WO2018023868A1 - 斐索激光干涉仪镜头及斐索激光干涉仪 - Google Patents

斐索激光干涉仪镜头及斐索激光干涉仪 Download PDF

Info

Publication number
WO2018023868A1
WO2018023868A1 PCT/CN2016/100093 CN2016100093W WO2018023868A1 WO 2018023868 A1 WO2018023868 A1 WO 2018023868A1 CN 2016100093 W CN2016100093 W CN 2016100093W WO 2018023868 A1 WO2018023868 A1 WO 2018023868A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser interferometer
lens
fizeau
fizeau laser
diffraction ring
Prior art date
Application number
PCT/CN2016/100093
Other languages
English (en)
French (fr)
Inventor
曲艺
高松涛
苗二龙
隋永新
杨怀江
Original Assignee
中国科学院长春光学精密机械与物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院长春光学精密机械与物理研究所 filed Critical 中国科学院长春光学精密机械与物理研究所
Publication of WO2018023868A1 publication Critical patent/WO2018023868A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements

Definitions

  • the invention relates to the field of optical lens design, in particular to a Fizeau laser interferometer lens and a Fizeau laser interferometer.
  • the Fizeau laser interferometer is mainly used for surface surface measurement of components. It has the advantages of non-contact, no damage and high precision. At present, it has become the first choice for optical component inspection.
  • the Fizeau laser interferometer lens is an important part of the Fizeau laser interferometer. It converts the plane wave output from the Fizeau laser interferometer into a high-precision spherical wave for surface surface measurement of spherical components.
  • the measuring principle of the surface shape of the optical component is shown in Fig. 1.
  • the Fizeau laser interferometer lens 1 converts the plane wave outputted by the interferometer into a spherical wave, and simultaneously separates the output laser into two parts, a reference beam and a measuring beam.
  • the front end of the lens is a diaphragm, which is used to limit the aperture size.
  • the middle part is used to generate the required power and balance the aberration of the lens.
  • the last surface of the lens 1 is called the reference surface 2, which is generally a spherical aberration.
  • the reference plane 2 reflects approximately 4% of the laser light back into the interferometer to form a reference wavefront.
  • the remaining laser light is irradiated to the element 3 to be tested as a measurement wavefront.
  • the measurement wave passes perpendicularly through the reference surface 2, it illuminates the surface of the element to be tested 3, and after being reflected by the surface of the element to be tested 3, the original path returns to the reference surface 2, and again vertically passes through the reference surface 2, together with the reference wavefront.
  • Interferometer internal detector reception Since the measurement wavefront carries the surface shape information of the surface of the element to be tested 3, the surface shape of the element 3 to be tested can be obtained by data processing.
  • the lens F number is defined as the lens working focal length divided by the entrance pupil diameter.
  • the spherical element R number is defined as the spherical radius divided by the clear aperture.
  • the hemispherical component has an R number of 0.5.
  • the Fizeau laser interferometer When using the Fizeau laser interferometer to measure the surface profile of the component, only the number of lenses F is smaller than the number of R of the component to be measured, and the aperture of the component to be measured can be measured.
  • 2 shows an existing optical structure design of a Fizeau laser interferometer lens having an F number of 1.5, the lens including an aperture stop 4, an aberration balance and power lens group 5, and a reference having a reference surface 6.
  • the mirror is three parts.
  • the lens with F number of 1.5 requires at least 3 to 4 components without the use of aspherical or binary optical technology to meet the technical requirements.
  • the Fizeau laser interferometer has a complicated lens structure and a large volume. The cost is high and requires a sophisticated assembly process.
  • the present invention proposes a Fizeau laser interferometer lens and a Fizeau laser interferometer.
  • a Fizeau laser interferometer lens comprising: a lens body having a first surface and a second surface disposed oppositely, the first surface being provided with a diffraction ring, the second surface being Reference surface.
  • the diffraction ring is a centrally symmetric diffraction ring.
  • the diffraction rings are diffractive rings of unequal spacing.
  • the number of cycles of the diffraction ring gradually increases in a direction from the center of the diffraction ring toward the periphery.
  • the number of cycles Y of the diffraction ring satisfies:
  • X is the distance from the center of the diffraction ring
  • the first surface is a plane or a convex spherical surface
  • the second surface is a concave spherical surface
  • the Fizeau laser interferometer lens further includes an aperture disposed coaxially with the lens body and located in front of the lens body.
  • the aperture is an aperture stop
  • the aperture stop is a metal light blocking plate having a light passing hole at the center.
  • the light-passing hole is circular, elliptical or square, and the light-passing hole size D is 25 mm ⁇ D ⁇ 106 mm.
  • the material of the lens body is fused silica optical glass or plastic.
  • the diffraction ring is formed by etching or formed at one time on the first surface of the lens body.
  • a Fizeau laser interferometer including the Fizeau laser interferometer lens described above.
  • the present invention realizes a simple and compact lens structure, and does not require precise adjustment.
  • the plane wave is converted into an ideal spherical wave, and the aperture is controlled by the aperture. Since the multi-lens adjustment process is not required, the cost and the production cycle can be greatly reduced.
  • Figure 1 is a schematic diagram of the surface shape measurement of an optical component
  • FIG. 2 is a schematic structural view of a Fizeau laser interferometer lens in the prior art
  • FIG. 3 is a schematic structural view of a Fizeau laser interferometer lens according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic structural view of a first surface of a lens body of the Fizeau laser interferometer lens of FIG. 3;
