WO2018023823A1 - 一种毫米波成像装置 - Google Patents

一种毫米波成像装置 Download PDF

Info

Publication number
WO2018023823A1
WO2018023823A1 PCT/CN2016/094110 CN2016094110W WO2018023823A1 WO 2018023823 A1 WO2018023823 A1 WO 2018023823A1 CN 2016094110 W CN2016094110 W CN 2016094110W WO 2018023823 A1 WO2018023823 A1 WO 2018023823A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
millimeter wave
processing unit
output end
signal processing
Prior art date
Application number
PCT/CN2016/094110
Other languages
English (en)
French (fr)
Inventor
刘俊成
孙超
祁春超
Original Assignee
华讯方舟科技有限公司
深圳市太赫兹科技创新研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华讯方舟科技有限公司, 深圳市太赫兹科技创新研究院有限公司 filed Critical 华讯方舟科技有限公司
Priority to US16/323,206 priority Critical patent/US11156710B2/en
Publication of WO2018023823A1 publication Critical patent/WO2018023823A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/887Radar or analogous systems specially adapted for specific applications for detection of concealed objects, e.g. contraband or weapons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/032Constructional details for solid-state radar subsystems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/354Extracting wanted echo-signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/358Receivers using I/Q processing

Definitions

  • the present invention belongs to the field of millimeter wave imaging technology, and in particular, to a millimeter wave imaging device.
  • the millimeter wave is an electromagnetic wave with a wavelength of 1 to 10 mm, which has good penetration, reflectivity and high spatial resolution.
  • the millimeter wave can easily penetrate fabrics, non-metallic cartons, various types of bags, etc., and has strong reflectivity for tools, daggers, iron bars, umbrella poles, etc. made of metal materials such as iron, steel, and aluminum alloy. And it is easily absorbed by liquids. Therefore, millimeter wave imaging technology is widely used in personnel security inspection, aircraft landing navigation and other fields.
  • the existing millimeter wave imaging device includes a millimeter wave transceiver module and an image processing module, wherein the millimeter wave transceiver module includes a crystal oscillator, a millimeter wave transceiver unit, a local oscillator signal source, and a mixer, as shown in FIG.
  • the crystal oscillator provides a cuckoo clock trigger signal for the signal source in the millimeter wave transceiver unit
  • the local oscillator signal source provides the local oscillator signal for the mixer
  • the millimeter wave transceiver unit transmits the millimeter wave signal to the object to be tested and receives the reflected back of the object to be tested.
  • the wave signal, and processing the echo signal and providing the RF signal to the mixer, the mixer mixing the local oscillator signal and the RF signal and outputting the intermediate frequency signal, and the image processing module forms an object corresponding to the object to be tested according to the intermediate frequency signal.
  • the existing millimeter wave imaging device uses a crystal oscillator and an additional local oscillator signal source to respectively provide a cuckoo clock trigger signal and a local oscillator signal, and the crystal oscillator can provide an oscillating signal as an oscillating signal source, but there is no It is fully utilized, resulting in complex redundancy and high cost.
  • An object of the present invention is to provide a millimeter wave imaging device, which aims to solve the problem that the prior millimeter wave imaging device uses a crystal oscillator and an additional local oscillator signal source to respectively provide a cuckoo clock trigger signal and a local oscillator signal, and the crystal oscillator is used as a crystal oscillator.
  • the oscillating signal source is not fully utilized, resulting in a complicated and redundant system, and a high cost problem.
  • a millimeter wave imaging device including a millimeter wave transceiver module and an image processing module
  • the millimeter wave transceiver module includes a crystal oscillator, a millimeter wave transceiver unit, and a second mixer, wherein the crystal oscillator generates An oscillating signal, wherein the RF input end and the intermediate frequency output end of the second mixer are respectively connected to an output end of the millimeter wave transceiver unit and an input end of the image processing module, and the millimeter wave transceiver module further includes a power division And local oscillator signal processing unit;
  • the signal input end of the power splitter is connected to the output end of the crystal oscillator, and the first signal output end and the second signal output end of the power splitter are respectively connected to the clock end of the millimeter wave transceiver unit Connected to an input end of the local oscillator signal processing unit, and an output end of the local oscillator signal processing unit is connected to a local oscillator input end of the second mixer;
  • the power divider performs power distribution on the oscillating signal and outputs a sigma clock trigger signal and a local oscillator signal;
  • the local oscillator signal processing unit processes the local oscillator signal and outputs a second local oscillator signal;
  • the millimeter wave transceiver unit emits a millimeter wave signal to the object to be tested and receives an echo signal reflected by the object to be tested under the trigger of the cicada trigger signal, and the echo signal and the first local oscillator are The signal is mixed to output a first intermediate frequency signal;
  • the second mixer mixes the second local oscillator signal with the first intermediate frequency signal and outputs a second intermediate frequency signal;
  • the second intermediate frequency signal is processed and forms an image corresponding to the object to be tested.
  • the present invention uses an millimeter wave imaging device including a crystal oscillator, a power divider, a millimeter wave transceiver unit, a local oscillator signal processing unit, a second mixer, and an image processing module to generate an oscillating signal from a crystal oscillator by a power divider.
  • the local oscillator signal processing unit processes the local oscillator signal and outputs the second local oscillator signal, and the echo signal reflected by the millimeter wave transceiver unit to be measured is processed and outputted.
  • An intermediate frequency signal, the second local oscillator signal is mixed with the first intermediate frequency signal by the second mixer, and the second intermediate frequency signal is output, and the second intermediate frequency signal is processed by the image processing module to form an object corresponding to the object to be tested.
  • the image is the same as the local oscillator signal source of the millimeter wave transceiver unit and the local oscillator signal source of the second mixer. Therefore, the device does not need to increase the local oscillator signal source, which simplifies the circuit structure and reduces the cost. .
  • FIG. 1 is a schematic structural view of a millimeter wave imaging device provided by the prior art
