WO2018021584A1 - 웨이퍼 표면 가공방법 - Google Patents

웨이퍼 표면 가공방법 Download PDF

Info

Publication number
WO2018021584A1
WO2018021584A1 PCT/KR2016/008123 KR2016008123W WO2018021584A1 WO 2018021584 A1 WO2018021584 A1 WO 2018021584A1 KR 2016008123 W KR2016008123 W KR 2016008123W WO 2018021584 A1 WO2018021584 A1 WO 2018021584A1
Authority
WO
WIPO (PCT)
Prior art keywords
koh
ipa
wafer
aqueous solution
laser
Prior art date
Application number
PCT/KR2016/008123
Other languages
English (en)
French (fr)
Inventor
김선주
박훈
김현태
박재웅
홍순영
박상준
김지현
하승현
Original Assignee
주식회사 코윈디에스티
가천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 코윈디에스티, 가천대학교 산학협력단 filed Critical 주식회사 코윈디에스티
Publication of WO2018021584A1 publication Critical patent/WO2018021584A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for processing a surface of a silicon wafer applied to semiconductors, solar cells, and the like.
  • a method of reducing this optical loss is the substrate texturing method, which reduces the reflectance of the front face, lengthens the light passage in the solar cell, and uses the amount of light absorbed by internal reflection from the back face. You can increase it.
  • Silicon wafer solar cells is intended to reduce the reflectance of reflected light by increasing the chance of light being reflected on the surface.
  • Polycrystalline silicon wafers must be etched using HF, HNO3, etc. This has the disadvantage of being harmful to the environment and the human body.
  • Texturing of single crystal silicon uses a basic solution such as NaOH, Tetramethyl ammonium hydroxide (TMAH).
  • TMAH Tetramethyl ammonium hydroxide
  • etching is performed through a chemical reaction between hydroxyl ions (OH ⁇ ) and silicon, and the etching rate is different depending on the crystal direction. Therefore, a pyramid structure is formed on the surface of the single crystal silicon solar cell, thereby reducing the surface reflectance.
  • this technique has a disadvantage in that it is difficult to effectively reduce surface reflectance for polycrystalline silicon.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a wafer surface processing method showing excellent power generation efficiency and low environmental pollution.
  • Wafer surface processing method of the present invention the step of forming irregularities by irradiating the laser to the wafer for achieving the above object; And cleaning the wafer having the irregularities formed therein into an aqueous solution containing KOH.
  • the KOH in the aqueous solution containing KOH, may be 10 to 30wt%.
  • the cleaning step in the aqueous solution containing the KOH may be made in the range of 5 minutes to 9 minutes.
  • the aqueous solution containing KOH may further include IPA.
  • the KOH may be 1 to 5wt%
  • the IPA may be 5 to 10wt%.
  • the cleaning step in the aqueous solution containing the KOH and IPA may be in the range of 20 minutes to 35 minutes.
  • the pulse energy of the laser may be 50 to 200uJ.
  • the height of the unevenness formed by the laser irradiation may be 5 to 20 ⁇ m.
  • the wafer surface processing method of the present invention derived to solve the problems of the prior art as described above can exhibit excellent power generation efficiency with a cheap material without generating environmental pollutants.
  • 1 is a SEM photograph of a wafer surface cleaned with KOH after laser texturing.
  • FIGS. 1 and 2 are side views SEM photograph of some wafers of FIGS. 1 and 2;
  • Wafer surface processing method of the present invention the step of irradiating the laser to the wafer to form irregularities; And cleaning the wafer having the irregularities formed therein into an aqueous solution containing KOH.
  • FIG. 1 is texturing only with a laser
  • (b) to (f) are SEM images of the surface of a wafer generated by KOH cleaning after laser texturing
  • FIG. 2 (a) is texturing only with a laser
  • (B) to (f) are surface SEM photographs of wafers generated by cleaning with an aqueous solution of KOH + IPA (ISO-PROPYL ALCOHOL) after laser texturing.
  • (A) is a SEM cross-sectional SEM photograph of the laser texturing only
  • (b) to (d) is a cross-sectional SEM photograph of the wafer generated by the KOH cleaning after laser texturing
  • (e) and (f) Is a cross-sectional SEM photograph of the wafer generated by cleaning with an aqueous solution of KOH + IPA (ISO-PROPYL ALCOHOL) after laser texturing.
  • ISO-PROPYL ALCOHOL a cross-sectional SEM photograph of the wafer generated by cleaning with an aqueous solution of KOH + IPA
  • the wafer of the present invention is a silicon wafer applied to a semiconductor or a solar cell, and a polycrystalline silicon wafer can be applied.
  • Laser irradiation of the present invention a variety of laser irradiation apparatus may be applied, but preferably a pulse laser may be applied. Unevenness is formed on the surface of the wafer by a pulse laser. (See FIG. 1 (a) and FIG. 2 (a).)
  • the unevenness to be formed preferably has a height of 5 to 20 mu m.
  • the height of the unevenness refers to the width of the highest point and the lowest point of the produced unevenness.
  • the unevenness generated as described above forms a pattern in the longitudinal direction as shown in FIGS. 1 (a) and 2 (a), and the separation distance between the patterns may have a range of 5 to 50 ⁇ m.
  • the present invention may be subjected to a step of cleaning the laser-treated wafer with an aqueous solution containing KOH and IPA (ISO-PROPYL ALCOHOL). Cleaning removes the sludge produced by the laser treatment and serves to etch the unevenness generated by the laser treatment. IPA serves to remove bubbles generated by the reaction between KOH and the wafer and to form an even uneven structure.
  • the inventors of the present invention confirmed that the power generation efficiency of the solar cell is greatly improved upon treatment with an aqueous solution containing KOH or KOH + IPA after laser texturing.
  • the following test was conducted in an aqueous solution of KOH 20wt%, KOH + IPA was tested in an aqueous solution of 2wt% KOH, 6.5wt% IPA.
  • the KOH aqueous solution shows the best generation efficiency, when KOH is contained in 10 to 30wt%, the aqueous solution containing KOH and IPA is when KOH is 1 to 5wt%, IPA is When it is 5 to 10wt% it can be seen that the most excellent power generation efficiency. Therefore, when the mixed mass of KOH and IPA has a range of 6: 94 to 15: 85 compared to the mass of H 2 O, it can be seen that the best generation efficiency, the mass ratio of IPA to KOH is 1: 5 to 1: 10. It was confirmed experimentally that it shows the best generation efficiency when it has a range of.
  • the present invention relates to a wafer surface processing method that can improve the power generation efficiency by laser texturing and cleaning treatment of KOH aqueous solution or KOH + IPA aqueous solution, and solves the improvement of efficiency and environmental problems by a simple treatment method. It can be seen that the industrial availability is excellent.