  • FIG. 5 is a diffraction ring spacing distribution diagram of a first surface of a lens body of the Fizeau laser interferometer lens of FIG. 3;
  • FIG. 6 is a schematic structural view of a Fizeau laser interferometer lens according to Embodiment 2 of the present invention.
  • Figure 7 is a schematic view showing the structure of a Fizeau laser interferometer according to the present invention.
  • the invention provides a Fizeau laser interferometer lens, comprising: a lens body and a diaphragm in front of the lens body, wherein the lens body portion is a binary optical component having a binary optical surface and a reference surface Since the lens body is a single optical component, the lens has a simple structure, is easy to be miniaturized, and does not require precise adjustment.
  • the present embodiment provides a Fizeau laser interferometer lens 100.
  • the Fizeau laser interferometer lens 100 includes a lens body 20 and an aperture 10 disposed coaxially, and the aperture 10 is located in front of the lens body 20. .
  • the aperture 10 is used to limit the beam emitted by the Fizeau laser interferometer to a predetermined size range, preferably an aperture stop.
  • the aperture is a metal light blocking plate having a light passing hole at the center, and the metal is blocked by light.
  • the sheet is subjected to blackening treatment, and the light-passing hole may have a circular shape, an elliptical shape, a square shape or the like, and the dimension D is 25 mm ⁇ D ⁇ 106 mm.
  • the light-passing hole is preferably a circular aperture having a size of 4 inches.
  • the lens body 20 has a first surface 201 facing the aperture 10 and a second surface 202 disposed opposite the first surface 201.
  • the first surface 201 is a planar binary optical surface. Specifically, as shown in FIG. 4, the first surface 201 is provided with a centrally symmetric diffraction ring 2011, preferably an unequal spacing diffraction ring 2011.
  • Fig. 5 shows the variation of the diffraction ring 2011 pitch on the first surface 201 as a function of the radial dimension, and the number of cycles of the diffraction ring gradually becomes larger in the direction from the center of the diffraction ring toward the periphery.
  • Diffraction ring 2011 cycle number Y with distance from the center of the diffraction ring X distribution curve equation: Y a + bX + cX ⁇ 2 + dX ⁇ 3
  • the number of diffraction ring cycles 1 mm from the center of the diffraction ring is 11 per mm
  • the number of diffraction ring cycles from the center 10 mm is 152 per mm
  • the distance from the center is 51 mm, that is, at the edge of the element
  • the number of diffraction ring cycles is 740 per mm.
  • a -4 to -3
  • b 10 to 20
  • c 0.0001 to 0.001
  • d -0.0001 to -0.001.
  • the first surface 201 mainly bears the power required by the lens, and balances the aberration of the lens, so that the focal length f of the lens satisfies the F-number requirement of the lens.
  • the focal length f is 100 mm ⁇ f ⁇ 1000 mm, preferably 151 mm.
  • the plane wave output by the Fizeau laser interferometer is transformed into an ideal spherical wave via a binary optical surface.
  • the second surface 202 is a concave spherical surface having a radius r of 100 mm ⁇ r ⁇ 500 mm, preferably 131 mm, and the second surface 202 serves as a reference surface for providing a reference wavefront.
  • the material of the lens body 20 can be selected from transparent optical materials such as optical glass or plastic.
  • the material of the lens main body 20 in the present embodiment is preferably fused silica optical glass, and the diffraction ring 2011 on the first surface 201 of the lens main body is formed by an etching method, and the etching depth ranges from 200 nm to 600 nm, or is the first in the lens main body 20.
  • the surface is formed at one time.
  • the invention provides a Fizeau laser interferometer lens for a manufacturing based on binary optical technology
  • the optical interferometer lens converts the plane wave into an ideal spherical wave by etching the unequal spacing diffraction ring on the incident surface of the lens, and the generated spherical wave passes through the reference surface of the lens vertically, and is irradiated onto the component to be measured to realize the component. Face detection.
  • the Fizeau laser interferometer lens uses only one optical component and does not require a precise adjustment process, which greatly reduces the manufacturing cost of the lens, and has good application prospects and economic benefits.
  • the present embodiment provides a Fizeau laser interferometer lens 100, as shown in FIG. 6, which differs from the Fischer laser interferometer lens of Embodiment 1 in that the first surface 201 of the lens body 20 is a convex spherical surface and faces the aperture. 10 protruding.
  • the Fizeau laser interferometer lens in the above embodiment includes the aperture
  • the aperture is not essential in the present invention, and the aperture can be omitted when the laser path of the Fizeau laser interferometer is small.
  • the present invention also provides a Fizeau laser interferometer, see FIG. 7, including the Fizeau laser interferometer lens provided in the above embodiment (in the drawing, only the Fizeau laser interferometer lens in the implementation 1 is
  • the Fizeau laser interferometer body the Fizeau laser interferometer body emits laser light, and filters the excessively large portion through the aperture 10, and the laser light passing through the aperture 10 passes through the first surface 201 of the lens body 20,
  • the plane wave is converted into a spherical wave, and the spherical wave vertically illuminates the second surface 202, that is, the reference surface, and a part of the spherical wave laser is reflected by the second surface 202, and returns to the main body of the Fizeau laser interferometer as a reference wave; the other part of the spherical wave laser passes through the second
  • the surface 202 reaches the detecting element as a detecting wave, and is reflected by the element to be tested, and the detecting wave with
  • the lens body is formed by integral casting, eliminating the step of etching to form a binary optical surface.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