  • FIG. 2 is a schematic structural diagram of a module of a millimeter wave imaging device according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram showing the circuit structure of a millimeter wave imaging device according to an embodiment of the present invention.
  • the embodiment of the present invention generates a crystal oscillator by a power divider by using a millimeter wave imaging device including a crystal oscillator, a power divider, a millimeter wave transceiver unit, a local oscillator signal processing unit, a second mixer, and an image processing module.
  • the oscillating signal is subjected to power distribution and outputs a clock trigger signal and a local oscillator signal
  • the local oscillator signal processing unit processes the local oscillator signal and outputs a second local oscillator signal, and the echo signal reflected by the millimeter wave transceiver unit to be measured is processed.
  • FIG. 2 shows a module structure of a millimeter wave imaging device according to an embodiment of the present invention. For convenience of description, only parts related to the embodiment of the present invention are shown, which are described in detail as follows:
  • a millimeter wave imaging device includes a millimeter wave transceiver module 10 and an image processing module 6, and the millimeter wave transceiver module 10 includes a crystal oscillator 1, a millimeter wave transceiver unit 3, and a second mixer 5, and a second mixer 5
  • the RF input end and the intermediate frequency output end are respectively connected to the output end of the millimeter wave transceiver unit 3 and the input end of the image processing module 6.
  • the millimeter wave transceiver module 10 further includes a power splitter 2 and a local oscillator signal processing unit 4.
  • the signal input end of the power splitter 2 is connected to the output end of the crystal oscillator 1, and the first signal output end and the second signal output end of the power splitter 2 and the chirp end of the millimeter wave transceiver unit 3 and the local oscillator signal respectively
  • the input of the processing unit 4 is connected, and the output of the local oscillator signal processing unit 4 is connected to the local input of the second mixer 5.
  • the power splitter 2 performs power distribution on the oscillating signal and outputs a clock trigger signal and a local oscillator signal;
  • the signal processing unit 4 processes the local oscillator signal and outputs a second local oscillator signal;
  • the millimeter wave transceiver unit 3 under the trigger of the cuckoo clock trigger signal, transmits a millimeter wave signal to the object to be tested and receives the object reflection And echoing the echo signal with the first local oscillator signal to output the first intermediate frequency signal;
  • the second mixer 5 mixing the second local oscillator signal with the first intermediate frequency signal And outputting the second intermediate frequency signal;
  • the image processing module 6 processes the second intermediate frequency signal according to the image and forms an image corresponding to the object to be tested.
  • the oscillation frequency of the crystal oscillator 1 is a fixed frequency and is equal to the frequency of the first intermediate frequency signal.
  • the oscillation frequency of the crystal oscillator 1 and the frequency of the first intermediate frequency signal are both 200 MHz.
  • the power splitter 2 is a one-way multi-channel power splitter.
  • the power splitter 2 can be a passive multi-channel splitter, a multi-coupler, or the like, or an active multi-way splitter, a multi-way coupler, and a multi-channel switch.
  • the crystal oscillator 1 is the same as the local oscillator signal source of the millimeter wave transceiver unit 3 and the local oscillator signal source of the second mixer 5, and the utilization rate of the crystal oscillator 1 is high, which can save additional
  • the local oscillator signal source simplifies circuit wiring, making the millimeter wave imaging device easier to integrate and miniaturize, while reducing costs.
  • FIG. 3 shows a circuit structure of a millimeter wave imaging device according to an embodiment of the present invention. For convenience of description, only parts related to the embodiment of the present invention are shown, which are described in detail as follows:
  • the millimeter wave transceiver unit 3 includes a first signal source 30, a second signal source 31, a first signal processing unit 32, a second signal processing unit 33, a transmitting antenna 36, a receiving antenna 37, The echo signal processing unit 34 and the first mixer 35.
  • the clock terminal of the first signal source 30 and the clock terminal of the second signal source 31 are commonly connected as the clock terminal of the millimeter wave transceiver unit 3, the output end of the first signal source 30 and the second signal source.
  • the output end of the first signal processing unit 32 is connected to the input end of the second signal processing unit 33, and the output end of the first signal processing unit 32 is connected to the transmitting antenna 36.
  • the echo signal processing unit 34 The input end is connected to the receiving antenna 37, and the local oscillator signal input end and the radio frequency signal input end of the first mixer 35 are respectively connected with the output end of the second signal processing unit 33 and the output end of the echo signal processing unit 334,
  • the intermediate frequency output of a mixer 35 is the output of the millimeter wave transceiver unit 3.
  • the first signal source 30 and the second signal source 31 are simultaneously triggered by the cuckoo clock trigger signal and output the first signal and the second signal, respectively; the first signal processing unit 32 performs the first signal Multiplier processing and output The millimeter wave signal, the transmitting antenna 36 transmits the millimeter wave signal to the object to be tested; the second signal processing unit 33 multiplies the second signal and outputs the first local oscillator signal; and the receiving antenna 37 receives the echo reflected by the object to be tested.
  • the echo signal processing unit 34 filters and amplifies the echo signal and outputs a first echo signal; the first mixer 35 mixes the first local oscillator signal with the first echo signal and outputs the first An IF signal.
  • the phase of the first local oscillator signal is the same as the phase of the first echo signal.
  • the first signal source 30 and the second signal source 31 are both sources of the frequency sweep signal, that is, the frequency of the sine wave signal output by the first signal source 30 and the second signal source 31 varies with the daytime.
  • the scan is repeated within a certain range, and the swept source is composed of a phase-locked loop that can input an external reference signal.
  • the sweep frequency range and sweep bandwidth of the first signal source 30 and the second signal source 31 can be set according to actual needs.