Abstract

본 발명은 환경오염 문제를 해결하고, 간단한 처리방법에 의해 발전효율을 향상시킬 수 있는 웨이퍼 표면 가공방법에 대한 것으로, 웨이퍼에 레이저를 조사하여 요철을 형성하는 단계; 및 상기 요철이 형성된 웨이퍼를 KOH를 포함하는 수용액에 넣어 클리닝하는 단계를 포함하는 것을 특징으로 한다.

Description

웨이퍼 표면 가공방법
본 발명은 반도체, 태양전지 등에 적용되는 실리콘 웨이퍼의 표면 가공방법에 대한 것이다.
고효율의 태양전지를 구현하기 위해서 실리콘 웨이퍼의 태양전지 표면에서의 입사광 반사에 의한 광학적 손실을 줄이는 것은 매우 중요하다. 이 광학적 손실을 줄이는 방법으로는 기판 텍스쳐링 방법이 있으며, 이 텍스쳐링은 전면의 반사율을 감소시키며, 태양전지 내에서 빛의 통과 길이를 길게 하고, 후면으로부터의 내부반사를 이용하여 흡수된 빛의 양을 증가 시킬 수가 있다.
실리콘 웨이퍼 태양전지의 표면 텍스쳐링은 표면에의 빛이 반사되는 기회를 증가시킴으로써 반사되는 빛의 반사율을 감소시키는데 있다. 다결정 실리콘 웨이퍼는 HF, HNO3등을 사용한 식각을 해야 한다. 이는 환경적으로나 인체에 유해하다는 단점을 가지고 있다.
단결정 실리콘의 텍스쳐링은 NaOH, Tetramethyl ammonium hydroxide (TMAH)와 같은 염기성 용액을 사용한다. 이러한 식각 용액 내에서는 수산기 이온(OH-)과 실리콘의 화학 반응을 통하여 식각이 이루어지는데 결정 방향에 따라 식각 속도가 다르다는 특징이 있다. 따라서 단결정 실리콘 태양전지의 표면에 피라미드 구조가 형성되며 이에 따라 표면 반사율이 감소된다. 그러나 이 기술은 다결정 실리콘에 대해서는 효과적으로 표면 반사율을 감소시키기 어려운 단점이 있다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 우수한 발전효율을 보이고, 환경 오염도가 적은 웨이퍼 표면 가공방법을 제공하는데 목적이 있다.
다만, 본 발명이 해결하고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기 목적 달성을 위한 본 발명의 웨이퍼 표면 가공방법, 웨이퍼에 레이저를 조사하여 요철을 형성하는 단계; 및 상기 요철이 형성된 웨이퍼를 KOH를 포함하는 수용액에 넣어 클리닝하는 단계를 포함한다.
일 실시형태로, 상기 KOH를 포함하는 수용액에서, 상기 KOH는 10 내지 30wt%일 수 있다.
또 다른 일 실시형태로, 상기 KOH를 포함하는 수용액에 넣어 클리닝하는 단계는, 5분 내지 9분의 범위에서 이루어질 수 있다.
또 다른 일 실시형태로, 상기 KOH를 포함하는 수용액은 IPA를 더 포함할 수 있다.
또 다른 일 실시형태로, 상기 KOH는 1 내지 5wt%이고, 상기 IPA는 5 내지 10wt%일 수 있다.
또 다른 일 실시형태로, 상기 KOH 및 IPA를 포함하는 수용액에 넣어 클리닝하는 단계는, 20분 내지 35분의 범위에서 이루어질 수 있다.
또 다른 일 실시형태로, 상기 레이저의 펄스 에너지는 50 내지 200uJ일 수 있다.
또 다른 일 실시형태로, 상기 레이저 조사에 의해 형성된 요철의 높이는 5 내지 20㎛일 수 있다.
상기와 같이 종래 기술의 문제점을 해결하기 위해 도출된 본 발명의 웨이퍼 표면 가공방법은 환경 오염물질을 발생하지 않으면서, 저렴한 소재로 우수한 발전효율을 나타낼 수 있다.
도 1은 레이저 텍스쳐링 후에 KOH로 클리닝한 웨이퍼 표면의 SEM 사진이다.
도 2는 레이저 텍스쳐링 후에 KOH 및 IPA로 클리닝한 웨이퍼 표면의 SEM 사진이다.