一种斐索激光干涉仪镜头(100)及斐索激光干涉仪,所述斐索激光干涉仪镜头(100)包括:镜头主体(20),具有相对设置第一表面(201)与第二表面(202),所述第一表面(201)上设置衍射环(2011),所述第二表面(202)为参考面。实现了镜头结构简单、小型化,不需要精密的调装。

Description

斐索激光干涉仪镜头及斐索激光干涉仪 技术领域
本发明涉及光学镜头设计领域,特别涉及一种斐索激光干涉仪镜头及斐索激光干涉仪。
背景技术
斐索激光干涉仪主要用于元件的表面面形测量,它具有非接触、无损伤、精确度高等突出优点,目前,已成为光学元件检测的首选方式。斐索激光干涉仪镜头是斐索激光干涉仪的重要组成部分,它将斐索激光干涉仪输出的平面波转化为一个高精度的球面波,用于球面元件的表面面形测量。
光学元件表面面形测量原理如图1所示,斐索激光干涉仪镜头1将干涉仪输出的平面波转变为球形波,同时将输出的激光分离为参考光束和测量光束两部分。镜头前端为光阑,用于限制通光孔径大小,中间部分用于产生需要的光焦度,并平衡镜头的像差;镜头1的最后一个面称为参考面2,一般是一个消球差的球面。参考面2大约将4%的激光反射回干涉仪,形成参考波前。剩余的激光作为测量波前,照射至待测元件3。测量波垂直穿过参考面2后,照射到待测元件3表面,经过待测元件3表面反射后,原路返回至参考面2,并再次垂直穿过参考面2,与参考波前共同被干涉仪内部探测器接收。由于测量波前携带了待测元件3表面的面形信息,因此通过数据处理,可以得到待测元件3的表面面形。镜头F数定义为镜头工作焦长除以入瞳口径,球面元件R数定义为球面半径除以通光孔径,例如半球面元件其R数为0.5。利用斐索激光干涉仪测量元件表面面形时,只有镜头F数小于待测量元件的R数,才能将待测量元件的通光口径测全。图2示出了现有的一款F数为1.5的斐索激光干涉仪镜头光学结构设计,该镜头包括孔径光阑4、像差平衡与光焦度透镜组5和具有参考面6的参考镜三部分。该F数为1.5的镜头,在不使用非球面或者二元光学技术的前提下,至少需要3到4片元件,才能满足技术要求,该斐索激光干涉仪镜头结构复杂,体积较大,制作成本高,且需要精密的调装过程。
发明内容
(一)要解决的技术问题
鉴于上述技术问题,为了克服上述现有技术的不足,本发明提出了一种斐索激光干涉仪镜头及斐索激光干涉仪。
根据本发明的一个方面,提供了一种斐索激光干涉仪镜头,包括:镜头主体,具有相对设置第一表面与第二表面,所述第一表面上设置衍射环,所述第二表面为参考面。
优选地,所述衍射环为中心对称的衍射环。
优选地,所述衍射环为不等间距的衍射环。
优选地,所述镜头主体的第一表面上,在由衍射环中心向外围的方向上,衍射环的周期数逐渐变大。
优选地,所述镜头主体的第一表面上,衍射环的周期数Y满足:
Y=a+bX+cX2+dX3
其中,X为距衍射环中心的距离,a、b、c、d为常数,a=-4~-3,b=10~20,c=0.0001~0.001,d=-0.0001~-0.001。
优选地,a=-3.44787,b=15.20263,c=0.000451452,d=-0.000300296。
优选地,所述的第一表面为一平面或凸球面,所述第二表面为一凹球面。
优选地斐索激光干涉仪镜头还包括:光阑,与所述镜头主体同轴设置,且位于所述镜头主体前。
优选地,所述的光阑为孔径光阑,所述孔径光阑为一个中心具有通光孔的金属挡光片。