  • the millimeter wave signal transmitted by the transmitting antenna 36 is a frequency sweep signal having a certain bandwidth, and the frequency range of the echo signal received by the receiving antenna 37 and the frequency of the millimeter wave signal transmitted by the transmitting antenna are used.
  • the scope is the same.
  • the first mixer 35 is a difference frequency mixer.
  • the first signal processing unit 32 includes a first band pass filter 32 1 , a first amplifier 322 , a first frequency multiplier 323 , a second amplifier 324 , and a second band pass that are sequentially connected. Filter 325, attenuator 326, and circulator 327. The input end of the first band pass filter 321 and the output end of the circulator 327 are respectively an input end and an output end of the first signal processing unit 32.
  • the second signal processing unit 33 includes a third band pass filter 33 1 , a third amplifier 332 , a second frequency multiplier 333 , a fourth amplifier 334 , and a fourth band pass that are sequentially connected. Filter 335.
  • the input of the third band pass filter 331 and the output of the fourth band pass filter 335 are respectively an input end and an output end of the second signal processing unit 33.
  • the first frequency multiplier 323 and the second frequency multiplier 333 are both double frequency multipliers.
  • the echo signal processing unit 34 includes a fifth amplifier 342 and a fifth band pass filter 341 which are sequentially connected.
  • the input end of the fifth amplifier 342 and the output end of the fifth band pass filter 341 are respectively an input end and an output end of the echo signal processing unit 34.
  • the local oscillation signal processing unit 4 includes a sixth band pass filter 40 and a sixth amplifier 41 which are sequentially connected. Wherein the input end of the sixth band pass filter 40 and the output end of the sixth amplifier 41 The input and output of the local signal processing unit 4 are respectively.
  • the second mixer 5 is an in-phase/quadrature mixer (I/Q mixer).
  • the in-phase/quadrature mixer consists of two mixers, a 90-degree bridge, and an in-phase splitter.
  • the frequency of the first signal output by the first signal source 30 ranges from 16.1 GHz to 20.1 GHz, and the first signal sequentially passes through the first band pass filter 321, the first amplifier 322, and the first
  • the frequency multiplier 323 performs the clutter filtering, the amplification, and the double frequency processing to generate a millimeter wave signal having a frequency range of 32.2 GHz to 40.2 GHz. Since the attenuation of the first frequency multiplier 323 is large, the first frequency doubling is performed.
  • the millimeter wave signal outputted by the device 323 needs to be sequentially amplified by the second amplifier 324, the second band pass filter 325, and the attenuator 326, subjected to fundamental wave and third harmonic filtering, and power adjustment processing, before being transmitted through the transmitting antenna 36.
  • the second directional signal is used to prevent the influence of the clutter signal received by the transmitting antenna 36 on the front end components; the second signal outputted by the second signal source 31 has a frequency range of 16 GHz to 20 GHz, and the second signal source passes through
  • the third band pass filter 331 , the third amplifier 332 and the second frequency multiplier 333 respectively perform the clutter filtering, the amplification and the double frequency processing to generate the first local oscillator having a frequency range of 32 GHz to 40 GHz.
  • the first local oscillation signal is sequentially amplified by the fourth amplifier 334 and the fourth band pass filter 335, filtered by the fundamental wave and the third harmonic, and output to the local oscillator signal input end of the first mixer 35.
  • the initial sweep frequency of the first signal source 30 is not a fixed 16.1 GHz
  • the sweep bandwidth is not a fixed 4 GHz
  • the initial sweep frequency of the second signal source 31 is not a fixed 16 GHz
  • the sweep bandwidth is not a fixed 4 GHz. It is necessary to ensure that there is a fixed frequency difference between the initial sweep frequency of the first signal source 30 and the initial sweep frequency of the second signal source 31, the frequency difference being equal to the frequency of the first intermediate frequency signal.
  • the frequency of the echo signal received by the receiving antenna 37 ranges from 32.2 GHz to 40.2 GHz, and the echo signal processing unit 34 sequentially amplifies the echo signal through the fifth amplifier 342 and the fifth band pass filter 341, respectively.
  • the wave filtering process generates a first echo signal and outputs the first echo signal to the RF signal input of the first mixer 35.
  • the first signal source 30 and the second signal source 31 output the first signal and the second signal, respectively, that is, the first band pass filter 30 and the second band pass filter 31 are respectively Receiving the first signal and the second signal, and correspondingly setting a transmission path (length of the transmission line) of the first signal and the second signal, so that the first local oscillation signal and the first echo input to the first mixer 35 are
  • the phases of the signals are always absolutely equal, such that the frequency of the first intermediate frequency signal output by the first mixer 35 is always a fixed value (e.g., 200 M Hz).
  • the millimeter wave imaging device further includes a display module 8.
  • the input end of the display module 8 is connected to the first output end of the image processing module 6, and the display module 8 is configured to display an image corresponding to the object to be tested.
  • the millimeter wave imaging device further includes a feedback module 7, and the first input end, the second input end, and the feedback output end of the feedback module 7 are respectively connected to the second output end of the image processing module 6,
  • the third output end of the splitter and the feedback input end of the power splitter are connected, and the feedback output end of the splitter 2 is connected to the feedback input end of the crystal oscillator 1, and the feedback module 7 is used for the imaging pair according to the image processing module 6.
  • the oscillation frequency of the crystal 1 is adjusted.
  • the feedback module 7 is specifically an FPGA (Field-Programmable Gate Array) programmable control board.
  • the millimeter wave imaging device further includes a power module that supplies power to the entire device.
  • Embodiments of the present invention generate a crystal oscillator by a power divider by using a millimeter wave imaging device including a crystal oscillator, a power divider, a millimeter wave transceiver unit, a local oscillator signal processing unit, a second mixer, and an image processing module.
  • the oscillating signal is subjected to power distribution and outputs a clock trigger signal and a local oscillator signal
  • the local oscillator signal processing unit processes the local oscillator signal and outputs a second local oscillator signal, and the echo signal reflected by the millimeter wave transceiver unit to be measured is processed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Superheterodyne Receivers (AREA)