도 3은 도 1 및 도 2 일부 웨이퍼의 측면 SEM 사진이다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "특징으로 한다", "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예들을 상세하게 설명하면 다음과 같다. 다만, 본 발명을 설명함에 있어서, 이미 공지된 기능 혹은 구성에 대한 설명은, 본 발명의 요지를 명료하게 하기 위하여 생략하기로 한다.
본 발명의 웨이퍼 표면 가공방법은, 웨이퍼에 레이저를 조사하여 요철을 형성하는 단계; 및 상기 요철이 형성된 웨이퍼를 KOH를 포함하는 수용액에 넣어 클리닝 하는 단계를 포함한다.
도 1의 (a)는 레이저로만 텍스처링을 진행한 것이고, (b) 내지 (f)는 레이저 텍스처링 후에 KOH 클리닝을 진행하여 생성된 웨이퍼의 표면 SEM 사진이고, 도 2의 (a)는 레이저로만 텍스처링한 것이고, (b) 내지 (f)는 레이저 텍스처링 후에 KOH+IPA(ISO-PROPYL ALCOHOL)수용액으로 클리닝을 진행하여 생성된 웨이퍼의 표면 SEM 사진이다.
도 3의 (a)는 레이저로만 텍스처링을 진행한 웨이퍼 단면 SEM 사진이고, (b) 내지 (d)는 레이저 텍스처링 후에 KOH 클리닝을 진행하여 생성된 웨이퍼의 단면 SEM 사진이며, (e)와 (f)는 레이저 텍스처링 후에 KOH+IPA(ISO-PROPYL ALCOHOL) 수용액으로 클리닝을 진행하여 생성된 웨이퍼의 단면 SEM 사진이다. 단면 SEM 사진을 보면, KOH+IPA(ISO-PROPYL ALCOHOL) 수용액으로 클리닝을 진행한 것이 세밀 구조가 더욱 조밀하여, 광을 더욱 포집할 수 있는 구조를 많이 형성할 수 있음을 알 수 있다.
본 발명의 웨이퍼는 반도체 또는 태양전지에 적용되는 실리콘 웨이퍼로, 다결정의 실리콘 웨이퍼를 적용할 수 있다.
본 발명의 레이저 조사는, 다양한 레이저 조사장치가 적용될 수 있으나, 바람직하게는 펄스 레이저가 적용될 수 있다. 펄스 레이저로 웨이퍼의 표면에 요철을 형성한다.(도 1 (a) 및 도 2 (a) 참조) 형성되는 요철은 높이가 5 내지 20㎛를 형성함이 바람직하다. 요철의 높이란, 생성된 요철의 가장 높은 지점과 가장 낮은 지점의 폭을 말하다. 상기 요철의 높이가 5㎛일 경우에는 반사효율이 떨어지는 문제가 있으며, 20㎛이상일 경우에는 발전효율이 떨어지는 문제가 발생됨을 실험적으로 확인하였다. 이와 같이 생성된 요철은 도 1 (a) 및 도 2 (a)와 같이 길이방향의 패턴을 형성하게 되고, 패턴간의 이격거리는 5 내지 50㎛의 범위를 가질 수 있다.
상기와 같이, 높은 파워의 레이저로 요철을 형성할 경우에는 요철을 형성하기에 용이하고, 발전효율을 향상시킬 수 있는 구조를 형성하는데 용이한 장점이 있다. 다만, 높은 파워의 레이저로 인해, 발전효율에 저해되는 레이저 슬러지가 발생한다. 이에 본 발명은 상기 레이저 처리된 웨이퍼를 KOH 및 IPA(ISO-PROPYL ALCOHOL)를 포함하는 수용액으로 클리닝하는 단계를 거칠 수 있다. 클리닝이란, 레이저처리로 생성된 슬러지를 제거하고, 레이저 처리로 생성된 요철을 식각하는 역할을 한다. IPA는 KOH와 웨이퍼가 반응하여 생성되는 기포를 제거하고, 고른 요철 구조를 형성하는 역할을 한다. 본 발명의 발명자는 하기 [표 1]과 같이, 레이저 텍스쳐링을 한 후에 KOH 또는 KOH+IPA를 포함하는 수용액으로 처리시 태양전지의 발전효율이 월등히 향상됨을 확인하였다. 하기 테스트는 KOH 20wt%의 수용액에서 진행하였으며, KOH+IPA는 KOH가 2wt%, IPA가 6.5wt%인 수용액에서 테스트를 진행하였다.
구분 Voc (mV) Isc (A) Jsc (mA/cm2) FF (%) Eff (%) Etching Thickness(㎛)
Laser texturing 0.31 2.01 8.25 41.96 1.07 -
KOH 1min after Laser texturing 0.53 6.05 24.86 56.14 7.37 2.17