优选地,所述通光孔为圆形、椭圆形或方形,通光孔尺寸D为25mm≤D≤106mm。
优选地,所述镜头主体的材料为熔石英光学玻璃或塑料。
优选地,所述衍射环采用刻蚀方式形成,或者在镜头主体的第一表面一次成型而成。
根据本发明的另一方面,提供一种斐索激光干涉仪,包括上述的斐索激光干涉仪镜头。
从上述技术方案可以看出,本发明实现了镜头结构简单、小型化,且不需要精密的调装。
基于具体的实施例,实现平面波转换为理想的球面波,并通过光阑控制通光孔径,由于不需要多镜片的装调过程,可极大降低成本和制作周期。
附图说明
图1是光学元件表面面形测量原理图;
图2是现有技术中斐索激光干涉仪镜头的结构示意图;
图3为本发明实施例1中斐索激光干涉仪镜头的结构示意图;
图4为图3中斐索激光干涉仪镜头的镜头主体的第一表面的结构示意图;
图5为图3中斐索激光干涉仪镜头的镜头主体的第一表面的衍射环间距分布图;
图6为本发明实施例2中斐索激光干涉仪镜头的结构示意图;
图7为本发明中斐索激光干涉仪结构示意图。
【主要元件】
100-斐索激光干涉仪镜头;    10-光阑;
20-镜头主体;    201-第一表面;    202-第二表面。
具体实施方式
本发明某些实施例于后方将参照所附附图做更全面性地描述,其中一些但并非全部的实施例将被示出。实际上,本发明的各种实施例可以许多不同形式实现,而不应被解释为限于此数所阐述的实施例;相对地,提供这些实施例使得本发明满足适用的法律要求。
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
本发明提供一种斐索激光干涉仪镜头,包括:镜头主体和位于镜头主体前的光阑,镜头主体部分为一二元光学元件,该二元光学元件具有一二元光学表面及一参考面,鉴于该镜头主体为单一光学元件,该镜头结构简单,易小型化,且不要精密的调装。
实施例1:
本实施例提供一种斐索激光干涉仪镜头100,如图3所示,该斐索激光干涉仪镜头100包括:同轴设置的镜头主体20及光阑10,光阑10位于镜头主体20前。
光阑10用于将斐索激光干涉仪射来的光束限制在规定的尺寸范围,优选孔径光阑,本实施例中光阑为一个中心具有通光孔的金属挡光片,该金属挡光片作染黑处理,通光孔可以为圆形、椭圆形、方形等常规形状,尺寸D为25mm≤D≤106mm,实施例中通光孔优选为尺寸为4英寸的圆形孔径。
镜头主体20具有面向所述光阑10的第一表面201以及与所述第一表面201相对设置的第二表面202。
第一表面201为一平面的二元光学表面,具体地,如图4所示,该第一表面201上设置有中心对称的衍射环2011,优选为不等间距的衍射环2011。图5示出了第一表面201上的衍射环2011间距随径向尺寸的变化,在由衍射环中心向外围的方向上,衍射环的周期数逐渐变大。衍射环2011周期数Y随距衍射环中心的距离X分布曲线方程为:Y=a+bX+cX^2+dX^3
其中,a、b、c、d为常数,a=-3.44787,b=15.20263,c=0.000451452,d=-0.000300296。
举例而言,距离衍射环中心1mm的衍射环周期数为每毫米11个,距离中心10mm处衍射环周期数为每毫米152个,距离中心51mm即元件边缘处,衍射环周期数为每毫米740个。
需要说明的是,上述a、b、c、d的数值为优选值,本发明中a=-4~-3,b=10~20,c=0.0001~0.001,d=-0.0001~-0.001。