Abstract

一种毫米波成像装置,包括:晶振(1)、功分器(2)、毫米波收发单元(3)、本振信号处理单元(4)、第二混频器(5)及图像处理模块(6),功分器(2)对晶振(1)产生的振荡信号进行功率分配并输出时钟触发信号和本振信号,本振信号处理单元(4)对本振信号进行处理并输出第二本振信号,毫米波收发单元(3)对待测物体反射的回波信号进行处理并输出第一中频信号,第二混频器(5)将第二本振信号与第一中频信号进行混频并输出第二中频信号,图像处理模块(6)对第二中频信号进行处理并对待测物体成像,由于晶振(1)同时作为时钟触发源和本振信号源,因此,该装置不需额外增加本振信号源,简化了电路结构,降低了成本。

Description

说明书 发明名称:一种毫米波成像装置
技术领域
[0001] 本发明属于毫米波成像技术领域, 尤其涉及一种毫米波成像装置。
背景技术
[0002] 毫米波是一种波长为 1~10毫米的电磁波, 其具有较好的穿透性、 反射性及较高 的空间分辨率。 毫米波能轻易地穿透织物、 非金属纸盒、 各类箱包等, 对由铁 、 钢、 铝合金等金属材料制成的刀具、 匕首、 铁棍、 雨伞杆等具有较强的反射 性, 且很容易被液体吸收。 因此, 毫米波成像技术被广泛应用于人员安检、 飞 机着陆导航等领域。
[0003] 现有的毫米波成像装置包括毫米波收发模块和图像处理模块, 其中, 毫米波收 发模块包括晶振、 毫米波收发单元、 本振信号源及混频器, 如图 1所示, 其中, 晶振为毫米波收发单元中的信号源提供吋钟触发信号, 本振信号源为混频器提 供本振信号, 毫米波收发单元向待测物体发射毫米波信号并接收待测物体反射 的回波信号, 且对回波信号进行处理并为混频器提供射频信号, 混频器将本振 信号与射频信号进行混频并输出中频信号, 图像处理模块根据中频信号形成与 待测物体相对应的图像。
[0004] 然而, 现有的毫米波成像装置是采用晶振和额外的本振信号源来分别提供吋钟 触发信号和本振信号, 而晶振本可以作为振荡信号源提供振荡信号, 但却并没 有被充分的利用, 从而导致整个系统变得复杂冗余, 且成本较高。
技术问题
[0005] 本发明的目的在于提供一种毫米波成像装置, 旨在解决现有的毫米波成像装置 是采用晶振和额外的本振信号源来分别提供吋钟触发信号和本振信号, 晶振作 为振荡信号源并没有被充分的利用, 导致整个系统变得复杂冗余, 且成本较高 的问题。
问题的解决方案
技术解决方案 [0006] 本发明是这样实现的, 一种毫米波成像装置, 包括毫米波收发模块和图像处理 模块, 所毫米波收发模块包括晶振、 毫米波收发单元及第二混频器, 所述晶振 产生振荡信号, 所述第二混频器的射频输入端和中频输出端分别与所述毫米波 收发单元的输出端和所述图像处理模块的输入端连接, 所述毫米波收发模块还 包括功分器和本振信号处理单元;
[0007] 所述功分器的信号输入端与所述晶振的输出端连接, 所述功分器的第一信号输 出端和第二信号输出端分别与所述毫米波收发单元的吋钟端和所述本振信号处 理单元的输入端连接, 所述本振信号处理单元的输出端与所述第二混频器的本 振输入端连接;
[0008] 所述功分器对所述振荡信号进行功率分配并输出吋钟触发信号和本振信号; 所 述本振信号处理单元对所述本振信号进行处理并输出第二本振信号; 所述毫米 波收发单元在所述吋钟触发信号的触发下, 向待测物体发射毫米波信号并接收 所述待测物体反射的回波信号, 且将所述回波信号与第一本振信号进行混频以 输出第一中频信号; 所述第二混频器将所述第二本振信号与所述第一中频信号 进行混频并输出第二中频信号; 所述图像处理模块对所述第二中频信号进行处 理并形成所述待测物体相对应的图像。
发明的有益效果
有益效果
[0009] 本发明通过采用包括晶振、 功分器、 毫米波收发单元、 本振信号处理单元、 第 二混频器及图像处理模块的毫米波成像装置, 由功分器对晶振产生的振荡信号 进行功率分配并输出吋钟触发信号和本振信号, 由本振信号处理单元对本振信 号进行处理并输出第二本振信号, 由毫米波收发单元对待测物体反射的回波信 号进行处理并输出第一中频信号, 由第二混频器将第二本振信号与第一中频信 号进行混频并输出第二中频信号, 由图像处理模块对第二中频信号进行处理并 形成与待测物体相对应的图像, 由于晶振同吋作为毫米波收发单元的吋钟触发 源和第二混频器的本振信号源, 因此, 该装置不需额外增加本振信号源, 简化 了电路结构, 降低了成本。
对附图的简要说明 附图说明
[0010] 图 1是现有技术提供的毫米波成像装置的结构示意图;
[0011] 图 2是本发明实施例提供的毫米波成像装置的模块结构示意图;
[0012] 图 3是本发明实施例提供的毫米波成像装置的电路结构示意图。
本发明的实施方式
[0013] 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例 , 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅仅用 以解释本发明, 并不用于限定本发明。
[0014] 本发明实施例通过采用包括晶振、 功分器、 毫米波收发单元、 本振信号处理单 元、 第二混频器及图像处理模块的毫米波成像装置, 由功分器对晶振产生的振 荡信号进行功率分配并输出吋钟触发信号和本振信号, 由本振信号处理单元对 本振信号进行处理并输出第二本振信号, 由毫米波收发单元对待测物体反射的 回波信号进行处理并输出第一中频信号, 由第二混频器将第二本振信号与第一 中频信号进行混频并输出第二中频信号, 由图像处理模块对第二中频信号进行 处理并形成与待测物体相对应的图像, 由于晶振同吋作为毫米波收发单元的吋 钟触发源和第二混频器的本振信号源, 因此, 该装置不需额外增加本振信号源 , 简化了电路结构, 降低了成本。