KOH 3min after Laser texturing 0.60 6.57 27.00 61.93 10.01 5.23
KOH 5min after Laser texturing 0.62 6.91 26.38 69.79 12.27 7.46
KOH 7min after Laser texturing 0.62 7.03 28.88 70.91 12.92 11.43
KOH 9min after Laser texturing 0.62 6.83 28.05 71.38 12.41 16.29
KOH+IPA 1min after Laser texturing 0.33 2.63 10.8 54.4 2.0 0.57
KOH+IPA 3min after Laser texturing 0.41 4.13 17.0 64.7 4.5 1.55
KOH+IPA 5min after Laser texturing 0.47 5.77 23.7 68.6 7.6 2.07
KOH+IPA 10min after Laser texturing 0.59 6.49 26.67 69.08 10.87 4.58
KOH+IPA 20min after Laser texturing 0.60 7.41 30.46 72.16 13.37 6.48
상기 [표 1]을 보면, 레이저 텍스쳐링만한 것보다 레이저 텍스처링 후, KOH 클리닝한 것이 더욱 우수한 발전효율(Eff)을 보임을 알 수 있으며, KOH 5 내지 9분의 범위에서 가장 우수한 발전효율(Eff)을 보임을 알 수 있다. 또한, KOH만으로 클리닝한 것보다 KOH + IPA를 20분간 클리닝한 것이 우수한 발전효율(Eff)을 보임을 알 수 있었다. KOH + IPA의 클리닝 시간을 늘려 확인한 결과, 35분 이상의 클리닝에서는 발전효율 상승이 거의 없음을 알 수 있었다. 따라서, KOH+IPA 수용액을 20 내지 35분간 클리닝 과정을 거치는 것이 가장 우수한 발전효율을 나타냄을 알 수 있었다.
또한, 상기 테스트 결과와 같이, KOH 수용액은 KOH가 10 내지 30wt%로 포함될 때, 가장 우수한 발전효율을 나타냄을 알 수 있었으며, KOH 및 IPA를 포함하는 수용액은 KOH가 1 내지 5wt%일때, IPA가 5 내지 10wt%일 때 가장 우수한 발전효율을 보임을 알 수 있다. 따라서, KOH 및 IPA의 혼합 질량은 H2O 질량 대비 6 : 94 내지 15 : 85의 범위를 가질 때, 가장 우수한 발전효율을 나타냄을 알 수 있었으며, KOH 대비 IPA의 질량비은 1 : 5 내지 1 : 10의 범위를 가질 때 가장 우수한 발전효율을 나타냄을 실험적으로 확인하게 되었다.
KOH 수용액의 KOH가 10wt% 미만일 경우에는 충분한 클리닝이 이루어지지 않는 문제가 있으며, 30wt%를 초과할 경우에는 발전효율이 더 이상 상승하지 않음을 알 수 있었다. 또한, KOH 및 IPA를 포함하는 수용액에서, KOH 및 IPA의 혼합 질량이 6wt% 미만일 경우에는 발전효율이 떨이지는 문제점이 있었으며, 15wt%을 초과할 경우에는 발절효율이 더이상 상승하지 않음을 알 수 있었다. 또한, KOH 대비 IPA의 질량비가 1 : 5 미만일 경우에는 기포제거가 완전하지 않은 문제가 있었으며, 1 : 10을 초과할 경우에는 식각효율이 현저히 떨어지는 문제점이 나타났다.
상기와 같이, 본 발명은 레이저 텍스처링과 KOH 수용액 또는 KOH+IPA 수용액의 클리닝 처리로 발전효율을 향상시킬 수 있는 웨이퍼 표면 가공방법에 대한 것으로, 간단한 처리방법에 의한 효율향상 및 환경문제를 해결하다는 점에서 산업상 이용 가능성이 우수함을 알 수 있다.
앞에서, 본 발명의 특정한 실시예가 설명되고 도시되었지만 본 발명은 기재된 실시예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명한 일이다.

