 放射线图像转换面板
CN206096478U (zh) * 2016-08-05 2017-04-12 京东方科技集团股份有限公司 探测面板及探测装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08295878A (ja) * 1995-04-26 1996-11-12 Yazaki Corp シンチレータ及び放射線検出器用シンチレータ並びに放射線検出器
CN102466808B (zh) * 2010-11-09 2014-06-18 北京大基康明医疗设备有限公司 非晶硅碘化铯数字x射线平板探测器
JP2012251978A (ja) * 2011-06-07 2012-12-20 Fujifilm Corp 放射線検出装置
US9678223B2 (en) * 2011-08-19 2017-06-13 Nihon Kessho Kogaku., Ltd. Scintillator
JP2013044725A (ja) * 2011-08-26 2013-03-04 Fujifilm Corp 放射線検出器および放射線画像撮影装置
JP2014009991A (ja) * 2012-06-28 2014-01-20 Fujifilm Corp 放射線画像検出装置及びその製造方法
DE102014217580A1 (de) * 2014-09-03 2016-03-03 Siemens Aktiengesellschaft Szintillatorplatte und Verfahren zu deren Herstellung
CN104393092A (zh) * 2014-11-26 2015-03-04 京东方科技集团股份有限公司 光电二极管及其制备方法、x射线探测器基板及其制备方法
CN105514029B (zh) * 2016-01-20 2018-06-15 京东方科技集团股份有限公司 X射线平板探测器的像素结构及其制备方法、摄像系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100314531A1 (en) * 2009-06-10 2010-12-16 Saint-Gobain Ceramics & Plastics, Inc. Scintillator and detector assembly
CN102918419A (zh) * 2010-05-31 2013-02-06 富士胶片株式会社 放射线摄影装置
CN102445703A (zh) * 2010-10-12 2012-05-09 上海生物医学工程研究中心 基于无缝拼接的光电传感探测器及制备方法
CN104240786A (zh) * 2013-06-10 2014-12-24 柯尼卡美能达株式会社 放射线图像转换面板
CN206096478U (zh) * 2016-08-05 2017-04-12 京东方科技集团股份有限公司 探测面板及探测装置

Also Published As

Publication number Publication date
CN107703533A (zh) 2018-02-16
CN107703533B (zh) 2024-03-05
US10274615B2 (en) 2019-04-30
US20180246227A1 (en) 2018-08-30

Similar Documents

Publication Publication Date Title
WO2018023995A1 (zh) 探测面板及探测装置
JP5460706B2 (ja) X線検出器
Miao et al. Avalanche photodetectors based on two-dimensional layered materials
CN107665886A (zh) 用于检测红外线辐射的盖革模式雪崩光电二极管阵列
TWI470262B (zh) 形成於閃爍器上之放射線偵測器
US8916945B2 (en) Semiconductor light-detecting element
US8507865B2 (en) Organic photodetector for the detection of infrared radiation, method for the production thereof, and use thereof
CN106206636B (zh) 一种x射线探测面板及其制备方法
JP3825358B2 (ja) シリコン光素子及びこれを適用した発光ディバイス装置
Yao et al. Molecular engineering of perovskite photodetectors: recent advances in materials and devices
US9960309B2 (en) Photoelectronic device including charge barrier
US20070108484A1 (en) Optical sensor
US9647155B1 (en) Long wave photo-detection device for used in long wave infrared detection, materials, and method of fabrication
Zou et al. Pixellated perovskite photodiode on IGZO thin film transistor backplane for low dose indirect X-ray detection
CN206096478U (zh) 探测面板及探测装置
CN217214719U (zh) 多波段超像元红外焦平面探测器
CN106960852B (zh) 具有漂移沟道的紫外雪崩光电二极管探测器及其探测方法
JP6558676B2 (ja) 放射線検出素子及び放射線検出装置
KR101701192B1 (ko) 투명 광전 소자 및 그 제조 방법
KR20180037901A (ko) 투과도가 조절된 태양전지 및 이의 제조 방법
CN105280750A (zh) 光传感器及感光模块
Sun et al. Quantum dots modified ZnO based fast-speed response ultraviolet photodetector
CN102074609B (zh) 一种紫外雪崩光电二极管探测器及其制作方法
Klem et al. Multispectral UV-Vis-IR imaging using low-cost quantum dot technology
TWI841366B (zh) 雙波段薄膜電晶體檢光器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15561760

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/06/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17836179

Country of ref document: EP

Kind code of ref document: A1