[0015] 图 2示出了本发明实施例提供的毫米波成像装置的模块结构, 为了便于说明, 仅示出了与本发明实施例相关的部分, 详述如下:
[0016] 一种毫米波成像装置, 包括毫米波收发模块 10和图像处理模块 6, 毫米波收 发模块 10包括晶振 1、 毫米波收发单元 3及第二混频器 5, 第二混频器 5的射频输 入端和中频输出端分别与毫米波收发单元 3的输出端和图像处理模块 6的输入端 连接, 毫米波收发模块 10还包括功分器 2和本振信号处理单元 4。
[0017] 功分器 2的信号输入端与晶振 1的输出端连接, 功分器 2的第一信号输出端和 第二信号输出端分别与毫米波收发单元 3的吋钟端和本振信号处理单元 4的输入 端连接, 本振信号处理单元 4的输出端与第二混频器 5的本振输入端连接。
[0018] 功分器 2对所述振荡信号进行功率分配并输出吋钟触发信号和本振信号; 本振 信号处理单元 4对所述本振信号进行处理并输出第二本振信号; 毫米波收发单元 3在所述吋钟触发信号的触发下, 向待测物体发射毫米波信号并接收待测物体反 射的回波信号, 且将回波信号与第一本振信号进行混频以输出第一中频信号; 第二混频器 5将所述第二本振信号与所述第一中频信号进行混频并输出第二中频 信号; 图像处理模 6块根据对第二中频信号进行处理并形成与待测物体相对应的 图像。
[0019] 在本发明实施例中, 晶振 1的振荡频率为固定频率且与第一中频信号的频率相 等, 例如晶振 1的振荡频率与第一中频信号的频率均为 200MHz。
[0020] 在本发明实施例中, 功分器 2为一分多路功分器。 在实际应用中, 功分器 2可以 是无源多路功分器和多路耦合器等, 也可以是有源多路功分器、 多路耦合器及 多路幵关等。
[0021] 在本发明实施例中, 晶振 1同吋作为毫米波收发单元 3的吋钟触发源和第二混频 器 5的本振信号源, 晶振 1的利用率较高, 可节省额外的本振信号源, 简化电路 布线, 使得毫米波成像装置更易于集成化和小型化, 同吋降低了成本。
[0022] 图 3示出了本发明实施例提供的毫米波成像装置的电路结构, 为了便于说明, 仅示出了与本发明实施例相关的部分, 详述如下:
[0023] 作为本发明一实施例, 毫米波收发单元 3包括第一信号源 30、 第二信号源 31、 第一信号处理单元 32、 第二信号处理单元 33、 发射天线 36、 接收天线 37、 回波 信号处理单元 34及第一混频器 35。
[0024] 其中, 第一信号源 30的吋钟端和第二信号源 31的吋钟端共接作为毫米波收发单 元 3的吋钟端, 第一信号源 30的输出端和第二信号源 31的输出端分别与第一信号 处理单元 32的输入端和第二信号处理单元 33的输入端连接, 第一信号处理单元 3 2的输出端与发射天线 36连接, 回波信号处理单元 34的输入端与接收天线 37连接 , 第一混频器 35的本振信号输入端和射频信号输入端分别与第二信号处理单元 3 3的输出端和回波信号处理单元 334的输出端连接, 第一混频器 35的中频输出端 为毫米波收发单元 3的输出端。
[0025] 第一信号源 30和第二信号源 31在所述吋钟触发信号的触发下同吋且分别输出第 一信号和第二信号; 第一信号处理单元 32对所述第一信号进行倍频处理并输出 毫米波信号, 发射天线 36将毫米波信号发射至待测物体; 第二信号处理单元 33 对第二信号进行倍频处理并输出第一本振信号; 接收天线 37接收待测物体反射 的回波信号; 回波信号处理单元 34对回波信号进行滤波和放大处理并输出第一 回波信号; 第一混频器 35将第一本振信号与第一回波信号进行混频处理并输出 第一中频信号。
[0026] 在本发明实施例中, 第一本振信号的相位与第一回波信号的相位相同。
[0027] 在本发明实施例中, 第一信号源 30和第二信号源 31均为扫频信号源, 即第一信 号源 30和第二信号源 31输出的正弦波信号的频率随吋间在一定范围内反复扫描 , 扫频信号源由可输入外部参考信号的锁相环构成。 第一信号源 30和第二信号 源 31的扫频频率范围和扫频带宽可根据实际需求进行设置。
[0028] 在本发明实施例中, 发射天线 36发送的毫米波信号为具有一定带宽的扫频信号 , 且接收天线 37接收到的回波信号的频率范围与发射天线发射的毫米波信号的 频率范围相同。
[0029] 在本发明实施例中, 第一混频器 35为差频混频器。
[0030] 作为本发明一实施例, 第一信号处理单元 32包括依次相连的第一带通滤波器 32 1、 第一放大器 322、 第一倍频器 323、 第二放大器 324、 第二带通滤波器 325、 衰 减器 326及环形器 327。 其中, 第一带通滤波器 321的输入端和环形器 327的输出 端分别为第一信号处理单元 32的输入端和输出端。
[0031] 作为本发明一实施例, 第二信号处理单元 33包括依次相连的第三带通滤波器 33 1、 第三放大器 332、 第二倍频器 333、 第四放大器 334及第四带通滤波器 335。 其 中, 第三带通滤波器 331的输入端和第四带通滤波器 335的输出端分别为第二信 号处理单元 33的输入端和输出端。
[0032] 在本发明实施例中, 第一倍频器 323和第二倍频器 333均为二倍频器。