Claims (8)

  1. 웨이퍼에 레이저를 조사하여 요철을 형성하는 단계; 및
    상기 요철이 형성된 웨이퍼를 KOH를 포함하는 수용액에 넣어 클리닝하는 단계를 포함하는 것을 특징으로 웨이퍼 표면 가공방법
  2. 청구항 1에 있어서,
    상기 KOH를 포함하는 수용액에서,
    상기 KOH는 10 내지 30wt%인 것을 특징으로 웨이퍼 표면 가공방법
  3. 청구항 2에 있어서,
    상기 KOH를 포함하는 수용액에 넣어 클리닝하는 단계는,
    5분 내지 9분의 범위에서 이루어지는 것을 특징으로 웨이퍼 표면 가공방법.
  4. 청구항 1에 있어서,
    상기 KOH를 포함하는 수용액은 IPA를 더 포함하는 것을 특징으로 웨이퍼 표면 가공방법
  5. 청구항 4에 있어서,
    상기 KOH는 1 내지 5wt%이고,
    상기 IPA는 5 내지 10wt%인 것을 특징으로 웨이퍼 표면 가공방법
  6. 청구항 5에 있어서,
    상기 KOH 및 IPA를 포함하는 수용액에 넣어 클리닝하는 단계는,
    20분 내지 35분의 범위에서 이루어지는 것을 특징으로 웨이퍼 표면 가공방법.
  7. 청구항 1에 있어서,
    상기 레이저의 펄스 에너지는 50 내지 200uJ인 것을 특징으로 웨이퍼 표면 가공방법
  8. 청구항 1에 있어서,
    상기 레이저 조사에 의해 형성된 요철의 높이는 5 내지 20㎛인 것을 특징으로 웨이퍼 표면 가공방법
PCT/KR2016/008123 2016-07-25 2016-07-25 웨이퍼 표면 가공방법 WO2018021584A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0094443 2016-07-25
KR1020160094443 2016-07-25

Publications (1)

Publication Number Publication Date
WO2018021584A1 true WO2018021584A1 (ko) 2018-02-01