作为一二元光学表面,第一表面201主要承担镜头所需的光焦度,并平衡镜头的像差,使镜头的焦长f满足镜头F数要求,本实施例中焦长f为100mm≤f≤1000mm,优选为151mm。斐索激光干涉仪输出的平面波经二元光学表面转变成理想的球面波。
第二表面202为一凹球面,其半径r为100mm≤r≤500mm,优选为131mm,第二表面202作为参考面,用于提供参考波前。
镜头主体20的材料可选择透明光学材料,例如光学玻璃或塑料。本实施中镜头主体20的材料优选为熔石英光学玻璃,镜头主体的第一表面201上的衍射环2011采用刻蚀方法形成,刻蚀深度范围为200nm到600nm,或者在镜头主体20的第一表面一次成型而成。
本发明提供斐索激光干涉仪镜头为一款基于二元光学技术制造的激 光干涉仪镜头,通过在镜头入射面上刻蚀不等间距的衍射环,将平面波转换成理想的球面波,所产生的球面波垂直通过镜头的参考面,照射到待测量元件上,实现元件面形检测。该斐索激光干涉仪镜头只使用一片光学元件,不需要精密装调过程,这极大的降低了镜头的制作成本,具有良好的应用前景和经济效益。
实施例2
为了达到简要说明的目的,本实施例与上述实施中相同的描述皆并于此,无需再重复相同叙述,以下仅描述本实施与上述实施例1的区别。
本实施例提供一种斐索激光干涉仪镜头100,如图6所示,其与实施1中斐索激光干涉仪镜头的区别在于镜头主体20的第一表面201为凸球面,且朝向光阑10凸出。
需要说明的是,尽管上述实施例中的斐索激光干涉仪镜头均包括光阑,但本发明中光阑并不是必须的,当斐索激光干涉仪的激光光径较小时可以省略光阑。
基于同一发明构思,本发明还提供一种斐索激光干涉仪,见图7,包括上述实施例提供的斐索激光干涉仪镜头(附图中仅以实施1中的斐索激光干涉仪镜头为例)及斐索激光干涉仪本体,斐索激光干涉仪本体发出激光,通过光阑10滤过口径过大的部份,经过光阑10后的激光经镜头主体20的第一表面201,后由平面波转变为球面波,球面波垂直照射第二表面202即参考面,一部分球面波激光经由第二表面202反射,作为参考波返回到斐索激光干涉仪主体;另一部分球面波激光通过第二表面202作为探测波到达待测元件,经由待测元件反射,将带有被测元件表面面形信息的探测波反向通过镜头返回斐索激光干涉仪主体,参考波与探测波被斐索激光干涉仪主体内探测器接收,经数据处理得到被测元件的表面形状。
应注意,附图中各部件的形状和尺寸不反映真实大小和比例,而仅示意本发明实施例的内容。
实施例中提到的方向用语,例如“上”、“下”、“前”、“后”、“左”、“右”等,仅是参考附图的方向,并非用来限制本发明的保护范围。并且上述实施例可基于设计及可靠度的考虑,彼此混合搭配使用或与其他实施例混合 搭配使用,即不同实施例中的技术特征可以自由组合形成更多的实施例。
需要说明的是,在附图或说明书正文中,未绘示或描述的实现方式,均为所属技术领域中普通技术人员所知的形式,并未进行详细说明。此外,上述对各元件和方法的定义并不仅限于实施例中提到的各种具体结构、形状或方式,本领域普通技术人员可对其进行简单地更改或替换,
例如:镜头主体采用一体浇铸形成,省去刻蚀形成二元光学表面的步骤。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (13)