[0033] 作为本发明一实施例, 回波信号处理单元 34包括依次相连的第五放大器 342和 第五带通滤波器 341。 其中, 第五放大器 342的输入端和第五带通滤波器 341的输 出端分别为回波信号处理单元 34的输入端和输出端。
[0034] 作为本发明一实施例, 本振信号处理单元 4包括依次相连的第六带通滤波器 40 和第六放大器 41。 其中, 第六带通滤波器 40的输入端和第六放大器 41的输出端 分别为本振信号处理单元 4的输入端和输出端。
[0035] 作为本发明一实施例, 第二混频器 5为同相 /正交混频器 (I/Q混频器) 。 同相 / 正交混频器由两个混频器、 一个 90度电桥和一个同相功分器构成。
[0036] 在实际应用中, 第一信号源 30输出的第一信号的频率范围为 16.lGHz~20.lGHz , 第一信号依次经过第一带通滤波器 321、 第一放大器 322及第一倍频器 323分别 进行杂波滤除、 放大及二倍频处理后产生频率范围为 32.2GHz~40.2GHz的毫米波 信号, 由于第一倍频器 323的衰减较大, 因此, 第一倍频器 323输出的毫米波信 号需要依次经过第二放大器 324、 第二带通滤波器 325及衰减器 326分别进行放大 、 基波和三次谐波滤除、 功率调整处理后, 才通过发射天线 36进行发射, 而环 形器 327的作用是防止发射天线 36接收到的杂波信号对前端各个器件的影响; 第 二信号源 31输出的第二信号的频率范围为 16GHz~20GHz, 第二信号源依次经过 第三带通滤波器 331、 第三放大器 332及第二倍频器 333分别进行杂波滤除、 放大 及二倍频处理后产生频率范围为 32GHz~40GHz的第一本振信号, 第一本振信号 依次经过第四放大器 334和第四带通滤波器 335分别进行放大、 基波和三次谐波 滤除后, 输出至第一混频器 35的本振信号输入端。 第一信号源 30的起始扫频频 率不是固定的 16.1GHz, 扫频带宽不是固定的 4GHz, 第二信号源 31的起始扫频 频率不是固定的 16GHz, 扫频带宽不是固定的 4GHz, 只需保证第一信号源 30的 起始扫频频率与第二信号源 31的起始扫频频率之间存在一个固定的频率差, 该 频率差与第一中频信号的频率相等。 接收天线 37接收到的回波信号的频率范围 为 32.2GHz~40.2GHz, 回波信号处理单元 34将所述回波信号依次经过第五放大器 342和第五带通滤波器 341分别进行放大、 杂波滤除处理生成第一回波信号, 并 将第一回波信号输出至第一混频器 35的射频信号输入端。
[0037] 在实际应用中, 第一信号源 30和第二信号源 31同吋分别输出第一信号和第二信 号, 即第一带通滤波器 30和第二带通滤波器 31同吋分别接收第一信号和第二信 号, 通过对第一信号和第二信号的传输路径 (传输线的长度) 进行相应设置, 使得输入至第一混频器 35的第一本振信号和第一回波信号的相位始终保持绝对 相等, 这样, 第一混频器 35输出的第一中频信号的频率始终为固定值 (如 200M Hz) 。 由于晶振 1的振荡频率与第一中频信号的频率相等, 因此, 本振信号的频 率为 200MHz, 本振信号经过第六带通滤波器 40的滤波和第六放大器 41的放大后 形成第二本振信号 (频率为 200MHz) , 第二混频器 5将第二本振信号与第一中 频信号进行解调后输出同相信号和正交信号两路直流信号, 图像处理模块 6对同 相信号和正交信号进行采集并处理, 并根据处理结果对待测物体进行成像。 在 实际应用中, 毫米波成像装置还包括显示模块 8, 显示模块 8的输入端与图像处 理模块 6的第一输出端连接, 显示模块 8用于对与待测物体相对应的图像进行显 示。
[0038] 作为本发明一实施例, 毫米波成像装置还包括反馈模块 7, 反馈模块 7的第一输 入端、 第二输入端及反馈输出端分别与图像处理模块 6的第二输出端、 功分器的 第三输出端及功分器的反馈输入端连接, 同吋, 功分器 2的反馈输出端与晶振 1 的反馈输入端连接, 反馈模块 7用于根据图像处理模块 6的成像对晶振 1的振荡频 率进行调节。 在实际应用中, 反馈模块 7具体为 FPGA (Field-Programmable Gate Array , 可编程门阵列) 可编程控制板。
[0039] 作为本发明一实施例, 毫米波成像装置还包括电源模块, 电源模块为整个装置 进行供电。
[0040] 本发明实施例通过采用包括晶振、 功分器、 毫米波收发单元、 本振信号处理单 元、 第二混频器及图像处理模块的毫米波成像装置, 由功分器对晶振产生的振 荡信号进行功率分配并输出吋钟触发信号和本振信号, 由本振信号处理单元对 本振信号进行处理并输出第二本振信号, 由毫米波收发单元对待测物体反射的 回波信号进行处理并输出第一中频信号, 由第二混频器将第二本振信号与第一 中频信号进行混频并输出第二中频信号, 由图像处理模块对第二中频信号进行 处理并形成与待测物体相对应的图像, 由于晶振同吋作为毫米波收发单元的吋 钟触发源和第二混频器的本振信号源, 因此, 该装置不需额外增加本振信号源 , 简化了电路结构, 降低了成本。
[0041] 以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的 精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明的保 护范围之内。