Family

ID=61016080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/008123 WO2018021584A1 (ko) 2016-07-25 2016-07-25 웨이퍼 표면 가공방법

Country Status (1)

Country Link
WO (1) WO2018021584A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110041201A (ko) * 2009-10-15 2011-04-21 주식회사 효성 레이저를 이용한 텍스처링 방법과 이를 이용한 태양전지 제조방법 및 그에 의해 제조된 태양전지
JP2011086902A (ja) * 2009-10-16 2011-04-28 Motech Industries Inc 結晶シリコン電池の表面構造及びその製作方法
KR20120111784A (ko) * 2011-03-30 2012-10-11 한화케미칼 주식회사 태양 전지 제조 방법
JP2014013887A (ja) * 2012-06-05 2014-01-23 Hikari Kobayashi 半導体装置、半導体装置の製造方法および製造装置並びに太陽電池および太陽電池の製造方法
KR20140099161A (ko) * 2013-01-30 2014-08-11 에스티엑스 솔라주식회사 태양전지의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110041201A (ko) * 2009-10-15 2011-04-21 주식회사 효성 레이저를 이용한 텍스처링 방법과 이를 이용한 태양전지 제조방법 및 그에 의해 제조된 태양전지
JP2011086902A (ja) * 2009-10-16 2011-04-28 Motech Industries Inc 結晶シリコン電池の表面構造及びその製作方法
KR20120111784A (ko) * 2011-03-30 2012-10-11 한화케미칼 주식회사 태양 전지 제조 방법
JP2014013887A (ja) * 2012-06-05 2014-01-23 Hikari Kobayashi 半導体装置、半導体装置の製造方法および製造装置並びに太陽電池および太陽電池の製造方法
KR20140099161A (ko) * 2013-01-30 2014-08-11 에스티엑스 솔라주식회사 태양전지의 제조방법

Similar Documents

Publication Publication Date Title
CN101443893B (zh) 背面触点太阳能电池及制造方法
EP2270841B1 (en) Phosphorus paste for diffusion and process for producing solar battery utilizing the phosphorus paste
CN107078172B (zh) 用于增强可靠性的涂层材料和方法
CN1526807A (zh) 洗涤液及使用其的洗涤方法
CN1219241C (zh) 光致抗蚀剂脱膜剂组合物
KR20180032554A (ko) 스크린 인쇄기, 스크린 인쇄 방법 및 태양전지의 전극 형성 방법
DE102006042329B4 (de) Verfahren zum selektiven plasmachemischen Trockenätzen von auf Oberflächen von Silicium-Wafern ausgebildetem Phosphorsilikatglas
WO2015023162A1 (ko) 전도성 기판 및 이의 제조방법
WO2018021584A1 (ko) 웨이퍼 표면 가공방법
WO2005053037A1 (de) Verfahren zur verminderung der reflexion an halbleiteroberflächen
CN104817283A (zh) 一种自清洁光栅玻璃的制备方法
KR101161807B1 (ko) 플라즈마 도핑과 확산을 이용한 후면접합 태양전지의 제조방법 및 그 태양전지
EP3050118A1 (de) Verfahren zur herstellung einer solarzelle
EP1891683A1 (de) Verfahren zur entfernung einer dotierten oberflächenschicht an rückseiten von kristallinen silizium-solarwafern
CN103262654A (zh) 图案化方法
DE102017104037B4 (de) Polysiloxanfilm und elektronisches Gerät
KR20180020190A (ko) 웨이퍼 표면 가공방법
WO2016076581A1 (ko) 항균 구조물 및 이의 제조 방법
US20160359078A1 (en) Composition for forming n-type diffusion layer, method for forming n-type diffusion layer, method of producing semiconductor substrate with n-type diffusion layer, and method for producing photovoltaic cell element
JPWO2014208353A1 (ja) 太陽光発電装置用基板の製造方法および太陽光発電装置用基板の製造装置
WO2018235422A1 (ja) 高効率太陽電池の製造方法
JP5920421B2 (ja) 太陽電池モジュールの製造方法
CN111423135A (zh) 一种镀膜玻璃钢化后的表面中和处理方法
WO2016153165A1 (ko) 실리콘 기판과 도금전극간의 밀착력이 향상된 결정질 태양전지 제조방법
WO2017099020A1 (ja) 半導体素子の製造方法および太陽電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16910607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16910607

Country of ref document: EP

Kind code of ref document: A1