  1. 一种斐索激光干涉仪镜头,其特征在于,包括:
    镜头主体(20),具有相对设置第一表面(201)与第二表面(202),所述第一表面(201)上设置衍射环(2011),所述第二表面(202)为参考面。
  2. 根据权利要求1所述的斐索激光干涉仪镜头,其特征在于,所述衍射环(2011)为中心对称的衍射环。
  3. 根据权利要求2所述的斐索激光干涉仪镜头,其特征在于,所述衍射环(2011)为不等间距的衍射环。
  4. 根据权利要求3所述的斐索激光干涉仪镜头,其特征在于,所述镜头主体的第一表面上,在由衍射环中心向外围的方向上,衍射环(2011)的周期数逐渐变大。
  5. 根据权利要求4所述的斐索激光干涉仪镜头,其特征在于,所述镜头主体的第一表面上,衍射环(2011)的周期数Y满足:
    Y=a+bX+cX2+dX3
    其中,X为距衍射环中心的距离,a、b、c、d为常数,a=-4~-3,b=10~20,c=0.0001~0.001,d=-0.0001~-0.001。
  6. 根据权利要求5所述的斐索激光干涉仪镜头,其特征在于,a=-3.44787,b=15.20263,c=0.000451452,d=-0.000300296。
  7. 根据权利要求1所述的斐索激光干涉仪镜头,其特征在于,所述的第一表面(201)为一平面或凸球面,所述第二表面为一凹球面。
  8. 根据权利要求1至7中任一所述斐索激光干涉仪镜头,其特征在于,还包括:
    光阑(10),与所述镜头主体(20)同轴设置,且位于所述镜头主体(20)前。
  9. 根据权利要求8所述的斐索激光干涉仪镜头,其特征在于,所述的光阑为孔径光阑,所述孔径光阑为一个中心具有通光孔的金属挡光片。
  10. 根据权利要求9所述的斐索激光干涉仪镜头,其特征在于,所述通光孔为圆形、椭圆形或方形,通光孔尺寸D为25mm≤D≤106mm。
  11. 根据权利要求1所述的斐索激光干涉仪镜头,其特征在于,所述镜头主体的材料为熔石英光学玻璃或塑料。
  12. 根据权利要求1所述的斐索激光干涉仪镜头,其特征在于,所述衍射环(2011)采用刻蚀方式形成,或者在镜头主体(20)的第一表面一次成型而成。
  13. 一种斐索激光干涉仪,其特征在于,包括如权利要求1至12任一项所述的斐索激光干涉仪镜头。
PCT/CN2016/100093 2016-08-04 2016-09-26 斐索激光干涉仪镜头及斐索激光干涉仪 WO2018023868A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610633535.1A CN106289100B (zh) 2016-08-04 2016-08-04 斐索激光干涉仪标准镜头及斐索激光干涉仪
CN201610633535.1 2016-08-04