Claims

权利要求书
[权利要求 1] 一种毫米波成像装置, 包括毫米波收发模块和图像处理模块, 所述毫 米波收发模块包括晶振、 毫米波收发单元及第二混频器, 所述晶振产 生振荡信号, 所述第二混频器的射频输入端和中频输出端分别与所述 毫米波收发单元的输出端和所述图像处理模块的输入端连接, 其特征 在于, 所述毫米波收发模块还包括功分器和本振信号处理单元; 所述功分器的信号输入端与所述晶振的输出端连接, 所述功分器的 第一信号输出端和第二信号输出端分别与所述毫米波收发单元的吋钟 端和所述本振信号处理单元的输入端连接, 所述本振信号处理单元的 输出端与所述第二混频器的本振输入端连接;
所述功分器对所述振荡信号进行功率分配并输出吋钟触发信号和本 振信号; 所述本振信号处理单元对所述本振信号进行处理并输出第二 本振信号; 所述毫米波收发单元在所述吋钟触发信号的触发下, 向待 测物体发射毫米波信号并接收所述待测物体反射的回波信号, 且将所 述回波信号与第一本振信号进行混频以输出第一中频信号; 所述第二 混频器将所述第二本振信号与所述第一中频信号进行混频并输出第二 中频信号; 所述图像处理模块对所述第二中频信号进行处理并形成与 所述待测物体相对应的图像。
[权利要求 2] 如权利要求 1所述的毫米波成像装置, 其特征在于, 所述毫米波收发 单元包括第一信号源、 第二信号源、 第一信号处理单元、 第二信号处 理单元、 发射天线、 接收天线、 回波信号处理单元及第一混频器; 所述第一信号源的吋钟端和所述第二信号源的吋钟端共接作为所述毫 米波收发单元的吋钟端, 所述第一信号源的输出端和所述第二信号源 的输出端分别与所述第一信号处理单元的输入端和所述第二信号处理 单元的输入端连接, 所述第一信号处理单元的输出端与所述发射天线 连接, 所述回波信号处理单元的输入端与所述接收天线连接, 所述第 一混频器的本振信号输入端和射频信号输入端分别与所述第二信号处 理单元的输出端和所述回波信号处理单元的输出端连接, 所述第一混 频器的中频输出端为所述毫米波收发单元的输出端;
所述第一信号源和所述第二信号源在所述吋钟触发信号的触发下同吋 且分别输出第一信号和第二信号; 所述第一信号处理单元对所述第一 信号进行倍频处理并输出毫米波信号, 所述发射天线将所述毫米波信 号发射至所述待测物体; 所述第二信号处理单元对所述第二信号进行 倍频处理并输出第一本振信号; 所述接收天线接收所述待测物体反射 的回波信号; 所述回波信号处理单元对所述回波信号进行滤波和放大 处理并输出第一回波信号; 所述第一混频器将所述第一本振信号与所 述第一回波信号进行混频处理并输出第一中频信号。
[权利要求 3] 如权利要求 2所述的毫米波成像装置, 其特征在于, 所述第一信号处 理单元包括依次相连的第一带通滤波器、 第一放大器、 第一倍频器、 第二放大器、 第二带通滤波器、 衰减器及环形器; 所述第一带通滤波器的输入端和所述环形器的输出端分别为所述第一 信号处理单元的输入端和输出端。
[权利要求 4] 如权利要求 2所述的毫米波成像装置, 其特征在于, 所述第二信号处 理单元包括依次相连的第三带通滤波器、 第三放大器、 第二倍频器、 第四放大器及第四带通滤波器;
所述第三带通滤波器的输入端和所述第四带通滤波器的输出端分别为 所述第二信号处理单元的输入端和输出端。
[权利要求 5] 如权利要求 2所述的毫米波成像装置, 其特征在于, 所述回波信号处 理单元包括依次相连的第五放大器和第五带通滤波器;
所述第五放大器的输入端和所述第五带通滤波器的输出端分别为所述 回波信号处理单元的输入端和输出端。
[权利要求 6] 如权利要求 2所述的毫米波成像装置, 其特征在于, 所述第一本振信 号的相位与所述第一回波信号的相位相同。
[权利要求 7] 如权利要求 2所述的毫米波成像装置, 其特征在于, 所述晶振的振荡 频率与所述第一中频信号的频率相等。
[权利要求 8] 如权利要求 2所述的毫米波成像装置, 其特征在于, 所述第一信号源 和所述第二信号源均为扫频信号源。
[权利要求 9] 如权利要求 1所述的毫米波成像装置, 其特征在于, 所述本振信号处 理单元包括依次相连的第六带通滤波器和第六放大器;
所述第六带通滤波器的输入端和所述第六放大器的输出端分别为所述 本振信号处理单元的输入端和输出端。
[权利要求 10] 如权利要求 1所述的毫米波成像装置, 其特征在于, 所述第二混频器 为同相 /正交混频器。
PCT/CN2016/094110 2016-08-03 2016-08-09 一种毫米波成像装置 WO2018023823A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/323,206 US11156710B2 (en) 2016-08-03 2016-08-09 Millimeter wave imaging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610628931.5A CN106019276B (zh) 2016-08-03 2016-08-03 一种毫米波成像装置
CN201610628931.5 2016-08-03

Publications (1)

Publication Number Publication Date
WO2018023823A1 true WO2018023823A1 (zh) 2018-02-08

Family

ID=57135176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/094110 WO2018023823A1 (zh) 2016-08-03 2016-08-09 一种毫米波成像装置

Country Status (3)