Publications (1)

Publication Number Publication Date
WO2018023868A1 true WO2018023868A1 (zh) 2018-02-08

Family

ID=57665056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100093 WO2018023868A1 (zh) 2016-08-04 2016-09-26 斐索激光干涉仪镜头及斐索激光干涉仪

Country Status (2)

Country Link
CN (1) CN106289100B (zh)
WO (1) WO2018023868A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08304616A (ja) * 1995-04-27 1996-11-22 Fujikura Ltd グレーティングレンズ及びこれを用いた光学ヘッド
JPH1062138A (ja) * 1996-08-22 1998-03-06 Nikon Corp 高次非球面の全面形状測定法
US20090153391A1 (en) * 2005-11-03 2009-06-18 Centre National De La Recherche Scientifique (C.N.R.S.) Reflectarray and a millimetre wave radar
CN102829733A (zh) * 2012-08-03 2012-12-19 中国计量学院 一种条纹对比度可调的大数值孔径点衍射干涉装置及方法
CN105258635A (zh) * 2015-11-09 2016-01-20 中国科学院长春光学精密机械与物理研究所 一种宽波段斐索激光干涉仪标准参考镜
CN105423951A (zh) * 2015-12-22 2016-03-23 中国科学院长春光学精密机械与物理研究所 一种长曲率半径凸面参考面标准具

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08304616A (ja) * 1995-04-27 1996-11-22 Fujikura Ltd グレーティングレンズ及びこれを用いた光学ヘッド
JPH1062138A (ja) * 1996-08-22 1998-03-06 Nikon Corp 高次非球面の全面形状測定法
US20090153391A1 (en) * 2005-11-03 2009-06-18 Centre National De La Recherche Scientifique (C.N.R.S.) Reflectarray and a millimetre wave radar
CN102829733A (zh) * 2012-08-03 2012-12-19 中国计量学院 一种条纹对比度可调的大数值孔径点衍射干涉装置及方法
CN105258635A (zh) * 2015-11-09 2016-01-20 中国科学院长春光学精密机械与物理研究所 一种宽波段斐索激光干涉仪标准参考镜
CN105423951A (zh) * 2015-12-22 2016-03-23 中国科学院长春光学精密机械与物理研究所 一种长曲率半径凸面参考面标准具

Also Published As

Publication number Publication date
CN106289100A (zh) 2017-01-04
CN106289100B (zh) 2019-05-14

Similar Documents

Publication Publication Date Title
JP4195292B2 (ja) 反射光学系及び反射屈折系を利用した結像システム
JP2016038574A (ja) 撮像光学系
TW201913158A (zh) 鏡頭及包含其之投影裝置
CN107589518B (zh) 光学镜头及具有该光学镜头的激光对中测量设备
CN102590988B (zh) 一种用于非球面检测的补偿器镜头
KR101439411B1 (ko) 전방위 렌즈 모듈
KR20180087691A (ko) 4-반사경을 적용한 마이크로 스폿 분광 타원계
CN102662307A (zh) 一种高分辨率投影光学系统
CN110836642A (zh) 一种基于三角测量法的彩色三角位移传感器及其测量方法
JP2002277348A (ja) 透過率測定方法及び装置
CN106989693B (zh) 一种离轴椭球镜面形检测装置及其检测方法
CN111007478B (zh) 激光雷达探测装置
WO2018023868A1 (zh) 斐索激光干涉仪镜头及斐索激光干涉仪
JP7388766B2 (ja) 瞳モジュール及び検査装置
WO2017195691A1 (ja) 光学レンズおよび光学レンズの製造方法
CN106154362B (zh) 一种小f数多波长标准球面参考透镜组
Chen Portable alignment device for an off-axis parabolic mirror optical axis adjustment
EP3332277A1 (en) Backscatter reductant anamorphic beam sampler
JPS6370110A (ja) 距離測定装置
CN105258635A (zh) 一种宽波段斐索激光干涉仪标准参考镜
RU2581435C1 (ru) Объектив для контроля отверстий
RU2623819C1 (ru) Телецентрический в пространстве предметов объектив
CN112292627B (zh) 远心镜头和激光加工设备
KR100355026B1 (ko) 오목 쌍곡면 거울 형상 측정용 널 렌즈 광학계
CN103575230A (zh) 光学无色差聚焦系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16911463

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16911463

Country of ref document: EP

Kind code of ref document: A1