Country Link
US (1) US11156710B2 (zh)
CN (1) CN106019276B (zh)
WO (1) WO2018023823A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106338528A (zh) * 2016-08-24 2017-01-18 刘学 无线电波显示系统
CN106788425B (zh) * 2016-12-09 2021-03-23 北京无线电计量测试研究所 宽带毫米波lfmcw信号产生装置及包含该装置的信号收发系统
CN106932831A (zh) * 2017-03-10 2017-07-07 四川莱源科技有限公司 旋转门式雷达成像安检仪
CN109975802B (zh) * 2019-04-04 2020-10-30 浙江大学 基于毫米波的反射变换成像系统及缺陷检测方法
CN111988052B (zh) * 2020-07-30 2022-12-27 深圳市重投华讯太赫兹科技有限公司 一种接收天线电路、发射天线电路及安检仪
CN112363116B (zh) * 2020-11-28 2022-08-23 南京誉葆科技有限公司 一种毫米波收发系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1795914A1 (en) * 2005-12-07 2007-06-13 Electronics And Telecommunications Research Institute RF transceiver module and millimeter-wave FMCW radar sensor using the same
CN101634704A (zh) * 2009-07-16 2010-01-27 南京瑞德通讯技术有限公司 采用载波提取视频存储方法的雷达外场目标模拟器
CN202818283U (zh) * 2012-07-13 2013-03-20 成都措普科技有限公司 射频接收与发射装置
CN204031163U (zh) * 2014-07-18 2014-12-17 南京誉葆科技有限公司 大功率毫米波收发组件
CN104698458A (zh) * 2015-02-04 2015-06-10 山东华宇空间技术公司北京分部 无人机载Ka频段调频连续波SAR成像和动目标检测系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5325095A (en) * 1992-07-14 1994-06-28 The United States Of America As Represented By The United States Department Of Energy Stepped frequency ground penetrating radar
US5499029A (en) * 1992-07-14 1996-03-12 Eg&G Energy Measurements, Inc. Wide band stepped frequency ground penetrating radar
US5731781A (en) * 1996-05-20 1998-03-24 Delco Electronics Corp. Continuous wave wideband precision ranging radar
CN2588668Y (zh) * 2002-12-17 2003-11-26 南京才华科技有限公司 射频接收与发射装置
US6727840B1 (en) * 2003-02-03 2004-04-27 William B. Sullivan Interference suppression circuit and method thereof for multi-channel receivers
EP2059890A2 (en) * 2006-08-22 2009-05-20 James F. Munro Systems for three-dimensional imaging and methods thereof
FR2907374B1 (fr) * 2006-10-23 2010-04-30 Ldl Tech Dispositif de fixation mecanique sur jante d'un capteur pour pneumatiques.
US8362948B2 (en) * 2010-08-13 2013-01-29 Trex Enterprises Corp Long range millimeter wave surface imaging radar system
CN201869164U (zh) * 2010-12-02 2011-06-15 中国电子科技集团公司第五十四研究所 一种小型化混传多工装置
US9417315B2 (en) * 2012-12-20 2016-08-16 The Board Of Regents Of The University Of Oklahoma Radar system and methods for making and using same
CN204304987U (zh) * 2015-01-06 2015-04-29 无锡天路科技有限公司 被动式宽带毫米波频综器
CN105510911B (zh) * 2015-12-25 2018-05-04 深圳市华讯方舟太赫兹科技有限公司 基于线性调频的多人人体安检设备及方法
CN105607056A (zh) * 2015-12-28 2016-05-25 深圳市太赫兹科技创新研究院 人体安检系统和方法
CN105759269B (zh) * 2016-04-25 2018-06-26 华讯方舟科技有限公司 三维全息成像的安检系统及方法
CN205910337U (zh) * 2016-08-03 2017-01-25 华讯方舟科技有限公司 一种毫米波成像装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1795914A1 (en) * 2005-12-07 2007-06-13 Electronics And Telecommunications Research Institute RF transceiver module and millimeter-wave FMCW radar sensor using the same
CN101634704A (zh) * 2009-07-16 2010-01-27 南京瑞德通讯技术有限公司 采用载波提取视频存储方法的雷达外场目标模拟器
CN202818283U (zh) * 2012-07-13 2013-03-20 成都措普科技有限公司 射频接收与发射装置
CN204031163U (zh) * 2014-07-18 2014-12-17 南京誉葆科技有限公司 大功率毫米波收发组件
CN104698458A (zh) * 2015-02-04 2015-06-10 山东华宇空间技术公司北京分部 无人机载Ka频段调频连续波SAR成像和动目标检测系统

Also Published As

Publication number Publication date
CN106019276A (zh) 2016-10-12
US11156710B2 (en) 2021-10-26
US20190353776A1 (en) 2019-11-21
CN106019276B (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
WO2018023823A1 (zh) 一种毫米波成像装置
US6700531B2 (en) Integrated multiple-up/down conversion radar test system
US7710311B2 (en) Short range radar small in size and low in power consumption and controlling method thereof
US7071869B2 (en) Radar system using quadrature signal
US11125855B2 (en) Method and system using TR assembly to obtain intermediate-frequency controllable signal
JP3759333B2 (ja) パルスドップラレーダ装置
JPH03273171A (ja) ミリメートル波やサブミリメートル波用ネットワークベクトルアナライザ
CN205910337U (zh) 一种毫米波成像装置
KR20130079868A (ko) 밸런스 구조의 fmcw 레이더 장치
Baskar et al. A software defined radar platform for waveform adaptive MIMO radar research
US6411252B1 (en) Narrow band millimeter wave VNA for testing automotive collision avoidance radar components
US3745579A (en) Double mixing doppler simulator
Boukari et al. A heterodyne six-port FMCW radar sensor architecture based on beat signal phase slope techniques
US6384772B1 (en) Wideband phase locking of low offset frequency sources
JP5890129B2 (ja) パルスesr装置
CN103592641A (zh) 一种毫米波云雷达发射功率实时测量装置
CN111355485B (zh) 一种延时线相位漂移消除系统及方法
Dengler et al. A compact 600 GHz electronically tunable vector measurement system for submillimeter wave imaging
JP2000275329A (ja) ドップラレーダ装置
US3750173A (en) Frequency translating repeater (boomerang) using single-sideband techniques
JPH0972954A (ja) 追尾レーダ送受信機
GB2335099A (en) Phase conjugate mixer circuits and retrorecive antenna
JPH0560860A (ja) 電波測距装置
KR100932533B1 (ko) 지령 수신기용 쿠밴드 송수신 장치
JPH04336713A (ja) 無線受信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16911418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16911418

Country of ref document: EP

Kind code of ref document: A1